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Hugo Leiva and Nelson Merentes

Abstra
t: In this paper we apply Rothe's Fixed Point Theorem to

prove the interior approximate 
ontrollability of the following semilinear

impulsive Heat Equation















zt = ∆z + 1ωu(t, x) + f(t, z, u(t, x)), in (0, τ ]× Ω, t 6= tk
z = 0, on (0, τ)× ∂Ω,
z(0, x) = z0(x), x ∈ Ω,
z(t+k , x) = z(t−k , x) + Ik(tk, z(tk, x), u(tk, x)), x ∈ Ω,

where k = 1, 2, . . . , p, Ω is a bounded domain in R
N (N ≥ 1), z0 ∈ L2(Ω), ω

is an open nonempty subset of Ω, 1ω denotes the 
hara
teristi
 fun
tion of

the set ω,the distributed 
ontrol u belongs to C([0, τ ];L2(Ω)) and f, Ik ∈
C([0, τ ]× R× R;R), k = 1, 2, 3, . . . , p, su
h that

|f(t, z, u)| ≤ a0|z|
α0 + b0|u|

β0 + c0, u ∈ R, z ∈ R.

|Ik(t, z, u)| ≤ ak|z|
αk + bk|u|

βk + ck, k = 1, 2, 3, . . . , p, u ∈ R, z ∈ R.

with

1
2 ≤ αk < 1, 1

2 ≤ βk < 1, k = 0, 1, 2, 3, . . . , p. Under this 
ondition
we prove the following statement: For all open nonempty subsets ω of

Ω the system is approximately 
ontrollable on [0, τ ]. Moreover, we 
ould

exhibit a sequen
e of 
ontrols steering the nonlinear system from an initial

state z0 to an ǫ neighborhood of the �nal state z1 at time τ > 0.
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1 Introdu
tion

There are many pra
ti
al examples of impulsive 
ontrol systems, a 
hemi
al rea
tor

system with the quantities of di�erent 
hemi
als serve as the states, a �nan
ial system

with two state variables of the amount of money in a market and the saving rates

of a 
entral bank and the growth of a population di�using throughout its habitat is

often modeled by rea
tion-di�usion equation, for whi
h mu
h has been done under the

assumption that the system parameters related to the population environment, either

are 
onstant or 
hange 
ontinuously.However, one may easily visualize situations in

nature where abrupt 
hanges su
h as harvesting, disasters and instantaneous stoking

may o

ur. This observation motivates us to study the approximate 
ontrollability of

the following Semilinear Impulsive Heat Equation















zt = ∆z + 1ωu(t, x) + f(t, z, u(t, x)), in (0, τ ]× Ω, t 6= tk
z = 0, on (0, τ)× ∂Ω,
z(0, x) = z0(x), x ∈ Ω,
z(t+k , x) = z(t−k , x) + Ik(tk, z(tk, x), u(tk, x)), x ∈ Ω,

(1.1)

where k = 1, 2, . . . , p, Ω is a bounded domain in R
N (N ≥ 1), z0 ∈ L2(Ω), ω is an

open nonempty subset of Ω, 1ω denotes the 
hara
teristi
 fun
tion of the set ω,the

distributed 
ontrol u belongs to C([0, τ ];L2(Ω)) and f, Ik ∈ C([0, τ ] × R × R;R),
k = 1, 2, 3, . . . , p, su
h that

|f(t, z, u)| ≤ a0|z|
α0 + b0|u|

β0 + c0, u, z ∈ R. (1.2)

|Ik(t, z, u)| ≤ ak|z|
αk + bk|u|

βk + ck, k = 1, 2, 3, . . . , p, u, z ∈ R. (1.3)

1

2
≤ αk < 1,

1

2
≤ βk < 1, k = 0, 1, 2, 3, . . . , p, (1.4)

and

z(tk, x) = z(t+k , x) = lim
t→t+

k

z(t, x), z(t−k , x) = lim
t→t−

k

z(t, x).

In almost all referen
e on impulsive di�erential equations the natural spa
e to work

in is the Bana
h spa
e

PC([0, τ ];Z)

= {z : J = [0, τ ] → Z : z ∈ C(J ′;Z), ∃z(t+k , ·), z(t
−
k , ·) and z(tk, ·) = z(t+k , ·)},

where Z = L2(Ω) and J ′ = [0, τ ]\{t1, t2, . . . , tp}, endowed with the norm

‖z‖ = sup
t∈[0,τ ]

|z(t, ·)|Z ,

with

‖z‖Z =

√

∫

Ω

‖z(x)‖2dx, ∀z ∈ Z = L2(Ω).
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De�nition 1.1 (Approximate Controllability) The system (1.1) is said to be

approximately 
ontrollable on [0, τ ] if for every z0, z1 ∈ Z = U = L2(Ω), ε > 0 there

exists u ∈ C([0, τ ];U) su
h that the solution z(t) of (1.1) 
orresponding to u veri�es:

z(0) = z0 and ‖z(τ)− z1‖Z < ε, (Fig.2),

where

‖z(τ)− z1‖Z =

(
∫

Ω

|z(τ, x)− z1(x)|
2dx

)
1
2

.

b

b

z(0) = z0

z(τ) = z1

b

b

b

z(0) = z0

z(τ)

z1

ǫ

Fig.1 Fig.2

De�nition 1.2 (Controllability to Traje
tories) The system (1.1) is said to be


ontrollable to traje
tories on [0, τ ] if for every z0, ẑ0 ∈ Z = U = L2(Ω) and û ∈
C([0, τ ];U) there exists u ∈ C([0, τ ];U) su
h that the mild solution z(t) of (1.1)


orresponding to u veri�es:

z(τ, z0, u) = z(τ, ẑ0, û), (Fig.3).

ẑ0

z0

ẑ(τ, ẑ0, û) = z(τ, z0, u)

Fig.3

De�nition 1.3 (Null Controllability) The system (1.1) is said to be null 
ontrol-

lable on [0, τ ] if for every z0 ∈ Z = U = L2(Ω) there exists C([0, τ ];U) su
h that the

mild solution z(t) of (1.1) 
orresponding to u veri�es:

z(0) = z0 and z(τ) = 0, (Fig.4).
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z0

z(τ ) = 0

Fig.4

Remark 1.1 It is 
lear that exa
t 
ontrollability of the system(1.1) implies approx-

imate 
ontrollability, null 
ontrollability and 
ontrollability to traje
tories of the sys-

tem.But, it is well known ([2℄) that due to the di�usion e�e
t or the 
ompa
tness

of the semigroup generated by −∆, the heat equation 
an never be exa
tly 
ontrol-

lable. We observe also that in the linear 
ase 
ontrollability to traje
tories and null


ontrollability are equivalent. Nevertheless, the approximate 
ontrollability and the

null 
ontrollability are in general independent. Therefore, in this paper we will be


on
entrated only on the study of the approximate 
ontrollability of the system(1.1).

Re
ently the interior 
ontrollability of the semilinear heat equation (1.1) without

impulses has been proved in [13℄, [14℄ and [15℄ under the following 
ondition:

sup
(t,z,u)∈Qτ

|f(t, z, u)− az − cu| < ∞, (1.5)

where a, c ∈ IR, with c 6= −1 and Qτ = [0, τ ]× IR × IR.

More re
ently, in [14℄, the approximate 
ontrollability of the semilinear heat equation

(1.1) without impulses has been proved under the following non linear perturbation:

|f(t, z, u)− az| ≤ c|u|β + b, ∀u, z ∈ IR, |u|, |z| ≥ R, (1.6)

where a, b, c ∈ IR, R > 0 and

1
2 ≤ β < 1. We note that, the interior approximate


ontrollability of the linear heat equation







zt(t, x) = ∆z(t, x) + 1ωu(t, x) in (0, τ ]× Ω,
z = 0, on (0, τ) × ∂Ω,
z(0, x) = z0(x), x ∈ Ω,

(1.7)

has been study by several authors, parti
ularly by [22℄,[23℄,[24℄; and in a general fash-

ion in [12℄.

The 
ontrollability of Impulsive Evolution Equations has been studied re
ently for

several authors, but most them study the exa
t 
ontrollability only, to mention:

D.N. Chalishajar([4℄), studied the exa
t 
ontrollability of impulsive partial neu-

tral fun
tional di�erential equations with in�nite delay, B. Radhakrishnan and K.

Bala
handran([19℄) studied the exa
t 
ontrollability of semilinear impulsive inte-

grodi�erential evolution systems with nonlo
al 
onditions and S. Selvi, M. Mallika

Arjunan([20℄) studied the exa
t 
ontrollability for impulsive di�erential systems with

�nite delay. To our knowledge, there are a few works on approximate 
ontrollability of

impulsive semilinear evolution equations, to mention: Lizhen Chen and Gang Li([5℄)
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studied the Approximate 
ontrollability of impulsive di�erential equations with non-

lo
al 
onditions, using measure of non
ompa
tness and Mon
h �xed point theorem,

and assuming that the nonlinear term f(t, z) does not depend on the 
ontrol variable.

Finally, the approximate 
ontrollability of the system (1.1) follows from the ap-

proximate 
ontrollability of (1.7), the 
ompa
tness of the semigroup generated by the

Lapla
ian operator −∆, the 
onditions (1.2) and (1.5) satis�ed by the nonlinear term

f, Ik and the following results:

Proposition 1.1 Let (X,Σ, µ) be a measure spa
e with µ(X) < ∞ and 1 ≤ q < r <

∞. Then Lr(µ) ⊂ Lq(µ) and

‖f‖q ≤ µ(X)
r−q
rq ‖f‖r, f ∈ Lr(µ). (1.8)

Proof The proof of this proposition follows from Theorem I.V.6 from [3℄ by putting

p = r
q > 1 and 
onsidering the relation

∫

X

(|f |q)pdµ =

∫

X

|f |rdµ, ∀f ∈ Lr(µ).

Theorem 1.1 (Rothe's Fixed Theorem, [1℄,[9℄, [21℄) Let E be a Bana
h spa
e. Let

B ⊂ E be a 
losed 
onvex subset su
h that the zero of E is 
ontained in the interior

of B. Let Φ : B → E be a 
ontinuous mapping with Φ(B) relatively 
ompa
t in E

and Φ(∂B) ⊂ B. Then there is a point x∗ ∈ B su
h that Φ(x∗) = x∗
.

The te
hnique we use here to prove the approximate 
ontrollability of the linear part

of equation (1.7) is based on the 
lassi
al Unique Continuation for Ellipti
 Equations

(see [18℄) and the following lemma:

Lemma 1.1 (see Lemma 3.14 from [6℄, pg. 62) Let {αj}j≥1 and {βi,j : i =
1, 2, . . . ,m}j≥1 be two sequen
es of real numbers su
h that: α1 > α2 > α3 · · · . Then

∞
∑

j=1

eαjtβi,j = 0, ∀t ∈ [0, τ ], i = 1, 2, · · · ,m

i�

βi,j = 0, i = 1, 2, · · · ,m; j = 1, 2, · · · ,∞.

2 Abstra
t Formulation of the Problem

In this se
tion we 
hoose a Hilbert spa
e where system (1.1) 
an be written as an

abstra
t di�erential equation; to this end, we 
onsider the following results appearing

in [6℄ pg.46, [8℄ pg.335 and [10℄ pg.147:

Let us 
onsider the Hilbert spa
e Z = L2(Ω) and 0 < λ1 < λ2 < ... < λj −→ ∞ the

eigenvalues of −∆ with the Diri
hlet homogeneous 
onditions, ea
h one with �nite
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multipli
ity γj equal to the dimension of the 
orresponding eigenspa
e. Then we have

the following well known properties

(i) There exists a 
omplete orthonormal set {φj,k} of eigenve
tors of A = −∆.

(ii) For all z ∈ D(A) we have

Az =

∞
∑

j=1

λj

γj
∑

k=1

< z, φj,k > φj,k =

∞
∑

j=1

λjEjz, (2.1)

where < ·, · > is the inner produ
t in Z and

Ejz =

γj
∑

k=1

< z, φj,k > φj,k. (2.2)

So, {Ej} is a family of 
omplete orthogonal proje
tions in Z and z =
∑∞

j=1 Ejz, z ∈
Z.

(iii) −A generates an analyti
 semigroup {T (t)} given by

T (t)z =
∞
∑

j=1

e−λjtEjz and ‖T (t)‖ ≤ e−λ1t, t ≥ 0. (2.3)

Consequently, system (1.1) 
an be written as an abstra
t impulsive di�erential

equations in Z:






z′ = −Az +Bωu+ fe(t, z, u), t ∈ (0, τ ], t 6= tk, z ∈ Z

z(0) = z0,

z(t+k ) = z(t−k ) + Iek(tk, z(tk), u(tk)), k = 1, 2, 3, . . . , p.
(2.4)

where u ∈ C([0, τ ];U), U = Z, Bω : U −→ Z, Bωu = 1ωu is a bounded linear

operator,Iek, f
e : [0, τ ]× Z × U → Z, are de�ned by

Iek(t, z, u)(x) = Ik(t, z(x), u(x)), fe(t, z, u)(x) = f(t, z(x), u(x)), ∀x ∈ Ω, k = 1, 2, . . . , p.

On the other hand, from 
onditions (1.2) and (1.5) we get the following estimates.

Proposition 2.1 Under the 
onditions (1.2)-(1.5) the fun
tions fe, Iek : [0, τ ]× Z ×
U → Z,k = 1, 2, 3, . . . , p, de�ned above satisfy ∀u, z ∈ Z = L2(Ω):

‖fe(t, z, u)‖Z ≤ ã0‖z‖
α0

Z + b̃0‖u‖
β0

Z + c̃0 (2.5)

‖Iek(t, z, u)‖Z ≤ ãk‖z‖
αk

Z + b̃k‖u‖
βk

Z + c̃k, k = 1, 2, 3, . . . , p. (2.6)

Proof.

‖fe(t, z, u)‖2Z =

∫

Ω

|f(t, z(x), u(x))|2dx

≤

∫

Ω

(

a0|z(x)|
α0 + b0|u(x)|

β0 + c0
)2

dx

≤

∫

Ω

(4a20|z(x)|
2α0 + 42b20|u(x)|

2β0 + 42c20)dx

≤ 4a20

∫

Ω

|z(x)|2α0dx + 42b20

∫

Ω

|u(x)|2β0dx + 42c20µ(Ω).
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Then

‖fe(t, z, u)‖Z ≤ 2a0

(
∫

Ω

|z(x)|2α0dx

)
1
2

+ 4b0

(
∫

Ω

|u(x)|2β0dx

)
1
2

+ 4c0
√

µ(Ω)

= 2a0‖z‖
α0

L2α0

+ 4b0‖z‖
β0

L2β0

+ 4c0
√

µ(Ω)

Now, sin
e

1
2 ≤ α0 < 1 ⇔ 1 ≤ 2α0 < 2 and

1
2 ≤ β0 < 1 ⇔ 1 ≤ 2β0 < 2 applying

proposition 1.1, we obtain that:

‖fe(t, z, u)‖Z ≤ 2a0µ(Ω)
1−α0
α0 ‖z‖α0

Z + 2b0µ(Ω)
1−β0
β0 ‖u‖β0

Z + 4c0
√

µ(Ω).

Analogously, we obtain the following estimate for k = 1, 2, 3, . . . , p

‖Iek(t, z, u)‖Z ≤ 2akµ(Ω)
1−αk
αk ‖z‖αk

Z + 2bkµ(Ω)
1−βk
βk ‖u‖βk

Z + 4ck
√

µ(Ω),

whi
h 
ompletes the proof.

3 Controllability of the Linear Equation without Im-

pulses

In this se
tion we shall present some 
hara
terization of the interior approximate


ontrollability of the linear heat equations without impulses. To this end, we note

that, for all z0 ∈ Z and u ∈ L2(0, τ ;U) the initial value problem
{

z′ = −Az +Bωu(t), z ∈ Z,

z(0) = z0,
(3.1)

where the 
ontrol fun
tion u belongs to L2(0, τ ;U), admits only one mild solution

given by

z(t) = T (t)z0 +

∫ t

0

T (t− s)Bωu(s)ds, t ∈ [0, τ ]. (3.2)

De�nition 3.1 For system (3.1) we de�ne the following 
on
ept: The 
ontrollability

map (for τ > 0) G : L2(0, τ ;U) −→ Z is given by

Gu =

∫ τ

0

T (τ − s)Bωu(s)ds. (3.3)

whose adjoint operator G∗ : Z −→ L2(0, τ ;Z) is given by

(G∗z)(s) = B∗
ωT

∗(τ − s)z, ∀s ∈ [0, τ ], ∀z ∈ Z. (3.4)

Therefore, the Grammian operator W : Z → Z is given

Wz = GG∗z =

∫ τ

0

T (τ − s)BωB
∗
ωT

∗(τ − s)ds. (3.5)

The following lemma holds in general for a linear bounded operator G : W → Z

between Hilbert spa
es W and Z.
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Lemma 3.1 (see [6℄, [7℄ and [12℄) The equation (3.1) is approximately 
ontrollable

on [0, τ ] if, and only if, one of the following statements holds:

a) Rang(G) = Z.

b) Ker(G∗) = {0}.


) 〈GG∗z, z〉 > 0, z 6= 0 in Z.

d) limα→0+ α(αI +GG∗)−1z = 0.

e) B∗
ωT

∗(t)z = 0, ∀t ∈ [0, τ ], ⇒ z = 0.

f ) For all z ∈ Z we have Guα = z − α(αI +GG∗)−1z, where

uα = G∗(αI +GG∗)−1z, α ∈ (0, 1].

So, limα→0 Guα = z and the error Eαz of this approximation is given by

Eαz = α(αI +GG∗)−1z, α ∈ (0, 1].

Remark 3.1 The Lemma 3.1 implies that the family of linear operators

Γα : Z → L2(0, τ ;U), de�ned for 0 < α ≤ 1 by

Γαz = B∗
ωT

∗(·)(αI +GG∗)−1z = G∗(αI +GG∗)−1z, (3.6)

is an approximate inverse for the right of the operator G in the sense that

lim
α→0

GΓα = I, (3.7)

in the strong topology.

Proposition 3.1 (See [15℄) If Rang(G) = Z, then

sup
α>0

‖α(αI +GG∗)−1‖ ≤ 1. (3.8)

Remark 3.2 The proof of the following theorem follows from foregoing 
hara
teriza-

tion of dense range linear operators and the 
lassi
al Unique Continuation for Ellipti


Equations (see [18℄), and it is similar to the one given in Theorem 4.1 in [14℄.

Theorem 3.1 System (3.1) is approximately 
ontrollable on [0, τ ]. Moreover, a se-

quen
e of 
ontrols steering the system (3.1) from initial state z0 to an ǫ neighborhood

of the �nal state z1 at time τ > 0 is given by

uα(t) = B∗
ωT

∗(τ − t)(αI +GG∗)−1(z1 − T (τ)z0),

and the error of this approximation Eα is given by

Eα = α(αI +GG∗)−1(z1 − T (τ)z0).
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Proof . It is enough to show that Rang(G) = Z or Ker(G∗) = {0}. To this end, we

observe that Bω = B∗
ω and T ∗(t) = T (t). Suppose that

B∗
ωT

∗(t)z = 0, ∀t ∈ [0, τ ].

Then,

B∗
ωT

∗(t)z =
∞
∑

j=1

e−λjtB∗
ωEjz =

∞
∑

j=1

e−λjt

γj
∑

k=1

< z, φj,k > 1ωφj,k = 0.

⇐⇒
∞
∑

j=1

e−λjt

γj
∑

k=1

< z, φj,k > 1ωφj,k(x) = 0, ∀x ∈ ω.

Hen
e, from Lemma 1.1, we obtain that

Ejz(x) =

γj
∑

k=1

< z, φj,k > φj,k(x) = 0, ∀x ∈ ω, j = 1, 2, 3, . . . .

Now, putting f(x) =
∑γj

k=1 < z, φj,k > φj,k(x), ∀x ∈ Ω, we obtain that

{

(∆ + λjI)f ≡ 0 in Ω,
f(x) = 0 ∀x ∈ ω.

Then, from the 
lassi
al Unique Continuation for Ellipti
 Equations (see [18℄), it

follows that f(x) = 0, ∀x ∈ Ω. So,

γj
∑

k=1

< z, φj,k > φj,k(x) = 0, ∀x ∈ Ω.

On the other hand, {φj,k}is a 
omplete orthonormal set in Z = L2(Ω), whi
h implies

that < z, φj,k >= 0.

Therefore, Ejz = 0, j = 1, 2, 3, . . . , whi
h implies that z = 0. So, Rang(G) = Z.

Hen
e, the system (3.1) is approximately 
ontrollable on [0, τ ], and the remainder of

the proof follows from Lemma 3.1.

Lemma 3.2 Let S be any dense subspa
e of L2(0, τ ;U). Then, system (3.1) is ap-

proximately 
ontrollable with 
ontrol u ∈ L2(0, τ ;U) if, and only if, it is approximately


ontrollable with 
ontrol u ∈ S. i.e.,

Rang(G) = Z ⇐⇒ Rang(G|S) = Z,

where G|S is the restri
tion of G to S.

Proof (⇒) Suppose Rang(G) = Z and S = L2(0, τ ;U). Then, for a given ǫ > 0 and

z ∈ Z there exits u ∈ L2(0, τ ;U) and a sequen
e {un}n≥1 ⊂ S su
h that

‖Gu− z‖ <
ǫ

2
and lim

n→∞
un = u.

Therefore, limn→∞ Gun = Gu and ‖Gun − z‖ < ǫ for n big enough. Hen
e,

Rang(G|S) = Z.

(⇐) This side is trivial.
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Remark 3.3 A

ording to the previous lemma, if the system is 
ontrollable, it is

approximately 
ontrollable with 
ontrol fun
tions in the following dense spa
es of

L2(0, τ ;U):

S = C([0, τ ];U), S = C∞(0, τ ;U), S = PC(J).

Moreover, the operators G, W and Γ are well de�ne in the spa
e of 
ontinuous fun
-

tions: G : C([0, τ ];U) −→ Z by

Gu =

∫ τ

0

T (τ − s)Bωu(s)ds, (3.9)

and G∗ : Z −→ C([0, τ ];U) by

(G∗z)(s) = B∗(s)T ∗(τ − s)z, ∀s ∈ [0, τ ]. ∀z ∈ Z. (3.10)

Also, the Controllability Grammian operator still the same W : Z → Z

Wz = GG∗z =

∫ τ

0

T (τ − s)BωB
∗
ω(s)T

∗(τ − s)zds. (3.11)

Finally, the operators Γα : Z → C([0, τ ];U) de�ned for 0 < α ≤ 1 by

Γαz = B∗
ωT

∗(τ − ·)(αI +W)−1z = G∗(αI +GG∗)−1z, (3.12)

is an approximate inverse for the right of the operator G in the sense that

lim
α→0

GΓα = I. (3.13)

4 Controllability of the Semilinear System

In this se
tion we shall prove the main result of this paper, the interior approximate


ontrollability of the Semilinear Impulsive Heat Equation given by (1.1), whi
h is

equivalent to prove the approximate 
ontrollability of the system (2.4). To this end,

for all z0 ∈ Z and u ∈ C([0, τ ];U) the initial value problem






z′ = −Az +Bωu+ fe(t, z, u), t ∈ (0, τ ], t 6= tk, z ∈ Z

z(0) = z0,

z(t+k ) = z(t−k ) + Iek(t, z(tk), u(tk)), k = 1, 2, 3, . . . , p.
(4.1)

admits only one mild solution given by

zu(t) = T (t)z0 +

∫ t

0

T (t− s)Bωu(s)ds (4.2)

+

∫ t

0

T (t− s)fe(s, zu(s), u(s))ds (4.3)

+
∑

0<tk<t

T (t− tk)I
e
k(tk, z(tk), u(tk)), t ∈ [0, τ ].
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Now, we are ready to present and prove the main result of this paper, whi
h is the

interior approximate 
ontrollability of the semilinear impulsive heat equation (1.1).

We shall de�ne the operator Kα : PC([0, τ ];Z) × C([0, τ ];U) → PC([0, τ ];Z) ×
C([0, τ ];U) by the following formula:

(y, v) = (Kα
1 (z, u),K

α
2 (z, u)) = Kα(z, u)

where

y(t) = Kα
1 (z, u)(t) = T (t)z0 +

∫ t

0

T (t− s)Bω(ΓαL(z, u))(s)ds (4.4)

+

∫ t

0

T (t− s)fe(s, z(s), u(s))ds+
∑

0<tk<t

T (t− tk)I
e
k(tk, z(tk), u(tk)),

and

v(t) = Kα
2 (z, u)(t) = (ΓαL(z, u))(t) = B∗

ωT
∗(τ − t)(αI +W)−1L(z, u), (4.5)

with L : PC([0, τ ];Z)× C([0, τ ];U) → Z is given by

L(z, u) = z1 − T (τ)z0 −

∫ τ

0

T (τ − s)fe(s, z(s), u(s))ds (4.6)

−
∑

0<tk<τ

T (τ − tk)I
e
k(tk, z(tk), u(tk)).

Theorem 4.1 The nonlinear system (1.1) is approximately 
ontrollable on [0, τ ].
Moreover, a sequen
e of 
ontrols steering the system (1.1) from initial state z0 to

an ǫ-neighborhood of the �nal state z1 at time τ > 0 is given by

uα(t) = B∗
ωT

∗(τ − t)(αI +W)−1L(zα, uα),

and the error of this approximation Eαz is given by

Eαz = α(αI +W)−1L(zα, uα),

where

zα(t) = T (t)z0 +

∫ t

0

T (t− s)Bωuα(s)ds

+

∫ t

0

T (t− s)fe(s, zα(s), uα(s))ds

+
∑

0<tk<t

T (t− tk)I
e
k(tk, zα(tk), uα(tk)), t ∈ [0, τ ].

Proof We shall prove this Theorem by 
laims. Before we note that ‖Bω‖ = 1 and

‖T (t)‖ ≤ e−λ1t, t ≥ 0.



96 H. Leiva, N. Merentes

Claim 1. The operator Kα
is 
ontinuous. In fa
t, it is enough to prove that the

operators:

Kα
1 : PC([0, τ ];Z)× C([0, τ ];U) → PC([0, τ ];Z)

and

Kα
2 : PC([0, τ ];Z)× C([0, τ ];U) → C([0, τ ];U),

de�ne above are 
ontinuous. The 
ontinuity of Kα
1 follows from the 
ontinuity of the

nonlinear fun
tions fα(t, z, u), Iek(t, z, u) and the following estimate

‖Kα
1 (z, u)(t)−Kα

1 (w, v)(t)‖ ≤

∫ t

0

e−λ1(t−s)‖(αI +W)−1‖‖L(z, u)− L(w, v)‖ds

+

∫ t

0

e−λ1(t−s)‖fe(s, z(s), u(s))− fe(s, w(s), v(s))‖ds

+
∑

0<tk<t

e−λ1(t−tk)‖Iek(tk, z(tk), u(tk))− Iek(tk, w(tk), v(tk))‖.

On the other hand,

‖L(z, u)− L(w, v)‖ ≤ τ sup
s∈[0,τ ]

‖fe(s, z(s), u(s))− fe(s, w(s), v(s))‖

+
∑

0<tk<τ

e−λ1(t−tk)‖Iek(tk, z(tk), u(tk))− Iek(tk, w(tk), v(tk))‖.

Therefore,

‖Kα
1 (z, u)−Kα

1 (w, v)‖ ≤ L1 sup
s∈[0,τ ]

‖fe(s, z(s), u(s))− fe(s, w(s), v(s))‖

+ L2

∑

0<tk<τ

‖Iek(tk, z(tk), u(tk))− Iek(tk, w(tk), v(tk))‖.

where L1 = τ(τ‖(αI +W)−1‖+ 1) and L2 = (1 + τ‖(αI +W)−1‖).
The 
ontinuity of the operator Kα

2 follows from the 
ontinuity of the operators L and

Γα de�ne above.

Claim 2. The operator Kα
is 
ompa
t. In fa
t, let D be a bounded subset of

PC(J ;Z)× C(J ;U). It follows that ∀(z, u) ∈ D,we have

‖fe(·, z, u)‖ ≤ L3, ‖(αI +W)−1L(z, u)‖ ≤ L4,

‖L(z, u)‖ ≤ L5, ‖Iek(·, z, u)‖ ≤ lk, k = 1, 2, . . . , p.

Therefore , K(D) is uniformly bounded.

Now, 
onsider the following estimate:

‖|Kα(z, u)(t2)−Kα(z, u)(t1)‖| = ‖Kα
1 (z, u)(t2)−Kα

1 (z, u)(t1)‖

+ ‖Kα
2 (z, u)(t2)−Kα

2 (z, u)(t1)‖.
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Without lose of generality we assume that 0 < t1 < t2. On the other hand we have:

‖Kα
1 (z, u)(t2)−Kα

1 (z, u)(t1)‖ ≤ ‖T (t2)− T (t1)‖‖z0‖

+

∫ t1

0

‖T (t2 − s)− T (t1 − s)‖‖L(z, u)(s)‖ds

+

∫ t2

t1

‖T (t2 − s)‖‖L(z, u)(s)‖ds

+

∫ t1

0

‖T (t2 − s)− T (t1 − s)‖‖fe(s, z(s), u(s))‖ds

+

∫ t2

t1

‖T (t2 − s)‖‖fe(s, z(s), u(s))‖ds

+
∑

0<tk<t1

‖T (t2 − tk)− T (t1 − tk)‖‖I
e
k(tk, z(tk), u(tk))‖

+
∑

t1<tk<t2

‖T (t2 − tk)I
e
k(tk, z(tk), u(tk))‖,

and

‖Kα
2 (z, u)(t2)−Kα

2 (z, u)(t1)‖ ≤ ‖T ∗(τ − t2)− T ∗(τ − t1)‖‖(αI +W)−1L(z, u)‖.

On the other hand, sin
e T (t) is a 
ompa
t operator for t > 0, then from [17℄ we know

that the fun
tion 0 < t → T (t) is uniformly 
ontinuous. So,

lim
|t2−t1|→0

‖T (t2)− T (t1)‖ = 0.

Consequently, if we take a sequen
e {φj : j = 1, 2, . . . } on Kα(D), this sequen
e is

uniformly bounded and equi
ontinuous on the interval [0, t1] and, by Arzela theorem,

there is a subsequen
e {φ1
j : j = 1, 2, . . . } of {φj : j = 1, 2, . . .}, whi
h is uniformly


onvergent on [0, t1].
Consider the sequen
e {φ1

j : j = 1, 2, . . .} on the interval (t1, t2]. On this interval the

sequen
e {φ1
j : j = 1, 2, . . .} is uniformly bounded and equi
ontinuous, and for the

same reason, it has a subsequen
e {φ2
j} uniformly 
onvergent on [0, t2].

Continuing this pro
ess for the intervals (t2, t3], (t3, t4], . . . , (tp, τ ], we see that the

sequen
e {φp+1
j : j = 1, 2, . . .} 
onverges uniformly on the interval [0, τ ]. This means

that Kα(D) is 
ompa
t, whi
h implies that the operator Kα
is 
ompa
t.

Claim 3.

lim
‖|(z,u)‖|→∞

‖|Kα(z, u)‖|

‖|(z, u)‖|
= 0,

where ‖|(z, u)‖| = ‖z‖ + ‖u‖ is the norm in the spa
e PC([0, τ ];Z) × C(0, τ ;Z). In

fa
t, 
onsider the following estimates:

‖L(z, u)‖ ≤ M1+M2{a0‖z‖
α0 + b0‖u‖

β0 + c0}+M3

∑

0<tk<τ

{ak‖z‖
αk + bk‖u‖

βk + ck},
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where

M1 = ‖z1‖+ e−λ1τ‖z0‖, M2 =
1

−λ1
(e−λ1τ − 1) and M3 = e−λ1τ .

‖Kα
2 (z, u)‖ ≤ M3M1‖(αI +W)−1‖+M3M2‖(αI +W)−1‖{a0‖z‖

α0 + b0‖u‖
β0 + c0}

+ M3M2‖(αI +W)−1‖
∑

0<tk<τ

{ak‖z‖
αk + bk‖u‖

βk + ck}.

and

‖Kα
1 (z, u)‖ ≤ M3{‖z0‖+M1M2‖(αI +W)−1‖}

+M2{1 +M2M3‖(αI +W)−1‖}{a0‖z‖
α0 + b0‖u‖

β0 + c0}

+M3{1 +M2M3‖(αI +W)−1‖}
∑

0<tk<τ

{ak‖z‖
αk + bk‖u‖

βk + ck}.

Therefore,

‖|Kα(z, u)‖| = ‖Kα
1 (z, u)‖+ ‖Kα

2 (z, u)‖ ≤ M4

+ {M3M2‖(αI +W)−1‖{1 + 2M2}{a0‖z‖
α0 + b0‖u‖

β0 + c0}

+ {M3M2‖(αI +W)−1‖{1 +M3}+M3}
∑

0<tk<τ

{ak‖z‖
αk + bk‖u‖

βk + ck},

where M4 is given by:

M4 = M3{‖z0‖+ (M2 + 1)M1‖(αI +W)−1‖}.

Hen
e

‖|Kα(z, u)‖|

‖|(z, u)‖|
≤

M4

‖z‖+ ‖u‖

+ {M3M2‖(αI +W)−1‖{1 +M2}}

×{a0‖z‖
α0−1 + b0‖u‖

β0−1 +
c0

‖z‖+ ‖u‖
}

+ {M3M2‖(αI +W)−1‖{1 +M3}+M3} ×
∑

0<tk<τ

{ak‖z‖
αk−1 + bk‖u‖

βk−1 +
ck

‖z‖+ ‖u‖
},

and

lim
‖|(z,u)‖|→∞

‖|Kα(z, u)‖|

‖|(z, u)‖|
= 0. (4.7)

Claim 4.The operator Kα
has a �xed point. In fa
t, for a �xed 0 < ρ < 1, there

exists R > 0 big enough su
h that

‖|Kα(z, u)‖| ≤ ρ‖|(z, u)‖|, ‖|(z, u)‖| = R.
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Hen
e, if we denote by B(0, R) the ball of 
enter zero and radius R > 0, we get that
Kα(∂B(0, R)) ⊂ B(0, R). Sin
e Kα

is 
ompa
t and maps the sphere ∂B(0, R) into the
interior of the ball B(0, R), we 
an apply Rothe's �xed point Theorem 1.1 to ensure

the existen
e of a �xed point (zα, uα) ∈ B(0, R) ⊂ PC([0, τ ];Z) × C([0, τ ];U) su
h
that

(zα, uα) = Kα(zα, uα). (4.8)

Claim 5. The sequen
e {(zα, uα)}α∈(0,1] is bounded. In fa
t, for the purpose of


ontradi
tion, let us assume that {(zα, uα)}α∈(0,1] is unbounded. Then, there exits a

subsequen
e {(zαn
, uαn

)}α∈(0,1] ⊂ {(zα, uα)}α∈(0,1] su
h that

lim
n→∞

‖|(zαn
, uαn

)‖| = ∞.

On the other hand, from (4.7) we know for all α ∈ (0, 1] that

lim
n→∞

‖|Kα(zαn
, uαn

)‖|

‖|(zαn
, uαn

)‖|
= 0.

Parti
ularly, we have the following situation:

‖|Kα1(zα1
,uα1

)‖|

‖|(zα1
,uα1

)‖|

‖|Kα1(zα2
,uα2

)‖|

‖|(zα2
,uα2

)‖|

‖|Kα1(zα3
,uα3

)‖|

‖|(zα3
,uα3

)‖| . . . . . .
‖|Kα1(zαn ,uαn )‖|

‖|(zαn ,uαn)‖| → 0.

‖|Kα2(zα1
,uα1

)‖|

‖|(zα1
,uα1

)‖|

‖|Kα2(zα2
,uα2

)‖|

‖|(zα2
,uα2

)‖|

‖|Kα2(zα3
,uα3

)‖|

‖|(zα3
,uα3

)‖| . . . . . .
‖|Kα2(zαn ,uαn )‖|

‖|(zαn ,uαn)‖| → 0.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

‖|Kαk(zα1
,uα1

)‖|

‖|(zα1
,uα1

)‖|

‖|Kαk(zα2
,uα2

)‖|

‖|(zα2
,uα2

)‖|

‖|Kαk(zα3
,uα3

)‖|

‖|(zα3
,uα3

)‖| . . . . . .
‖|Kαk (zαn ,uαn )‖|

‖|(zαn ,uαn)‖| → 0.

Now, applying Cantor's diagonalization pro
ess, we obtain that

lim
n→∞

‖|Kαn(zαn
, uαn

)‖|

‖|(zαn
, uαn

)‖|
= 0,

and from (4.8) we have that

‖|Kαn(zαn
, uαn

)‖|

‖|(zαn
, uαn

)‖|
= 1,

whi
h is evidently a 
ontradi
tion. Then, the 
laim is true and there exists γ > 0
su
h that

‖|(zαn
, uαn

)‖| ≤ γ, (0 < α ≤ 1).

Therefore, without loss of generality, we 
an assume that the sequen
e L(zα, uα)

onverges to y ∈ Z. So, if

uα = ΓαL(zα, uα) = G∗(αI +GG∗)−1L(zα, uα).
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Then,

Guα = GΓαL(zα, uα) = GG∗(αI +GG∗)−1L(zα, uα)

= (αI +GG∗ − αI)(αI +GG∗)−1L(zα, uα)

= L(zα, uα)− α(αI +GG∗)−1L(zα, uα).

Hen
e,

Guα − L(zα, uα) = −α(αI +GG∗)−1L(zα, uα).

To 
on
lude the proof of this Theorem, it enough to prove that

lim
α→0

{−α(αI +GG∗)−1}L(zα, uα) = 0.

From Lemma 3.1.d) we get that

lim
α→0

{α(αI +GG∗)−1L(zα, uα)} = lim
α→0

α(αI +GG∗)−1y

+ lim
α→0

α(αI +GG∗)−1(L(zα, uα)− y)

= lim
α→0

−α(αI +GG∗)−1(L(zα, uα)− y)

On the other hand, from Proposition 3.1, we get that

‖α(αI +GG∗)−1(L(zα, uα)− y)‖ ≤ ‖L(zα, uα)− y)‖.

Therefore, sin
e L(zα, uα) 
onverges to y, we get that

lim
α→0

{−α(αI +GG∗)−1(L(zα, uα)− y)} = 0.

Consequently,

lim
α→0

{−α(αI +GG∗)−1L(zα, uα)} = 0.

Then,

lim
α→0

{Guα − L(zα, uα)} = 0.

Therefore,

lim
α→0

{T (τ)z0 +

∫ τ

0

T (τ − s)Bωuα(s)ds +

∫ τ

0

T (τ − s)fe(s, zα(s), uα(s))ds

+
∑

0<tk<τ

T (τ − tk)I
e
k(zα(tk), uα(tk))} = z1,

and the proof of the theorem is 
ompleted.

As a 
onsequen
e of the foregoing theorem we 
an prove the following 
hara
teri-

zation:

Theorem 4.2 The Impulsive Semilinear System (1.1) is approximately 
ontrollable if

for all states z0 and a �nal state z1 and α ∈ (0, 1] the operator Kα
given by (4.4)-(4.6)

has a �xed point and the sequen
e {L(zα, uα)}α∈(0,1] 
onverges. i.e.,

(zα, uα) = Kα(zα, uα),

lim
α→0

L(zα, uα) = y ∈ Z.
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5 Final Remark

Our te
hnique is simple and 
an be apply to those system involving 
ompa
t semi-

groups like some 
ontrol system governed by di�usion pro
esses. For example, the

Benjamin -Bona-Mohany Equation, the strongly damped wave equations, beam equa-

tions, et
.

Example 5.1 The original Benjamin -Bona-Mohany Equation is a non-linear one,

in [16℄ the authors proved the approximate 
ontrollability of the linear part of this

equation, whi
h is the fundamental base for the study of the 
ontrollability of the non

linear BBM equation. So, our next work is 
on
erned with the 
ontrollability of non

linear BBM equation















zt − a∆zt − b∆z = 1ωu(t, x) + f(t, z, u(t)), t ∈ (0, τ), x ∈ Ω,
z(t, x) = 0, t ≥ 0, x ∈ ∂Ω,
z(0, x) = z0(x), x ∈ Ω,
z(t+k , x) = z(t−k , x) + Ik(t, z(tk, x), u(tk, x)), x ∈ Ω,

where a ≥ 0 and b > 0 are 
onstants, k = 1, 2, . . . , p, Ω is a bounded domain in

R
N (N ≥ 1), z0 ∈ L2(Ω), ω is an open nonempty subset of Ω, 1ω denotes the 
hara
-

teristi
 fun
tion of the set ω,the distributed 
ontrol u belongs to C([0, τ ];L2(Ω; )) and
f, Ik ∈ C([0, τ ]× R× R;R), k = 1, 2, 3, . . . , p.

Example 5.2 We believe that this te
hnique 
an be applied to prove the interior 
on-

trollability of the strongly damped wave equation with Diri
hlet boundary 
onditions























wtt + η(−∆)1/2wt + γ(−∆)w = 1ωu(t, x) + f(t, w, wt, u(t)), in (0, τ)× Ω,
w = 0, in (0, τ)× ∂Ω,
w(0, x) = w0(x), wt(0, x) = w1(x), in Ω,
w(t+k , x) = w(t−k , x) + I1k(t, w(tk, x), wt(tk, x), u(tk, x)), x ∈ Ω,
wt(t

+
k , x) = wt(t

−
k , x) + I2k(t, w(tk, x), wt(tk, x), u(tk, x)), x ∈ Ω,

in the spa
e Z1/2 = D((−∆)1/2) × L2(Ω), k = 1, 2, . . . , p, Ω is a bounded domain

in R
N (N ≥ 1), , ω is an open nonempty subset of Ω, 1ω denotes the 
hara
teristi


fun
tion of the set ω,the distributed 
ontrol u ∈ C([0, τ ];L2(Ω)), η, γ are positive

numbers and f, I1k , I
2
k ∈ C([0, τ ]× R× R;R), k = 1, 2, 3, . . . , p.

Example 5.3 Another example where this te
hnique may be applied is a partial dif-

ferential equations modeling the stru
tural damped vibrations of a string or a beam:























ytt − 2β∆yt +∆2y = 1ωu(t, x) + f(t, y, yt, u(t)), on (0, τ)× Ω,
y = ∆y = 0, on (0, τ)× ∂Ω,
y(0, x) = y0(x), yt(0, x) = y1(x), in Ω,
y(t+k , x) = y(t−k , x) + I1k(t, y(tk, x), yt(tk, x), u(tk, x)), x ∈ Ω,
yt(t

+
k , x) = yt(t

−
k , x) + I2k (t, y(tk, x), yt(tk, x), u(tk, x)), x ∈ Ω,

where Ω is a bounded domain in IRn
, ω is an open nonempty subset of Ω, 1ω denotes

the 
hara
teristi
 fun
tion of the set ω, the distributed 
ontrol u ∈ C([0, τ ];L2(Ω))
and y0 ∈ H2(Ω) ∩H1

0 , y1 ∈ L2(Ω).
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Moreover, our result 
an be formulated in a more general setting. Indeed, we 
an


onsider the following semilinear evolution equation in a general Hilbert spa
e Z






ź = −Az +Bu(t) + fe(t, z, u), z ∈ Z, t ∈ (0, τ ],
z(0) = z0,

z(t+k ) = z(t−k ) + Iek(tk, z(tk), u(tk)), k = 1, 2, 3, . . . , p.
(5.1)

where u ∈ C([0, τ ];U), U = Z, Bω : U −→ Z, Bωu = 1ωu is a bounded linear

operator,Iek, f
e : [0, τ ] × Z × U → Z, A : D(A) ⊂ Z → Z is an unbounded linear

operator in Z with the following spe
tral de
omposition:

Az =

∞
∑

j=1

λj

γj
∑

k=1

< z, φj,k > φj,k,

with the eigenvalues 0 < λ1 < λ2 < · · · < · · ·λn → ∞ of A having �nite multipli
ity

γj equal to the dimension of the 
orresponding eigenspa
es, and {φj,k} is a 
om-

plete orthonormal set of eigenfun
tions of A. The operator −A generates a strongly


ontinuous 
ompa
t semigroup {TA(t)}t≥0 given by

TA(t)z =
∞
∑

j=1

e−λjt

γj
∑

k=1

< z, φj,k > φj,k.

The 
ontrol u ∈ C([0, τ ];U), with U = Z, B : Z → Z is a linear and bounded

operator(linear and 
ontinuous) and the fun
tions fe, Iek : [0, τ ] × Z × U → Z are

smooth enough and

‖fe(t, z, u)‖Z ≤ ã0‖z‖
α0

Z + b̃0‖u‖
β0

Z + c̃0 (5.2)

‖Iek(t, z, u)‖Z ≤ ãk‖z‖
αk

Z + b̃k‖u‖
βk

Z + c̃k, k = 1, 2, 3, . . . , p. (5.3)

In this 
ase the 
hara
teristi
 fun
tion set is a parti
ular operator B, and the following

theorem is a generalization of Theorem 4.1.

Theorem 5.1 If ve
tors B∗φj,k are linearly independent in Z, then the system (5.1)

is approximately 
ontrollable on [0, τ ].
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