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Approximate controllability of the
impulsive semilinear heat equation'

Hugo Leiva and Nelson Merentes

ABSTRACT: In this paper we apply Rothe’s Fixed Point Theorem to
prove the interior approximate controllability of the following semilinear
impulsive Heat Equation

ze = Az + 1,u(t,x) + f(t, z,u(t,x)), in (0,7] x Q,t # t
z=0, on (0,7) x 99,
2(0,z) = zo(x), x € Q,
2t 2) = 2(t, ,x) + Ii(t, 2(tk, ), ulty, x)), r €,

where k = 1,2,...,p, Qis a bounded domain in R¥ (N > 1), 29 € L2(9), w
is an open nonempty subset of 2, 1,, denotes the characteristic function of
the set w,the distributed control u belongs to C([0, 7]; L2(2)) and f, I} €
C([0,7] x R x R;R), k=1,2,3,...,p, such that

|f(t, 2, u)| < aol2]* +bolul™ + ¢y, ueR,zER.

Ik (t, 2, u)| < aplz|® + bplul® +cp, k=1,2,3,...,p, u€R,z€R.

with % < a <1, % <PBr <1l k=0,1,2,3,...,p. Under this condition
we prove the following statement: For all open nonempty subsets w of
Q the system is approximately controllable on [0, 7]. Moreover, we could
exhibit a sequence of controls steering the nonlinear system from an initial
state zg to an € neighborhood of the final state z; at time 7 > 0.

AMS Subject Classification: primary: 93B05; secondary: 93C10.
Keywords and Phrases: impulsive semilinear heat equation, approximate controlla-
bility, Rothe’s fized point Theorem.

I This work has been supported by CDCHT-ULA-C-1796-12-05-AA and BCV

COPYRIGHT (© by Publishing Department Rzeszé6w University of Technology
P.O. Box 85, 35-959 Rzeszéw, Poland



86 H. Leiva, N. Merentes

1 Introduction

There are many practical examples of impulsive control systems, a chemical reactor
system with the quantities of different chemicals serve as the states, a financial system
with two state variables of the amount of money in a market and the saving rates
of a central bank and the growth of a population diffusing throughout its habitat is
often modeled by reaction-diffusion equation, for which much has been done under the
assumption that the system parameters related to the population environment, either
are constant or change continuously.However, one may easily visualize situations in
nature where abrupt changes such as harvesting, disasters and instantaneous stoking
may occur. This observation motivates us to study the approximate controllability of
the following Semilinear Impulsive Heat Equation

2zt = Az + 1,u(t, z) + f(t, z,u(t, x)), in (0,7] x Q,t # ty

z=0, on (0,7) x99, (1.1)
2(0,2) = zo(x), x € 9, '
Z(t;, I) = Z(t];a I) + Ik(tkv Z(tkvx)vu(tkvx))v T < Q,

where k = 1,2,...,p, Q is a bounded domain in R¥(N > 1), 29 € L2(f), w is an
open nonempty subset of 2, 1, denotes the characteristic function of the set w,the
distributed control u belongs to C([0,7]; L2(2)) and f, I € C([0,7] x R x R;R),
k=1,2,3,...,p, such that

|£(t, z,u)| < aolz|® + bolu|® +co,  u,z€R. (1.2)
I (t, 2,u)| < ag)z|® + bplul® + ek, k=1,2,3,...,p, u,z€R. (1.3)

1 1

SSar<lz<B<l k=0123...p (1.4)

and
2(tg,x) = z(t],2) = lim 2(t,x), 2(t,,z)= lim z(t,z).
t—t} t—t,

In almost all reference on impulsive differential equations the natural space to work
in is the Banach space

PC((0,7]; Z)
={z:J=[0,7] > Z:2€C(J;2),32(t,),2(t;;,-) and z(ty,-)=z(t],)}
where Z = Ly(Q2) and J' = [0, 7]\{t1, 2, ..., tp}, endowed with the norm

12l = sup |z(¢-)|z,

te(0,7]
with
121l = / 12(2)|2dz, V= € Z = Lo(Q).
Q
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Definition 1.1 (Approximate Controllability) The system (1.1) is said to be

approzimately controllable on [0, 7] if for every 2o, z1 € Z = U = L2(Q), € > 0 there
exists u € C([0,7];U) such that the solution z(t) of (1.1) corresponding to u verifies:

2(0) =20 and ||2(7) —z1|lz <e, (Fig.2),

where

1

Is(0) =1l = ( [ 1atr0) = sa@)ae)

/. 2(t) ==

z(0) = zg

2(0) = 2o

Fig.1 Fig.2

Definition 1.2 (Controllability to Trajectories) The systemn (1.1) is said to be
controllable to trajectories on [0, 7] if for every 29,20 € Z = U = L2(R) and 4 €

C([0,7];U) there exists u € C([0,7];U) such that the mild solution z(t) of (1.1)
corresponding to u verifies:

z(1, z0,u) = 2(7, 20,0), (Fig.9).

2(7, Z0, 1) = 2(7, 20, u)

20
Fig.3

Definition 1.3 (Null Controllability) The system (1.1) is said to be null control-
lable on [0, 7] if for every zo € Z = U = Lo(Y) there exists C([0,7];U) such that the
mild solution z(t) of (1.1) corresponding to u verifies:

2(0) =29 and z(1) =0, (Fig.4).
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2 /\Z(T) -0

Fig.4

Remark 1.1 It is clear that exact controllability of the system(1.1) implies approz-
imate controllability, null controllability and controllability to trajectories of the sys-
tem.But, it is well known ([2]) that due to the diffusion effect or the compactness
of the semigroup generated by —A, the heat equation can never be exactly control-
lable. We observe also that in the linear case controllability to trajectories and null
controllability are equivalent. Nevertheless, the approximate controllability and the
null controllability are in general independent. Therefore, in this paper we will be
concentrated only on the study of the approximate controllability of the system(1.1).

Recently the interior controllability of the semilinear heat equation (1.1) without
impulses has been proved in [13], [14] and [15] under the following condition:

sup | f(t, z,u) — az — cu| < oo, (1.5)
(t,2,u)€Qr

where a,c € R, with ¢ # —1 and Q. = [0,7] x R X IR.
More recently, in [14], the approximate controllability of the semilinear heat equation
(1.1) without impulses has been proved under the following non linear perturbation:

|f(t, z,u) —az| < clul® +b, Yu,z€ R, |u],|z] >R, (1.6)

where a,b,c € IR, R > 0 and % < B < 1. We note that, the interior approximate
controllability of the linear heat equation

zi(t, ) = Az(t,x) + 1,u(t, x) in (0,7] x Q,
z=0, on (0,7) x 09, (1.7)
2(0,2) = zo(x), x € 9,

has been study by several authors, particularly by [22],[23],[24]; and in a general fash-
ion in [12].

The controllability of Impulsive Evolution Equations has been studied recently for
several authors, but most them study the exact controllability only, to mention:
D.N. Chalishajar([4]), studied the exact controllability of impulsive partial neu-
tral functional differential equations with infinite delay, B. Radhakrishnan and K.
Balachandran([19]) studied the exact controllability of semilinear impulsive inte-
grodifferential evolution systems with nonlocal conditions and S. Selvi, M. Mallika
Arjunan([20]) studied the exact controllability for impulsive differential systems with
finite delay. To our knowledge, there are a few works on approximate controllability of
impulsive semilinear evolution equations, to mention: Lizhen Chen and Gang Li([5])
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studied the Approximate controllability of impulsive differential equations with non-
local conditions, using measure of noncompactness and Monch fixed point theorem,
and assuming that the nonlinear term f (¢, z) does not depend on the control variable.

Finally, the approximate controllability of the system (1.1) follows from the ap-
proximate controllability of (1.7), the compactness of the semigroup generated by the
Laplacian operator —A, the conditions (1.2) and (1.5) satisfied by the nonlinear term
f, Ir and the following results:

Proposition 1.1 Let (X, X, u) be a measure space with u(X) < oo and 1 < g <r <
00, Then L,(u) C Ly(p) and

T

T flle f € Lilp). (1.8)

[fllg < p(X)

Proof The proof of this proposition follows from Theorem I.V.6 from [3] by putting
p= g > 1 and considering the relation

/(Ifl")pdu=/ |fI"dp, Yfe Lp(p).
X X

O

Theorem 1.1 (Rothe’s Fized Theorem, [1],[9], [21]) Let E be a Banach space. Let
B C FE be a closed conver subset such that the zero of E is contained in the interior
of B. Let ® : B — E be a continuous mapping with ®(B) relatively compact in E
and ®(0B) C B. Then there is a point z* € B such that ®(z*) = z*.

The technique we use here to prove the approximate controllability of the linear part
of equation (1.7) is based on the classical Unique Continuation for Elliptic Equations
(see [18]) and the following lemma:

Lemma 1.1 (see Lemma 3.14 from [6], pg. 62) Let {a;}j>1 and {Bi; : i =
1,2,...,m};>1 be two sequences of real numbers such that: aq > as > as---. Then

Zeajtﬁihj:()’ VtE[O,T], i=1,2,"',m
=1

iff
Bi;j=0, i=1,2-,m;j=1,2---, 00.

2 Abstract Formulation of the Problem

In this section we choose a Hilbert space where system (1.1) can be written as an
abstract differential equation; to this end, we consider the following results appearing
in [6] pg.46, [8] pg-335 and [10] pg.14T7:

Let us consider the Hilbert space Z = L2(€2) and 0 < A\ < A2 < ... < Aj — 0o the
eigenvalues of —A with the Dirichlet homogeneous conditions, each one with finite
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multiplicity ~; equal to the dimension of the corresponding eigenspace. Then we have
the following well known properties

(i) There exists a complete orthonormal set {¢; 1} of eigenvectors of A = —A.
(ii) For all z € D(A) we have
AZ—Z)\ Z<z¢]7k>¢]7k—ZAEz (2.1)
=1
where < -,- > is the inner product in Z and
i
Eiz= Z < 2,05k > Gj k- (2.2)
k=1

So, {E;} is a family of complete orthogonal projections in Z and z = Z;’;l Eiz, z¢€
Z.
(iii) —A generates an analytic semigroup {7T'(¢)} given by

T(t)z = Z e N'E;z and |T(@)]| <e ™M, t>0. (2.3)
j=1
Consequently, system (1.1) can be written as an abstract impulsive differential
equations in Z:
—Az—|—B u+ fe(t, z,u), te (0,7],t£tp, z€Z
(
=( ) ( p) 5t 2 (), u(te), k=1,2,3,....p

where v € C([0,7];U), U = Z, B, : U — Z, B,u = 1,u is a bounded linear
operator,If, f¢:[0,7] x Z x U — Z, are defined by

(2.4)

~
?r+\9 H

It z,u) () = Ix(t, 2(2), u(z), [ 2u)(z) = f(t,2(z),u(z)), Ve e Qk=1,2,...

Oun the other hand, from conditions (1.2) and (1.5) we get the following estimates.

Proposition 2.1 Under the conditions (1.2)-(1.5) the functions f¢, I : [0,7] x Z x
U—Zk=1,2,3,...,p, defined above satisfy Vu,z € Z = La(Q):

£t z,u)lz < aollz 3 + bollully + éo (2.5)
gt zu)llz < awllzlys +oelluly + e, k=1,2,3,....p. (2.6)
Proof.
1ot zu)lz = |f(t, 2(z), u(z))da

2
(aol2(2)|*® + bolu(@)|™ + co)” d

IN

IA
S—S— 5

(dadlz(2) P + 425 u(w) % + 4%¢F)d

IN

4a(2)/ﬂ|z(:b)|2a°d:t+42b(2)/ﬂ|u(:1c)|2ﬂ°d:t+42c(2)u(§2).
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Then

179t 2, u)| 2

IN

1 1
2 3
2aq (/ |z(a:)|2a°d:1:> + 4bg (/ |u(3:)|260d:1:> + 4co/ ()
Q Q
= 2a0||z]172, +4bollz|1 75, + dcov/u(R)

Now, since 3 < ag <14 1<2a) <2and 3 < By <1< 1<28 <2 applying

proposition 1.1, we obtain that:

1-8g

lag
1F4(t 2, w)| 2 < 2a00(2) 0 [12]|3° + 2bop(2) o [|ul| + deo/u(Q).

Analogously, we obtain the following estimate for k =1,2,3,...,p

1o a 1By
175Gt 2,0l 2 < 2a0(9) =% |23 + 2bien(Q) P [lullZ + dex/u(9),

which completes the proof. m

3 Controllability of the Linear Equation without Im-
pulses

In this section we shall present some characterization of the interior approximate
controllability of the linear heat equations without impulses. To this end, we note
that, for all z9 € Z and u € Lo(0,7; U) the initial value problem

{ z' = —-Az+ Byu(t), z¢€Z,

2(0) = 2o, (3.1)

where the control function u belongs to Lo(0,7;U), admits only one mild solution
given by

2(t) = T(t)z0 —I—/O T(t — s)Byu(s)ds, te€0,7]. (3.2)

Definition 3.1 For system (3.1) we define the following concept: The controllability
map (for 7 >0) G: L2(0,7;U) — Z is given by

Gu = / T(1 — s)By,u(s)ds. (3.3)
0
whose adjoint operator G* : Z — Lo(0,7; Z) is given by
(G*2)(s) = BLT*(t — s)z, Vse[0,7], VzeZ. (3.4)
Therefore, the Grammian operator W : Z — Z is given

Wz =GGz = / T(1T — $)B,BLT* (T — s)ds. (3.5)
0

The following lemma holds in general for a linear bounded operator G : W — Z
between Hilbert spaces W and Z.
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Lemma 3.1 (see [6], [7] and [12]) The equation (3.1) is approxzimately controllable
on [0, 7] if, and only if, one of the following statements holds:

a) Rang(G) = Z.

b) Ker(G*) ={0}.

¢) (GG*z,z) >0, z#0in Z.

d) lim, o+ a(al + GG*)7'z =0.

e) BET*(t)z=0, Vtel0,7], =z=0.

f) For all z € Z we have Gu, = 2z — a(ad + GG*) "'z, where
Uy = G*(al + GG*) 'z, a€(0,1].

So, limy—,0 Gu, = z and the error E,z of this approzimation is given by

Euz=alal +GG*) 'z, a € (0,1].

Remark 3.1 The Lemma 3.1 implies that the family of linear operators
To:Z — La(0,7;U), defined for 0 < aa <1 by

Loz = BXT*()(al + GG*) 'z = G*(al + GG*) 7'z, (3.6)
is an approximate inverse for the right of the operator G in the sense that
ii_)mo Gl =1, (3.7)
in the strong topology.

Proposition 3.1 (See [15]) If Rang(G) = Z, then
sup |la(al + GG*) 7| < 1. (3.8)
a>0

Remark 3.2 The proof of the following theorem follows from foregoing characteriza-

tion of dense range linear operators and the classical Unique Continuation for Elliptic
Equations (see [18]), and it is similar to the one given in Theorem 4.1 in [14].

Theorem 3.1 System (3.1) is approximately controllable on [0,7]. Moreover, a se-
quence of controls steering the system (3.1) from initial state zo to an € neighborhood
of the final state z1 at time T > 0 is given by

U (t) = BXT* (1 —t)(al + GG*) (21 — T(7)20),
and the error of this approzimation E, is given by

Ey = alal + GG*) (21 — T(1)20).
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Proof . It is enough to show that Rang(G) = Z or Ker(G*) = {0}. To this end, we
observe that B, = B} and T*(t) = T'(¢). Suppose that

BiT*(t)z=0, Vte|0,7].
Then,

o) [e'e) i
BiT*(t)z = Y e M'BiEz=> e Ny <z¢ik > ludik =0.
j=1 j=1 k=1

00 i
= Ze_’\ft Z < z,¢jk > 1udjk(x) =0, YVoew.
j=1 k=1

Hence, from Lemma 1.1, we obtain that

Vi
E;z(z) = Z <z, ik > Pik(x) =0, Veew, j=1,23,....
k=1

Now, putting f(z) =32, < z,¢jx > ¢;k(x), Vz € Q, we obtain that

(A+XNDf=0 in Q,
{f(x)zO Vo € w.

Then, from the classical Unique Continuation for Elliptic Equations (see [18]), it
follows that f(x) =0, Vz € Q. So,

Yi
Z < Z,¢jyk > (bj,k(x) =0, Vze.
k=1
On the other hand, {¢; x}is a complete orthonormal set in Z = L2(£2), which implies
that < z,¢;r >=0.

Therefore, E;z =0, j=1,2,3,..., which implies that z = 0. So, Rang(G) = Z.
Hence, the system (3.1) is approximately controllable on [0, 7], and the remainder of
the proof follows from Lemma 3.1. 0

Lemma 3.2 Let S be any dense subspace of L2(0,7;U). Then, system (3.1) is ap-
proximately controllable with controlu € Lo(0, 7;U) if, and only if, it is approzimately
controllable with control u € S. i.e.,

Rang(G) = Z < Rang(G|s) = Z,
where G|g is the restriction of G to S.
Proof (=) Suppose Rang(G) = Z and S = Ly(0,7;U). Then, for a given € > 0 and
z € Z there exits u € L2(0,7;U) and a sequence {un}n>1 C S such that

|Gu — z|| < € and  lim u, = u.
2 n—»00

Therefore, lim,, o Gu, = Gu and ||Gu, — z|| < € for n big enough. Hence,
Rang(Gls) = Z.
(<) This side is trivial. 0
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Remark 3.3 According to the previous lemma, if the system is controllable, it is
approzimately controllable with control functions in the following dense spaces of
Ly(0,7;U):

S=cC(0,7;U), S=C*0,7;U), S=PC(J).

Moreover, the operators G, W and I" are well define in the space of continuous func-
tions: G : C([0,7];U) — Z by

Gu = /0 T(r — s)B,u(s)ds, (3.9)
and G* : Z — C([0,7]; U) by

(G*2)(s) = B*(s)T* (1 — s)z, Vse|0,7]. Vze€Z. (3.10)

Also, the Controllability Grammian operator still the same W : Z — Z
Wz =GG*z = / T(1 — s)B,BL(s)T* (1T — s)zds. (3.11)
0

Finally, the operators Ty, : Z — C([0,7];U) defined for 0 < a <1 by
Doz =BT (1 — )(al + W) 'z = G*(al + GG*) 12, (3.12)
is an approximate inverse for the right of the operator G in the sense that

lim GT, = 1. (3.13)

a—0

4 Controllability of the Semilinear System

In this section we shall prove the main result of this paper, the interior approximate
controllability of the Semilinear Impulsive Heat Equation given by (1.1), which is
equivalent to prove the approximate controllability of the system (2.4). To this end,
for all zp € Z and u € C([0,7]; U) the initial value problem

2/ = —Az+ Byu+ fe(t,z,u), te (0,7, t£tr, z€Z
z(0) = 2o, (4.1)
2(t) = 2(t) + Ig(t 2(t), ult), k=1,2,3,....p.
admits only one mild solution given by
t
z(t) = T(t)zo +/ T(t — s)Byu(s)ds (4.2)
0
t
+ / T(t—s)f°(s, zu(s), u(s))ds (4.3)
0
+ Y Tt =t I (e, 2(tk), ults), t € 10,7,

0<trp<t
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Now, we are ready to present and prove the main result of this paper, which is the
interior approximate controllability of the semilinear impulsive heat equation (1.1).
We shall define the operator K¢ : PC([0,7];Z) x C([0,7];U) — PC([0,7]; Z) x
C([0,7]; U) by the following formula:

(y,’l)) = (IC?(Z,U),K:S‘(Z,U)) = K:a(zvu)

where
y(t) = Kf(zu)t)=T()z + / (b 5) BT, ) (3)ds (4.4)
+ /Ot T(t—s)f(s,2(s),u(s))ds + Oz;tT(t — ti) I (b, 2(tk), u(ty)),
and

v(t) = K§(z,u)(t) = (ToL(z,u))(t) = BET*(1 — t)(ad + W) L(2,u), (4.5)

with £ : PC([0,7]; Z) x C([0,7];U) — Z is given by

L(z,u) = 2z —T(1)z0 — /OT T(T—8)f%(s, 2(s),u(s))ds (4.6)
— ) T(r = ) IR, 2(tk), ults).
O<tp<t

Theorem 4.1 The nonlinear system (1.1) is approximately controllable on [0, 7].
Moreover, a sequence of controls steering the system (1.1) from initial state zy to
an e-neighborhood of the final state z1 at time 7 > 0 is given by

U (t) = BET*(1 — t)(al + W) L(2a, ta),
and the error of this approzimation E,z is given by
Eoz = alad + W) L(24, ua),

where
zo(t) = T(t)zo—l—/o T(t — s)Buua(s)ds

b [T 7 ) e

+ D T(t—th)IE (b za(th), ua(tr)), t€[0,7].

0<trp<t

Proof We shall prove this Theorem by claims. Before we note that ||B,|| = 1 and
IT@)] <e Mt t>0.
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Claim 1. The operator K¢ is continuous. In fact, it is enough to prove that the
operators:
Kt - PC([0,7]; 2) x C([0,7]; U) — PC([0,7]; Z)

and
KS : PC([0,7); Z) x C([0,7];U) — C([0,7]; U),

define above are continuous. The continuity of K¢ follows from the continuity of the
nonlinear functions f(¢, z,u), I (¢, z,u) and the following estimate

I3 (2, w)(t) = K (w, v) ()] S/O e (@l + W) THIIL(z,w) = L(w, v)]|ds

b [ e s ) u(s) = £ (o), () ds
0

+ 0 e MO Te (g, 2 () ulte) — I (ks w(te), v(te)) -

0<tp<t

On the other hand,

1£(z,u) = L(w, v)[| <7 sup [[f*(s, 2(s), u(s)) — (s, w(s), v(s))]l

s€[0,7]

Y e MO T b, 2k, u(t)) — T (s w(ta), v (t)-

0<trp<T

Therefore,

1KY (2, u) = K7 (w,0)[| < Ly sup [|f(s, 2(s), u(s)) = f(s,w(s),v(s))]]

s€[0,7]

+ Ly Y (s 2(te) ulte)) = I (b w(te), o(t) -

0<tp<T

where Ly = 7(7||(al + W)™ +1) and Lo = (1 + 7||(al + W)71)).

The continuity of the operator K¢ follows from the continuity of the operators £ and
I', define above.

Claim 2. The operator K% is compact. In fact, let D be a bounded subset of
PC(J; Z) x C(J;U). It follows that  V(z,u) € D,we have

||f€('727u)|| < L, ||(O‘I+ W)_l‘c('z?u)n < Ly,
IL(z,u)|| < Ls, |Ig(zuw)|| <l, k=1,2,...,p.

Therefore , K(D) is uniformly bounded.
Now, consider the following estimate:
I (2, u)(t2) = Kz, w) (@) = [IKT (2, u)(b2) — K7 (2, 0) (01|
+ K5 (2 u)(t2) — K5 (2, uw) ()]
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Without lose of generality we assume that 0 < ¢; < t3. On the other hand we have:
KT (2, u)(t2) — KT (2, w) ()] < [|T(t2) — T'(t1) | l|20]l

n / (s — 5) = Tts — )[[1£zw)(s) | ds
+ / Tt — )[[1£(2 u)(5) s
n / TGt — 8) = Tty — )I1F(s 2(s), u(s)) | ds

+ / Tt — )55, 2(5), u(s)) s

+ > Tt = tk) = Tty — ti) 15 (b (), ultn)|
0<tr <ty
+ > T (s — i) I (t, 2(t), ulte)) ),

and

115 (=, ) (t2) = K5 (z,u) (t)l| < T (7 — t2) = T*(r — t) [l (] + W) ' L(z,u)]-

On the other hand, since T'(¢) is a compact operator for ¢ > 0, then from [17] we know
that the function 0 < ¢t — T'(¢) is uniformly continuous. So,

im | [7(0) - T(0)] =0,
Consequently, if we take a sequence {¢; : j = 1,2,...} on K*(D), this sequence is
uniformly bounded and equicontinuous on the interval [0,¢1] and, by Arzela theorem,
there is a subsequence {qul :j=1,2,...} of {¢; : j =1,2,...}, which is uniformly
convergent on [0, ¢1].
Consider the sequence {¢} : j = 1,2,...} on the interval (¢, ¢2]. On this interval the
sequence {¢} : = 1,2,...} is uniformly bounded and equicontinuous, and for the
same reason, it has a subsequence {¢7} uniformly convergent on [0, t5].
Continuing this process for the intervals (¢2,ts], (t3,%4], ..., (tp, 7], we see that the
sequence {¢§7+1 :j7=1,2,...} converges uniformly on the interval [0, 7]. This means

that (D) is compact, which implies that the operator K* is compact.
Claim 3.

N [/ e
liwlli=ee  [[1(z,w)]l] ’
where |[|(z,u)||| = ||z]| + ||u|| is the norm in the space PC([0,7]; Z) x C(0,7;Z). In

fact, consider the following estimates:

1€z, w)| < M+ Mo{@oll2)|* + Bollul ® +2o} +Ms Y {al|=l|™ +bil|ull* +2},

O<trp <t
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where

M, (™7 —1) and Mz =e ",

_ 1
laall + e Tllzoll, Mo = ——
—Al

I3 (2, w)| < MsMll(al + W)™t + MsMz|| (ol + W)~ H[{@ol|=]* + bollull ™ + 2o}

+ MsMol|(al +W)H| Y @l + bellull? + ).
0<trp<T
and
1T (2, w) || < Ma{]|z0ll + My Ma|[( + W)~}
+ Mo {1 + My Ms||(al + W)~ {[H{@o||2[1* + bol|ull® + co}
+ Ma{1+ MoMyll(@l + W)Y S @zl + Bl + 2.
O<tp<Tt
Therefore,
K (z, )l = KT (2, w) | + |KS (2, w)|| < My

+ {MsMa | (@ + W) {1+ 2Ma Haol| =] + ollull™ + o}
MM + W) {1+ M} Msh D7 (@il + Belul* + 7

0<tp<t
where M, is given by:
My = Ma{||zoll + (Ma + 1) M| (el + W)~H]}.

Hence
[z, wll - M,
Mzl = 2l + [Jull
+  {MsMa|(al +W)7H|{1+ M.}}
_ _ - _ Co
x{ap||z]|*° 1—i—bo||u||'80 1—}—7}
Sl B
+ {MsMs|[(al + W) {1+ Ms} + Ms} x
_ - _ C,
{@llzl|** " + beflul T+ 1,
ng;T 2] + [l
and N
lim Gz, wll _ 0. (4.7)
Izl [|1(2,u)]]]

Claim 4.The operator K has a fixed point. In fact, for a fixed 0 < p < 1, there
exists R > 0 big enough such that

Iz, wlll < plll(z, w)lll, - [l(z, wl] = R.
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Hence, if we denote by B(0, R) the ball of center zero and radius R > 0, we get that
K*(0B(0,R)) C B(0,R). Since K% is compact and maps the sphere 9B(0, R) into the
interior of the ball B(0, R), we can apply Rothe’s fixed point Theorem 1.1 to ensure
the existence of a fixed point (z4,us) € B(0,R) C PC([0,7];Z) x C([0,7]; U) such
that

(Zas ua) = K¥ (24, Uq)- (4.8)

Claim 5. The sequence {(za,%a)}ae(o,1) is bounded. In fact, for the purpose of
contradiction, let us assume that {(za,ua)}ac(0,1) is unbounded. Then, there exits a
subsequence {(Zq,,, Ua, ) fae(0,1] C {(Zas Ua)}ae(o,1] Such that

Tim [z e )| = ox.
On the other hand, from (4.7) we know for all « € (0, 1] that

K (zan, va )| _

lim = 0.
n—00 |||(Zan7u0¢n)|||
Particularly, we have the following situation:
K (zay sua DI K (zag eIl 1KY (zag Uas) Il 1K (zay ua)ll _y
1(za swar I M(zaz uwas) IM(zag uaz)ll 777 1(za stan ) ’
K2 (zaq sua )l K2 (zag s tan)lIl - 11KY2(2a3,%as) Il K2 (zay ua )l _y
MM(zaytay I M(Zaz tas) MMzag.uaz)Il 777 T(za stan ) :
Kk (zaq sua T KR (zag ua)lll IIKY* (Zag uas)] Kk (zay uan)lll _y
1(zaystay I (Zag tas) Il I(zag.uaz)l 777 1(za stan ) ’

Now, applying Cantor’s diagonalization process, we obtain that

o ™ G )l
n—oo |||(Zan7u0¢n)|||

and from (4.8) we have that

|||]C0¢n (Zan7u0¢n)||| _ 1
- )
(2, > o )l

which is evidently a contradiction. Then, the claim is true and there exists v > 0
such that

(2> wa )l <7, (0 << 1),

Therefore, without loss of generality, we can assume that the sequence L(zq,Uq)
converges to y € Z. So, if

e = Tol(Za, ua) = G*(al + GG*) T L(24, ua).
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Then,
Guoy = GToLl(za,ts) = GG (al + GG*) 'L (24, ta)
= (o +GG* —al)(ad + GG*) ' L(24, ua)
= L(2a,ua) — afal + GG*) T L(24, U ).
Hence,

Gug — L(2a,ua) = —a(ad + GG*) 1 L(2a, ua).
To conclude the proof of this Theorem, it enough to prove that
lin%{—a(al + GG*) M L (20, ua) = 0.
a—
From Lemma 3.1.d) we get that
lim {a(al + GG*) ' L(2a,ua)} = lim a(al + GG*) ™y
a—0 a—0
+ lin% alal + GG*) ML (24, ta) — Y)
a—
= lim —a(al + GG*) YL (24, ua) — )
a—0
On the other hand, from Proposition 3.1, we get that
la(al + GG*) " (L(2a, ua) = Y)II < 1£(2asua) = y)]-
Therefore, since L£(z4,uq) converges to y, we get that

iig%){—a(al—i— GG*) ML (20, ua) —y)} = 0.

Consequently,
Oltig%{—a(al + GG*)  L(20,ua)} = 0.
Then,
lim {Gua — L(2q,uq)} = 0.
a—0
Therefore,

i%{T(T)ZO + /0 T(t — s)Byua(s)ds + /0 T(1 —8)f%(8,2a(8), ua(s))ds

+ 3 T(r— ) zalte), wa(te)} = 21,

O0<tp<t

and the proof of the theorem is completed.

As a consequence of the foregoing theorem we can prove the following characteri-
zation:

Theorem 4.2 The Impulsive Semilinear System (1.1) is approximately controllable if
for all states zy and a final state z; and o € (0, 1] the operator K% given by (4.4)-(4.6)
has a fized point and the sequence {L(2a,Ua)}ac(0,1] CONVETgES. i.c.,

(Zaa ua) = /Ca(za, ua)a

lim L£(zq,ua) =y € Z.
a—0
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5 Final Remark

Our technique is simple and can be apply to those system involving compact semi-
groups like some control system governed by diffusion processes. For example, the
Benjamin -Bona-Mohany Equation, the strongly damped wave equations, beam equa-
tions, etc.

Example 5.1 The original Benjamin -Bona-Mohany Equation is a non-linear one,
in [16] the authors proved the approzimate controllability of the linear part of this
equation, which is the fundamental base for the study of the controllability of the non
linear BBM equation. So, our next work is concerned with the controllability of non
linear BBM equation

2zt — alzy — bAz = 1u(t, x) + f(t, z,u(t)), te(0,7), x €,
z(t,z) =0, t>0, x € 09,

2(0,2) = zo(x),z € Q,

2(t5, @) = 2(t, ) + I(t, 2(tg, ), ulty, o)),z € L,

where a > 0 and b > 0 are constants, k = 1,2,...,p, Q is a bounded domain in
RY(N > 1), 20 € L2(Q), w is an open nonempty subset of ), 1, denotes the charac-
teristic function of the set w,the distributed control u belongs to C([0,7]; L2(€2;)) and
Filr € C(0,7] x RXR;R), k=1,2,3,....p.

Example 5.2 We believe that this technique can be applied to prove the interior con-
trollability of the strongly damped wave equation with Dirichlet boundary conditions

Wy + n(—A)l/th +y(=A)w = 1,u(t, ) + f(t, w, we, u(t)), in (0,7) x Q,
w =0, in  (0,7) x 09,
’LU(O,.I) = w0($), ’LUt(O, I) = wl('r)v m Qv

w(tz,x) =w(ty,z) + I}t w(ty, ©), w(t, ), u(ty, x)), z €,
we(t, @) = wi(ty, ,x) + It wt, z), we(t, x), ulty, ), x€Q,

in the space Zy5 = D((—A)Y?) x Ly(Q), k = 1,2,...,p, Q is a bounded domain
in RN(N > 1), , w is an open nonempty subset of 0, 1, denotes the characteristic
function of the set w,the distributed control v € C([0,7]; L2()), n, v are positive
numbers and f, I}, I} € C([0,7] x R x R;R), k =1,2,3,...,p.

Example 5.3 Another example where this technique may be applied is a partial dif-
ferential equations modeling the structural damped vibrations of a string or a beam:

Yt — 2[3Ayt + AQZJ = 1wu(t7$) + f(tvya Yt, u(t))v on (05 T) X Qa
y=Ay=0, on (0,7) x 09,
y(oa I) = yO(I)a yt(ov'r) = 91(33)7 mn Qa

y(f:,.’l]) = y(t;,.’l]) + I]i(t,y(tk,l'),yt(tk,,f),U(tm%)),(E € Qa
yt(t;alﬂ) = yt(t;;ﬂ?) + Il?(tay(tkaI)ayt(tkax)au(tkax))ax € Qv

where Q0 is a bounded domain in IR", w is an open nonempty subset of Q, 1., denotes
the characteristic function of the set w, the distributed control w € C([0,7]; L2(Q))
and yo € H*(Q) N HY,y1 € L2(Q).
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Moreover, our result can be formulated in a more general setting. Indeed, we can
consider the following semilinear evolution equation in a general Hilbert space Z

£=—Az+ Bu(t)+ f¢(t,z,u), z€Z, tec(0,7],
2(0) = 2o, (5.1)
2(t)) = 2(t) + Ig(te, 2(t), u(te), k= 1,2,3,..p.
where v € C([0,7;U), U = Z, B, : U — Z, B,u = 1l,u is a bounded linear

operator,I7, f¢ : [0,7] x ZxU — Z, A: D(A) C Z — Z is an unbounded linear
operator in Z with the following spectral decomposition:

oo Vi
Az =) "N < z¢k > bin,
k=1

Jj=1

with the eigenvalues 0 < A\ < Ag < -+ < -+ A, = 00 of A having finite multiplicity
v; equal to the dimension of the corresponding eigenspaces, and {¢;} is a com-
plete orthonormal set of eigenfunctions of A. The operator —A generates a strongly
continuous compact semigroup {74 (t)}+>0 given by

oo Vi
TA(t)Z = Zei)\jt Z < Z7¢j,k > ¢j,k-
Jj=1

k=1

The control u € C([0,7);U), with U = Z, B : Z — Z is a linear and bounded
operator(linear and continuous) and the functions f¢,If : [0,7] x Z x U — Z are
smooth enough and

17(t 2, u)l| 2 aollz5* + bollull 7 + & (5.2)
15t 2wz < axll=ll3 +ballullZ + &k =1,2,3,....p. (5.3)

IN

In this case the characteristic function set is a particular operator B, and the following
theorem is a generalization of Theorem 4.1.

Theorem 5.1 If vectors B*¢; ), are linearly independent in Z, then the system (5.1)
is approximately controllable on [0, T].
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