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Abstract: The current article concerns an existence criteria of so-
lutions of nonlinear fractional differential inclusions in the sense of the
hybrid Caputo-proportional fractional derivatives in Banach space. The
investigation of the main result relies on the set-valued issue of Mönch
fixed point theorem incorporated with the Kuratowski measure of non-
compactness.
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1. Introduction

It is recently seen that there is a wide-spread of fractional differential systems because
of their great relevance to reality and their dignified influence in describing several
real-world problems in physics, mechanics and engineering. For intance, we refer the
reader to the monographs of Baleanu et al.[7], Hilfer [21], Kilbas et al. [24], Mainardi
[26], Miller and Ross [27], Podlubny [30], Samko et al. [32] and the papers [17, 33].

Due to the importance of fractional differential inclusions in mathematical model-
ing of problems in game theory, stability, optimal control, and so on. For this reason,
many contributions have been investigated by some researchers [1, 4, 11, 12, 13, 18, 29].
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On the other hand, the theory of measure of non-compactness is an essential tool
in investigating the existence of solutions for nonlinear integral and differential equa-
tions, see, for example, the recent papers [5, 10, 15, 19, 31] and the references existing
therein.

In [14], Benchohra et al. studied the existence of solutions for the fractional
differential inclusions with boundary conditions{

CDry(t) ∈ G (t, y(t)) , a.e. on [0, T ], 1 < r < 2,

y(0) = y0, y(T ) = yT ,

where CDr is the Caputo fractional derivative, G : [0, T ]×E → P(E) is a multi-valued
map, y0, yT ∈ E and (E, | · |) is a Banach space.

Motivated by the above work, in this paper, we will extend the Caputo fractional
derivative with a broader and more general one, which can be written as a Riemann-
Liouville integral of a proportional derivative, or in some important special cases as
a linear combination of a Riemann-Liouville integral and a Caputo derivative. To
be more precise we will study the existence of solutions for the following nonlin-
ear fractional differential inclusions with the hybrid Caputo-proportional fractional
derivatives {

PC
0 Dα

t x(t) ∈ F (t, x(t)) , a.e. on J := [0, b], 0 < α < 1,

x(0) = x0,
(1.1)

where PC
0 Dα

t denotes the hybrid proportional-Caputo fractional derivative of order
α, (E, | · |) is a Banach space, P(E) is the family of all nonempty subsets of E, x0 ∈ E
and F : J×E → P(E) is a given multi-valued map. We study the inclusion problem
(1.1) in the case where the right hand side is convex-valued by means of the set-valued
issue of Mönch fixed point theorem incorporated with the Kuratowski measure of non-
compactness.

It is worth noting that the relevant results of fractional differential inclusions
with the hybrid Caputo-proportional fractional derivatives are scarce. So the main
goal of the present work is to contribute to the development of this area. Further,
the topic of research has attracted lots of interests as a powerful tool for modeling
scientific phenomena. Therefore, we refer the reader to some recent results which can
be helpful for more related extensions or generalizations of the results in this paper
in the future research works, see [22, 23, 28].

2. Preliminaries

First, we recall from [6] the following definition of the proportional (conformable)
derivative of order α:

P
0 D

αg(t) = k1(α, t)g(t) + k0(α, t)g
′(t),
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where g is differentiable function and k0, k1 : [0, 1] × R → [0,∞) are continuous
functions of the variable t and the parameter α ∈ [0, 1] which satisfy the following
conditions for all t ∈ R:

lim
α→0+

k0(α, t) = 0, lim
α→1−

k0(α, t) = 1, k0(α, t) ̸= 0, α ∈ (0, 1], (2.1)

lim
α→0+

k1(α, t) = 1, lim
α→1−

k1(α, t) = 0, k1(α, t) ̸= 0, α ∈ [0, 1). (2.2)

Next, we explore the new definitions of the generalized hybrid proportional-Caputo
fractional derivative.

Definition 2.1. [8] The hybrid Caputo-proportional fractional derivative of order
α ∈ (0, 1) of a differentiable function g(t) is given by

PC
0 Dα

t g(t) =
1

Γ(1− α)

∫ t

0

(
k1(α, τ)g(t) + k0(α, τ)g

′(t)
)
(t− τ)−α dτ, (2.3)

where the function space domain is given by requiring that g is differentiable and
both g and g′ are locally L1 functions on the positive reals.

Definition 2.2. [8] The inverse operator of the hybrid Caputo-proportional fractional
derivative of order is given by

PC
0 Iα

t g(t) =

∫ t

0

exp

(
−
∫ t

u

k1(α, s)

k0(α, s)
ds

)
RL
0D1−α

u g(u)

k0(α, u)
du, (2.4)

where RL
0D1−α

u denotes the Riemann-Liouville fractional derivative of order 1 − α
and is given by

RL
0D1−α

u g(u) =
1

Γ(α)

d

du

∫ u

0

(u− s)α−1g(s) ds. (2.5)

For more details, we refer the reader to the book of Kilbas et al. [24].

Proposition 2.3. [8] The following inversion relations:

PC
0Dα

t
PC

0 Iα
t g(t) = g(t)− t−α

Γ(1− α)
lim
t→0

RL
0Iα

t g(t), (2.6)

PC
0 Iα

t
PC

0Dα
t g(t) = g(t)− exp

(
−
∫ t

0

k1(α, s)

k0(α, s)
ds

)
g(0) (2.7)

are satisfied.

Proposition 2.4. [8] The hybrid Caputo-proportional fractional derivative operator
PC

0Dα
t is non-local and singular.
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Remark 2.5. [8] In the limiting cases α → 0 and α → 1, we recover the following
special cases:

lim
α→0

PC
0 Dα

t g(t) =

∫ t

0

g(τ) dτ,

lim
α→1

PC
0 Dα

t g(t) = g(t).

Denote by C(J,E) the Banach space of all continuous functions from J to E with
the norm ∥x∥ = supt∈J |x(t)|. By L1(J,E), we indicate the space of Bochner inte-

grable functions from J to E with the norm ∥x∥1 =
∫ b

0
|x(t)| dt.

2.1. Multi-valued maps analysis

Let the Banach space be (E, | · |). The expressions we have used are P(E) = {Z ∈
P(E) : Z ̸= ∅}, Pcl(E) = {Z ∈ P(E) : Z is closed}, Pbd(E) = {Z ∈ P(E) :
Z is bounded}, Pcp(E) = {Z ∈ P(E) : Z is compact}, Pcvx(E) = {Z ∈ P(E) :
Z is convex}.

• A multi-valued map U : E → P(E) is convex (closed) valued, if U(x) is convex
(closed) for all x ∈ E.

• U is bounded on bounded sets if U(B) = ∪x∈BU(x) is bounded in E for any
B ∈ Pbd(E), i.e. supx∈B{sup{∥y∥ : y ∈ U(x)}} < ∞.

• U is called upper semi-continuous onE if for each x∗ ∈ E, the set U(x∗) is nonempty,
closed subset of E, and if for each open set N of E containing U(x∗), there exists
an open neighborhood N∗ of x∗ such that U(N∗) ⊂ N .

• U is completely continuous if U(B) is relatively compact for each B ∈ Pbd(E).

• If U is a multi-valued map that is completely continuous with nonempty compact
values, then U is u.s.c. if and only if U has a closed graph (that is, if xn →
x0, yn → y0, and yn ∈ U(xn), then y0 ∈ U(x0).

For more details about multi-valued maps, we refer to the book of Deimling [16].

Definition 2.6. A multi-valued map F : J× E → P(E) is said to be Carathéodory
if

(i) t 7→ F (t, x) is measurable for each u ∈ E;

(ii) x 7→ F (t, x) is upper semi-continuous for almost all t ∈ J.

We define the set of the selections of a multi-valued map F by

SF,x := {f ∈ L1(J,E) : f(t) ∈ F (t, x(t)) for a.e. t ∈ J}.



On the Hybrid Caputo-Proportional Fractional Differential Inclusions 9

Lemma 2.7. [25] Let J be a compact real interval and E be a Banach space. Let
F be a multi-valued map satisfying the Carathèodory conditions with the set of L1-
selections SF,u nonempty, and let Θ : L1(J,E) → C(J,E) be a linear continuous
mapping. Then the operator

Θ ◦ SF,x : C(J,E) → Pbd,cl,cvx(C(J,E)), x 7→ (Θ ◦ SF,x)(x) := Θ(SF,x)

is a closed graph operator in C(J,E)× C(J,E).

2.2. Measure of non-compactness

We specify this part of the paper to explore some important details of the Kuratowski
measure of non-compactness.

Definition 2.8. [9] Let ΛE be the family of bounded subsets of a Banach space E.
We define the Kuratowski measure of non-compactness κ : ΛE → [0,∞] of B ∈ ΛE as

κ(B) = inf{ϵ > 0 : B ⊂
m⋃
j=1

Bj and diam(Bj) ≤ ϵ}.

Lemma 2.9. [9] Let C,D ⊂ E be bounded, the Kuratowski measure of non-
compactness possesses the next characteristics:

i. κ(C) = 0 ⇔ C is relatively compact;

ii. C ⊂ D ⇒ κ(C) ≤ κ(D);

iii. κ(C) = κ(C), where C is the closure of C;

iv. κ(C) = κ(conv(C)), where conv(C) is the convex hull of C;

v. κ(C+D) ≤ κ(C) + κ(D), where C+D = {u+ v : u ∈ C, v ∈ D};

vi. κ(νC) = |ν|κ(C), for any ν ∈ R.

Theorem 2.10. (Mönch’s fixed point theorem) Let Ω be a closed and convex subset of
a Banach space E; U a relatively open subset of Ω, and N : U → P(Ω). Assume that
graph N is closed, N maps compact sets into relatively compact sets and for some
x0 ∈ U , the following two conditions are satisfied:

(i) G ⊂ U , G ⊂ conv(x0 ∪ N (G)), G = C implies G is compact, where C is a
countable subset of G;

(ii) x ̸∈ (1− µ)x0 + µN (x) ∀u ∈ U\U , µ ∈ (0, 1).

Then there exists x ∈ U with x ∈ N (x).

Theorem 2.11. [20] Let E be a Banach space and C ⊂ L1(J,E) countable with
|u(t)| ≤ h(t) for a.e. t ∈ J , and every u ∈ C; where h ∈ L1(J,R+). Then the
function z(t) = κ(C(t)) belongs to L1(J,R+) and satisfies

κ
({∫ b

0

u(τ) dτ : u ∈ C
})

≤ 2

∫ b

0

κ(C(τ)) dτ.
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3. Main results

We start this section with the definition of a solution of the inclusion problem (1.1).

Definition 3.1. A function x ∈ C(J,E) is said to be a solution of the inclusion
problem (1.1) if there exist a function f ∈ L1(J,E) with f(t) ∈ F (t, x(t)) for a.e.
t ∈ J, such that PC

0 D
α
t x(t) = f(t) on J, and the condition x(0) = x0 is satisfied.

Lemma 3.2. For 0 < α ≤ 1 and h ∈ C(J,R) the solution x of the linear hybrid
Caputo-proportional fractional differential equation{

PC
0D

α
t x(t) = h(t), t ∈ J,

x(0) = x0,
(3.1)

is given by the following integral equation

x(t) = exp

(
−
∫ t

0

k1(α, s)

k0(α, s)
ds

)
x0

+
1

Γ(α− 1)

∫ t

0

∫ u

0

exp

(
−
∫ t

u

k1(α, s)

k0(α, s)
ds

)
(u− τ)α−2

k0(α, u)
h(τ) dτ du, t ∈ J.

(3.2)

Proof. Applying the operator PC
0 Iαt (·) on both sides of (3.1), we get

PC
0 Iαt

PC
0 Dα

t x(t) =
PC
0 Iαt h(t).

Using (2.4) and (2.5) together with Proposition 2.3, we get

x(t)− exp

(
−
∫ t

0

k1(α, s)

k0(α, s)
ds

)
x(0) =

∫ t

0

exp

(
−
∫ t

u

k1(α, s)

k0(α, s)
ds

)
RL
0 D1−α

u h(u)

k0(α, u)
du

=
1

Γ(α)

∫ t

0

exp

(
−
∫ t

u

k1(α, s)

k0(α, s)
ds

)
1

k0(α, u)

d

du

∫ u

0

(u− τ)α−1h(τ) dτ du (3.3)

Using the following Leibniz’s rule:

d

du

∫ a2(u)

a1(u)

w(u, τ) dτ =

∫ a2(u)

a1(u)

∂

∂u
w(u, τ) dτ + w(u, a2(u))a

′
2(u)− w(u, a1(u))a

′
1(u),

where w(u, τ) = (u− τ)α−1h(τ), a1(u) = 0, and a2(u) = u, we obtain that

d

du

∫ u

0

(u− τ)α−1h(τ) dτ = (α− 1)

∫ u

0

(u− τ)α−2h(τ) dτ. (3.4)

Therefore, the substitution from (3.4) in (3.3), we get

x(t) = exp

(
−
∫ t

0

k1(α, s)

k0(α, s)
ds

)
x0

+
1

Γ(α− 1)

∫ t

0

∫ u

0

exp

(
−
∫ t

u

k1(α, s)

k0(α, s)
ds

)
(u− τ)α−2

k0(α, u)
h(τ) dτ du.

This completes the proof.
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Remark 3.3. The result of Lemma 3.2 is true not only for real valued functions
x ∈ C(J,R) but also for a Banach space functions x ∈ C(J,E).

Lemma 3.4. Assume that F : J×E → P(E) satisfies Carathèodory conditions, i.e.,
t 7→ F (t, x) is measurable for every x ∈ E and x 7→ F (t, x) is continuous for every
t ∈ J. A function x ∈ C(J,E) is a solution of the inclusion problem (1.1) if and only
if it satisfies the integral equation

x(t) = exp

(
−
∫ t

0

k1(α, s)

k0(α, s)
ds

)
x0

+
1

Γ(α− 1)

∫ t

0

∫ u

0

exp

(
−
∫ t

u

k1(α, s)

k0(α, s)
ds

)
(u− τ)α−2

k0(α, u)
f(τ) dτ du, (3.5)

where f ∈ L1(J,E) with f(t) ∈ F (t, x(t)) for a.e. t ∈ J.

Now, we are ready to present the main result of the current paper.

Theorem 3.5. Let ϱ > 0, K = {x ∈ E : ∥x∥ ≤ ϱ}, U = {x ∈ C(J,E) : ∥x∥ < ϱ},
and suppose that:

(H1) The multi-valued map F : J×E → Pcp,cvx(E) is Carathèodory,

(H2) For each ϱ > 0, there exists a function φ ∈ L1(J,R+) such that

∥F (t, x)∥P = {|f | : f(t) ∈ F (t, x)} ≤ φ(t),

for a.e. t ∈ J and x ∈ E with |x| ≤ ϱ, and

lim
ϱ→∞

inf

∫ b

0
φ(t)dt

ϱ
= ℓ < ∞.

(H3) There is a Carathèodory function ϑ : J× [0, 2ϱ] → R+ such that

κ (F (t, G)) ≤ ϑ(t, κ(G)),

a.e. t ∈ J and each G ⊂ K, and the unique solution θ ∈ C(J, [0, 2ϱ]) of the
inequality

θ(t) ≤ 2

{
1

Γ(α− 1)

∫ t

0

∫ u

0

exp

(
−
∫ t

u

k1(α, s)

k0(α, s)
ds

)
(u− τ)α−2

k0(α, u)
ϑ (τ, κ (G(τ))) dτ du

}
,

t ∈ J,

is θ ≡ 0.

Then the inclusion problem (1.1) possesses at least one solution, provided that

ℓ <
Γ(α)Mk0

b
, (3.6)

where Mk0
:= inft∈J |k0(α, t)| ≠ 0.
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Proof. Define the multi-valued map N : C(J,E) → P(C(J,E)) by

(Nx)(t) =


f ∈ C(J,E) :

f(t) = exp
(
−
∫ t

0
k1(α,s)
k0(α,s)

ds
)
x0

+ 1
Γ(α−1)

∫ t

0

∫ u

0
exp

(
−
∫ t

u
k1(α,s)
k0(α,s)

ds
)

(u−τ)α−2

k0(α,u)
w(τ) dτ du, w ∈ SF,x.

(3.7)
In accordance with Lemma 3.4, the fixed points of N are solutions to the inclusion
problem (1.1). We shall show in five steps that the multi-valued operator N satis-
fies all assumptions of Mönch’s fixed point theorem (Theorem 2.10) with U = C(J,K).

Step 1. N (x) is convex, for any x ∈ C(J,K).

For f1, f2 ∈ N (x), there exist w1, w2 ∈ SF,x such that for each t ∈ J, we have

fi(t) = exp

(
−
∫ t

0

k1(α, s)

k0(α, s)
ds

)
x0

+
1

Γ(α− 1)

∫ t

0

∫ u

0

exp

(
−
∫ t

u

k1(α, s)

k0(α, s)
ds

)
(u− τ)α−2

k0(α, u)
wi(τ) dτ du, i = 1, 2.

Let 0 ≤ µ ≤ 1. Then, for t ∈ J,

(µf1 + (1− µ)f2)(t) = exp

(
−
∫ t

0

k1(α, s)

k0(α, s)
ds

)
x0

+
1

Γ(α− 1)

∫ t

0

∫ u

0

exp

(
−
∫ t

u

k1(α, s)

k0(α, s)
ds

)
(u− τ)α−2

k0(α, u)
(µw1 + (1− µ)w2)(τ) dτ du.

Since SF,x is convex (because F has convex values), then µf1 + (1− µ)f2 ∈ N (x).

Step 2. N (G) is relatively compact for each compact G ∈ U .

Let G ∈ U be a compact set and let {fn} be any sequence of elements of N (G).
We show that {fn} has a convergent subsequence by using the Arzelà-Ascoli criterion
of non-compactness in C(J,K). Since fn ∈ N (G), there exist xn ∈ G and wn ∈ SF,xn

,
such that

fn(t) = exp

(
−
∫ t

0

k1(α, s)

k0(α, s)
ds

)
x0

+
1

Γ(α− 1)

∫ t

0

∫ u

0

exp

(
−
∫ t

u

k1(α, s)

k0(α, s)
ds

)
(u− τ)α−2

k0(α, u)
wn(τ) dτ du,

for n ≥ 1. In view of Theorem 2.11 and the properties of the Kuratowski measure of
non-compactness, we have

κ({fn(t)})≤2

{
1

Γ(α−1)

∫ t

0

∫ u

0

κ

({
exp

(
−
∫ t

u

k1(α, s)

k0(α, s)
ds

)
(u−τ)α−2

k0(α, u)
wn(τ) :n ≥1

})
dτdu

}
.

(3.8)
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On the other hand, since G is compact, the set {wn(τ) : n ≥ 1} is compact. Con-
sequently, κ ({wn(τ) : n ≥ 1}) = 0 for a.e. τ ∈ J. Therefore, κ ({fn(t)}) = 0 which
implies that {fn(t) : n ≥ 1} is relatively compact in K for each t ∈ J. Furthermore,
For each t1, t2 ∈ J, t1 < t2, one obtain that:

|fn(t2)− fn(t1)|

≤

∣∣∣∣∣ exp
(

−
∫ t2

0

k1(α, s)

k0(α, s)
ds

)
x0 − exp

(
−
∫ t1

0

k1(α, s)

k0(α, s)
ds

)
x0

∣∣∣∣∣
+

1

Γ(α−1)

∣∣∣∣∣
∫ t2

0

∫ u

0

[
exp

(
−
∫ t2

0

k1(α, s)

k0(α, s)
ds

)
−exp

(
−
∫ t1

0

k1(α, s)

k0(α, s)
ds

)]
(u−τ)α−2

k0(α, u)
wn(τ)dτdu

∣∣∣∣∣
+

1

Γ(α− 1)

∣∣∣∣∣
∫ t2

t1

∫ u

0

exp

(
−
∫ t1

0

k1(α, s)

k0(α, s)
ds

)
(u− τ)α−2

k0(α, u)
wn(τ) dτ du

∣∣∣∣∣.
By applying the mean value theorem to the function exp

(
−
∫ t

0
k1(α,s)
k0(α,s)

ds

)
on (t1, t2),

we obtain that∣∣∣∣∣exp
(
−

t2∫
0

k1(α, s)

k0(α, s)
ds

)
−exp

(
−

t1∫
0

k1(α, s)

k0(α, s)
ds

)∣∣∣∣∣=
∣∣∣∣∣k1(α, ξ)k0(α, ξ)

exp

(
−

ξ∫
0

k1(α, s)

k0(α, s)
ds

)
(t2−t1)

∣∣∣∣∣
≤

∣∣∣∣∣k1(α, ξ)k0(α, ξ)

∣∣∣∣∣(t2 − t1), ∀ξ ∈ (t1, t2).

Therefore, we get

|fn(t2)− fn(t1)| ≤

∣∣∣∣∣k1(α, ξ)k0(α, ξ)

∣∣∣∣∣ |x0|(t2 − t1)

+
1

Γ(α− 1)Mk0

∣∣∣∣∣k1(α, ξ)k0(α, ξ)

∣∣∣∣∣(t2 − t1)

∫ t2

0

∫ u

0

(u− τ)α−2|wn(τ)| dτ du

+
1

Γ(α− 1)Mk0

∫ t2

t1

∫ u

0

(u− τ)α−2|wn(τ)| dτ du

≤

∣∣∣∣∣k1(α, ξ)k0(α, ξ)

∣∣∣∣∣ |x0|(t2 − t1)

+
1

Γ(α− 1)Mk0

∣∣∣∣∣k1(α, ξ)k0(α, ξ)

∣∣∣∣∣(t2 − t1)

∫ t2

0

∫ u

0

(u− τ)α−2φ(τ) dτ du

+
1

Γ(α− 1)Mk0

∫ t2

t1

∫ u

0

(u− τ)α−2φ(τ) dτ du.
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As t1 → t2, the right hand side of the above inequality tends to zero. Thus,
{wn(τ) : n ≥ 1} is equicontinuous. Hence, {wn(τ) : n ≥ 1} is relatively compact
in C(J,K).

Step 3. The graph of N is closed.

Let xn → x∗, fn ∈ N (xn), and fn → f∗. It must be to show that f∗ ∈ N (x∗).
Now, fn ∈ N (xn) means that there exists wn ∈ SF,xn

such that, for each t ∈ J,

fn(t) = exp

(
−
∫ t

0

k1(α, s)

k0(α, s)
ds

)
x0

+
1

Γ(α− 1)

∫ t

0

∫ u

0

exp

(
−
∫ t

u

k1(α, s)

k0(α, s)
ds

)
(u− τ)α−2

k0(α, u)
wn(τ) dτ du.

Consider the continuous linear operator Θ : L1(J,E) → C(J,E),

Θ(w)(t) 7→ fn(t) = exp

(
−
∫ t

0

k1(α, s)

k0(α, s)
ds

)
x0

+
1

Γ(α− 1)

∫ t

0

∫ u

0

exp

(
−
∫ t

u

k1(α, s)

k0(α, s)
ds

)
(u− τ)α−2

k0(α, u)
wn(τ) dτ du.

It is obvious that ∥fn − f∗∥ → 0 as n → ∞. Therefore, in the light of Lemma 2.7, we
infer that Θ ◦ SF is a closed graph operator. Additionally, fn(t) ∈ Θ(SF,xn

). Since,
xn → x∗, Lemma 2.7 gives

f∗(t) = exp

(
−
∫ t

0

k1(α, s)

k0(α, s)
ds

)
x0

+
1

Γ(α− 1)

∫ t

0

∫ u

0

exp

(
−
∫ t

u

k1(α, s)

k0(α, s)
ds

)
(u− τ)α−2

k0(α, u)
w(τ) dτ du,

for some w ∈ SF,x.

Step 4. G is relatively compact in C(J,K).

Assume that G ⊂ U , G ⊂ conv ({0} ∪ N (G)), and G = C for some countable set
C ⊂ G. Using a similar approach as in Step 2, one can obtain that N (G) is equicon-
tinuous. In accordance to G ⊂ conv ({0} ∪ N (G)), it follows that G is equicontinuous.
In addition, since C ⊂ G ⊂ conv ({0} ∪ N (G)) and C is countable, then we can find
a countable set P = {fn : n ≥ 1} ⊂ N (G) with C ⊂ conv ({0} ∪P). Thus, there
exist xn ∈ G and wn ∈ SF,xn

such that

fn(t) = exp

(
−
∫ t

0

k1(α, s)

k0(α, s)
ds

)
x0

+
1

Γ(α− 1)

∫ t

0

∫ u

0

exp

(
−
∫ t

u

k1(α, s)

k0(α, s)
ds

)
(u− τ)α−2

k0(α, u)
wn(τ) dτ du.
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In the light of Theorem 2.11 and the fact that G ⊂ C ⊂ conv ({0} ∪P), we get

κ (G(t)) ≤ κ
(
C(t)

)
≤ κ (P(t)) = κ ({fn(t) : n ≥ 1}) .

By virtue of (3.8) and the fact that wn(τ) ∈ G(τ), we get

κ (G(t))

≤ 2

{
1

Γ(α−1)

∫ t

0

∫ u

0

κ

({
exp

(
−
∫ t

u

k1(α, s)

k0(α, s)
ds

)
(u− τ)α−2

k0(α, u)
wn(τ) :n ≥ 1

})
dτ du

}

≤ 2

{
1

Γ(α− 1)

∫ t

0

∫ u

0

exp

(
−
∫ t

u

k1(α, s)

k0(α, s)
ds

)
(u− τ)α−2

k0(α, u)
κ (G(τ)) dτ du

}

≤ 2

{
1

Γ(α− 1)

∫ t

0

∫ u

0

exp

(
−
∫ t

u

k1(α, s)

k0(α, s)
ds

)
(u− τ)α−2

k0(α, u)
ϑ (τ, κ (G(τ))) dτ du

}
.

Also, the function θ given by θ(t) = κ (G(t)) belongs to C(J, [0, 2ϱ]). Consequently
by (H3), θ ≡ 0, that is κ (G(t)) = 0 for all t ∈ J.

Now, by the Arzelà-Ascoli theorem, G is relatively compact in C(J,K).

Step 5. Let f ∈ N (x) with x ∈ U . Since x(τ) ≤ ϱ and (H2), we have N (U) ⊂ U ,
because if it is not true, there exists a function x ∈ U but ∥N (x)∥ > ϱ and

f(t) = exp

(
−
∫ t

0

k1(α, s)

k0(α, s)
ds

)
x0

+
1

Γ(α− 1)

∫ t

0

∫ u

0

exp

(
−
∫ t

u

k1(α, s)

k0(α, s)
ds

)
(u− τ)α−2

k0(α, u)
w(τ) dτ du,

for some w ∈ SF,x. On the other hand we have

ϱ < ∥N (x)∥ ≤
∣∣∣ exp(−∫ t

0

k1(α, s)

k0(α, s)
ds

)
x0

∣∣∣
+

1

Γ(α− 1)

∫ t

0

∫ u

0

∣∣∣ exp(−∫ t

u

k1(α, s)

k0(α, s)
ds

) ∣∣∣ (u− τ)α−2

|k0(α, u)|
|w(τ)| dτ du

≤ |x0|+
1

Γ(α− 1)Mk0

∫ t

0

∫ u

0

(u− τ)α−2 |w(τ)| dτ du

= |x0|+
1

Γ(α− 1)Mk0

∫ t

0

∫ t

τ

(u− τ)α−2 |w(τ)| du dτ

= |x0|+
1

Γ(α)Mk0

∫ t

0

(t− τ)α−1 |w(τ)| dτ
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≤ |x0|+
t

Γ(α)Mk0

∫ t

0

φ(τ) dτ

≤ |x0|+
b

Γ(α)Mk0

∫ b

0

φ(τ) dτ.

Dividing both sides by ϱ and taking the lower limit as ϱ → ∞, we infer that
b

Γ(α)Mk0
ℓ ≥ 1 which contradicts (3.6). Hence N (U) ⊂ U .

As a consequence of Steps 1-5 together with Theorem 2.10, we infer that N pos-
sesses a fixed point x ∈ C(J,K) which is a solution of the inclusion problem (1.1).

4. Example

Consider the fractional differential inclusion{
PC
0 D

1
2
t x(t) ∈ F (t, x(t)) , a.e. on [0, 1],

x(0) = 0,
(4.1)

where α = 1
2 , b = 1, x0 = 0, and F : [0, 1]×R → P(R) is a multi-valued map given by

x 7→ F (t, x) =

(
e−|x| + sin t, 3 +

|x|
1 + x2

+ 5t3
)
.

For f ∈ F , one has

|f | = max

(
e−|x| + sin t, 3 +

|x|
1 + x2

+ 5t3
)

≤ 9, x ∈ R.

Thus

∥F (t, x)∥P = {|f | : f ∈ F (t, x)}

= max

(
e−|x| + sin t, 3 +

|x|
1 + x2

+ 5t3
)

≤ 9 = φ(t),

for t ∈ [0, 1], x ∈ R. Obviously, F is compact and convex valued, and it is upper
semi-continuous.

Furthermore, for (t, x) ∈ [0, 1]× ∈ R with |x| ≤ ϱ, one has

lim
ϱ→∞

inf

∫ 1

0
φ(t)dt

ϱ
= 0 = ℓ.

Therefore, for a suitable Mk0
, the condition (3.6) implies that

Γ(1/2)Mk0

b
= Mk0

√
π > 0.
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Finally, we assume that there exists a Carathèodory function ϑ : [0, 1]× [0, 2ϱ] → R+

such that
κ (F (t, G)) ≤ ϑ(t, κ(G)),

a.e. t ∈ [0, 1] and each G ⊂ K = {x ∈ R : |x| ≤ ϱ}, and the unique solution
θ ∈ C([0, 1], [0, 2ϱ]) of the inequality

θ(t)≤2

{
1

Γ(α−1)

∫ t

0

∫ u

0

exp

(
−
∫ t

u

k1(α, s)

k0(α, s)
ds

)
(u−τ)α−2

k0(α, u)
ϑ (τ, κ (G(τ))) dτdu

}
, t ∈ J,

is θ ≡ 0.

Hence all the assumptions of Theorem 3.5 hold true and we infer that the inclusion
problem (4.1) possesses at least one solution on [0, 1].

5. Conclusions

In this paper, we extend the investigation of fractional differential inclusions to the
case of hybrid Caputo-proportional fractional derivatives in Banach space. Based on
the set-valued version of Mönch fixed point theorem together with the Kuratowski
measure of non-compactness, the existence theorem of the solutions for the proposed
inclusion problem is founded. An clarified example is suggested to understand the
theoretical finding. Furthermore, the obtained results in this paper can be employed
in future work in the sense of the generalized fractional derivative (GFD) definition
which was recently proposed in [2, 3]. This new definition overcomes some issues
associated with some conformable derivative and some other fractional derivatives.
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A Contribution on Real and Complex

Convexity in Several Complex Variables

Jamel Abidi

Abstract: Let f, g : Cn → C be holomorphic functions. Define
u(z, w) = |w − f(z)|4 + |w − g(z)|4, v(z, w) = |w − f(z)|2 + |w − g(z)|2,
for (z, w) ∈ Cn × C. A comparison between the convexity of u and v is
obtained under suitable conditions.
Now consider four holomorphic functions φ1, φ2 : Cm → C and g1, g2 :
Cn → C. We prove that F = |φ1 − g1|2 + |φ2 − g2|2 is strictly convex on
Cn × Cm if and only if n = m = 1 and φ1, φ2, g1, g2 are affine functions
with (φ′

1g
′
2 − φ′

2g
′
1) ̸= 0.

Finally, it is shown that the product of four absolute values of plurihar-
monic functions is plurisubharmonic if and only if the functions satisfy
special conditions as well.

AMS Subject Classification: 32A10, 32A60, 32F32, 32U05, 32W50.
Keywords and Phrases: Holomorphic, convex, plurisubharmonic functions; Inequali-
ties; Srictly; Maximum principle.

1. Introduction

Convex functions recently are studied in complex analysis because they appear in the
theory of holomorphic functions, plurisubharmonic (psh) functions, currents, Lelong
numbers, extension problems, holomorphic representation theory (see [2], [5], [6], [7],
[8], [10], [11], [13], [14], [15], [16], [17] and [19]).
It is worth mentioning that an interesting relation between convex and plurisubhar-
monic functions has been obtained in [2].
Several papers appeared recently to this topic, let us mention [2], [3], [5], [6], [15], [19]
and the monographs [11], [14], [19] and more recently [5].
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Let n ≥ 1. We can construct a C∞ strictly psh function F defined on Cn × C,
such that F is not convex (and not concave) on each Euclidean not empty open ball
subset in Cn × C. For instance,

F (z, w) = |w − ez1 |2 + ...+ |w − ezn |2, for z = (z1, ..., zn) ∈ Cn, w ∈ C.

Moreover, for the case of one complex variable, let λ(z) = 2x2 − y2, z = (x+ iy) ∈ C,
x = Re(z). Then λ is a C∞ strictly sh function on C, while λ is not convex (respec-
tively not concave) at each point of C.
This proves that the new class of functions, consisting of convex and strictly psh func-
tions, is well defined because we can not compare the two families (convex functions)
and (convex and strictly psh functions).
Now thanks to [2], we know the holomorphic representation of each holomorphic
function f : Cn → C under the suitable condition of the convexity of its modulus.

Let δ ∈ [1,+∞[. We have the following observation.
Put K(z, w) = |w−f(z)|δ and H(z, w) = |w−f(z)|, for (z, w) ∈ C2, where f : C → C
is holomorphic. Assume that K is convex on C2 and δ > 1. Then H is convex on
C2 and we have Hs is convex on C2, for each s ∈ [1,+∞[ independently of δ and
conversely.
Now let f1, f2 : C → C be two holomorphic functions and s ∈ N\{0}. Define
K2s(z, w) = |w − f1(z)|2s + |w − f2(z)|2s, for (z, w) ∈ C2. By theorem 10, we have
that K4 is convex on C2 implies that K2 is convex on C2. But the converse is not
true. For instance, let f1(z) = z4, f2(z) = −z4, z ∈ C. Then K2 is convex on C2. But
K4 is not convex on C2. This remark leads to the following problem.

Let N ∈ N\{0, 1} and F1, ..., FN : Cn → C be holomorphic functions. Define

ψδ(z, w) = |w − F1(z)|δ + ...+ |w − FN (z)|δ, for (z, w) ∈ Cn × C.

Suppose that ψδ is convex on Cn × C.
Firstly, for the study of the convexity of ψδ, we observe that we study separately

the following two cases.
Case 1. δ ∈ [1,+∞[\{2}.
Case 2. δ = 2.
Is it true that δ ∈ [1,+∞[\{2}, implies that F1, ..., FN are affine functions?
Recall that for δ = 2, there exists several cases where ψ2 is convex on Cn × C, but
F1, ..., FN are not affine functions.
Moreover, for N = 2, by a limiting argument and a specific holomorphic differential
equation, we prove that ψ1 is convex on Cn × C if and only if F1 and F2 are affine
functions. Indeed, ψ2k is convex on Cn×C if and only if F1 and F2 are affine functions,
for k ∈ N\{0, 1}.

The paper is organized as follows. In section 2, we shall use an elementary holo-
morphic differential equation in the proofs of the following two technical questions.
Let A1, A2 ∈ C and n,m ∈ N\{0}. Characterize exactly all the 3 holomorphic func-
tions φ : Cm → C and g1, g2 : Cn → C such that u is convex (respectively convex and
strictly plurisubharmonic) on Cn × Cm, where

u(z, w) = |A1φ(w)− g1(z)|2 + |A2φ(w)− g2(z)|2, for (z, w) ∈ Cn × Cm.
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In this case find the expressions of φ, g1 and g2.
Moreover, find all the three holomorphic functions φ : Cm → C and f1, f2 : Cn → C
such that v is convex and strictly psh on Cn × Cm, where

v(z, w) = |A1φ(w)− f1(z)|2 + |A2φ(w)− f2(z)|2, (z, w) ∈ Cn × Cm.

We prove that we have a great differences between the 2 classes of functions defined
similar as u and v.

Now let k1, k2 : G → Ct be two holomorphic functions. Then the functions
∥ k1 + k2 ∥2 and (∥ k1 + λ ∥2 + ∥ k2 + δ ∥2) have the same hermitian Levi form on G,
where G is a domain of Cs, λ, δ ∈ Ct and s, t ∈ N\{0}.
For the applications, we can see the proof of theorem 4, corollary 1, theorem 5 and
others.

In section 3, we consider the following problems.
Problem 1. Let n,m ≥ 1. Find all the 4 holomorphic functions φ1, φ2 : Cm → C and
g1, g2 : Cn → C such that ψ = |φ1 − g1|2 + |φ2 − g2|2 is strictly convex on Cn × Cm.
Problem 2. Characterize all the holomorphic functions φ1, φ2 : Cm → C and g1, g2 :
Cn → C such that ψ = |φ1 − g1|2 + |φ2 − g2|2 is convex and strictly psh (respectively
convex) on Cn × Cm.

Before stating it, we can study the analysis question. Find all the holomorphic
functions φ1, φ2, ψ1, ψ2 : Cm → C and f1, f2, g1, g2 : Cn → C, such that u1 and
u2 are convex and u = (u1 + u2) is strictly psh on Cn × Cm. Where u1(z, w) =
|φ1(w) − f1(z)|2 + |φ2(w) − f2(z)|2, u2(z, w) = |ψ1(w) − g1(z)|2 + |ψ2(w) − g2(z)|2,
for (z, w) ∈ Cn × Cm.

In section 4, we use an algebraic method to mainly focus on properties of the
new structure (convex and strictly psh) and their relations with the holomorphic
representation theory.

In section 5 we study the product of several absolute values of pluriharmonic (prh)
functions and some auxiliary results are proved.
Let U be a domain of Rd, (d ≥ 2). Put sh(U) the set of all subharmonic functions on U.
For f : U → C be a function, |f | is the modulus of f. For N ≥ 1 and h = (h1, ..., hN ),

where h1, ..., hN : U → C, ∥ h ∥= (|h1|2 + ...+ |hN |2) 1
2 .

Let g : D → C be an analytic function, D is a domain of C. We denote ∂mg
∂zm the

holomorphic derivative of g of order m, for all m ∈ N\{0}.
If ξ = (ξ1, ..., ξn) ∈ Cn, and z = (z1, . . . , zn ∈ Cn we write < z/ξ >= z1ξ1 + ...+ znξn
and B(ξ, r) = {ζ ∈ Cn/ ∥ ζ − ξ ∥< r} for r > 0, where

√
< ξ/ξ > =∥ ξ ∥ is the

Euclidean norm of ξ. The Lebesgue measure on Cn is denoted by m2n and Ck(U) =
{φ : U → C / φ is a function of class Ck on U}, k ∈ N ∪ {∞}\{0}.
Let D be a domain of Cn, (n ≥ 1). An usual psh(D) and prh(D) are respectively the
classes of plurisubharmonic and pluriharmonic functions on D. For all a ∈ C, |a| is
the modulus of a, Re(a) is the real part of a and D(a, r) = {z ∈ C / |z − a| < r} for
r > 0.

For the study of properties and extension problems of analytic and plurisubhar-
monic functions we cite the references [1], [6], [7], [8], [9], [10], [12], [13], [15], [16] and
[17]. For the study of convex functions in complex convex domains, we cite [5], [11],
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[14], [2] and [19].
For the theory of n− subharmonic functions we cite [18].

2. A family of analytic functions and the holomorphic
representation theory

We have

Lemma 1. Let g = (g1, ..., gN ), f = (f1, ..., fN ) : D → CN be two holomorphic
functions, N ≥ 1, D is a domain of Cn, n ≥ 1 and a, b ∈ CN . Then
∥ f + g ∥2 and (∥ f + a ∥2 + ∥ g + b ∥2) have the same hermitian Levi form on D.
On the other hand, let u : D → R be a function of class C2. Define u1 = (u+
∥ f + g ∥2), u2 = (u+ ∥ f + a ∥2 + ∥ g + b ∥2).
Then u1 and u2 are functions of class C2 on D and we have the assertion.
The function u1 is strictly psh on D if and only if u2 is strictly psh on D.
(Observe that if N < n, then ∥ g ∥2 is not strictly psh at each point of D).

Proof. We have ∥ f + g ∥2= |f1 + g1|2 + ...+ |fN + gN |2 = |f1|2 + |g1|2 + ...+ |fN |2 +

|gN |2 +
N∑
j=1

(gjfj + gjfj) =∥ g ∥2 + ∥ f ∥2 +

N∑
j=1

(gjfj + gjfj).

Since (gjfj + gjfj) is prh on D, then

N∑
j=1

(gjfj + gjfj) is prh on D.

Consequently, ∥ f + g ∥2 and (∥ f + a ∥2 + ∥ g + b ∥2) have the same hermitian Levi
form on D.

By [4], we have

Theorem 1. Let φ : Cm → C be a holomorphic nonconstant function, m ≥ 1. Given
A1, A2 ∈ C\{0} and n ≥ 1.
The following conditions are equivalent
(I) There exists 2 holomorphic functions g1, g2 : Cn → C such that u is convex on
Cn × Cm, u(z, w) = |A1φ(w)− g1(z)|2 + |A2φ(w)− g2(z)|2, (z, w) ∈ Cn × Cm;
(II) There exists c ∈ C such that |φ+ c|2 is convex on Cm.

Now in all of this section, (A1, A2) ∈ C2. Let φ : Cm → C be a holomor-
phic nonconstant function, m ≥ 1. Let g1, g2 : Cn → C be 2 holomorphic func-
tions, n ≥ 1. Define u(z, w) = |A1φ(w) − g1(z)|2 + |A2φ(w) − g2(z)|2, u1(z, w) =
|A1φ(w)− g1(z)|2 + |A2φ(w)− g2(z)|2, u2 = u+ u1, for (z, w) ∈ Cn ×Cm. v(z, w) =
|A1φ(w)−g1(z)|2+|A2φ(w)−g2(z)|2, v1(z, w) = |A1φ(w)−g1(z)|2+|A2φ(w)−g2(z)|2
and v2 = v + v1, (z, w) ∈ Cn × Cm. We have

Theorem 2. Assume that (A1, A2) ∈ C2\{0}. The following conditions are equivalent
(I) u is convex on Cn × Cm;
(II) φ is an affine function on Cm, or φ is not affine and there exists c ∈ C such that
|φ+ c|2 is convex on Cm and we have the following cases.
Case 1. The function φ is affine on Cm.
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Then we have the representation{
g1(z) = A1(< z/λ1 > +µ1) +A2φ1(z)
g2(z) = A2(< z/λ1 > +µ1)−A1φ1(z)

for each z ∈ Cn, where λ1 ∈ Cn, µ1 ∈ C, φ1 : Cn → C is analytic, |φ1|2 is convex on
Cn.
Case 2. φ is not affine on Cn.
In this case there exists c ∈ C such that |φ+ c|2 is convex on Cm. Then we have the
representation {

g1(z) = A1c+A2φ1(z)
g2(z) = A2c−A1φ1(z)

for every z ∈ Cn, where φ1 : Cn → C is analytic, |φ1|2 is convex on Cn.

We can discuss the cases (A1, A2 ∈ C\{0}), or (A1 ∈ C\{0}, A2 = 0), or (A1 = 0,
A2 ∈ C\{0}).
This theorem motivates the following questions. Find all the holomorphic represen-
tation of the analytic functions f1, f2, f3 : Cn → C, such that ψ is convex on Cn ×C.
ψ(z, w) = |B1w−f1(z)|2+ |B2w−f2(z)|2+ |B3w−f3(z)|2, for (z, w) ∈ Cn×C, where
(B1, B2, B3) ∈ C3\{0}.
Indeed, for instance, in harmonic analysis and convex analysis, actually the following
question appeared naturally.
Find all the representation of the harmonic functions F1, F2, F3 : C → C, such that ψ1

is convex and strictly 2−sh on C2.Where ψ1(z, w) = |w−F1(z)|2+|w−F2(z)|2+|w−
F3(z)|2, (z, w) ∈ C2. (We study here functions on harmonic representation theory).
Define ψ0(z, w) = |w−F1(z)|2+ |w−F2(z)|2, for (z, w) ∈ C2. If we choose F3 is affine
on C and ψ0 is convex and strictly 2− sh on C2, then we have a family of harmonic
functions which satisfy the above condition.
The proof of this theorem is obvious and analogous to the proof of the following.

Theorem 3. The following conditions are equivalent
(I) u is convex and strictly psh on Cn × Cm;
(II) (A1, A2) ∈ C2\{0}, n = m = 1, there exists c ∈ C such that |φ+ c|2 is convex on
C and we have the following cases.
Case 1. A1A2 ̸= 0. Then{

g1(z) +A1c = A1(az + b) +A2ψ(z)
g2(z) +A2c = A2(az + b)−A1ψ(z)

for each z ∈ C, where a, b ∈ C, ψ : C → C is holomorphic, |ψ| is convex with |ψ′| > 0
and |φ′| > 0 on C.
Case 2. A1 ̸= 0 and A2 = 0.
If φ is affine and nonconstant on C. Then we have the representation{

g1(z) = A1(λz + µ)
g2(z) = −A1φ2(z)
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for each z ∈ C, where λ ∈ C\{0}, µ ∈ C, φ2 : C → C is analytic, |φ2|2 is convex and
strictly subharmonic (sh) on C.
If φ is not affine on C. Then we have the representation{

g1(z) = −A1c
g2(z) = −A1φ3(z)

for every z ∈ C, where φ3 : C → C is analytic, |φ3|2 is convex and strictly subharmonic
on C. In this situation we have φ(w) = e(aw+b) − c, for each w ∈ C, with a ∈ C\{0}
and b ∈ C.
Case 3. A1 = 0 and A2 ̸= 0. (Obviously analogous to case 2).

Proof. (I) implies (II). We choose the following proof which have technical ap-
plications in the case when we study the convexity of the function F, F (z, w) =
|w − ψ1(z)|2N + |w − ψ2(z)|2N , N ∈ N, N ≥ 2, (z, w) ∈ Cn × C, ψ1, ψ2 : Cn → C be
two holomorphic functions. In this situation we prove that ψ1 and ψ2 have analytic
representations using the holomorphic differential equation k′′(k+λ) = γ(k′)2, where
k : C → C is a holomorphic function and λ, γ ∈ C.
If (A1, A2) = (0, 0), then u is independent of w. Thus u is not strictly psh on Cn×Cm.
A contradiction.
The case where A1 ̸= 0 and A2 = 0.
Since u(0, .) is strictly psh on Cm. Then the function |A1φ− g1(0)|2 is strictly psh on

Cm. Thus by lemma 1, m = 1. Since u(., 0) is convex on C, then |φ− g1(0)
A1

|2 is convex

and strictly sh on C. Put c = − g1(0)
A1

. Now |φ + c|2 is convex and strictly sh on C,
therefore, by Abidi [2], we have
φ(w) = aw + b, for all w ∈ C, where a ∈ C\{0} and b ∈ C, or
φ(w) = e(a1w+b1) − c, for all w ∈ C, with a1 ∈ C\{0} and b1 ∈ C.
If φ(w) = aw + b, ∀w ∈ C.
Then for each fixed w0 ∈ C, the function u(., w0) is convex on Cn.
Therefore,

| −
n∑

j,k=1

∂2g1
∂zj∂zk

(z)[A1(aw0 + b)− g1(z)]αjαk +

n∑
j,k=1

∂2g2
∂zj∂zk

(z)g2(z)αjαk|

≤ |
n∑
j=1

∂g1
∂zj

(z)αj |2 + |
n∑
j=1

∂g2
∂zj

(z)αj |2,

for each z ∈ Cn, w0 ∈ C and α = (α1, ..., αn) ∈ Cn.
Since the right hand side of the above inequality is independent of w0 ∈ C, it follows
that for every fixed z ∈ Cn,

n∑
j,k=1

∂2g1
∂zj∂zk

(z)αjαk = 0, for all α = (α1, ..., αn) ∈ Cn.

Therefore g1 is affine on Cn.
Put g1(z) = A1(< z/γ > +δ), for z ∈ Cn, where γ ∈ Cn and δ ∈ C.
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Let T : Cn × C → Cn × C, T (z, w) = (z, w + g1(z)
A1a

− δ
a ), for (z, w) ∈ Cn × C.

Note that T is a C linear bijective transformation on Cn × C.
Since u is convex and strictly psh on Cn × C, then ψ is convex and strictly psh
on Cn × C, where ψ(z, w) = u oT (z, w) = |A1(aw + b − δ)|2 + |g2(z)|2, for every
(z, w) ∈ Cn × C.
But ψ is convex and strictly psh on Cn × C, then |g2|2 is convex and strictly psh on
Cn. Thus n = 1.
Put g2(z) = −A1φ2(z), for z ∈ C (φ2 is analytic on C). Thus |φ2|2 is convex and
strictly sh on C.
(II) implies (I). Obvious.

Question. Let B1, B2 ∈ C\{0}. For f1, f2 : Cn → C, define ψ(z, w) = |B1w −
f1(z)|2 + |B2w − f2(z)|2, (z, w) ∈ Cn × C. Find all the pluriharmonic (respectively
n− harmonic) functions f1, f2 : Cn → C, such that ψ is convex (respectively convex
and strictly n− subharmonic) on Cn × C.

Theorem 4. The following conditions are equivalent
(I) u1 is convex and strictly psh on Cn × Cm;
(II) m = 1, n ∈ {1, 2}, (A1, A2) ∈ C2\{0}, there exists c ∈ C such that |φ + c|2 is
convex on C and we have the following cases.
Case 1. For all w ∈ C, φ(w) = aw + b, where a ∈ C\{0} and b ∈ C.
We have the representation{

g1(z) = A1(< z/λ1 > +µ1) +A2φ1(z)
g2(z) = A2(< z/λ1 > +µ1)−A1φ1(z)

for each z ∈ Cn, where λ1 ∈ Cn, µ1 ∈ C, φ1 : Cn → C is analytic, |φ1|2 is convex on
Cn, such that
(n = 1, λ1 ̸= 0), or
(n = 1, λ1 = 0, ∂φ1

∂z (z) ̸= 0, for each z ∈ C), or
n = 2, (λ1, (

∂φ1

∂z1
(z), ∂φ1

∂z2
(z))) is a basis of the complex vector space C2,

for each z = (z1, z2) ∈ C2.
Case 2. For every w ∈ C, φ(w) = e(aw+b) − c, where a ∈ C\{0} and b ∈ C.
Then n = 1 and we have the representation{

g1(z) = −A1c+A2ψ1(z)
g2(z) = −A2c−A1ψ1(z)

for each z ∈ C, where ψ1 : C → C is analytic, |ψ1|2 is convex and strictly sh on C.

The proof follows from the above 3 theorems and lemma 1.
We have

Corollary 1. The following conditions are equivalent
(I) u is convex on Cn × Cm and u2 is strictly psh on Cn × Cm;
(II) u is convex on Cn × Cm and u1 is strictly psh on Cn × Cm;
(III) (A1, A2) ∈ C2\{0}, m = 1, n ∈ {1, 2}, there exists c ∈ C such that |φ + c|2 is
convex and strictly sh on C and we have the following 2 cases.
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Case 1. For all w ∈ C φ(w) = aw + b, (a ∈ C\{0}, b ∈ C).
Then we have the holomorphic representation{

g1(z) = A1(< z/λ1 > +µ1) +A2φ1(z)
g2(z) = A2(< z/λ1 > +µ1)−A1φ1(z)

for each z ∈ Cn, where λ1 ∈ Cn, µ1 ∈ C, φ1 : Cn → C is analytic, |φ1|2 is convex on
Cn, such that
(n = 1, λ1 ̸= 0), or (n = 1, λ1 = 0, ∂φ1

∂z (z) ̸= 0, for each z ∈ C), or
(n = 2 and (λ1, (

∂φ1

∂z1
(z), ∂φ1

∂z2
(z))) is a basis of the complex vector space C2,

for every z = (z1, z2) ∈ C2).
Case 2. For all w ∈ C, φ(w) = e(aw+b) − c, where a ∈ C\{0} and b ∈ C.
Then n = 1 and we have the holomorphic representation{

g1(z) = −A1c+A2ψ1(z)
g2(z) = −A2c−A1ψ1(z)

for every z ∈ C, where ψ1 : C → C is analytic, |ψ1|2 is convex and strictly sh on C.

Proof. (I) implies (III). Note that u, u1 and u2 are functions of class C
∞ on Cn×Cm.

We have
u2 is strictly psh on Cn × Cm if and only if u1 is strictly psh on Cn × Cm.
Assume that (A1, A2) = (0, 0). Then u1 is independent of w ∈ Cm and u1 is strictly
psh on Cn × Cm. A contradiction.
Consequently, (A1, A2) ∈ C2\{0}.
Define u3(z, w) = (|A1|2 + |A2|2)|φ(w)|2 + |g1(z)|2 + |g2(z)|2, (z, w) ∈ Cn × Cm.
Then u3 is a function of class C∞ on Cn × Cm. But u1 is strictly psh on Cn × Cm if
and only if u3 is strictly psh on Cn × Cm.
By lemma 1, we have m = 1 and n ≤ 2.

Now u(0, .) is convex on C and u3(0, .) is strictly sh on C. In fact (|A1φ−g1(0)|2+
|A2φ− g2(0)|2) is convex on C and ((|A1|2+ |A2|2)|φ|2+ |g1(0)|2+ |g2(0)|2) is strictly
sh on C. Then there exists c ∈ C such that |φ+ c|2 is convex on C and |φ|2 is strictly
sh on C. Which yields |φ+ c|2 is convex and strictly sh on C.
By Abidi [2], using the holomorphic differential equation k′′(k+ c) = γ(k′)2 (k : C →
C be a holomorphic function , γ, c ∈ C), we have
φ(w) = aw + b, for all w ∈ C, where a ∈ C\{0} and b ∈ C, or
φ(w) = e(a1w+b1) − c, for all w ∈ C, with a1 ∈ C\{0} and b1 ∈ C.
The rest of the proof is now obvious.

Theorem 5. The following conditions are equivalent
(I) v is convex and strictly psh on Cn × Cm;
(II) m = 1, n ∈ {1, 2}, (A1, A2) ∈ C2\{0}, there exists c ∈ C such that |φ + c|2 is
convex and strictly sh on C and we have the following 2 cases.
Case 1. For all w ∈ C, φ(w) = aw + b, (a ∈ C\{0}, b ∈ C).
Then we have the representation{

g1(z) = A1(< z/λ > +µ) +A2φ1(z)
g2(z) = A2(< z/λ > +µ)−A1φ1(z)
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for each z ∈ Cn, where λ ∈ Cn, µ ∈ C, φ1 : Cn → C is analytic, |φ1|2 is convex on
Cn, such that
(n = 1, λ ̸= 0), or (n = 1, λ = 0, ∂φ1

∂z (z) ̸= 0, for every z ∈ C), or
(n = 2, and (λ, (∂φ1

∂z1
(z), ∂φ1

∂z2
(z))) is a basis of the complex vector space C2,

for any z = (z1, z2) ∈ C2).
Case 2. For each w ∈ C, φ(w) = e(aw+b) − c, (a ∈ C\{0} and b ∈ C).
Then n = 1 and we have the representation{

g1(z) = −A1c+A2ψ1(z)
g2(z) = −A2c−A1ψ1(z)

for every z ∈ C, where ψ1 : C → C is analytic, |ψ1|2 is convex and strictly sh on C.

Moreover, we can consider the function v2 for a study. According to lemma 1, we
obtain several holomorphic representations of g1 and g2 from the assumptions v and
v1 are convex on Cn × Cm and v2 = (v + v1) is strictly psh on Cn × Cm.

3. Some study in the theory of convex and strictly
psh functions

3.1. The analysis of strictly convex functions

Put u(z, w) = |φ1(w)−g1(z)|2+|φ2(w)−g2(z)|2, φ1, φ2 : Cm → C and g1, g2 : Cn → C
be four holomorphic functions, (z, w) ∈ Cn × Cm.
Recall that, for two holomorphic functions φ : Cm → C and g : Cn → C, if we denote
ψ(z, w) = |φ(w)− g(z)|2, for (z, w) ∈ Cn×Cm. ψ is not strictly convex at each point
of Cn × Cm (this is the case of one absolute value of a holomorphic function). But,
if we consider the sum of two absolute values of holomorphic functions, there exists
several cases where ψ1 is strictly convex on C2. For example

ψ1(z, w) = |f1(w)− k1(z)|2 + |f2(w)− k2(z)|2

for (z, w) ∈ C2 and f1(w) = w, f2(w) = 2w + 1, k1(z) = 2z, k2(z) = 0.
Before the two above technical remarks, we pose the following question.
Question. Characterize all the holomorphic functions φ1, φ2, g1, g2 such that u is
strictly convex on Cn × Cm (we prove that n = m = 1).

Remark 1. Let F1(z) = z2, F2(z) = −z2, F3(z) = z, K1(w) = K2(w) = K3(w) = w,
(z, w) ∈ C2. F1, F2, F3,K1,K2,K3 are holomorphic functions on C. Put u(z, w) =
|K1(w) − F1(z)|2 + |K2(w) − F2(z)|2 + |K3(w) − F3(z)|2. Observe that u is strictly
convex on C2, but F1 and F2 are not affine functions.

We begin by

Lemma 2. Let f1, f2 : CN → C be two holomorphic functions, N ≥ 1. Put v =
|f1|2 + |f2|2. We have
If v is strictly psh on CN , then N ≤ 2.
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Using the holomorphic differential equation k′′(k + c) = γ(k′)2, for k : C → C be a
holomorphic function and (γ, c) ∈ C2, we have

Lemma 3. Let g1, g2 : Cn → C and φ2 : Cm → C be three holomorphic functions
and a ∈ C.
Put u(z, w) = |g1(z)− a|2 + |φ2(w)− g2(z)|2, for (z, w) ∈ Cn × Cm.
Then u is strictly convex on Cn × Cm if and only if n = m = 1, g1 is affine noncon-
stant, g2 is affine and φ2 is affine nonconstant on C.

Proof. Assume that u is strictly convex on Cn × Cm. By lemma 2, it follows that
n = m = 1. We have

|φ′′
2(w)(φ2(w)− g2(z))| < |φ′

2(w)|2

for each w ∈ C and for every fixed z ∈ C.
Put ψ2(w) = |φ2(w) − g2(z)|2, for w ∈ C. By Abidi [2], for each fixed z ∈ C, the
function ψ2 is strictly convex in C. Then φ2 is affine nonconstant on C, (see [2], [3]).
Now we have the inequality

|g′′2 (z)(g2(z)− φ2(w)) + g′′1 (z)g1(z)| < |g′1(z)|2 + |g′2(z)|2

for each (z, w) ∈ C2. Therefore the function F (w) = g′′2 (z)φ2(w) is holomorphic and
bounded on C, for every fixed z ∈ C. Therefore F is constant on C, for each fixed
z ∈ C.
Since φ2 is affine nonconstant, it follows that g′′2 = 0 on C. Then g2 is affine on C.
Now write φ2(w) = A2w + B2, g2(z) = a2z + b2, A2 ∈ C\{0}, B2, a2, b2 ∈ C. Let
T (z, w) = (z, w + a2

A2
z + b2

A2
).

Thus T is an affine holomorphic transformation and bijective on C2. Then u1 = u oT
is strictly convex on C2 and u oT (z, w) = |g1(z)− a|2 + |φ2(w)|2 = u1(z, w).
Consequently, g1 is affine nonconstant on C.
The converse is obvious and the proof is complete.

Now let ψ1, ψ2, f1, f2, k : C → C be holomorphic functions and γ, c ∈ C. Using the
holomorphic differential equation k′′(k + c) = γ(k′)2 and the two partial differential
equations ψ′′

1 (w)f
′
1(z) + ψ′′

2 (w)f
′
2(z) = 0, f ′′1 (z)ψ

′
1(w) + f ′′2 (z)ψ

′
2(w) = 0 on C2, we

prove

Theorem 6. Let φ1, φ2 : Cm → C and g1, g2 : Cn → C be four holomorphic
functions. Put u(z, w) = |φ1(w)− g1(z)|2 + |φ2(w)− g2(z)|2, (z, w) ∈ Cn × Cm.
The following assertions are equivalent
(I) u is strictly convex on Cn × Cm;
(II) n = m = 1, g1, g2, φ1, φ2 are affine functions on C and satisfying the condition
(g′1φ

′
2 − g′2φ

′
1) ̸= 0.

Proof. We have n = m = 1, because u is strictly psh on Cn ×Cm. Since u is strictly
convex on Cn × Cm, then the function u(z, .) is strictly convex on C, for each z ∈ C.
Therefore,

|φ′′
1(w)(φ1(w)− g1(z)) + φ′′

2(w)(φ2(w)− g2(z))| < |φ′
1(w)|2 + |φ′

2(w)|2
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for each w ∈ Cm and for every fixed z ∈ Cn. Thus, for every fixed w ∈ C, the
holomorphic function on the variable z, defined by F (z) = (g1(z)φ′′

1(w)+g2(z)φ
′′
2(w))

is bounded on C.
By Liouville theorem, F is constant on C. Thus (g′1(z)φ

′′
1(w) + g′2(z)φ

′′
2(w)) = 0,

for every z, w ∈ C.
We discuss the cases φ′′

1 ̸= 0 or φ′′
2 ̸= 0 on C. (Also we have (φ′

1(w)g
′′
1 (z) +

φ′
2(w)g

′′
2 (z)) = 0 on C2).

Assume that φ′′
1 ̸= 0 and φ′′

2 ̸= 0. Therefore

φ′′
1(w)

φ′′
2(w)

= −g
′
2(z)

g′1(z)
= R, R ∈ C.

Thus, φ′′
1(w) = Rφ′′

2(w) and g′2(z) = −Rg′1(z), for each z, w ∈ C. It follows that
φ1(w) = Rφ2(w) + aw + b and g2(z) = −Rg1(z) + λ, a, b, λ ∈ C.
The function F1 is strictly convex on C2, where

F1(z, w) = |Rφ2(w) + aw + b− g1(z)|2 + |φ2(w) +Rg1(z)− λ|2.

This proves |g1 + ξ1|2 is strictly convex on C, where ξ1 ∈ C.
By the holomorphic differential equation k′′(k + c) = γ(k′)2, (k : C → C be a holo-
morphic function and c, γ ∈ C), we have g1 is affine nonconstant on C. Therefore,
|g1 − φ1|2 + |Rg1 − (λ− φ2)|2 is strictly convex on C2.
By theorem 2, φ1 and φ2 are affine functions. A contradiction.
Consequently, φ′′

1 = 0, or φ′′
2 = 0 on C.

Assume that φ′′
1 ̸= 0 and φ′′

2 = 0 on C. Therefore φ′′
1g

′
1 = 0 on C. Thus g′1 = 0 on C

and then g1 is constant on C. We have |φ1 − g1(0)|2 + |φ2 − g2|2 is strictly convex
on C2. By lemma 3, we have φ1 and g2 are affine nonconstant, φ2 is affine on C.
Therefore φ1 is affine nonconstant on C. A contradiction.
Consequently, φ1 and φ2 are affine functions on C.
Now since the function u(., w) is strictly convex on C (for each fixed w ∈ C), then
g1, g2, φ1 and φ2 satisfy the partial differential equation g′′1φ

′
1 + g′′2φ

′
2 = 0 in C2.

Using the last above partial differential equation, we prove that g1 and g2 are affine
functions on C. Note that if φ1 and g1 are constant functions, then |g2−φ2|2 is strictly
convex on C2. This is impossible.
Therefore, we have
(φ1 or g1 is non constant) and (φ2 or g2 is non constant).
Analogously,
(g1 or g2 is non constant) and (φ1 or φ2 is non constant).
Since now u is strictly convex on C2, then

|φ′
1(w)β − g′1(z)α|2 + |φ′

2(w)β − g′2(z)α|2 > 0

for each (z, w) ∈ C2 and (α, β) ∈ C2\{0}. Therefore, (g′1φ′
2 − g′2φ

′
1) ̸= 0.
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3.2. The analysis of convex and strictly psh functions

Let ψ1, ψ2, f1, f2, k : C → C be holomorphic functions and γ, c ∈ C. In the sequel,
using the holomorphic differential equation k′′(k + c) = γ(k′)2 and the two partial
differential equations ψ′′

1 (w)f
′
1(z)+ψ

′′
2 (w)f

′
2(z) = 0, f ′′1 (z)ψ

′
1(w)+f

′′
2 (z)ψ

′
2(w) = 0 on

C2, we have

Theorem 7. Let g1, g2 : Cn → C and φ1, φ2 : Cm → C be four holomorphic
functions. Put u(z, w) = |φ1(w)− g1(z)|2 + |φ2(w)− g2(z)|2, for (z, w) ∈ Cn × Cm.
The following conditions are equivalent
(I) u is convex and strictly psh on Cn × Cm;
(II) n = m = 1, φ′′

1g
′
1 + φ′′

2g
′
2 = 0 and g′′1φ

′
1 + g′′2φ

′
2 = 0 on C2,

(φ1 or φ2 is nonconstant) and (g1 or g2 is nonconstant) and we have the following
cases.
Case 1. The functions φ1 and φ2 satisfies φ′′

1 ̸= 0 and φ′′
2 ̸= 0.

Assume that g′1 ̸= 0.
If g′′1 = 0, then g′′2 = 0 on C (therefore g1 and g2 are affine functions with g1 or g2
is non constant. In this case, by theorem 2 or theorem 3, we can find φ1 and φ2 by
their holomorphic expressions).
If g′′1 ̸= 0. Thus g′′2 ̸= 0. Since u(z, .) is convex on C (for z fixed), then φ2 = cφ1 + ξ0,
c, ξ0 ∈ C.
u = |φ1 − g1|2 + |cφ1 + ξ0 − g2|2, on C2.
Assume that g′2 ̸= 0.
We have an analogous situation to the above case.
Case 2. The function φ1 is not affine and the function φ2 is affine on C.
Then g1 is constant on C, |φ1 − g1(0)|2 and |g2 − φ2(0)|2 are convex functions and
|φ′

1g
′
2| > 0 on C2, or

g2 is affine nonconstant and |φ′
1g

′
2| > 0 on C2.

We can study also the case φ′′
1 = 0 and φ′′

2 ̸= 0.
Case 3. The functions φ1 and φ2 are affine on C.
The discussion is similar to cases 1, 2 and theorem 3.

Proof. (I) implies (II). By lemma 2, we have 2 ≤ n+m ≤ 2. Then n = m = 1. Since
u is convex and of class C2 on C2, we have the inequality

| ∂
2u

∂w2
β2 +

∂2u

∂z2
α2 +

∂2u

∂z∂w
αβ| ≤ ∂2u

∂w∂w
|β|2 + ∂2u

∂z∂z
|α|2 + 2Re(

∂2u

∂z∂w
αβ)

on C2. It follows that

|[φ′′
1(φ1−g1)+φ′′

2(φ2−g2)]β2+[g′′1 (g1−φ1)+g
′′
2 (g2−φ2)]α

2| ≤ |φ′
1β−g′1α|2+|φ′

2β−g′2α|2

for each (α, β) ∈ C2. If α = 0 and β ̸= 0, then

|φ′′
1(φ1 − g1) + φ′′

2(φ2 − g2)| ≤ |φ′
1|2 + |φ′

2|2

on C2. Now let ψ(z) = g1(z)φ′′
1(w) + g2(z)φ′′

2(w) − φ1(w)φ′′
1(w) − φ2(w)φ′′

2(w), for
z ∈ C, (w is fixed on C). ψ is holomorphic on C and ψ(z)| ≤ |φ′

1(w)|2 + |φ′′
2(w)|2, for
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every z ∈ C, (w fixed). Thus ψ is constant on C. Consequently, ψ′(z) = 0, for each
z ∈ C. Therefore

g′1(z)φ
′′
1(w) + g′2(z)φ

′′
2(w) = 0

for each z, w ∈ C.
Now if α ̸= 0 and β = 0. We obtain φ′

1(w)g
′′
1 (z) + φ′

2(w)g
′′
2 (z) = 0, for every (z, w) ∈

C2.
For the rest of the proof we use theorem 1, theorem2, theorem 3 and the proof of
theorem 7.

Remark 2. Using the above technical methods, the following three partial differen-
tial equations

k′′(k + c) = γ(k′)2,

ψ′′
1 (w)f

′
1(z) + ψ′′

2 (w)f
′
2(z) = 0 on C2,

f ′′1 (z)ψ
′
1(w) + f ′′2 (z)ψ

′
2(w) = 0 on C2,

where (ψ1, ψ2, f1, f2, k : C → C are holomorphic functions and γ, c ∈ C), we can solve
the analogous problem when u is convex on Cn×Cm and u = |φ1 − g1|2 + |φ2 − g2|2;
φ1, φ2 : Cm → C and g1, g2 : Cn → C are four holomorphic functions with the
conditions (φ1 or φ2 is nonconstant) and (g1 or g2 is nonconstant).

3.3. Essential properties in function theory

In the sequel, we give technical tools for the study of the following families of functions
consisting of: convex and not strictly psh functions on any not empty Euclidean open
ball subset of Cn × C; convex and strictly sh functions but not strictly psh on each
Euclidean open ball; convex and n− strictly sh functions but not strictly psh on every
open ball,... . We have

Theorem 8. Let u : D → R be a function of class C2, D is a domain of Cn, n ≥ 1.
The following conditions are equivalent
(I) u is not strictly psh on each not empty Euclidean open ball subset of D;
(II) u is not strictly psh at each point of D.

Example. Let v(z, w) = |wN − g1(z)|2 + |wN − g2(z)|2, n,N ∈ N, n,N ≥ 2, g1, g2 :
Cn → C be two holomorphic functions. v is convex and not strictly psh at each point
of Cn × C, if for example g2(z) = −g1(z), for each z ∈ Cn and |g1|2 is convex on Cn.

Remark 3. (R1). Let u1(z, w) = |w − z|2, u2(z, w) = |w − 2z|2, (z, w) ∈ C2.
u1 and u2 are C

∞ and not strictly psh functions at each point of C2. But u = (u1+u2)
is strictly psh on C2.
(R2). Put v(z) =∥ z ∥4, z = (z1, ..., zn) ∈ Cn. v is psh on Cn and strictly psh on
Cn\{0}. Therefore v is strictly psh almost everywhere on Cn. But v is not strictly
psh on Cn.

Example. Let u = (u1 + u2), v = (v1 + v2), where

u1(z, w) = |w − f1(z)|2 + |w − f2(z)|2,
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u2(z, w) = |w − g1(z)|2 + |w − g2(z)|2,

v1(z, w) = |w − f1(z)|2 + |w − f2(z)|2,

v2(z, w) = |w − g1(z)|2 + |w − g2(z)|2,

f1(z) = −f2(z) = (z − z2), g1(z) = −g2(z) = (z + z2), for (z, w) ∈ C2.

f1, f2, g1, g2 are holomorphic functions on C. We have u and v are strictly convex
functions on C2. But u1, u2, v1, v2 are not convex functions on C2.

Example. Let N ∈ N, N ≥ 2 and A ∈ R+, A ≥ 2 such that ψ is convex on
C, ψ(z) = A|z|2 + |zN − 1|2, for z ∈ C. Put u = (u1 + u2), where u1(z, w) =
|w − g1(z)|2 + |w − g2(z)|2, u2(z, w) = |w − g1(z)|2 + |w − g2(z)|2,
g1(z) = Az + (zN − 1), g2(z) = Az − (zN − 1), for (z, w) ∈ C2.
Note that g1 and g2 are holomorphic functions on C. We have u1 is not strictly psh
and not convex on C2. u2 is strictly psh and not convex on C2. But u is convex and
strictly psh on C2.
We have

Proposition 1. Let g1, g2 : C → C be two holomorphic functions. Put u(z, w) =
|w− g1(z)|4 + |w− g2(z)|4, v(z, w) = |w− g1(z)|4 + |w− g2(z)|4, for (z, w) ∈ C2. We
have u is not strictly psh on C2, for each tuple of holomorphic functions g1 and g2.
But there exists several cases where v is strictly psh on C2.

Proof. u and v are functions of class C∞ on C2. The hermitian Levi form of u
is L(u)(z, w)(α, β) = 4|w − g1(z)|2|β − g′1(z)α|2 + 4|w − g2(z)|2|β − g′2(z)α|2, for
(z, w) ∈ C2, (α, β) ∈ C2.
Let z0 ∈ C. Put w0 = g1(z0). Let β = g′2(z0)α, for α ∈ C\{0}.
Then L(u)(z0, w0)(α, g

′
2(z0)α) = 0 and α ̸= 0.

The hermitian Levi form of v is
L(v)(z, w)(α, β) = (2|g′1(z)|2|w−g1(z)|2+2|g′2(z)|2|w−g2(z)|2)|α|2+(2|w−g1(z)|2+
2|w− g2(z)|2)|β|2+2|g′1(z)(w− g1(z))α− (w− g1(z))β|2+2|g′2(z)(w− g2(z))α− (w−
g2(z))β|2, for (z, w), (α, β) ∈ C2. Now choose |g′1| > 0, |g′2| > 0 and |g1−g2| > 0 on C.
Let (z, w) ∈ C2. We discuss the following three cases (α ̸= 0, β = 0), (α = 0, β ̸= 0))
and (α ̸= 0, β ̸= 0), we obtain L(v)(z, w)(α, β) > 0 if (α, β) ∈ C2\{0}.
Then v is strictly psh on C2.
Let ψ(z, w) = |w − ψ1(z)|2 + |w − ψ2(z)|2 + |w − ψ3(z)|2,
φ(z, w) = |w−ψ1(z)|2+ |w−ψ2(z)|2+ |w−ψ3(z)|2, for (z, w) ∈ C2, where ψ1, ψ2, ψ3 :
C → C are three holomorphic functions. Recall that if ψ is strictly psh on C2, then
φ is strictly psh on C2. But we have

Proposition 2. There exists three holomorphic functions g1, g2, g3 : C → C such
that if we define u(z, w) = |w − g1(z)|4 + |w − g2(z)|4 + |w − g3(z)|4 and v(z, w) =
|w− g1(z)|4 + |w− g2(z)|4 + |w− g3(z)|4, for (z, w) ∈ C2. We have u is convex on C2

and strictly psh on a neighborhood of (0, i). But v is not strictly psh at (0, i), while v
is convex on C2.

Example. Let g1(z) = z − i, g2(z) = 2z − i, g3(z) = 3z − i, z ∈ C. g1, g2 and g3 are
holomorphic functions on C.
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z0 = 0, w0 = i. Put u(z, w) = |w − g1(z)|4 + |w − g2(z)|4 + |w − g3(z)|4,
v(z, w) = |w − g1(z)|4 + |w − g2(z)|4 + |w − g3(z)|4, for (z, w) ∈ C2.
Then u and v are functions of class C∞ and convex on C2.
Let ψ(z, w) = |w − g1(z)|4, (z, w) ∈ C2. ψ is a C∞ function on C2 and the hermitian
Levi form of ψ is

L(ψ)(z, w)(α, β) = 4|w − g1(z)|2|β − g′1(z)α|2, (α, β) ∈ C2.

Denote by L(u)(z, w)(α, β) the hermitian Levi form of u at (z, w) and (α, β). Then
L(u)(z0, w0)(α, β) = 16|β−α|2+16|β−2α|2+16|β−3α|2 = 0 implies that α = β = 0.
Thus L(u)(z0, w0)(α, β) > 0, for each (α, β) ∈ C2\{0}.
Let S = {(α, β) ∈ C2 / |α|2 + |β|2 = 1}. Thus {(z0, w0)} × S = K is a compact on
C2 × C2.
The function F, defined by

F (z, w)(α, β) =
∂2u

∂z∂z
(z, w)|α|2 + ∂2u

∂w∂w
(z, w)|β|2 + 2Re(

∂2u

∂z∂w
(z, w)αβ),

is continuous on C2 × C2.
Since F > 0 on K, then F > 0 on B((z0, w0), r) × S, where r > 0. Therefore u is
strictly psh on a neighborhood of (0, i) and convex on C2.
The hermitian Levi form of the C∞ function θ on C2 is

L(θ)(z, w)(α, β) = 2|g′1(z)(w − g1(z))α− (w − g1(z))β|2 + 2|g′1(z)(w − g1(z))α|2

+ 2|w − g1(z)|2|β|2,

for (z, w), (α, β) ∈ C2, where θ(z, w) = |w − g1(z)|4.
Observe that we have w0 − g1(z0) = w0 − g2(z0) = w0 − g3(z0) = 0. Therefore
L(v)(z0, w0)(α, β) = 0, for each (α, β) ∈ C2.

We have the following technical remark.

Remark 4. Let f1, ..., fN : Cn → C be holomorphic functions, n,N, k ∈ N\{0},
k ≥ 2. Put

u(z, w) = |w − f1(z)|2k + ...+ |w − fN (z)|2k,

v(z, w) = |w − f1(z)|2k + ...+ |w − fN (z)|2k,

u1(z, w) = |w − f1(z)|2 + ...+ |w − fN (z)|2,

v1(z, w) = |w − f1(z)|2 + ...+ |w − fN (z)|2,

φ = (u+ v) and φ1 = (u1 + v1).

If u is strictly psh on Cn × C, we can not deduce that v is strictly psh on Cn × C.
If φ is strictly psh on Cn × C, we can not conclude that u (or v) is strictly psh on
Cn × C.
But we have the technical properties.
(I) If u is strictly psh on Cn × C, then u1 is strictly psh on Cn × C.
(II) v is strictly psh on Cn × C implies that v1 is strictly psh on Cn × C.
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(III) If φ1 is strictly psh on Cn × C, then v1 is strictly psh on Cn × C.
(IV) If φ is strictly psh on Cn × C, then φ1 is strictly psh on Cn × C.
(V) (u+ u1) is strictly psh on Cn × C, implies that u1 is strictly psh on Cn × C.
For example for the proof of the above property (I), since
u(z, w) = |(w − f1(z))

k|2 + ...+ |(w − fN (z))k|2, then u is a function of class C∞ on
Cn × C. Therefore the hermitian Levi form of u is

L(u)(z, w)(α, β) = |w − f1(z)|2k−2|β −
n∑
j=1

∂f1
∂zj

(z)αj |2 + ...

+ |w − fN (z)|2k−2|β −
n∑
j=1

∂fN
∂zj

(z)αj |2

for z = (z1, ..., zn) ∈ Cn, w ∈ C, α = (α1, ..., αn) ∈ Cn, β ∈ C.
Now u1 is a function of class C∞ on Cn × C. The hermitian Levi form of u1 is

L(u1)(z, w)(α, β) = |β −
n∑
j=1

∂f1
∂zj

(z)αj |2 + ...+ |β −
n∑
j=1

∂fN
∂zj

(z)αj |2.

Let (z, w), (α, β) ∈ Cn × C. Observe that L(u)(z, w)(α, β) > 0 implies that

L(u1)(z, w)(α, β) > 0, because the absolute value |β −
n∑
j=1

∂fs
∂zj

(z)αj |2 ≥ 0, for each

s ∈ {1, ..., N}.
The technical properties (II), (III), (IV) and (V) can be be proved similarly.
Observe that for ψ : Cn → R+, if ψ

2 is convex on Cn, then ψ4 is convex on Cn. The
converse, for instance, is in general not true. But in the sequel, using the holomorphic
differential equation, k′′(k+ c) = γ(k′)2 (k : C → C be holomorphic and c, γ ∈ C), we
have

Theorem 9. Let g1, g2 : Cn → C be two holomorphic functions. Put u(z, w) =
|w− g1(z)|2 + |w− g2(z)|2, v(z, w) = |w− g1(z)|4 + |w− g2(z)|4, for (z, w) ∈ Cn ×C.
We have
(I) Assume that v is convex on Cn × C, then u is convex on Cn × C.
(II) Suppose that u is convex on Cn × C, we can not conclude that v is convex on
Cn × C.

Proof. (I). Note that u and v are functions of class C∞ on Cn × C.
Assume that n = 1. We have

|∂
2v

∂z2
(z, w)α2 +

∂2v

∂w2
β2 + 2

∂2v

∂z∂w
αβ| ≤ L(v)(z, w)(α, β)

for each (z, w), (α, β) ∈ C2, where

L(v)(z, w)(α, β) =
∂2v

∂z∂z
(z, w)|α|2 + ∂2v

∂w∂w
|β|2 + 2Re(

∂2v

∂z∂w
αβ).
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We obtain the inequality
(E): |[−2g′′1 (z)w + 2g1(z)g

′′
1 (z) + 2(g′1(z))

2](w2 − 2g1(z)w + g1
2(z))α2+

[−2g′′2 (z)w + 2g2(z)g
′′
2 (z) + 2(g′2(z))

2](w2 − 2g2(z)w + g2
2(z))α2 + 2(w − g1(z))

2β2+
2(w − g2(z))

2β2 − 2g′1(z)(w − g1(z))
2αβ − 2g′2(z)(w − g2(z))

2αβ| ≤
|2wβ−2βg1(z)−2wg′1(z)α+2g′1(z)g1(z)α|2+|2wβ−2βg2(z)−2wg′2(z)α+2g′2(z)g2(z)α|2,
for each (z, w), (α, β) ∈ C2.
If β = 0 and w ∈ R, the coefficient of w3 is equal to 0. Therefore (g′′1 (z) + g′′2 (z)) = 0,
for every z ∈ C.
Now we divide the left hand side of the inequality (E) by |w|2 > 0 (for w ∈ C\{0})
and the right hand side of (E) by |w|2 (observe that |w|2 = |w|2), and letting |w| go
to (+∞), we obtain

|(4g′′1 (z)g1(z) + 4g′′2 (z)g2(z) + 2(g′1(z))
2 + 2(g′2(z))

2)α2 + 4β2 − 4(g′1(z) + g′2(z))αβ|

≤ |2β − 2g′1(z)α|2 + |2β − 2g′2(z)α|2.

Put β = g′1(z)α. Then

|4g′′1 (z)g1(z) + 4g′′2 (z)g2(z) + 2(g′1(z)− g′2(z))
2| ≤ 4|g′1(z)− g′2(z)|2.

Thus
|g′′1 (z)(g1(z)− g2(z))|2 ≤ 6|g′1(z)− g′2(z)|2

for each z ∈ C. Now also we prove that

|g′′2 (z)(g1(z)− g2(z))| ≤ 6|g′1(z)− g′2(z)|2

for every z ∈ C. Using the triangle inequality, we have then

|g′′1 (z)(g1(z)− g2(z))− g′′2 (z)(g1(z)− g2(z))| ≤ 12|g′1(z)− g′2(z)|2

for each z ∈ C.
Therefore the function (g1 − g2) satisfies

|(g′′1 (z)− g′′2 (z))(g1(z)− g2(z))| ≤ 12|g′1(z)− g′2(z)|2

for every z ∈ C. Therefore the function |g1 − g2|2 is convex on C, by Abidi [2],
(we can see [3]).
Since (g1 + g2) is affine on C, thus g1(z) = (az + b) + φ(z), g2(z) = (az + b) − φ(z),
for each z ∈ C, where φ : C → C is a holomorphic function such that |φ| is convex on
C. Therefore u is convex on C2.
In the sequel, we can prove that g1 and g2 are affine functions on C (see proposition 3).
Assume that n ≥ 2. Actually by the above case, it is easy to prove that g1 and g2
are affine functions on every complex line L ⊂ Cn. Therefore, g1 and g2 are affine
functions on Cn.
(II). Assume that n = 1. Put g1(z) = z2, g2(z) = −z2, for z ∈ C. Then

u(z, w) = |w − g1(z)|2 + |w − g2(z)|2 = 2|w|2 + 2|z|2, (z, w) ∈ C2.
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Thus u is convex on C2. But v is not convex on C2, because v(z, 1) = |1 − z2|4+
+|1 + z2|4 = 2ψ(z), for each z ∈ C. Observe that ψ is not convex in a neighborhood
of 1

2 .

Proposition 3. Let u(z, w) = |w+ < z/a > +b+φ(z)|4 + |w+ < z/a > +b−φ(z)|4,
a ∈ Cn, b ∈ C, φ : Cn → C be holomorphic not affine, |φ| is convex on Cn.
Then the function u is not convex on Cn × C.

Proof. Define v(z, w) = |w + φ(z)|4 + |w − φ(z)|4, (z, w) ∈ Cn × C. Observe that v
is convex on Cn × C if and only if u is convex on Cn × C.
Suppose that n = 1. Since φ is not affine and |φ| is convex on C, then by Abidi [3],
we have the holomorphic representations
φ(z) = (a1z + b1)

k, for each z ∈ C, where a1 ∈ C\{0}, b1 ∈ C, k ∈ N, k ≥ 2, or
φ(z) = e(a2z+b2), for every z ∈ C, with a2 ∈ C\{0} and b2 ∈ C.
Now for the study of the convexity of the function v, by an affine change of variable,
we can assume that φ(z) = zk, for any z ∈ C, or φ(z) = ez, for each z ∈ C.
(I) Assume that φ(z) = zk, k ∈ N, k ≥ 2.
If k = 2. We can see the above proof and we have the function F = v(., 1) is not
convex on C.
Now suppose that k ≥ 3.
Define ψ(z) = v(z, 1), for z ∈ C. Then ψ is a function of class C∞ on C.
If ψ is convex on C, then ∣∣∣∣∂2ψ∂z2 (z)

∣∣∣∣ ≤ ∂2ψ

∂z∂z
(z)

for each z ∈ C.

∂2ψ

∂z2
(z) = [2k2z2k−2 + 2k(k − 1)zk−2(1 + zk)](1 + zk)2

+ [2k2z2k−2 + 2k(k − 1)zk−2(zk − 1)](zk − 1)2.

∂2ψ

∂z∂z
(z) = 4k2|z2k−2|1 + zk|2 + 4k2|zk − 1|2|z|2k−2.

For z0 = 1, ∂
2ψ
∂z2 (1) = 4(6k2 − 4k) ≥ 0 and ∂2ψ

∂z∂z (1) = 16k2. Then ∂2ψ
∂z2 (1) = |∂

2ψ
∂z2 (1)| ≤

∂2ψ
∂z∂z (1). Therefore 6k2 − 4k ≤ 4k2 and k ≥ 3. This is a contradiction.
(II) Assume that φ(z) = ez, for z ∈ C.
Let ψ(z) = v(z, 2), z ∈ C. ψ is a function of class C∞ on C.

∂2ψ

∂z2
(z) = 2(2ez + 2e2z)(2 + ez)2 + 2(2e2z − 2ez)(ez − 2)2.

∂2ψ

∂z∂z
(z) = 4e(z+z)(ez + 2)(ez + 2) + 4e(z+z)(ez − 2)(ez − 2).

∂2ψ
∂z2 (0) = 72 and ∂2ψ

∂z∂z (0) = 40. Therefore |∂
2ψ
∂z2 (0)| >

∂2ψ
∂z∂z (0). Then ψ is not convex

on C. Consequently, v is not convex on C2.
Comparing the preceding theorem and proposition 3, we observe that the exponent 2 is
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special in our considerations. For instance, let uk(z, w) = |w−f1(z)|2k+ |w−f2(z)|2k,
k ∈ N\{0}, f1, f2 : Cn → C be two holomorphic functions and (z, w) ∈ Cn × C. We
can prove that uk is convex on Cn×C implies that u1 is convex on Cn×C if (k ≥ 2),
but the converse is not true.
Let vδ(z, w) = |A1w − f1(z)|δ + |A2w − f2(z)|δ, δ ∈ [1,+∞[ and (A1, A2) ∈ C2\{0}.
Observe that the study of the convexity of the function vδ is based on two additional
cases.
Moreover, observe that by the above technical proof, we have

Theorem 10. Let f1, f2 : Cn → C be two holomorphic functions. Define u(z, w) =
|w − f1(z)|4 + |w − f2(z)|4, for (z, w) ∈ Cn × C. We have u is convex on Cn × C if
and only if f1 and f2 are affine functions on Cn.
Proof. We can see the proof of theorem 9 and proposition 3.

Remark 5. Let f1(z) = zN , f2(z) = −zN , f3(z) = izN and f4(z) = −izN , N ∈
N\{0, 1}, for z ∈ C.
Put u(z, w) = |w − f1(z)|4 + |w − f2(z)|4 + |w − f3(z)|4 + |w − f4(z)|4, (z, w) ∈ C2.
u is convex on C2, because u(z, w) = c(|w|2 + |zN |2)2, where c ∈ R, c > 0. But f1, f2,
f3 and f4 are not affine functions.

We have the following.

Question 1. Let F1, F2, F3 : Cn → C be holomorphic functions. Put ψ1(z) =
(|F1(z)|4 + |F2(z)|4), ψ2(z) = (|F1(z)|4 + |F2(z)|4 + |F3(z)|4), z ∈ Cn.
(I) Is it true that ψ1 is convex on Cn implies that F1 and F2 are affine functions on
Cn?
(II) Assume that ψ2 is convex on Cn. Is it true that F1, F2 and F3 are affine functions
on Cn?
The number of holomorphic functions is it fundamental in the above two situations?

We have

Proposition 4. Let k ∈ N\{0, 1} and φ : Cn → C be holomorphic. Define v(z, w) =
|w+ < z/a > +b+φ(z)|2k+|w+ < z/a > +b−φ(z)|2k, a ∈ Cn, b ∈ C, (z, w) ∈ Cn×C.
Assume that φ is not affine and |φ| is convex on Cn. Then v is not convex on Cn×C.
Proof. Obviously follows from the proof of proposition 3. Observe that, using the
holomorphic differential equation cited above, we have the additional result.

Theorem 11. Let g1, g2 : Cn → C be two holomorphic functions and k ∈ N\{0, 1}.
Put u(z, w) = |w− g1(z)|2k + |w− g2(z)|2k and v(z, w) = |w− g1(z)|2 + |w− g2(z)|2,
(z, w) ∈ Cn × C.
(I) Assume that u is convex on Cn × C. Then v is convex on Cn × C.
(II) Suppose that v is convex on Cn × C. We can not conclude that u is convex on
Cn × C. But we have
(III) u is convex on Cn × C if and only if g1 and g2 are affine functions.

Extension of the results. Let ψδ = |w − f1(z)|δ + |w − f2(z)|δ, δ ∈ [1,+∞[,
f1, f2 : Cn → C be two holomorphic functions and (z, w) ∈ Cn × C. We observe
without any assumption on δ ∈ [1,+∞[, for instance , for the study of the convexity
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of the function ψδ, the proof is organized in two separately cases.
Case 1. δ = 2. (In this case, we obtain several solutions not affine functions).
Case 2. δ ∈ [1,+∞[\{2}.
In general we have the following two remarks (R1) and (R2).
(R1). Let f : C → C be a function. Put φδ(z, w) = |w − f(z)|δ, δ ∈ [1,+∞[ and
(z, w) ∈ C2. We have φδ is convex on C2 if and only if f is affine (and in particular
f is a function of class C∞ on C).
(Let N ∈ N\{0}, 2N ≥ δ and put G(z, w) = |w − f(z)|2N , (z, w) ∈ C2. Suppose
that φδ is convex on C2. Consequently, G is psh on C2. By Abidi [1], it follows that
f is harmonic on C. Now let T : C → C be an R− linear bijective transformation.
Consider M(z, w) = (T (z), w), for (z, w) ∈ C2. Note that M is R− linear and a
bijective transformation on C2. Therefore G oM is convex on C2 and consequently,
G oM is psh on C2. Since G oM(z, w) = |w − f oT (z)|, for (z, w) ∈ C2. Then f oT
is harmonic on C, for any R− linear transformation T. Then f is affine on C).
But if we define Fδ(z, w) = |w − f1(z)|δ + |w − g1(z)|δ, where

f1(z) =

{
1 if Re(z) ≥ 0
−1 if Re(z) < 0

and

g1(z) =

{
−1 if Re(z) ≥ 0
1 if Re(z) < 0

for (z, w) ∈ C2. Then we have
Fδ(z, w) = |w − 1|δ + |w + 1|δ and consequently, the function Fδ is convex on C2, for
each δ ≥ 1. But f1 and g1 are noncontinuous functions at any point of C. Moreover,
we have
(R2). There exists two continuous functions f, g : C → C, with Kδ(z, w) = |w −
f(z)|δ + |w − g(z)|δ, (z, w) ∈ C2, Kδ is convex on C2 (for each δ ≥ 1), but f and g
are not functions of class C∞ on C.
Example. Let f(z) = |x|, g(z) = −|x|, z = (x+ iy) ∈ C, x = Re(z).

Question 2. Let ψ1, ..., ψN : Cn → C be analytic functions, N, k ∈ N, k ≥ 2. Define

ψ(z, w) = |w − ψ1(z)|2k + ...+ |w − ψN (z)|2k, (z, w) ∈ Cn × C.

Assume that N ≤ 2k− 1 and ψ is convex on Cn×C. Characterize ψ1, ..., ψN by their
analytic expressions.

Question 3. Let φ1, φ2, φ3, φ4 : Cm → C and g1, g2, g3, g4 : Cn → C be 8 holomor-
phic functions. Put u = (u1+u2), where u1(z, w) = |φ1(w)−g1(z)|4+|φ2(w)−g2(z)|4,
u2(z, w) = |φ3(w)− g3(z)|4 + |φ4(w)− g4(z)|4, (z, w) ∈ Cn × C.
Characterize φ1, φ2, φ3, φ4, g1, g2, g3, g4 by their expressions such that u1 and u2 are
convex functions on Cn × C and u is strictly psh on Cn × C.
In the sequel, for instance, observe that there exists a great differences between the
exponent 2 and the exponent 4 (or 2k, k ∈ N\{0, 1}) in real convexity.

We have
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Lemma 4. (I) There exists ψ1, ψ2 : Cn → C two holomorphic functions such that
|ψ1|2 and |ψ2|2 are not convex functions, while u = (|ψ1|2 + |ψ2|2) is convex on Cn,
but v = (|ψ1|4+ |ψ2|4) is not convex on Cn (respectively (|ψ1|2k+ |ψ2|2k) is not convex
on Cn for each k ∈ N\{0, 1}).
(II) There exists φ1, φ2 : Cn → C holomorphic functions, with |φ1|2 is convex and
|φ2|2 is not convex on Cn, (|φ1|2+ |φ2|2) is convex on Cn, but (|φ1|2k+ |φ2|2k) is not
convex on Cn, for each k ∈ N\{0, 1}.
(Example. φ1(z) = 2z, φ2(z) = z2 − 1, z ∈ C).

We introduce this lemma because it yields the following questions.

Question 4. Let f1, f2 : Cn → C be analytic functions and δ ∈ [1,+∞[. Put
u = (|f1|δ + |f2|δ). Suppose that u is convex on Cn and δ ̸= 2. Is it true that |f1| and
|f2| are convex functions on Cn?

Question 5. Let n,m ∈ N\{0}. Find all the holomorphic functions f1, f2 : Cn → C,
φ1, φ2 : Cm → C, such that ψ is convex on Cn × Cm, where ψ(z, w) = |φ1(w) −
f1(z)|δ + |φ2(w)− f2(z)|δ, for (z, w) ∈ Cn × Cm.

4. Some study of a particular case and algebraic
method

Theorem 12. Let A1, A2, A3, A4, A5 ∈ C\{0}. Consider g1, g2, g3, g4, g5 : Cn → C be
five holomorphic functions. Define u1(z, w) = |A1w − g1(z)|2 +
|A2w − g2(z)|2, v1(z, w) = |A3w − g3(z)|2 + |A4w − g4(z)|2, u(z, w) = u1(z, w) +
v1(z, w) + |A5w − g5(z)|2, (z, w) ∈ Cn × C.
The following conditions are equivalent
(I) u1 and v1 are convex functions on Cn × C and u is (convex and strictly psh) on
Cn × C;
(II) n ∈ {1, 2, 3, 4} and we have{

g1(z) = A1(< z/a > +b) +A2φ(z)
g2(z) = A2(< z/a > +b)−A1φ(z){
g3(z) = A3(< z/c > +d) +A4ψ(z)
g4(z) = A4(< z/c > +d)−A3ψ(z)

and g5(z) = (< z/λ > +µ), (for all z ∈ Cn, where a, c, λ ∈ Cn, b, d, µ ∈ C, φ, ψ :
Cn → C are 2 holomorphic functions, |φ| and |ψ| are convex functions on Cn) with
the following 4 cases.

(1) n = 4. We have (a− c, a− λ, ( ∂φ∂z1 (z),
∂φ
∂z2

(z), ∂φ∂z3 (z),
∂φ
∂z4

(z)),

( ∂ψ∂z1 (z),
∂ψ
∂z2

(z), ∂ψ∂z3 (z),
∂ψ
∂z4

(z))) is a basis of the complex vector space C4, for all z ∈
C4.
(2) n = 3. Then we have for all z ∈ C3, z = (z1, z2, z3),

(a − c, a − λ, ( ∂φ∂z1 (z),
∂φ
∂z2

(z), ∂φ∂z3 (z))), or (a − c, a − λ, ( ∂ψ∂z1 (z),
∂ψ
∂z2

(z), ∂ψ∂z3 (z))), or
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(a− c, ( ∂φ∂z1 (z),
∂φ
∂z2

(z), ∂φ∂z3 (z)), (
∂ψ
∂z1

(z), ∂ψ∂z2 (z),
∂ψ
∂z3

(z))), or

(a−λ, ( ∂φ∂z1 (z),
∂φ
∂z2

(z), ∂φ∂z3 (z)), (
∂ψ
∂z1

(z), ∂ψ∂z2 (z),
∂ψ
∂z3

(z))) is a basis of the complex vector

space C3.
(3) n = 2. Then for each z = (z1, z2) ∈ C2, the quantity (a − c, a − λ), or (a −
c, ( ∂φ∂z1 (z),

∂φ
∂z2

(z))), or (a − c, ( ∂ψ∂z1 (z),
∂ψ
∂z2

(z))), or (a − λ, ( ∂φ∂z1 (z),
∂φ
∂z2

(z))), or (a −
λ, ( ∂ψ∂z1 (z),

∂ψ
∂z2

(z))), or (( ∂φ∂z1 (z),
∂φ
∂z2

(z)), ( ∂ψ∂z1 (z),
∂ψ
∂z2

(z))) is a basis of the complex

vector space C2.
(4) n = 1. Then we have for all z ∈ C, (a − c) ̸= 0, or (a − λ) ̸= 0, or (∂φ∂z (z) ̸= 0),

or (∂ψ∂z (z) ̸= 0).

Proof. (I) implies (II). Since u1 is convex on Cn × C, then{
g1(z) = A1(< z/a > +b) +A2φ(z)
g2(z) = A2(< z/a > +b)−A1φ(z)

(for each z ∈ Cn, where a ∈ Cn, b ∈ C, φ : Cn → C is analytic, |φ| is convex on Cn).
u2 is convex on Cn × C, then{

g3(z) = A3(< z/c > +d) +A4ψ(z)
g4(z) = A4(< z/c > +d)−A3ψ(z)

(for every z ∈ Cn, with c ∈ Cn, d ∈ C, ψ : Cn → C is analytic and |ψ| is convex
on Cn).
Note that u is a function of class C∞ on Cn × C. Now since u is convex on Cn × C,
then if we put z = (z1, ..., zn) ∈ Cn, w = zn+1, α = (α1, ..., αn) ∈ Cn, β = αn+1 ∈ C,
we have∣∣∣∣∣∣
n+1∑
j,k=1

∂2u

∂zj∂zk
(z)αjαk

∣∣∣∣∣∣ ≤
n+1∑
j,k=1

∂2u

∂zj∂zk
(z)αjαk, ∀(z, w) ∈ Cn × C, ∀(α, β) ∈ Cn × C.

It follows that g5 is an affine function on Cn. Therefore g5(z) = (< z/λ > +µ), for
each z ∈ Cn, where λ ∈ Cn and µ ∈ C. Then

u(z, w) = (|A1|2 + |A2|2)(|w− < z/a > −b|2 + |φ(z)|2)
+ (|A3|2 + |A4|2)(|w− < z/c > −d|2 + |ψ(z)|2)
+ |A5w− < z/λ > −µ|2, (z, w) ∈ Cn × C.

Define

v(z, w) = |w− < z/a > −b|2 + |φ(z)|2 + |w− < z/c > −d|2

+ |ψ(z)|2 + |A5w− < z/λ > −µ|2, (z, w) ∈ Cn × C.

Then v is a function of class C∞ on Cn ×C and we have (u is strictly psh on Cn ×C
if and only if v is strictly psh on Cn × C). Therefore by lemma 1, n+ 1 ≤ 5.
Consequently, n ∈ {1, 2, 3, 4}.
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Now let T (z, w) = (z, w+ < z/a >), (z, w) ∈ Cn × C. T is a C− linear bijective
transformation on Cn × C.
Let v2(z, w) = v oT (z, w) = |w − b|2 + |φ(z)|2 + |w+ < z/a − c > −d|2 + |ψ(z)|2 +
|A5w+ < z/a− λ > −µ|2, (z, w) ∈ Cn × C.
Therefore v2 is a function of class C∞ on Cn×C. We have v is strictly psh on Cn×C
if and only if v2 is strictly psh on Cn × C. The Levi hermitian form of v2 is

L(v2)(z, w)(α, β) = |β|2 + |
n∑
j=1

∂φ

∂zj
(z)αj |2 + |β+ < α/a− c > |2 +

|
n∑
j=1

∂ψ

∂zj
(z)αj |2 + |A5β+ < α/a− λ > |2, (z, w) = ((z1, ..., zn), w) ∈ Cn × C, (α, β) =

((α1, ..., αn), β) ∈ Cn × C.
Now L(v2)(z, w)(α, β) = 0 if and only if β = 0 and

|
n∑
j=1

∂φ

∂zj
(z)αj |2 + |β+ < α/a− c > |2 + |

n∑
j=1

∂ψ

∂zj
(z)αj |2 + |A5β+ < α/a− λ > |2 = 0,

(z, w), (α, β) ∈ Cn × C. It follows that, if we define u2(z) = |φ(z)|2 + | < z/a − c >
−d|2 + |ψ(z)|2 + | < z/a − λ > −µ|2, for z ∈ Cn, then u2 is a function of class C∞

on Cn.
Now Observe that v2 is strictly psh on Cn ×C if and only if u2 is strictly psh on Cn.
Case 1. n = 4. In this case observe that u is strictly psh on C4 ×C if and only if the
quantity

(a− c, a− λ, (
∂φ

∂z1
(z),

∂φ

∂z2
(z),

∂φ

∂z3
(z),

∂φ

∂z4
(z)), (

∂ψ

∂z1
(z),

∂ψ

∂z2
(z),

∂ψ

∂z3
(z),

∂ψ

∂z4
(z)))

is a basis of the complex vector space C4, for all z = (z1, z2, z3, z4) ∈ C4.
Case 2. n = 3. The Levi hermitian form of u2 is

L(u2)(z)(α) = |
3∑
j=1

∂φ

∂zj
(z)αj |2 + | < α/a− c > |2 + |

3∑
j=1

∂ψ

∂zj
(z)αj |2 +

| < α/a− λ > |2, for z = (z1, z2, z3) ∈ C3, α = (α1, α2, α3) ∈ C3.
L(u2)(z)(α) = 0 if and only if

< α/a− c >= 0,
< α/a− λ >= 0,
3∑
j=1

∂φ

∂zj
(z)αj = 0, and

3∑
j=1

∂ψ

∂zj
(z)αj = 0.

Therefore u2 is strictly psh on C3 if and only if for all z = (z1, z2, z3) ∈ C3, we can
choose a basis (of the complex vector space C3) consisting of 3 vectors from the set
of vectors
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{a− c, a− λ, ( ∂φ∂z1 (z),
∂φ
∂z2

(z), ∂φ∂z3 (z)), (
∂ψ
∂z1

(z), ∂ψ∂z2 (z),
∂ψ
∂z3

(z))}.
Case 3. n = 2. In this case u2 is strictly psh on C2 if and only if for all z = (z1, z2) ∈
C2, we can choose a basis (consisting by 2 vectors basis of the complex vector space

C2) from the set {a− c, a− λ, ( ∂φ∂z1 (z),
∂φ
∂z2

(z)), ( ∂ψ∂z1 (z),
∂ψ
∂z2

(z))}.
Case 4. n = 1. u2 is strictly sh on C if and only if for all z ∈ C, we have (a− c) ̸= 0,
or (a− λ) ̸= 0, or (∂φ∂z (z) ̸= 0), or (∂ψ∂z (z) ̸= 0).
The proof is now finished.

Moreover, we have

Question 6. Let n,m,N ∈ N\{0} and (A1, B1), ..., (AN , BN ) ∈ C2\{(0, 0)}.
Find all the holomorphic functions g1, f1, ..., gN , fN : Cn → C and all the holo-
morphic (respectively prh) nonconstant functions k1, ..., kN : Cm → C such that
u1, ..., uN are convex and u = (u1 + ... + uN ) is strictly psh on Cn × Cm, where
uj(z, w) = |Ajkj(w)− fj(z)|2 + |Bjkj(w)− gj(z)|2, for (z, w) ∈ Cn ×Cm, 1 ≤ j ≤ N.
In general we prove that this question have applications in the theory of (partial dif-
ferential equations and (convex and strictly psh functions) in several variables), and
therefore for the resolution of certain holomorphic partial differential equations in
complex analysis. Because, in the sequel, we have a relation between partial differen-
tial equations and the subject (convex and strictly psh functions) in complex analysis
and geometry.

Example. Find all the holomorphic functions f, g : C → C, such that
(a) |f2 + f | and |g2 − g| are convex functions on C, and
(b) ψ is strictly psh on C2, where ψ(z1, z2) = |f2(z1) + f(z1)|2 + |g2(z2)− g(z2)|2, for
(z1, z2) ∈ C2.
In this case we solve the holomorphic differential equation
(f2 + f)′′(f2 + f) = γ(2ff ′ + f ′)2, where γ ∈ { s−1

s , 1 / s ∈ N\{0}}, ...
Example. Let N ≥ 2. Find all the holomorphic functions f1, ..., fN : Cn → C, such
that v is convex and strictly psh on Cn ×C. We can see the problem v is convex and
v1 is strictly psh on Cn × C (in this case we apply lemma 1). Where

v(z, w) = |w − f1(z)|2 + ...+ |w − fN (z)|2,

v1(z, w) = |w − f1(z)|2 + ...+ |w − fN (z)|2,
for (z, w) ∈ Cn×C. In this situation, we solve several holomorphic partial differential
equations which characterize the complex structure strictly psh. Finally, we choose
the solution which gives the convexity of v (or conversely).

Question 7. Let n,m, k ∈ N\{0}. Find all the holomorphic functions g1, g2, g3, g4 :
Cn → C and all the holomorphic functions φ1, φ2, φ3, φ4 : Cm → C such that v1 and
v2 are convex and v = (v1 + v2) is strictly convex on Cn × Cm, where

v1(z, w) = |φ1(w)− g1(z)|2k + |φ2(w)− g2(z)|2k,

v2(z, w) = |φ3(w)− g3(z)|2k + |φ4(w)− g4(z)|2k,
for (z, w) ∈ Cn × Cm.
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5. The product of several psh functions and applica-
tions

The main objective of this section is to study the behaviour of the product of several
absolute values of prh functions. Note that it is well known that the product of many
psh functions is not in general psh.

Example. Let v1(z, w) = |w− z||w− 2z|, for (z, w) ∈ C2. Then v1 is not psh on C2.
In the sequel, let D be a domain of Cn, n ∈ N\{0}, N ∈ N\{0, 1} and φ1, ..., φN : D →
C be holomorphic functions. Define u(z, w) =

∏
1≤j≤N

|w − φj(z)|, for (z, w) ∈ D × C.

Find conditions should satisfy N, φ1, ..., φN so that u is psh on D × C.
Now let f0, ..., fN−1 : D → C be holomorphic functions. Put v(z, w) = |wN +
fN−1(z)w

N−1 + ...+ f1(z)w+ f0(z)|, (z, w) ∈ D×C. Characterize N, fN−1, ..., f1, f0
such that v is psh on D × C.

Proposition 5. Let f, g : D → C be two functions, D is a domain of Cn, n ≥ 1. Put
u(z, w) = |w2 + f(z)w + g(z)|, (z, w) ∈ D ×C. Assume that f is continuous and g of
class C2 on D. Then u is psh on D × C if and only if we have one assertion of the
following conditions.
(I) f is holomorphic on D and g is prh on D.

(II) f is prh and not holomorphic and g = f2

4 on D.

Proof. Put v = u2. Assume that u is psh on D × C. Then v is psh on D × C. By
Abidi [2], f is pluriharmonic (prh) on D. Thus v is a function of class C2 on D × C.
Without loss of generality we assume that n = 1. Let (z, w) ∈ D × C.

∂2v

∂w∂w
(z, w) = |2w + f(z)|2.

∂2v

∂z∂w
(z, w) =

∂f

∂z
(z)((w)2 + wf(z) + g(z)) + (2w + f(z))(w

∂f

∂z
(z) +

∂g

∂z
(z)).

We have

| ∂
2v

∂z∂w
(z, w)|2 ≤ ∂2v

∂w∂w
(z, w)

∂2v

∂z∂z
(z, w)

for each (z, w) ∈ C2. Now observe that if w = − f(z)
2 , then ∂2v

∂w∂w (z,−
f(z)
2 ) = 0.

It follows that ∂2v
∂z∂w (z,−

f(z)
2 ) = 0 = ∂f

∂z (z)(g(z) −
f2(z)

4 ), for each z ∈ D. Now since

f is real analytic on D, then ∂f
∂z (z) = 0, for every z ∈ D, or there exists z0 ∈ D, such

that ∂f
∂z (z0) ̸= 0.

Case 1. For each z ∈ D, ∂f∂z (z) = 0.

Then f is holomorphic on D. Since u(z, w) = |(w+ f(z)
2 )2 − f2(z)

4 + g(z)|, for (z, w) ∈
D×C, we consider T (z, w) = (z, w− f(z)

2 ), for (z, w) ∈ D×C. T is a biholomorphism on

D×C. Therefore u oT is psh onD×C. u oT (z, w) = |w2− f2(z)
4 +g(z)|, (z, w) ∈ D×C.

By Abidi [1], the function ( f
2

4 − g) is harmonic on D. Consequently, g is harmonic
on D.
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Case 2. There exists z0 ∈ D such that ∂f
∂z (z0) ̸= 0.

We consider E = {ξ ∈ D / ∂f

∂ξ
(ξ) = 0}. Since ∂f

∂ξ
is antianalytic on D, then E is an

analytic closed subset on D. Therefore, D\E is a domain dense on D. Now since the

function ( f
2

4 − g) is continuous on D and ( f
2

4 − g) = 0 on D\E, then ( f
2

4 − g) = 0
on D.
Let us mention that, if n ≥ 2 and f = (f1+f2) is not holomorphic on an open polydisc
P = P1 × ... × Pn ⊂ D, where f1, f2 : P → C are holomorphic functions, P1, ..., Pn
are discs on C. Since f2 is nonconstant on P, we assume that |∂f2∂z1

| > 0 on P.

Thus | ∂2v
∂z1∂w

|2 ≤ ∂2v
∂z1∂z1

∂2v
∂w∂w on P. Since ∂2v

∂w∂w (z,−
f(z)
2 ) = 0, then ∂2v

∂z1∂w
(z,− f(z)

2 ) =

0, for each z ∈ P. We obtain ∂f2
∂z1

[ f
2

4 − g] = 0 on P. Consequently, g = f2

4 on P.
Now since f is not holomorphic on each not empty open polydisc subset of D, it

follows that g = f2

4 on D. The proof in now complete.

Now we have

Theorem 13. Let f, g, k : Cn → C, n ≥ 1.
Define u(z, w) = |w3 + w2f(z) + wg(z) + k(z)|, for (z, w) ∈ Cn × C.
Assume that f is continuous on Cn and g and k are functions of class C2 on Cn.
Then u is psh on Cn × C if and only if we have the following two cases.
Case 1. f and g are holomorphic functions and k is prh on Cn.
Case 2. f is prh and not holomorphic on Cn.
Put q(w) = 3w2 + 2wf(z) + g(z), for each w ∈ C and every fixed z on Cn.
q have an only one zero on C, for each z fixed on Cn, (therefore g(z) =
f2(z)

3 and k(z) = f3(z)
27 ).

Proof. Put v = u2. Assume that u is psh on Cn × C. Then v is psh on Cn × C. We
can prove that f is prh on Cn, using Abidi [2]. Therefore v is a function of class C2

on Cn × C.
Case 1. The function f is holomorphic on Cn.
w3 + w2f(z) + wg(z) + k(z) = (w + f(z)

3 )3 + w(g(z) − f2(z)
3 ) − f3(z)

27 + k(z), for
(z, w) ∈ Cn × C.
Since psh functions are invariant by any change by holomorphic functions, we can

replace (w + f(z)
3 ) by w, we obtain

w3 + (w − f(z)
3 )(g(z) − f2(z)

3 ) − f3(z)
27 + k(z) = w3 + w(g(z) − f2(z)

3 ) + k1(z), k1 is a
function of class C2 on Cn.
Now using the proof described in [2], we can prove that g is prh on Cn. Suppose that
g is holomorphic on Cn. We can prove that k is prh on Cn. Therefore u = |h|, where
h : Cn ×C → C is prh. Then u is psh on Cn ×C. Suppose that g is not holomorphic
on Cn. Assume that n = 1. We have
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∂2v

∂w∂w
(z, w) = |3w2 + 2wf(z) + g(z)|2.

∂2v

∂w∂z
(z, w) = (2w

∂f

∂z
(z) +

∂g

∂z
(z))(w3 + f(z)w2 + g(z)w + k(z))

+ (3w2 + 2wf(z) + g(z))((w)2
∂f

∂z
(z) + w

∂g

∂z
(z) +

∂k

∂z
(z)).

Since v is psh then we have the inequality

(E) : | ∂
2v

∂w∂z
(z, w)|2 ≤ ∂2v

∂w∂w
(z, w)

∂2v

∂z∂z
(z, w)

for each (z, w) ∈ C2.
Since g is not holomorphic on C, then there exists z0 ∈ C, such that |∂g∂z | > 0 on a
neighborhood of z0.
Let q1(w) = w3 + w2f(z) + wg(z) + k(z) and q2(w) = 3w2 + 2wf(z) + g(z), for
(z, w) ∈ C2.
Note that q1 and q2 are holomorphic polynomials in the variable w ∈ C, for each fixed
z ∈ C. Also q′1 = q2. The holomorphic polynomial q2 has two zeros denoted w1 and
w2 ∈ C.
Assume that w1 ̸= w2. Then w1 and w2 are distinct zeros of the polynomial q1 by the
inequality (E). Since q′1 = q2 then w1 and w2 are two distinct zeros of order 2 of q1.
A contradiction because deg(q1) = 3. Therefore w1 = w2 is a zero of q2 of order 2.
Thus w1 is a zero of q1 of order 3. Then we have q1(w) = (w−w1)

3, for every w ∈ C.
Consequently, f = −3w1 and then q1(w) = (w+ f(z)

3 )3, for each z in a neighborhood

of z0. Then g(z) =
f2(z)

3 and therefore g is holomorphic in a neighborhood of z0. A
contradiction. This step is impossible.
Case 2. The function f is not holomorphic on Cn.
Assume that n = 1. Therefore ∂f

∂z ̸= 0. Put q1(w) = w3 + w2f(z) + wg(z) + k(z),

q2(w) = 3w2+2wf(z)+g(z), q3(w) = 2w ∂f
∂z (z)+

∂g
∂z (z), for (z, w) ∈ C2. Note that q1,

q2 and q3 are holomorphic polynomials in the variable w ∈ C, for every fixed z ∈ C.
We have q′1 = q2. Let z0 ∈ C, such that ∂f

∂z (z) ̸= 0, for every z ∈ V0, where V0 is
an Euclidean open disc in C, z0 ∈ V0. Now q2 have two zeros w0(z) and w1(z) ∈ C.
Suppose that w0(z) = w1(z). From the inequality (E), w0 is a zero of q1. Since q

′
2 = q1,

then w0 is a zero of q1 of order 3. Therefore q1(w) = (w − w0)
3. If for every z ∈ V0,

w0(z) = w0 = w1(z) = w1, then q1(w) = (w−w0(z))
3 = (w+ f(z)

3 )3, in V0 ×C. Then
g = f2

3 and k = f3

27 . If there exists z1 ∈ V0 such that w0(z1) = a ̸= w1(z1) = b. The
condition a and b are zeros of q1 is impossible because deg(q1) = 3. By the inequality
(E), for example we have b is a zero of q1 of order 2 and a is a zero of q3.
Let w2 the second zero of q1 of order 1. Then we have the following relations between
the zeros and the coefficients of the polynomial q3, a + b = −2 f3 , ab = 3g and
2b + w2 = −f. Thus we have the equalities 3a + 3b = 4b + 2w2, 3a = b + 2w2 and
b2 + 2bw2 = g = 1

3ab.
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If b ̸= 0 on a neighborhood of z1., then b+ 2w2 = 1
3a = 3a. Consequently, a = 0.

Therefore g = 0 and k ̸= 0. We have then b = −2 f3 , w2 = f
3 . Thus u defined by,

u(z, w) = |w+2 f3 (z)|
2|w− f

3 (z)|, is psh on C2. Put u1(z, w) = |w+2f(z)|2|w− f(z)|,
for (z, w) ∈ C2. Then u1 is psh on C2. But it is obvious (by theorem 14 below), that
f is holomorphic on C. A contradiction. Consequently, b = 0 on a neighborhood of
z1. Thus w2 = −f and a = 0 (because g = 0 on a neighborhood of z1). Therefore
q2(w) = 3w2 and observe that f = 0. A contradiction. Therefore, the assumption
a ̸= b is impossible. It follows that w0(z) = w1(z), for each z ∈ V0. Therefore

q1(w) = (w − w0)
3, for each w ∈ C. We obtain g = f2

3 and k = f3

27 .
Assume now that n ≥ 2. Obviously we consider in this situation an analogous proof
of the above theorem as well. The proof is now complete.

Recall that for each f : D → C, ψ is psh onD×C if and only if f is pluriharmonic (prh)
on D, where ψ(z, w) = |w − f(z)|N , N ∈ N\{0}, D is a domain of Cn and (z, w) ∈
D × C. Now we prove that there exists a similar characterization of holomorphic
functions. We have

Theorem 14. Let f : Cn → C be continuous. Put u(z, w) = |w + 2f(z)|2|w − f(z)|,
(z, w) ∈ Cn × C. Then u is psh on Cn × C if and only if f is holomorphic on Cn.

Proof. Assume that u is psh on Cn × C. Since u(z, w) = |w3 + 3f(z)w2 − 4f3(z)|,
for each (z, w) ∈ Cn ×C. Then f is prh on Cn, (see [2], page 336). In particular, f is
a function of class C∞ on Cn. If f is holomorphic on Cn, then u is psh on Cn × C.
Assume that f is not holomorphic on Cn. Then f is nonconstant. Without loss of
generality we suppose that n = 1 in all of the rest of the proof.
Case 1. The function g = f is holomorphic on C.
Put v = u2. Then v(z, w) = |w3 + 3g(z)w2 − 4g3(z)|2, (z, w) ∈ C2. Note that v is a
function of class C∞ on C2. We have

∂2v

∂z∂w
(z, w) = 6

∂g

∂z
(z)w[w3 + 3g(z)w2 − 4g3(z)],

∂2v

∂w∂w
(z, w) = |3w2 + 6g(z)w|2,

∂2v

∂z∂z
(z, w) = |3∂g

∂z
(z)w2 − 12(g)2(z)

∂g

∂z
(z)|2.

Suppose that ∂g
∂z = 0 on C. Then g is constant on C. It follows that f is con-

stant on C. A contradiction. Consequently, ∂g
∂z ̸= 0. Since ∂2v

∂z∂z (z, 2g(z)) = 0 and

| ∂
2v

∂z∂w (z, w)|
2 ≤ ∂2v

∂z∂z (z, w)
∂2v
∂w∂w (z, w), for each (z, w) ∈ C2, then ∂2v

∂z∂w (z, 2g(z)) = 0,
for any z ∈ C. Thus g(z)[16(g3)(z)] = 0, for all z ∈ C. It follows that g = 0 on C. A
contradiction. Therefore this case is impossible.
Case 2. The function g = f is not holomorphic on C.
Let v = u2. Then v is a function of class C∞ and psh on C2. Let g1, g2 : C → C be two
harmonic functions and (z, w) ∈ C2. Define F (z, w) = (w − g1(z))

2(w − g1(z))
2(w −

g2(z))(w− g2(z)). Note that F is a C∞ function on C2. Assume that F is psh on C2.
We have
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∂2F
∂w∂w (z, w) = |2(w − g2(z)) + (w − g1(z))|2|w − g1(z)|2.
∂2F
∂z∂w (z, w) = −2∂g1∂z (z)(w − g1(z))

2(w − g2(z))(w − g2(z))− 4∂g1∂z (z)(w − g1(z))(w −
g1(z))(w−g2(z))(w−g2(z))−2∂g2∂z (z)(w−g1(z))(w−g1(z))2(w−g2(z))−2∂g2∂z (z)(w−
g1(z))(w−g1(z))2(w−g2(z))− ∂g2

∂z (z)(w−g1(z))2(w−g1(z))2−2∂g1∂z (z)(w−g1(z))(w−
g2(z))(w − g1(z))

2 − 2∂g1∂z (z)(w − g1(z))(w − g2(z))(w − g1(z))
2.

∂2F
∂z∂z (z, w) = 2∂g1∂z (z)

∂g1
∂z (z)(w − g1(z))

2(w − g2(z))(w − g2(z)) + 4∂g1∂z (z)
∂g1
∂z (z)(w −

g1(z))(w− g1(z))(w− g2(z))(w− g2(z)) + 2∂g1∂z (z)
∂g2
∂z (w− g1(z))(z)(w− g1(z))

2(w−
g2(z)) + 2∂g1∂z (z)

∂g2
∂z (z)(w − g1(z))(w − g1(z))

2(w − g2(z)) + 2∂g1∂z (z)
∂g1
∂z (z)(w −

g1(z))
2(w− g2(z))(w− g2(z)) + 4∂g1∂z (z)

∂g1
∂z (z)(w− g1(z))(w− g1(z))(w− g2(z))(w−

g2(z)) + 2∂g1∂z (z)
∂g2
∂z (z)(w − g1(z))(w − g1(z))

2(w − g2(z))+

2∂g1∂z (z)
∂g2
∂z (z)(w − g1(z))(w − g1(z))

2(w − g2(z)) + 2∂g2∂z (z)
∂g1
∂z (z)(w − g1(z))(w −

g1(z))
2(w − g2(z)) + 2∂g2∂z (z)

∂g1
∂z (z)(w − g1(z))(w − g1(z))

2(w − g2(z))+

2∂g2∂z (z)
∂g1
∂z (z)(w − g1(z))(w − g2(z))(w − g1(z))

2 + ∂g2
∂z (z)

∂g2
∂z (z)(w − g1(z))

2(w −
g1(z))

2 + 2∂g2∂z (z)
∂g1
∂z (z)(w − g1(z))(w − g2(z))(w − g1(z))

2 + 2∂g2∂z (z)
∂g1
∂z (z)(w −

g1(z))(w − g1(z))
2(w − g2(z)).

Let η > 0. Observe that if we replace g1 and g2 respectively by ηg1 and ηg2, the new
function F1, defined by F1(z, w) = |w − ηg1(z)|4|w − ηg2(z)|2 for (z, w) ∈ C2, is also
of class C∞ and psh on C2.
Therefore if we divide by η2 and letting η go to 0, then

lim
η→0+

1

η2
| ∂

2F1

∂z∂w
(z, w)|2 ≤ lim

η→0+
[
1

η2
∂2F1

∂w∂w
(z, w)

∂2F1

∂z∂z
(z, w)].

Let N ∈ N\{0}. Write f = f1 + f2, where f1 and f2 are holomorphic functions on C.
Consider T (z, w) = (z, w + Nf1(z)), (z, w) ∈ C2. T is a biholomorphism of C2.
Therefore u oT is a function of class C∞ and psh on C2.

u oT (z, w) = |w + (N + 2)f1(z)2f2(z)|2|w + (N − 1)f1(z)− f2(z)|.

Define g1 = −(N + 2)f1 + 2f2 and g2 = −(N − 1)f1 + f2 on C.
g1 and g2 are harmonic functions on C.
Thus for w0 = 1 and using the above inequality and letting η go to 0
(we replace g1 and g2 respectively by ηg1 and ηg2).
We obtain
|2∂g1∂z (z) + 4∂g1∂z (z) + 2∂g2∂z (z) + 2∂g2∂z (z) +

∂g2
∂z (z) + 2∂g1∂z (z) + 2∂g1∂z (z)|

2 ≤
9[2∂g1∂z (z)

∂g1
∂z (z) + 4∂g1∂z (z)

∂g1
∂z (z) + 2∂g1∂z (z)

∂g2
∂z (z) + 2∂g1∂z (z)

∂g2
∂z (z) + 2∂g1∂z (z)

∂g1
∂z (z) +

4∂g1∂z (z)
∂g1
∂z (z) + 2∂g1∂z (z)

∂g2
∂z (z) + 2∂g1∂z (z)

∂g2
∂z (z) + 2∂g2∂z (z)

∂g1
∂z (z) + 2∂g2∂z (z)

∂g1
∂z (z) +

∂g2
∂z (z)

∂g2
∂z (z) + 2∂g2∂z (z)

∂g1
∂z (z) +

∂g2
∂z (z)

∂g2
∂z (z) + 2∂g2∂z (z)

∂g1
∂z (z)].

Then |4∂f2∂z (z) + 4(N + 2)∂f1∂z (z) + 2∂f2∂z (z) + 3(N − 1)∂f1∂z (z) + 4∂f2∂z (z) + 2(N +

2)∂f1∂z (z)|
2 ≤

9[4(N+2)2|∂f1∂z (z)|
2+2(N+2)(N−1)|∂f1∂z (z)|

2+2(N−1)(N+2)|∂f1∂z (z)|
2+A(N, z)],
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where A(N, z) is a function defined on N × C and satisfy lim
N→+∞

1

N2
A(N, z) = 0, for

each z fixed on C.
We divide the last above inequality by N2 and letting N go to +∞. We obtain
9× 9|∂f1∂z (z)|

2 ≤ 9× 8|∂f1∂z (z)|
2, for all z ∈ C. Thus ∂f1

∂z (z) = 0, for each z ∈ C.
Consequently, f1 is constant on C. Write f1 = c, c ∈ C. Therefore f = c+ f2 on C. It
follows that g = f is holomorphic on C. A contradiction.
Consequently, this case is impossible. Therefore the above hypothesis is false and f
is holomorphic on C. The converse is obvious.

Remark 6. To compare the above theorem and some results of [2], observe that
we can not write (w + 2f)(w − f) on the form p(w − f), where p is a holomorphic
polynomial on C and f : C → C, f ̸= 0. But if q is the following holomorphic
polynomial on C2, defined by q(ξ, w) = (w+2ξ)(w− ξ), for (ξ, w) ∈ C2, we can write
(w+2f)(w− f) = q(f, w). Denote ψ(ξ, w) = |q(ξ, w)|. Then ψ is not psh on C2. (We
say in this case that |q| characterize holomorphic functions).

Proposition 6. Let f1, g1, f2, g2, f3, g3 : Cn → C be holomorphic functions. Define
u(z, w) = |w−f1(z)−g1(z)||w−f2(z)−g2(z)||w−f3(z)−g3(z)|, for (z, w) ∈ Cn×C.
The following conditions are equivalent
(I) u is psh on Cn × C;
(II) We have only case 1, or case 2.
Case 1. (g1 + g2 + g3) is constant,
(f1 + g1)(f2 + g2) + (f1 + g1)(f3 + g3) + (f2 + g2)(f3 + g3) is holomorphic on Cn and
(f1 + g1)(f2 + g2)(f3 + g3) is prh on Cn.
Case 2. (g1 + g2 + g3) is non constant and
(f1+g1)(f2+g2)+(f1+g1)(f3+g3)+(f2+g2)(f3+g3) =

1
3 (f1+f2+f3+g1+g2+g3)

2

on Cn.

Proof. Obvious by the preceding theorem. In general, we have the following prob-
lems.

Problem 1. Let n,N ∈ N, N ≥ 2, D is a domain of Cn. Find all the analytic functions
g1, ..., gN : D → C, such that u is psh onD×C. Here u(z, w) = |w−g1(z)|...|w−gN (z)|,
for (z, w) ∈ D × C.

Problem 2. Let v(z, w) = |f1(z)− g1(w)|...|fN (z)− gN (w)|, f1, ..., fN : Cn → C and
g1, ..., gN : Cm → C be 2N holomorphic functions, N ≥ 2 and (z, w) ∈ Cn×Cm. Find
all the conditions described by f1, ..., fN , g1, ..., gN such that v is convex on Cn×Cm.

Problem 3. Put v = |g1−φ1|...|gN−φN |, where g1, ..., gN : Cm → C and φ1, ..., φN :
Cn → C be 2N prh functions. Establish all the conditions satisfying by g1, ..., gN ,
φ1, ..., φN such that v is psh on Cn × Cm.

Problem 4. Let a1, ..., aN ∈ Cm, φ1, ..., φN : Cn → C be holomorphic functions,
N ≥ 2. Put v(z, w) = | < w/a1 > −φ1(z)|...| < w/aN > −φN (z)|, (z, w) ∈ Cn × Cm.
Characterize a1, ..., aN , φ1, ..., φN , such that v is psh on Cn × Cm.

Remark 7. Let vN (z, w) = |w − φ1(z)|...|w − φN (z)|, φ1, ..., φN : Cn → C be
holomorphic functions, N ≥ 2, (z, w) ∈ Cn × C.
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Consider the problem (EN ) : vN is psh on Cn × C.
A technical key for the study of the problem (EN ) is a consequence of the classical
cases (E2), (E3) and (E4) which are proved. Note that if |w−φ1||w−φ2| is psh then
for each holomorphic function φ3, the new function |w − φ1||w − φ2||w − φ3| is not
psh on Cn × C if φ1 and φ2 are nonconstant functions and φ3 ̸= φ1, or φ3 ̸= φ2.
The converse. Let u(z, w) = |w−φ1(z)||w−φ2(z)||w−φ3(z)|. Suppose that u is psh
on Cn×C and φj is non constant, 1 ≤ j ≤ 3. Then |w−φ1||w−φ2|, |w−φ1||w−φ3|
and |w−φ2||w−φ3| are not psh if (φ1 +φ2 +φ3) is constant, φ1 ̸= φ2, φ1 ̸= φ3 and
φ2 ̸= φ3.
Recall that u is psh on Cn ×C if and only if (φ1 + φ2 + φ3) is constant and (φ1φ2 +
φ1φ3 +φ2φ3) is constant, or (φ1 +φ2 +φ3) is nonconstant and φ1 = φ2 = φ3 on Cn.

Remark 8. Consider the functions g1(z) = z, g2(z) = −z, g3(z) = iz, g4(z) = −iz,
for z ∈ C. g1, g2, g3 and g4 are holomorphic functions on C. Let (z, w) ∈ C2.
v(z, w) = |w − g1(z)||w − g2(z)||w − g3(z)||w − g4(z)| = |w2 − (z)2||w2 + (z)2| =
|w4 − (z)4|.
v = |h|, where h : C2 → C is prh. Then v is psh on C2. But v1, v2, v3 and v4 are not
psh functions on C2, where

v1(z, w) = |w − g1(z)||w − g2(z)||w − g3(z)|,

v2(z, w) = |w − g1(z)||w − g2(z)||w − g4(z)|,

v3(z, w) = |w − g1(z)||w − g3(z)||w − g4(z)|,

v4(z, w) = |w − g2(z)||w − g3(z)||w − g4(z)|.

Note that a precise study of the plurisubharmonicity of the two functions ψ1 and
ψ2 extends some interesting and sharp results in the framework of a slightly differ-
ent direction. We can study the complex nature of the function ψ3(z, w) = |w −
g1(z)|...|w−gN (z)|, where (N = 2k, or N = 3×2k, k ∈ N, k ≥ 2), g1, ..., gN : Cn → C
are holomorphic functions, ψ1(z, w) =

∏
1≤j≤4

|w − φj(z)|, ψ2(z, w) =
∏

1≤j≤8

|w − φj(z)|

and φj : Cn → C is a holomorphic function, 1 ≤ j ≤ 8.
In the sequel, the next result gives the exact characterization according to algebraic
methods in the theory of holomorphic polynomials and related topics. We have

Theorem 15. Let φ1, φ2, φ3, φ4 : D → C be four holomorphic functions, D is a
domain of C. Put u(z, w) = |w−φ1(z)||w−φ2(z)||w−φ3(z)||w−φ4(z)|, (z, w) ∈ D×C.
Let v = u2. The following conditions are equivalent
(I) u is psh on D × C;
(II) We have the following cases.

Case 1. ∂2v
∂z∂w = 0 on D × C.

Case 2. ∂2v
∂z∂w ̸= 0 on D × C and we have the following two conditions.

Step 1. (

4∑
j=1

φj) is nonconstant and φ1 = φ2 = φ3 = φ4 on D.
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Step 2. (

4∑
j=1

φj) is constant on D and we have the following assertion.

There exists j1, j2, j3, j4, satisfying j1 < j2, j3 < j4, {j1, j2, j3, j4} = {1, 2, 3, 4},
φj1 = φj2 , φj3 = φj4 and the function φj1φj3 is nonconstant on D.

Proof. (I) implies (II). Let (z, w) ∈ D × C. We have
v(z, w) = |w4 − s1(z)w

3 + s2(z)w
2 − s3(z)w + s4(z)|2.

s1 =

4∑
j=1

φj , s2 =
∑

1≤j<k≤4

φjφk, s3 =
∑

1≤j<k<s≤4

φjφkφs, s4 = φ1φ2φ3φ4.

s1, s2, s3 and s4 are holomorphic functions on D.
v is a function of class C∞ and psh on D × C.
∂2v
∂w∂w (z, w) = |4w3 − 3s1(z)w

2 + 2s2(z)w − s3(z)|2 ≥ 0.
∂2v
∂z∂z (z, w) = | − s′1(z)w

3 + s′2(z)w
2 − s′3(z)w + s′4(z)|2 ≥ 0 and ∂2v

∂z∂w (z, w) =

(−3s′1(z)w
2 + 2s′2(z)w − s′3(z))[w

4 − s1(z)w3 + s2(z)w2 − s3(z)w + s4(z)].
Since v is psh on D × C, then we have the inequality

(E) : | ∂
2v

∂z∂w
(z, w)|2 ≤ ∂2v

∂z∂z
(z, w)

∂2v

∂w∂w
(z, w)

for each (z, w) ∈ D × C.
Put

q1(w) = (w − φ1(z))(w − φ2(z))(w − φ3(z))(w − φ4(z)),

q2(w) = −3s′1(z)w
2 + 2s′2(z)w − s′3(z),

q3(w) = 4w3 − 3s1(z)w
2 + 2s2(z)w − s3(z),

q4(w) = −s′1(z)w3 + s′2(z)w
2 − s′3(z)w + s′4(z).

q1, q2, q3 and q4 are holomorphic polynomials on C, for each fixed z on D.
We have q′1 = q3 and q′4 = q2. By the inequality (E) we have then |q1q2| ≤ |q3q4| on
C.
Case 1. q2(w) = 0, for every w ∈ C and for any z ∈ D.

Then s1, s2 and s3 are constant functions on D. Therefore ∂2v
∂z∂w = 0 on D×C. Thus

we have

u(z, w) = |w4 + c1w
3 + c2w

2 + c3w + φ1(z)φ2(z)φ3(z)φ4(z)|

where c1, c2, c3 ∈ C. Therefore u = |h|, when h is a pluriharmonic (prh) function on
D × C. Consequently, u is psh on D × C.
Case 2. q2 ̸= 0 on C.
Now fix z ∈ D, such that [−3s′1(z)w

2 + 2s′2(z)w − s′3(z)] ̸= 0. Since q1q2 ̸= 0 and the
inequality (E), there exists c ∈ C\{0} such that q3q4 = cq1q2 on C.
Step 1. s′1 ̸= 0 on C.
Then c = 4

3 . We have A = {φ1(z), φ2(z), φ3(z), φ4(z)} is the set of all zeros of the
analytic polynomial q1. Assume that the cardinality of A is equal to 4. Observe that
because of the property of the order of multiplicity of zeros of a polynomial and the
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relation q3q4 = 4
3q1q2, we have φ1(z), φ2(z), φ3(z), φ4(z) are distinct zeros of q4.

Therefore deg(q4) ≥ 4. A contradiction. Consequently, the cardinal of the subset A
is less than or equal 3.
Without loss of generality, we assume that φ1 = φ2. Assume that φ1 ̸= φ3. We have
φ1(z) is a zero of q3 and q4. Note that {φ1(z), φ3(z), φ4(z)} is exactly the set of zeros
of the holomorphic polynomial q4. Let w1 and w2 the two zeros of the polynomial q2.
Indeed, for instance, using possible relations between all the coefficients of a holomor-
phic polynomial and its zeros, we have then

w1 + w2 =
2

3

s′2(z)

s′1(z)
=

2

3
(φ1(z) + φ3(z) + φ4(z)).

w1w2 =
s′3(z)

3s′1(z)
=

1

3
(φ1(z)φ3(z) + φ1(z)φ4(z) + φ3(z)φ4(z)).

Assume that φ1(z), φ3(z) and φ4(z) are zeros of q4 of order 1. Then w1 and w2 are
not zeros of q4.
w1 and w2 are zeros of q3.
Therefore φ1(z) + w1 + w2 = 3

4s1(z) =
3
4 (2φ1(z) + φ3(z) + φ4(z)). Then w1 + w2 =

2
3 (φ1(z) + φ3(z) + φ4(z)).
w1 + w2 = 1

2φ1(z) +
3
4 (φ3(z) + φ4(z)). Thus φ3(z) + φ4(z) = 2φ1(z) and then

w1 + w2 = 2φ1(z).

w1w2 =
s′3(z)

3s′1(z)
=

1

3
(φ1(z)φ3(z) + φ1(z)φ4(z) + φ3(z)φ4(z))

=
1

3
[2(φ1(z))

2 + φ3(z)φ4(z)].

We have also

w1φ1(z) + w2φ1(z) + w1w2 =
2s2(z)

4
=
s2(z)

2
=

1

2
(φ2

1(z) + 2φ1(z)φ3(z) + 2φ1(z)φ4(z) + φ3(z)φ4(z)) =
1

2
(5φ2

1(z) + φ3(z)φ4(z))

= (w1 + w2)φ1 + w1w2.

Therefore,

2φ2
1(z) + w1w2 =

1

2
(5φ2

1(z) + φ3(z)φ4(z)).

w1w2 =
1

2
φ2
1(z) +

1

2
φ3(z)φ4(z) =

1

3
(2φ2

1(z) + φ3(z)φ4(z)).

Thus 3φ2
1(z) + 3φ3(z)φ4(z) = 4φ2

1(z) + 2φ3(z)φ4(z). Then φ3(z)φ4(z) = φ2
1(z). Since

φ3 + φ4(z) = 2φ1(z). Thus φ3(z) = φ4(z) = φ1(z). A contradiction.
Assume now that φ1(z), φ3(z) and φ4(z) are not zeros of q4 of order 1. Recall that
{φ1(z), φ3(z), φ4(z)} is exactly the set of zeros of q4. Since φ1(z) ̸= φ3(z), then
φ1(z) = φ4(z).
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Because if φ1(z) ̸= φ4(z), then φ3(z) = φ4(z). Since φ1(z) = φ2(z) ̸= φ3(z), then
u(ξ, w) = |w − φ1(ξ)|2|w − φ3(ξ)|2, for each (ξ, w) ∈ G = D(z,R) × C, where R > 0
satisfying D(z,R) ⊂ D. Since u is a function of class C∞ and psh on the domain G,
we can prove that we have the condition φ1 = φ3 on D(z,R), or (φ1 + φ3) =

s1
2 is

constant on D(z,R).
Now since s1 is holomorphic nonconstant on D, then s1 is nonconstant on the open
Euclidean disc D(z,R). It follows that φ1 = φ3 on D(z,R). A contradiction, because
φ1(z) ̸= φ3(z). Consequently, φ1(z) = φ4(z). Therefore φ1(z) is a zero of q2 of order
1. Assume that φ1(z) = w1. We have φ1(z) = φ2(z) = φ4(z), φ1(z) ̸= φ3(z). It
follows that φ1(z) is a zero of q3 of order 2.
φ3(z) is not a zero of q3.
Now we use the classical relations between all the coefficients of a polynomial and

its zeros, we have φ1(z) + w2 =
2s′2(z)
3s′1(z)

= 2
3 (2φ1(z) + φ3(z)). Also 2φ1(z) + w2 =

3
4 (3φ1(z) + φ3(z)) and φ1(z) + w2 = 2

3 (2φ1(z) + φ3(z)). Then φ1(z) +
2
3 (2φ1(z) +

φ3(z)) =
3
4 (3φ1(z) +φ3(z)). Thus, 12φ1(z) + 8(2φ1(z) +φ3(z)) = 9(3φ1(z) +φ3(z)).

Consequently, φ1(z) = φ3(z). A contradiction. It follows that the assumption
φ1(z) ̸= φ3(z) is impossible. Consequently, φ1(z) = φ2(z) = φ3(z).
Now assume that φ4(z) ̸= φ1(z). Let w0 the zero of q2, w0 ̸= φ1(z). Note that φ1(z)
is a zero of the polynomial q2 because φ1(z) is a zero of q4 of order 2.
φ1(z) is a zero of q1 of order 3.
Therefore φ1(z) is a zero of q3 of order 2. Consequently, w0 is a zero of q3 of order 1.

We have w0 + φ1(z) =
2s′2(z)
3s′1(z)

= 2
3 (2φ1(z) + φ4(z)). Also 2φ1(z) + w0 = 3

4s1(z) =
3
4 (3φ1(z)+φ4(z)). Therefore, we have φ1(z)+

2
3 (2φ1(z)+φ4(z)) =

3
4 (3φ1(z)+φ4(z)).

Thus φ1(z) = φ4(z). A contradiction. Consequently, the assumption φ1(z) ̸= φ4(z)
is impossible. We conclude that φ1 = φ2 = φ3 = φ4 on D.
Step 2. s1 is constant on D.

Let (z, w) ∈ D × C, such that ∂2v
∂z∂w (z, w) ̸= 0. Assume that s′2(z) ̸= 0. We have

q1q2 = cq3q4, where c = 1
2 . Let w0 =

s′3(z)

2s′2(z)
be the only zero of q2. Note that

{φ1(z), φ2(z), φ3(z), φ4(z)} is the set of zeros of the holomorphic polynomial q1 on C.
If for example φ1(z) is a zero of q1 of order 1. Then φ1(z) is not a zero of q3 = q′1.
Since now q1q2 = 1

2q3q4, then φ1(z) is a zero of q4.
Now if φ1(z) is a zero of q1 of order 2. Then φ1(z) is a zero of q3 = q′1 of order 1. By
the fundamental relation q1q2 = 1

2q3q4, we obtain φ1(z) is a zero of q4. We conclude
that the set of zeros of q4 is {φ1(z), φ2(z), φ3(z), φ4(z)}.
Since now deg(q4) = 2 (because s′2(z) ̸= 0), then there exists j1, j2, j3, j4,
{j1, j2, j3, j4} = {1, 2, 3, 4}, such that φj1 = φj2 = φj3 ̸= φj4 on D, or φj1 = φj2
and φj3 = φj4 on D.
Suppose that we have φ1 = φ2 = φ3 ̸= φ4. Then φ1(z) is a zero of q1 of order 3. φ1(z)
is a zero of q3 of order 2.
w0 is a zero of q3 of order 1.
φ4(z) is not a zero of q3.
We have

2φ1(z) + w0 =
3

4
s1(z) =

3

4
(3φ1(z) + φ4(z)).
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w0 =
s′3(z)

2s′2(z)
=

1

2
(φ1(z) + φ4(z)).

Thus 2φ1(z) +
1
2 (φ1(z) + φ4(z)) =

3
4 (3φ1(z) + φ4(z)). Therefore

5
2φ1(z) +

1
2φ4(z) =

9
4φ1(z) +

3
4φ4(z). Then φ1(z) = φ4(z). A contradiction. Consequently, the above

assumption is impossible. It follows that φj1 = φj2 and φj3 = φj4 onD, (for example).
We suppose without loss of generality that j1 < j2 and j3 < j4. Then u(z, w) =
|w − φj1(z)|2|w − φj3(z)|2, for (z, w) ∈ D × C.
Actually, we observe that φj1 = φj3 on D, or (φj1 + φj3) is constant on D. Suppose
that φj1 = φj3 on D. Then φ1 = φ2 = φ3 = φ4 on D. Since s′1 = 0 on D, then φ1 is

constant on D. Thus ∂2v
∂z∂w = 0 on D×C. A contradiction. Consequently, (φj1 +φj3)

is constant on D and observe that the product φj1φj3 is nonconstant on D.

Assume that s′2 = 0 on D. Then s′3 ̸= 0 on D, because ∂2v
∂z∂w ̸= 0 on D×C. The set of

zeros of q4 is {φ1(z), φ2(z), φ3(z), φ4(z)}. Since deg(q4) = 1, then φ1 = φ2 = φ3 = φ4

on D.
s′1 = 0 on D implies that φ1 is constant on D. Therefore, ∂2v

∂z∂w = 0 on D × C. It
follows that this case is impossible.
(II) implies (I). Obvious.

Remark 9 . Let F : C2 → C be holomorphic, a1, a2, a3, a4 ∈ C4 and b1, b2, b3, b4 ∈ C.
Define

v(z, w) = |[w −< F (z)/a1 >− b1][w −< F (z)/a2 >− b2] ·
·[w −< F (z)/a3 >− b3][w −< F (z)/a4 >− b4]|,

for (z, w) ∈ C2 × C. We can characterize all the conditions on a1, a2, a3, a4, b1, b2,
b3, b4, which ensure technical hypothesis for the plurisubharmonicity of v. Indeed, we
have the following of various behaviour.

Theorem 16. Let φ1, φ2, φ3, φ4 : D → C be holomorphic functions, D is a domain
of Cn, n ≥ 1.
Put u(z, w) = |w − φ1(z)||w − φ2(z)||w − φ3(z)||w − φ4(z)|, (z, w) ∈ D × C.

Let v = u2, s1 =

4∑
j=1

φj , s2 =
∑

1≤j<k≤4

φjφk, s3 =
∑

1≤j<k<s≤4

φjφkφs, s4 =

φ1φ2φ3φ4, (s1, s2, s3, s4 are holomorphic functions on D).
The following assertions are equivalent
(I) u (respectively v) is psh on D × C;
(II) We have the following three cases.
Case 1. s1, s2 and s3 are constant on D.
Case 2. s1 is nonconstant on D and φ1 = φ2 = φ3 = φ4 on D.
Case 3. s1 is constant on D, s2 is nonconstant on D and there exits j1, j2, j3, j4,
{j1, j2, j3, j4} = {1, 2, 3, 4}, j1 < j2, j3 < j4, with φj1 = φj2 and φj3 = φj4 on D.

Proof. Obvious by the above theorem.

Example. Let a1, a2, a3, a4 ∈ C2, A1, A2, A3, A4 ∈ Cm and F : Cn → C2 be a
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holomorphic function, n,m ≥ 1. Define

ψ(z, w) = | < w/A1 > −< F (z)/a1 >|| < w/A2 > −< F (z)/a2 >| ·
·| < w/A3 > −< F (z)/a3 >|| < w/A4 > −< F (z)/a4 >|,

for (z, w) ∈ Cn × Cm.
In a slightly different direction, we can show all the conditions formulated by the
constants a1, a2, a3, a4, A1, A2, A3, A4, which characterize the plurisubharmonicity
of ψ.

Example. Let N ≥ 2 and p(ξ1, ..., ξN , w) = (w−ξ1)...(w−ξN ), for (ξ1, ..., ξN ) ∈ CN ,
w ∈ C. Define F (ξ1, ..., ξN , w) = |p(ξ1, ..., ξN , w)|. Then for each Euclidean open ball
B(a,R) ⊂ CN , (a ∈ CN , R > 0), the function F is not psh on B(a,R)× C.

Remark 10. (I) Let g1(z) = z2, g2(z) = −z2, g3(z) = iz2, g4(z) = −iz2, z ∈ C. g1,
g2, g3 and g4 are holomorphic functions on C. Let

u1(z, w) = |w − g1(z)||w − g2(z)||w − g3(z)|,

u2(z, w) = |w − g1(z)||w − g2(z)||w − g4(z)|,

u3(z, w) = |w − g1(z)||w − g3(z)||w − g4(z)|,

u4(z, w) = |w − g2(z)||w − g3(z)||w − g4(z)|,

u(z, w) = |w − g1(z)||w − g2(z)||w − g3(z)||w − g4(z)|, (z, w) ∈ C2.

We have u1, u2, u3 and u4 are not psh functions on C2. But u is psh on C2.
(II) g1(z) = g2(z) = z + 1, g3(z) = g4(z) = −z + 1, z ∈ C.
g1, g2, g3 and g4 are holomorphic functions on C.
(g1 + g2 + g3 + g4) is constant on C.
(g1g2 + g1g3 + g1g4 + g2g3 + g2g4 + g3g4) is non constant on C.
Let (z, w) ∈ C2. Put u(z, w) = |w−g1(z)||w−g2(z)||w−g3(z)||w−g4(z)| = |w4−4w3+
[6−2(z)2]w2−4w[1−(z)2]+[1−(z)2]2|. Observe that (g1g2g3+g1g2g4+g1g3g4+g2g3g4)
is nonconstant on C. But u is psh on C2, because

u(z, w) = |w − 1− z|2|w − 1 + z|2 = |(w − 1)2 − (z)2|2 = |h|2,

where h is a prh function on C2.

Question 8. Let N1, ..., Nk, s1,m1, ..., st,mt ∈ N\{0}, k, t ≥ 1 and g1, ..., gk,
θ1, ..., θt : Cn → C be prh functions. Put

u(z, w) = |w − g1(z)|N1 ...|w − gk(z)|Nk |ws1 − θm1
1 (z)|...|wst − θmt

t (z)|,

for (z, w) ∈ Cn ×C. Find conditions g1, ..., gk, θ1, ..., θt should satisfy so that u is psh
on Cn × C.

Question 9. Let N ∈ N\{0, 1} and A0, ..., AN−1 ∈ C. Define v(z, w) = |wN +

AN−1w
N−1z + ... + A1wzN−1 + A0zN |. Find all conditions on N, A0, ..., AN−1 such

that v is psh on C2.
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Conclude that we can characterize all the holomorphic polynomials q on C2, such that
F is psh on C2, where F (z, w) = |q(z, w)| for (z, w) ∈ C2.
Let p be a holomorphic polynomial on C2. Put F1(z, w) = |p(z, w)| and F2(z, w) =
|p(z, w)|, for (z, w) ∈ C2. Moreover, thanks to the above characterization, we can
prove that F1 is psh on C2 if and only if F2 is psh on C2.
In the following question, we recall some properties and sharp results in the framework
of complex analysis of the appeared function θ, defined by θ(z, w) = (w + z)N , for
N ∈ N\{0, 1} and (z, w) ∈ C2.

Question 10. Let N ∈ N\{0, 1}, A ∈ C\{0}, (B1, ..., Bn) ∈ Cn\{0} and s ∈ [1,+∞[.
Let g, f0, ..., fN−2 : D → C be continuous functions, where D is a domain on Cn.
Define ψ(z, w) = |(Aw + B1z1 + ...+ Bnzn)

N + g(z)|s and φ(z, w) = |(Aw + B1z1 +
...+Bnzn)

N +fN−2(z)w
N−2+ ...+f0(z)|, for (z, w) = (z1, ..., zn, w) ∈ D×C. Assume

that ψ is psh on D × C. Prove that g = 0 on D. Suppose that φ is psh on D × C.
Prove that fN−2 = ... = f0 = 0.
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Abstract: In the present paper, based on a separation condition on
the spectrum of a self-adjoint operator T0 on a separable Hilbert space H,
we prove that the system of root vectors of the perturbed operator T (ε)
given by

T (ε) := T0 + εT1 + ε2T2 + . . .+ εkTk + . . .

is complete and forms a basis with parentheses in H, for small enough
|ε|. Here ε ∈ C and T1, T2, . . . are linear operators on H having the
same domain D ⊃ D(T0) and satisfying a specific growing inequality. The
obtained results are of importance for applications to a non-self-adjoint
Gribov operator in Bargmann space and to a non-self-adjoint problem
deduced from a perturbation method for sound radiation.
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1. Introduction

For non-self-adjoint perturbations of a self-adjoint operator, the crucial problem is
the study of the spectral properties. For instance, the existence of a basis (possibly
with parentheses) of root vectors is an important property. In order to prove the
existence of such basis, several authors studied the comportment of the eigenvalues
and established different conditions in terms of the spectrum (see [3]-[5], [8]-[13], [16]-
[20], [22], [24] and [25]). Indeed, many non-self-adjoint ordinary differential operators
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can be considered as a perturbation T+B of a leading self-adjoint component T by its
subordinate B. In [22], A. S. Markus claimed that G = T+B admits an unconditional
basis with parentheses of root vectors if B is p-subordinate to T and the eigenvalue-
counting function of T satisfy a certain asymptotic growth condition. One might ask
whether we can construct a basis if the p-subordinate condition is relaxed. A positive
answer is given by A. A. Shkalikov [24]. He assumed that T is positive, self-adjoint
with discrete spectrum and its eigenvalues (µn)n∈N∗ are not condense, i.e.,

µn+q − µn ≥ 1, for some q ∈ N∗. (1.1)

Further, he required that B verify

∥Bψn∥ ≤ b, (1.2)

where (ψn)n∈N∗ is an orthonormal system of eigenvectors associated to the eigenval-
ues (µn)n∈N∗ of T . Under these assumptions, he established an asymptotic relation
between the eigenvalue-counting functions of G and T and he claimed that the system
of root vectors of G forms a basis with parentheses in H. More precisely, he proved
the existence of a spectral condition

n(r,G)− n(r, T ) = O(1),

under which he guarantees the existence of a basis with parentheses of root vectors
(see [24, Theorem 2]).
Here n(r, T ) (respectively, n(r,G)) denotes the sum of multiplicities of all eigenvalues
of T (respectively, G) contained in the disk {λ ∈ C such that |λ| ≤ r}.

Notice that in classical perturbation theorems for bases or Riesz bases, the authors
always required that the eigenvalues of T are with multiplicity one (for instance, see
[6], [7, Theorem XIX.2.7] and [21, Theorem V.4.15a]). Although, by assuming that
the eigenvalues are with finite multiplicity, several authors such as A. Jeribi [18, 19],
A. S. Markus [22], A. A. Shkalikov [24] and C. Wyss [25] proved the existence of bases
with parentheses or unconditional bases with parentheses.
It is interesting to note here that the concept of bases (or unconditional bases) with
parentheses is a natural generalization of the one of the bases (or Riesz bases).
Furthermore, [24, Theorem 2] ameliorates the result stated in [22]. Indeed, A. A.
Shkalikov obtained a basis with parentheses under Eqs (1.1) and (1.2) which are
much weaker.

Besides, in many situations, this result presents an important tool in the determining
of the existence of bases. Among this direction we had the idea to exploit this outcome
to study the Gribov operator (see [1], [2], [12] and [15]) originated from Reggeon field
theory and constructed as a polynomial in the standard annihilation operator A and
the standard creation operator A∗:

(A∗A)3 + εA∗(A+A∗)A+ ε2(A∗A)3u2 + ...+ εk(A∗A)3uk + ...,

where ε ∈ C and (uk)k∈N is a strictly decreasing sequence with strictly positive terms
such that u0 = 1 and u1 = 1

2 ; while the expressions of the operators A and A∗ are
given by:
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A : D(A) ⊂ B −→ B

φ −→ Aφ(z) =
dφ

dz
(z)

D(A) = {φ ∈ B such that Aφ ∈ B}

and  A∗ : D(A∗) ⊂ B −→ B
φ −→ A∗φ(z) = zφ(z)

D(A∗) = {φ ∈ B such that A∗φ ∈ B},

B =

{
φ : C −→ C entire such that

∫
C
e−|z|2 |φ(z)|2dzdz̄ <∞

}
.

Since {φn := zn
√
n!
}n≥1 is an orthonormal basis of eigenvectors of (A∗A)3 associated

to the eigenvalues {n3}n≥1, then we have∥∥∥∥∥
(
εA∗(A+A∗)A+

∞∑
k=2

εk(A∗A)3uk

)
φn

∥∥∥∥∥ ≤ |ε|
1− |ε|

(1 + 2
√
2)(1 + n3), for |ε| < 1.

(1.3)
It is clear here that Eq. (1.3) does not verify Eq. (1.2). Consequently,
[24, Theorem 2] can not be applied.

Further, if we consider the following integro-differential operator initially motivated
by P. J. T. Filippi et al. [14] and deduced from a perturbation method for sound
radiation (see also [8], [11] and [13]):

(I + εK)
−1 d

4φ

dx4
+ ε (I + εK)

−1
K

(
d4

dx4
−
(
d4

dx4

) 1
2

)
φ = λ(ε)φ,

where K is the integral operator with kernel the Hankel function of the first kind and
order 0 and ε is a complex number such that |ε| < 1

∥K∥ ; we obtain∥∥∥∥∥
∞∑
k=1

(−1)kεkKk d
2φn

dx2

∥∥∥∥∥ ≤ |ε|
1− |ε|∥K∥

∥K∥ κn4, for |ε| < 1

∥K∥
.

Here (φn)n≥1 denotes the system of eigenvectors of the operator
d4

dx4 : D( d4

dx4 ) ⊂ L2
(
]− L,L[

)
−→ L2

(
]− L,L[

)
φ −→ d4φ

dx4

D( d4

dx4 ) = H2
0

(
]− L,L[

)
∩H4

(
]− L,L[

)
associated to the eigenvalues (λn = κn4)n≥1 (κ > 0). It is easy to check that (φn)n≥1

forms an orthonormal basis of L2
(
]− L,L[

)
.

Hence, Eq. (1.2) is not fulfilled and consequently [24, Theorem 2] can not be applied.
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Among this direction and in order to overcome these bumps, we had the idea to extend
[24, Theorem 2] to an abstract setting. More precisely, we continue the analysis
started in [9] and we focus on the property of bases with parentheses of the analytic
operator

T (ε) := T0 + εT1 + ε2T2 + . . .+ εkTk + . . . , (1.4)

where ε ∈ C, T0 is a closed linear densely defined operator on a separable Hilbert
space H with domain D(T0) while T1, T2, . . . are linear operators on H having the
same domain D ⊃ D(T0) and satisfying

∥Tkφ∥ ≤ qk−1(a∥φ∥+ b∥T0φ∥β∥φ∥1−β)

for all φ ∈ D(T0) and for all k ≥ 1, where β ∈]0, 12 [ and a, b and q > 0.
We would like to mention here that the perturbed operator (1.4) was introduced by
B. Sz. Nagy in [23] and considered later in some valuable papers such as [3], [5] and
[8]-[13].
Furthermore, it is interesting to note here that in [9] we derived a precise description
to the localization of the spectrum of the perturbed operator (1.4) and we proved
an asymptotic relation between the eigenvalue-counting functions of T0 and T (ε). In
other words, we claimed that the difference between the eigenvalue-counting functions
of T0 and T (ε) is bounded by a constant. This generalization is of great importance.
In fact, it allows us to control the jump of the eigenvalue-counting function of some
analytic operators where the criteria of A. A. Shkalikov [24] can not be applied.

Now, based on the asymptotic relation between the eigenvalue-counting functions of
T0 and T (ε) developed in [9], can we construct a basis with parentheses of root vectors
of the perturbed operator T (ε)? Indeed, in view of [9, P roposition 3.1] the spectrum
of T (ε) is discrete for |ε| < 1

q+βb . So, we consider En = ∪m≥1N(T (ε)− λn(ε))
m the

root linear finite dimensional subspace whose dimension is called algebraic multiplicity
of the eigenvalue λn(ε). These subspaces are linearly independent and vectors in En

are called root vectors of T (ε). Following some ideas due to A. A. Shkalikov [24], we
prove first that the system of root vectors of the perturbed operator T (ε) is complete.
Notice that our result improves Theorem 4.3 stated in [12]. In fact, not only the
assumptions used in [12] are relaxed but also the values that takes |ε| are greater
than the one considered in [12, Theorem 4.3]. Furthermore, it can be considered as
an extension of [24, Lemma 7] to an analytic operator.

Having obtained this aforementioned result, one might seek if it forms a basis with
parentheses. Actually, using the spectral condition developed in [9], we prove that for
|ε| enough small, the system of root vectors of T (ε) forms a basis with parentheses in
H.
We point out here that our result ameliorates [13, Theorem 3.4] since they established
the existence of Riesz basis using a spectral analysis method based on the fact that
the eigenvalues of T0 are with multiplicity one; while we investigate the existence of
basis with parentheses by supposing that the eigenvalues are with finite multiplicity.
Further, our result might be regarded as an extension of [24, Theorem 2]. In fact, we
guarantee the existence of basis with parentheses for some analytic operators where
Eq. (1.2) considered by A. A. Shkalikov in [24] is not verified.
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The present paper consists of four sections: In section 2, we introduce some basic
definitions and auxiliary results connected to the main body of the paper. Section
3 is devoted to prove the completeness of the system of root vectors of T (ε) and
the existence of basis with parentheses of root vectors. In the last section, we apply
the obtained results to a Gribov operator in Bargmann space and to a problem of
radiation of a vibrating structure in a light fluid.

2. Preliminaries

In order to state our main results, let us begin with some definitions and preliminary
results that we will need in the sequel. For this, let us consider a Hilbert space H.

Definition 2.1. [22, p. 16] Let A be a linear operator such that its resolvent set,
ρ(A), is not empty. An operator B is said to be A-compact if its domain D(B)
contains D(A) and if the operator BRλ(A) is compact, where λ ∈ ρ(A). ♢

Definition 2.2. Let K be a compact operator on H. K is said to belong to
the Carleman-class Cp (p > 0), if the series

∑∞
n=1[sn(

√
K)]p converges, where

sn(
√
K), n = 1, 2, . . . , are the eigenvalues of the operator

√
K∗K. ♢

Definition 2.3. [22, p. 18] An operator K is said to be of finite order if it belongs
to the Carleman-class Cp (p > 0). ♢

Markus’s theorem is formulated as:

Theorem 2.1. [22, Theorem 4.3] Let A be a normal operator whose resolvent belongs
to the Carleman-class Cp (p > 0), and whose spectrum lies on a finite number of rays
arg λ = αk(k = 1, . . . , n). If B is A-compact, then the operator G = A + B has a
compact resolvent and the system of its root vectors is complete in H. ♢

Lemma 2.1. [24, Lemma 8] Let F (λ) be a scalar meromorphic function with finite
order in an angle Λα = {λ : | arg λ| < α} and the poles of F (λ) in this angle lie
inside the strip |Imλ| ≤ h, h > 0. Suppose that |F (λ)| ≤ M on the half-lines
Imλ = ±(h + δ), δ > 0, inside the angle Λα. Then the following estimate holds
inside the strip |Imλ| ≤ h+ δ as Reλ→ ∞ outside an exceptional set of disks D:

ln |F (λ)| ≤ C

(
M + sup

|t−r|≤rη
(n(t+ 1, F )− n(t, F ))

)
, r = |λ|

where n(t, F ) is the pole-counting function for F and the number η can be taken
arbitrarily small. For any d > 0, the exceptional set of disks D can be chosen in
such a way that the total sum of the radii of the disks from D inside the rectangle
|Imλ| ≤ h, t ≤ Reλ ≤ t+1 does not exceed d for any sufficiently large t. The constant
C depends on δ, η, and d (the dependence on d is proportional to ln d) but does not
depend on r and F . ♢

In the remaining part of this section, we introduce the concept of basis (possibly with
parentheses).
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Definition 2.4. [22, p. 25] A sequence {Vn}∞n=1 of subspaces of a Hilbert space H is
called a basis (of subspaces), if any vector belonging to H can be uniquely represented
as a series

φ =

∞∑
n=1

φn such that φn ∈ Vn. ♢

Definition 2.5. [22, p. 27] A linearly independent sequence {φn}∞n=1 is called a basis
with parentheses for a Hilbert space H, if there exists a sequence of positive integers
(nk)k such that n0 = 1 and the subspaces spanned by the vectors {φn}nk−1

nk−1
form a

basis for H. ♢

Theorem 2.2. [22, Lemma 6.1] Let {Pk}∞k=1 be a sequence of disjoint projections
(i.e.,
PjPk = δjkPk). If the sequence of subspaces Rk = ImPk (k ∈ N∗) is complete in H,
then it is a basis for H if and only if

sup
n

∥∥∥∥∥
n∑

k=1

Pk

∥∥∥∥∥ <∞. ♢

3. Main results

Let H be a separable Hilbert space and T0 be a linear operator on H verifying the
following hypotheses:

(H1) T0 is self-adjoint, positive and with domain D(T0) in H.

(H2) The resolvent of T0 is compact and its eigenvalues (λn)n verify

λn+p − λn ≥ 1 for some p ∈ N∗.

Let T1, T2, T3, . . . be linear operators on H having the same domain D and satisfying
the hypothesis:

(H3) D ⊃ D(T0) and there exist a, b, q > 0 and β ∈]0, 12 [ such that for all k ≥ 1

∥Tkφ∥ ≤ qk−1(a∥φ∥+ b∥T0φ∥β∥φ∥1−β) for all φ ∈ D(T0).

Let ε be a non zero complex number and consider the eigenvalue problem{
T0φ+ εT1φ+ ε2T2φ+ · · ·+ εkTkφ+ · · · = λφ
φ ∈ D(T0).

Before stating our main results, we shall recall the following theorem.

Theorem 3.1. [12, Theorem 2.1] Suppose that hypotheses (H1) and (H3) hold.
Then for |ε| < q−1, the series

∑
i≥0 ε

iTiφ converges for all φ ∈ D(T0). If T (ε)φ
denotes its limit, then T (ε) is a linear operator with domain D(T0) and for |ε| <
(q + βb)−1, the operator T (ε) is closed. ♢
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3.1. Completeness of the system of root vectors of T (ε)

The aim of this part is to establish the completeness of the system of root vectors of
the perturbed operator T (ε) in H.
To this end, we need first to recall the following proposition developed in [9].

Taking into account Theorem 3.1, we denote by B(ε) :=
∑∞

k=1 ε
kTk.

Proposition 3.1. [9, P roposition 3.1] Assume that hypotheses (H1)-(H3) hold.
Then, for |ε| < 1

q+βb , the operator B(ε) is T0-compact. Moreover, the operator T (ε)
is with compact resolvent. ♢

Now, we are ready to state our result.

Theorem 3.2. Assume that hypotheses (H1)-(H3) are verified. Then, for |ε| < 1
q+βb ,

the system of root vectors of the operator T (ε) is complete in H. ♢

Remark 3.1.

(i) Theorem 3.2 extends [24, Lemma 7] to an analytic operator instead of the sum
of two operators. Besides, we have proved that the system of root vectors of
T (ε) is complete even if the criteria of A. A. Shkalikov (Eq. (1.2)) is not satisfied.

(ii) Theorem 3.2 ameliorates Theorem 4.3 stated in [12]. Indeed, in order to guar-
antee that the operator B(ε) is T0-compact, the authors in [12] assumed that Tk
is T0-compact for all k ≥ 1; whereas Proposition 3.1 ensure this result without
this assumption. On the other hand, the values of |ε| for which the system of
root vectors of the operator T (ε) is complete in H, are greater than the one
considered in [12, Theorem 4.3]. ♢

Proof of Theoerm 3.2.

In view of hypotheses (H1) and (H2), we have T0 is self-adjoint with compact resol-
vent. Further, it follows from hypothesis (H2) that

λn+1 − λ1 = λn+1 − λ(n+1)−p︸ ︷︷ ︸
≥1

+λ(n+1)−p − λ(n+1)−2p︸ ︷︷ ︸
≥1

+ . . .

+λ1+p − λ(n+1)−n
p p(=1)︸ ︷︷ ︸

≥1

≥ n

p
. (3.1)

Thus, Eq. (3.1) yields λn ≥ n−1
p + λ1. So, there exists P > 1 such that the series∑

n≥1(
1
λn

)P is convergent. Consequently, the resolvent of T0 belongs to the Carleman-
class CP . Moreover, in virtue of Proposition 3.1, the operator B(ε) is T0-compact for
|ε| < 1

q+βb . Consequently, Theorem 2.1 implies that for |ε| < 1
q+βb , the system of root

vectors of the operator T (ε) is complete in H.
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Corollary 3.1. Suppose that hypotheses (H1) and (H3) are verified. Moreover,
assume that

λ1−α
n+p − λ1−α

n ≥ 1, where 0 ≤ α < 1. (3.2)

Hence, for β ∈]0, 1 + α−1
2 [ and |ε| < 1

q+βb the system of root vectors of the operator

T (ε) is complete in H. ♢

Proof. It follows from Eq. (3.2) that λ1−α
n ≥ n−1

p + λ1−α
1 . Hence, there exists

P > 1 − α such that the series
∑

n≥1(
1
λn

)P is convergent. As T0 is self-adjoint
with compact resolvent, then the resolvent of T0 belongs to the Carleman-class CP .
Further, due to [9, Corollary 3.1] the operator B(ε) is T0-compact for |ε| < 1

q+βb .
Hence, according to Theorem 2.1, we deduce that the system of root vectors of the
operator T (ε) is complete in H for |ε| < 1

q+βb .

3.2. Basis with parentheses of root vectors of T (ε)

In Theorem 3.2, we have proved that the system of root vectors of the operator T (ε)
is complete. The question that occurs is whether this system forms a basis in H. In
other words, if

Pn,ε =

∫
∂∆n

(λ− T (ε))−1dλ

denotes the spectral projection corresponding to the spectrum of T (ε) inside ∆n where
∆n is a bounded closed isolated part of the spectrum of T (ε), then the series

∑
n Pn,εf

is convergent and its sum is it f .
To answer to this question, we shall prove some preliminary results.

Lemma 3.1. Let τ be an arbitrary positive number. If |Imλ| ≥ τ , then for |ε| < 1
q

there exists a positive number N(ε, a, p, q, τ) such that

∞∑
n=1

∥B(ε)φn∥2

|λ− λn|2
< N(ε, a, p, q, τ). (3.3)

If Reλ ≤ −τ , then for |ε| < 1
q there exists also a positive number N1(ε, a, p, q, τ) such

that
∞∑

n=1

∥B(ε)φn∥2

|λ− λn|2
< N1(ε, a, p, q, τ). (3.4)

♢

Proof. Let n ∈ N∗ and λn be the eigenvalue number n of T0. We have

∥B(ε)φn∥ = ∥(εT1 + ε2T2 + . . .)φn∥

≤
∞∑
i=1

∥εiTiφn∥.
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Then, in view of hypothesis (H3) we obtain

∥B(ε)φn∥ ≤
∞∑
i=1

|ε|iqi−1(a∥φn∥+ b∥T0φn∥β∥φn∥1−β)

≤
∞∑
i=1

|ε|iqi−1(a+ bλβn). (3.5)

Hence, for |ε| < 1
q it follows from Eq. (3.5) that

∥B(ε)φn∥2

|λ− λn|2
≤ |ε|2

(1− |ε|q)2

(
a2

|λ− λn|2
+

2abλβn
|λ− λn|2

+
b2λ2βn

|λ− λn|2

)
. (3.6)

Now, let σ = Reλ and λ = σ ± iτ, where τ > 0. So, there exists k ∈ N∗ such that
λk−1 ≤ σ and λk > σ. Thus, we have

λk − σ > λβk

(
λ1−β
k − σ1−β

)
≥ C1λ

β
k (C1 > 0) (3.7)

and

|λ− λk−1| ≥ ||λ| − λk−1| > |λ|β
(
|λ|1−β − λ1−β

k−1

)
≥ C2λ

β
k−1 (C2 > 0). (3.8)

Then, Eqs (3.7), (3.8) imply that

∞∑
n=1

λ2βn
|λn − σ|2

<
1

C2
1

+
1

C2
2

+
∑

n<k−1

λ2βn
|λn − σ|2

+
∑
n>k

λ2βn
|λn − σ|2

≤ 2

C2
+
∑

n<k−1

λ2βn
|λn − σ|2

+
∑
n>k

λ2βn
|λn − σ|2

, (3.9)

where C := min{C1, C2}. Further, since β ∈]0, 12 [, hence for n < k − 1 we obtain

σ − λn > λk−1 − λn

> (1− β)λβn (λk−1 − λn)
1−β

(λk−1 − λn)
β
λ−β
n

≥ γ1(1− β)λβn (λk−1 − λn)
1−β

, 0 < γ1 < 1 (3.10)

and for n > k we have

λn − σ > λn − λk

> (1− β)λβn (λn − λk)
1−β

(λn − λk)
β
λ−β
n

≥ γ2(1− β)λβn (λn − λk)
1−β

, 0 < γ2 < 1. (3.11)

So, Eqs (3.9), (3.10) and (3.11) yield
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∞∑
n=1

λ2βn
|λn − σ|2

<
2

C2
+
∑

n<k−1

1

γ21(1− β)2 (λk−1 − λn)
2(1−β)

+
∑
n>k

1

γ22(1− β)2 (λn − λk)
2(1−β)

.

Consequently, if we put γ := min{γ1, γ2}, we obtain

∞∑
n=1

λ2βn
|λn − σ|2

<
2

C2
+
∑

n<k−1

1

γ2(1− β)2 (λk−1 − λn)
2(1−β)

+

∑
n>k

1

γ2(1− β)2 (λn − λk)
2(1−β)

. (3.12)

As λn ≥ n−1
p + λ1, Eq. (3.12) yields

∞∑
n=1

λ2βn
|λ− λn|2

<

∞∑
n=1

λ2βn
|λn − σ|2

<
2

C2
+
∑

n<k−1

p2(1−β)

γ2(1− β)2 (k − 1− n)
2(1−β)

+
∑
n>k

p2(1−β)

γ2(1− β)2 (n− k)
2(1−β)

≤ 2

C2
+
∑

n<k−1

p2(1−β)

γ2(1− β)2 (k − 1− n)
2(1−β)

+

∞∑
m=1

p2(1−β)

γ2(1− β)2m2(1−β)

<
2

C2
+

2p2(1−β)

γ2(1− β)2

∞∑
m=1

1

m2(1−β)
=: ξ1 <∞.

Moreover, if we use the same argument as above with β
2 we get

∞∑
n=1

λβn
|λ− λn|2

<
2

C2
+

8p2−β

γ2(2− β)2

∞∑
m=1

1

m2−β
=: ξ2 <∞.

Consequently, the series
∑

n
2abλβ

n

|λ−λn|2 and
∑

n
b2λ2β

n

|λ−λn|2 are convergent. So, there exists

ξ > 0 verifying

∞∑
n=1

2abλβn
|λ− λn|2

+

∞∑
n=1

b2λ2βn
|λ− λn|2

< b2ξ1 + 2abξ2 =: ξ. (3.13)

To complete the proof of our result, we follow some ideas due to [24].

• Let us consider |Imλ| ≥ τ . For |ε| < 1
q , it follows from Eqs (3.6) and (3.13) that

∞∑
n=1

∥B(ε)φn∥2

|λ− λn|2
<

|ε|2

(1− |ε|q)2

(
ξ + a2

∞∑
n=1

1

(λn − σ)2 + τ2

)
.
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On the other hand, hypothesis (H2) implies that

λk+j+sp − σ ≥ s and σ − λk−j−sp−1 ≥ s, where j = 0, . . . , p− 1 and s = 0, 1, . . . .

Hence, for |ε| < 1
q we obtain

∞∑
n=1

∥B(ε)φn∥2

|λ− λn|2
<

|ε|2

(1− |ε|q)2

ξ + a2p

 k
p−1∑
s=0

1

s2 + τ2
+

∞∑
s=0

1

s2 + τ2

 .

So, for |ε| < 1
q we have

∞∑
n=1

∥B(ε)φn∥2

|λ− λn|2
<

|ε|2

(1− |ε|q)2

(
ξ + 2pa2

( ∞∑
s=1

1

s2 + τ2
+

1

τ2

))

<
|ε|2

(1− |ε|q)2

(
ξ + 2pa2

(
1

τ2
+

∫ ∞

0

dx

x2 + τ2

))
≤ N(ε, a, p, q, τ),

where

N(ε, a, p, q, τ) :=
|ε|2

(1− |ε|q)2

(
ξ + a2

p

τ

(
π +

2

τ

))
.

• Now, if Reλ ≤ −τ . It follows from hypothesis (H2) that

λ1+j+sp − σ ≥ s− σ ≥ s+ τ, where j = 0, . . . , p− 1 and s = 0, 1, . . . , (3.14)

since λ1+j > 0 and λ1+j+sp−σ ≥ s+λ1+j −σ. So, Eqs (3.6), (3.13) and (3.14) imply
that for |ε| < 1

q we have

∞∑
n=1

∥B(ε)φn∥2

|λ− λn|2
<

|ε|2

(1− |ε|q)2

(
ξ + a2

∞∑
n=1

1

|σ − λn|2

)

≤ |ε|2

(1− |ε|q)2

(
ξ + pa2

( ∞∑
s=0

1

(τ + s)2

))

<
|ε|2

(1− |ε|q)2

(
ξ + pa2

(∫ ∞

0

dx

(τ + x)2
+

1

τ2

))
≤ N1(ε, a, p, q, τ),

where

N1(ε, a, p, q, τ) :=
|ε|2

(1− |ε|q)2

(
ξ + a2

p

τ

(
1 +

1

τ

))
.

The following proposition holds (see [24]).
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Proposition 3.2. We have

∥B(ε)(λ− T0)
−1∥2 ≤

∞∑
n=1

∥B(ε)φn∥2

|λ− λn|2
.

♢

We denote by Sh := {λ such that |Imλ| < h and Reλ > −h}, with h > 0 (see Figure
1).

h

−h

−h 0

Sh

Figure 1

Proposition 3.3. For small enough |ε|, the spectrum of the operator T (ε) lies in the
half-strip Sh. ♢

Proof. Let λ ∈ C such that |Imλ| ≥ h or Reλ ≤ −h. Since T0 is self-adjoint and
positive, then we have

λ− T (ε) = [I −B(ε)(λ− T0)
−1](λ− T0). (3.15)

Further, combining Eq. (3.3) together with Proposition 3.2, we obtain for |Imλ| ≥ h
and |ε| < 1

q

∥B(ε)(λ− T0)
−1∥2 < N(ε, a, p, q, h). (3.16)

So, for |Imλ| ≥ h and |ε| < 1

q+
√

ξ+a2 p
h (π+ 2

h )
we get

∥B(ε)(λ− T0)
−1∥ < 1.

On the other hand, for Reλ ≤ −h and |ε| < 1
q , Eq. (3.4) and Proposition 3.2 yield

∥B(ε)(λ− T0)
−1∥2 < N1(ε, a, p, q, h). (3.17)

Hence, for Reλ ≤ −h and |ε| < 1

q+
√

ξ+a2 p
h (1+ 1

h )
we obtain

∥B(ε)(λ− T0)
−1∥ < 1.
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Consequently, for

|ε| < min

 1

q +
√
ξ + a2 p

h (π + 2
h )
,

1

q +
√
ξ + a2 p

h (1 +
1
h )


=

1

q +
√
ξ + a2 p

h (π + 2
h )
,

we have

∥B(ε)(λ− T0)
−1∥ < 1 for |Imλ| ≥ h or Reλ ≤ −h.

Hence, I − B(ε)(λ− T0)
−1 is invertible with bounded inverse outside Sh. Then, Eq.

(3.15) implies that λ− T (ε) is invertible with bounded inverse and we obtain

(λ− T (ε))−1 = (λ− T0)
−1[I −B(ε)(λ− T0)

−1]−1. (3.18)

Consequently λ ∈ ρ(T (ε)). So, the spectrum of the operator T (ε) lies in the half-strip
Sh.

These results are of importance to prove the aim of this subsection.

Theorem 3.3. Assume that hypotheses (H1)-(H3) hold. Then, for small enough |ε|,
the system of root vectors of the operator T (ε) forms a basis with parentheses in H.♢

Remark 3.2. (i) Theorem 3.3 guarantees basicity with parentheses not only for
the sum of two operators such as in [24, Theorem 2] but for an analytic operator.
Further, we prove that even if Eq. (1.2) considered in [24] is not verified, we can get
a similar result.
(ii) Theorem 3.3 improves [13, Theorem 3.4] since we prove the existence of a basis
with parentheses of root vectors of T (ε) where the eigenvalues of T0 are with finite
multiplicity instead of multiplicity one. Indeed, in order to prove the existence of a
Riesz basis related to the eigenvectors of T (ε), the authors in [13] used a spectral
analysis method based on the fact that the eigenvalues of T0 are with multiplicity
one. However, this spectral analysis can not be applied when the eigenvalues of T0
are with finite multiplicity. ♢

Before going further, we recall the following result stated in [9].

Theorem 3.4. [9, Theorem 4.3.2] Suppose that hypotheses (H1)-(H3) are satisfied.
Then, for small enough |ε|, the spectrum of the operator T (ε) is constituted by isolated
eigenvalues satisfying

n(r, T (ε)) = n(r, T0) +O(1) i.e., |n(r, T (ε))− n(r, T0)| < C3 as r → ∞,

where n(r, T0) (respectively, n(r, T (ε))) denotes the sum of multiplicities of all eigen-
values of T0 (respectively, T (ε)) contained in the disk {λ ∈ C such that |λ| < r} and
C3 is a constant. ♢
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Proof of Theorem 3.3.

Let λ ∈ C. In view of Proposition 3.3, the spectrum of T (ε) lies in the half-strip
Sh := {λ such that |Imλ| < h and Reλ > −h}, for |ε| < 1

q+
√

ξ+a2 p
h (π+ 2

h )
. So, let

(∆k)k≥1 be the rectangles bounded by the straight lines Imλ = ±h, Reλ = rk and
Reλ = rk−1, where r0 = −h and rk → ∞ (see Figure 2).

We note here that the numbers rk are chosen in such away that the boundary ∂∆k

of any rectangle ∆k does not pass through the eigenvalues of the operator T (ε).

h

−h

−h 0

Sh

r1 rk−1 rk

∆k∆1

Figure 2

Then, for |ε| < 1

q+
√

ξ+a2 p
h (π+ 2

h )
we have

n∑
k=1

−1

2πi

∫
∂∆k

(λ− T (ε))−1dλ =

n∑
k=1

Pk(ε),

where Pk(ε) designates the spectral projection corresponding to the spectrum of T (ε)
inside ∆k.

To prove our result, it suffices to show that

sup
n

∣∣∣∣∣
n∑

k=1

−1

2πi

∫
∂∆k

(λ− T (ε))−1dλ

∣∣∣∣∣ <∞. (3.19)

In order to do, so we are going first to estimate ∥(λ− T (ε))−1∥ for:

(i) |Imλ| = τ ≥ h and |ε| < 1

q +
√
ξ + a2 p

h (π + 2
h )
.

(ii) Reλ = −τ and |ε| < 1

q +
√
ξ + a2 p

h (1 +
1
h )
.

For this purpose, let us consider λ = σ + iτ .



On the Basis Property of Root Vectors . . . 73

(i) In view of Eq. (3.16), we have

∥B(ε)(λ− T0)
−1∥ <

√
N(ε, a, p, q, τ) < 1, (3.20)

where

N(ε, a, p, q, τ) :=
|ε|2

(1− |ε|q)2

(
ξ + a2

p

τ

(
π +

2

τ

))
.

Further,

∥(λ− T0)∥−1 ≤ 1

|Imλ|
=

1

τ
. (3.21)

Then, Eqs (3.20) and (3.21) yield∥∥(λ− T (ε))−1
∥∥ =

∥∥∥(λ− T0)
−1
[
I −B(ε)(λ− T0)

−1
]−1
∥∥∥

≤
∥∥(λ− T0)

−1
∥∥ ∥∥∥[I −B(ε)(λ− T0)

−1
]−1
∥∥∥

≤ 1

τ

(
1−

√
N(ε, a, p, q, τ)

)−1

.

(ii) Eq. (3.17) implies that

∥B(ε)(λ− T0)
−1∥ <

√
N1(ε, a, p, q, τ) < 1, (3.22)

where

N1(ε, a, p, q, τ) :=
|ε|2

(1− |ε|q)2

(
ξ + a2

p

τ

(
1 +

1

τ

))
.

Furthermore, since

∥(λ− T0)
−1∥ ≤ 1

d(λ, σ(T0))

≤ 1

|Reλ− λn|
, λn ∈ σ(T0),

then we get

∥(λ− T0)
−1∥ ≤ 1

| − τ − λn|
, Reλ = −τ

<
1

τ
. (3.23)

Consequently, due to Eqs (3.22) and (3.23) we obtain

∥(λ− T (ε))−1∥ =
∥∥∥(λ− T0)

−1
[
I −B(ε)(λ− T0)

−1
]−1
∥∥∥

≤ 1

τ

(
1−

√
N1(ε, a, p, q, τ)

)−1

.

Now, to prove Eq. (3.19) it remains to show the existence of vertical segments in the
half-strip Sh that tend to infinity and on which (λ − T (ε))−1 is uniformly bounded
(see [24, p. 292]).



74 H. Ellouz, I. Feki, A. Jeribi

Let us begin with the boundedness of ∥(λ− T (ε))−1∥. Let f, g ∈ H and consider the
scalar function Fε(λ) defined as

Fε(λ) = ⟨(λ− T (ε))−1f, g⟩.

It is easy to see that
∗ Fε(λ) is meromorphic and belongs to the Carleman-class CP , P > 1. In fact, due
to [22, p. 13] the set of the Carleman-class CP is a two-sided ideal of the algebra of
bounded operators L(H). Further, the resolvent of T0 belongs to the Carleman-class
CP (see the proof of Theorem 3.2). Then, in view of Eq. (3.18) the resolvent of T (ε)
belongs to the Carleman-class CP .
∗ The poles of Fε(λ) lie in the strip |Imλ| < h. Indeed, in view of [21, p. 38], the
poles of (λ − T (ε))−1 are exactly the eigenvalues of T (ε) which lies in the half-strip
Sh.

∗ |Fε(λ)| ≤
1

τ

(
1−

√
N(ε, a, p, q, τ)

)−1

, for |Imλ| = τ = h + δ, δ > 0 and |ε| <
1

q +
√
ξ + a2 p

h (π + 2
h )
.

Then, in view of Lemma 2.1 we have

ln |Fε(λ)| ≤ C ′

(
1

τ

(
1−

√
N(ε, a, p, q, τ)

)−1

+ sup
|t−r|≤rη

(n(t+ 1, Fε)− n(t, Fε))

)
,

for |Imλ| ≤ τ and Reλ = rn → ∞ outside an exceptional set of disks D, with r = |λ|.
On the other hand, in virtue of Theorem 3.4 there exists a positive constant W such
that for |ε| < W we have

n(r, T (ε)) = n(r, T0) +O(1). (3.24)

Hence, hypothesis (H2) and Eq. (3.24) imply that for |ε| < W

n(t+ 1, Fε)− n(t, Fε) = n(t+ 1, T (ε))− n(t, T (ε))

= [n(t+ 1, T0) +O(1)]− [n(t, T0) +O(1)]

= O(1) + [n(t+ 1, T0)− n(t, T0)]

≤ O(1) + p = p′.

Consequently, for |ε| < V := min

{
W, 1

q+
√

ξ+a2 p
h (π+ 2

h )

}
we have

|Fε(λ)| ≤ Cε,

where Cε is a constant independent of f, g.
Therefore, for |ε| < V we obtain

∥(λ− T (ε))−1∥ ≤ Cε,
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where |Imλ| ≤ τ and Reλ = rn → ∞ outside an exceptional set of disks D.
Then, for |ε| < V we have∣∣∣∣∣

n∑
k=1

−1

2πi

∫
∂∆k

(λ− T (ε))−1 dλ

∣∣∣∣∣ <∞.

Hence,

sup
n

∣∣∣∣∣
n∑

k=1

−1

2πi

∫
∂∆k

(λ− T (ε))−1 dλ

∣∣∣∣∣ <∞.

Thus,

sup
n

∥∥∥∥∥
n∑

k=1

Pk(ε)

∥∥∥∥∥ <∞.

As a consequence, due to Theorem 2.2, we claim that the family (R(Pk(ε)))k≥1 forms
a basis in H which means that the family of root vectors of T (ε) forms a basis with
parentheses in H.
To complete the proof of our result, we show by a similar way as [24] the existence
of vertical segments that do not pass through the eigenvalues of the operator T (ε).
Indeed, in each rectangle bounded by the straight lines Reλ = n, Reλ = n + 1 and
Imλ = ±h, there are at most p′ points of the eigenvalues λk(ε) for |ε| < W . Hence,
the projection of the disks from D onto the real axis does not fill the interval [n, n+1].
In fact, it suffices to choose d < 1

2p′ (where d is the total radii of the disks from D
inside each rectangle). So, there exists a vertical segment in this rectangle that does
not intersect D (see Figure 3). Moreover, the vertical segments can be chosen in
such a way that only points λk(ε) with |Re(λk(ε))−Re(λj(ε))| < d fall between the
neighboring segments.

h

−h

−h 0

Sh

n n+ 1

Figure 3
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Corollary 3.2. Assume that hypotheses (H1) and (H3) and Eq. (3.2) hold. Then,
for β ∈]0, 1 + α−1

2 [ and small enough |ε|, the system of root vectors of the operator
T (ε) forms a basis with parentheses in H. ♢

Proof. Using (H3) and making the same reasoning as the one developed in the proof
of Lemma 3.1, we get for |ε| < 1

q

∥B(ε)φn∥2

|λ− λn|2
≤ |ε|2

(1− |ε|q)2

(
a2

|λ− λn|2
+

2abλβn
|λ− λn|2

+
b2λ2βn

|λ− λn|2

)
.

Now, let σ = Reλ. Then there exists k ∈ N∗ such that λk−1 ≤ σ and λk > σ. Since

λ1−α
n ≥ n−1

p + λ1−α
1 , then λn ≥

(
n−1
p + λ1−α

1

) 1
1−α

. Hence, for n < k − 1 we obtain

σ − λn > λk−1 − λn

≥ λβn(λ
1−β
k−1 − λ1−β

n )

≥ λβn

((
k − 2

p
+ λ1−α

1

) 1−β
1−α

−
(
n− 1

p
+ λ1−α

1

) 1−β
1−α

)
. (3.25)

Equivalently to Eq. (3.25), for n > k we have

λn − σ > λβn

((
n− 1

p
+ λ1−α

1

) 1−β
1−α

−
(
k − 1

p
+ λ1−α

1

) 1−β
1−α

)
. (3.26)

Two cases are presented: If β ∈]0, α], then we have 1−β
1−α ≥ 1. Hence, Eq. (3.25)

implies that

σ − λn > λβn
(k − 1− n)

1−β
1−α

p
1−β
1−α

(3.27)

and Eq. (3.26) yields

λn − σ > λβn
(n− k)

1−β
1−α

p
1−β
1−α

. (3.28)

Consequently, it follows from Eqs (3.9), (3.27) and (3.28) that

∞∑
n=1

λ2βn
|λn − σ|2

<
2

C2
+ p

2(1−β)
1−α

( ∑
n<k−1

1

(k − 1− n)
2(1−β)
1−α

+

∞∑
n>k

1

(n− k)
2(1−β)
1−α

)

≤ 2

C2
+ p

2(1−β)
1−α

( ∑
n<k−1

1

(k − 1− n)
2(1−β)
1−α

+

∞∑
m=1

1

m
2(1−β)
1−α

)

<
2

C2
+ 2p

2(1−β)
1−α

∞∑
m=1

1

m
2(1−β)
1−α

=: ξ′1 <∞. (3.29)
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Now, if β ∈]α, 1+ α−1
2 [. Then, we have 0 < −α+β

1−α < 1
2 and 1

2 < 1− −α+β
1−α = 1−β

1−α < 1.
So, in view of [22, p. 33] and Eq. (3.25) we get

σ − λn > γ
′
λβn

(
1−β
1−α

)
(k − 1− n)

1−β
1−α

p
1−β
1−α

, 0 < γ
′
< 1. (3.30)

Further, based on [22, p. 33] and Eq. (3.26) we obtain

λn − σ > γ
′′
λβn

(
1−β
1−α

)
(n− k)

1−β
1−α

p
1−β
1−α

, 0 < γ
′′
< 1. (3.31)

Hence, similarly to Eq. (3.29), Eqs (3.9), (3.30) and (3.31) imply that

∞∑
n=1

λ2βn
|λn − σ|2

<
2

C2
+

2p
2(1−β)
1−α

γ
′2
1

(
1−β
1−α

)2 ∞∑
m=1

1

m
2(1−β)
1−α

=: ξ′2 <∞,

where γ
′

1 := min{γ′
, γ

′′}. Consequently, for β ∈]0, 1 + α−1
2 [ we get

∞∑
n=1

λ2βn
|λ− λn|2

<

∞∑
n=1

λ2βn
|σ − λn|2

< max{ξ′1, ξ′2} =: ξ′2.

On the other hand, if we replace β by β
2 we get

∞∑
n=1

λβn
|λ− λn|2

<
2

C2
+

2p
2−β
1−α

γ
′2
1

(
1− β

2

1−α

)2 ∞∑
m=1

1

m
2−β
1−α

=: ξ′3 <∞.

Hence, the series
∑

n
2abλβ

n

|σ−λn|2 and
∑

n
b2λ2β

n

|λ−λn|2 are convergent. So, let ξ′ be a positive

constant satisfying

∞∑
n=1

2abλβn
|λ− λn|2

+

∞∑
n=1

b2λ2βn
|λ− λn|2

< b2ξ′2 + 2abξ′3 =: ξ′.

Furthermore, it follows from [9, Corollary 3.2] that for small enough |ε| and β ∈
]0, 1 + α−1

2 [ we have

n(r, T (ε)) = n(r, T0) +O(1).

To get the desired result, we advise that the rest of the proof is similar to that of
Theorem 3.3.

4. Applications

4.1. Application to a Gribov operator in Bargmann space

We are interested in a family of non self-adjoint operators, said of Gribov, stud-
ied by the specialists of physics of height energy. A representant of this family is
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a combination between the creation operator A∗ and the annihilation operator A
([1], [2] and [15]) given by:

(A∗A)3 + εA∗(A+A∗)A+ ε2(A∗A)3u2 + ...+ εk(A∗A)3uk + ...,

where ε ∈ C and (uk)k∈N is a strictly decreasing sequence with strictly positive terms
such that u0 = 1 and u1 = 1

2 .

We define the Bargmann space B by:

B =

{
φ : C −→ C entire such that

∫
C
e−|z|2 |φ(z)|2dzdz̄ <∞

}
.

This space is equipped with the following scalar product: ⟨., .⟩ : B × B −→ C

(φ,ψ) −→ ⟨φ,ψ⟩ =
∫
C
e−|z|2φ(z)ψ̄(z)dzdz̄

and its associated norm is denoted by ∥.∥.

The expressions of the operators A and A∗ are given by:
A : D(A) ⊂ B −→ B

φ −→ Aφ(z) =
dφ

dz
(z)

D(A) = {φ ∈ B such that Aφ ∈ B}

and  A∗ : D(A∗) ⊂ B −→ B
φ −→ A∗φ(z) = zφ(z)

D(A∗) = {φ ∈ B such that A∗φ ∈ B}.

We consider the problem on E = {φ ∈ B such that φ(0) = 0} and we denote by T0
and H1 the following operators:

T0 : D(T0) ⊂ E −→ E
φ −→ T0φ(z) = (A∗A)3φ(z)

D(T0) = {φ ∈ E such that T0φ ∈ E},

and  H1 : D(H1) ⊂ E −→ E
φ −→ H1φ(z) = A∗(A+A∗)Aφ(z)

D(H1) = {φ ∈ E such that H1φ ∈ E}.

Now, we recall a straightforward, but useful result from [12].

Proposition 4.1. [12, P roposition 6.2] We have the following assertions:
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(i) T0 is a self-adjoint operator.
(ii) The resolvent set of T0 is compact.
(iii) {en(z) = zn

√
n!
}∞1 is a system of eigenvectors associated to the eigenvalues {n3}n≥1

of T0. ♢

Proposition 4.2. The resolvent of the operator T0 belongs to the Carleman-class CP
for any P > 1

3 . ♢

Due to Proposition 4.1, T0 is a self-adjoint operator with compact resolvent in E.
Then, let

T0 =

∞∑
n=1

n3⟨., en⟩en

be its spectral decomposition. So, for a strictly decreasing sequence (uk)k∈N with
strictly positive terms such that u0 = 1 and u1 = 1

2 , the operators (Tuk
0 )k≥0 are

defined by: 

Tuk
0 : D(Tuk

0 ) ⊂ E −→ E

φ −→ Tuk
0 φ =

∞∑
n=1

n3uk⟨φ, en⟩en

D(Tuk
0 ) = {φ ∈ E such that

∞∑
n=1

n6uk |⟨φ, en⟩|2 <∞}.

It is easy to check that for all k ≥ 0, D(Tuk
0 ) ⊂ D(T

uk+1

0 ). Then,
⋂

k≥2 D(Tuk
0 ) =

D(Tu2
0 ).

Let D = D(Tu2
0 ) ∩ D(H1), T1, (Tk)k≥2 be the restrictions of H1 and Tuk

0 to D,
respectively. So, the operators (Tk)k≥1 have the same domain D and we have D(T0) ⊂
D.

Proposition 4.3. [12, P roposition 6.3] There exist positive constants a, b, q > 0 and
β ∈

[
1
2 , 1
]
such that for all φ ∈ D(T0) and for all k ≥ 1 we have

∥Tkφ∥ ≤ qk−1(a∥φ∥+ b∥T0φ∥β∥φ∥1−β). ♢

Remark 4.1. In Proposition 4.3, we take q = 1 and a = b = 1 + 2
√
2. ♢

Proposition 4.4. For |ε| < 1, the series
∑

k≥0 ε
kTkφ converges for all φ ∈ D(T0).

If we denote its sum by T (ε)φ, then we define a linear operator T (ε) with domain
D(T0). Also, for |ε| < 1

1+βa , the operator T (ε) is closed. ♢

The main results of this part are formulated as follows:

Proposition 4.5. For |ε| < 1
1+βa and β ∈ [ 12 ,

5
6 [, the system of root vectors of the

operator T (ε) is complete in E. ♢

Proof. Let λn be the eigenvalue number n of (A∗A)3. It is easy to see that

λ
1
3
n+p − λ

1
3
n = (n+ p)− n = p ≥ 1, (where α = 2

3 ). (4.1)
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Consequently, Corollary 3.1, Propositions 4.1, 4.2 and 4.4 and Eq. (4.1) imply that
the system of root vectors of the operator T (ε) is complete in E for |ε| < 1

1+βa .

We have proved that the system of root vectors of the operator T (ε) is complete in
E. Now, it remains to show that it forms a basis with parentheses in E.

Theorem 4.1. For small enough |ε| and β ∈ [ 12 ,
5
6 [, the system of root vectors of the

Gribov operator forms a basis with parentheses in E. ♢

Proof. It suffices to apply Corollary 3.2, Propositions 4.1 and 4.4 and Eq. (4.1).

Remark 4.2. Theorem 4.1 ameliorates Theorem 4.1 stated in [4]. In fact, we have
proved that for β ∈ [ 12 ,

5
6 [ the system of root vectors of the Gribov operator forms a

basis with parentheses in E; while in [4], the authors showed the existence of a Riesz
basis of finite-dimensional invariant subspaces for β = 2

3 . ♢

4.2. Application to a problem of radiation of a vibrating struc-
ture in a light fluid

An elastic membrane is stimulated by a harmonic force F (x)e−iωt. It occupies the
domain −L < x < L of the plane z = 0. The two half-spaces z < 0 and z > 0
are filled with gas. The mechanical parameters of the membrane are E the Young
modulus, ν the Poisson ratio, m the surface density, h the thickness of the membrane

and D:= Eh3

12(1−ν2) the rigidity. The fluid is characterized by ρ0 the density, c the

sound speed and k:= ω
c the wave number.

Now, let us consider the following boundary value problem:(
d4

dx4
− mω2

D

)
u(x)

−iρ0
∫ L

−L

H0(k|x− x′|)

(
ω2

D
− 1

m

(
d4

dx4
−
(
d4

dx4

) 1
2

))
u(x′)dx′ =

F (x)

D
, (4.2)

for all x ∈] − L,L[ where u denotes the displacement of the membrane such that

u(x) =
∂u(x)

∂x
= 0 for x = −L and x = L and H0 is the Hankel function of the first

kind and order 0 (see [20, p. 11]).

The problem (4.2) satisfy the following system:(
d4

dx4
− mω2

D

)
u(x) =

1

D
(F (x)− P (x)) for all x ∈]− L,L[,

where

u(x) =
∂u(x)

∂x
= 0 for x = −L and x = L,
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P (x) = lim
η→0+

(p(x, η)− p(x,−η))

and

p(x, z)

= −sgn ziρ0
2

∫ L

−L

H0(k
√
(x− x′)2 + z2)

(
ω2 − D

m

(
d4

dx4
−
(
d4

dx4

) 1
2

))
u(x′)dx′,

for z < 0 or z > 0 such that p designates the acoustic pressure in the fluid.

In order to study this problem, we consider the following operators:

T0 : D(T0) ⊂ L2
(
]− L,L[

)
−→ L2

(
]− L,L[

)
φ −→ T0φ(x) =

d4φ

dx4

D(T0) = H2
0

(
]− L,L[

)
∩H4

(
]− L,L[

)
and 

K : L2
(
]− L,L[

)
−→ L2

(
]− L,L[

)
φ −→ Kφ(x) =

i

2

∫ L

−L

H0(k|x− x′|)φ(x′)dx′.

Now, we recall the following result from [20].

Lemma 4.1. [20, Lemmas 3.1 and 3.2 and Theorem 3.1] The following assertions
hold:
(i) T0 is a self-adjoint operator.
(ii) The injection from D(T0) into L

2
(
]− L,L[

)
is compact.

(iii) The spectrum of T0 is constituted only of point spectrums which are positive,
denumerable and of which the multiplicity is one and which have no finite limit points
and satisfies

0 < λ1 ≤ λ2 ≤ . . . ≤ λn → +∞.

Further, (
(2n+ 1)π

4L

)4

≤ λn ≤
(
(2n+ 3)π

4L

)4

, i.e., λn ∼+∞

(nπ
2L

)4
.

(iv) The resolvent of the operator T0 belongs to the Carleman-class CP for any P > 1
4 .

♢

Due to Lemma 4.1, T0 is a self-adjoint operator and has a compact resolvent. Then,
let
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T0φ =

∞∑
n=1

λn⟨φ,φn⟩φn

be its spectral decomposition, where λn = κn4 is the nth eigenvalue of T0 associated
to the eigenvector φn(x) = µe

4√λnx + ηe−
4√λnx + θei

4√λnx + δe−i 4√λnx (see [20, p. 7]).
Hence, we define the operator B by:

B = T
1
2
0 : D(B) ⊂ L2

(
]− L,L[

)
−→ L2

(
]− L,L[

)
φ −→ Bφ(x) =

(
d4φ

dx4

) 1
2

D(B) =

{
φ ∈ L2(]− L,L[) such that

∞∑
n=1

λn|⟨φ,φn⟩|2 <∞

}

and we consider the following eigenvalue problem:
Find the values λ(ε) ∈ C for which there is a solution φ ∈ H2

0

(
]−L,L[

)
∩H4

(
]−L,L[

)
,

φ ̸= 0 for the equation

T0φ+ εK(T0 −B)φ = λ(ε)(I + εK)φ (4.3)

where λ = mω2

D and ε = 2ρ0

m .
Note that both λ and φ depend on the value of ε. So, we denote this by λ := λ(ε)
and φ := φ(ε).

For |ε| < 1
∥K∥ , the operator I + εK is invertible. Then, the problem (4.3) becomes:

Find the values λ(ε) ∈ C for which there is a solution φ ∈ H2
0

(
]−L,L[

)
∩H4

(
]−L,L[

)
,

φ ̸= 0 for the equation

(I + εK)−1T0φ+ ε(I + εK)−1K(T0 −B)φ = λ(ε)φ. (4.4)

The problem (4.4) is equivalent to:
Find the values λ(ε) ∈ C for which there is a solution φ ∈ H2

0

(
]−L,L[

)
∩H4

(
]−L,L[

)
,

φ ̸= 0 for the equation(
T0 + εT1 + ε2T2 + . . .+ εnTn + . . .

)
φ = λ(ε)φ,

where Tn := (−1)nKn

(
d4

dx4

) 1
2

, for all n ≥ 1.

Proposition 4.6. [11, P roposition 4.1] The following properties hold:
(i) There exist positive constants a, b, q > 0 and β ∈

[
1
2 , 1
]
such that for all φ ∈ D(T0)

and for all k ≥ 1 we have

∥Tkφ∥ ≤ qk−1(a∥φ∥+ b∥T0φ∥β∥φ∥1−β).

Note that it suffices to take a = b = q = ∥K∥.
(ii) For |ε| < 1

∥K∥ , the series
∑

k≥0 ε
kTkφ converges for all φ ∈ D(T0). If we denote

its sum by T (ε)φ, we define a linear operator T (ε) with domain D(T0). For |ε| <
1

∥K∥(1+β) , the operator T (ε) is closed. ♢
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Using the results described above, we can now prove the objective of this part.

Proposition 4.7. For |ε| < 1
∥K∥(1+β) and β ∈ [ 12 ,

7
8 [, the system of root vectors of

the operator T (ε) is complete in L2(]− L,L[). ♢

Proof. Let λn be the eigenvalue number n of T0. We have

λ
1
4
n+p − λ

1
4
n = κ

1
4 ((n+ p)− n) ≥ 1, where α = 3

4 and p ≥ 1

κ
1
4
. (4.5)

Then, in view of Corollary 3.1, Lemma 4.1 and Proposition 4.6 the system of root
vectors of the operator T (ε) is complete in L2(]− L,L[) for |ε| < 1

∥K∥(1+β) .

Theorem 4.2. For small enough |ε| and β ∈ [ 12 ,
7
8 [, the system of root vectors of the

operator T (ε) forms a basis with parentheses in L2(]− L,L[). ♢

Proof. The result follows immediately from Corollary 3.2, Lemma 4.1, Proposition
4.6 and Eq. (4.5).

Remark 4.3. Theorem 4.2 improves [11, Theorem 4.3]. Indeed, in [11] the authors
proved that the system of root vectors of the operator T (ε) forms an unconditional
basis with parentheses in L2(] − L,L[) for β ∈ [ 12 ,

3
4 ], whereas in Theorem 4.2 we

assure the existence of a basis with parentheses of root vectors for β ∈ [ 12 ,
7
8 [. ♢
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Département de Mathématiques
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Abstract: Employing critical theory and concentration estimates,
we establish the existence of two classes of infinitely many weak solutions
fractional Schrödinger-Poisson system involving critical Sobolev growth.
The first classe of solutions with negative energy is found by using of
notion genus while the second one contains infinitely many weak solutions
with positive energy via Fountain theorem.

AMS Subject Classification: 35J60, 35Q55, 35R11.
Keywords and Phrases: Fractional system; Critical exponents; Fountain theorem;
Genus; Concentration-compactness.

1. Introduction

In this paper we focus our attention on the following critical fractional system (−∆)su+ u+ ϕu = λa(x)|u|r−2u+ b(x)|u|2∗s−2u in R3,

(−∆)tϕ = u2 in R3,
(1)

where s ∈ ( 34 , 1), t ∈ (0, 1) with 4s + 2t > 3, 1 < r < 2 < 2∗s := 6
3−2s , λ is a positive

parameter, a(x), b(x) ∈ C(R3).
The system (1) is made up of a fractional Schrödinger equation coupled to a frac-
tional poisson equation. It is well known that the system (1) has a strong physical
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significance, because it appears in many quantum mechanics modules (see for example
[5, 14]) and in semiconductor theory [3], and so on. In recent years, there has been
an increasing attention to this type of system on the existence and the multiplicity of
positive solutions, see the following references [2, 6, 8, 10, 11, 12, 15, 16, 21]. To our
knowledge, there are few recent articles dealing with the result of the existence of two
classes of solutions of infinite types and different signs of energies. By using the trun-
cation tip at the level of the functional to make it bounded from below and satisfied
the condition of (P.S)c for any c < 0. Following the Ljusternick-Schnirelmann theory,
we obtain a negative class with infinitely solutions. Via the Fountain Theorem, we
obtain the second class of infinitely positive solutions.

(A1) Let 1 < r < 2 < 2∗s, σ =
2∗s

2∗s−r and 2∗s = 6
3−2s , a(x) ∈ C(R3) ∩ Lσ(R3),

b(x) ∈ C(R3) ∩ L∞(R3),

(A2) a(x) > 0 in some open bounded subset Ω of R3 with strictly positive Lebesgue
measure,

(G1) Let G be a subgroup of O3, #G =∞, a(x), b(x) are G−invariant,

(G2) a(x) ∈ C(R3,R+) ∩Lσ
G(R3), b(x) ∈ C(R3,R+), b(x) = b(|x|) for any x ∈ R3 and

b(0) = b(∞) = 0.

Our first main result is the following:

Theorem 1.1.
If (A1) and (A2) are satisfied. Then there exists λ0 > 0 such that, for each λ ∈ (0, λ0),
the problem (1) has infinitely many solutions with negative energy.

Our next goal is the following:

Theorem 1.2.
If (G1) and (G2) are satisfied. Then for all λ > 0 the problem (1) has infinitely many
solutions with positive energy.

The paper is organized as follows. In Section 2, we present some preliminaries re-
sults and we give the interval parameter λ for which the energy functional is compact.
In Section 3, when λ is small enough, we prove the first Theorem 1.1 by application
of genus. In Section 4, we give the proof of the second Theorem 1.2 without condition
under the parameter λ > 0, we establish this result via Fountain theorem.

2. Functional framework and preliminary

For any s ∈ (0, 1) , we define the homogeneous fractional Sobolev space Ds,2(R3) as
follows

Ds,2(R3) =
{
u ∈ L2∗s (R3) : |ξ|sû(ξ) ∈ L2(R3)

}
,



Two Classes of Infinitely of Many Solutions. . . 89

which is the completion of C∞
0 (R3) under the norm

∥u∥Ds,2(R3) =

(∫
R3

| (−∆)
s
2 u|2dx

)1/2

=

(∫
R3

|ξ|2s|û(ξ)|2dξ
)1/2

.

The fractional Sobolev space Hs(R3) can be described by means of the Fourier trans-
form, i.e.

Hs(R3) =

{
u ∈ L2(R3) :

∫
R3

|ξ|2s|û(ξ)|2 + |û(ξ)|2dξ < +∞
}
,

which is a Hilbert space under the norm. In this case, the inner product and the norm
are defined as

⟨u, v⟩ =
∫
R3

|ξ|2sû(ξ)v̂(ξ) + û(ξ)v̂(ξ)dξ,

∥u∥Hs =

(∫
R3

|ξ|2s|û(ξ)|2 + |û(ξ)|2dξ
)1/2

.

From Plancherel’s theorem we have ∥u∥L2(R3) = ∥û∥L2(R3) and ∥|ξ|s|û|∥L2(R3) =

∥ (−∆)
s
2 u∥L2(R3). Hence

∥u∥Hs =

(∫
R3

| (−∆)
s
2 u(x)|2 + |u(x)|2dx

)1/2

∀u ∈ Hs(R3).

In our context, the Sobolev constant is given by

S :=

∫
R3 |(−∆)

s
2u(x)|2 + |u(x)|2dx(∫

R3 |u|2∗sdx
) 2

2∗s

. (2)

From the embedding results, we know that Hs(R3) is continuously and compactly
embedded in Lp(R3) when 1 ≤ p < 2∗s, where 2∗s = 6

3−2s and the embedding is
continuous but not compact if p = 2∗s. For more general facts about the fractional
Laplacian we refer the reader to the paper [7].
From [20], the author has proved that if 4s + 2t ≥ 3, for each u ∈ Hs(R3), the
Lax-Milgram theorem implies that there exists a unique ϕt

u ∈ D1,2(R3) such that∫
R3

(−∆)
t
2ϕt

u(−∆)
t
2 vdx =

∫
R3

u2vdx

∀v ∈ D1,2(R3), that is ϕt
u is a weak solution of

(−∆)tϕt
u = u2, x ∈ R3

and the representation formula holds

ϕt
u(x) = ct

∫
R3

u2(y)

|x− y|3−2t
dy, x ∈ R3, ct = π− 3

2 2−2tΓ(
3−2t
2 )

Γ(t)
,

which is called t−Riesz potential.
The properties of the function ϕt

u are given in the following lemma (see [[20],
Lemma 2.3]).
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Lemma 2.1. If 4s+ 2t ≥ 3, then for any u ∈ Hs(R3), we have

(i) ϕt
u ≥ 0;

(ii) ϕt
u : Hs(R3)→ Ds,2(R3), is continuous and maps bounded sets into bounded sets;

(iii)
∫
R3 ϕ

t
uu

2dx ≤ S2
s∥u∥2 12

3+2t

≤ C∥u∥4Hs(R3);

(iv) If un ⇀ u in Hs(R3), then ϕt
un
→ ϕt

u in Ds,2(R3), and∫
R3 ϕ

t
un

u2
ndx→

∫
R3 ϕ

t
uu

2dx.

Substituting ϕt
u in (1), it reduces as follows

(−∆)su+ u+ ϕt
uu = λa(x)|u|r−2u+ b(x)|u|2

∗
s−2u in R3,

To find solutions of (1), we will use a variational approach. Hence, we will associate
a suitable functional to our problem. More precisely, the Euler-Lagrange functional
related to problem (1) is given by Iλ : Hs(R3)→ R defined as follows

Iλ(u) =
1

2
∥u∥2Hs +

1

4

∫
R3

ϕt
uu

2dx− λ

r

∫
R3

a(x)|u|rdx− 1

2∗s

∫
R3

b(x)|u|2
∗
sdx.

Obviously, Iλ ∈ C1(Hs(R3),R) and its critical points are weak solutions to (1). We
call u ∈ Hs(R3) is a weak solution of (1) if

⟨I ′λ(u), v⟩ =
∫
R3

(−∆)
s
2 u (−∆)

s
2 vdx+

∫
R3

uvdx+

∫
R3

ϕt
uuvdx

− λ

∫
R3

a(x)|u|r−2uvdx−
∫
R3

b(x)|u|2
∗
s−2uvdx = 0,

for any v ∈ Hs(R3).
Defined N : Hs(R3)→ R by N(u) =

∫
R3 ϕ

t
uu

2dx. The following lemma shows that
the functional and possesses property which is similar to the well-known Brezis-Lieb
lemma [4].

Lemma 2.2. Assume that 4s + 2t > 3. Let un ⇀ u in Hs(R3) and un → u a.e. in
R3. Then

(i) N(un − u) = N(un)−N(u) + on(1);

(ii) N ′(un − u) = N ′(un)−N ′(u) + on(1); in H−s(R3).

Proof. We can consult for example ([[20], Lemma 2.4]).

Along the way one can easily the following lemma

Lemma 2.3. Under the same conditions as the Lemma 2.2. Let vn = un − u ⇀ 0.
Then  Iλ(vn)→ c− Iλ(u),

I ′λ(vn)→ 0.
(3)
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We recall that

Definition 1. Let X be a Banach space

(i) For c ∈ R, a sequence {un} ⊂ Hs(R3) is a (PS)c for Iλ if Iλ(un) = c+ o(1) and
I

′

λ(un) = o(1) strongly in H−s(R3) as n→ +∞;

(ii) Iλ satisfies the (PS)c condition in X if any (PS)c sequence for Iλ contains a
convergent subsequence.

Let us show firstly the (PS)c sequence is bounded.

Lemma 2.4. Let c ∈ R. If {un} is (PS)c- sequence for Iλ, then {un} is bounded in
Hs(R3).

Proof. We have

Iλ(un) = c+ o(1) and I
′

λ(un) = o(1) in H−s(R3), (4)

By contradiction, we assume that ∥un∥Hs → +∞.
Let ûn = un

∥un∥Hs
. Clearly, ∥ûn∥Hs = 1 is bounded in Hs(R3). Up to a subsequence,

we may assume that
ûn ⇀ û in Hs(R3).

This implies

ûn → û in Lr(R3), 1 ≤ r < 2∗s.

By (4), we have

c+ o(1) =
1

2
∥un∥2Hs∥ûn∥2 +

1

4
∥un∥2Hs

∫
R3

ϕt
ûn

û2
ndx−

1

2∗s
∥un∥

2∗s
Hs

∫
R3

b(x)|ûn|2
∗
sdx

− λ

r
∥un∥rHs

∫
R3

a(x)|ûn|rdx, as n→ +∞,

and

o(1) = ∥un∥2Hs∥ûn∥2 + ∥un∥2Hs

∫
R3

ϕt
ûn

û2
ndx− ∥un∥

2∗s
Hs

∫
Ω

b(x)|ûn|2
∗
sdx

− λ∥un∥rHs

∫
R3

a(x)|ûn|rdx, as n→ +∞.

By using the above two equalities, we have

o(1) = (
1

r
− 1

2
)∥ûn∥2Hs + (

1

r
− 1

4
)

∫
R3

ϕt
ûn

û2
ndx

+

(
1

2∗s
− 1

r

)
∥un∥

2∗s−2
Hs

∫
R3

b(x)|ûn|2
∗
sdx,
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as n→ +∞, that is

(
1

r
− 1

2
)∥ûn∥2Hs + (

1

r
− 1

4
)

∫
R3

ϕt
ûn

û2
ndx

=

(
1

r
− 1

2∗s

)
∥un∥

2∗s−2
Hs

∫
R3

b(x)|ûn|2
∗
sdx+ o(1),

as n→ +∞.
This implies,

(
1

r
− 1

2
)∥ûn∥2Hs + (

1

r
− 1

4
)

∫
R3

ϕt
ûn

û2
ndx→ +∞,

as n→ +∞. By Lemma 2.1 (iii), there C > 0 and ∥ûn∥Hs = 1 we have

+∞← (
1

r
− 1

2
)∥ûn∥2Hs + (

1

r
− 1

4
)

∫
R3

ϕt
ûn

û2
ndx

≤ (
1

r
− 1

2
)∥ûn∥2Hs + C∥ûn∥4 = (

1

r
− 1

2
) + C, asn→ +∞,

which is a contradiction. Thus {un} is bounded in Hs(R3).

Lemma 2.5. There exists λ0 > 0 such that for every 0 < λ < λ0 the functional Iλ
satisfies (PS)c for all c < 0.

Proof. Consider a (PS)c sequence {un} for Iλ with c < 0. From Lemma 2.4 {un}
is bounded in Hs(R3). Going if necessary to a subsequence, we can assume that un ⇀ u, in Hs(R3),

un → u, in Lr(R3), 1 ≤ r < 2∗s.
(5)

By Lemma 2.3 we have

⟨I
′

λ(u), φ⟩ = 0 for any φ ∈ Hs(R3). (6)

With (4) and σ =
2∗s

2∗s−r and the Hölder Inequality we get

Iλ(un) −
1

2∗s
⟨I ′λ(un), un⟩ = c+ o(1)∥un∥Hs → c < 0

≥
(
1

2
− 1

2∗s

)
∥un∥2Hs +

(
1

2
− 1

2∗s

)∫
R3

ϕt
un

u2
ndx+ λ

(
1

2∗s
− 1

r

)∫
R3

a(x)|un|rdx

≥
(
1

2
− 1

2s∗

)
S|un|22∗s − λ

(
1

r
− 1

2∗s

)
|a|σσ|un|r2∗s .

Then, there exists some constant C > 0 such that

|un|2∗s ≤ Cλ
1

2−r , (7)
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and Brezis-Lieb Lemma [4] implies

|u|2∗s ≤ Cλ
1

2−r . (8)

By (6), note that

∥u∥2Hs +

∫
R3

ϕt
uu

2dx = λ

∫
R3

a(x)|u|rdx+

∫
R3

b(x)|u|2
∗
sdx, (9)

also, using Lemma 2.3, Lemma 2.1 (iv) and (4) we have

∥vn∥2Hs =

∫
R3

b(x)|vn|2
∗
sdx+ o(1). (10)

Now, we suppose that

lim
n→+∞

∥vn∥2Hs = lim
n→+∞

∫
R3

b(x)|vn|2
∗
sdx = l ̸= 0.

By Sobolev inequality, we have

∥vn∥2Hs ≥ S
(∫

R3

|vn|2
∗
sdx

) 2
2∗s

≥ Sb−
(3−2s)

3∞

(∫
R3

b(x)|vn|2
∗
sdx

) 2
2∗s

,

which implies that

l ≥ S
3
2s b

2s−3
2s∞ . (11)

Let 1 ≤ r < 2 < 2∗s. By Lemmas 2.3, 2.1 (iv), (7),(9),(10), (11) and the Hölder
inequality, we have

o(1) + c =
1

2
∥u∥2Hs +

1

4

∫
R3

ϕt
uu

2dx− λ

r

∫
R3

a(x)|u|rdx− 1

2∗s

∫
R3

b(x)|u|2
∗
sdx

+
1

2
∥vn∥2Hs −

1

2∗s

∫
R3

b(x)|vn|2
∗
sdx+ o(1)

=
1

4
∥u∥2Hs +

(
1

2
− 1

2∗s

)
∥vn∥2Hs +

1

4

(
∥u∥2Hs +

∫
R3

ϕt
uu

2dx

)
− λ

r

∫
R3

a(x)|u|rdx− 1

2∗s

∫
R3

b(x)|u|2
∗
sdx

=
1

4
∥u∥2Hs +

(
1

2
− 1

2∗s

)
∥vn∥2Hs + λ

(
1

4
− 1

r

)∫
R3

a(x)|u|rdx

+

(
1

4
− 1

2∗s

)∫
R3

b(x)|u|2
∗
sdx

≥ 2s

3
S

3
2s b

2s−3
2s∞ + λ

(
r − 4

4r

)
|a|σσ|u|r2∗s .

≥ 2s

3
S

3
2s b

2s−3
2s∞ + Cλ

2
2−r

(
r − 4

4r

)
|a|σσ.
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Then there exists K > 0 such that

0 > c ≥ 2s

3
S

3
2s b

2s−3
2s∞ −Kλ

2
2−r ,

which is a contradiction for λ small enough. Then, l = 0, that is, un → u strongly in
Hs(R3).

3. Proof of the first Theorem 1.1

First by the Sobolev inequality we obtain

Iλ(u) ≥ h(∥u∥Hs), (12)

where

h(x) =
1

2
x2 − b∞

2∗sS
2∗s
2

x2∗s − λ

r
Crx

r.

An easy computation shows that, there exists λ∗ > 0 such that for all 0 < λ < λ∗,
the real valued function x 7→ h(x) has exactly two positive zeros denoted by R0, R1

and the point R is where h attains its nonnegative maximum, verifies R0 < R < R1.
We now introduce the following truncation of the functional Iλ. Take the nonincreasing
function τ : R+ → [0, 1] and C∞(R+) such that τ(x) = 1 if x < R0,

τ(x) = 0 if x > R1

(13)

Let φ(u) = τ(∥u∥Hs). We consider the truncated functional

Ĩλ(u) =
1

2
∥u∥2Hs +

1

4

∫
R3

ϕt
uu

2dx− λ

r

∫
R3

a(x)|u|rdx− 1

2∗s

∫
R3

b(x)|u|2
∗
sφ(u)dx. (14)

Similar to 12, we have
Ĩλ(u) ≥ h(∥u∥Hs) (15)

where

h(x) =
1

2
x2 − b∞

2∗sS
2∗s
2

x2∗s τ(x)− λ

r
Crx

r.

Clearly,
h(x) ≥ h(x) (16)

for x ≥ 0 and h(x) = h(x) if 0 ≤ x ≤ R0, h(x) ≥ 0, if R0 < x ≤ R1 and if
x > R1, h(x) = xr( 12x

2−r − λ
rCr) is strictly increasing and so h(x) > 0, if x > R1.

Consequently
h(x) ≥ 0 for x ≥ R0. (17)

We have the following result.
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Lemma 3.1. This lemma can be expressed as three assertions:

1. Ĩλ ∈ C1(Hs(R3),R), is even.

2. If Ĩλ(u0) ≤ 0 then ∥u0∥Hs < R0. Moreover, Ĩλ(u) = Iλ(u) for all u in a small
enough neighborhood of u0.

3. There exists λ0 > 0, such that if 0 < λ < λ0, then Ĩλ verifies a local Palais-Smale
condition for c < 0.

Proof. Since φ ∈ C∞(Hs(R3),R) and φ(u) = 1 for u near 0, Ĩλ ∈ C1(Hs(R3),R)
and assertion 1 holds.
Note that Ĩλ(u0) ≥ Iλ(u0). By taking Ĩλ(u0) ≤ 0, we can deduce from 15 that

h(∥u0∥Hs) ≤ 0.

Then By (16) and (17) we have

∥u0∥Hs < R0. (18)

For the proof of (3), let {un} ⊂ Hs(R3) is a (PS)c sequence Ĩλ, with c < 0. Then we
may assume that Ĩλ(un) < 0, Ĩ ′λ(un)→ 0. By (2) and for 0 < λ < λ0, ∥un∥Hs < R0,

so Ĩλ(un) = Iλ(un) and Ĩ ′λ(un) = I ′λ(un). By Lemma 2.5, Iλ satisfies (PS)c condition

for c < 0, so there is a subsequence {un} such that un → u in Hs(R3). Thus Ĩλ
satisfies (PS)c condition for c < 0.

We first recall some concepts and results in minimax theory.
Let X be a Banach space, and

∑
denote all closed subsets of X − {0} which are

symmetric with respect to the origin. For A ∈
∑

, we define the genus γ(A) by

γ(A) = min
{
k ∈ N : ∃ϕ ∈ C(A;Rk − {0}), ϕ(−x) = ϕ(x)

}
,

if the minimum exists, and if such a minimum does not exist then we define γ(A) =∞.
The main properties of genus are contained in the following lemma (see[9] for the
details).

Lemma 3.2. Let A,B ∈
∑

. Then

1. If A ⊂ B, then γ(A) ≤ γ(B).

2. If there exists an odd homeomorphism between A and B, then γ(A) = γ(B).

3. If SN−1 is the sphere in RN , then γ(SN−1) = N.

4. γ(A ∪B) ≤ γ(A) + γ(B).
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5. If γ(A) <∞, then γ(A−B) ≥ γ(A)− γ(B).

6. If A is compact, then γ(A) < ∞, and there exists δ > 0 such that γ(A) =
γ(Nδ(A)) where Nδ(A) = {x ∈ X : d(x,A) ≤ δ}.

7. If X0 is a subspace of X with codimension k, and γ(A) > k, then A ∩X0 ̸= ∅.

It is possible to prove the existence of level sets of Ĩλ with arbitrarily large genus,
more precisely:

Lemma 3.3. ∀n ∈ N ∃ϵ(n) > 0 such that

γ({u ∈ Hs(R3) : Ĩλ(u) ≤ −ϵ(n)}) ≥ n.

Proof. Let Ω is an open bounded subset with strictly positive Lebesgue measure
such that a(x) > 0 in Ω. Let Xs

0(Ω) be the function space defined as

Xs
0(Ω) :=

{
u ∈ Hs(R3) : u = 0 a.e. in R3\Ω

}
.

So, Xs
0(Ω) ⊂ Hs(R3). Observe that by [[7], Proposition 3.6] we have the following

identity

∥u∥Xs
0 (Ω) =

(∫
Ω

|(−∆)s/2u(x)|2 + |u(x)|2dx
)1/2

= ∥un∥Hs .

For n ∈ N, we consider En be a n−dimensional subspace of Xs
0(Ω). Let un ∈ En with

norm ∥un∥Hs = 1. By (A2) there exists a cn > 0 such that∫
Ω

a(x)|un|rdx ≥ cn > 0.

For 0 < ρ < R0 and using Lemma 2.1 (iii), we get

Ĩλ(ρun) ≤
1

2
ρ2 +

1

4
Cρ4 − ρ2

∗
s

∫
R3

b(x)|un|2
∗
sdx− λ

r
ρr
∫
Ω

a(x)|un|rdx. (19)

Since En is a finite-dimensional space, all the norms in En are equivalent. Thus we
can define

αn := inf{
∫
Ω

a(x)|un|rdx : un ∈ En, ∥un∥Hs = 1} ≥ cn > 0,

βn := inf{
∫
Ω

b(x)|un|2
∗
sdx : un ∈ En, ∥un∥Hs = 1} > 0.

By using the definitions of αn, βn and inequality 19, we obtain

Ĩλ(ρun) ≤
1

2
ρ2 +

1

4
Cρ4 − ρ2

∗
sβn −

λ

r
ρrαn.
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Then, there exists ϵ(n) > 0 and 0 < ρ < R0 such that

Ĩλ(ρu) ≤ −ϵ(n)

for u ∈ En and ∥un∥Hs = 1. Let Sη = {u ∈ Hs(R3)/∥u∥Hs = η}, so

Sη ∩ En ⊂ {u ∈ Hs(R3)/Ĩλ(u) ≤ −ϵ(n)},

therefore, by Lemma 3.2 we see that

γ({u ∈ Hs(R3)/Ĩλ(u) ≤ −ϵ}) ≥ γ(Sη ∩ En) ≥ n.

We are now in a position to prove the first result.

Proof of the Theorem 1.1.
For n ∈ N, we define

Γn = {A ⊂ Hs(R3)− {0}/A is close, A = −A, γ(A) ≥ n}.

Let us set
cn = min

A∈Γn

max
u∈A

Ĩλ(u),

and
Kc = {u ∈ Hs(R3 : Ĩ ′λ(u) = 0, Ĩλ(u) = c},

and suppose 0 < λ < λ∗ where λ∗ is the constant given by Lemma 3.1.
We claim if n, r ∈ N are such that c = cn = cn+1 = · · ·cn+r, then γ(Kc) ≥ r + 1. For
simplicity, we call

Ĩ−ϵ
λ = {u ∈ Hs(R3)/Ĩλ(u) ≤ −ϵ}.

By lemma 3.3 there exists ϵ(n) > 0 such that γ(Ĩ−ϵ
λ ) ≥ n, for all n ∈ N. Because

Ĩλ(u) is continuous and even,Ĩ−ϵ
λ ∈ Γn, then cn ≤ −ϵ(n) < 0 for all n in N. But Ĩλ is

bounded from below, hence cn > −∞ for all n in N.
Let us assume that c = cn = cn+1 = ... = cn+r. Note that c < 0 therefore, Ĩλ verifies
the Plais-Smale condition in c, and it is easy to see that Kc is a compact set.
If γ(Kc) ≤ r, there exists a closed and symmetric set U verifying Kc ⊂ U, such that
γ(U) ≤ r. By the deformation lemma (see [19]), we have an odd homeomorphism
η : Hs(R3)→ Hs(R3), such that η(Ĩc+δ

λ − U) ⊂ Ĩc−δ
λ , for some δ > 0. By definition,

c = cn = inf
A∈Γn+r

sup
u∈A

Ĩλ(u).

There exists then A ∈ Γn+r, such that supu∈A Ĩλ(u) < c+ δ. i.e A ⊂ Ĩc+δ
λ ,

η(A− U) ⊂ η(Ĩc+δ
λ − U) ⊂ Ĩc−δ

λ .

By Lemma 3.2 (5) again γ(A− U) ≥ γ(A) − γ(U) ≥ n, and γ(η(A− U)) ≥
γ(A− U)) ≥ n.
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Then, η(A− U) ∈ Γn. Impossible, in fact η(A− U) ∈ Γn implies supu∈η(A−U) Ĩλ(u) ≥
cn = c.
So we have proved that γ(Kc) ≥ r+1. We are now ready to show that Iλ has infinitely
many critical point solutions. Note that cn is non-decreasing and strictly negative.
We distinguish two cases.
Case 1 Suppose that there are 1 < n1 < · · ·ni < · · ·, satisfying

cn1
< · · · < cni

< · · ·.

In this case, we have infinitely many distinct critical points.
Case 2 We assume in this case, that for some positive integer n0, there is a r ≥ 1
such that c = cn0 = cn0+1 = · · · = cn0+r, then γ(Kcn0

) ≥ r + 1 which shows that

Kcn0
contains infinitely many distinct elements. Since Ĩλ(u) = Iλ(u) if Ĩλ(u) < 0, we

see that there are infinitely many critical points of Iλ(u). The theorem 1.1 is proved.

4. Proof of the second Theorem 1.2

In this section, we show the existence of infinitely many solutions via the Fountain
Theorem [22].
We consider

Hs
G(R3) :=

{
u ∈ Hs(R3) : u(τx) = u(x), τ ∈ G

}
,

where G is a subgroup of the group of orthogonal linear transformations O3. Let us
consider the functional Iλ,G : Hs

G(R3) → R as Iλ,G = Iλ|Hs
G(R3). By the principle of

symmetric criticality of Krawcewicz-Marzantowicz [13], we know that u is a critical
point of Iλ if and only if u is a critical point of Iλ,G = Iλ|Hs

G(R3).

Lemma 4.1. For any λ > 0, s ∈ ( 34 , 1) and t ∈ (0, 1) such that 4s + 2t > 3, the
functional Iλ,G satisfies (PS)c for all c ∈ R.

Proof. Let {un} in Hs
G(R3) such that Iλ,G(un) → c and I ′λ,G(un) → 0 strongly in

H−s
G (R3). Following the same arguments as in the proof of Lemma 2.4 we have {un}

is bounded. Therefore, up to a subsequence, we may assume that un ⇀ u, in Hs(R3);
un → u, in Lr(R3), 1 ≤ r < 2∗s;
un(x)→ u(x), a.e. in R3.

(20)

From the concentration-compactness alternative for bounded sequences in the frac-
tional spaceHs

G(R3), see [[18], Theorem 2.2 ]: There exists a subsequence, still denoted
by {un}, at most countable set Λ, a set of points {xj}j∈Λ ⊂ R3 and real numbers
µj , νj ∈ [0,∞) such that

|(−∆)s/2un|2 ⇀ dµ ≥ |(−∆)s/2u|2 +
∑
j∈Λ

µjδxj , µj = µ(xj), (21)
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|un|2
∗
s ⇀ dν = |u|2

∗
s +

∑
j∈Λ

νjδxj
, νj = ν(xj), (22)

µj ≥ Sν
2
2∗s
j . (23)

We claim that the concentration of ν cannot occur at any x ̸= 0. Now we suppose
that there exists xj ̸= 0, where j0 ∈ Λ such that νj0 = νxj0

> 0. The measure ν is
G−invariant. For all τ ∈ G, ν(xj0) = ν(τxj0) > 0. We know that #G =∞, thus

ν ({τxj0 : τ ∈ G}) =∞.

Note that the measure ν is finite, which is a contradiction. Then, for any xj ̸= 0
where j ∈ Λ, we get νj = ν(xj) = 0. Now we suppose that 0 /∈ {xj : j ∈ Λ} . In fact,
assume ε > 0 small enough such that for any 0 /∈ Bε(0). Let φε ∈ C∞0 (R3) be a cut-off
function centered at 0 satisfying

0 ≤ φε ≤ 1, φε(x) =

{
1 if |x| ≤ ε

2 ,
0 if |x| ≥ ε.

Since (φεun) is bounded, ⟨I ′λ,G(un), φεun⟩ → 0, that is

⟨(−∆)
s
2 (un), φε (−∆)

s
2 (un)⟩ + ⟨(−∆)

s
2 (un), un (−∆)

s
2 (φε)⟩+

∫
R3

u2
nφεdx

+

∫
R3

ϕt
un

u2
nφεdx = λ

∫
R3

a(x)|un|rφεdx+

∫
R3

b(x)|un|2
∗
sφεdx+ o(1)

lim
n→+∞

⟨(−∆)
s
2 (un), φε (−∆)

s
2 (un)⟩ =

∫
R3

φεdµ (24)

lim
n→+∞

∫
R3

b(x)|un|2
∗
sφεdx =

∫
R3

b(x)φεdν =

∫
R3

b(x)|u|2
∗
sφεdx+ b(xj)νj (25)

lim
ε→0

lim
n→0

∣∣∣⟨(−∆)
s
2 (un), un (−∆)

s
2 (φε)⟩

∣∣∣
≤ lim

ε→0
lim
n→0

((∫
R3

| (−∆)
s
2 un|2dx

)1/2

×
(∫

R3

|un|2| (−∆)
s
2 φε|2dx

)1/2
)

≤ C lim
ε→0

(∫
R3

|u|2| (−∆)
s
2 φε|2dx

)1/2

≤ C lim
ε→0

(∫
Bε(0)

|u|2
∗
s |dx

)1/2∗s
(∫

Bε(0)

(−∆)
s
2 φε|

3
s dx

) s
3

≤ C lim
ε→0

(∫
Bε(0)

|u|2
∗
s |dx

)1/2∗s

= 0,

(26)
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and

lim
ε→0

∫
R3

| (−∆)
s
2 u|2φεdx = 0

lim
ε→0

∫
R3

b(x)|u|2
∗
sφεdx = 0,

lim
ε→0

∫
R3

a(x)|u|rφεdx = 0, lim
ε→0

∫
R3

|u|2φεdx = 0,

lim
ε→0

∫
R3

ϕt
uu

2φεdx = 0.

(27)

Thus,

µ({0}) = b(0)ν({0}).

Note that b(0) = 0, then µ({0}) = 0. In the next step, we claim that the concentration
of ν cannot occur at infinity.

ν∞ = lim
R→+∞

lim sup
n→+∞

∫
|x|>R

|un|2
∗
sdx,

µ∞ = lim sup
n→+∞

∫
x|>R

| (−∆)
s
2 un|2dx.

Hence, by using the concept of the concentration-compactness in ([17],[18]) at
infinity, ν∞ and µ∞ exist and satisfy :

lim sup
n→+∞

∫
R3

|un|2
∗
sdx =

∫
R3

dν + ν∞

lim sup
n→+∞

∫
R3

| (−∆)
s
2 un|2dx =

∫
R3

dµ+ µ∞.

Sν2/2
∗
s∞ ≤ µ∞. (28)

For anyR > 0, take a radially symmetric function χR ∈ C∞(R3) such that 0 ≤ χR ≤ 1,
χR = 1 in R3\B2R, χR = 0 in BR. It is easy to obtain that χRun is bounded on
Hs

G(R3). Then

lim
n→+∞

⟨I ′λ,G(un), χRun⟩ = 0.

We have

⟨(−∆)
s
2 (un), χR (−∆)

s
2 (un)⟩+ ⟨(−∆)

s
2 (un), un (−∆)

s
2 (χR)⟩+

∫
R3

u2
nχRdx

+

∫
R3

ϕt
un

u2
nχRdx = λ

∫
R3

a(x)|un|rχRdx+

∫
R3

b(x)|un|2
∗
sχRdx+ o(1)
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Similar to the proof of (26), we have

lim
R→+∞

lim sup
n→+∞

⟨(−∆)
s
2 (un), un (−∆)

s
2 (χR)⟩ ≤ C lim

R→+∞

(∫
R<|x|<2R

|u|2
∗
sdx

)1/2∗s

= 0.

Also,

lim
R→+∞

lim sup
n→+∞

∫
R3

a(x)|un|rχRdx = lim
R→+∞

∫
R3

a(x)|u|rχRdx = 0,

lim
R→+∞

lim sup
n→+∞

∫
R3

u2
nχRdx = lim

R→+∞

∫
R3

u2χRdx = 0,

lim
R→+∞

lim sup
n→+∞

∫
R3

ϕt
un

u2
nχRdx = lim

R→+∞

∫
|x|>R

ϕt
uu

2χRdx = 0.

Since b(∞) = 0,

lim
R→+∞

lim sup
n→+∞

∫
|x|>R

b(x)|un|2
∗
sdx = 0.

Then,

µ∞ = lim
R→+∞

lim sup
n→+∞

∫
x|>R

| (−∆)
s
2 un|2dx ≤ lim

R→+∞
lim sup
n→+∞

∫
|x|>R

b(x)|un|2
∗
sdx = 0.

Thus µ∞ = 0. Then, from (28) we obtain ν∞ = 0. Hence, up to a subsequence, we
derive

lim
n→+∞

∫
R3

|un|2
∗
sdx =

∫
R3

|u|2
∗
sdx.

By Brézis-Leib [4] un → u in L
2∗s
G (R3). Note that b ∈ L∞

G (R3) we obtain

lim
n→+∞

∫
R3

b(x)|un − u|2
∗
sdx = 0.

Then un → u strongly in Hs
G(R3).

Since Hs
G(R3) is separable (see [1]), there exist {en}n∈N ⊂ Hs

G(R3) and {fn}n∈N ⊂
H−s

G (R3) with

Hs
G(R3) = span{en}∞n=1, H−s

G (R3) = span{fn}∞n=1

⟨fi, ej⟩ =
{

1 if i = j,
0 if i ̸= j,

where ⟨, ⟩ is the duality pairing between H−s
G (R3) and Hs

G(R3).

Let Xj = span{ej}, Yn =

n⊕
j=0

Xj , Zn =

∞⊕
j=n

Xj .

Let
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Lemma 4.2. ([22] Fountain theorem)
Consider an even functional Iλ,G ∈ C(Hs

G(R3),R). If, for every k ∈ N, there exist
ρk > rk > 0 such that

1. αk := max
{
Iλ,G(u) : u ∈ Yk, ∥u∥Hs

G
= ρk

}
≤ 0.

2. βk := inf
{
Iλ,G(u) : u ∈ Zk, ∥u∥Hs

G
= ρk

}
→∞ as k → +∞.

3. Iλ,G satisfying (PS) condition for every c > 0.

Then Iλ,G has an unbounded sequence of critical values.

Proof of Theorem 1.2.

The functional Iλ,G is even, Iλ,G ∈ C(Hs
G(R3),R). By Lemma 4.1 Iλ,G satisfying (PS)

condition for any c ∈ R. We only need to verify Iλ,G satisfying (1) and (2) of Lemma
4.2. Since Xj is a finite-dimensional subspace of Hs

G(R3) for each j ∈ N and b(x) > 0
a.e. in R3, this implies that there exists a constant εj > 0 such that for all v ∈ Xj

with ∥v∥Hs
G
= 1 we have ∫

R3

b(x)|v|2
∗
sdx ≥ εj .

On the other hand,

for any u ∈ Xj\{0}, with ∥u∥Hs
G
= 1 and by using the Lemma Sobolev inequality

we get

Iλ,G(tu) ≤
t2

2
∥u∥2Hs

G
+ C

t4

2
∥u∥4Hs

G
− λtr

r

∫
R3

a(x)|u|rdx− t2
∗
s

2∗s

∫
R3

b(x)|u|2
∗
sdx

≤ t2

2
+ C

t4

2
− t2

∗
s

2∗s
εj .

Since 4 < 2∗s, there exists tj > 1 such that ej = tju satisfies Iλ,G(ej) ≤ 0. This proves
(1) of Lemma 4.2.
Define

βj = sup
u∈Zj ,∥u∥Hs

G
=1

(∫
R3

b(x)|u|2
∗
sdx

)1/2∗s

.

By the definition of Zj , we get uj ⇀ 0 in Hs
G(R3). Since b(x) is continuous, b(0) = 0,

b(∞) = 0 and by the same argument using in Lemma 4.1 we see that a concentration
of the measure ν can only occur at 0 and ∞. We deduce that∫

R3

b(x)|uj |2
∗
sdx→ 0,

as j →∞, so

βj → 0.
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For all u ∈ Zj , we have

Iλ,G(u) ≥
1

2
∥u∥2Hs

G
− λC

r
∥u∥rHs

G
−

β
2∗s
j

2∗s
∥u∥2

∗
s

Hs
G
.

Let u ∈ Zj , such that ∥u∥Hs
G
= Aj =

(
1

β
2∗s
j

) 1
2∗s−2

Since βj → 0 we have Aj → +∞ as

j → +∞. Since 1 < r < 2 we have

Iλ,G(u) ≥
(
1

2
− 1

2∗s

)
A2

j −
λC

r
Ar

j → +∞, as j → +∞.

So, Iλ,G satisfies (2). All the assumptions of Lemma 4.2 are satisfied. Therefore, this
concludes the proof of Theorem 1.2.

References

[1] R. Adams, Sobolev Spaces, Ac. Press, New York, 1975.

[2] A. Ambrosetti, D. Ruiz, Multiple bound states for the Schrödinger-Poisson prob-
lem, Communications in Contemporary Mathematics 10 (03) (2008) 391–404.

[3] V. Benci, D. F. Fortunato, Solitary waves of the nonlinear Klein-Gordon equation
coupled with the Maxwell equations, Reviews in Mathematical Physics 14 (04)
(2002) 409–420.
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Karakostas Fixed Point Theorem and

Semilinear Neutral Differential Equations

with Impulses and Nonlocal Conditions

Hugo Leiva, Lenin Riera and Sebastián Lalvay

Abstract: This paper is concerned with the existence and unique-
ness of solutions for a semilinear neutral differential equation with impulses
and nonlocal conditions. First, we assume that the nonlinear terms are lo-
cally Lipschitz, and to achieve the existence of solutions, Karakostas Fixed
Point Theorem is applied. After that, under some additional conditions,
the uniqueness is proved as well. Next, assuming some bound on the non-
linear terms the global existence is proved by applying a generalization of
Gronwall inequality for impulsive differential equations. Then, we suppose
stronger hypotheses on the nonlinear functions, such as globally Lipschitz
conditions, that allow us to appy Banach Fixed Point Theorem to prove
the existence and uniqueness of solutions. Finally, we present an example
as an application of our method.

AMS Subject Classification: 93B05, 93C10.
Keywords and Phrases: Semilinear neutral differential equations; Impulses; Delay;
Nonlocal conditions; Karakostas fixed point theorem.

1. Introduction and Preliminaries

This work is devoted to study the existence of solutions for the following semilinear
neutral differential equation with impulses and nonlocal conditions.

d

dt
[z(t)− f−1(t, zt)] = A0(t)z(t) + f1(t, zt), t ̸= tk, t ∈ [0, τ ],

z(θ) + h(zτ1 , zτ2 , . . . , zτq )(θ) = η(θ), θ ∈ [−r, 0],
z(t+k ) = z(t−k ) + Jk(tk, z(tk)), k = 1, 2, . . . , p,

(1.1)
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where A0(t) is a n × n continuous matrix, the functions f−1, f1, and h are smooth
enough and 0 < t1 < t2 < · · · < tp < τ , 0 < τ1 < τ2, · · · < τq < r < τ . Here,
zt : [−r, 0] −→ Rn is defined by zt(θ) = z(t+ θ), and η belongs to the Banach space

PWr =
{
η : [−r, 0] −→ Rn : η is continuous except at skη, k = 1, 2, . . . , p points

where the side limits exist η(s+kη), η(s
−
kη) = η(skη), and are finite

}
with the norm

∥η∥r = sup
t∈[−r,0]

∥η(t)∥Rn .

There are many papers on the study of linear neutral differential equations, to mention
[6, 12–14, 19, 20], particularly, the controllability of such equations has been studied
in [12–14, 19, 20] where Kalman-type algebraic condition is proved (see [9]). In [6],
the existence of solutions for an abstract neutral functional differential equations is
discussed. To our knowledge, there are a few works on the existence of solutions for
semilinear neutral equations with impulses and nonlocal conditions simultaneously.
Karakostas Fixed Point Theorem will be applied to prove our main result on the
existence of solutions of (1.1).

Theorem 1.1 (Karakostas Fixed Point Theorem- see[7, 10, 11]). Let Z and
Y be Banach spaces and D be a closed convex subset of Z, and let B : D → Y be a
continuous operator such that B(D) is a relatively compact subset of Y, and

T : D × B(D) → D

a continuous operator such that the family {T (·, y) : y ∈ B(D)} is equicontractive.
Then, the operator equation

T (z,B(z)) = z

admits a solution on D.

Now, we define natural Banach spaces where the solutions of problem (1.1) will
take place and present some notations to be used through this work. We begin defining
the Banach spaces

PWt1..tp([0, τ ];Rn) = {z : [0, τ ] → Rn : z is continuous except at tk, k = 1, . . . , p

points where the side limits exist z(t+k ), z(tk) = z(t−k ),

and are finite},

and

PWp =
{
η : [−r, τ ] −→ Rn : η

∣∣∣
[−r,0]

∈ PWr and η
∣∣∣
[0,τ ]

∈ PWt1..tp

}
,

equipped with the supremum norm and

∥η∥p = sup
t∈[−r,τ ]

∥η(t)∥Rn ,
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respectively. We will also consider

Rqn = Rn × Rn × · · · × Rn︸ ︷︷ ︸
q−times

=

q∏
k=1

Rn

equipped with the norm

∥y∥q =

q∑
i=1

∥yi∥Rn .

Analogously, we define the Banach space

PWqp =
{
η : [−r, 0] −→ Rqn : η is continuous except atskη, k = 1, 2, . . . , p, points

where the side limits exist η(s+kη), η(s
−
kη) = η(skη), and are finite

}
endowed with the norm

∥η∥qp = sup
t∈[−r,0]

∥η(t)∥q = sup
t∈[−r,0]

(
q∑

i=1

∥ηi(t)∥Rn

)
.

The functions in system (1.1) are defined as follows:

f−1, f1 : [0, τ ]× PWr −→ Rn, h : PWqp −→ PWr, Jk : [0, τ ]× Rn −→ Rn.

To conclude this section, we define the evolution operator U(t, θ) = Φ(t)Φ−1(θ) where
Φ is the fundamental matrix of the linear system of ordinary differential equations

y′(t) = A0(t)y(t).

Also, we shall consider the following bound

M = sup
t,θ∈[0,τ ]

∥U(t, θ)∥.

Remark 1.1. We will omit the subscript in the functions space norms defined above
as long as this does not lead to confusion.

2. Formula for the solutions of system (1.1).

We devote this section to find a formula for solutions of the semilinear neutral differen-
tial equations with impulses and nonlocal conditions (1.1). Specifically, we transform
problem (1.1) into an integral differential equation problem, which allows us to apply
Karakostas Fixed Point Theorem to prove the existence of solutions for (1.1) in the
next section.
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Proposition 2.1. The system (1.1) has solution z on [−r, τ ] if, and only if, z is a
solution of the following integral equation

z(t) =



U(t, 0)
[
η(0)− h(zτ1 , zτ2 , . . . , zτq )(0)− f−1(0, η − h(zτ1 , zτ2 , . . . , zτq ))

]
+

∫ t

0

U(t, θ) [A0(θ)f−1(θ, zθ) + f1(θ, zθ)] dθ + f−1(t, zt)

+
∑

0<tk<t

U(t, tk)Jk(tk, z(tk)), t ∈ [0, τ ],

η(t)− h(zτ1 , zτ2 , . . . , zτq )(t), t ∈ [−r, 0].
(2.1)

Proof. ( =⇒ ) Suppose that z is a solution for system (1.1) on [−r, τ ]. Let

z0 = η(0)− h(zτ1 , zτ2 , . . . , zτq )(0).

• On [0, t1), z is the solution of the following system
d

dt
[z(t)− f−1(t, zt)] = A0(t)z(t) + f1(t, zt), t ∈ [0, t1),

z(t) + h(zτ1 , · · · , zτq )(t) = η(t), t ∈ [−r, 0],

and by the variation of parameters formula

z(t) =f−1(t, zt) + U(t, 0)[z0 − f−1

(
0, η − h(zτ1 , zτ2 , . . . , zτq )

)
]

+

∫ t

0

U(t, θ)[A0(θ)f−1(θ, zθ) + f1(θ, zθ)]dθ, t ∈ [0, t1).

As t→ t−1 ,

z(t−1 ) =f−1(t1, zt1) + U(t1, 0)[z0 − f−1

(
0, η − h(zτ1 , zτ2 , . . . , zτq )

)
]

+

∫ t1

0

U(t1, θ)[A0(θ)f−1(θ, zθ) + f1(θ, zθ)]dθ.

• On [t1, t2), z is the solution of the following system
d

dt
[z(t)− f−1(t, zt)] = A0(t)z(t) + f1(t, zt), t ∈ [t1, t2),

z(t+1 ) = z(t1) + J1(t1, z(t1))

and again the variation constant formula yields

z(t) =f−1(t, zt) + U(t, t1)[z(t1) + J1(t1, z(t1))− f−1

(
t1, η − h(zτ1 , zτ2 , . . . , zτq )

)
]

+

∫ t

t1

U(t, θ)[A0(θ)f−1(θ, zθ) + f1(θ, zθ)]dθ, t ∈ [t1, t2),
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therefore

z(t) =f−1(t, zt) + U(t, t1)
{
f−1(t1, zt1) + U(t1, 0)[z0 − f−1

(
0, η − h(zτ1 , zτ2 , . . . , zτq )

)
]

+

∫ t1

0

U(t1, θ)[A0(θ)f−1(θ, zθ) + f1(θ, zθ)]dθ + J1(t1, z(t1))

− f−1

(
t1, η − h(zτ1 , zτ2 , . . . , zτq )

) }
+

∫ t

t1

U(t, θ)[A0(θ)f−1(θ, zθ) + f1(θ, zθ)]dθ.

=f−1(t, zt) + U(t, t1)
{
U(t1, 0)[z0 − f−1

(
0, η − h(zτ1 , zτ2 , . . . , zτq )

)
]

+

∫ t

0

U(t1, θ)[A0(θ)f−1(θ, zθ) + f1(θ, zθ)]dθ + J1(t1, z(t1))
}

+

∫ t

t1

U(t, θ)[A0(θ)f−1(θ, zθ) + f1(θ, zθ)]dθ.

Using the cocycle property of U ,

z(t) =f−1(t, zt) + U(t, 0)[z0 − f−1

(
0, η − h(zτ1 , zτ2 , . . . , zτq )

)
]

+

∫ t1

0

U(t, θ)[A0(θ)f−1(θ, zθ) + f1(θ, zθ)]dθ + U(t, t1)J1(t1, z(t1))

+

∫ t

t1

U(t, θ)[A0(θ)f−1(θ, zθ) + f1(θ, zθ)]dθ

=f−1(t, zt) + U(t, 0)[z0 − f−1

(
0, η − h(zτ1 , zτ2 , . . . , zτq )

)
]

+

∫ t

0

U(t, θ)[A0(θ)f−1(θ, zθ) + f1(θ, zθ)]dθ + U(t, t1)J1(t1, z(t1)).

Proceeding inductively as above, we have that for t ∈ [tp, tp+1),

z(t) = f−1(t, zt) + U(t, 0)[z0 − f−1

(
0, η − h(zτ1 , zτ2 , . . . , zτq )

)
]

+

∫ t

0

U(t, θ)[A0(θ)f−1(θ, zθ) + f1(θ, zθ)]dθ +

p∑
k=1

U(t, tk)Jk(tk, z(tk)), t ∈ [0, τ ]

= f−1(t, zt) + U(t, 0)[η(0)− h(zτ1 , zτ2 , . . . , zτq )(0)− f−1

(
0, η − h(zτ1 , zτ2 , . . . , zτq )

)
]

+

∫ t

0

U(t, θ)[A0(θ)f−1(θ, zθ) + f1(θ, zθ)]dθ +
∑

0<tk<t

U(t, tk)Jk(tk, z(tk)), t ∈ [0, τ ]

( ⇐= ) Assume that z is solution of the integral equation (2.1).
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Then, at t1,

z(t−1 ) =f−1(t1, zt1) + U(t1, 0)[z0 − f−1

(
0, η − h(zτ1 , zτ2 , . . . , zτq )

)
]

+

∫ t1

0

U(t1, θ)[A0(θ)f−1(θ, zθ) + f1(θ, zθ)]dθ,

z(t+1 ) =f−1(t1, zt1) + U(t1, 0)[z0 − f−1

(
0, η − h(zτ1 , zτ2 , . . . , zτq )

)
]

+

∫ t1

0

U(t1, θ)[A0(θ)f−1(θ, zθ) + f1(θ, zθ)]dθ + U(t1, t1)J1(t1, z(t1)),

which implies that
z(t+1 ) = z(t−1 ) + J1(t1, z(t1)).

Near t2,

z(t−2 ) =f−1(t2, zt2) + U(t2, 0)[z0 − f−1

(
0, η − h(zτ1 , zτ2 , . . . , zτq )

)
]

+

∫ t2

0

U(t2, θ)[A0(θ)f−1(θ, zθ) + f1(θ, zθ)]dθ + U(t2, t1)J1(t1, z(t1)),

z(t+2 ) =f−1(t2, zt2) + U(t2, 0)[z0 − f−1

(
0, η − h(zτ1 , zτ2 , . . . , zτq )

)
]

+

∫ t2

0

U(t2, θ)[A0(θ)f−1(θ, zθ) + f1(θ, zθ)]dθ + U(t2, t1)J1(t1, z(t1))

+ U(t2, t2)J2(t2, z(t2)),

which means that
z(t+2 ) = z(t−2 ) + J2(t2, z(t2)).

Proceeding inductively as above, we get that for k = 1, 2, . . . , p,

z(t+k ) = z(t−k ) + Jk(tk, z(tk)).

On the other hand, differentiating z with respect to t, for t ∈ [0, τ) and t ̸= tk, k =
1, 2, . . . , p, we obtain that

d

dt
(z(t)) =

d

dt

(
f−1(t, zt) + U(t, 0)

[
z0 − f−1(0, η − h(zτ1 , zτ2 , . . . , zτq ))

]
+

∫ t

0

U(t, θ) [A0(θ)f−1(θ, zθ) + f1(θ, zθ)] dθ +
∑

0<tk<t

U(t, tk)Jk(tk, z(tk))
)
,

d

dt
(z(t)) =

d

dt
f−1(t, zt) +A0(t)U(t, 0)[z0 − f−1

(
0, η − h(zτ1 , zτ2 , . . . , zτq )

)
]

+A0(t)

∫ t

0

U(t, θ)[A0(θ)f−1(θ, zθ)+f1(θ, zθ)]dθ+A0(t)f−1(t, zt)+f1(t, zt)

+A0(t)
∑

0<tk<t

U(t, tk)Jk(tk, z(tk)).
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By rearranging terms it follows that

d

dt
[z(t)− f−1(t, zt)] =A0(t)

{
f−1(t, zt) + U(t, 0)

[
z0 − f−1(0, η − h(zτ1 , zτ2 , . . . , zτq ))

]
+

∫ t

0

U(t, θ) [A0(θ)f−1(θ, zθ) + f1(θ, zθ)] dθ

+
∑

0<tk<t

U(t, tk)Jk(tk, z(tk))
}
+ f1(t, zt)

=A0(t)z(t) + f1(t, zt),

that is to say, z is a solution of (1.1).

3. Main Theorems

In this section we shall prove our main result about the existence of solutions for
the semilinear neutral equation with impulses and nonlocal conditions (1.1) and their
behavior.To achieve that, we consider the following hypotheses on the terms involving
the system (1.1).
(H1) There exist constants dk, Lg, γ > 0, k = 1, 2, . . . , p such that ∀y, z ∈ Rn,
t ∈ [0, τ ]

i. LgqM < γ +M

p∑
k=1

dk <
1

2
, ∥Jk(t, y)− Jk(t, z)∥Rn ≤ dk∥y − z∥Rn .

ii. We have that h(0) ≡ 0 and

∥h(y)(t)− h(v)(t)∥Rn ≤ Lg

q∑
i=1

∥yi(t)− vi(t)∥Rn , y, v ∈ PWqp.

(H2) The function f−1 satisfies

i.

∥A0(t)f−1(t, η1)−A0(t)f−1(t, η2)∥Rn ≤ K (∥η1∥r, ∥η2∥r) ∥η1 − η2∥r, η1, η2 ∈ PWr,

∥f−1(t, η1)− f−1(t, η2)∥Rn ≤ γ∥η1 − η2∥r, η1, η2 ∈ PWr

∥A0(t)f−1(t, η)∥Rn ≤ Ψ(∥η∥r) , η ∈ PWr,

∥f−1(t, η)∥Rn ≤ Ψ(∥η∥r) , η ∈ PWr.

and f1 satisfies

ii.

∥f1(t, η1)− f1(t, η2)∥Rn ≤ K (∥η1∥r, ∥η2∥r) ∥η1 − η2∥r, η1, η2 ∈ PWr,

∥f1(t, η)∥Rn ≤ Ψ(∥η∥r) , η ∈ PWr,
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where K : R+ × R+ −→ R+,Ψ : R+ −→ R+ are continuous and non decreasing
functions.
(H3) There exists ρ, τ > 0 such that

MΨ
(
∥η∥+ Lgq

(
˜∥η∥+ ρ

))
+

(
MLgq +M

p∑
k=1

dk

)(
˜∥η∥+ ρ

)
+ (2Mτ + 1)Ψ

(
˜∥η∥+ ρ

)
< ρ

where the function η̃ is defined as follows

η̃(t) =

{
U(t, 0)η(0), t ∈ [0, τ ],

η(t), t ∈ [−r, 0].

(H4) Assume the following relation holds

M
{
Lgq (1 + γ) + 2τK

(
˜∥η∥+ ρ, ˜∥η∥+ ρ

)}
<

1

2
.

Remark 3.1. The hypothesis (H2) is not a whim, it appears naturally when one
studies the well-known Burgues equation and the Benjamin-Bona-Mahony equation;
and since we will extend this work to infinite-dimensional Hilbert spaces, these hy-
potheses are considered here. For more details about it, one can see [10,11].

Theorem 3.1. Suppose that (H1)-(H3) hold. Then, the system (1.1) has at least
one solution on [−r, τ ].

Proof. We shall transform the problem of proving the existence of solutions for sys-
tem (1.1) into a fixed point problem. For this, we define the following operators

T : PWp × PWp −→ PWp,

and
B : PWp −→ PWp

given by

T (z, y)(t) =

y(t) + f−1(t, zt) +
∑

0<tk<t

U(t, tk)Jk(tk, z(tk)), t ∈ [0, τ ],

η(t)− h(zτ1 , zτ2 , . . . , zτq )(t), t ∈ [−r, 0],

and

B(y)(t) =


U(t, 0)

[
η(0)− h(yτ1 , yτ2 , . . . , yτq )(0)− f−1(0, η − h(yτ1 , yτ2 , . . . , yτq ))

]
+

∫ t

0

U(t, θ) [A0(θ)f−1(θ, yθ) + f1(θ, yθ)] dθ, t ∈ [0, τ ],

η(t), t ∈ [−r, 0],
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respectively. We also consider the following closed and convex set

D = D(ρ, τ, η) = {y ∈ PWp : ∥y − η̃∥p ≤ ρ} .

With this setting, the problem of finding solutions for system (1.1) has been reduced
to the problem of finding solutions of the following operator equation

T (z,B(z)) = z.

The rest of the proof will be given by statements as follows:

Statement 1. B is a continuous mapping.

For any z, y ∈ PWp we have that

∥B(z)(t)− B(y)(t)∥ ≤ ∥U(t, 0)∥
{∥∥h(yτ1 , yτ2 , . . . , yτq )(0)− h(zτ1 , zτ2 , . . . , zτq )(0)

∥∥
+
∥∥f−1

(
0, η−h(yτ1 , yτ2 , ..., yτq )

)
−f−1

(
0, η−h(zτ1 , zτ2 , ..., zτq )

)∥∥}
+

∫ t

0

∥U(t, θ)∥
{
∥A0(θ)f−1(θ, zθ)−A0(θ)f−1(θ, yθ)∥

+ ∥f1(θ, zθ)− f1(θ, yθ)∥
}
dθ

≤M
[
Lgq∥z − y∥+ γ

∥∥g(zτ1 , zτ2 , . . . , zτq )− h(yτ1 , yτ2 , . . . , yτq )
∥∥]

+Mτ [K(∥z∥, ∥y∥)∥z − y∥+K(∥z∥, ∥y∥)∥z − y∥] ,
≤M [Lgq∥z − y∥+ γLgq∥z − y∥]

+ 2MτK(∥z∥, ∥y∥)∥z − y∥,

where the last two inequality comes from (H1-ii) and (H2). It follows that

∥B(z)− B(y)∥ ≤M {Lgq (1 + γ) + 2τK (∥z∥, ∥y∥)} ∥z − y∥

by taking supremum over t ∈ [−r, τ ]. Hence B is locally Lipschitz, which implies the
continuity of B.

Statement 2. B maps bounded sets of PWp into bounded sets of PWp.

In order to prove this statement, we will show that

∀R > 0 ∃λ > 0 ∀y ∈ BR : ∥B(y)∥ ≤ λ,

where BR = {z ∈ PWp : ∥z∥ ≤ R}. Let R > 0 and consider λ = max{ϑ, ∥η∥}, ϑ to
be determined later. Let y ∈ BR. Then, on one hand, we have that

∥B(y)(t)∥ = ∥η(t)∥ ≤ ∥η∥,
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if t ∈ [−r, 0]. While, on the other hand,

∥B(y)(t)∥ ≤ ∥U(t, 0)∥
∥∥η(0)−h(yτ1 , yτ2 , . . . , yτq )(0)−f−1(0, η−h(yτ1 , yτ2 , . . . , yτq ))

∥∥
+

∫ t

0

∥U(t, θ)∥ [∥A0(θ)f−1(θ, yθ)∥+ ∥f1(θ, yθ)∥] dθ

≤M
{
∥η(0)∥+

∥∥h(yτ1 , yτ2 , . . . , yτq )(0)∥∥+∥∥f−1(0, η−h(yτ1 , yτ2 , . . . , yτq ))
∥∥}

+ τM [∥A0(θ)f−1(θ, yθ)∥+ ∥f1(θ, yθ)∥]
≤M

{
∥η(0)∥+ Lgq∥y∥+Ψ

(∥∥η − h(yτ1 , yτ2 , . . . , yτq )
∥∥) }+ τM2Ψ(∥y∥)

≤M
{
∥η(0)∥+ Lgq∥y∥+Ψ

(
∥η∥+

∥∥h(yτ1 , yτ2 , . . . , yτq )∥∥) }+ τM2Ψ(∥y∥)
≤M

{
∥η(0)∥+ Lgq∥y∥+Ψ(∥η∥+ Lgq∥y∥)

}
+ τM2Ψ(∥y∥)

≤M
{
∥η(0)∥+ LgqR+Ψ(∥η∥+ LgqR) + τ2Ψ(R)

}
= ϑ,

if t ∈ [0, τ ]. Here we have used (H1-ii) and (H2). Now, taking supremum over
t ∈ [−r, τ ], we have that

∥B(y)∥ ≤ λ.

Statement 3. B maps bounded sets of PWp into equicontinuous sets of PWp.

Let us consider BR as above and let us show that B(BR) is equicontinuous on
[−r, τ ]. On [−r, 0], the continuity of η immediately implies the result. On (0, τ ], we
have that

∥B(y)(t2)− B(y)(t1)∥ ≤ ∥U(t2, 0)− U(t1, 0)∥∥η(0)− h(yτ1 , yτ2 , . . . , yτq )(0)

− f−1

(
0, η − h(yτ1 , yτ2 , . . . , yτq )

)
∥

+

∫ t1

0

∥U(t2, θ)− U(t1, θ)∥∥A0(θ)f−1(θ, yθ) + f1(θ, yθ)∥dθ

+

∫ t2

t1

∥U(t2, θ)∥∥A0(θ)f−1(θ, yθ) + f1(θ, yθ)∥dθ

≤ ∥U(t2, 0)− U(t1, 0)∥
{
∥η(0)∥+ Lgq∥y∥

+
∥∥f−1

(
0, η − h(yτ1 , yτ2 , . . . , yτq )

)∥∥}
+

∫ t1

0

∥U(t2, θ)− U(t1, θ)∥ [∥A0(θ)f−1(θ, yθ)∥+∥f1(θ, yθ)∥] dθ

+

∫ t2

t1

∥U(t2, θ)∥ [∥A0(θ)f−1(θ, yθ)∥+ ∥f1(θ, yθ)∥] dθ

≤ ∥U(t2, 0)− U(t1, 0)∥
{
∥η(0)∥+ Lgq∥y∥+Ψ(∥η∥+ Lgq∥y∥)

}
+ 2Ψ (∥y∥)

∫ t1

0

∥U(t2, θ)− U(t1, θ)∥dθ + 2MΨ(∥y∥) (t2 − t1)
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≤ ∥U(t2, 0)− U(t1, 0)∥
{
∥η(0)∥+ LgqR+Ψ(∥η∥+ LgqR)

}
+ 2Ψ (R)

∫ t1

0

∥U(t2, θ)− U(t1, θ)∥dθ + 2MΨ(R) (t2 − t1) → 0

as t2 → t1 by the continuity of U and the fact that ∥η(0)∥+ LgqR+Ψ(∥η∥+ LgqR)
is bounded. Here we have considered (H1-ii) and (H2). This shows that B(BR) is
equicontinuous.

Statement 4. The subset B(D) is relatively compact in PWp.

Let us prove Statement 4. Let D be a bounded subset of PWp. By Statements 2
and 3, B(D) is bounded and equicontinuous in PWp. Let {yn}n∈N ⊆ B(D), then

yn

∣∣∣
[−r,0]

= η, ∀n ∈ N.

Hence, yn

∣∣∣
[−r,0]

converges uniformly on [−r, 0].

Now, putting φn = yn

∣∣∣
[0,τ ]

, we get that {φn}n∈N ⊆ PWt1..tp .

Let us put t0 = 0 and tp+1 = τ . Then, applying Arzela-Ascoli Theorem, the sequence
{φn}n∈N contains a subsequence {φ1

n}n∈N that converges in the interval [t0, t1]. Now,
applying Arzela-Ascoli Theorem again, we get that the sequence {φ1

n}n∈N contains
a subsequence {φ2

n}n∈N that converges in the interval [t1, t2]. Continuing with this
process we find a subsequence {φp+1

n }n∈N of {φn}n∈N that converges in each interval
[tk, tk+1], with k = 0, 1, 2, . . . , p. Therefore,

φp+1
n = yp+1

n

∣∣∣
[0,τ ]

converges on [0, τ ].

Consequently, {φp+1
n }n∈N = {yp+1

n }n∈N converges uniformly on [−r, τ ]. Thus, B(D)
is relatively compact, and the proof of Statement 4 is completed.

Statement 5. The family
{
T (·, y) : y ∈ B(D)

}
is equicontractive.

On the one hand, for any u, v ∈ PWp and t ∈ [−r, 0], we get that

∥T (u,B(y))(t)− T (v,B(y))(t)∥ ≤
∥∥h(uτ1 , uτ2 , . . . , uτq )(t)− h(vτ1 , vτ2 , . . . , vτq )(t)

∥∥
≤ Lgq∥u− v∥
≤MLgq∥u− v∥.

While on the other hand, by using (H1-i) and (H2-i), for all t ∈ (0, τ ] we obtain
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that

∥T (u,B(y))(t)− T (v,B(y))(t)∥ ≤ ∥f−1(t, ut)− f−1(t, vt)∥

+
∑

0<tk<t

∥U(t, tk) [Jk(tk, u(tk))− Jk(tk, v(tk))]∥

≤ γ∥u− v∥+M

p∑
k=1

∥Jk(tk, u(tk))− Jk(tk, v(tk))∥

≤ γ∥u− v∥+M

p∑
k=1

dk∥u(tk)− v(tk)∥

≤ γ∥u− v∥+M∥u− v∥
p∑

k=1

dk

≤

(
γ +M

p∑
k=1

dk

)
∥u− v∥.

It follows that

∥T (u,B(y))− T (v,B(y))∥ ≤

(
γ +M

p∑
k=1

dk

)
∥u− v∥ ≤ 1

2
∥u− v∥

by taking supremum over t ∈ [−r, τ ] and using (H1-i). This shows that T (·,B(y)) is
a contraction which does not depend on y ∈ B(D).

Statement 6. The inclusion T (·,B(·)) (D(ρ, τ, η)) ⊂ D(ρ, τ, η) holds.

Let z ∈ D(ρ, τ, η) be arbitrary. Notice that

T (z,B(z))(t) =



U(t, 0)
[
η(0)− h(zτ1 , zτ2 , . . . , zτq )(0)−f−1(0, η − h(zτ1 , zτ2 , . . . , zτq ))

]
+

∫ t

0

U(t, θ) [A0(θ)f−1(θ, zθ) + f1(θ, zθ)] dθ + f−1(t, zt)

+
∑

0<tk<t

U(t, tk)Jk(tk, z(tk)), t ∈ [0, τ ],

η(t)− h(zτ1 , zτ2 , . . . , zτq )(t), t ∈ [−r, 0].

On the one hand, for t ∈ [−r, 0], we have that

∥T (z,B(z))(t)− η̃(t)∥ ≤
∥∥g (zτ1 , zτ2 , . . . , zτq) (t)∥∥

≤ Lgq∥z∥
≤MLgq∥z∥

≤MLgq
(

˜∥η∥+ ρ
)

< ρ.



Semilinear Neutral Differential Equation with Impulses and Nonlocal Conditions 119

While on the other hand, for t ∈ [0, τ ], we have that

∥T (z,B(z))(t)− η̃(t)∥ ≤M
∥∥h(zτ1 , zτ2 , . . . , zτq )(0)− f−1(0, η − h(zτ1 , zτ2 , . . . , zτq ))

∥∥
+

∫ t

0

∥U(t, θ) [A0(θ)f−1(θ, zθ) + f1(θ, zθ)]∥dθ + ∥f−1(t, zt)∥

+
∑

0<tk<t

∥U(t, tk)Jk(tk, z(tk))∥

≤M
{
Lgq∥z∥+

∥∥f−1(0, η − h(zτ1 , zτ2 , . . . , zτq ))
∥∥}

+ 2MτΨ(∥z∥) + Ψ(∥z∥) +M
∑

0<tk<t

∥Jk(tk, z(tk))∥

≤M {Lgq∥z∥+Ψ(∥η∥+ Lgq∥z∥)}

+ 2MτΨ(∥z∥) + Ψ(∥z∥) +

(
M

p∑
k=1

dk

)
∥z∥

≤M
{
Lgq

(
˜∥η∥+ ρ

)
+Ψ

(
˜∥η∥+ Lgq

(
˜∥η∥+ ρ

))}
+ 2MτΨ

(
˜∥η∥+ ρ

)
+Ψ

(
˜∥η∥+ ρ

)
+

(
M

p∑
k=1

dk

)(
˜∥η∥+ρ

)
≤MΨ

(
˜∥η∥+ Lgq

(
˜∥η∥+ρ

))
+

(
MLgq +M

p∑
k=1

dk

)(
˜∥η∥+ρ

)
+ (2Mτ + 1)Ψ

(
˜∥η∥+ ρ

)
< ρ.

Here we have used (H3). Now, by taking supremum over t ∈ [−r, τ ], we get that

∥T (z,B(z))− η̃∥ ≤ ρ.

and by Karakostas Fixed Point Theorem the operator equation

T (z,B(z)) = z

admits a solution on D. This finishes the proof.

Theorem 3.2. System (1.1) has a unique solution if (H4) is additionally assumed.

Proof. Suppose u and v are two solutions of system (1.1). Now, considering (H1)
and (H2) we have that

∥u(t)−v(t)∥≤ ∥U(t, 0)∥
{∥∥h(uτ1 , uτ2 , . . . , uτq )(0)− h(vτ1 , vτ2 , . . . , vτq )(0)

∥∥
+
∥∥f−1

(
0, η − h(uτ1 , uτ2 , . . . , uτq )

)
− f−1

(
0, η − h(vτ1 , vτ2 , . . . , vτq )

)∥∥}
+

∫ t

0

∥U(t, θ)∥
{
∥A0(θ)f−1(θ, uθ)−A0(θ)f−1(θ, vθ)∥+∥f1(θ, uθ)−f1(θ, vθ)∥

}
dθ
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+ ∥f−1(t, ut)− f−1(t, vt)∥+
∑

0<tk<t

∥U(t, tk)∥∥Jk(tk, u(tk))− Jk(tk, v(tk))∥

≤M {Lgq (1 + γ) + 2τK (∥u∥, ∥v∥)} ∥u− v∥+

(
γ +M

p∑
k=1

dk

)
∥u− v∥

≤M
{
Lgq (1 + γ) + 2τK

(
˜∥η∥+ ρ, ˜∥η∥+ ρ

)}
∥u− v∥+ 1

2
∥u− v∥

Bearing in mind the hypothesis (H4), and taking supremum over t ∈ [−r, τ ], we have
that

∥u− v∥ ≤ ω∥u− v∥

with 0 ≤ ω < 1. This implies ∥u− v∥ = 0, and therefore u = v.

Next, we consider the following subset D̃ of Rn:

D̃ = {v ∈ Rn : ∥v∥Rn ≤ ρ}. (3.1)

Therefore, for all y ∈ D we have y(t)− η̃(t) ∈ D̃ for t ∈ [−r, τ ].

Definition 3.1. We shall say that [−r, θ1) is a maximal interval of existence for the
solution z of problem (1.1) if there is not solution of (1.1) on [−r, θ2) with θ2 > θ1.

Theorem 3.3. Suppose that the conditions of Theorem 3.1 hold. If z is a solution
of problem (1.1) on [−r, θ1) and θ1 is maximal, then either θ1 = +∞ or there exists
a sequence τn → θ1 as n→ ∞ such that z(τn)− η̃(τn) → ∂D̃.

Proof. Suppose θ1 <∞. For the purpose of contradiction assume the existence of a
neighborhood N of ∂D̃ such that {z(t)−η̃(t)} does not enter in it, for 0 < θ2 ≤ t < θ1.
We can take N = D̃\B, where B is a closed subset of D̃, then z(t)− η̃(t) ∈ B for 0 <
tp < θ2 ≤ t < θ1. We need to prove that lim

t→θ−
1

{z(t)− η̃(t)} = z1 − η̃(θ1) ∈ B, which is

enough to prove that lim
t→θ−

1

z(t) = z1. Indeed, if we consider 0 < tp < θ2 ≤ ℓ < t < θ1,

then:

∥z(t)− z(ℓ)∥ ≤∥U(t, 0)− U(ℓ, 0)∥
(
∥η(0)∥+

∥∥h(zτ1 , zτ2 , . . . , zτq )(0)∥∥
+
∥∥f−1(0, η − h(zτ1 , zτ2 , . . . , zτq ))

∥∥)
+

∫ ℓ

0

∥U(t, θ)− U(ℓ, θ)∥∥A(θ)f−1(θ, zθ) + f1(θ, zθ)∥dθ

+

∫ t

ℓ

∥U(t, θ)∥∥A(θ)f−1(θ, zθ)+f1(θ, zθ)∥dθ+∥f−1(t, zt)−f−1(ℓ, zℓ)∥

+
∑

0<tk<ℓ

∥U(t, tk)− U(ℓ, tk)∥∥Jk(tk, z(tk))∥

+
∑

ℓ<tk<t

∥U(t, tk)∥∥Jk(tk, z(tk))∥
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≤∥U(t, 0)− U(ℓ, 0)∥
(
∥η(0)∥+ Lgq∥z∥+Ψ(∥η∥+ Lgq∥z∥)

)
+
( ∫ ℓ

0

∥U(t, θ)− U(ℓ, θ)∥dθ +
∫ t

ℓ

∥(U(t, θ)∥dθ
)
2Ψ(∥z∥)

+ ∥f−1(t, zt)− f−1(ℓ, zℓ)∥+ ∥U(t, ℓ)− I∥
q∑

k=1

∥U(ℓ, tk)∥∥Jk(z(tk)∥

+
∑

ℓ<tk<t

∥U(t, tk)∥∥Jk(tk, z(tk))∥

≤∥U(t, 0)− U(ℓ, 0)∥
(
∥η(0)∥+ Lgq∥z∥+Ψ(∥η∥+ Lgq∥z∥)

)
+
( ∫ ℓ

0

∥U(t, θ)− U(ℓ, θ)∥dθ +
∫ t

ℓ

∥(U(t, θ)∥dθ
)
2Ψ(∥z∥)

+ ∥f−1(t, zt)− f−1(ℓ, zℓ)∥+ ∥U(t, ℓ)− I∥M
q∑

k=1

∥Jk(z(tk)∥

+
∑

ℓ<tk<t

∥U(t, tk)∥∥Jk(tk, z(tk))∥

Since U is uniformly continuous for t ≥ 0, then ∥z(t)−z(l)∥Rn goes to zero as l → θ−1 .
Therefore, lim

t→θ−
1

z(t) = z1 exists in Rn and, since B is closed, z1 − η̃(θ1) belongs to

B. This will contradict the maximality of θ1. In fact, we have that z1 ∈ B + η̃(θ1) is
contained in the interior of the ball D̃+ η̃(θ1). Hence, z(·) can be extended to [−r, θ1].
In this regard, for ϵ small enough, the following initial value problem admit only one
solutions on [−r, θ1 + ϵ)

d

dt
[u(t)− f−1(t, ut)] = A0(t)u(t) + f1(t, ut), t ∈ [θ1, θ1 + ϵ),

u(θ) = z(θ), θ ∈ [θ1 − r, θ1].
(3.2)

This is a contradiction with the maximality of θ1. So, the proof is completed.

Corollary 3.1. In the conditions of Theorem 3.1, if the second part of hypothesis
(H1) is changed to

∥f1(t, η)∥ ≤ µ(t)(1 + ∥η(0)∥Rn), η ∈ PWr, t ∈ [−r,∞),

where µ is a continuous function on [−r,∞), then a unique solution of problem (1.1)
exists on [−r,∞).

Proof.

∥z(t)∥ ≤∥U(t, 0)∥∥η(0)− h(zτ1 , zτ2 , . . . , zτq )(0)− f−1(0, η − h(zτ1 , zτ2 , . . . , zτq ))∥

+M

∫ t

0

∥A0(θ)f−1(θ, zθ)∥+ ∥f1(θ, zθ)∥dθ + ∥f−1(t, zt)∥

+
∑

0<tk<t

M∥Jk(tk, z(tk))∥



122 H. Leiva, L. Riera, S. Lalvay

≤∥U(t, 0)∥
(
∥η(0)∥+ Lgq∥z∥+Ψ(∥η∥+ Lgq∥z∥)

)
+M

∫ t

0

∥A0(θ)f−1(θ, zθ)∥+ µ(θ)(1 + ∥z(θ)∥)dθ + ∥f−1(t, zt)∥

+
∑

0<tk<t

Mdk∥z(tk)∥.

Then, applying Gronwall Inequality for impulsive differential equations(see [8, 15,16,
18]), we obtain that

∥z(t)∥Rn ≤M

(
∥z(0)∥Rn +

∫ τ

0

µ(θ)dθ

) ∏
t0<tk<t

(1 +Mdk)e
∫ τ
0

Mµ(θ)dθ,

This implies that ∥z(t)∥Rn remains bounded as t→ θ1 and applying Theorem 3.3 we
get the result.

4. Global Lipschitz Conditions

This section will assume stronger hypotheses on the nonlinear terms that allow us to
apply Banach Fixed Point Theorem. Specifically, we will suppose that the nonlinear
functions that appear in our system are globally Lipschitz. Moreover, we shall consider
the following simpler system

d

dt
[z(t)− f(t, zt)] = A0(t)z(t) + F (t, zt), t ∈ [0, τ ] \ {t1, t2, . . . , tp}

z(s) = g(z)(s) + ϕ(s), s ∈ [−r, 0]
z(t+k ) = z(t−k ) + Jk(tk, z(tk)), k = 1, 2, . . . , p,

(4.1)

where the nonlocal condition z(s) = g(z)(s) + ϕ(s), s ∈ [−r, 0] means

z(s) = g

(
z
∣∣∣
[−r,0]

)
(s) + ϕ(s), s ∈ [−r, 0].

The functions f, F : [0, τ ] × PWr −→ Rn are smooth enough satisfying certain con-
ditions that will be specified later, and Jk : [0,∞) × Rn −→ Rn, k = 1, 2, . . . , p, are
continuous and represents the impulsive effect in the system (4.1), the continuous
function g : PWr −→ PWr represent the nonlocal conditions, this function acts as a
feedback operator which adjusts a part of the past when the initial function is present,
or even, the whole past when the function ϕ is absent according to some precise future
requirements (see [1]). The advantage of using nonlocal conditions is that measure-
ments at more places can be incorporated to get better models. For more details and
physical interpretations about nonlocal condition see [1–5,21] and references therein.

Now, assuming a global Lipschitz condition, we will prove that system (4.1) admits
a unique solution defined on [0, τ ] by applying Banach Fixed Point Theorem. In this
regards, we suppose the following global Lipschitz condition on the nonlinear terms:
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(L1) There exist positive constants Lf and LF such that for all t ∈ [0, τ ], ϕ, ϕ̃ ∈ PWr

∥f(t, ϕ)− f(t, ϕ̃)∥ ≤ Lf∥ϕ− ϕ̃∥r,∥∥∥F (t, ϕ)− F (t, ϕ̃)
∥∥∥ ≤ LF ∥ϕ− ϕ̃∥r.

(L2) There exist nonnegative constants dk, k = 1, 2, . . . , p such that for all t ∈ [0,∞),
z, z̃ ∈ Rn

∥Jk(t, z)− Jk(t, z̃)∥Rn ≤ dk∥z − z̃∥Rn .

(L3) There exists a nonnegative constant Lg such that for all ϕ, ψ ∈ PWr

∥g(ϕ)− g(ψ)∥r ≤ Lg∥ϕ− ψ∥r.

(L4)

Lf +M [Lg + LfLg + ∥A0∥Lfτ + LF τ +

p∑
k=1

dk] < 1,

where ∥A0∥ = max{∥A0(t)∥ : t ∈ [0, τ ]}.
Proposition 4.1. Let ϕ ∈ PWr. Then z is solution of system (4.1) if and only if z
satisfies the integral equation

z(t) =



g(z)(t) + ϕ(t), t ∈ [−r, 0],
f(t, zt) + U(t, 0)

[
g(z)(0) + ϕ(0)− f(0, g(z)(0) + ϕ(0))

]
+

∫ t

0

U(t, s)A0(s)f(s, zs)ds

+

∫ t

0

U(t, s)F (s, zs)ds+
∑

0<tk<t

U(t, tk)Jk(tk, z(tk)), t ∈ [0, τ ],

(4.2)

Theorem 4.1. Suppose that (L1)-(L4) hold. Then for ϕ ∈ PWr the system (4.1)
has a unique solution defined on [0, τ ].

Proof. We shall apply Banach Contraction Mapping Theorem, in this regard, we
will define the following operator T : PWp −→ PWp by

T (t) =



g(z)(t) + ϕ(t), t ∈ [−r, 0],
f(t, zt) + U(t, 0)

[
g(z)(0) + ϕ(0)− f(0, g(z)(0) + ϕ(0))

]
+

∫ t

0

U(t, s)A0(s)f(s, zs)ds

+

∫ t

0

U(t, s)F (s, zs)ds+
∑

0<tk<t

U(t, tk)Jk(tk, z(tk)), t ∈ [0, τ ].

(4.3)

If t ∈ [−r, 0], then

∥(T z)(t)− (T z̃)(t)∥ = ∥g(z)(t)− g(z̃)(t)∥ ≤ ∥(g(z)− g(z̃))
∣∣∣
[−r,0]

∥p

≤ Lg∥(z − z̃)
∣∣∣
[−r,0]

∥PWr ≤ Lg∥z − z̃∥p.
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If t ∈ [0, τ ], then

∥(T z)(t)− (T z̃)(t)∥ ≤ ∥f(t, zt)− f(t, z̃t)∥+ ∥U(t, 0)∥
[
∥g(z)(0)− g(z̃)(0)∥

+ ∥f(0, g(z)(0) + ϕ(0))− f(0, g(z̃)(0) + ϕ(0))∥
]

+

∫ t

0

∥U(t, s)∥∥A0(s)∥∥f(s, zs)− f(s, z̃s)∥ds

+

∫ t

0

∥U(t, s)∥∥F (s, zs)− F (s, z̃s)∥ds

+
∑

0<tk<t

∥U(t, tk)∥∥Jk(tk, z(tk))− Jk(tk, z̃(tk))∥

≤ Lf∥zt − z̃τ (t)∥+M
[
Lg∥z − z̃∥PWp

+Lf∥gτ (z)(0)− gτ (z̃(0)∥
]

+ M∥A0∥Lf

∫ t

0

∥zs − z̃s∥ds+MLF

∫ t

0

∥zs − z̃s∥ds

+ M
∑

0<tk<t

dk∥z(tk)− z̃(tk)∥

≤

(
Lf+M

[
Lg + LfLg + ∥A0∥Lfτ + LF τ +

p∑
k=1

dk

])
∥z − z̃∥p.

Thus,

∥T z − T z̃∥p ≤

(
Lf +M

[
Lg + LfLg + ∥A0∥Lfτ + LF τ +

p∑
k=1

dk

])
∥z − z̃∥p,

so, the operator T satisfies all the assumptions of the Banach Contraction Mapping
Theorem, and therefore T has only one fixed point in the space PWr, which is the
solution of problem (4.1). This completes the proof.

5. Example

In this section, we consider an example of semilinear neutral differential equations
with impulses, delay and nonlocal conditions such that Theorem 4.1 can be applied.
Let us consider the following system

d
dt

[
z(t)−

(
1 + tan z(t−2)

8(t+10)2

)]
= z(t) + e

− z(t−2)

10(t+5)3 , t ∈ [0, τ)

z(s) =
(
1 + sin z

302

)
(s) + ϕ(s), s ∈ [−2, 0]

z(t+k ) = z(t−k ) + 1 +
cos(z(t−k ))
4(tk+8)4 , k = 1, 2.

(5.1)

Here t1 = 5
2 , t2 = 9

2 and τ = 5. In this example, the terms related to system

(4.1) are given by: f(t, z) = 1 + tan(z)
8(t+10)2 , F (t, z) = e

− z
10(t+5)3 , g(z) = 1 + sin(z)

302 ,

Jk(t, z) = 1 + cos(z)
4(t+8)4 and A0(t) = 1. Then we have,
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|f(t, z)− f(t, z̃)| = 1
8(t+10)2 |tan(z)− tan(z̃)| ≤ 1

8·102 |z − z̃|r,
|F (t, z)− F (t, z̃)| =

∣∣∣e− z
10(t+5)3 − e

− z̃
10(t+5)3

∣∣∣ ≤ 1
10·53 |z − z̃|r,

|Jk(t, z)− Jk(t, z̃)| = 1
4(t+8)4 |cos(z)− cos(z̃)| ≤ 1

4·84 |z − z̃|r,
|g(z)− g(z̃)|r = 1

302 |sin(z)− sin(z̃)|PWr
≤ 1

302 |z − z̃|r,

and

Lf +M [Lg + LfLg + |A0|Lfτ + LF τ + d1 + d2] ≤ 0.63.

Hence, the conditions (L1)-(L4) are satisfied. Consequently, Theorem 4.1 ensures the
existence of solutions for problem (5.1).

6. Final Remark

In this paper, first of all, we have proved the existence, uniqueness, and the globally
defined solutions of a semilinear neutral differential equation with impulses and non-
local conditions assuming that the nonlinear terms are locally Lipschitz. After that,
we assume that the nonlinear functions that involve system (4.1) are globally Lips-
chitz, which allows us to prove the existence and uniqueness of solutions by applying
Banach Fixed Point Theorem. Finally, we believe that this work can be extended
to infinite dimension systems in Hilbert spaces, where the operator A0 is no longer a
matrix, instead, it will be the infinitesimal generator of a strongly continuous compact
semigroup, and −A0 a sectorial operator. In this way, the fractional powered spaces
can be defined, allowing us to admit nonlinear terms involving spatial derivatives, like
in the following neutral partial differential equations of Burges equation type:

∂

∂t

[
z(t, x) +

∫ t

0

∫ π

0

b(θ − t, y, x)z(θ, y)dydθ

]
= νzxx(t, x)− z(t− r)zx(t− r)

+f(t, z(t− r, x)), t ̸= tk,
z(t, 0) = z(t, 1) = 0, t ∈ [0, τ ]
z(θ, x) + h(z(τ1 + θ, x), . . . , z(τq + θ, x)) = η(θ, x), x ∈ [0, 1],
z(t+k , x) = z(t−k , x) + Jk(z(tk, x)), x ∈ Ω, k = 1, 2, 3, . . . , p,

(6.1)
where η ∈ PW1/2(−r, 0;H1

0 ) = PW1/2(−r, 0;Z1/2), with Z = L2[0, 1], Z
1/2 =

D((−∆)1/2) and the functions f, Jk, h are locally Lipschitz.
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Abstract: This note contains the proof of an inclusion in the set
theory. In that proof we use only basic laws appearing in the set theory.
More precisely, using some basic laws of the set theory we provide the
proof of an inclusion which is applied in the proof of certain theorem
of the classical measure theory. The presented paper has an elementary
character. Only the basic tools of the set theory are involved.
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1. Introduction

The purpose of this concise note is to present the proof of some inclusion of the
set theory connected with a basic theorem concerning the property of the relation
appearing in the measure theory which is called the equivalence with respect to a
measure (cf. [5]; see also [6]).
In order to present the relation, assume that X is a nonempty set and S is a σ-field

of some subsets of X, i. e., S is a family of some subsets of X which is σ-additive (i.

e., if Ai ∈ S for i = 1, 2, ... then
∞⋃
i=1
Ai ∈ S) and such that A \ B ∈ S for arbitrary

sets A,B ∈ S. Further, let m be a measure defined on S, i. e., m : S → R+ = [0,+∞]

is σ-additive (that means m
( ∞⋃
i=1
Ai

)
=
∞∑
i=1
m(Ai) for any sequence of sets belonging

to S which are pairwise disjoint) and such that m(∅) = 0.
We say that sets A,B ∈ S are equivalent with respect to the measure m (we write
A ≈ B) if

m(A \B) = m(B \A) = 0.
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It is easily seen that the relation of the equivalence with respect to the measure m is
reflexive and symmetric. Thus, to prove that the relation ≈ is an equivalence relation
it is only sufficient to prove that it is transitive, i. e., that the following implication
holds

A ≈ B and B ≈ C =⇒ A ≈ C (1.1)

for arbitrary sets A,B,C ∈ S. The implication (1.1) will be proved if we show the
following inclusion for arbitrary sets A,B,C :

A \ C ⊂ (A \B) ∪ (B \ C). (1.2)

Observe that the proof of inclusion (1.2) can be performed in the standard way
with the help of the transition of our problem to mathematical logic and then it is
not difficult. However, it is interesting to conduct that proof by the use of basic laws
of the theory of sets.
Since we have not found such a proof in popular mathematical literature (cf. [1–4,7,8]),
we are going to present it in what follows.

2. Main result

The previously announced result is formulated in the form of the following theorem.

Theorem. Let A,B,C be arbitrary sets. Then inclusion (1.2) holds.

Proof. Denote by P the set appearing on the right-hand side of inclusion (1.2) i. e.,
P = (A \B) ∪ (B \ C). Then, applying the well-known equality

X \ Y = X ∩ Y ′

we get
P = (A \B) ∪ (B \ C) = A ∩B′ ∪B ∩ C ′.

Hence, in view of the distributivity of the union over the intersection, we obtain

P = [(A ∩B′) ∪B] ∩ [(A ∩B′) ∪ C ′]
= [(A ∪B) ∩ (B′ ∪B)] ∩ [(A ∪ C ′) ∩ (B′ ∪ C ′)]

= (A ∪B) ∩ (A ∪ C ′) ∩ (B′ ∪ C ′).

Now, applying the law of the associativity, we get

P = (B′ ∪ C ′) ∩ [(A ∪ C ′) ∩ (A ∪B)]. (2.1)

Further, using two times the law of the distributivity of the union over the intersection,
we obtain consecutively the following equalities for the set L, where L denotes the
left-hand side of inclusion (1.2):

L = A \ C = A ∩ C ′ = (A ∩ C ′) ∪ ∅ = (A ∩ C ′) ∪ (B ∩B′)
= [(A ∩ C ′) ∪B] ∩ [(A ∩ C ′) ∪B′]

= [(A ∪B) ∩ (C ′ ∪B)] ∩ [(A ∪B′) ∩ (C ′ ∪B′)].
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Next, in virtue of the law of the associativity for the intersection, we get

L = [(A ∪B) ∩ (A ∪B′)] ∩ [(C ′ ∪B) ∩ (C ′ ∪B′)].

Hence, taking into account the fact that the union is distributive over the intersection,
we derive the equality

L = [A ∪ (B ∩B′)] ∩ [(C ′ ∪B) ∩ (C ′ ∪B′)]
= A ∩ [(C ′ ∪B) ∩ (C ′ ∪B′)].

Further, in view of the associativity of the intersection and the distributivity of the
intersection over the union, we obtain

L = (C ′ ∪B′) ∩ [A ∩ (C ′ ∪B)]
= (B′ ∪ C ′) ∩ [(A ∩ C ′) ∪ (A ∩B)]. (2.2)

Now, comparing expressions (2.1) and (2.2) we see that in order to prove inclusion
(1.2) it is sufficient to show that

(A ∩ C ′) ∪ (A ∩B) ⊂ (A ∪ C ′) ∩ (A ∪B). (2.3)

To this end, similarly as before, let us denote

L = (A ∩ C ′) ∪ (A ∩B), P = (A ∪ C ′) ∩ (A ∪B).

Then, keeping in mind the distributivity of the intersection over the union, we have

P = (A ∪ C ′) ∩ (A ∪B) = [(A ∪B) ∩A] ∪ [(A ∪B) ∩ C ′]
= [(A ∩A) ∪ (A ∩B)] ∪ [(A ∩ C ′) ∪ (B ∩ C ′)]
= [A ∪ (A ∩B)] ∪ [(A ∩ C ′) ∪ (B ∩ C ′)]
= [(A ∩ C ′) ∪ (A ∩B)] ∪ [A ∪ (B ∩ C ′)].

(2.4)

Finally, taking into account the form of the set L and (2.4) we conclude that

L = (A ∩ C ′) ∪ (A ∩B) ⊂ [(A ∩ C ′) ∪ (A ∩B)] ∪ [A ∪ (B ∩ C ′)] = P.

Obviously, the above obtained inclusion completes the proof since we showed the
desired inclusion (2.3).
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Time-Unit Shifting in 2-Person Games

Played in Finite and Uncountably Infinite

Staircase-Function Spaces
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Abstract: A computationally efficient and tractable method is pre-
sented to find the best equilibrium in a finite 2-person game played with
staircase-function strategies. The method is based on stacking equilibria
of smaller-sized bimatrix games, each defined on a time unit where the
pure strategy value is constant. Every pure strategy is a staircase func-
tion defined on a time interval consisting of an integer number of time
units (subintervals). If a time-unit shifting happens, where the initial
time interval is narrowed by an integer number of time units, the respec-
tive equilibrium solution of any “narrower” subgame can be taken from
the “wider” game equilibrium. If the game is uncountably infinite, i. e. a
set of pure strategy possible values is uncountably infinite, and all time-
unit equilibria exist, stacking equilibria of smaller-sized 2-person games
defined on a rectangle works as well.

AMS Subject Classification: 91A05, 91A10, 91A50, 18F20.
Keywords and Phrases: Game theory; Payoff functional; Staircase-function strategy;
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1. Staircase-function strategies

A noncooperative 2-person game is a model of process where two sides personified
and referred to as persons or players interact in struggling for optimizing their own
payoffs [24, 25, 7]. The players’ payoffs are taken from some limited resources, so
the distribution of the limited resources is optimized by the game model [25, 1, 13,
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27]. The simplest 2-person game is a bimatrix game [7, 15, 25]. Whereas each of
the players in a bimatrix game possesses a finite set (space) of pure strategies, the
principles and theory of equilibrium, efficiency, profitability, and eventual optimality
of bimatrix game solutions are thoroughly studied [7, 10, 14, 24]. However, the
practice of bimatrix game solutions is not that simple. First, a problem may arise with
multiplicity of the solutions. Second, a problem may arise with selecting a solution
type (regarding equilibrium or profitability, which often are counteractive). Third,
another problem does arise when the solution is in mixed strategies but the number
of game iterations (moves, actions, plays, etc.) is limited and so a mixed strategy
appears to be impracticable (for instance, it is impossible to practically realize a
mixed strategy having probability of 7/19 if there are only 10 game iterations) [17,
18, 3, 7]. Furthermore, if at least two solutions are symmetric, they may be quite
unstable due to cooperation between the players is excluded [7, 24, 25, 10, 23].

A far more complicated case is a 2-person game, in which the player’s (pure)
strategy is a function (usually, it is a function of time). In such a game, the player’s
payoff is a functional mapping every pair of functions (pure strategies of the players
defined on a time interval) into a real value [20, 16]. In the case, when each of the
players possesses a finite set of such function-strategies, the game might be rendered
down to a bimatrix game [19, 13, 15]. The bimatrix game played with function-
strategies, apart from those mentioned problems inherent in ordinary bimatrix games,
is a far subtler model in the sense of its practicability.

The finiteness of a set of function-strategies is constituted by time interval dis-
cretization and discretization of possible values of the strategy. The time interval, on
which the pure strategy is defined, is broken into a set of time subintervals (units), on
which the strategy is (approximately considered) constant. This is so because there
is no natural time continuity — every process is constant on some (usually, short)
time period [2, 5, 8, 11, 12]. The continuity of possible values of the strategy on a
subinterval is removed also by discretization (or sampling) [22, 18, 9] ruled by laws of
the game-modeled system. Then the set of function-strategies becomes finite, where
the strategy itself is a staircase function [22] but sometimes it can be conditionally
interpreted as a point [30, 16, 18]. Compared to the most trivial strategy, which is a
decision corresponding to a one-stage event whose duration through time is (usually,
negligibly) short, a staircase-function strategy itself is a multi-stage process defined
on a time interval [26, 30, 18, 4, 28, 29]. Nevertheless, the length of the time interval
can be varied depending on properties of the process modeled by the game.

2. Multiplicity of equilibria and the time interval
length

A 2-person game played in finite staircase-function spaces can be called the bimatrix
staircase-function game. It is quite clear that the number of pure-strategy situations
in a bimatrix staircase-function game grows immensely as the number of breakpoints
(“stair” subintervals) increases, or the number of possible values of the player’s pure
strategy increases, or they both increase. For instance, if the number of time subin-
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tervals is just 5, and the number of possible values of the player’s pure strategy is 6,
then there is a finite set of

65 = 7776

possible pure strategies (i. e., 5-subinterval staircase functions of time) at this player.
If the other player’s pure strategy has, say, 8 possible values, then there are

85 = 32768

possible 5-subinterval staircase functions of time at this player, and the respective
bimatrix staircase-function game has a size of either

7776× 32768

or

32768× 7776

and there are

65 · 85 = 7776 · 32768 = 254803968

pure-strategy situations. If an additional time subinterval is included, there are

66 · 86 = 46656 · 262144 = 12230590464

pure-strategy situations (more than 12.23 billion ones!). This is why a tractable
method of solving 2-person games defined on a product of staircase-function spaces
was presented in [21], where the spaces can be finite and continuous (uncountably
infinite) as well. The method is based on stacking equilibria of “short” 2-person games,
each defined on a subinterval where the pure strategy value is constant. It is proved
in [21] that the bimatrix staircase-function game is solved as a stack of respective
equilibria in the “short” (ordinary) bimatrix games (where the pure strategy is a very
simple decision corresponding to a one-stage event). The stack is always possible,
even when only time is discrete (and the set of pure strategy possible values is infinite
or uncountably infinite). However, the problem of multiplicity of equilibria was not
raised in [21]. The subinterval equilibrium multiplicity has a dramatic impact on the
multiplicity of the equilibrium stack. For instance, if there are two equilibria on each
of 5 subintervals, the game has altogether

25 = 32

equilibrium stacks. Then an open question is how to select a single equilibrium stack.
Another open question is how to deal with a 2-person game in which the breakpoints
of a function-strategy do not change but the time interval length can vary [2, 3, 7,
30, 18, 5].
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3. Objective and six tasks to be fulfilled

Due to the above reasons, the objective is to expand and develop the tractable method
of solving 2-person games played within players’ finite sets of staircase functions [21]
for the case when the length of the time interval on which the 2-person game is defined
is varied. The case with an uncountably infinite set (space) of staircase functions is
to be considered as well. To meet the objective, the following tasks are to be fulfilled:

1. To formalize a 2-person game, in which the players’ strategies are staircase
functions. In such a game, the set of the player’s pure strategies is a continuum of
staircase functions of time. Such function-strategies are presumed to be bounded and
Lebesgue-integrable, and the time can be thought of as it is discrete.

2. To discretize the set of possible values of the player’s pure strategy so that the
game be defined on a product of staircase-function finite spaces.

3. To formalize the known method of solving 2-person games (the solution of the
equilibrium type) played in staircase-function finite and uncountably infinite spaces
by considering a possibility of narrowing the time interval on which the 2-person game
is defined.

4. To give an example of how the suggested method is applied. A special attention
must be paid to selecting a single equilibrium situation.

5. To discuss practical applicability and scientific significance of the method for
the game theory and operations research.

6. To conclude on the study and make an outlook for furthering it.

4. 2-person game played with staircase-function
strategies through discrete time

In a 2-person game, in which the player’s pure strategy is a function of time, let
each of the players use time-varying strategies defined almost everywhere on interval
[t1; t2] by t2 > t1. Denote a pure strategy of the first player by x (t) and a pure
strategy of the second player by y (t). These functions are presumed to be bounded,
i. e.

amin ⩽ x (t) ⩽ amax by amin < amax (1)

and
bmin ⩽ y (t) ⩽ bmax by bmin < bmax, (2)

defined almost everywhere on [t1; t2]. Besides, the square of the function-strategy is
presumed to be Lebesgue-integrable. Thus, pure strategies of the player belong to a
rectangular functional space of functions of time:

X = {x (t) , t ∈ [t1; t2] , t1 < t2 : amin ⩽ x (t) ⩽ amax by amin < amax} ⊂
⊂ L2 [t1; t2] (3)

and

Y = {y (t) , t ∈ [t1; t2] , t1 < t2 : bmin ⩽ y (t) ⩽ bmax by bmin < bmax} ⊂
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⊂ L2 [t1; t2] (4)

are the sets (sometimes referred to as action spaces) of the players’ pure strategies.
The first player’s payoff in situation (Figure 1)

{x (t) , y (t)} (5)

is
K
(
x (t) , y (t)

)
(6)

presumed to be an integral functional [21, 22]:

K
(
x (t) , y (t)

)
=

∫
[t1; t2]

f
(
x (t) , y (t) , t

)
dµ (t), (7)

where
f
(
x (t) , y (t) , t

)
(8)

is a function of x (t) and y (t) explicitly including t. The second player’s payoff in
situation (5) is

H
(
x (t) , y (t)

)
(9)

presumed to be an integral functional also:

H
(
x (t) , y (t)

)
=

∫
[t1; t2]

g
(
x (t) , y (t) , t

)
dµ (t), (10)

where
g
(
x (t) , y (t) , t

)
(11)

Figure 1: A situation (5) in 2-person game (12) played in uncountably infinite func-
tional spaces (3) and (4)
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is a function of x (t) and y (t) explicitly including t also. Therefore, a 2-person game〈
{X, Y } ,

{
K
(
x (t) , y (t)

)
, H

(
x (t) , y (t)

)}〉
(12)

is uncountably infinite due to it is defined on product

X × Y ⊂ L2 [t1; t2]× L2 [t1; t2] (13)

of uncountably infinite rectangular functional spaces (3) and (4) of players’ pure
strategies.

Each of sets (3) and (4) is a continuum of functions. It is worth noting that the
game continuity is defined by the continuity of spaces (3) and (4), whereas payoff
functionals (7) and (10) still can have discontinuities. In general, each of payoff
functionals (6) and (9) may have a terminal component like

K
(
x (t) , y (t)

)
=

=

∫
[t1; t2]

f
(
x (t) , y (t) , t

)
dµ (t) + Tf

(
x (t2) , y (t2) , t2

)
(14)

and

H
(
x (t) , y (t)

)
=

=

∫
[t1; t2]

g
(
x (t) , y (t) , t

)
dµ (t) + Tg

(
x (t2) , y (t2) , t2

)
(15)

by some terminal functions
Tf

(
x (t2) , y (t2) , t2

)
(16)

and
Tg

(
x (t2) , y (t2) , t2

)
(17)

depending on only the final state of the player’s strategy, but this case is not to be
considered here.

Presume that the players’ pure strategies x (t) and y (t) in game (12) can both
change their values only for a finite number of times. Denote by N the number of
subintervals at which the player’s pure strategy is constant, where N ∈ N\ {1}. In
other words, when time is discrete, N is a number of time units. Then the player’s
pure strategy is a staircase function having at most N different values. Let

Θ =
{
t1 = τ (0) < τ (1) < τ (2) < . . . < τ (N−1) < τ (N) = t2

}
, (18)

where
{
τ (i)

}N−1

i=1
are time points at which the staircase-function strategy can change

its value. Time-interval breaking (18) is not necessarily to be equidistant. The
staircase-function strategies are right-continuous [6, 21, 22]:

lim
ε>0
ε→0

x
(
τ (i) + ε

)
= x

(
τ (i)

)
(19)
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and
lim
ε>0
ε→0

y
(
τ (i) + ε

)
= y

(
τ (i)

)
(20)

for i = 1, N − 1, whereas (if the strategy value changes)

lim
ε>0
ε→0

x
(
τ (i) − ε

)
̸= x

(
τ (i)

)
(21)

and
lim
ε>0
ε→0

y
(
τ (i) − ε

)
̸= y

(
τ (i)

)
(22)

for i = 1, N − 1. As an exception,

lim
ε>0
ε→0

x
(
τ (N) − ε

)
= x

(
τ (N)

)
(23)

and
lim
ε>0
ε→0

y
(
τ (N) − ε

)
= y

(
τ (N)

)
. (24)

A 2-person game played with staircase-function strategies through discrete time can
be defined by using (1)— (13), (18)— (24).

Definition 1. 2-person game (12) defined on product (13) of rectangular functional
spaces (3) and (4) is called a discrete-time staircase-function 2-person game by time-
interval breaking (18), if (19)— (24) hold and

x (t) = αi ∈ [amin; amax] and y (t) = βi ∈ [bmin; bmax]

∀ t ∈
[
τ (i−1); τ (i)

)
for i = 1, N − 1 and

x (t) = αN ∈ [amin; amax] and

y (t) = βN ∈ [bmin; bmax] ∀ t ∈
[
τ (N−1); τ (N)

]
, (25)

where the factual payoff of the first player in situation {αi, βi} is

Ki (αi, βi) =

∫
[τ(i−1); τ(i))

f (αi, βi, t) dµ (t) ∀ i = 1, N − 1 (26)

and

KN (αN , βN ) =

∫
[τ(N−1); τ(N)]

f (αN , βN , t) dµ (t), (27)

and the factual payoff of the second player in situation {αi, βi} is

Hi (αi, βi) =

∫
[τ(i−1); τ(i))

g (αi, βi, t) dµ (t) ∀ i = 1, N − 1 (28)
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and

HN (αN , βN ) =

∫
[τ(N−1); τ(N)]

g (αN , βN , t) dµ (t). (29)

Situation (5) in the discrete-time staircase-function 2-person game is a stack of suc-
cessive situations {

{αi, βi}
}N

i=1
(30)

in a succession of N (ordinary) 2-person games〈
{[amin; amax] , [bmin; bmax]} , {K (αi, βi) , H (αi, βi)}

〉
for i = 1, N (31)

defined on product
[amin; amax]× [bmin; bmax] (32)

by (25)— (29).

Let a discrete-time staircase-function 2-person game by time-interval breaking (18)
be denoted by〈

{X (Θ) , Y (Θ)} ,
{
Ki

(
x (t) , y (t)

)
, Hi

(
x (t) , y (t)

)}〉
(33)

with the players’ pure strategy sets

X (Θ) =
{
x (t) ∈ X ([t1; t2]) : x (t) = αi ∈ [amin; amax]

∀ t ∈
[
τ (i−1); τ (i)

)
for i = 1, N − 1 and

x (t) = αN ∈ [amin; amax] ∀ t ∈
[
τ (N−1); τ (N)

]}
⊂ X ([t1; t2])

(34)

and

Y (Θ) =
{
y (t) ∈ Y ([t1; t2]) : y (t) = βi ∈ [bmin; bmax]

∀ t ∈
[
τ (i−1); τ (i)

)
for i = 1, N − 1 and

y (t) = βN ∈ [bmin; bmax] ∀ t ∈
[
τ (N−1); τ (N)

]}
⊂ Y ([t1; t2]) .

(35)

Obviously, discrete-time staircase-function 2-person game (33) is uncountably infinite
as each of sets (34) and (35) contains a continuum of function-strategies. An exam-
ple of situation (5) in a discrete-time staircase-function 2-person game played through
seven time units (subintervals) is given in Figure 2. The exemplified pure-strategy sit-
uation of two staircase functions can be also represented as a stack of seven successive

situations
{
{αi, βi}

}7

i=1
of seven ordinary 2-person games (31), where each ordinary

pure-strategy situation {αi, βi} for i = 1, 6 corresponds to a time unit (subinterval)[
τ (i−1); τ (i)

)
and ordinary pure-strategy situation {α7, β7} corresponds to a time

unit (subinterval)
[
τ (6); τ (7)

]
=

[
τ (6); t2

]
.
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Figure 2: A situation (5) in discrete-time staircase-function 2-person game (33); the
game is played in uncountably infinite functional spaces (34) and (35); the exemplified

pure-strategy situation is a stack of seven successive situations
{
{αi, βi}

}7

i=1

Time-interval breaking (18) allows considering payoffs (7) and (10) in situation
(5) equivalent to the sum of respective payoffs (26)— (29). The proof can be found
in [22].

Theorem 1. In a pure-strategy situation (5) of discrete-time staircase-function
2-person game (33), payoff functionals (7) and (10) are re-written as subinterval-
wise sums

K
(
x (t) , y (t)

)
=

N∑
i=1

Ki (αi, βi) =

=

N−1∑
i=1

∫
[τ(i−1); τ(i))

f (αi, βi, t) dµ (t) +

∫
[τ(N−1); τ(N)]

f (αN , βN , t) dµ (t) (36)

and

H
(
x (t) , y (t)

)
=

N∑
i=1

Hi (αi, βi) =

=

N−1∑
i=1

∫
[τ(i−1); τ(i))

g (αi, βi, t) dµ (t) +

∫
[τ(N−1); τ(N)]

g (αN , βN , t) dµ (t), (37)

where situation (5) is a stack of successive situations (30) in a succession of N
2-person games (31).
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Proof. Time interval [t1; t2] can be re-written as

[t1; t2] =

{
N−1⋃
i=1

[
τ (i−1); τ (i)

)}
∪
[
τ (N−1); τ (N)

]
. (38)

Therefore, the property of countable additivity of the Lebesgue integral can be used:

K
(
x (t) , y (t)

)
=

∫
[t1; t2]

f
(
x (t) , y (t) , t

)
dµ (t) =

=

∫
{

N−1⋃
i=1

[τ(i−1); τ(i))

}
∪[τ(N−1); τ(N)]

f
(
x (t) , y (t) , t

)
dµ (t) =

=

N−1∑
i=1

∫
[τ(i−1); τ(i))

f
(
x (t) , y (t) , t

)
dµ (t) +

∫
[τ(N−1); τ(N)]

f
(
x (t) , y (t) , t

)
dµ (t). (39)

Owing to (25), x (t) = αi and y (t) = βi, so (39) is simplified as

N−1∑
i=1

∫
[τ(i−1); τ(i))

f
(
x (t) , y (t) , t

)
dµ (t) +

∫
[τ(N−1); τ(N)]

f
(
x (t) , y (t) , t

)
dµ (t) =

=

N−1∑
i=1

∫
[τ(i−1); τ(i))

f (αi, βi, t) dµ (t) +

∫
[τ(N−1); τ(N)]

f (αN , βN , t) dµ (t) =

=
N∑
i=1

Ki (αi, βi). (40)

Consequently, in discrete-time staircase-function 2-person game (33), subinterval-wise
sum (36) holds in any pure-strategy situation (5) consisting of staircase-function
strategies x (t) ∈ X (Θ) and y (t) ∈ Y (Θ). Obviously, subinterval-wise sum (37)
is proved similarly to (38)— (40).

It is noteworthy that Theorem 1 can be proved also by considering function (8)
on a time unit (subinterval) as a function of time t, due to x (t) = αi and y (t) = βi
on this subinterval. Denote this function by ψi (t). Then this function appears to be
zero on any other time unit. Subsequently, function (8) is presented as the sum of
those subinterval functions:

f
(
x (t) , y (t) , t

)
=

N∑
i=1

ψi (t),

whereupon (40) is deduced.



Time-Unit Shifting in 2-Person Games Played in Staircase-Function Spaces 143

Nevertheless, Theorem 1 does not provide a method of solving the discrete-time
staircase-function 2-person game, but it hints about how the game might be solved in
an easier way [21, 22]. Theorem 1 provides a fundamental decomposition of the stair-
case game based on the subinterval-wise summing in (36) and (37). This subinterval
decomposition allows considering and solving each game (31) separately, whereupon
the solutions are stitched (stacked) together, regardless of whether the player’s action
space is finite or not.

5. Finite discrete-time staircase-function
2-person game

In a discrete-time staircase-function 2-person game (33), let the set of possible values
of the first player’s pure strategy be discretized as

A =
{
amin = a

(0)
i < a

(1)
i < a

(2)
i < . . . < a

(M−1)
i < a

(M)
i = amax

}
(41)

and the set of possible values of the second player’s pure strategy be discretized as

B =
{
bmin = b

(0)
i < b

(1)
i < b

(2)
i < . . . < b

(Q−1)
i < b

(Q)
i = bmax

}
(42)

by M ∈ N and Q ∈ N, where

a
(m−1)
i = a(m−1) ∀ i = 1, N for m = 1, M + 1 (43)

and
b
(q−1)
i = b(q−1) ∀ i = 1, N for q = 1, Q+ 1. (44)

This means that along with the discrete time units (subintervals), the players are
forced (somehow) to act within finite subsets of possible values of their pure strategies

A =
{
a(m−1)

}M+1

m=1
(45)

and

B =
{
b(q−1)

}Q+1

q=1
. (46)

Discretizations (41)— (44) allow defining a finite discrete-time staircase-function
2-person game.

Definition 2. Discrete-time staircase-function 2-person game (33) is called finite if
it is played on a product of finite subsets

X (Θ, A) =

{
x (t) ∈ X (Θ) : x (t) ∈

{
a(m−1)

}M+1

m=1

}
⊂

⊂ X (Θ) ⊂ X ([t1; t2]) (47)
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and

Y (Θ, B) =

{
y (t) ∈ Y (Θ) : y (t) ∈

{
b(q−1)

}Q+1

q=1

}
⊂

⊂ Y (Θ) ⊂ Y ([t1; t2]) (48)

of sets (34) and (35).

So, let a finite discrete-time staircase-function 2-person game be denoted by〈
{X (Θ, A) , Y (Θ, B)} ,

{
K
(
x (t) , y (t)

)
, H

(
x (t) , y (t)

)}〉
(49)

with the players’ pure strategy sets (47) and (48). In fact, this finite game is a bimatrix
staircase-function game (see an example in Figure 3, where every pure strategy as a
staircase function of time can be “imagined” as a conditional point pretended to be
a simple decision to constitute an 81 × 256 bimatrix game) that is the succession of
N bimatrix games〈{{

a
(m−1)
i

}M+1

m=1
,
{
b
(q−1)
i

}Q+1

q=1

}
, {Ki, Hi}

〉
for i = 1, N (50)

with the first player’s payoff matrices

Ki = [kimq](M+1)×(Q+1) (51)

whose elements are

kimq =

∫
[τ(i−1); τ(i))

f
(
a
(m−1)
i , b

(q−1)
i , t

)
dµ (t) for i = 1, N − 1 (52)

and

kNmq =

∫
[τ(N−1); τ(N)]

f
(
a
(m−1)
N , b

(q−1)
N , t

)
dµ (t), (53)

and with the second player’s payoff matrices

Hi = [himq](M+1)×(Q+1) (54)

whose elements are

himq =

∫
[τ(i−1); τ(i))

g
(
a
(m−1)
i , b

(q−1)
i , t

)
dµ (t) for i = 1, N − 1 (55)

and

hNmq =

∫
[τ(N−1); τ(N)]

g
(
a
(m−1)
N , b

(q−1)
N , t

)
dµ (t). (56)
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Figure 3: An example of finite pure strategy sets (47) and (48) in a bimatrix staircase-
function game; the game is played with 4-subinterval staircase functions of time, where
the first and second players have three and four possible values of their pure strategies,
respectively
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So, according with Definition 1, the first player’s payoff in situation
{
a
(m−1)
i , b

(q−1)
i

}
is (52), (53), for i = 1, N , and the second player’s payoff in situation

{
a
(m−1)
i , b

(q−1)
i

}
is (55), (56), for i = 1, N . In addition, situation (5) in the bimatrix staircase-function
game is a stack of successive situations{{

a
(m−1)
i , b

(q−1)
i

}}N

i=1

(57)

in a succession of N bimatrix games (50). Bimatrix staircase-function game (49)
might be rendered down to the ordinary bimatrix game, wherein a pure strategy is
a conditional point being in reality a staircase function. This rendering, however, is
useless because the much more efficient method exists [21, 22] to consider game (49)
as the succession of N bimatrix games (50) by (51)—(56) and find the solution of
game (49) by stacking solutions of smaller-sized bimatrix games (50).

6. Time-unit shifting in bimatrix staircase-function
games

An equilibrium situation in the bimatrix game always exists, either in pure or mixed
strategies. Denote by

Pi =
[
p
(m)
i

]
1×(M+1)

(58)

and

Ri =
[
r
(q)
i

]
1×(Q+1)

(59)

the mixed strategies of the first and second players, respectively, in bimatrix game
(50). The respective sets of mixed strategies of the first and second players are

P =

{
Pi ∈ RM+1 : p

(m)
i ⩾ 0,

M+1∑
m=1

p
(m)
i = 1

}
(60)

and

R =

{
Ri ∈ RQ+1 : r

(q)
i ⩾ 0,

Q+1∑
q=1

r
(q)
i = 1

}
, (61)

so Pi ∈ P, Ri ∈ R, and {Pi, Ri} is a situation in this game.

Definition 3. A stack {
{Pi, Ri}

}N

i=1
(62)

of successive situations in bimatrix games (50) is called a (mixed-strategy) situation in

bimatrix staircase-function game (49). Stacks {Pi}Ni=1 and {Ri}Ni=1 are the respective
mixed strategies of the first and second players in this game.
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It is clear that an equilibrium situation in a bimatrix staircase-function game is
to be sought among stacks (62). The respective assertions can be found in [21, 22].
However, these papers do not directly show how to select the best equilibrium stack
in the case of multiple equilibrium stacks.

Theorem 2. If

{P∗
i , R

∗
i } =

{[
p
(m)∗
i

]
1×(M+1)

,
[
r
(q)∗
i

]
1×(Q+1)

}
(63)

is an equilibrium situation in bimatrix game (50) for i = 1, N , then a stack

{
{P∗

i , R
∗
i }
}N

i=1
=

{{[
p
(m)∗
i

]
1×(M+1)

,
[
r
(q)∗
i

]
1×(Q+1)

}}N

i=1

(64)

of such successive solutions is an equilibrium situation in bimatrix staircase-function
game (49). If multiple equilibria exist (at one or more time units) and the maximum
of the players’ payoffs sum

P∗
i ·Ki · (R∗

i )
T
+P∗

i ·Hi · (R∗
i )

T
(65)

is reached at P∗
i = P∗∗

i and R∗
i = R∗∗

i , i. e.

max
{P∗

i , R
∗
i }

{
P∗

i ·Ki · (R∗
i )

T
+P∗

i ·Hi · (R∗
i )

T
}
=

= P∗∗
i ·Ki · (R∗∗

i )
T
+P∗∗

i ·Hi · (R∗∗
i )

T
, (66)

then the maximum of the players’ payoffs sum in an equilibrium stack of bimatrix
staircase-function game (49) is reached at stack{

{P∗∗
i , R

∗∗
i }

}N

i=1
(67)

and this maximum is

s∗∗ =

N∑
i=1

(
P∗∗

i ·Ki · (R∗∗
i )

T
+P∗∗

i ·Hi · (R∗∗
i )

T
)
. (68)

Proof. As (63) is an equilibrium situation, then inequalities

Pi ·Ki · (R∗
i )

T
=

=

M+1∑
m=1

Q+1∑
q=1

kimqp
(m)
i r

(q)∗
i =

=

M+1∑
m=1

Q+1∑
q=1

p
(m)
i r

(q)∗
i

∫
[τ(i−1); τ(i))

f
(
a
(m−1)
i , b

(q−1)
i , t

)
dµ (t) ⩽
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⩽
M+1∑
m=1

Q+1∑
q=1

p
(m)∗
i r

(q)∗
i

∫
[τ(i−1); τ(i))

f
(
a
(m−1)
i , b

(q−1)
i , t

)
dµ (t) =

=

M+1∑
m=1

Q+1∑
j=1

kimqp
(m)∗
i r

(q)∗
i =

= P∗
i ·Ki · (R∗

i )
T
= v∗i ∀ Pi ∈ P for i = 1, N − 1, (69)

PN ·KN · (R∗
N )

T
=

=

M+1∑
m=1

Q+1∑
q=1

kNmqp
(m)
N r

(q)∗
N =

=

M+1∑
m=1

Q+1∑
q=1

p
(m)
N r

(q)∗
N

∫
[τ(N−1); τ(N)]

f
(
a
(m−1)
N , b

(q−1)
N , t

)
dµ (t) ⩽

⩽
M+1∑
m=1

Q+1∑
q=1

p
(m)∗
N r

(q)∗
N

∫
[τ(N−1); τ(N)]

f
(
a
(m−1)
N , b

(q−1)
N , t

)
dµ (t) =

=

M+1∑
m=1

Q+1∑
q=1

kNmqp
(m)∗
N r

(q)∗
N =

= P∗
N ·KN · (R∗

N )
T
= v∗N ∀ PN ∈ P (70)

and inequalities

P∗
i ·Hi ·RT

i =

=

M+1∑
m=1

Q+1∑
q=1

himqp
(m)∗
i r

(q)
i =

=

M+1∑
m=1

Q+1∑
q=1

p
(m)∗
i r

(q)
i

∫
[τ(i−1); τ(i))

g
(
a
(m−1)
i , b

(q−1)
i , t

)
dµ (t) ⩽

⩽
M+1∑
m=1

Q+1∑
q=1

p
(m)∗
i r

(q)∗
i

∫
[τ(i−1); τ(i))

g
(
a
(m−1)
i , b

(q−1)
i , t

)
dµ (t) =

=

M+1∑
m=1

Q+1∑
q=1

himqp
(m)∗
i r

(q)∗
i =

= P∗
i ·Hi · (R∗

i )
T
= z∗i ∀ Ri ∈ R for i = 1, N − 1, (71)

P∗
N ·HN ·RT

N =
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=

M+1∑
m=1

Q+1∑
q=1

hNmqp
(m)∗
N r

(q)
N =

=

M+1∑
m=1

Q+1∑
q=1

p
(m)∗
N r

(q)
N

∫
[τ(N−1); τ(N)]

g
(
a
(m−1)
N , b

(q−1)
N , t

)
dµ (t) ⩽

⩽
M+1∑
m=1

Q+1∑
q=1

p
(m)∗
N r

(q)∗
N

∫
[τ(N−1); τ(N)]

g
(
a
(m−1)
N , b

(q−1)
N , t

)
dµ (t) =

=

M+1∑
m=1

Q+1∑
q=1

hNmqp
(m)∗
N r

(q)∗
N =

= P∗
N ·HN · (R∗

N )
T
= z∗N ∀ RN ∈ R (72)

hold. So, inequalities

N−1∑
i=1

Pi ·Ki · (R∗
i )

T
+PN ·KN · (R∗

N )
T
=

=

N−1∑
i=1

M+1∑
m=1

Q+1∑
q=1

kimqp
(m)
i r

(q)∗
i +

M+1∑
m=1

Q+1∑
q=1

kNmqp
(m)
N r

(q)∗
N =

=

N−1∑
i=1

M+1∑
m=1

Q+1∑
q=1

p
(m)
i r

(q)∗
i

∫
[τ(i−1); τ(i))

f
(
a
(m−1)
i , b

(q−1)
i , t

)
dµ (t)

+

+

M+1∑
m=1

Q+1∑
q=1

p
(m)
N r

(q)∗
N

∫
[τ(N−1); τ(N)]

f
(
a
(m−1)
N , b

(q−1)
N , t

)
dµ (t) ⩽

⩽
N−1∑
i=1

M+1∑
m=1

Q+1∑
q=1

p
(m)∗
i r

(q)∗
i

∫
[τ(i−1); τ(i))

f
(
a
(m−1)
i , b

(q−1)
i , t

)
dµ (t)

+

+

M+1∑
m=1

Q+1∑
q=1

p
(m)∗
N r

(q)∗
N

∫
[τ(N−1); τ(N)]

f
(
a
(m−1)
N , b

(q−1)
N , t

)
dµ (t) =

=

N−1∑
i=1

M+1∑
m=1

Q+1∑
q=1

kimqp
(m)∗
i r

(q)∗
i +

M+1∑
m=1

Q+1∑
q=1

kNmqp
(m)∗
N r

(q)∗
N =

=

N−1∑
i=1

P∗
i ·Ki · (R∗

i )
T
+P∗

N ·KN · (R∗
N )

T
=
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=

N∑
i=1

v∗i = v∗ ∀ Pi ∈ P for i = 1, N (73)

and

N−1∑
i=1

P∗
i ·Hi ·RT

i +P∗
N ·HN ·RT

N =

=

N−1∑
i=1

M+1∑
m=1

Q+1∑
q=1

himqp
(m)∗
i r

(q)
i +

M+1∑
m=1

Q+1∑
q=1

hNmqp
(m)∗
N r

(q)
N =

=

N−1∑
i=1

M+1∑
m=1

Q+1∑
q=1

p
(m)∗
i r

(q)
i

∫
[τ(i−1); τ(i))

g
(
a
(m−1)
i , b

(q−1)
i , t

)
dµ (t)

+

+

M+1∑
m=1

Q+1∑
q=1

p
(m)∗
N r

(q)
N

∫
[τ(N−1); τ(N)]

g
(
a
(m−1)
N , b

(q−1)
N , t

)
dµ (t) ⩽

⩽
N−1∑
i=1

M+1∑
m=1

Q+1∑
q=1

p
(m)∗
i r

(q)∗
i

∫
[τ(i−1); τ(i))

g
(
a
(m−1)
i , b

(q−1)
i , t

)
dµ (t)

+

+

M+1∑
m=1

Q+1∑
q=1

p
(m)∗
N r

(q)∗
N

∫
[τ(N−1); τ(N)]

g
(
a
(m−1)
N , b

(q−1)
N , t

)
dµ (t) =

=

N−1∑
i=1

M+1∑
m=1

Q+1∑
q=1

himqp
(m)∗
i r

(q)∗
i +

M+1∑
m=1

Q+1∑
q=1

hNmqp
(m)∗
N r

(q)∗
N =

=

N−1∑
i=1

P∗
i ·Hi · (R∗

i )
T
+P∗

N ·HN · (R∗
N )

T
=

=

N∑
i=1

z∗i = z∗ ∀ Ri ∈ R for i = 1, N (74)

hold as well. The assertion of Theorem 1 for bimatrix staircase-function game (49)
can be re-written as

K
(
x (t) , y (t)

)
=

N∑
i=1

kimq =

=

N−1∑
i=1

∫
[τ(i−1); τ(i))

f
(
a
(m−1)
i , b

(q−1)
i , t

)
dµ (t)+
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+

∫
[τ(N−1); τ(N)]

f
(
a
(m−1)
N , b

(q−1)
N , t

)
dµ (t) (75)

and

H
(
x (t) , y (t)

)
=

N∑
i=1

himq =

=

N−1∑
i=1

∫
[τ(i−1); τ(i))

g
(
a
(m−1)
i , b

(q−1)
i , t

)
dµ (t)+

+

∫
[τ(N−1); τ(N)]

g
(
a
(m−1)
N , b

(q−1)
N , t

)
dµ (t). (76)

Therefore, inequalities (73) and (74) along with using the payoff decomposition by
(75) and (76) allow to conclude that the stack of successive equilibria (64) is an
equilibrium situation in game (49).

As (66) holds, then

N∑
i=1

max
{P∗

i , R
∗
i }

{
P∗

i ·Ki · (R∗
i )

T
+P∗

i ·Hi · (R∗
i )

T
}
=

=

N∑
i=1

(
P∗∗

i ·Ki · (R∗∗
i )

T
+P∗∗

i ·Hi · (R∗∗
i )

T
)
=

=

N∑
i=1

P∗∗
i ·Ki · (R∗∗

i )
T
+

N∑
i=1

P∗∗
i ·Hi · (R∗∗

i )
T
=

=

N∑
i=1

v∗∗i +

N∑
i=1

z∗∗i = v∗∗ + z∗∗ = s∗∗, (77)

i. e. the maximum of the players’ payoffs sum is (68) reached at stack (67).

Consider now the case when the bimatrix staircase-function game is played through
a lesser number of time units. Thus, instead of time-interval breaking (18), the game
is played by a narrower time-interval breaking

Θ∗ =
{
t1 ⩽ τ1 = τ (n) < τ (n+1) < τ (n+2) < . . . < τ (U−1) < τ (U) = τ2 ⩽ t2

}
, (78)

where
n ∈

{
0, N − 1

}
, U ∈

{
1, N

}
, n < U, (79)

and
{
τ (i)

}U−1

i=n+1
are time points at which the staircase-function strategy can change

its value. So, Θ∗ ⊂ Θ in terms of the interval breaking.
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Theorem 3. In a bimatrix staircase-function game〈
{X (Θ∗, A) , Y (Θ∗, B)} ,

{
K
(
x (t) , y (t)

)
, H

(
x (t) , y (t)

)}〉
(80)

by

X (Θ∗, A) =

{
x (t) ∈ X (Θ∗) : x (t) ∈

{
a(m−1)

}M+1

m=1

}
⊂

⊂ X (Θ∗) ⊂ X ([τ1; τ2]) (81)

and

Y (Θ∗, B) =

{
y (t) ∈ Y (Θ∗) : y (t) ∈

{
b(q−1)

}Q+1

q=1

}
⊂

⊂ Y (Θ∗) ⊂ Y ([τ1; τ2]) (82)

and a time-interval breaking (78) for (79), an equilibrium situation is a stack

{
{P∗

i , R
∗
i }
}U

i=n+1
=

{{[
p
(m)∗
i

]
1×(M+1)

,
[
r
(q)∗
i

]
1×(Q+1)

}}U

i=n+1

(83)

of U −n successive equilibria (63) of bimatrix game (50) for i = n+ 1, U . If multiple
equilibria exist (at one or more time units) and the maximum of the players’ payoffs
sum (65) is reached at P∗

i = P∗∗
i and R∗

i = R∗∗
i , i. e. (66) holds, then the maximum

of the players’ payoffs sum in an equilibrium stack of bimatrix staircase-function game
(80) is reached at stack {

{P∗∗
i , R

∗∗
i }

}U

i=n+1
(84)

and this maximum is

s∗∗(Θ∗) =

U∑
i=n+1

(
P∗∗

i ·Ki · (R∗∗
i )

T
+P∗∗

i ·Hi · (R∗∗
i )

T
)
. (85)

Proof. As inequalities (69)— (72) hold ∀ i = 1, N , they hold ∀ i = n+ 1, U . For
time-interval breaking (78), time interval [τ1; τ2] can be re-written as

[τ1; τ2] =

{
U−1⋃

i=n+1

[
τ (i−1); τ (i)

)}
∪
[
τ (U−1); τ (U)

]
. (86)

So, owing to Theorem 1,

K
(
x (t) , y (t)

)
=

U∑
i=n+1

kimq =

=

U−1∑
i=n+1

∫
[τ(i−1); τ(i))

f
(
a
(m−1)
i , b

(q−1)
i , t

)
dµ (t)+
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+

∫
[τ(U−1); τ(U)]

f
(
a
(m−1)
U , b

(q−1)
U , t

)
dµ (t) (87)

and

H
(
x (t) , y (t)

)
=

U∑
i=n+1

himq =

=

U−1∑
i=n+1

∫
[τ(i−1); τ(i))

g
(
a
(m−1)
i , b

(q−1)
i , t

)
dµ (t)+

+

∫
[τ(U−1); τ(U)]

g
(
a
(m−1)
U , b

(q−1)
U , t

)
dµ (t). (88)

So, inequalities

U−1∑
i=n+1

Pi ·Ki · (R∗
i )

T
+PU ·KU · (R∗

U )
T
=

=

U−1∑
i=n+1

M+1∑
m=1

Q+1∑
q=1

kimqp
(m)
i r

(q)∗
i +

M+1∑
m=1

Q+1∑
q=1

kUmqp
(m)
U r

(q)∗
U =

=

U−1∑
i=n+1

M+1∑
m=1

Q+1∑
q=1

p
(m)
i r

(q)∗
i

∫
[τ(i−1); τ(i))

f
(
a
(m−1)
i , b

(q−1)
i , t

)
dµ (t)

+

+

M+1∑
m=1

Q+1∑
q=1

p
(m)
U r

(q)∗
U

∫
[τ(U−1); τ(U)]

f
(
a
(m−1)
U , b

(q−1)
U , t

)
dµ (t) ⩽

⩽
U−1∑

i=n+1

M+1∑
m=1

Q+1∑
q=1

p
(m)∗
i r

(q)∗
i

∫
[τ(i−1); τ(i))

f
(
a
(m−1)
i , b

(q−1)
i , t

)
dµ (t)

+

+

M+1∑
m=1

Q+1∑
q=1

p
(m)∗
U r

(q)∗
U

∫
[τ(U−1); τ(U)]

f
(
a
(m−1)
U , b

(q−1)
U , t

)
dµ (t) =

=

U−1∑
i=n+1

M+1∑
m=1

Q+1∑
q=1

kimqp
(m)∗
i r

(q)∗
i +

M+1∑
m=1

Q+1∑
q=1

kUmqp
(m)∗
U r

(q)∗
U =

=

U−1∑
i=n+1

P∗
i ·Ki · (R∗

i )
T
+P∗

U ·KU · (R∗
U )

T
=
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=

U∑
i=n+1

v
∗(Θ∗)
i = v∗(Θ∗) ∀ Pi ∈ P for i = n+ 1, U (89)

and

U−1∑
i=n+1

P∗
i ·Hi ·RT

i +P∗
U ·HU ·RT

U =

=

U−1∑
i=n+1

M+1∑
m=1

Q+1∑
q=1

himqp
(m)∗
i r

(q)
i +

M+1∑
m=1

Q+1∑
q=1

hUmqp
(m)∗
U r

(q)
U =

=

U−1∑
i=n+1

M+1∑
m=1

Q+1∑
q=1

p
(m)∗
i r

(q)
i

∫
[τ(i−1); τ(i))

g
(
a
(m−1)
i , b

(q−1)
i , t

)
dµ (t)

+

+

M+1∑
m=1

Q+1∑
q=1

p
(m)∗
U r

(q)
U

∫
[τ(U−1); τ(U)]

g
(
a
(m−1)
U , b

(q−1)
U , t

)
dµ (t) ⩽

⩽
U−1∑

i=n+1

M+1∑
m=1

Q+1∑
q=1

p
(m)∗
i r

(q)∗
i

∫
[τ(i−1); τ(i))

g
(
a
(m−1)
i , b

(q−1)
i , t

)
dµ (t)

+

+

M+1∑
m=1

Q+1∑
q=1

p
(m)∗
U r

(q)∗
U

∫
[τ(U−1); τ(U)]

g
(
a
(m−1)
U , b

(q−1)
U , t

)
dµ (t) =

=
U−1∑

i=n+1

M+1∑
m=1

Q+1∑
q=1

himqp
(m)∗
i r

(q)∗
i +

M+1∑
m=1

Q+1∑
q=1

hUmqp
(m)∗
U r

(q)∗
U =

=

U−1∑
i=n+1

P∗
i ·Hi · (R∗

i )
T
+P∗

U ·HU · (R∗
U )

T
=

=

U∑
i=n+1

z
∗(Θ∗)
i = z∗(Θ∗) ∀ Ri ∈ R for i = n+ 1, U (90)

hold. Therefore, inequalities (89) and (90) along with using the payoff decomposition
by (87) and (88) allow to conclude that the stack of successive equilibria (83) is an
equilibrium situation in bimatrix staircase-function game (80).

As (66) holds, then

U∑
i=n+1

max
{P∗

i , R
∗
i }

{
P∗

i ·Ki · (R∗
i )

T
+P∗

i ·Hi · (R∗
i )

T
}
=
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=

U∑
i=n+1

(
P∗∗

i ·Ki · (R∗∗
i )

T
+P∗∗

i ·Hi · (R∗∗
i )

T
)
=

=

U∑
i=n+1

P∗∗
i ·Ki · (R∗∗

i )
T
+

U∑
i=n+1

P∗∗
i ·Hi · (R∗∗

i )
T
=

=

U∑
i=n+1

v
∗∗(Θ∗)
i +

U∑
i=n+1

z
∗∗(Θ∗)
i = v∗∗(Θ∗) + z∗∗(Θ∗) = s∗∗(Θ∗), (91)

i. e. the maximum of the players’ payoffs sum is (85) reached at stack (84).

It is quite obvious that{
{P∗

i , R
∗
i }
}U

i=n+1
⊂

{
{P∗

i , R
∗
i }
}N

i=1
. (92)

So, Theorem 3 implies that the time-unit shifting does not change the structure and
number of equilibria in a bimatrix staircase-function game, nor does it change the
structure of the best equilibrium stack determined by the maximum of the players’
payoffs sum. In fact, game (80) is a subgame of bimatrix staircase-function game
(49). An equilibrium solution of the subgame can be easily taken from the respective
equilibrium solution of (“wider”) game (49).

7. Time-unit shifting in discrete-time
staircase-function 2-person games

See whether the inference above is valid for discrete-time staircase-function 2-person
game (33), which, generally speaking, is played within uncountably infinite sets of
players’ staircase-function strategies. Denote by

pi (αi) (93)

and
ri (βi) (94)

the mixed strategies of the first and second players, respectively, in (subinterval)
infinite 2-person game (31), where

P =

{
pi (αi) ∈ L2 [amin; amax] : pi (αi) ⩾ 0,

∫
[amin; amax]

pi (αi) dµ (αi) = 1

}
(95)

and

R =

{
ri (βi) ∈ L2 [bmin; bmax] : ri (βi) ⩾ 0,

∫
[bmin; bmax]

ri (βi) dµ (βi) = 1

}
(96)

are the respective sets of mixed strategies of the players. So, pi (αi) ∈ P , ri (βi) ∈ R,
and

{pi (αi) , ri (βi)} (97)

is a situation in this game.
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Definition 4. A stack {
{pi (αi) , ri (βi)}

}N

i=1
(98)

of successive situations in (ordinary) 2-person games (31) is called a (mixed-strategy)

situation in discrete-time staircase-function 2-person game (33). Stacks {pi (αi)}Ni=1

and {ri (βi)}Ni=1 are the respective mixed strategies of the first and second players in
this game.

Just like in the case of a finite discrete-time staircase-function 2-person game, it
is clear that an equilibrium situation in a discrete-time staircase-function 2-person
game is to be sought among stacks (98). The respective assertions in [21], however,
concern only the case of equilibrium situations of pure strategies.

Theorem 4. If p∗i (αi) ∈ P , r∗i (βi) ∈ R, and

{p∗i (αi) , r
∗
i (βi)} (99)

is an equilibrium situation in 2-person game (31) for i = 1, N , then a stack{
{p∗i (αi) , r

∗
i (βi)}

}N

i=1
(100)

of such successive equilibria is an equilibrium situation in discrete-time staircase-
function 2-person game (33).

Proof. As (99) is an equilibrium situation, and all these subinterval equilibria exist,
then inequalities∫

[bmin; bmax]

r∗i (βi)

 ∫
[amin; amax]

pi (αi)Ki (αi, βi) dµ (αi)

 dµ (βi) =

=

∫
[bmin; bmax]

r∗i (βi)

 ∫
[amin; amax]

pi (αi)

∫
[τ(i−1); τ(i))

f (αi, βi, t) dµ (t)dµ (αi)

 dµ (βi) ⩽

⩽
∫

[bmin; bmax]

r∗i (βi)

 ∫
[amin; amax]

p∗i (αi)

∫
[τ(i−1); τ(i))

f (αi, βi, t) dµ (t)dµ (αi)

 dµ (βi) =

=

∫
[bmin; bmax]

r∗i (βi)

 ∫
[amin; amax]

p∗i (αi)Ki (αi, βi) dµ (αi)

 dµ (βi)

∀ pi (αi) ∈ P for i = 1, N − 1, (101)
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∫
[bmin; bmax]

r∗N (βN )

 ∫
[amin; amax]

pN (αN )KN (αN , βN ) dµ (αN )

 dµ (βN ) =

=

∫
[bmin; bmax]

r∗N (βN )

 ∫
[amin; amax]

pN (αN )

∫
[τ(N−1); τ(N)]

f (αN , βN , t) dµ (t)dµ (αN )

 dµ (βN ) ⩽

⩽
∫

[bmin; bmax]

r∗N (βN )

 ∫
[amin; amax]

p∗N (αN )

∫
[τ(N−1); τ(N)]

f (αN , βN , t) dµ (t)dµ (αN )

 dµ (βN ) =

=

∫
[bmin; bmax]

r∗N (βN )

 ∫
[amin; amax]

p∗N (αN )KN (αN , βN ) dµ (αN )

 dµ (βN )

∀ pN (αN ) ∈ P (102)

and inequalities

∫
[bmin; bmax]

ri (βi)

 ∫
[amin; amax]

p∗i (αi)Hi (αi, βi) dµ (αi)

 dµ (βi) =

=

∫
[bmin; bmax]

ri (βi)

 ∫
[amin; amax]

p∗i (αi)

∫
[τ(i−1); τ(i))

g (αi, βi, t) dµ (t)dµ (αi)

 dµ (βi) ⩽

⩽
∫

[bmin; bmax]

r∗i (βi)

 ∫
[amin; amax]

p∗i (αi)

∫
[τ(i−1); τ(i))

g (αi, βi, t) dµ (t)dµ (αi)

 dµ (βi) =

=

∫
[bmin; bmax]

r∗i (βi)

 ∫
[amin; amax]

p∗i (αi)Hi (αi, βi) dµ (αi)

 dµ (βi)

∀ ri (βi) ∈ R for i = 1, N − 1, (103)
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∫
[bmin; bmax]

rN (βN )

 ∫
[amin; amax]

p∗N (αN )HN (αN , βN ) dµ (αN )

 dµ (βN ) =

=

∫
[bmin; bmax]

rN (βN )

 ∫
[amin; amax]

p∗N (αN )

∫
[τ(N−1); τ(N)]

g (αN , βN , t) dµ (t)dµ (αN )

 dµ (βN ) ⩽

⩽
∫

[bmin; bmax]

r∗N (βN )

 ∫
[amin; amax]

p∗N (αN )

∫
[τ(N−1); τ(N)]

g (αN , βN , t) dµ (t)dµ (αN )

 dµ (βN ) =

=

∫
[bmin; bmax]

r∗N (βN )

 ∫
[amin; amax]

p∗N (αN )HN (αN , βN ) dµ (αN )

 dµ (βN )

∀ rN (βN ) ∈ R (104)

hold. So, inequalities

N∑
i=1

∫
[bmin; bmax]

r∗i (βi)

 ∫
[amin; amax]

pi (αi)Ki (αi, βi) dµ (αi)

 dµ (βi) =

=

N−1∑
i=1

∫
[bmin; bmax]

r∗i (βi)

 ∫
[amin; amax]

pi (αi)

∫
[τ(i−1); τ(i))

f (αi, βi, t) dµ (t)dµ (αi)

 dµ (βi)+

+

∫
[bmin; bmax]

r∗N (βN )

 ∫
[amin; amax]

pN (αN )

∫
[τ(N−1); τ(N)]

f (αN , βN , t) dµ (t)dµ (αN )

 dµ (βN ) ⩽
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⩽
N−1∑
i=1

∫
[bmin; bmax]

r∗i (βi)

 ∫
[amin; amax]

p∗i (αi)

∫
[τ(i−1); τ(i))

f (αi, βi, t) dµ (t)dµ (αi)

 dµ (βi)+

+

∫
[bmin; bmax]

r∗N (βN )

 ∫
[amin; amax]

p∗N (αN )

∫
[τ(N−1); τ(N)]

f (αN , βN , t) dµ (t)dµ (αN )

 dµ (βN ) =

=

N∑
i=1

∫
[bmin; bmax]

r∗i (βi)

 ∫
[amin; amax]

p∗i (αi)Ki (αi, βi) dµ (αi)

 dµ (βi) =

=

N∑
i=1

v∗i = v∗ ∀ pi (αi) ∈ P for i = 1, N (105)

and

N∑
i=1

∫
[bmin; bmax]

ri (βi)

 ∫
[amin; amax]

p∗i (αi)Hi (αi, βi) dµ (αi)

 dµ (βi) =

=

N−1∑
i=1

∫
[bmin; bmax]

ri (βi)

 ∫
[amin; amax]

p∗i (αi)

∫
[τ(i−1); τ(i))

g (αi, βi, t) dµ (t)dµ (αi)

 dµ (βi)+

+

∫
[bmin; bmax]

rN (βN )

 ∫
[amin; amax]

p∗N (αN )

∫
[τ(N−1); τ(N)]

g (αN , βN , t) dµ (t)dµ (αN )

 dµ (βN ) ⩽

⩽
N−1∑
i=1

∫
[bmin; bmax]

r∗i (βi)
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[amin; amax]

p∗i (αi)

∫
[τ(i−1); τ(i))

g (αi, βi, t) dµ (t)dµ (αi)

 dµ (βi)+

+

∫
[bmin; bmax]

r∗N (βN )

 ∫
[amin; amax]

p∗N (αN )

∫
[τ(N−1); τ(N)]

g (αN , βN , t) dµ (t)dµ (αN )

 dµ (βN ) =

=

N∑
i=1

∫
[bmin; bmax]

r∗i (βi)

 ∫
[amin; amax]

p∗i (αi)Hi (αi, βi) dµ (αi)

 dµ (βi) =

=

N∑
i=1

z∗i = z∗ ∀ ri (βi) ∈ R for i = 1, N (106)

hold as well. Therefore, inequalities (105) and (106) along with using the payoff
decomposition by (36) and (37) allow to conclude that the stack of successive equilibria
(100) is an equilibrium situation in game (33).

Theorem 5. In a discrete-time staircase-function 2-person game〈
{X (Θ∗) , Y (Θ∗)} ,

{
K
(
x (t) , y (t)

)
, H

(
x (t) , y (t)

)}〉
(107)

by

X (Θ∗) =
{
x (t) ∈ X ([τ1; τ2]) : x (t) = αi ∈ [amin; amax]

∀ t ∈
[
τ (i−1); τ (i)

)
for i = n+ 1, U − 1 and

x (t) = αU ∈ [amin; amax] ∀ t ∈
[
τ (U−1); τ (U)

]}
⊂ X ([τ1; τ2])

(108)

and

Y (Θ∗) =
{
y (t) ∈ Y ([τ1; τ2]) : y (t) = βi ∈ [bmin; bmax]

∀ t ∈
[
τ (i−1); τ (i)

)
for i = n+ 1, U − 1 and

y (t) = βU ∈ [bmin; bmax] ∀ t ∈
[
τ (U−1); τ (U)

]}
⊂ Y ([τ1; τ2])

(109)

and a time-interval breaking (78) for (79), an equilibrium situation is a stack{
{p∗i (αi) , r

∗
i (βi)}

}U

i=n+1
(110)

of U − n successive equilibria (99) in 2-person game (31) for i = n+ 1, U .
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Proof. As inequalities (101)— (104) hold ∀ i = 1, N , they hold ∀ i = n+ 1, U . For
time-interval breaking (78), time interval [τ1; τ2] can be re-written as (86), so, owing
to Theorem 1,

K
(
x (t) , y (t)

)
=

U∑
i=n+1

Ki (αi, βi) =

=

U−1∑
i=n+1

∫
[τ(i−1); τ(i))

f (αi, βi, t) dµ (t) +

∫
[τ(U−1); τ(U)]

f (αU , βU , t) dµ (t) (111)

and

H
(
x (t) , y (t)

)
=

U∑
i=n+1

Hi (αi, βi) =

=

U−1∑
i=n+1

∫
[τ(i−1); τ(i))

g (αi, βi, t) dµ (t) +

∫
[τ(U−1); τ(U)]

g (αU , βU , t) dµ (t). (112)

So, inequalities

U∑
i=n+1

∫
[bmin; bmax]

r∗i (βi)

 ∫
[amin; amax]

pi (αi)Ki (αi, βi) dµ (αi)

 dµ (βi) =

=

U−1∑
i=n+1

∫
[bmin; bmax]

r∗i (βi)

 ∫
[amin; amax]

pi (αi)

∫
[τ(i−1); τ(i))

f (αi, βi, t) dµ (t)dµ (αi)

 dµ (βi)+

+

∫
[bmin; bmax]

r∗U (βU )

 ∫
[amin; amax]

pU (αU )

∫
[τ(U−1); τ(U)]

f (αU , βU , t) dµ (t)dµ (αU )

 dµ (βU ) ⩽

⩽
U−1∑

i=n+1

∫
[bmin; bmax]

r∗i (βi)
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[amin; amax]

p∗i (αi)

∫
[τ(i−1); τ(i))

f (αi, βi, t) dµ (t)dµ (αi)

 dµ (βi)+

+

∫
[bmin; bmax]

r∗U (βU )

 ∫
[amin; amax]

p∗U (αU )

∫
[τ(U−1); τ(U)]

f (αU , βU , t) dµ (t)dµ (αU )

 dµ (βU ) =

=

U∑
i=n+1

∫
[bmin; bmax]

r∗i (βi)

 ∫
[amin; amax]

p∗i (αi)Ki (αi, βi) dµ (αi)

 dµ (βi) =

=

U∑
i=n+1

v
∗(Θ∗)
i = v∗(Θ∗) ∀ pi (αi) ∈ P for i = n+ 1, U (113)

and

U∑
i=n+1

∫
[bmin; bmax]

ri (βi)

 ∫
[amin; amax]

p∗i (αi)Hi (αi, βi) dµ (αi)

 dµ (βi) =

=

U−1∑
i=n+1

∫
[bmin; bmax]

ri (βi)

 ∫
[amin; amax]

p∗i (αi)

∫
[τ(i−1); τ(i))

g (αi, βi, t) dµ (t)dµ (αi)

 dµ (βi)+

+

∫
[bmin; bmax]

rU (βU )

 ∫
[amin; amax]

p∗U (αU )

∫
[τ(U−1); τ(U)]

g (αU , βU , t) dµ (t)dµ (αU )

 dµ (βU ) ⩽

⩽
U−1∑

i=n+1

∫
[bmin; bmax]

r∗i (βi)
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[amin; amax]

p∗i (αi)

∫
[τ(i−1); τ(i))

g (αi, βi, t) dµ (t)dµ (αi)

 dµ (βi)+

+

∫
[bmin; bmax]

r∗U (βU )

 ∫
[amin; amax]

p∗U (αU )

∫
[τ(U−1); τ(U)]

g (αU , βU , t) dµ (t)dµ (αU )

 dµ (βU ) =

=

U∑
i=n+1

∫
[bmin; bmax]

r∗i (βi)

 ∫
[amin; amax]

p∗i (αi)Hi (αi, βi) dµ (αi)

 dµ (βi) =

=

U∑
i=n+1

z
∗(Θ∗)
i = z∗(Θ∗) ∀ ri (βi) ∈ R for i = n+ 1, U (114)

hold. Therefore, inequalities (113) and (114) along with using the payoff decompo-
sition by (111) and (112) allow to conclude that the stack of successive equilibria
(110) is an equilibrium situation in discrete-time staircase-function 2-person game
(107).

The assertion about the maximum of the players’ payoffs sum in an equilibrium
stack in game (33) could have been proved in a way similar to that in the proof of
Theorem 2. However, this question has far less practical sense compared to that for
bimatrix staircase-function games (which always have equilibrium solutions). This
is so because discrete-time staircase-function 2-person games are played, generally
speaking, within uncountably infinite sets of players’ staircase-function strategies (93)
and (94), and even the latter may have pretty tricky structure, let alone a subinterval
game may have no equilibrium at all.

Similarly to game (80) being a subgame of bimatrix staircase-function game (49),
and an inclusion by (92), it is quite obvious that game (107) is a subgame of discrete-
time staircase-function 2-person game (33) and

{
{p∗i (αi) , r

∗
i (βi)}

}U

i=n+1
⊂

{
{p∗i (αi) , r

∗
i (βi)}

}N

i=1
. (115)

Theorem 5 being a generalization of Theorem 3 implies that the time-unit shift-
ing does not change the structure of equilibria in a discrete-time staircase-function
2-person game. If an equilibrium solution of (“wider”) game (33) exists, the respective
equilibrium solution of the (“narrower”) subgame can be taken from it.
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8. An example of the bimatrix staircase-function
game

Consider an example of the bimatrix staircase-function game, in which functions (8)
and (11) in integral functionals (7) and (10) are

f
(
x (t) , y (t) , t

)
=

= sin
(
0.05xt− 0.01yt2 − π

4

)
+ cos (0.04xyt) e1.3 cos(0.01xyt) (116)

and

g
(
x (t) , y (t) , t

)
= t sin

(
0.03xyt− π

5

)
e−2.44 cos(0.02xyt+π

3 ), (117)

where the players are forced (somehow) to act within finite subsets of possible values
of their pure strategies (45) and (46):

A =
{
a(m−1)

}M+1

m=1
=

{
a
(m−1)
i

}7

m=1
= {m+ 1}7m=1 (118)

and

B =
{
b(q−1)

}Q+1

q=1
=

{
b
(q−1)
i

}6

q=1
= {12 + 2q}6q=1 . (119)

The time unit (or the time subinterval length) is 0.1π, i. e. the players may (syn-
chronously, simultaneously) change their pure strategies values only through this time
step. The tasks are to solve such bimatrix staircase-function game (80) for time in-
tervals

[τ1; τ2] = [0.7π; 1.3π] , (120)

[τ1; τ2] = [1.8π; 2.5π] , (121)

[τ1; τ2] = [2.8π; 3.6π] , (122)

where

X (Θ∗, A) =
{
x (t) ∈ X (Θ∗) : x (t) ∈ {m+ 1}7m=1

}
⊂

⊂ X (Θ∗) ⊂ X ([τ1; τ2]) (123)

and

Y (Θ∗, B) =
{
y (t) ∈ Y (Θ∗) : y (t) ∈ {12 + 2q}6q=1

}
⊂

⊂ Y (Θ∗) ⊂ Y ([τ1; τ2]) (124)

by

τ (i) − τ (i−1) = 0.1π for i = n+ 1, U (125)

in time-interval breaking (78).
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According with Theorem 3, it is sufficient to find an equilibrium stack of the
bimatrix staircase-function game with (116)— (119) played during time interval

[t1; t2] = [0.7π; 3.6π] (126)

where the respective payoff functionals

K
(
x (t) , y (t)

)
=

∫
[0.7π; 3.6π]

f
(
x (t) , y (t) , t

)
dµ (t) (127)

and

H
(
x (t) , y (t)

)
=

∫
[0.7π; 3.6π]

g
(
x (t) , y (t) , t

)
dµ (t), (128)

due to there are 29 time units in (126), are transformed into 29 payoff 7× 6 matrices
of the first player and 29 payoff 7× 6 matrices of the second player. So, the “wider”
bimatrix staircase-function game is the succession of 29 bimatrix games〈{{

a
(m−1)
i

}7

m=1
,
{
b
(q−1)
i

}6

q=1

}
, {Ki, Hi}

〉
for i = 1, 29 (129)

with the first player’s payoff matrices

Ki = [kimq]7×6 (130)

whose elements are

kimq =

∫
[τ(i−1); τ(i))

f
(
a
(m−1)
i , b

(q−1)
i , t

)
dµ (t) =

=

∫
[0.6π+0.1πi; 0.7π+0.1πi)

f (m+ 1, 12 + 2q, t) dµ (t) =

=

∫
[0.6π+0.1πi; 0.7π+0.1πi)

[
sin

(
0.05 · (m+ 1) t− 0.01 · (12 + 2q) t2 − π

4

)
+

+cos
(
0.04 · (m+ 1) · (12 + 2q) t

)
e1.3 cos

(
0.01·(m+1)·(12+2q)t

)]
dµ (t)

for i = 1, 28 (131)

and

k29mq =

∫
[τ(28); τ(29)]

f
(
a
(m−1)
29 , b

(q−1)
29 , t

)
dµ (t) =

=

∫
[3.5π; 3.6π]

f (m+ 1, 12 + 2q, t) dµ (t) =
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=

∫
[3.5π; 3.6π]

[
sin

(
0.05 · (m+ 1) t− 0.01 · (12 + 2q) t2 − π

4

)
+

+cos
(
0.04 · (m+ 1) · (12 + 2q) t

)
e1.3 cos

(
0.01·(m+1)·(12+2q)t

)]
dµ (t) , (132)

and with the second player’s payoff matrices

Hi = [himq]7×6 (133)

whose elements are

himq =

∫
[τ(i−1); τ(i))

g
(
a
(m−1)
i , b

(q−1)
i , t

)
dµ (t) =

=

∫
[0.6π+0.1πi; 0.7π+0.1πi)

g (m+ 1, 12 + 2q, t) dµ (t) =

=

∫
[0.6π+0.1πi; 0.7π+0.1πi)

t sin
(
0.03 · (m+ 1) · (12 + 2q) t− π

5

)
e−2.44 cos(0.02·(m+1)·(12+2q)t+π

3 )dµ (t) for i = 1, 28 (134)

and

h29mq =

∫
[τ(28); τ(29)]

g
(
a
(m−1)
29 , b

(q−1)
29 , t

)
dµ (t) =

=

∫
[3.5π; 3.6π]

g (m+ 1, 12 + 2q, t) dµ (t) =

=

∫
[3.5π; 3.6π]

t sin
(
0.03 · (m+ 1) · (12 + 2q) t− π

5

)
e−2.44 cos(0.02·(m+1)·(12+2q)t+π

3 )dµ (t) . (135)

In the “wider” bimatrix staircase-function game, each of the players is allowed to
change its pure strategy value only at time points{

τ (i)
}28

i=1
= {0.7π + 0.1πi}28i=1 .

Payoff matrix (130) on each subinterval of set{
{[0.6π + 0.1πi; 0.7π + 0.1πi)}28i=1 , [3.5π; 3.6π]

}
(136)

is shown in Figure 4 as a meshed surface, where a close-to-chaotic payoff distribu-
tion can be seen. Payoff matrix (133) on each subinterval of set (136) is shown in
Figure 5 as a meshed surface also, where a close-to-chaotic payoff distribution is seen
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Figure 4: First player’s payoffs in matrix (130) as a meshed surface on the 29 subin-
tervals of set (136)
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Figure 5: Second player’s payoffs in matrix (133) as a meshed surface on the 29
subintervals of set (136)
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as well (although some meshes on neighboring subintervals bear some resemblance).
A distinctive feature here is that the payoff value scale of the second player is much
wider than that of the first player. Whereas the first player’s payoff varies between
approximately −1.1144 and 1.3652, the second player’s payoff varies between approx-
imately −31.3741 and 30.4348, that means a potentially significant imbalance when
the criterion of the payoff sum maximum is applied to select the best equilibrium.

The 7× 6 bimatrix games (129) with (130)—(135) are solved in pure and mixed
strategies, and there are multiple equilibrium situations on some time units. So, the
best equilibrium situation on such time units is selected by the criterion of maximizing
the players’ payoffs sum. The stack of the 29 first player’s equilibrium strategies in
each of those 29 7 × 6 bimatrix games is shown in Figure 6, where the solid line
corresponds to a pure strategy equilibrium and the dotted lines correspond to nonzero-
probability pure strategies in a mixed strategy equilibrium. Similarly, the stack of the
29 second player’s equilibrium strategies is shown in Figure 7. Thus, the solution to
the “wider” game is the equilibrium situation formed subinterval-wise from the stacks
in Figure 6 and Figure 7. Owing to Theorem 3, the equilibrium solutions for time
intervals (120)— (122) are directly taken from the “wider” game equilibrium stack. In
the solution for time interval (120), pure strategies a(2) = 4 and a(4) = 6 are not used
by the first player, whereas pure strategy b(1) = 16 is not used by the second player
(Figure 8). In the solution for time interval (121), every player uses all one’s pure
strategies, only in mixed strategies (Figure 9). In the solution for time interval (122),
pure strategy a(4) = 6 is not used by the first player, whereas the second player uses
all one’s pure strategies (Figure 10)—either in mixed strategies or in pure strategies
during [3π; 3.4π). It is worth noting that there are no completely mixed strategies in
the 29 time-unit equilibrium situations.

In the “wider” game equilibrium situation formed subinterval-wise from the stacks
in Figure 6 and Figure 7, the players’ payoffs are

v∗ =

29∑
i=1

v∗i ≈ 7.4123 (137)

and

z∗ =

29∑
i=1

z∗i ≈ 99.8691, (138)

provided by the criterion of maximizing the players’ payoffs sum. However, it is worth
noting that the presented game solution strongly depends on the criterion of selecting
a single equilibrium situation (on each time unit). Inasmuch as the payoff ranges of
the players differ severely, the applied above criterion may be unacceptable for the first
player whose contribution to the sum is rather (insignificantly, on some time units)
small. Thus, the same criterion can be used but only with payoff normalizations

ṽ∗ij =

v∗ij − min
j=1, Ji

v∗ij

max
j=1, Ji

v∗ij − min
j=1, Ji

v∗ij
(139)
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Figure 6: The stack of the 29 strategies as the first player’s best equilibrium strategy in
the best equilibrium situation in the “wider” game by (116)— (119) and (126)— (135)

Figure 7: The stack of the 29 strategies as the second player’s best equilibrium
strategy in the best equilibrium situation in the “wider” game by (116)— (119) and
(126)—(135)
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Figure 8: The stacks of the six best equilibrium strategies of the first (left) and second
(right) players in the game played during time interval (120)

Figure 9: The stacks of the seven best equilibrium strategies of the first (left) and
second (right) players in the game played during time interval (121)
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Figure 10: The stacks of the eight best equilibrium strategies of the first (left) and
second (right) players in the game played during time interval (122)

and

z̃∗ij =

z∗ij − min
j=1, Ji

z∗ij

max
j=1, Ji

z∗ij − min
j=1, Ji

z∗ij
, (140)

where v∗ij and z
∗
ij are the first and second players payoffs in a j-th equilibrium situation

on time unit i, on which there are Ji equilibria altogether. Then, similarly to (66),
an equilibrium situation {P∗∗

i , R
∗∗
i } is selected such in which

max
j=1, Ji

{
ṽ∗ij + z̃∗ij

}
(141)

is reached. By using the criterion with (139)— (141), the equilibrium solution of the
“wider” bimatrix staircase-function game changes (see the first player’s equilibrium
stack in Figure 11 and the second player’s equilibrium stack in Figure 12, where the
subintervals with the changes are segregated): the players’ equilibria on subintervals

[1.4π; 1.5π) , (142)

[2.1π; 2.2π) , (143)

[2.6π; 2.7π) (144)

are different from the equilibria on subintervals (142)— (144) in both Figure 6 and
Figure 7. The first player now mixes pure strategies a(0) = 2 and a(4) = 6 (instead
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Figure 11: The best equilibrium situation of the first player in the “wider” game by
(116)—(119) and (126)— (135) solved by selecting a single equilibrium situation on
the time unit with (139)— (141)

Figure 12: The best equilibrium situation of the second player in the “wider” game
by (116)— (119) and (126)—(135) solved by selecting a single equilibrium situation
on the time unit with (139)— (141)
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of mixing a(3) = 5 and a(5) = 7 in Figure 6) on subinterval (142), and the second
player now mixes pure strategies b(2) = 18 and b(5) = 24 (instead of mixing b(3) = 20
and b(4) = 22 in Figure 7) on subinterval (142). The equilibrium strategy support
cardinality, which is

|suppP∗
8| = |suppR∗

8| = 2,

does not change. Nor does it change on subinterval (143):

|suppP∗
15| = |suppR∗

15| = 2,

where the first player now mixes pure strategy a(3) = 5 with a(5) = 7 (instead of
mixing a(3) = 5 with a(2) = 4 in Figure 6), and the second player now mixes pure
strategies b(0) = 14 and b(5) = 24 (instead of mixing b(2) = 18 and b(4) = 22 in
Figure 7). The most radical change is on subinterval (144), whereon each of the
players now does not mix one’s four pure strategies (a(2) = 4, a(3) = 5, a(4) = 6,
a(5) = 7 in Figure 6 and b(0) = 14, b(1) = 16, b(2) = 18, b(4) = 22 in Figure 7),
but uses instead a single pure strategy: the first player just uses a(5) = 7 and the
second player uses b(4) = 22. Now, in the “wider” game equilibrium situation formed
subinterval-wise from the stacks in Figure 11 and Figure 12, the players’ payoffs are

v∗ =

29∑
i=1

v∗i ≈ 8.0337 (145)

and

z∗ =

29∑
i=1

z∗i ≈ 96.5492, (146)

provided by the criterion of maximizing the players’ payoffs sum as selecting a single
equilibrium situation on the time unit with (139)—(141). The first player’s payoff
(145) is 8.3839 % greater than that (137), whereas the second player’s payoff (146) is
just 3.3242 % less than that (138). This is an example of that a proper selection of the
single equilibrium criterion, e. g. using payoff normalizations like (139), (140), when
the players’ payoff ranges differ, can balance the player’s eventual payoffs (making
their distribution more fair). Obviously, equilibria on some time units may depend
on the criterion (that is followed by the respective changes in the players’ equilibrium
stacks).

9. Discussion

In the sense of practical applicability, the presented method is a significant contribu-
tion to the 2-person game theory and operations research. It allows solving 2-person
games played with staircase-function strategies in a far simpler manner just by consid-
ering a succession of time-unit subgames. In the case of a bimatrix staircase-function
game, being “wider” one, its equilibrium situation is formed by solving and stacking
equilibria of successive smaller-sized bimatrix games. Then, owing to Theorem 3,
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the respective equilibrium solution of any “narrower” subgame can be taken from
the “wider” game equilibrium. The computational efficiency is only defined by and
limited to the efficiency of finding equilibrium situations in an ordinary (time-unit)
bimatrix game whose size is commonly not that large. Without considering the succes-
sion of time-unit bimatrix games, any straightforward approach to finding equilibrium
situations in a bimatrix staircase-function game is intractable.

A special attention is paid to time variable t explicitly included into functions
(8) and (11) to be integrated. The explicitness means that, as time goes by (and
the players develop their actions), something is going on or changes within the pro-
cess modeled by the staircase-function game. If, in a discrete-time staircase-function
2-person game, time t is not explicitly included into functions (8) and (11), then

Ki (αi, βi) =

∫
[τ(i−1); τ(i))

f (αi, βi) dµ (t) =

= f (αi, βi) ·
(
τ (i) − τ (i−1)

)
∀ i = 1, N − 1 (147)

and

KN (αN , βN ) =

∫
[τ(N−1); τ(N)]

f (αN , βN ) dµ (t) =

= f (αN , βN ) ·
(
τ (N) − τ (N−1)

)
(148)

instead of (26) and (27), and

Hi (αi, βi) =

∫
[τ(i−1); τ(i))

g (αi, βi) dµ (t) =

= g (αi, βi) ·
(
τ (i) − τ (i−1)

)
∀ i = 1, N − 1 (149)

and

HN (αN , βN ) =

∫
[τ(N−1); τ(N)]

g (αN , βN ) dµ (t) =

= g (αN , βN ) ·
(
τ (N) − τ (N−1)

)
(150)

instead of (28) and (29). Equalities (147)— (150) mean that the payoff value depends
only on the length of the time unit. That is, the player’s payoff then is equal to
the subinterval length multiplied by the respective value of the function under the
integral. If the length does not change in the case of bimatrix staircase-function
game (49), then the time-unit bimatrix game does not change. If the length does
not change in the case of discrete-time staircase-function 2-person game (33), the



176 V. Romanuke

time-unit (ordinary) 2-person game defined on rectangle (32) does not change. Then
the solution (of any type) to the initial (finite or uncountably infinite) discrete-time
staircase-function 2-person game is determined just by the solution of a one time-unit
game, and this solution will not change as the time units go by. Such a triviality of the
equal-length-subinterval solution is explained by a standstill of the players’ strategies.
Consequently, the scientific significance of this trivial case is low — this is why it is
not considered.

The scientific significance of the discrete-time staircase-function 2-person game
and the methods of finding an equilibrium in it (provided by Theorems 2 and 3, and,
under the supposition of that all the time-unit equilibria exist, by Theorems 4 and 5)
is high. Owing to Theorems 2 and 3, such games, if finite, are very simple models to
describe struggling for optimizing the distribution of some limited resources between
two sides. Unlike ordinary bimatrix games, which model only static processes of the
struggle, discrete-time staircase-function 2-person games allow considering discrete-
time dynamics of the struggling processes. Such a simplification is similar to that
when, e. g., the fuzzy logic facilitates the control of a complicated system without
knowledge of its exact mathematical description.

10. Conclusion

Because of an intractably gigantic size, it is impracticable to solve 2-person games
played in staircase-function finite spaces by directly rendering them to bimatrix games,
where the solution is of the equilibrium type. Moreover, the time interval on which
the discrete-time 2-person game is defined can vary by the number of time subinter-
vals (time units), so a tractable and efficient method of finding an equilibrium in a
2-person game played in staircase-function finite spaces is to solve a succession of
time-unit bimatrix games, whereupon their equilibria are stacked into pure-mixed-
strategy equilibria. In the case of multiple equilibria on some time units, the criterion
of the players’ payoffs sum maximum is applied to select the best equilibrium. Owing
to Theorems 2 and 3, the equilibrium of the initial finite game can be obtained by
stacking the best equilibria of the smaller-sized bimatrix games, whichever the time
interval is. If the game is uncountably infinite, i. e. a set of pure strategy possible val-
ues is uncountably infinite, and all time-unit equilibria exist, such a stack is possible
as well owing to Theorems 4 and 5. So, the equilibrium of the initial discrete-time
staircase-function 2-person game can be obtained by stacking the equilibria of the
(ordinary) 2-person games defined on a rectangle, whichever the time interval is.

Solving games played in staircase-function finite spaces with possible time-unit
shifting (when the initial time interval is narrowed by an integer number of time units)
should be studied also for the case of three players. Then the presented assertions
and conclusions are to be re-written for trimatrix games. A distinct peculiarity is
that the equilibria multiplicity problem in trimatrix games is even trickier than that
in bimatrix games. Moreover, the criterion of selecting a single equilibrium situation
on each time unit in the case of a trimatrix staircase-function game becomes more
disputable, especially when at least two players’ payoff ranges differ significantly.
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Abstract: Let (X, d) be a non-empty compact metric space in C,
(B, ∥ . ∥) be a commutative unital Banach algebra over the scalar field
F(= R or C) and α ∈ R with 0 < α ≤ 1. In this work, first we define
the analytic α-Lipschitz B-valued operators on X and denote the Banach
algebra of all these operators by LipαA(X,B). When B = F, we write
LipαA(X) instead of LipαA(X,B). Then we study some interesting results
about LipαA(X,B), including the relationship between LipαA(X,B) with
LipαA(X) and B, and also characterize the characters on LipαA(X,B).
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1. Introduction

Throughout this paper, let (X, d) be a compact metric space in C, (B, ∥ . ∥) be a
commutative unital Banach algebra over the scalar field F(= R or C) with unit e,
C(X,B) be the set of all B-valued continuous operators on X, and also α ∈ R with
0 < α ≤ 1.

The dual space of B is the vector space B∗ whose elements are the continuous linear
functionals on B. The set of all multiplicative functionals on B is called spectrum of
B; we denote it by σ(B). Suppose that throughout this article, Λ ∈ σ(B) is arbitrary
and fixed. Since σ(B) is a subset of the closed unit ball of B∗, ∥ Λ ∥ is bounded,
where

∥ Λ ∥= sup{ | Λx | : x ∈ B , ∥ x ∥≤ 1 }.

When B = F, take Λ as the identity function Λx = x.
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Consider the set Y as follows

Y := {(x, y) : x, y ∈ X , x ̸= y}.

For an operator f : X → B and any (x, y) ∈ Y define

Lα
f (x, y) :=

∣∣∣(Λof)(x)− (
Λof

)
(y)

∣∣∣
dα(x, y)

,

where dα(x, y) =
(
d(x, y)

)α
and 0 < α ≤ 1. Now define

pα(f) := sup
x ̸=y

Lα
f (x, y) , 0 < α ≤ 1,

which is called the Lipschitz constant of f . Also for 0 < α ≤ 1 define

Lipα(X,B) := {f ∈ C(X,B) : pα(f) < +∞},

and for 0 < α < 1 define

lipα(X,B) := {f ∈ Lipα(X,B) : lim
d(x,y)→0

Lα
f (x, y) = 0}.

The elements of Lipα(X,B) and lipα(X,B) are called big and little α-Lipschitz B-
valued operators, respectively.

Now, for each λ ∈ F, x ∈ X and f, g ∈ C(X,B) define(
f + g

)
(x) := f(x) + g(x) ,

(
λf

)
(x) := λf(x) ,

and the uniform norm ∥ . ∥∞ on C(X,B) by

∥ f ∥∞:= sup
x∈X

∥ f(x) ∥ ; f ∈ C(X,B).

Also for any f ∈ Lipα(X,B) define

∥ f ∥α:= pα(f)+ ∥ f ∥∞ .

It is easy to see that
(
C(X,B), ∥ . ∥∞

)
becomes a Banach algebra over F.

Cao, Zhang and Xu in [6] proved that
(
Lipα(X,B), ∥ . ∥α

)
is a Banach space

over F and
(
lipα(X,B), ∥ . ∥α

)
is a closed linear subspace of

(
Lipα(X,B), ∥ . ∥α

)
when B is a Banach space. We also studied some of the properties of these algebras
in [14-17] when B is a commutative unital Banach algebra.

Note that for α = 1 and B = F, the space Lip1(X,F) consisting of all Lipschitz
functions fromX into F(= R or C) has a series of interesting and important properties,
which has been studied by many mathematicians, including the first of them Sherbert
[13]. In [7, 18] some properties of Lipschitz scalar-valued functions are mentioned.

Let D be an open subset of X. An operator f of D into B is said to be analytic
on D if, for every continuous linear functional ϕ ∈ B∗, the scalar-valued function ϕof
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is analytic on D in the usual sense. Note that we do not require D to be connected.
For a full discussion of analytic complex-valued and vector-valued functions, see [2,
7]. The algebra of all continuous B-valued operators on X whose analytic in interior
X is denoted by A(X,B). We write A(X) instead of A(X,F) (F = R or C). Some of
the properties of these algebras have been studied by certain mathematicians, see [1,
3-5, 8-11].

Finally, in this article, we introduce the analytic α-Lipschitz B-valued operator
algebras LipαA(X,B) and we characterize their characters, also we study the relation-
ship between of LipαA(X,B) and B. We prove the main results of the article in several
theorems.

2. Lip-analytic Operators

In this section, we introduce the analytic α-Lipschitz vector-valued operator alge-
bras LipαA(X,B), and we study some of their properties.

We write C(X) and Lipα(X) instead of C(X,F) and Lipα(X,F) respectively. By
the Stone-Weierstrass theorem, we have

Theorem 2.1. [7]. A(X) is uniformly dense in C(X).

It is obvious that A(X,B) is a subalgebra of C(X,B). We have

Theorem 2.2. A(X,B) is uniformly dense in C(X,B).

Proof. Let ϵ > 0 and f ∈ C(X,B) be arbitrary. We show that there exists g ∈
A(X,B) such that ∥ f − g ∥∞< ϵ. Since f ∈ C(X,B), Λof ∈ C(X). Then by
Theorem 2.1, there is h ∈ A(X) such that ∥ Λof − h ∥∞< ϵ. So

sup
x∈X

∣∣∣(Λof)(x)− h(x)
∣∣∣ < ϵ.

Since Λ(e) = 1, h(x) = Λ(h(x)e) for all x ∈ X. Then

sup
x∈X

∣∣∣Λ(f(x))− Λ(h(x)e)
∣∣∣ < ϵ.

Hence
sup
x∈X

∣∣∣Λ((f − h.e)(x)
)∣∣∣ < ϵ.

Since Λ ∈ σ(B) is arbitrary, supx∈X ∥ (f −h.e)(x) ∥< ϵ. Thus ∥ f −h.e ∥∞< ϵ. Now,
take g := h.e. Since h ∈ A(X) and e ∈ B , g ∈ A(X,B). Therefore we conclude that
∥ f − g ∥< ϵ where g ∈ A(X,B).

We have the similar Theorem 2.1 for the algebra of Lipschitz scalar-valued func-
tions:

Theorem 2.3. [18]. Lipα(X) is uniformly dense in C(X).
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Theorem 2.4. Lipα(X,B) is uniformly dense in C(X,B).

Proof. Let ϵ > 0 and f ∈ C(X,B) be arbitrary. We show that there exists h ∈
Lipα(X,B) such that ∥ h − f ∥∞< ϵ. Since f ∈ C(X,B), Λof ∈ C(X). So by
Theorem 2.3, there exists g ∈ Lipα(X) such that ∥ g − Λof ∥∞< ϵ. Define

η : C → B

η(λ) := λe.

Since g is continuous, ηog is continuous. Also

pα(ηog) = sup
x ̸=y

Lα
ηog(x, y)

= sup
x ̸=y

∥ (ηog)(x)− (ηog)(y) ∥
dα(x, y)

= sup
x ̸=y

∥ g(x)e− g(y)e ∥
dα(x, y)

(∥ e ∥= 1)

≤ pα(g) <∞.

So ηog ∈ Lipα(X,B). Set h := ηog. Now we show that ∥ h−f ∥∞< ϵ. Since Λ(e) = 1,
for all x ∈ X we have∣∣Λ(g(x)e− f(x)

)∣∣ =
∣∣g(x)− (Λof)(x)

∣∣
≤ ∥ g − Λof ∥∞
< ϵ.

This implies that ∣∣Λ(ηog − f
)
(x)

∣∣ < ϵ , x ∈ X.

Since Λ ∈ σ(B) is arbitrary, ∥ (ηog − f)(x) ∥< ϵ for all x ∈ X. Consequently,
∥ ηog − f ∥∞< ϵ or ∥ h− f ∥∞< ϵ. This completes the proof.

Corollary 2.5. By using Theorems 2.2 and 2.4, each element of A(X,B) can
be approximated by elements of Lipα(X,B) with sup-norm. Also each element of
Lipα(X,B) can be approximated by elements of A(X,B) with sup-norm.

Definition 2.6. Let D be an open subset of X. An operator f of D into B is said
to be Lip-analytic on D if f ∈ Lipα(X,B) ∩A(X,B).

The algebra of all Lip-analytic B-valued operators on X whose analytic in interior
X is denoted by LipαA(X,B). When B = F, we write LipαA(X) instead of LipαA(X,B).

By Theorems 2.2 and 2.4, we can prove that:

Theorem 2.7. LipαA(X,B) is uniformly dense in C(X,B).
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Let E1 and E2 be linear spaces. From [12], a tensor product of E1 and E2 is a
pair (T, τ), where T is a linear space and τ : E1 × E2 → T is a bilinear map with
the following (universal) property: For each linear space F and for each bilinear map
V : E1 × E2 → F , there is a unique linear map U : T → F such that V = Uoτ.
We shall also use the standard notation for tensor products, we write E1 ⊗ E2 for T
and x1⊗x2 = τ(x1, x2) for x1 ∈ E1 and x2 ∈ E2. If Z ∈ E1⊗E2, then there is m ∈ N,
and for each j = 1, 2 there are x

(1)
j , ..., x

(m)
j ∈ Ej such that Z =

∑m
k=1 x

(k)
1 ⊗ x

(k)
2 .

Let E1 and E2 be Banach spaces with dual spaces E∗
1 and E∗

2 . Then we define
for Z ∈ E1 ⊗ E2

∥ Z ∥ϵ= sup
{∣∣⟨Z, ϕ1 ⊗ ϕ2⟩

∣∣ : ϕj ∈ N1[0, E
∗
j ] , j = 1, 2

}
,

where

Z =

m∑
k=1

x
(k)
1 ⊗ x

(k)
2 ;

(
m ∈ N, x(k)j ∈ Ej , j = 1, 2, 1 ≤ k ≤ m

)
,

and

⟨ Z, ϕ1 ⊗ ϕ2 ⟩ = ⟨
m∑

k=1

x
(k)
1 ⊗ x

(k)
2 , ϕ1 ⊗ ϕ2 ⟩

= (ϕ1 ⊗ ϕ2)
( m∑

k=1

x
(k)
1 ⊗ x

(k)
2

)
=

m∑
k=1

(ϕ1 ⊗ ϕ2)
(
x
(k)
1 ⊗ x

(k)
2

)
=

m∑
k=1

ϕ1
(
x
(k)
1

)
ϕ2

(
x
(k)
2

)
,

and N1[0, E
∗
j ] is closed ball in E∗

j with radius 1 centered at 0 . We call ∥ . ∥ϵ the
injective norm on E1 ⊗ E2.

Let (E1, ∥ . ∥1) and (E2, ∥ . ∥2) be Banach spaces. Then their injective tensor
product E1⊗̌E2 is the completion of E1 ⊗ E2 with respect to ∥ . ∥ϵ. For every
Z ∈ E1⊗̌E2 , we have

∥ Z ∥ϵ= sup
{
∥
(
id⊗ ϕ

)
(Z) ∥1 : ϕ ∈ N1[0, E

∗
2 ]
}
,

where (
id⊗ ϕ

)
(a⊗ b) = aϕ(b) ; (a ∈ E1 , b ∈ E2).

Definition 2.8. Let E1 and E2 be Banach spaces. A norm ∥ . ∥ on E1 ⊗E2 is called
a cross norm if

∥ x1 ⊗ x2 ∥=∥ x1 ∥∥ x2 ∥ (x1 ∈ E1 , x2 ∈ E2).

Proposition 2.9. [12]. Let E1 and E2 be Banach spaces. Then ∥ . ∥ϵ is a cross norm
on E1 ⊗ E2.
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3. The Main Results

In this section, we present the main results of the article.

Theorem 3.1. LipαA(X,B) is isometrically isomorphic to LipαA(X)⊗̌B.

Proof. It is straightforward to prove that the mapping

LipαA(X)×B → LipαA(X,B), (f, b) 7−→ fb (3.1)

is bilinear. So from the defining property of the algebraic tensor product LipαA(X)⊗B,
it follows that (1) extends to a linear map

S : LipαA(X)⊗B −→ LipαA(X,B)

S(f ⊗ b) := fb ,

where
(fb)(x) := f(x)b ; (x ∈ X).

Then

∥ S(f ⊗ b) ∥α = ∥ fb ∥α = ∥ fb ∥∞ +pα(fb)

= ∥ f ∥∞∥ b ∥ +pα(f) ∥ b ∥
= (∥ f ∥∞ +pα(f)) ∥ b ∥
= ∥ f ∥α∥ b ∥
= ∥ f ⊗ b ∥ϵ .

Therefore S is an isometry and thus injective with closed range. It remains to be
shows that it has dense range as well.

Let f ∈ LipαA(X,B) and ϵ > 0. Being the continuous image of a compact space,
K := f(X) ⊂ B is compact. We may thus find b1, ..., bn ∈ B such that K ⊂
∪n
i=1N(bi, ϵ), where N(bi, ϵ) is a neighborhood with radius ϵ centered at bi. Let Uj :=

f−1
(
N(bj , ϵ)

)
for j = 1, ..., n. Choose f1, ..., fn ∈ LipαA(X,B) such that supp(fj) ⊂ Uj

for j = 1 , ..., n, and Λo(
∑n

i=1 fi) = 1. Then for every x ∈ X we have

∥
(
f −

n∑
i=1

S(Λofi ⊗ bi)
)
(x) ∥ = ∥

(
f −

n∑
i=1

(Λofi)bi
)
(x) ∥

= ∥ f(x)−
n∑

i=1

(Λofi)(x)bi ∥

= ∥ f(x)
(
Λo(

n∑
i=1

fi)
)
(x)−

n∑
i=1

(Λofi)(x)bi ∥

= ∥ f(x)
n∑

i=1

(Λofi)(x)−
n∑

i=1

(Λofi)(x)bi ∥
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= ∥
n∑

i=1

(Λofi)(x)
(
f(x)− bi

)
∥

≤
n∑

i=1

| (Λofi)(x) |∥ f(x)− bi ∥ .

It easy to see that the right hand side of the above relation is less than ϵ. So we
conclude that RS = LipαA(X,B). This completes the proof.

With an argument similar to the proof of Theorem 3.1, we can prove that:

Theorem 3.2. A(X,B) is isometrically isomorphic to A(X)⊗̌B.

Define the canonical embedding

j : LipαA(X) → LipαA(X,B)

j(h) := h⊗ e ,

such that
(h⊗ e)(x) := h(x)e ; x ∈ X.

By Theorem 3.1, the map j is well defined. Let χ be a arbitrary and fixed character
on LipαA(X,B). Then there is z ∈ X such that χoj is the evaluation at z, indeed
χoj = δz where δz(f) = f(z).

Define φ(ω) := ω − z, (ω ∈ X). It is clear that φ ∈ A(X), and we have

pα(φ) = sup
x ̸=y

| φ(x)− φ(y) |
| x− y |α

= sup
x ̸=y

| (x− z)− (y − z) |
| x− y |α

= sup
x ̸=y

| x− y |1−α<∞.

So φ ∈ Lipα(X), and consequently φ ∈ LipαA(X).

Now consider
I := {f ∈ LipαA(X,B) : f(z) = 0}.

It is obvious that I is nonempty and an ideal in LipαA(X,B).

Theorem 3.3. I is contained in the kernel of χ.

Proof. Let f ∈ I be arbitrary. Then f ∈ A(X,B). So f has a Taylor series expansion

f(ω) = Σ∞
n=1

f(n)(z)
n! (ω − z)n around z. Define

g(ω) :=


f(ω)
ω−z ; ω ̸= z ,

f
′
(z) ; ω = z.
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It is clear that Λog is analytic in the interior of X, so g ∈ A(X,B). For ω = z, it is
obvious that g ∈ LipαA(X,B), and for ω ̸= z we have

f(ω) = (ω − z)g(ω) = φ(ω)g(ω).

It can be easily proved that g ∈ LipαA(X,B). Then for every ω ∈ X with ω ̸= z, we
have

f(ω) = φ(ω)g(ω) = φ(ω)eg(ω)

= (φ⊗ e)(ω)g(ω) =
(
(φ⊗ e)g

)
(ω)

=
(
j(φ)g

)
(ω).

So f = j(φ)g. Therefore

χ(f) = χ
(
j(φ)g

)
= χ

(
j(φ)

)
χ(g)

=
(
χoj

)
(φ)χ(g) = δz(φ)χ(g)

= φ(z)χ(g) = 0× χ(g) = 0.

So f ∈ kerχ, and that means I ⊂ kerχ. This completes the proof.

Theorem 3.4. Every character χ on LipαA(X,B) is of form χ = ψoδz for some
character ψ on B and some z ∈ X, where δz(f) = f(z).

Proof. Let χ be an arbitrary character on LipαA(X,B). Then there is z ∈ X such
that χoj is the evaluation at z, indeed χoj = δz where δz(f) = f(z). Define

I := {f ∈ LipαA(X,B) : f(z) = 0}.

By Theorem 3.3, I is contained in the kernel of χ. It is clear that kerδz = I. Therefore
kerδz ⊂ kerχ. We obtain the desired factorization χ = ψoδz for some character ψ on
B.
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