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Abstract: A computationally efficient and tractable method is pre-
sented to find the best equilibrium in a finite 2-person game played with
staircase-function strategies. The method is based on stacking equilibria
of smaller-sized bimatrix games, each defined on a time unit where the
pure strategy value is constant. Every pure strategy is a staircase func-
tion defined on a time interval consisting of an integer number of time
units (subintervals). If a time-unit shifting happens, where the initial
time interval is narrowed by an integer number of time units, the respec-
tive equilibrium solution of any “narrower” subgame can be taken from
the “wider” game equilibrium. If the game is uncountably infinite, i. e. a
set of pure strategy possible values is uncountably infinite, and all time-
unit equilibria exist, stacking equilibria of smaller-sized 2-person games
defined on a rectangle works as well.
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1. Staircase-function strategies

A noncooperative 2-person game is a model of process where two sides personified
and referred to as persons or players interact in struggling for optimizing their own
payoffs [24, 25, 7]. The players’ payoffs are taken from some limited resources, so
the distribution of the limited resources is optimized by the game model [25, 1, 13,
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27]. The simplest 2-person game is a bimatrix game [7, 15, 25]. Whereas each of
the players in a bimatrix game possesses a finite set (space) of pure strategies, the
principles and theory of equilibrium, efficiency, profitability, and eventual optimality
of bimatrix game solutions are thoroughly studied [7, 10, 14, 24]. However, the
practice of bimatrix game solutions is not that simple. First, a problem may arise with
multiplicity of the solutions. Second, a problem may arise with selecting a solution
type (regarding equilibrium or profitability, which often are counteractive). Third,
another problem does arise when the solution is in mixed strategies but the number
of game iterations (moves, actions, plays, etc.) is limited and so a mixed strategy
appears to be impracticable (for instance, it is impossible to practically realize a
mixed strategy having probability of 7/19 if there are only 10 game iterations) [17,
18, 3, 7]. Furthermore, if at least two solutions are symmetric, they may be quite
unstable due to cooperation between the players is excluded [7, 24, 25, 10, 23].

A far more complicated case is a 2-person game, in which the player’s (pure)
strategy is a function (usually, it is a function of time). In such a game, the player’s
payoff is a functional mapping every pair of functions (pure strategies of the players
defined on a time interval) into a real value [20, 16]. In the case, when each of the
players possesses a finite set of such function-strategies, the game might be rendered
down to a bimatrix game [19, 13, 15]. The bimatrix game played with function-
strategies, apart from those mentioned problems inherent in ordinary bimatrix games,
is a far subtler model in the sense of its practicability.

The finiteness of a set of function-strategies is constituted by time interval dis-
cretization and discretization of possible values of the strategy. The time interval, on
which the pure strategy is defined, is broken into a set of time subintervals (units), on
which the strategy is (approximately considered) constant. This is so because there
is no natural time continuity — every process is constant on some (usually, short)
time period [2, 5, 8, 11, 12]. The continuity of possible values of the strategy on a
subinterval is removed also by discretization (or sampling) [22, 18, 9] ruled by laws of
the game-modeled system. Then the set of function-strategies becomes finite, where
the strategy itself is a staircase function [22] but sometimes it can be conditionally
interpreted as a point [30, 16, 18]. Compared to the most trivial strategy, which is a
decision corresponding to a one-stage event whose duration through time is (usually,
negligibly) short, a staircase-function strategy itself is a multi-stage process defined
on a time interval [26, 30, 18, 4, 28, 29]. Nevertheless, the length of the time interval
can be varied depending on properties of the process modeled by the game.

2. Multiplicity of equilibria and the time interval
length

A 2-person game played in finite staircase-function spaces can be called the bimatrix
staircase-function game. It is quite clear that the number of pure-strategy situations
in a bimatrix staircase-function game grows immensely as the number of breakpoints
(“stair” subintervals) increases, or the number of possible values of the player’s pure
strategy increases, or they both increase. For instance, if the number of time subin-
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tervals is just 5, and the number of possible values of the player’s pure strategy is 6,
then there is a finite set of

65 = 7776

possible pure strategies (i. e., 5-subinterval staircase functions of time) at this player.
If the other player’s pure strategy has, say, 8 possible values, then there are

85 = 32768

possible 5-subinterval staircase functions of time at this player, and the respective
bimatrix staircase-function game has a size of either

7776× 32768

or

32768× 7776

and there are

65 · 85 = 7776 · 32768 = 254803968

pure-strategy situations. If an additional time subinterval is included, there are

66 · 86 = 46656 · 262144 = 12230590464

pure-strategy situations (more than 12.23 billion ones!). This is why a tractable
method of solving 2-person games defined on a product of staircase-function spaces
was presented in [21], where the spaces can be finite and continuous (uncountably
infinite) as well. The method is based on stacking equilibria of “short” 2-person games,
each defined on a subinterval where the pure strategy value is constant. It is proved
in [21] that the bimatrix staircase-function game is solved as a stack of respective
equilibria in the “short” (ordinary) bimatrix games (where the pure strategy is a very
simple decision corresponding to a one-stage event). The stack is always possible,
even when only time is discrete (and the set of pure strategy possible values is infinite
or uncountably infinite). However, the problem of multiplicity of equilibria was not
raised in [21]. The subinterval equilibrium multiplicity has a dramatic impact on the
multiplicity of the equilibrium stack. For instance, if there are two equilibria on each
of 5 subintervals, the game has altogether

25 = 32

equilibrium stacks. Then an open question is how to select a single equilibrium stack.
Another open question is how to deal with a 2-person game in which the breakpoints
of a function-strategy do not change but the time interval length can vary [2, 3, 7,
30, 18, 5].
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3. Objective and six tasks to be fulfilled

Due to the above reasons, the objective is to expand and develop the tractable method
of solving 2-person games played within players’ finite sets of staircase functions [21]
for the case when the length of the time interval on which the 2-person game is defined
is varied. The case with an uncountably infinite set (space) of staircase functions is
to be considered as well. To meet the objective, the following tasks are to be fulfilled:

1. To formalize a 2-person game, in which the players’ strategies are staircase
functions. In such a game, the set of the player’s pure strategies is a continuum of
staircase functions of time. Such function-strategies are presumed to be bounded and
Lebesgue-integrable, and the time can be thought of as it is discrete.

2. To discretize the set of possible values of the player’s pure strategy so that the
game be defined on a product of staircase-function finite spaces.

3. To formalize the known method of solving 2-person games (the solution of the
equilibrium type) played in staircase-function finite and uncountably infinite spaces
by considering a possibility of narrowing the time interval on which the 2-person game
is defined.

4. To give an example of how the suggested method is applied. A special attention
must be paid to selecting a single equilibrium situation.

5. To discuss practical applicability and scientific significance of the method for
the game theory and operations research.

6. To conclude on the study and make an outlook for furthering it.

4. 2-person game played with staircase-function
strategies through discrete time

In a 2-person game, in which the player’s pure strategy is a function of time, let
each of the players use time-varying strategies defined almost everywhere on interval
[t1; t2] by t2 > t1. Denote a pure strategy of the first player by x (t) and a pure
strategy of the second player by y (t). These functions are presumed to be bounded,
i. e.

amin ⩽ x (t) ⩽ amax by amin < amax (1)

and
bmin ⩽ y (t) ⩽ bmax by bmin < bmax, (2)

defined almost everywhere on [t1; t2]. Besides, the square of the function-strategy is
presumed to be Lebesgue-integrable. Thus, pure strategies of the player belong to a
rectangular functional space of functions of time:

X = {x (t) , t ∈ [t1; t2] , t1 < t2 : amin ⩽ x (t) ⩽ amax by amin < amax} ⊂
⊂ L2 [t1; t2] (3)

and

Y = {y (t) , t ∈ [t1; t2] , t1 < t2 : bmin ⩽ y (t) ⩽ bmax by bmin < bmax} ⊂
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⊂ L2 [t1; t2] (4)

are the sets (sometimes referred to as action spaces) of the players’ pure strategies.
The first player’s payoff in situation (Figure 1)

{x (t) , y (t)} (5)

is
K
(
x (t) , y (t)

)
(6)

presumed to be an integral functional [21, 22]:

K
(
x (t) , y (t)

)
=

∫
[t1; t2]

f
(
x (t) , y (t) , t

)
dµ (t), (7)

where
f
(
x (t) , y (t) , t

)
(8)

is a function of x (t) and y (t) explicitly including t. The second player’s payoff in
situation (5) is

H
(
x (t) , y (t)

)
(9)

presumed to be an integral functional also:

H
(
x (t) , y (t)

)
=

∫
[t1; t2]

g
(
x (t) , y (t) , t

)
dµ (t), (10)

where
g
(
x (t) , y (t) , t

)
(11)

Figure 1: A situation (5) in 2-person game (12) played in uncountably infinite func-
tional spaces (3) and (4)
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is a function of x (t) and y (t) explicitly including t also. Therefore, a 2-person game〈
{X, Y } ,

{
K
(
x (t) , y (t)

)
, H

(
x (t) , y (t)

)}〉
(12)

is uncountably infinite due to it is defined on product

X × Y ⊂ L2 [t1; t2]× L2 [t1; t2] (13)

of uncountably infinite rectangular functional spaces (3) and (4) of players’ pure
strategies.

Each of sets (3) and (4) is a continuum of functions. It is worth noting that the
game continuity is defined by the continuity of spaces (3) and (4), whereas payoff
functionals (7) and (10) still can have discontinuities. In general, each of payoff
functionals (6) and (9) may have a terminal component like

K
(
x (t) , y (t)

)
=

=

∫
[t1; t2]

f
(
x (t) , y (t) , t

)
dµ (t) + Tf

(
x (t2) , y (t2) , t2

)
(14)

and

H
(
x (t) , y (t)

)
=

=

∫
[t1; t2]

g
(
x (t) , y (t) , t

)
dµ (t) + Tg

(
x (t2) , y (t2) , t2

)
(15)

by some terminal functions
Tf

(
x (t2) , y (t2) , t2

)
(16)

and
Tg

(
x (t2) , y (t2) , t2

)
(17)

depending on only the final state of the player’s strategy, but this case is not to be
considered here.

Presume that the players’ pure strategies x (t) and y (t) in game (12) can both
change their values only for a finite number of times. Denote by N the number of
subintervals at which the player’s pure strategy is constant, where N ∈ N\ {1}. In
other words, when time is discrete, N is a number of time units. Then the player’s
pure strategy is a staircase function having at most N different values. Let

Θ =
{
t1 = τ (0) < τ (1) < τ (2) < . . . < τ (N−1) < τ (N) = t2

}
, (18)

where
{
τ (i)

}N−1

i=1
are time points at which the staircase-function strategy can change

its value. Time-interval breaking (18) is not necessarily to be equidistant. The
staircase-function strategies are right-continuous [6, 21, 22]:

lim
ε>0
ε→0

x
(
τ (i) + ε

)
= x

(
τ (i)

)
(19)
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and
lim
ε>0
ε→0

y
(
τ (i) + ε

)
= y

(
τ (i)

)
(20)

for i = 1, N − 1, whereas (if the strategy value changes)

lim
ε>0
ε→0

x
(
τ (i) − ε

)
̸= x

(
τ (i)

)
(21)

and
lim
ε>0
ε→0

y
(
τ (i) − ε

)
̸= y

(
τ (i)

)
(22)

for i = 1, N − 1. As an exception,

lim
ε>0
ε→0

x
(
τ (N) − ε

)
= x

(
τ (N)

)
(23)

and
lim
ε>0
ε→0

y
(
τ (N) − ε

)
= y

(
τ (N)

)
. (24)

A 2-person game played with staircase-function strategies through discrete time can
be defined by using (1)— (13), (18)— (24).

Definition 1. 2-person game (12) defined on product (13) of rectangular functional
spaces (3) and (4) is called a discrete-time staircase-function 2-person game by time-
interval breaking (18), if (19)— (24) hold and

x (t) = αi ∈ [amin; amax] and y (t) = βi ∈ [bmin; bmax]

∀ t ∈
[
τ (i−1); τ (i)

)
for i = 1, N − 1 and

x (t) = αN ∈ [amin; amax] and

y (t) = βN ∈ [bmin; bmax] ∀ t ∈
[
τ (N−1); τ (N)

]
, (25)

where the factual payoff of the first player in situation {αi, βi} is

Ki (αi, βi) =

∫
[τ(i−1); τ(i))

f (αi, βi, t) dµ (t) ∀ i = 1, N − 1 (26)

and

KN (αN , βN ) =

∫
[τ(N−1); τ(N)]

f (αN , βN , t) dµ (t), (27)

and the factual payoff of the second player in situation {αi, βi} is

Hi (αi, βi) =

∫
[τ(i−1); τ(i))

g (αi, βi, t) dµ (t) ∀ i = 1, N − 1 (28)
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and

HN (αN , βN ) =

∫
[τ(N−1); τ(N)]

g (αN , βN , t) dµ (t). (29)

Situation (5) in the discrete-time staircase-function 2-person game is a stack of suc-
cessive situations {

{αi, βi}
}N

i=1
(30)

in a succession of N (ordinary) 2-person games〈
{[amin; amax] , [bmin; bmax]} , {K (αi, βi) , H (αi, βi)}

〉
for i = 1, N (31)

defined on product
[amin; amax]× [bmin; bmax] (32)

by (25)— (29).

Let a discrete-time staircase-function 2-person game by time-interval breaking (18)
be denoted by〈

{X (Θ) , Y (Θ)} ,
{
Ki

(
x (t) , y (t)

)
, Hi

(
x (t) , y (t)

)}〉
(33)

with the players’ pure strategy sets

X (Θ) =
{
x (t) ∈ X ([t1; t2]) : x (t) = αi ∈ [amin; amax]

∀ t ∈
[
τ (i−1); τ (i)

)
for i = 1, N − 1 and

x (t) = αN ∈ [amin; amax] ∀ t ∈
[
τ (N−1); τ (N)

]}
⊂ X ([t1; t2])

(34)

and

Y (Θ) =
{
y (t) ∈ Y ([t1; t2]) : y (t) = βi ∈ [bmin; bmax]

∀ t ∈
[
τ (i−1); τ (i)

)
for i = 1, N − 1 and

y (t) = βN ∈ [bmin; bmax] ∀ t ∈
[
τ (N−1); τ (N)

]}
⊂ Y ([t1; t2]) .

(35)

Obviously, discrete-time staircase-function 2-person game (33) is uncountably infinite
as each of sets (34) and (35) contains a continuum of function-strategies. An exam-
ple of situation (5) in a discrete-time staircase-function 2-person game played through
seven time units (subintervals) is given in Figure 2. The exemplified pure-strategy sit-
uation of two staircase functions can be also represented as a stack of seven successive

situations
{
{αi, βi}

}7

i=1
of seven ordinary 2-person games (31), where each ordinary

pure-strategy situation {αi, βi} for i = 1, 6 corresponds to a time unit (subinterval)[
τ (i−1); τ (i)

)
and ordinary pure-strategy situation {α7, β7} corresponds to a time

unit (subinterval)
[
τ (6); τ (7)

]
=

[
τ (6); t2

]
.
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Figure 2: A situation (5) in discrete-time staircase-function 2-person game (33); the
game is played in uncountably infinite functional spaces (34) and (35); the exemplified

pure-strategy situation is a stack of seven successive situations
{
{αi, βi}

}7

i=1

Time-interval breaking (18) allows considering payoffs (7) and (10) in situation
(5) equivalent to the sum of respective payoffs (26)— (29). The proof can be found
in [22].

Theorem 1. In a pure-strategy situation (5) of discrete-time staircase-function
2-person game (33), payoff functionals (7) and (10) are re-written as subinterval-
wise sums

K
(
x (t) , y (t)

)
=

N∑
i=1

Ki (αi, βi) =

=

N−1∑
i=1

∫
[τ(i−1); τ(i))

f (αi, βi, t) dµ (t) +

∫
[τ(N−1); τ(N)]

f (αN , βN , t) dµ (t) (36)

and

H
(
x (t) , y (t)

)
=

N∑
i=1

Hi (αi, βi) =

=

N−1∑
i=1

∫
[τ(i−1); τ(i))

g (αi, βi, t) dµ (t) +

∫
[τ(N−1); τ(N)]

g (αN , βN , t) dµ (t), (37)

where situation (5) is a stack of successive situations (30) in a succession of N
2-person games (31).
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Proof. Time interval [t1; t2] can be re-written as

[t1; t2] =

{
N−1⋃
i=1

[
τ (i−1); τ (i)

)}
∪
[
τ (N−1); τ (N)

]
. (38)

Therefore, the property of countable additivity of the Lebesgue integral can be used:

K
(
x (t) , y (t)

)
=

∫
[t1; t2]

f
(
x (t) , y (t) , t

)
dµ (t) =

=

∫
{

N−1⋃
i=1

[τ(i−1); τ(i))

}
∪[τ(N−1); τ(N)]

f
(
x (t) , y (t) , t

)
dµ (t) =

=

N−1∑
i=1

∫
[τ(i−1); τ(i))

f
(
x (t) , y (t) , t

)
dµ (t) +

∫
[τ(N−1); τ(N)]

f
(
x (t) , y (t) , t

)
dµ (t). (39)

Owing to (25), x (t) = αi and y (t) = βi, so (39) is simplified as

N−1∑
i=1

∫
[τ(i−1); τ(i))

f
(
x (t) , y (t) , t

)
dµ (t) +

∫
[τ(N−1); τ(N)]

f
(
x (t) , y (t) , t

)
dµ (t) =

=

N−1∑
i=1

∫
[τ(i−1); τ(i))

f (αi, βi, t) dµ (t) +

∫
[τ(N−1); τ(N)]

f (αN , βN , t) dµ (t) =

=
N∑
i=1

Ki (αi, βi). (40)

Consequently, in discrete-time staircase-function 2-person game (33), subinterval-wise
sum (36) holds in any pure-strategy situation (5) consisting of staircase-function
strategies x (t) ∈ X (Θ) and y (t) ∈ Y (Θ). Obviously, subinterval-wise sum (37)
is proved similarly to (38)— (40).

It is noteworthy that Theorem 1 can be proved also by considering function (8)
on a time unit (subinterval) as a function of time t, due to x (t) = αi and y (t) = βi
on this subinterval. Denote this function by ψi (t). Then this function appears to be
zero on any other time unit. Subsequently, function (8) is presented as the sum of
those subinterval functions:

f
(
x (t) , y (t) , t

)
=

N∑
i=1

ψi (t),

whereupon (40) is deduced.
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Nevertheless, Theorem 1 does not provide a method of solving the discrete-time
staircase-function 2-person game, but it hints about how the game might be solved in
an easier way [21, 22]. Theorem 1 provides a fundamental decomposition of the stair-
case game based on the subinterval-wise summing in (36) and (37). This subinterval
decomposition allows considering and solving each game (31) separately, whereupon
the solutions are stitched (stacked) together, regardless of whether the player’s action
space is finite or not.

5. Finite discrete-time staircase-function
2-person game

In a discrete-time staircase-function 2-person game (33), let the set of possible values
of the first player’s pure strategy be discretized as

A =
{
amin = a

(0)
i < a

(1)
i < a

(2)
i < . . . < a

(M−1)
i < a

(M)
i = amax

}
(41)

and the set of possible values of the second player’s pure strategy be discretized as

B =
{
bmin = b

(0)
i < b

(1)
i < b

(2)
i < . . . < b

(Q−1)
i < b

(Q)
i = bmax

}
(42)

by M ∈ N and Q ∈ N, where

a
(m−1)
i = a(m−1) ∀ i = 1, N for m = 1, M + 1 (43)

and
b
(q−1)
i = b(q−1) ∀ i = 1, N for q = 1, Q+ 1. (44)

This means that along with the discrete time units (subintervals), the players are
forced (somehow) to act within finite subsets of possible values of their pure strategies

A =
{
a(m−1)

}M+1

m=1
(45)

and

B =
{
b(q−1)

}Q+1

q=1
. (46)

Discretizations (41)— (44) allow defining a finite discrete-time staircase-function
2-person game.

Definition 2. Discrete-time staircase-function 2-person game (33) is called finite if
it is played on a product of finite subsets

X (Θ, A) =

{
x (t) ∈ X (Θ) : x (t) ∈

{
a(m−1)

}M+1

m=1

}
⊂

⊂ X (Θ) ⊂ X ([t1; t2]) (47)
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and

Y (Θ, B) =

{
y (t) ∈ Y (Θ) : y (t) ∈

{
b(q−1)

}Q+1

q=1

}
⊂

⊂ Y (Θ) ⊂ Y ([t1; t2]) (48)

of sets (34) and (35).

So, let a finite discrete-time staircase-function 2-person game be denoted by〈
{X (Θ, A) , Y (Θ, B)} ,

{
K
(
x (t) , y (t)

)
, H

(
x (t) , y (t)

)}〉
(49)

with the players’ pure strategy sets (47) and (48). In fact, this finite game is a bimatrix
staircase-function game (see an example in Figure 3, where every pure strategy as a
staircase function of time can be “imagined” as a conditional point pretended to be
a simple decision to constitute an 81 × 256 bimatrix game) that is the succession of
N bimatrix games〈{{

a
(m−1)
i

}M+1

m=1
,
{
b
(q−1)
i

}Q+1

q=1

}
, {Ki, Hi}

〉
for i = 1, N (50)

with the first player’s payoff matrices

Ki = [kimq](M+1)×(Q+1) (51)

whose elements are

kimq =

∫
[τ(i−1); τ(i))

f
(
a
(m−1)
i , b

(q−1)
i , t

)
dµ (t) for i = 1, N − 1 (52)

and

kNmq =

∫
[τ(N−1); τ(N)]

f
(
a
(m−1)
N , b

(q−1)
N , t

)
dµ (t), (53)

and with the second player’s payoff matrices

Hi = [himq](M+1)×(Q+1) (54)

whose elements are

himq =

∫
[τ(i−1); τ(i))

g
(
a
(m−1)
i , b

(q−1)
i , t

)
dµ (t) for i = 1, N − 1 (55)

and

hNmq =

∫
[τ(N−1); τ(N)]

g
(
a
(m−1)
N , b

(q−1)
N , t

)
dµ (t). (56)
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Figure 3: An example of finite pure strategy sets (47) and (48) in a bimatrix staircase-
function game; the game is played with 4-subinterval staircase functions of time, where
the first and second players have three and four possible values of their pure strategies,
respectively
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So, according with Definition 1, the first player’s payoff in situation
{
a
(m−1)
i , b

(q−1)
i

}
is (52), (53), for i = 1, N , and the second player’s payoff in situation

{
a
(m−1)
i , b

(q−1)
i

}
is (55), (56), for i = 1, N . In addition, situation (5) in the bimatrix staircase-function
game is a stack of successive situations{{

a
(m−1)
i , b

(q−1)
i

}}N

i=1

(57)

in a succession of N bimatrix games (50). Bimatrix staircase-function game (49)
might be rendered down to the ordinary bimatrix game, wherein a pure strategy is
a conditional point being in reality a staircase function. This rendering, however, is
useless because the much more efficient method exists [21, 22] to consider game (49)
as the succession of N bimatrix games (50) by (51)—(56) and find the solution of
game (49) by stacking solutions of smaller-sized bimatrix games (50).

6. Time-unit shifting in bimatrix staircase-function
games

An equilibrium situation in the bimatrix game always exists, either in pure or mixed
strategies. Denote by

Pi =
[
p
(m)
i

]
1×(M+1)

(58)

and

Ri =
[
r
(q)
i

]
1×(Q+1)

(59)

the mixed strategies of the first and second players, respectively, in bimatrix game
(50). The respective sets of mixed strategies of the first and second players are

P =

{
Pi ∈ RM+1 : p

(m)
i ⩾ 0,

M+1∑
m=1

p
(m)
i = 1

}
(60)

and

R =

{
Ri ∈ RQ+1 : r

(q)
i ⩾ 0,

Q+1∑
q=1

r
(q)
i = 1

}
, (61)

so Pi ∈ P, Ri ∈ R, and {Pi, Ri} is a situation in this game.

Definition 3. A stack {
{Pi, Ri}

}N

i=1
(62)

of successive situations in bimatrix games (50) is called a (mixed-strategy) situation in

bimatrix staircase-function game (49). Stacks {Pi}Ni=1 and {Ri}Ni=1 are the respective
mixed strategies of the first and second players in this game.
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It is clear that an equilibrium situation in a bimatrix staircase-function game is
to be sought among stacks (62). The respective assertions can be found in [21, 22].
However, these papers do not directly show how to select the best equilibrium stack
in the case of multiple equilibrium stacks.

Theorem 2. If

{P∗
i , R

∗
i } =

{[
p
(m)∗
i

]
1×(M+1)

,
[
r
(q)∗
i

]
1×(Q+1)

}
(63)

is an equilibrium situation in bimatrix game (50) for i = 1, N , then a stack

{
{P∗

i , R
∗
i }
}N

i=1
=

{{[
p
(m)∗
i

]
1×(M+1)

,
[
r
(q)∗
i

]
1×(Q+1)

}}N

i=1

(64)

of such successive solutions is an equilibrium situation in bimatrix staircase-function
game (49). If multiple equilibria exist (at one or more time units) and the maximum
of the players’ payoffs sum

P∗
i ·Ki · (R∗

i )
T
+P∗

i ·Hi · (R∗
i )

T
(65)

is reached at P∗
i = P∗∗

i and R∗
i = R∗∗

i , i. e.

max
{P∗

i , R
∗
i }

{
P∗

i ·Ki · (R∗
i )

T
+P∗

i ·Hi · (R∗
i )

T
}
=

= P∗∗
i ·Ki · (R∗∗

i )
T
+P∗∗

i ·Hi · (R∗∗
i )

T
, (66)

then the maximum of the players’ payoffs sum in an equilibrium stack of bimatrix
staircase-function game (49) is reached at stack{

{P∗∗
i , R

∗∗
i }

}N

i=1
(67)

and this maximum is

s∗∗ =

N∑
i=1

(
P∗∗

i ·Ki · (R∗∗
i )

T
+P∗∗

i ·Hi · (R∗∗
i )

T
)
. (68)

Proof. As (63) is an equilibrium situation, then inequalities

Pi ·Ki · (R∗
i )

T
=

=

M+1∑
m=1

Q+1∑
q=1

kimqp
(m)
i r

(q)∗
i =

=

M+1∑
m=1

Q+1∑
q=1

p
(m)
i r

(q)∗
i

∫
[τ(i−1); τ(i))

f
(
a
(m−1)
i , b

(q−1)
i , t

)
dµ (t) ⩽
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⩽
M+1∑
m=1

Q+1∑
q=1

p
(m)∗
i r

(q)∗
i

∫
[τ(i−1); τ(i))

f
(
a
(m−1)
i , b

(q−1)
i , t

)
dµ (t) =

=

M+1∑
m=1

Q+1∑
j=1

kimqp
(m)∗
i r

(q)∗
i =

= P∗
i ·Ki · (R∗

i )
T
= v∗i ∀ Pi ∈ P for i = 1, N − 1, (69)

PN ·KN · (R∗
N )

T
=

=

M+1∑
m=1

Q+1∑
q=1

kNmqp
(m)
N r

(q)∗
N =

=

M+1∑
m=1

Q+1∑
q=1

p
(m)
N r

(q)∗
N

∫
[τ(N−1); τ(N)]

f
(
a
(m−1)
N , b

(q−1)
N , t

)
dµ (t) ⩽

⩽
M+1∑
m=1

Q+1∑
q=1

p
(m)∗
N r

(q)∗
N

∫
[τ(N−1); τ(N)]

f
(
a
(m−1)
N , b

(q−1)
N , t

)
dµ (t) =

=

M+1∑
m=1

Q+1∑
q=1

kNmqp
(m)∗
N r

(q)∗
N =

= P∗
N ·KN · (R∗

N )
T
= v∗N ∀ PN ∈ P (70)

and inequalities

P∗
i ·Hi ·RT

i =

=

M+1∑
m=1

Q+1∑
q=1

himqp
(m)∗
i r

(q)
i =

=

M+1∑
m=1

Q+1∑
q=1

p
(m)∗
i r

(q)
i

∫
[τ(i−1); τ(i))

g
(
a
(m−1)
i , b

(q−1)
i , t

)
dµ (t) ⩽

⩽
M+1∑
m=1

Q+1∑
q=1

p
(m)∗
i r

(q)∗
i

∫
[τ(i−1); τ(i))

g
(
a
(m−1)
i , b

(q−1)
i , t

)
dµ (t) =

=

M+1∑
m=1

Q+1∑
q=1

himqp
(m)∗
i r

(q)∗
i =

= P∗
i ·Hi · (R∗

i )
T
= z∗i ∀ Ri ∈ R for i = 1, N − 1, (71)

P∗
N ·HN ·RT

N =
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=

M+1∑
m=1

Q+1∑
q=1

hNmqp
(m)∗
N r

(q)
N =

=

M+1∑
m=1

Q+1∑
q=1

p
(m)∗
N r

(q)
N

∫
[τ(N−1); τ(N)]

g
(
a
(m−1)
N , b

(q−1)
N , t

)
dµ (t) ⩽

⩽
M+1∑
m=1

Q+1∑
q=1

p
(m)∗
N r

(q)∗
N

∫
[τ(N−1); τ(N)]

g
(
a
(m−1)
N , b

(q−1)
N , t

)
dµ (t) =

=

M+1∑
m=1

Q+1∑
q=1

hNmqp
(m)∗
N r

(q)∗
N =

= P∗
N ·HN · (R∗

N )
T
= z∗N ∀ RN ∈ R (72)

hold. So, inequalities

N−1∑
i=1

Pi ·Ki · (R∗
i )

T
+PN ·KN · (R∗

N )
T
=

=

N−1∑
i=1

M+1∑
m=1

Q+1∑
q=1

kimqp
(m)
i r

(q)∗
i +

M+1∑
m=1

Q+1∑
q=1

kNmqp
(m)
N r

(q)∗
N =

=

N−1∑
i=1

M+1∑
m=1

Q+1∑
q=1

p
(m)
i r

(q)∗
i

∫
[τ(i−1); τ(i))

f
(
a
(m−1)
i , b

(q−1)
i , t

)
dµ (t)

+

+

M+1∑
m=1

Q+1∑
q=1

p
(m)
N r

(q)∗
N

∫
[τ(N−1); τ(N)]

f
(
a
(m−1)
N , b

(q−1)
N , t

)
dµ (t) ⩽

⩽
N−1∑
i=1

M+1∑
m=1

Q+1∑
q=1

p
(m)∗
i r

(q)∗
i

∫
[τ(i−1); τ(i))

f
(
a
(m−1)
i , b

(q−1)
i , t

)
dµ (t)

+

+

M+1∑
m=1

Q+1∑
q=1

p
(m)∗
N r

(q)∗
N

∫
[τ(N−1); τ(N)]

f
(
a
(m−1)
N , b

(q−1)
N , t

)
dµ (t) =

=

N−1∑
i=1

M+1∑
m=1

Q+1∑
q=1

kimqp
(m)∗
i r

(q)∗
i +

M+1∑
m=1

Q+1∑
q=1

kNmqp
(m)∗
N r

(q)∗
N =

=

N−1∑
i=1

P∗
i ·Ki · (R∗

i )
T
+P∗

N ·KN · (R∗
N )

T
=
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=

N∑
i=1

v∗i = v∗ ∀ Pi ∈ P for i = 1, N (73)

and

N−1∑
i=1

P∗
i ·Hi ·RT

i +P∗
N ·HN ·RT

N =

=

N−1∑
i=1

M+1∑
m=1

Q+1∑
q=1

himqp
(m)∗
i r

(q)
i +

M+1∑
m=1

Q+1∑
q=1

hNmqp
(m)∗
N r

(q)
N =

=

N−1∑
i=1

M+1∑
m=1

Q+1∑
q=1

p
(m)∗
i r

(q)
i

∫
[τ(i−1); τ(i))

g
(
a
(m−1)
i , b

(q−1)
i , t

)
dµ (t)

+

+

M+1∑
m=1

Q+1∑
q=1

p
(m)∗
N r

(q)
N

∫
[τ(N−1); τ(N)]

g
(
a
(m−1)
N , b

(q−1)
N , t

)
dµ (t) ⩽

⩽
N−1∑
i=1

M+1∑
m=1

Q+1∑
q=1

p
(m)∗
i r

(q)∗
i

∫
[τ(i−1); τ(i))

g
(
a
(m−1)
i , b

(q−1)
i , t

)
dµ (t)

+

+

M+1∑
m=1

Q+1∑
q=1

p
(m)∗
N r

(q)∗
N

∫
[τ(N−1); τ(N)]

g
(
a
(m−1)
N , b

(q−1)
N , t

)
dµ (t) =

=

N−1∑
i=1

M+1∑
m=1

Q+1∑
q=1

himqp
(m)∗
i r

(q)∗
i +

M+1∑
m=1

Q+1∑
q=1

hNmqp
(m)∗
N r

(q)∗
N =

=

N−1∑
i=1

P∗
i ·Hi · (R∗

i )
T
+P∗

N ·HN · (R∗
N )

T
=

=

N∑
i=1

z∗i = z∗ ∀ Ri ∈ R for i = 1, N (74)

hold as well. The assertion of Theorem 1 for bimatrix staircase-function game (49)
can be re-written as

K
(
x (t) , y (t)

)
=

N∑
i=1

kimq =

=

N−1∑
i=1

∫
[τ(i−1); τ(i))

f
(
a
(m−1)
i , b

(q−1)
i , t

)
dµ (t)+



Time-Unit Shifting in 2-Person Games Played in Staircase-Function Spaces 151

+

∫
[τ(N−1); τ(N)]

f
(
a
(m−1)
N , b

(q−1)
N , t

)
dµ (t) (75)

and

H
(
x (t) , y (t)

)
=

N∑
i=1

himq =

=

N−1∑
i=1

∫
[τ(i−1); τ(i))

g
(
a
(m−1)
i , b

(q−1)
i , t

)
dµ (t)+

+

∫
[τ(N−1); τ(N)]

g
(
a
(m−1)
N , b

(q−1)
N , t

)
dµ (t). (76)

Therefore, inequalities (73) and (74) along with using the payoff decomposition by
(75) and (76) allow to conclude that the stack of successive equilibria (64) is an
equilibrium situation in game (49).

As (66) holds, then

N∑
i=1

max
{P∗

i , R
∗
i }

{
P∗

i ·Ki · (R∗
i )

T
+P∗

i ·Hi · (R∗
i )

T
}
=

=

N∑
i=1

(
P∗∗

i ·Ki · (R∗∗
i )

T
+P∗∗

i ·Hi · (R∗∗
i )

T
)
=

=

N∑
i=1

P∗∗
i ·Ki · (R∗∗

i )
T
+

N∑
i=1

P∗∗
i ·Hi · (R∗∗

i )
T
=

=

N∑
i=1

v∗∗i +

N∑
i=1

z∗∗i = v∗∗ + z∗∗ = s∗∗, (77)

i. e. the maximum of the players’ payoffs sum is (68) reached at stack (67).

Consider now the case when the bimatrix staircase-function game is played through
a lesser number of time units. Thus, instead of time-interval breaking (18), the game
is played by a narrower time-interval breaking

Θ∗ =
{
t1 ⩽ τ1 = τ (n) < τ (n+1) < τ (n+2) < . . . < τ (U−1) < τ (U) = τ2 ⩽ t2

}
, (78)

where
n ∈

{
0, N − 1

}
, U ∈

{
1, N

}
, n < U, (79)

and
{
τ (i)

}U−1

i=n+1
are time points at which the staircase-function strategy can change

its value. So, Θ∗ ⊂ Θ in terms of the interval breaking.
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Theorem 3. In a bimatrix staircase-function game〈
{X (Θ∗, A) , Y (Θ∗, B)} ,

{
K
(
x (t) , y (t)

)
, H

(
x (t) , y (t)

)}〉
(80)

by

X (Θ∗, A) =

{
x (t) ∈ X (Θ∗) : x (t) ∈

{
a(m−1)

}M+1

m=1

}
⊂

⊂ X (Θ∗) ⊂ X ([τ1; τ2]) (81)

and

Y (Θ∗, B) =

{
y (t) ∈ Y (Θ∗) : y (t) ∈

{
b(q−1)

}Q+1

q=1

}
⊂

⊂ Y (Θ∗) ⊂ Y ([τ1; τ2]) (82)

and a time-interval breaking (78) for (79), an equilibrium situation is a stack

{
{P∗

i , R
∗
i }
}U

i=n+1
=

{{[
p
(m)∗
i

]
1×(M+1)

,
[
r
(q)∗
i

]
1×(Q+1)

}}U

i=n+1

(83)

of U −n successive equilibria (63) of bimatrix game (50) for i = n+ 1, U . If multiple
equilibria exist (at one or more time units) and the maximum of the players’ payoffs
sum (65) is reached at P∗

i = P∗∗
i and R∗

i = R∗∗
i , i. e. (66) holds, then the maximum

of the players’ payoffs sum in an equilibrium stack of bimatrix staircase-function game
(80) is reached at stack {

{P∗∗
i , R

∗∗
i }

}U

i=n+1
(84)

and this maximum is

s∗∗(Θ∗) =

U∑
i=n+1

(
P∗∗

i ·Ki · (R∗∗
i )

T
+P∗∗

i ·Hi · (R∗∗
i )

T
)
. (85)

Proof. As inequalities (69)— (72) hold ∀ i = 1, N , they hold ∀ i = n+ 1, U . For
time-interval breaking (78), time interval [τ1; τ2] can be re-written as

[τ1; τ2] =

{
U−1⋃

i=n+1

[
τ (i−1); τ (i)

)}
∪
[
τ (U−1); τ (U)

]
. (86)

So, owing to Theorem 1,

K
(
x (t) , y (t)

)
=

U∑
i=n+1

kimq =

=

U−1∑
i=n+1

∫
[τ(i−1); τ(i))

f
(
a
(m−1)
i , b

(q−1)
i , t

)
dµ (t)+
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+

∫
[τ(U−1); τ(U)]

f
(
a
(m−1)
U , b

(q−1)
U , t

)
dµ (t) (87)

and

H
(
x (t) , y (t)

)
=

U∑
i=n+1

himq =

=

U−1∑
i=n+1

∫
[τ(i−1); τ(i))

g
(
a
(m−1)
i , b

(q−1)
i , t

)
dµ (t)+

+

∫
[τ(U−1); τ(U)]

g
(
a
(m−1)
U , b

(q−1)
U , t

)
dµ (t). (88)

So, inequalities

U−1∑
i=n+1

Pi ·Ki · (R∗
i )

T
+PU ·KU · (R∗

U )
T
=

=

U−1∑
i=n+1

M+1∑
m=1

Q+1∑
q=1

kimqp
(m)
i r

(q)∗
i +

M+1∑
m=1

Q+1∑
q=1

kUmqp
(m)
U r

(q)∗
U =

=

U−1∑
i=n+1

M+1∑
m=1

Q+1∑
q=1

p
(m)
i r

(q)∗
i

∫
[τ(i−1); τ(i))

f
(
a
(m−1)
i , b

(q−1)
i , t

)
dµ (t)

+

+

M+1∑
m=1

Q+1∑
q=1

p
(m)
U r

(q)∗
U

∫
[τ(U−1); τ(U)]

f
(
a
(m−1)
U , b

(q−1)
U , t

)
dµ (t) ⩽

⩽
U−1∑

i=n+1

M+1∑
m=1

Q+1∑
q=1

p
(m)∗
i r

(q)∗
i

∫
[τ(i−1); τ(i))

f
(
a
(m−1)
i , b

(q−1)
i , t

)
dµ (t)

+

+

M+1∑
m=1

Q+1∑
q=1

p
(m)∗
U r

(q)∗
U

∫
[τ(U−1); τ(U)]

f
(
a
(m−1)
U , b

(q−1)
U , t

)
dµ (t) =

=

U−1∑
i=n+1

M+1∑
m=1

Q+1∑
q=1

kimqp
(m)∗
i r

(q)∗
i +

M+1∑
m=1

Q+1∑
q=1

kUmqp
(m)∗
U r

(q)∗
U =

=

U−1∑
i=n+1

P∗
i ·Ki · (R∗

i )
T
+P∗

U ·KU · (R∗
U )

T
=
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=

U∑
i=n+1

v
∗(Θ∗)
i = v∗(Θ∗) ∀ Pi ∈ P for i = n+ 1, U (89)

and

U−1∑
i=n+1

P∗
i ·Hi ·RT

i +P∗
U ·HU ·RT

U =

=

U−1∑
i=n+1

M+1∑
m=1

Q+1∑
q=1

himqp
(m)∗
i r

(q)
i +

M+1∑
m=1

Q+1∑
q=1

hUmqp
(m)∗
U r

(q)
U =

=

U−1∑
i=n+1

M+1∑
m=1

Q+1∑
q=1

p
(m)∗
i r

(q)
i

∫
[τ(i−1); τ(i))

g
(
a
(m−1)
i , b

(q−1)
i , t

)
dµ (t)

+

+

M+1∑
m=1

Q+1∑
q=1

p
(m)∗
U r

(q)
U

∫
[τ(U−1); τ(U)]

g
(
a
(m−1)
U , b

(q−1)
U , t

)
dµ (t) ⩽

⩽
U−1∑

i=n+1

M+1∑
m=1

Q+1∑
q=1

p
(m)∗
i r

(q)∗
i

∫
[τ(i−1); τ(i))

g
(
a
(m−1)
i , b

(q−1)
i , t

)
dµ (t)

+

+

M+1∑
m=1

Q+1∑
q=1

p
(m)∗
U r

(q)∗
U

∫
[τ(U−1); τ(U)]

g
(
a
(m−1)
U , b

(q−1)
U , t

)
dµ (t) =

=
U−1∑

i=n+1

M+1∑
m=1

Q+1∑
q=1

himqp
(m)∗
i r

(q)∗
i +

M+1∑
m=1

Q+1∑
q=1

hUmqp
(m)∗
U r

(q)∗
U =

=

U−1∑
i=n+1

P∗
i ·Hi · (R∗

i )
T
+P∗

U ·HU · (R∗
U )

T
=

=

U∑
i=n+1

z
∗(Θ∗)
i = z∗(Θ∗) ∀ Ri ∈ R for i = n+ 1, U (90)

hold. Therefore, inequalities (89) and (90) along with using the payoff decomposition
by (87) and (88) allow to conclude that the stack of successive equilibria (83) is an
equilibrium situation in bimatrix staircase-function game (80).

As (66) holds, then

U∑
i=n+1

max
{P∗

i , R
∗
i }

{
P∗

i ·Ki · (R∗
i )

T
+P∗

i ·Hi · (R∗
i )

T
}
=
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=

U∑
i=n+1

(
P∗∗

i ·Ki · (R∗∗
i )

T
+P∗∗

i ·Hi · (R∗∗
i )

T
)
=

=

U∑
i=n+1

P∗∗
i ·Ki · (R∗∗

i )
T
+

U∑
i=n+1

P∗∗
i ·Hi · (R∗∗

i )
T
=

=

U∑
i=n+1

v
∗∗(Θ∗)
i +

U∑
i=n+1

z
∗∗(Θ∗)
i = v∗∗(Θ∗) + z∗∗(Θ∗) = s∗∗(Θ∗), (91)

i. e. the maximum of the players’ payoffs sum is (85) reached at stack (84).

It is quite obvious that{
{P∗

i , R
∗
i }
}U

i=n+1
⊂

{
{P∗

i , R
∗
i }
}N

i=1
. (92)

So, Theorem 3 implies that the time-unit shifting does not change the structure and
number of equilibria in a bimatrix staircase-function game, nor does it change the
structure of the best equilibrium stack determined by the maximum of the players’
payoffs sum. In fact, game (80) is a subgame of bimatrix staircase-function game
(49). An equilibrium solution of the subgame can be easily taken from the respective
equilibrium solution of (“wider”) game (49).

7. Time-unit shifting in discrete-time
staircase-function 2-person games

See whether the inference above is valid for discrete-time staircase-function 2-person
game (33), which, generally speaking, is played within uncountably infinite sets of
players’ staircase-function strategies. Denote by

pi (αi) (93)

and
ri (βi) (94)

the mixed strategies of the first and second players, respectively, in (subinterval)
infinite 2-person game (31), where

P =

{
pi (αi) ∈ L2 [amin; amax] : pi (αi) ⩾ 0,

∫
[amin; amax]

pi (αi) dµ (αi) = 1

}
(95)

and

R =

{
ri (βi) ∈ L2 [bmin; bmax] : ri (βi) ⩾ 0,

∫
[bmin; bmax]

ri (βi) dµ (βi) = 1

}
(96)

are the respective sets of mixed strategies of the players. So, pi (αi) ∈ P , ri (βi) ∈ R,
and

{pi (αi) , ri (βi)} (97)

is a situation in this game.



156 V. Romanuke

Definition 4. A stack {
{pi (αi) , ri (βi)}

}N

i=1
(98)

of successive situations in (ordinary) 2-person games (31) is called a (mixed-strategy)

situation in discrete-time staircase-function 2-person game (33). Stacks {pi (αi)}Ni=1

and {ri (βi)}Ni=1 are the respective mixed strategies of the first and second players in
this game.

Just like in the case of a finite discrete-time staircase-function 2-person game, it
is clear that an equilibrium situation in a discrete-time staircase-function 2-person
game is to be sought among stacks (98). The respective assertions in [21], however,
concern only the case of equilibrium situations of pure strategies.

Theorem 4. If p∗i (αi) ∈ P , r∗i (βi) ∈ R, and

{p∗i (αi) , r
∗
i (βi)} (99)

is an equilibrium situation in 2-person game (31) for i = 1, N , then a stack{
{p∗i (αi) , r

∗
i (βi)}

}N

i=1
(100)

of such successive equilibria is an equilibrium situation in discrete-time staircase-
function 2-person game (33).

Proof. As (99) is an equilibrium situation, and all these subinterval equilibria exist,
then inequalities∫

[bmin; bmax]

r∗i (βi)

 ∫
[amin; amax]

pi (αi)Ki (αi, βi) dµ (αi)

 dµ (βi) =

=

∫
[bmin; bmax]

r∗i (βi)

 ∫
[amin; amax]

pi (αi)

∫
[τ(i−1); τ(i))

f (αi, βi, t) dµ (t)dµ (αi)

 dµ (βi) ⩽

⩽
∫

[bmin; bmax]

r∗i (βi)

 ∫
[amin; amax]

p∗i (αi)

∫
[τ(i−1); τ(i))

f (αi, βi, t) dµ (t)dµ (αi)

 dµ (βi) =

=

∫
[bmin; bmax]

r∗i (βi)

 ∫
[amin; amax]

p∗i (αi)Ki (αi, βi) dµ (αi)

 dµ (βi)

∀ pi (αi) ∈ P for i = 1, N − 1, (101)
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∫
[bmin; bmax]

r∗N (βN )

 ∫
[amin; amax]

pN (αN )KN (αN , βN ) dµ (αN )

 dµ (βN ) =

=

∫
[bmin; bmax]

r∗N (βN )

 ∫
[amin; amax]

pN (αN )

∫
[τ(N−1); τ(N)]

f (αN , βN , t) dµ (t)dµ (αN )

 dµ (βN ) ⩽

⩽
∫

[bmin; bmax]

r∗N (βN )

 ∫
[amin; amax]

p∗N (αN )

∫
[τ(N−1); τ(N)]

f (αN , βN , t) dµ (t)dµ (αN )

 dµ (βN ) =

=

∫
[bmin; bmax]

r∗N (βN )

 ∫
[amin; amax]

p∗N (αN )KN (αN , βN ) dµ (αN )

 dµ (βN )

∀ pN (αN ) ∈ P (102)

and inequalities

∫
[bmin; bmax]

ri (βi)

 ∫
[amin; amax]

p∗i (αi)Hi (αi, βi) dµ (αi)

 dµ (βi) =

=

∫
[bmin; bmax]

ri (βi)

 ∫
[amin; amax]

p∗i (αi)

∫
[τ(i−1); τ(i))

g (αi, βi, t) dµ (t)dµ (αi)

 dµ (βi) ⩽

⩽
∫

[bmin; bmax]

r∗i (βi)

 ∫
[amin; amax]

p∗i (αi)

∫
[τ(i−1); τ(i))

g (αi, βi, t) dµ (t)dµ (αi)

 dµ (βi) =

=

∫
[bmin; bmax]

r∗i (βi)

 ∫
[amin; amax]

p∗i (αi)Hi (αi, βi) dµ (αi)

 dµ (βi)

∀ ri (βi) ∈ R for i = 1, N − 1, (103)
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∫
[bmin; bmax]

rN (βN )

 ∫
[amin; amax]

p∗N (αN )HN (αN , βN ) dµ (αN )

 dµ (βN ) =

=

∫
[bmin; bmax]

rN (βN )

 ∫
[amin; amax]

p∗N (αN )

∫
[τ(N−1); τ(N)]

g (αN , βN , t) dµ (t)dµ (αN )

 dµ (βN ) ⩽

⩽
∫

[bmin; bmax]

r∗N (βN )

 ∫
[amin; amax]

p∗N (αN )

∫
[τ(N−1); τ(N)]

g (αN , βN , t) dµ (t)dµ (αN )

 dµ (βN ) =

=

∫
[bmin; bmax]

r∗N (βN )

 ∫
[amin; amax]

p∗N (αN )HN (αN , βN ) dµ (αN )

 dµ (βN )

∀ rN (βN ) ∈ R (104)

hold. So, inequalities

N∑
i=1

∫
[bmin; bmax]

r∗i (βi)

 ∫
[amin; amax]

pi (αi)Ki (αi, βi) dµ (αi)

 dµ (βi) =

=

N−1∑
i=1

∫
[bmin; bmax]

r∗i (βi)

 ∫
[amin; amax]

pi (αi)

∫
[τ(i−1); τ(i))

f (αi, βi, t) dµ (t)dµ (αi)

 dµ (βi)+

+

∫
[bmin; bmax]

r∗N (βN )

 ∫
[amin; amax]

pN (αN )

∫
[τ(N−1); τ(N)]

f (αN , βN , t) dµ (t)dµ (αN )

 dµ (βN ) ⩽
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⩽
N−1∑
i=1

∫
[bmin; bmax]

r∗i (βi)

 ∫
[amin; amax]

p∗i (αi)

∫
[τ(i−1); τ(i))

f (αi, βi, t) dµ (t)dµ (αi)

 dµ (βi)+

+

∫
[bmin; bmax]

r∗N (βN )

 ∫
[amin; amax]

p∗N (αN )

∫
[τ(N−1); τ(N)]

f (αN , βN , t) dµ (t)dµ (αN )

 dµ (βN ) =

=

N∑
i=1

∫
[bmin; bmax]

r∗i (βi)

 ∫
[amin; amax]

p∗i (αi)Ki (αi, βi) dµ (αi)

 dµ (βi) =

=

N∑
i=1

v∗i = v∗ ∀ pi (αi) ∈ P for i = 1, N (105)

and

N∑
i=1

∫
[bmin; bmax]

ri (βi)

 ∫
[amin; amax]

p∗i (αi)Hi (αi, βi) dµ (αi)

 dµ (βi) =

=

N−1∑
i=1

∫
[bmin; bmax]

ri (βi)

 ∫
[amin; amax]

p∗i (αi)

∫
[τ(i−1); τ(i))

g (αi, βi, t) dµ (t)dµ (αi)

 dµ (βi)+

+

∫
[bmin; bmax]

rN (βN )

 ∫
[amin; amax]

p∗N (αN )

∫
[τ(N−1); τ(N)]

g (αN , βN , t) dµ (t)dµ (αN )

 dµ (βN ) ⩽

⩽
N−1∑
i=1

∫
[bmin; bmax]

r∗i (βi)
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[amin; amax]

p∗i (αi)

∫
[τ(i−1); τ(i))

g (αi, βi, t) dµ (t)dµ (αi)

 dµ (βi)+

+

∫
[bmin; bmax]

r∗N (βN )

 ∫
[amin; amax]

p∗N (αN )

∫
[τ(N−1); τ(N)]

g (αN , βN , t) dµ (t)dµ (αN )

 dµ (βN ) =

=

N∑
i=1

∫
[bmin; bmax]

r∗i (βi)

 ∫
[amin; amax]

p∗i (αi)Hi (αi, βi) dµ (αi)

 dµ (βi) =

=

N∑
i=1

z∗i = z∗ ∀ ri (βi) ∈ R for i = 1, N (106)

hold as well. Therefore, inequalities (105) and (106) along with using the payoff
decomposition by (36) and (37) allow to conclude that the stack of successive equilibria
(100) is an equilibrium situation in game (33).

Theorem 5. In a discrete-time staircase-function 2-person game〈
{X (Θ∗) , Y (Θ∗)} ,

{
K
(
x (t) , y (t)

)
, H

(
x (t) , y (t)

)}〉
(107)

by

X (Θ∗) =
{
x (t) ∈ X ([τ1; τ2]) : x (t) = αi ∈ [amin; amax]

∀ t ∈
[
τ (i−1); τ (i)

)
for i = n+ 1, U − 1 and

x (t) = αU ∈ [amin; amax] ∀ t ∈
[
τ (U−1); τ (U)

]}
⊂ X ([τ1; τ2])

(108)

and

Y (Θ∗) =
{
y (t) ∈ Y ([τ1; τ2]) : y (t) = βi ∈ [bmin; bmax]

∀ t ∈
[
τ (i−1); τ (i)

)
for i = n+ 1, U − 1 and

y (t) = βU ∈ [bmin; bmax] ∀ t ∈
[
τ (U−1); τ (U)

]}
⊂ Y ([τ1; τ2])

(109)

and a time-interval breaking (78) for (79), an equilibrium situation is a stack{
{p∗i (αi) , r

∗
i (βi)}

}U

i=n+1
(110)

of U − n successive equilibria (99) in 2-person game (31) for i = n+ 1, U .
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Proof. As inequalities (101)— (104) hold ∀ i = 1, N , they hold ∀ i = n+ 1, U . For
time-interval breaking (78), time interval [τ1; τ2] can be re-written as (86), so, owing
to Theorem 1,

K
(
x (t) , y (t)

)
=

U∑
i=n+1

Ki (αi, βi) =

=

U−1∑
i=n+1

∫
[τ(i−1); τ(i))

f (αi, βi, t) dµ (t) +

∫
[τ(U−1); τ(U)]

f (αU , βU , t) dµ (t) (111)

and

H
(
x (t) , y (t)

)
=

U∑
i=n+1

Hi (αi, βi) =

=

U−1∑
i=n+1

∫
[τ(i−1); τ(i))

g (αi, βi, t) dµ (t) +

∫
[τ(U−1); τ(U)]

g (αU , βU , t) dµ (t). (112)

So, inequalities

U∑
i=n+1

∫
[bmin; bmax]

r∗i (βi)

 ∫
[amin; amax]

pi (αi)Ki (αi, βi) dµ (αi)

 dµ (βi) =

=

U−1∑
i=n+1

∫
[bmin; bmax]

r∗i (βi)

 ∫
[amin; amax]

pi (αi)

∫
[τ(i−1); τ(i))

f (αi, βi, t) dµ (t)dµ (αi)

 dµ (βi)+

+

∫
[bmin; bmax]

r∗U (βU )

 ∫
[amin; amax]

pU (αU )

∫
[τ(U−1); τ(U)]

f (αU , βU , t) dµ (t)dµ (αU )

 dµ (βU ) ⩽

⩽
U−1∑

i=n+1

∫
[bmin; bmax]

r∗i (βi)
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[amin; amax]

p∗i (αi)

∫
[τ(i−1); τ(i))

f (αi, βi, t) dµ (t)dµ (αi)

 dµ (βi)+

+

∫
[bmin; bmax]

r∗U (βU )

 ∫
[amin; amax]

p∗U (αU )

∫
[τ(U−1); τ(U)]

f (αU , βU , t) dµ (t)dµ (αU )

 dµ (βU ) =

=

U∑
i=n+1

∫
[bmin; bmax]

r∗i (βi)

 ∫
[amin; amax]

p∗i (αi)Ki (αi, βi) dµ (αi)

 dµ (βi) =

=

U∑
i=n+1

v
∗(Θ∗)
i = v∗(Θ∗) ∀ pi (αi) ∈ P for i = n+ 1, U (113)

and

U∑
i=n+1

∫
[bmin; bmax]

ri (βi)

 ∫
[amin; amax]

p∗i (αi)Hi (αi, βi) dµ (αi)

 dµ (βi) =

=

U−1∑
i=n+1

∫
[bmin; bmax]

ri (βi)

 ∫
[amin; amax]

p∗i (αi)

∫
[τ(i−1); τ(i))

g (αi, βi, t) dµ (t)dµ (αi)

 dµ (βi)+

+

∫
[bmin; bmax]

rU (βU )

 ∫
[amin; amax]

p∗U (αU )

∫
[τ(U−1); τ(U)]

g (αU , βU , t) dµ (t)dµ (αU )

 dµ (βU ) ⩽

⩽
U−1∑

i=n+1

∫
[bmin; bmax]

r∗i (βi)
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[amin; amax]

p∗i (αi)

∫
[τ(i−1); τ(i))

g (αi, βi, t) dµ (t)dµ (αi)

 dµ (βi)+

+

∫
[bmin; bmax]

r∗U (βU )

 ∫
[amin; amax]

p∗U (αU )

∫
[τ(U−1); τ(U)]

g (αU , βU , t) dµ (t)dµ (αU )

 dµ (βU ) =

=

U∑
i=n+1

∫
[bmin; bmax]

r∗i (βi)

 ∫
[amin; amax]

p∗i (αi)Hi (αi, βi) dµ (αi)

 dµ (βi) =

=

U∑
i=n+1

z
∗(Θ∗)
i = z∗(Θ∗) ∀ ri (βi) ∈ R for i = n+ 1, U (114)

hold. Therefore, inequalities (113) and (114) along with using the payoff decompo-
sition by (111) and (112) allow to conclude that the stack of successive equilibria
(110) is an equilibrium situation in discrete-time staircase-function 2-person game
(107).

The assertion about the maximum of the players’ payoffs sum in an equilibrium
stack in game (33) could have been proved in a way similar to that in the proof of
Theorem 2. However, this question has far less practical sense compared to that for
bimatrix staircase-function games (which always have equilibrium solutions). This
is so because discrete-time staircase-function 2-person games are played, generally
speaking, within uncountably infinite sets of players’ staircase-function strategies (93)
and (94), and even the latter may have pretty tricky structure, let alone a subinterval
game may have no equilibrium at all.

Similarly to game (80) being a subgame of bimatrix staircase-function game (49),
and an inclusion by (92), it is quite obvious that game (107) is a subgame of discrete-
time staircase-function 2-person game (33) and

{
{p∗i (αi) , r

∗
i (βi)}

}U

i=n+1
⊂

{
{p∗i (αi) , r

∗
i (βi)}

}N

i=1
. (115)

Theorem 5 being a generalization of Theorem 3 implies that the time-unit shift-
ing does not change the structure of equilibria in a discrete-time staircase-function
2-person game. If an equilibrium solution of (“wider”) game (33) exists, the respective
equilibrium solution of the (“narrower”) subgame can be taken from it.
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8. An example of the bimatrix staircase-function
game

Consider an example of the bimatrix staircase-function game, in which functions (8)
and (11) in integral functionals (7) and (10) are

f
(
x (t) , y (t) , t

)
=

= sin
(
0.05xt− 0.01yt2 − π

4

)
+ cos (0.04xyt) e1.3 cos(0.01xyt) (116)

and

g
(
x (t) , y (t) , t

)
= t sin

(
0.03xyt− π

5

)
e−2.44 cos(0.02xyt+π

3 ), (117)

where the players are forced (somehow) to act within finite subsets of possible values
of their pure strategies (45) and (46):

A =
{
a(m−1)

}M+1

m=1
=

{
a
(m−1)
i

}7

m=1
= {m+ 1}7m=1 (118)

and

B =
{
b(q−1)

}Q+1

q=1
=

{
b
(q−1)
i

}6

q=1
= {12 + 2q}6q=1 . (119)

The time unit (or the time subinterval length) is 0.1π, i. e. the players may (syn-
chronously, simultaneously) change their pure strategies values only through this time
step. The tasks are to solve such bimatrix staircase-function game (80) for time in-
tervals

[τ1; τ2] = [0.7π; 1.3π] , (120)

[τ1; τ2] = [1.8π; 2.5π] , (121)

[τ1; τ2] = [2.8π; 3.6π] , (122)

where

X (Θ∗, A) =
{
x (t) ∈ X (Θ∗) : x (t) ∈ {m+ 1}7m=1

}
⊂

⊂ X (Θ∗) ⊂ X ([τ1; τ2]) (123)

and

Y (Θ∗, B) =
{
y (t) ∈ Y (Θ∗) : y (t) ∈ {12 + 2q}6q=1

}
⊂

⊂ Y (Θ∗) ⊂ Y ([τ1; τ2]) (124)

by

τ (i) − τ (i−1) = 0.1π for i = n+ 1, U (125)

in time-interval breaking (78).
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According with Theorem 3, it is sufficient to find an equilibrium stack of the
bimatrix staircase-function game with (116)— (119) played during time interval

[t1; t2] = [0.7π; 3.6π] (126)

where the respective payoff functionals

K
(
x (t) , y (t)

)
=

∫
[0.7π; 3.6π]

f
(
x (t) , y (t) , t

)
dµ (t) (127)

and

H
(
x (t) , y (t)

)
=

∫
[0.7π; 3.6π]

g
(
x (t) , y (t) , t

)
dµ (t), (128)

due to there are 29 time units in (126), are transformed into 29 payoff 7× 6 matrices
of the first player and 29 payoff 7× 6 matrices of the second player. So, the “wider”
bimatrix staircase-function game is the succession of 29 bimatrix games〈{{

a
(m−1)
i

}7

m=1
,
{
b
(q−1)
i

}6

q=1

}
, {Ki, Hi}

〉
for i = 1, 29 (129)

with the first player’s payoff matrices

Ki = [kimq]7×6 (130)

whose elements are

kimq =

∫
[τ(i−1); τ(i))

f
(
a
(m−1)
i , b

(q−1)
i , t

)
dµ (t) =

=

∫
[0.6π+0.1πi; 0.7π+0.1πi)

f (m+ 1, 12 + 2q, t) dµ (t) =

=

∫
[0.6π+0.1πi; 0.7π+0.1πi)

[
sin

(
0.05 · (m+ 1) t− 0.01 · (12 + 2q) t2 − π

4

)
+

+cos
(
0.04 · (m+ 1) · (12 + 2q) t

)
e1.3 cos

(
0.01·(m+1)·(12+2q)t

)]
dµ (t)

for i = 1, 28 (131)

and

k29mq =

∫
[τ(28); τ(29)]

f
(
a
(m−1)
29 , b

(q−1)
29 , t

)
dµ (t) =

=

∫
[3.5π; 3.6π]

f (m+ 1, 12 + 2q, t) dµ (t) =
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=

∫
[3.5π; 3.6π]

[
sin

(
0.05 · (m+ 1) t− 0.01 · (12 + 2q) t2 − π

4

)
+

+cos
(
0.04 · (m+ 1) · (12 + 2q) t

)
e1.3 cos

(
0.01·(m+1)·(12+2q)t

)]
dµ (t) , (132)

and with the second player’s payoff matrices

Hi = [himq]7×6 (133)

whose elements are

himq =

∫
[τ(i−1); τ(i))

g
(
a
(m−1)
i , b

(q−1)
i , t

)
dµ (t) =

=

∫
[0.6π+0.1πi; 0.7π+0.1πi)

g (m+ 1, 12 + 2q, t) dµ (t) =

=

∫
[0.6π+0.1πi; 0.7π+0.1πi)

t sin
(
0.03 · (m+ 1) · (12 + 2q) t− π

5

)
e−2.44 cos(0.02·(m+1)·(12+2q)t+π

3 )dµ (t) for i = 1, 28 (134)

and

h29mq =

∫
[τ(28); τ(29)]

g
(
a
(m−1)
29 , b

(q−1)
29 , t

)
dµ (t) =

=

∫
[3.5π; 3.6π]

g (m+ 1, 12 + 2q, t) dµ (t) =

=

∫
[3.5π; 3.6π]

t sin
(
0.03 · (m+ 1) · (12 + 2q) t− π

5

)
e−2.44 cos(0.02·(m+1)·(12+2q)t+π

3 )dµ (t) . (135)

In the “wider” bimatrix staircase-function game, each of the players is allowed to
change its pure strategy value only at time points{

τ (i)
}28

i=1
= {0.7π + 0.1πi}28i=1 .

Payoff matrix (130) on each subinterval of set{
{[0.6π + 0.1πi; 0.7π + 0.1πi)}28i=1 , [3.5π; 3.6π]

}
(136)

is shown in Figure 4 as a meshed surface, where a close-to-chaotic payoff distribu-
tion can be seen. Payoff matrix (133) on each subinterval of set (136) is shown in
Figure 5 as a meshed surface also, where a close-to-chaotic payoff distribution is seen
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Figure 4: First player’s payoffs in matrix (130) as a meshed surface on the 29 subin-
tervals of set (136)
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Figure 5: Second player’s payoffs in matrix (133) as a meshed surface on the 29
subintervals of set (136)
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as well (although some meshes on neighboring subintervals bear some resemblance).
A distinctive feature here is that the payoff value scale of the second player is much
wider than that of the first player. Whereas the first player’s payoff varies between
approximately −1.1144 and 1.3652, the second player’s payoff varies between approx-
imately −31.3741 and 30.4348, that means a potentially significant imbalance when
the criterion of the payoff sum maximum is applied to select the best equilibrium.

The 7× 6 bimatrix games (129) with (130)—(135) are solved in pure and mixed
strategies, and there are multiple equilibrium situations on some time units. So, the
best equilibrium situation on such time units is selected by the criterion of maximizing
the players’ payoffs sum. The stack of the 29 first player’s equilibrium strategies in
each of those 29 7 × 6 bimatrix games is shown in Figure 6, where the solid line
corresponds to a pure strategy equilibrium and the dotted lines correspond to nonzero-
probability pure strategies in a mixed strategy equilibrium. Similarly, the stack of the
29 second player’s equilibrium strategies is shown in Figure 7. Thus, the solution to
the “wider” game is the equilibrium situation formed subinterval-wise from the stacks
in Figure 6 and Figure 7. Owing to Theorem 3, the equilibrium solutions for time
intervals (120)— (122) are directly taken from the “wider” game equilibrium stack. In
the solution for time interval (120), pure strategies a(2) = 4 and a(4) = 6 are not used
by the first player, whereas pure strategy b(1) = 16 is not used by the second player
(Figure 8). In the solution for time interval (121), every player uses all one’s pure
strategies, only in mixed strategies (Figure 9). In the solution for time interval (122),
pure strategy a(4) = 6 is not used by the first player, whereas the second player uses
all one’s pure strategies (Figure 10)—either in mixed strategies or in pure strategies
during [3π; 3.4π). It is worth noting that there are no completely mixed strategies in
the 29 time-unit equilibrium situations.

In the “wider” game equilibrium situation formed subinterval-wise from the stacks
in Figure 6 and Figure 7, the players’ payoffs are

v∗ =

29∑
i=1

v∗i ≈ 7.4123 (137)

and

z∗ =

29∑
i=1

z∗i ≈ 99.8691, (138)

provided by the criterion of maximizing the players’ payoffs sum. However, it is worth
noting that the presented game solution strongly depends on the criterion of selecting
a single equilibrium situation (on each time unit). Inasmuch as the payoff ranges of
the players differ severely, the applied above criterion may be unacceptable for the first
player whose contribution to the sum is rather (insignificantly, on some time units)
small. Thus, the same criterion can be used but only with payoff normalizations

ṽ∗ij =

v∗ij − min
j=1, Ji

v∗ij

max
j=1, Ji

v∗ij − min
j=1, Ji

v∗ij
(139)
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Figure 6: The stack of the 29 strategies as the first player’s best equilibrium strategy in
the best equilibrium situation in the “wider” game by (116)— (119) and (126)— (135)

Figure 7: The stack of the 29 strategies as the second player’s best equilibrium
strategy in the best equilibrium situation in the “wider” game by (116)— (119) and
(126)—(135)
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Figure 8: The stacks of the six best equilibrium strategies of the first (left) and second
(right) players in the game played during time interval (120)

Figure 9: The stacks of the seven best equilibrium strategies of the first (left) and
second (right) players in the game played during time interval (121)
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Figure 10: The stacks of the eight best equilibrium strategies of the first (left) and
second (right) players in the game played during time interval (122)

and

z̃∗ij =

z∗ij − min
j=1, Ji

z∗ij

max
j=1, Ji

z∗ij − min
j=1, Ji

z∗ij
, (140)

where v∗ij and z
∗
ij are the first and second players payoffs in a j-th equilibrium situation

on time unit i, on which there are Ji equilibria altogether. Then, similarly to (66),
an equilibrium situation {P∗∗

i , R
∗∗
i } is selected such in which

max
j=1, Ji

{
ṽ∗ij + z̃∗ij

}
(141)

is reached. By using the criterion with (139)— (141), the equilibrium solution of the
“wider” bimatrix staircase-function game changes (see the first player’s equilibrium
stack in Figure 11 and the second player’s equilibrium stack in Figure 12, where the
subintervals with the changes are segregated): the players’ equilibria on subintervals

[1.4π; 1.5π) , (142)

[2.1π; 2.2π) , (143)

[2.6π; 2.7π) (144)

are different from the equilibria on subintervals (142)— (144) in both Figure 6 and
Figure 7. The first player now mixes pure strategies a(0) = 2 and a(4) = 6 (instead
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Figure 11: The best equilibrium situation of the first player in the “wider” game by
(116)—(119) and (126)— (135) solved by selecting a single equilibrium situation on
the time unit with (139)— (141)

Figure 12: The best equilibrium situation of the second player in the “wider” game
by (116)— (119) and (126)—(135) solved by selecting a single equilibrium situation
on the time unit with (139)— (141)



174 V. Romanuke

of mixing a(3) = 5 and a(5) = 7 in Figure 6) on subinterval (142), and the second
player now mixes pure strategies b(2) = 18 and b(5) = 24 (instead of mixing b(3) = 20
and b(4) = 22 in Figure 7) on subinterval (142). The equilibrium strategy support
cardinality, which is

|suppP∗
8| = |suppR∗

8| = 2,

does not change. Nor does it change on subinterval (143):

|suppP∗
15| = |suppR∗

15| = 2,

where the first player now mixes pure strategy a(3) = 5 with a(5) = 7 (instead of
mixing a(3) = 5 with a(2) = 4 in Figure 6), and the second player now mixes pure
strategies b(0) = 14 and b(5) = 24 (instead of mixing b(2) = 18 and b(4) = 22 in
Figure 7). The most radical change is on subinterval (144), whereon each of the
players now does not mix one’s four pure strategies (a(2) = 4, a(3) = 5, a(4) = 6,
a(5) = 7 in Figure 6 and b(0) = 14, b(1) = 16, b(2) = 18, b(4) = 22 in Figure 7),
but uses instead a single pure strategy: the first player just uses a(5) = 7 and the
second player uses b(4) = 22. Now, in the “wider” game equilibrium situation formed
subinterval-wise from the stacks in Figure 11 and Figure 12, the players’ payoffs are

v∗ =

29∑
i=1

v∗i ≈ 8.0337 (145)

and

z∗ =

29∑
i=1

z∗i ≈ 96.5492, (146)

provided by the criterion of maximizing the players’ payoffs sum as selecting a single
equilibrium situation on the time unit with (139)—(141). The first player’s payoff
(145) is 8.3839 % greater than that (137), whereas the second player’s payoff (146) is
just 3.3242 % less than that (138). This is an example of that a proper selection of the
single equilibrium criterion, e. g. using payoff normalizations like (139), (140), when
the players’ payoff ranges differ, can balance the player’s eventual payoffs (making
their distribution more fair). Obviously, equilibria on some time units may depend
on the criterion (that is followed by the respective changes in the players’ equilibrium
stacks).

9. Discussion

In the sense of practical applicability, the presented method is a significant contribu-
tion to the 2-person game theory and operations research. It allows solving 2-person
games played with staircase-function strategies in a far simpler manner just by consid-
ering a succession of time-unit subgames. In the case of a bimatrix staircase-function
game, being “wider” one, its equilibrium situation is formed by solving and stacking
equilibria of successive smaller-sized bimatrix games. Then, owing to Theorem 3,



Time-Unit Shifting in 2-Person Games Played in Staircase-Function Spaces 175

the respective equilibrium solution of any “narrower” subgame can be taken from
the “wider” game equilibrium. The computational efficiency is only defined by and
limited to the efficiency of finding equilibrium situations in an ordinary (time-unit)
bimatrix game whose size is commonly not that large. Without considering the succes-
sion of time-unit bimatrix games, any straightforward approach to finding equilibrium
situations in a bimatrix staircase-function game is intractable.

A special attention is paid to time variable t explicitly included into functions
(8) and (11) to be integrated. The explicitness means that, as time goes by (and
the players develop their actions), something is going on or changes within the pro-
cess modeled by the staircase-function game. If, in a discrete-time staircase-function
2-person game, time t is not explicitly included into functions (8) and (11), then

Ki (αi, βi) =

∫
[τ(i−1); τ(i))

f (αi, βi) dµ (t) =

= f (αi, βi) ·
(
τ (i) − τ (i−1)

)
∀ i = 1, N − 1 (147)

and

KN (αN , βN ) =

∫
[τ(N−1); τ(N)]

f (αN , βN ) dµ (t) =

= f (αN , βN ) ·
(
τ (N) − τ (N−1)

)
(148)

instead of (26) and (27), and

Hi (αi, βi) =

∫
[τ(i−1); τ(i))

g (αi, βi) dµ (t) =

= g (αi, βi) ·
(
τ (i) − τ (i−1)

)
∀ i = 1, N − 1 (149)

and

HN (αN , βN ) =

∫
[τ(N−1); τ(N)]

g (αN , βN ) dµ (t) =

= g (αN , βN ) ·
(
τ (N) − τ (N−1)

)
(150)

instead of (28) and (29). Equalities (147)— (150) mean that the payoff value depends
only on the length of the time unit. That is, the player’s payoff then is equal to
the subinterval length multiplied by the respective value of the function under the
integral. If the length does not change in the case of bimatrix staircase-function
game (49), then the time-unit bimatrix game does not change. If the length does
not change in the case of discrete-time staircase-function 2-person game (33), the
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time-unit (ordinary) 2-person game defined on rectangle (32) does not change. Then
the solution (of any type) to the initial (finite or uncountably infinite) discrete-time
staircase-function 2-person game is determined just by the solution of a one time-unit
game, and this solution will not change as the time units go by. Such a triviality of the
equal-length-subinterval solution is explained by a standstill of the players’ strategies.
Consequently, the scientific significance of this trivial case is low — this is why it is
not considered.

The scientific significance of the discrete-time staircase-function 2-person game
and the methods of finding an equilibrium in it (provided by Theorems 2 and 3, and,
under the supposition of that all the time-unit equilibria exist, by Theorems 4 and 5)
is high. Owing to Theorems 2 and 3, such games, if finite, are very simple models to
describe struggling for optimizing the distribution of some limited resources between
two sides. Unlike ordinary bimatrix games, which model only static processes of the
struggle, discrete-time staircase-function 2-person games allow considering discrete-
time dynamics of the struggling processes. Such a simplification is similar to that
when, e. g., the fuzzy logic facilitates the control of a complicated system without
knowledge of its exact mathematical description.

10. Conclusion

Because of an intractably gigantic size, it is impracticable to solve 2-person games
played in staircase-function finite spaces by directly rendering them to bimatrix games,
where the solution is of the equilibrium type. Moreover, the time interval on which
the discrete-time 2-person game is defined can vary by the number of time subinter-
vals (time units), so a tractable and efficient method of finding an equilibrium in a
2-person game played in staircase-function finite spaces is to solve a succession of
time-unit bimatrix games, whereupon their equilibria are stacked into pure-mixed-
strategy equilibria. In the case of multiple equilibria on some time units, the criterion
of the players’ payoffs sum maximum is applied to select the best equilibrium. Owing
to Theorems 2 and 3, the equilibrium of the initial finite game can be obtained by
stacking the best equilibria of the smaller-sized bimatrix games, whichever the time
interval is. If the game is uncountably infinite, i. e. a set of pure strategy possible val-
ues is uncountably infinite, and all time-unit equilibria exist, such a stack is possible
as well owing to Theorems 4 and 5. So, the equilibrium of the initial discrete-time
staircase-function 2-person game can be obtained by stacking the equilibria of the
(ordinary) 2-person games defined on a rectangle, whichever the time interval is.

Solving games played in staircase-function finite spaces with possible time-unit
shifting (when the initial time interval is narrowed by an integer number of time units)
should be studied also for the case of three players. Then the presented assertions
and conclusions are to be re-written for trimatrix games. A distinct peculiarity is
that the equilibria multiplicity problem in trimatrix games is even trickier than that
in bimatrix games. Moreover, the criterion of selecting a single equilibrium situation
on each time unit in the case of a trimatrix staircase-function game becomes more
disputable, especially when at least two players’ payoff ranges differ significantly.
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