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Partial sums of a certain harmonic
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J.Dziok, J. Stankiewicz

Abstract: In the present paper we determine sharp lower bounds of
the real part of the ratios of harmonic univalent meromorphic functions
to their sequences of partial sums.
Let ΣH denote the class of functions f that are harmonic univalent and
sense-preserving in U∗ =, {z : |z| > 1} which are of the form

f(z) = h(z) + g(z) ,

where

h(z) = z +

∞∑
n=1

anz
−n , g(z) =

∞∑
n=1

bnz
−n.

Now, we define the sequences of partial sums of functions f of the form

fs(z) = z +

s∑
n=1

anz
−n + g(z),

f̃r(z) = g(z) +

r∑
n=1

bnz−n,

fs,r(z) = z +

s∑
n=1

anz
−n +

r∑
n=1

bnz−n.

In the present paper we will determine sharp lower bounds for Re
{
f(z)
fs(z)

}
,

Re
{
fs(z)
f(z)

}
, Re

{
f(z)

f̃r(z)

}
, Re

{
f̃r(z)
f(z)

}
, Re

{
f(z)
fs,r(z)

}
, Re

{
fs,r(z)
f(z)

}
.
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1 Introduction

A continuous function f = u + iv is a complex valued harmonic function in a
simply connected complex domain D ⊂ C if both u and v are real harmonic in
D. It was shown by Clunie and Sheil-Small [4] that such harmonic function can
be represented by f = h + g, where h and g are analytic in D. Also, a necessary
and sufficient condition for f to be locally univalent and sense preserving in D is

that
∣∣∣h′

(z)
∣∣∣ > ∣∣∣g′

(z)
∣∣∣. There are numerous papers on univalent harmonic functions

defined in a domain U = {z ∈ C : |z| < 1} (see [6,7], [14] and [15]). Hergartner
and Schober [10] investigated functions harmonic in the exterior of the unit disc i.e
U∗ = {z ∈ C : |z| > 1}. They showed that a complex valued, harmonic, sense
preserving univalent function f , defined on U∗ and satisfying f(∞) =∞ must admit
the represntation

f(z) = h(z) + g(z) +A log |z| (A ∈ C), (1.1)

where

h(z) = αz +

∞∑
n=1

anz
−n, g(z) = βz +

∞∑
n=1

bnz
−n (z ∈ U∗, 0 ≤ |β| < |α|), (1.2)

and a = fz/fz is analytic and satisfy |a(z)| < 1 for z ∈ U∗.
Let us denote by ΣH the class of functions f that are harmonic univalent and sense-
preserving in U∗, which are of the form

f(z) = h(z) + g(z) (z ∈ U∗) , (1.3)

where

h(z) = z +

∞∑
n=1

anz
−n , g(z) =

∞∑
n=1

bnz
−n.

Now, we introduce a class ΣH(cn, dn, δ) consisting of functions of the form (1.3) such
that

∞∑
n=1

cn |an|+
∞∑
n=1

dn |bn| < δ (dn ≥ cn ≥ c2 > 0; δ > 0). (1.4)

It is easy to see that various subclasses of ΣH consisting of functions f(z)
of the form (1.3) can be represented as ΣH(cn, dn, δ) for suitable choices of
cn, dn and δ studies earlier by various authors.

• ΣH(n, n, 1) = H∗0 (see Jahangiri and Silverman. [8]);

• ΣH(n+ γ, n− γ, 1− γ) = Σ∗H(γ)(0 ≤ γ < 1, n ≥ 1) (see Jahangiri [5]);
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• ΣH(|(n+ 1)λ− 1| , |(n− 1)λ+ 1| , 1 − α) = ΣHR(α, λ)(0 ≤ α < 1, λ ≥ 0, n ≥
1) (see Ahuja and Jahangiri [1]);

• ΣH(n+ α− αλ(n+ 1), n− α− αλ(n− 1), 1− α) = ΣHS
∗(α, λ)(0 ≤ α < 1, 0 ≤

λ ≤ 1, n ≥ 1) (see Janteng and Halim [9]),

• ΣH(n(n+ 2)m, n(n− 2)m, 1) = MH∗(m)(m ∈ N0 = N∪ {0},N = {1, 2, ...}, n ≥
1) (see Bostanci and Ozturk [2]);

• ΣH((n + γ)(n + 2)m, (n − γ)(n − 2)m, 1 − γ) = MH∗(m, γ)(0 ≤ γ < 1,m ∈
N0, n ≥ 1) (see Bostanci and Ozturk [3]).

Silvia [17] studied the partial sums of the convex functions of order α, later on
Silverman [16] studied partial sum for starlike and convex functions. Very recentaly,
Porwal [12], Porwal and Dixit [13] and Porwal [11] studied analogues interesting results
on the partial sums of certain harmonic univalent functions.

Since to a certain extent the work in the harmonic univalent meromorphic func-
tions case has paralleled that of the harmonic analytic univalent case, one is tempted
to search results analogous to those of Porwal [11] for meromorphic harmonic univa-
lent functions in U∗.

Now, we define the sequences of partial sums of functions f of the form (1.3) by

fs(z) = z +

s∑
n=1

anz
−n +

∞∑
n=1

bnz−n,

f̃r(z) = z +

∞∑
n=1

anz
−n +

r∑
n=1

bnz−n, (1.5)

fs,r(z) = z +

s∑
n=1

anz
−n +

r∑
n=1

bnz−n,

when the coefficients of f are sufficiently small to satisfy the condition (1.4).
In the present paper, motivated essentially by the work of Silverman [16] and

Porwal [11], we will determine sharp lower bounds for Re

{
f(z)

fs(z)

}
,

Re

{
fs(z)

f(z)

}
, Re

{
f(z)

f̃r(z)

}
, Re

{
f̃r(z)

f(z)

}
, Re

{
f(z)

fs,r(z)

}
and Re

{
fs,r(z)

f(z)

}
.

2 Main Results

Theorem 1. Let s ∈ N and let f(z) = h(z) + g(z) ∈ ΣH . Then

(i) Re

{
f(z)

fs(z)

}
> 1− δ

cs+1
(z ∈ U), (2.1)

and

(ii) Re

{
fs(z)

f(z)

}
>

cs+1

δ + cs+1
(z ∈ U), (2.2)
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whenever

cn ≥
{
δ, n = 2, 3, ..., s,
cs+1, n = s+ 1, s+ 2, ....

(2.3)

The estimates in (2.1) and (2.2) are sharp for the function given by

f(z) = z +
δ

cs+1
z−s−1 (z ∈ U∗) . (2.4)

Proof. (i) To obtain the sharp lower bound given by (2.1), let us put

g1(z) =
cs+1

δ

{
f(z)

fs(z)
− (1− δ

cs+1
)

}

= 1 +

cs+1

δ

∞∑
n=s+1

anz
−n

z +

s∑
n=1

anz−n +

∞∑
n=1

bnz−n

. (2.5)

Then, it is sufficient to show that Re g1 (z) > 0 (z ∈ U∗) or equivalently∣∣∣∣g1(z)− 1

g1(z) + 1

∣∣∣∣ ≤ 1 (z ∈ U∗) .

Since ∣∣∣∣g1(z)− 1

g1(z) + 1

∣∣∣∣ ≤
cs+1

δ

∞∑
n=s+1

|an|

2− 2

(
s∑

n=1

|an|+
∞∑
n=1

|bn|

)
− cs+1

δ

∞∑
n=s+1

|an|
, (2.6)

the last expression is bounded above by 1, if and only if

s∑
n=1

|an|+
∞∑
n=1

|bn|+
cs+1

δ

∞∑
n=s+1

|an| ≤ 1. (2.7)

Then, it is sufficient to show that L.H.S. of (2.7) is bounded above by

∞∑
n=1

cn
δ
|an|+

∞∑
n=1

dn
δ
|bn| ,

which is equivalent to the true inequality

s∑
n=1

cn − δ
δ
|an|+

∞∑
n=1

dn − δ
δ
|bn|+

∞∑
n=s+1

cn − cs+1

δ
|an| ≥ 0. (2.8)

If we take

f(z) = z +
δ

cs+1
z−s−1, (2.9)
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with z = re
iπ
s+2 and let r → 1+, we obtain

f(z)

fs(z)
= 1 +

δz−s−2

cs+1
→ 1− δ

cs+1
,

which shows that the bound in (2.1) is best possible.
(ii) Similarly, if we put

g
2
(z) =

(
δ + cs+1

δ

)(
fs(z)

f(z)
− cs+1

δ + cs+1

)

= 1−

(
δ + cs+1

δ

)( ∞∑
n=s+1

|an| zn +

∞∑
n=1

bnz−n

)

z +
∞∑
n=1
|an| zn +

∞∑
n=1

bnz−n

,

and make use of (2.3), we can deduce that

∣∣∣∣g2(z)− 1

g2(z) + 1

∣∣∣∣ ≤
cs+1 + δ

δ

 ∞∑
n=s+1

|an|+
∞∑

n=1

|bn|


2−2

 ∞∑
n=1
|an|+

∞∑
n=1

|bn|

−
cs+1 − δ

δ

 ∞∑
n=s+1

|an|+
∞∑

n=1

|bn|

 . (2.10)

This last expression is bounded above by 1, if and only if

s∑
n=1

|an|+
∞∑
n=1

|bn|+
(cs+1

δ

) ∞∑
n=s+1

|an| ≤ 1. (2.11)

Since L.H.S. of (2.11) is bounded above by

∞∑
n=1

cn
δ
|an|+

∞∑
n=1

dn
δ
|bn| ,

the bound in (2.2) follows and is sharp with the extremal function f(z) given by (2.4).
The proof of Theorem 1 is now complete.

Employing the techinques used in Theorem 1, we can prove the following theorems.

Theorem 2. Let r ∈ N and let f(z) = h(z) + g(z) ∈ ΣH . Then

(i) Re

{
f(z)

f̃r(z)

}
> 1− δ

dr+1
(z ∈ U), (2.12)

and

(ii) Re

{
f̃r(z)

f(z)

}
>

dr+1

δ + dr+1
(z ∈ U), (2.13)
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whenever

dn ≥
{
δ, n = 2, 3, ..., r,
dr+1, n = r + 1, r + 2, ....

The estimates in (2.12) and (2.13) are sharp for the function given by

f(z) = z +
δ

dr+1
z−r−1 (z ∈ U∗). (2.14)

Theorem 3. Let s, r ∈ N and let f(z) = h(z) + g(z) ∈ ΣH . Then

(i) Re

{
f(z)

fs,r(z)

}
> 1− δ

cs+1
(z ∈ U), (2.15)

and

(ii) Re

{
fs,r(z)

f(z)

}
>

cs+1

δ + cs+1
(z ∈ U), (2.16)

whenever

cn ≥
{
δ, n = 2, 3, ..., s,
cs+1, n = s+ 1, s+ 2, ...,

(2.17)

dn ≥
{
δ, n = 2, 3, ..., s,
cs+1, n = s+ 1, s+ 2, ....

Also,

(i) Re

{
f(z)

fs,r(z)

}
> 1− δ

dr+1
(z ∈ U), (2.18)

and

(ii) Re

{
fs,r(z)

f(z)

}
>

dr+1

δ + dr+1
(z ∈ U), (2.19)

whenever

cn ≥
{
δ, n = 2, 3, ..., r,
dr+1, n = r + 1, r + 2, ...,

(2.20)

dn ≥
{
δ, n = 2, 3, ..., r,
dr+1, n = r + 1, r + 2, ....

The estimates in (2.15), (2.16), (2.18) and (2.19) respectively, are sharp for the func-
tion given by (2.4) and (2.14), respectively.

Remark. By specializing the coefficients cn, dn and the parameters δ we obtain
corresponding results for various subclasses mentioned in the introduction.
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