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1 Introduction and preliminaries

Let Σm denote the class of functions of the form

f(z) =
1

zm
+

∞∑
n=1

am+n−1z
m+n−1, m ∈ N∗ (1.1)

which are analytic and m-valent in the punctured disc

U̇ = {z ∈ C : 0 < |z| < 1} = U \ {0}.

A function f ∈ Σm is said [1] to be in the class Ωm(α) of meromorphic m-valently
starlike functions of order α in U̇ if and only if

Re

{
−zf

′(z)

f(z)

}
> α, z ∈ U̇ , 0 ≤ α < m, m ∈ N∗. (1.2)

We denote Ωm(0) = Ω∗m.
The following definitions and lemmas will be used in the next section.
Let H(U) denote the space of analytic functions in U . For n a positive integer

and a ∈ C let

Hn = {f ∈ H(U) : f(z) = anz
n + an+1z

n+1 + . . . } (1.3)



6 Adriana Cătaş

and
H[a, n] = {f ∈ H(U) : f(z) = a+ anz

n + an+1z
n+1 + . . . }. (1.4)

For two functions f and g analytic in U , we say that the function f(z) is subor-
dinate to g(z) in U and write

f ≺ g or f(z) ≺ g(z), z ∈ U

if there exists a Schwarz function w(z), analytic in U with

w(0) = 0 and |w(z)| < 1, z ∈ U,

such that
f(z) = g(w(z)), z ∈ U. (1.5)

In particular, if the function g is univalent in U , the above subordination is equiv-
alent to

f(0) = g(0) and f(U) ⊂ g(U).

Lemma 1.1 [2] Let m be a positive integer and let α be real, with 0 ≤ α < m. Let
q ∈ H(U), with q(0) = 0, q′(0) 6= 0 and

Re

(
1 +

zq′′(z)

q′(z)

)
>
α

m
. (1.6)

Define the function h as

h(z) = mzq′(z)− αq(z). (1.7)

If p ∈ Hm and
zp′(z)− αp(z) ≺ h(z) (1.8)

then p(z) ≺ q(z) and this result is sharp.

Lemma 1.2 [3] Let n ∈ N∗, let α ∈ [0, 1] and let

Mn(α) =
n+ 1− α√

(n+ 1− α)2 + α2 + 1− α
. (1.9)

If the function f(z) of the form

f(z) =
1

z
+

∞∑
k=n

akz
k (1.10)

satisfies the condition

|z2f ′(z) + (1− α)zf(z) + α| < Mn(α), z ∈ U (1.11)

then

Re

{
−zf

′(z)

f(z)

}
> 0.
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2 Main results

Theorem 2.1 If f ∈ Σm, m ∈ N∗, on the form

f(z) =
1

zm
+

∞∑
k=m

akz
k

and satisfies the condition

|(1− α)mzmf(z) + zm+1f ′(z) + αm| < M, α ∈ [0, 2) (2.1)

then

|zmf(z)− 1| < M

m(2− α)
(2.2)

and this result is sharp.

Proof. If we let

p(z) = zmf(z)− 1 (2.3)

then p ∈ H2m and (2.1) can be rewritten as

|zp′(z)− αmp(z)| < M (2.4)

or

zp′(z)− αmp(z) ≺Mz. (2.5)

If we take in Lemma 1.1

q(z) =
Mz

m(2− α)
, q ∈ H(U),

with q(0) = 0, q′(0) 6= 0 and

Re

(
1 +

zq′′(z)

q′(z)

)
>
α

2

then from (1.7), h(z) = Mz and the result follows from Lemma 1.1, that is p(z) ≺ q(z)

zmf(z)− 1 ≺ Mz

m(2− α)

or

|zmf(z)− 1| < M

m(2− α)
.

�
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Theorem 2.2 Let m ∈ N∗, 0 ≤ α < m

m+ 1
and let

M(m,α) =
m(2− α)(m− α)

m(1− α)− α+m(m− α)
√
α2 + (2− α)2

. (2.6)

If f ∈ Σm satisfies the condition

|(1− α)mzmf(z) + zm+1f ′(z) + αm| < M(m,α) (2.7)

then f ∈ Ωm(α).

Proof. Let
0 < M ≤M(m,α), (2.8)

where M(m,α) is given by (2.6), and suppose that f ∈ Σm satisfies the condition

|(1− α)mzmf(z) + zm+1f ′(z) + αm| < M. (2.9)

If we set
P (z) = zmf(z), (2.10)

then by Theorem 2.1 we obtain

|P (z)− 1| < M

m(2− α)
≡ R, z ∈ U. (2.11)

From (2.6), we easily deduce R < 1, which implies P (z) 6= 0, z ∈ U . Hence if we
let

p(z) = −α− zf ′(z)

f(z)
, (2.12)

then p(z) ∈ H[m− α, 2m] and (2.9) can be written in the form

| − p(z)P (z) + [m(1− α)− α]P (z) + αm| < M. (2.13)

We claim that this inequality implies Re p(z) > 0, z ∈ U . If this is false, then
there exists a point z0 ∈ U , such that p(z0) = iρ, where ρ is real. We will show that
at such a point the negation of condition (2.13) holds, that is

| − iρP (z0) + [m(1− α)− α]P (z0) + αm| ≥M, (2.14)

for all real ρ.
If we let P0 = P (z0), one obtains

| − iρP0 + [m(1− α)− α]P0 + αm|2 = ρ2|P0|2 + [m(1− α)− α]2|P0|2

+α2m2 + 2αm[m(1− α)− α]Re P0 + 2αmρIm P0.

The inequality (2.14) is equivalent to

E ≡ ρ2|P0|2 + 2αmρIm P0 + [m(1− α)− α]2|P0|2 + α2m2+ (2.15)
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+2αm[m(1− α)− α]Re P0 −R2m2(2− α)2 ≥ 0.

Since from (2.11) we have

|P0| > 1−R and Re P0 > 1−R,

from (2.11) and (2.15) one obtains

E ≥ |P0|2ρ2 + 2αmIm P0ρ+ [m(1− α)− α]2(1−R)2+

+α2m2 + 2αm[m(1− α)− α](1−R)−R2m2(2− α)2.

Hence E ≥ 0 if

α2m2(Im P0)2 ≤ |P0|2{[(m(1− α)− α) (1−R) + αm]2 −R2m2(2− α)2} (2.16)

or

α2m2(Im P0)2 ≤ |P0|2{[m− α− [m(1− α)− α]R]2 −R2m2(2− α)2}. (2.17)

A simple geometric argument shows that the inequality (2.11) implies

(Im P0)2 ≤ R2|P0|2 (2.18)

By comparing (2.17) and (2.18) we deduce that (2.14) holds if

α2m2R2 ≤ {m− α− [m(1− α)− α]R}2 −R2m2(2− α)2 (2.19)

or
R2{α2m2 +m2(2− α)2 − [m(1− α)− α]2}+ (2.20)

+2(m− α)[m(1− α)− α]R− (m− α)2 ≤ 0

This last inequality holds if R ≤ R0, where

R0 =
m− α

m(1− α)− α+m
√
α2 + (2− α)2

, 0 ≤ α < m

m+ 1
(2.21)

that is M ≤M(m,α).
Thus we have a contradiction of (2.13), therefore Re p(z) > 0, z ∈ U and f ∈

Ωm(α). �

Remark 2.1 Note that for the special case m = 1, α = 0, the value M(1, 0) = 2/3
is the same with that obtained from (1.9) Lemma 1.2: M1(0) = 2/3.

We obtain the following criterion of starlikeness for meromorphic m-valent func-
tions.

Corollary 2.1 Let m ∈ N∗ and let f ∈ Σm satisfies the condition

|mzmf(z) + zm+1f ′(z)| < 2m

m+ 1
(2.22)

then f ∈ Ω∗m.
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Since a function f ∈ Σm can be written as

f(z) =
1

zm
+ g(z), 0 < |z| < 1 (2.23)

where g ∈ Hm, Theorem 2.2 can be rewritten in the following equivalent form, that
is useful for the other results.

Corollary 2.2 Let m ∈ N∗, 0 ≤ α < m

m+ 1
and let f ∈ Σm have the form

f(z) =
1

zm
+ g(z),

where g ∈ Hm. If

|(1− α)mzmg(z) + zm+1g′(z)| < M(m,α), z ∈ U (2.24)

where M(m,α) is given by (2.6), then f ∈ Ωm(α).

This form has an interesting interpretation in terms of integral operators. If we let

h(z) = (1− α)mzmg(z) + zm+1g′(z), (2.25)

then

g(z) =
1

z(1−α)m

∫ z

0

h(t)t−(1+αm)dt (2.26)

which leads to the following result.

Corollary 2.3 Let h ∈ H2m and M(m,α) is given by (2.6) with 0 ≤ α <
m

m+ 1
. If

h satisfies the condition
|h(z)| ≤M(m,α), z ∈ U (2.27)

then

f(z) =
1

z
+

1

z(1−α)m

∫ z

0

h(t)t−(1+αm)dt ∈ Ωm(α). (2.28)

Example 2.1 For the Corollary 2.3 we consider the following function

h(z) = az3(z − sin z) (2.29)

Since h ∈ H6 we deduce that m = 3 and we choose for α a value such that

0 ≤ α < m

m+ 1
. Let the value be α =

2

3
. Then, from (2.28) we get

f(z) =
1

z
+
a

z

∫ z

0

t3(t− sin t)t−3dt (2.30)

or

f(z) =
1

z

(
1− 2a sin2 z

2

)
+
az

2
. (2.31)



On a starlikeness of order α condition for meromorphic m-valent functions 11

From (2.27) we obtain

|h(z)| ≤M(m,α) = M

(
3,

2

3

)
. (2.32)

The above inequality leads to the relation

|az3||z − sin z| ≤ |a|e
2 + 2e− 1

2e
. (2.33)

The condition (2.32) will be satisfied if

|a|e
2 + 2e− 1

2e
≤ 21

1 + 7
√

20
, (2.34)

and we obtain

|a| ≤ 42e

(2e+ e2 − 1)(1 + 7
√

20)
= 0.298 . . .

Hence, if we take a =
1

4
we conclude that

f(z) =
1

z

(
1− 1

2
sin2 z

2

)
+
z

8
∈ Ω3

(
2

3

)
.
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1 Introduction

Let A denote the class of functions which are analytic in U = U(1), where

U(r) = {z ∈ C: |z| < r}.

and let A (p, k) (p, k ∈ N = {1, 2, 3...} , p < k) denote the class of functions f ∈ A of
the form

f(z) = apz
p +

∞∑
n=k

anz
n (z ∈ U ; ap > 0). (1)

For multivalent fuction f ∈ A (p, k) the normalization

f (z)

zp−1

∣∣∣∣
z=0

= 0 and
f (z)

zp

∣∣∣∣
z=0

= 1. (2)

is clasical. One can obtain interesting results by applying normalization of the form

f (z)

zp−1

∣∣∣∣
z=0

= 0 and
f (z)

zp

∣∣∣∣
z=ρ

= 1. (3)
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where ρ is a fixed point of the unit disk U . In particular, for p = 1 we obtain Montel’s
normaliztion (cf. [1]). We see that for ρ = 0 the normalization (3) is the clasical.

We denote by Aρ (p, k) the classes of functions f ∈ A (p, k) with the normalization
(3). It will be called the class of functions with two fixed points.

Also, by T (p, k; η) (η ∈ R) we denote the class of functions f ∈ A (p, k) of the
form (1) for which

arg(an) = π + (p− n)η (n = k, k + 1, ...). (4)

For η = 0 we obtain the class T (p, k; 0) of functions with negative coefficients. More-
over, we define

T (p, k) :=
⋃
η∈R
T (p, k; η) . (5)

The classes T (p, k) and T (p, k; η) are called the classes of functions with varying
argument of coefficients. The class T (1, 2) was introduced by Silverman [2] (see also
[3]).

Let α ∈ 〈0, p) , r ∈ (0, 1〉 . A function f ∈ A (p, k) is said to be convex of order
α in U(r) if and only if

Re

(
1 +

zf ′′(z)

f ′(z)

)
> α (z ∈ U(r)).

A function f ∈ A (p, k) is said to be starlike of order α in U(r) if and only if

Re

(
zf ′(z)

f(z)

)
> α (z ∈ U(r)). (6)

We denote by S c (α) the class of all functions f ∈ A (p, p+ 1), which are convex of
order α in U and by S ∗p (α) we denote the class of all functions f ∈ A (p, p+ 1) ,
which are starlike of order α in U . We also set

Sc = Sc1(0) and S∗ = S∗1 (0).

It is easy to show that for a function f from the class T (p, k) the condition (6) is
equivalent to the following∣∣∣∣zf ′(z)f(z)

− p
∣∣∣∣ < p− α (z ∈ U(r)). (7)

Let B be a subclass of the class A (p, k). We define the radius of starlikeness of
order α and the radius of convexity of order α for the class B by

R∗α(B) = inf
f∈B

(sup {r ∈ (0, 1] : f is starlike of order α in U(r)}) ,

Rcα(B) = inf
f∈B

(sup {r ∈ (0, 1] : f is convex of order α in U(r)}) ,

respectively.
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We say that a function f ∈ A is subordinate to a function F ∈ A, and write f(z) ≺
F (z) (or simply f ≺ F ), if and only if there exists a function ω ∈ A (|ω(z)| ≤ |z| , z ∈ U) ,
such that

f(z) = F (ω(z)) (z ∈ U) .

In particular, if F is univalent in U , we have the following equivalence.

f(z) ≺ F (z)⇐⇒ f(0) = F (0) and f(U) ⊂ F (U).

For functions f, g ∈ A of the form

f(z) =

∞∑
n=0

anz
n and g(z) =

∞∑
n=0

bnz
n,

by f ∗ g we denote the Hadamard product (or convolution) of f and g, defined by

(f ∗ g) (z) =

∞∑
n=0

anbnz
n (z ∈ U) .

Let γ, δ be real parameters, 0 ≤ γ < 1, δ ≥ 0, and let ϕ, φ ∈ A0 (p, k) .
By W (p, k;φ, ϕ; γ, δ) we denote the class of functions f ∈ A (p, k) such that

(ϕ ∗ f) (z) 6= 0 (z ∈ U \ {0}) (8)

and

Re

{
(φ ∗ f) (z)

(ϕ ∗ f) (z)
− γ
}
> δ

∣∣∣∣ (φ ∗ f) (z)

(ϕ ∗ f) (z)
− 1

∣∣∣∣ (z ∈ U) . (9)

Also, let us denote

T W (p, k;φ, ϕ; γ, δ) : = T (p, k) ∩W (p, k;φ, ϕ; γ, δ) ,

T W (p, k;φ, ϕ; γ, δ; η) : = T (p, k; η) ∩W (p, k;φ, ϕ; γ, δ) ,

T Wρ (p, k;φ, ϕ; γ, δ; η) : = Aρ (p, k) ∩ T W (p, k;φ, ϕ; γ, δ; η) ,

T Wρ (p, k;φ, ϕ; γ, δ) : = Aρ (p, k) ∩ T W (p, k;φ, ϕ; γ, δ) .

For the presented investigations we assume that ϕ, φ are the functions of the form

ϕ(z) = zp +

∞∑
n=k

αnz
n, φ(z) = zp +

∞∑
n=k

βnz
n (z ∈ U), (10)

where

0 ≤ αn < βn (n = k, k + 1, ...) .

Moreover, let us put

dn := (δ + 1)βn − (δ + γ)αn (n = k, k + 1, ...) . (11)



16 Jacek Dziok, Anna Szpila

The families Wρ (p, k;φ, ϕ; γ, δ; η) and Wρ (p, k;φ, ϕ; γ, δ) unify various new and
well-known classes of analytic functions. In particular, the class

Wρ (ϕ; γ, δ; η) :=Wρ

(
p, k;

zϕ′ (z)

p
, ϕ (z) ; γ, δ; η

)
,

contains functions f ∈ Aρ (p, k) , such that

Re

{
z (ϕ ∗ f)

′
(z)

p (ϕ ∗ f) (z)
− γ
}
> δ

∣∣∣∣z (ϕ ∗ f)
′
(z)

p (ϕ ∗ f) (z)
− 1

∣∣∣∣ (z ∈ U) .

The class
HT (ϕ; γ, δ) := T W0 (1, 2;ϕ; γ, δ; 0)

was introduced and studied by Raina and Bansal [4]. If we set

h(α1, z) := z qFs(α1, . . . , αq;β1, . . . , βs; z),

where qFs is the generalized hypergeometric function (see for details [5] and [6]), then
we obtain the class

UH (q, s, λ, γ, δ) := T W0 (1, 2;λh(α1 + 1, z) + (1− λ)h(α1, z); γ, δ; 0) (0 ≤ λ ≤ 1)

defined by Srivastava et al. [7]. The classes

δ − UST (γ) = W0

(
1, 2;

z

1− z
; γ, δ

)
,

δ − UCV (γ) = W0

(
1, 2;

z

(1− z)2
; γ, δ

)
,

are the well-known classes of of δ-starlike function of order γ and δ-uniformly convex
function of order γ, respectively. In particular, the classes UCV := UCV (1, 0) ,
δ − UCV := UCV (δ, 0) were introduced by Goodman [8] (see also [9, 10, 11]), and
Kanas and Wisniowska [12], respectively.

Many other classes, are also particular cases of the class investigated here, see for
example [13, 14, 15].

The object of the present paper is to investigate the coefficients estimates, distor-
tion properties and the radii of starlikeness and convexity.

2 Coefficients estimates

We first mention a sufficient condition for the function to belong to the class
W (p, k;φ, ϕ; γ, δ).

Theorem 1 Let {dn} be defined by (11), and let 0 ≤ γ < 1. If a function f of the
form (1) satisfies the condition

∞∑
n=k

dn |an| ≤ (1− γ) ap, (12)

then f belongs to the class W(p, k;φ, ϕ; γ, δ).
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Proof. By definition of the class W (p, k;φ, ϕ; γ, δ) , it suffices to show that

δ

∣∣∣∣ (φ ∗ f) (z)

(ϕ ∗ f) (z)
− 1

∣∣∣∣− Re

{
(φ ∗ f) (z)

(ϕ ∗ f) (z)
− 1

}
≤ 1− γ (z ∈ U). (13)

Simply calculations give

δ

∣∣∣∣ (φ ∗ f) (z)

(ϕ ∗ f) (z)
− 1

∣∣∣∣− Re

{
(φ ∗ f) (z)

(ϕ ∗ f) (z)
− 1

}

≤ (δ + 1)

∣∣∣∣ (φ ∗ f) (z)

(ϕ ∗ f) (z)
− 1

∣∣∣∣ ≤ (δ + 1)

∞∑
n=k

(βn − αn) |an||z|n−p

ap −
∞∑
n=k

αn|an||z|n−p
.

Now the last expression is bounded above by (1 − γ) if (12) holds. Whence f ∈
W (p, k;φ, ϕ; γ, δ) .

Our next theorem shows that the condition (12) is necessary as well for functions
of the form (1), with (4) to belong to the class T W (p, k;φ, ϕ; γ, δ; η).

Theorem 2 Let f be a function of the form (1), satisfying the argument property
(4). Then f belongs to the class T W (p, k;φ, ϕ; γ, δ; η) if and only if the condition
(12) holds true.

Proof. In view of Theorem 1 we need only show that each function f from
the class T W (p, k;φ, ϕ; γ, δ; η) satisfies the coefficient inequality (12). Let a func-
tion f of the form (1), satisfying the argument property (4) belong to the class
T W (p, k;φ, ϕ; γ, δ; η). Then by (9), we have

δ

∣∣∣∣∣∣∣∣
apz

p +
∞∑
n=k

βnanz
n

apzp +
∞∑
n=k

αnanzn
− 1

∣∣∣∣∣∣∣∣ < Re


apz

p +
∞∑
n=k

βnanz
n

apzp +
∞∑
n=k

αnanzn
− γ

 ,

or equivalently

δ

∣∣∣∣∣∣∣∣
∞∑
n=k

(βn − αn) anz
n−p

ap +
∞∑
n=k

αnanzn−p

∣∣∣∣∣∣∣∣ < Re


(1− γ)ap +

∞∑
n=k

(βn − γαn) anz
n−p

ap +
∞∑
n=k

αnanzn−p

 .

In view of (4), we set z = reiη (0 ≤ r < 1) in the above inequality to obtain

∞∑
n=k

δ (βn − αn) |an| rn−p

ap −
∞∑
n=k

αn |an| rn−p
<

(1− γ)ap −
∞∑
n=k

(βn − γαn) |an| rn−p

ap −
∞∑
n=k

αn |an| rn−p
.
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Thus, by (8) we have

∞∑
n=k

[(δ + 1)βn − (δ + γ)αn] |an|rn−p < (1− γ)ap,

which, upon letting r → 1 −, readily yields the assertion (12).
By applying Theorem 2 we can deduce following result.

Theorem 3 Let f be a function of the form (1), satisfying the argument property
(4). A function f of the form (1) belongs to the class T Wρ (p, k;φ, ϕ; γ, δ; η) if and
only if it satisfies (3) and

∞∑
n=k

(
dn − (1− γ) |ρ|n−p

)
|an| ≤ 1− γ, (14)

where {dn} is defined by (11).

Proof. For a function f of the form (1) with the normalization (3), we have

ap = 1 +

∞∑
n=k

|an| |ρ|n−p . (15)

Applying the equality (15) to (12), we obtain the assertions (14).
Since the condition (14) is independent of η, Theorem 3 yields the following the-

orem.

Theorem 4 Let f be a function of the form (1), satisfying the argument property
(4). Then f belongs to the class T Wρ (p, k;φ, ϕ; γ, δ) if and only if the condition (14)
holds true.

By applying Theorem 3 we obtain the following lemma.

Lemma 1 Let {dn} be defined by (11), ρ ∈ U , and let us assume, that there exists
an integer n0 (n0 ∈ Nk = {k, k + 1, ...}) such that

dn0
− (1− γ) |ρ|n0−p 5 0. (16)

Then the function

fn0
(z) =

(
1 + aρn0−p

)
zp − aei(p−n0)ηzn0

belongs to the class T Wρ (p, k;φ, ϕ; γ, δ; η) for all positive real numbers a. Moreover,
for all n (n ∈ Nk) such that

dn − (1− γ) |ρ|n−p > 0, (17)
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the functions

fn(z) =
(
1 + aρn0−p + bzn−p

)
zp − aei(p−n0)ηzn0 − bei(p−n)ηzn,

where

b =
1− γ +

(
(1− γ) |ρ|n0−p − dn0

)
a

dn − (1− γ) |ρ|n−p
,

belong to the class T Wρ (p, k;φ, ϕ; γ, δ; η) .

By Lemma 1 and Theorem 3, we have following corollary.

Corollary 1 Let a function f of the form (1) belongs to the class
T Wρ(p, k;φ, ϕ; γ, δ; η) and let {dn} be defined by (11). Then all of the coefficients an
for which

dn − (1− γ) |ρ|n−p = 0

are unbounded. Moreover, if there exists an integer n0 (n0 ∈ Nk = {k, k + 1, ...}) such
that

dn0 − (1− γ) |ρ|n0−p < 0,

then all of the coefficients of the function f are unbounded. In the remaining cases

|an| 5
1− γ

dn − (1− γ) |ρ|n−p
.

The result is sharp, the functions fn of the form

fn,η(z) =
dnz

p − (1− γ) ei(p−n)ηzn

dn − (1− γ) |ρ|n−p
(z ∈ U ; n = k, k + 1, . . .)

are the extremal functions.

Remark 1 The coefficients estimates for the class T Wρ (p, k;φ, ϕ; γ, δ) are the same
as for the class T Wρ (p, k;φ, ϕ; γ, δ; η).

By puting ρ = 0 in Theorems 3 and 4, and Corollary 1, we have the corollaries
listed below.

Corollary 2 Let f be a function of the form (1), satisfying the argument property
(4). A function f of the form (1) belongs to the class
T W0 (p, k;φ, ϕ; γ, δ; η) if and only if

∞∑
n=k

dn |an| ≤ 1− γ, (18)

where {dn} is defined by (11).
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Corollary 3 Let f be a function of the form (1), satisfying the argument property
(4). Then f belongs to the class T W0 (p, k;φ, ϕ; γ, δ) if and only if the condition (18)
holds true.

Corollary 4 If a function f of the form (1) belongs to the class
T W0 (p, k;φ, ϕ; γ, δ; η), then

|an| ≤
1− γ
dn

(n = k, k + 1, . . .), (19)

where dn is defined by (11). The result is sharp. The functions fn,η of the form

fn,η(z) = zp − 1− γ
dn

ei(p−n)ηzn (z ∈ U ; n = k, k + 1, . . .) (20)

are the extremal functions.

Corollary 5 If a function f of the form (1) belongs to the class T W0 (p, k;φ, ϕ; γ, δ),
then the coefficients estimates (19) holds true. The result is sharp. The functions fn,η
(η ∈ R) of the form (20) are the extremal functions.

3 Distortion theorems

From Theorem 2 we have the following lemma.

Lemma 2 Let a function f of the form (1) belong to the class T Wρ (p, k;φ, ϕ; γ, δ; η) .
If the sequence {dn} defined by (11) satisfies the inequality

0 < dk − (1− γ) |ρ|k−p ≤ dn − (1− γ) |ρ|n−p (n = k, k + 1, . . .) , (21)

then
∞∑
n=k

|an| ≤
1− γ

dk − (1− γ) |ρ|k−p
.

Moreover, if

0 <
dk − (1− γ) |ρ|k−p

k
≤ dn − (1− γ) |ρ|n−p

n
(n = k, k + 1, . . .) , (22)

then
∞∑
n=k

n |an| ≤
k (1− γ)

dk − (1− γ) |ρ|k−p
.

Remark 2 The second part of Lemma 2 we can rewritten in terms of σ-neighborhood
Nσ defined by

Nσ =

{
f(z) = apz

p +

∞∑
n=k

anz
n ∈ T (p, k; η) :

∞∑
n=k

n |an| ≤ σ

}
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in the following form:
if the sequence {dn} defined by (11) satisfies (22), then

T Wρ (p, k;φ, ϕ; γ, δ; η) ⊂ Nσ.

where

δ =
k (1− γ)

dk − (1− γ) |ρ|k−p
.

Theorem 5 Let a function f belong to the class T Wρ (p, k;φ, ϕ; γ, δ; η) and let |z| =
r < 1. If the sequence {dn} defined by (11) satisfies (21), then

φ(r) ≤ |f(z)| ≤ dkr
p + (1− γ) rk

dk − (1− γ) |ρ|k−p
, (23)

where

φ(r) :=

{
rp (r 5 ρ)

dkr
p−(1−γ)rk

dk−(1−γ)|ρ|k−p (r > ρ) .
(24)

Moreover, if (22) holds, then

papr
p−1 − k (1− γ)

dk − (1− γ) |ρ|k−p
rk−1 ≤ |f ′(z)| ≤ pdkr

p + k (1− γ) rk−1

dk − (1− γ) |ρ|k−p
. (25)

The result is sharp, with the extremal function fk,η of the form (20) and f(z) = z.

Proof. Suppose that the function f of the form (1) belongs to the class
T Wρ (p, k;φ, ϕ; γ, δ; η). By Lemma 2 we have

|f(z)| =

∣∣∣∣apzp +
∞∑
n=k

anz
n

∣∣∣∣ ≤ rp(ap +
∞∑
n=k

|an| rn−p
)

≤ rp
(

1 +
∞∑
n=k

|an| |ρ|n−p +
∞∑
n=k

|an| rn−p
)

≤ rp
(

1 + (|ρ|k−p + rk−p)
∞∑
n=k

|an|
)
≤ dkr

p+(1−γ)rk

dk−(1−γ)|ρ|k−p ,

and

|f(z)| ≥ rp
(
ap −

∞∑
n=k

|an| rn−p
)

= rp

(
1 +

∞∑
n=k

(|ρ|n−p − rn−p) |an|

)
. (26)

If r 5 ρ, then we obtain |f(z)| = rp. If r > ρ, then the sequence
{(
ρn−1 − rn−1

)}
is

decreasing and negative. Thus, by (26), we obtain

|f(z)| ≥ rp
(

1− (rk−p − |ρ|k−p)
∞∑
n=2

an

)
=

dkr
p − (1− γ) rk

dk − (1− γ) |ρ|k−p
,

and we have the assertion (23). Making use of Lemma 2, in conjunction with (15),
we readily obtain the assertion (25) of Theorem 5.

Theorem 5 implies the following results.
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Corollary 6 Let a function f belong to the class T Wρ (p, k;φ, ϕ; γ, δ). If the se-
quence {dn} defined by (11) satisfies (21), then the assertion (23) holds true.
Moreover, if we assume (22), then then the assertion (25) holds true. The result is
sharp, with the extremal functions fk,η (η ∈ R) of the form (20).

Corollary 7 Let a function f belong to the class T W0 (p, k;φ, ϕ; γ, δ; η) and let the
sequence {dn} be defined by (11). If

dk ≤ dn (n = k, k + 1, . . .) , (27)

then

rp − 1− γ
dk

rk ≤ |f(z)| ≤ rp +
1− γ
dk

rk (|z| = r < 1) . (28)

Moreover, if
ndk ≤ kdn (n = k, k + 1, . . .) , (29)

then

prp−1 − k (1− γ)

dk
rk−1 ≤ |f ′(z)| ≤ prp−1 +

k (1− γ)

dk
rk−1 (|z| = r < 1) . (30)

The result is sharp, with the extremal function fk,η of the form (20).

Corollary 8 Let a function f belong to the class T W0 (p, k;φ, ϕ; γ, δ). If the sequence
{dn} defined by (11) satisfies (27), then the assertion (28) holds true. Moreover,
if we assume (29), then then the assertion (28) holds true. The result is sharp, with
the extremal functions fk,η (η ∈ R) of the form (20).

4 The Radii of convexity and starlikeness

Theorem 6 The radius of starlikeness of order α for the class T W (p, k;φ, ϕ; γ, δ; η)
is given by

R∗α (T W (p, k;φ, ϕ; γ, δ; η)) = inf
n≥k

(
(p− α) dn

(n− α) (1− γ)

) 1
n−p

, (31)

where dn is defined by (11). The functions fn,η of the form

fn,η(z) = ap

(
zp − 1− γ

dn
ei(p−n)ηzn

)
(z ∈ U ; n = k, k + 1, . . . ; ap > 0) (32)

are the extremal functions.

Proof. A function f ∈ T (p, k; η) of the form (1) is starlike of order α in the disk
U(r), 0 < r ≤ 1, if and only if it satisfies the condition (7). Since

∣∣∣∣zf ′(z)f(z)
− p
∣∣∣∣ =

∣∣∣∣∣∣∣∣
∞∑
n=k

(n− p)anzn

apzp +
∞∑
n=k

anzn

∣∣∣∣∣∣∣∣ ≤
∞∑
n=k

(n− p) |an| |z|n−p

ap −
∞∑
n=k

|an| |z|n−p
,
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putting |z| = r the condition (7) is true if

∞∑
n=k

n− α
p− α

|an| rn−p ≤ ap. (33)

By Theorem 2, we have
∞∑
n=k

dn
1− γ

|an| ≤ ap, (34)

Thus, the condition (33) is true if

n− α
p− α

rn−p ≤ dn
1− γ

(n = k, k + 1, . . .),

that is, if

r ≤
(

(p− α) dn
(n− α) (1− γ)

) 1
n−p

(n = k, k + 1, . . .). (35)

It follows that each function f ∈ T W (p, k;φ, ϕ; γ, δ; η) is starlike of order α in the
disk U(r), where

r = inf
n≥k

(
(p− α) dn

(n− α) (1− γ)

) 1
n−p

The functions fn,η of the form (32) realize equality in (34), and the radius r can not
be larger. Thus we have (31).

The following result may be proved in much the same way as Theorem 6.

Theorem 7 The radius of convexity of order α for the class T W (p, k;φ, ϕ; γ, δ; η)
is given by

Rcα (T W (p, k;φ, ϕ; γ, δ; η)) = inf
n≥k

(
(p− α) dn

n (n− α) (1− γ)

) 1
n−p

,

where dn is defined by (11). The functions fn,η of the form (32) are the extremal
functions.

It is clear that for

ap =
dn

dn − (1− γ) |ρ|n−p
> 0

the extremal functions fn,η of the form (32) belong to the class T Wρ (p, k;φ, ϕ; γ, δ; η).
Moreover, we have

T Wρ (p, k;φ, ϕ; γ, δ; η) ⊂ T W (p, k;φ, ϕ; γ, δ; η) .

Thus, by Theorems 6 and 7 we have the following results.
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Corollary 9 Let the sequence
{
dn − (1− γ) |ρ|n−p

}
, where dn is defined by (11), be

positive. The radius of starlikeness of order α for the class TWρ (p, k;φ, ϕ; γ, δ; η) is
given by

R∗α (T Wρ (p, k;φ, ϕ; γ, δ; η)) = inf
n≥k

(
(p− α) dn

(n− α) (1− γ)

) 1
n−p

.

The functions fn,η of the form (32) are the extremal functions.

Corollary 10 Let the sequence
{
dn − (1− γ) |ρ|n−p

}
, where dn is defined by (11),

be positive. The radius of convexity of order α for the class T Wρ (p, k;φ, ϕ; γ, δ; η) is
given by

Rcα (T Wρ (p, k;φ, ϕ; γ, δ; η)) = inf
n≥k

(
(p− α) dn

n (n− α) (1− γ)

) 1
n−p

,

where dn is defined by (11).

Remark 3 We conclude this paper by observing that, in view of the definitions of
investigated classes which is expressed in terms of the convolution of the functions
in (10), involving arbitrary sequences, our main results can lead to several additional
new results. In fact, by appropriately selecting these arbitrary sequences, the results
presented in this paper would find further applications for the class of analytic func-
tions which would incorporate linear operators. Some of these results were obtained
in earlier works, see for example [16, 17, 18, 19, 20].
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Abstract: In this paper we are concerned with the mixed type inte-
gral inclusion

x(t) ∈ p(t) +

∫ 1

0

k(t, s) F1(s, Iβf2(s, x(s)))ds, t ∈ [0, 1].

The existence of monotonic continuous solution will be proved. As an
application the initial-value problem of the arbitrary (fractional) orders
differential inclusion

dx(t)

dt
∈ p(t) +

∫ 1

0

k(t, s)F1(s,Dαx(s))ds, a.e., t > 0

will be studied.

AMS Subject Classification:
Key Words and Phrases: Fractional calculus; Caratheodory condition; fixed point
theorem; mixed type integral inclusion.

1 Introduction

The existence of monotonic integrable solution for the mixed type nonlinear integral
equation

x(t) = p(t) +

∫ 1

0

k(t, s) f1(s, Iβ f2(s, x(s))ds, t ∈ [0, 1], β > 0 (1)

has been studied in [6] where the given function P is nondecreasing on [0, 1] and the
two functions f1 and f2 are monotonic nondecreasing (in both variables) and satisfy
Caratheodory condition.
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Here we relax the condition of monotonicity on the two functions f1 and f2 and
prove the existence of positive continuous solution of (1).
When the given function p is nondecreasing and the kernel k(t, s) is nondecreasing in
t, t ∈ [0, 1], we prove that the solution of (1) is nondecreasing.
As a generalization of our results we study the existence of positive monotonic con-
tinuous solution of the mixed type integral inclusion

x(t) ∈ p(t) +

∫ 1

0

k(t, s)F1(s, Iβf2(s, x(s)))ds, t ∈ [0, 1], β > 0 (2)

where the set-valued map F (t, .) is lower semicontinuous from R+ into R+ and F (., .)
is measurable.
Finally the differential inclusion of arbitrary (fractional) orders

dx(t)

dt
∈ p(t) +

∫ 1

0

k(t, s)F1(s,Dαx(s))ds, a.e., t > 0 (3)

with the initial data
x(0) = x◦ ≥ 0 (4)

will be studied.

2 Preliminaries

Let L1(I) be the class of Lebesgue integrable functions defined on the interval I =
[a, b], where 0 ≤ a< b <∞ and let Γ(.) be the gamma function.

Definition 2.1 The fractional integral of the function f ∈ L1(I) of order α ∈ R+ is
defined by ([7], [9] and [12])

Iαa f(t) =

∫ t

a

(t− s)α−1

Γ(α)
f(s) ds.

Definition 2.2 The (Caputo) fractional derivative Dα of order α ∈ (0, 1] of the
absolutely continuous function g is defined as ([2], [9], [10] and [12])

Dα
a g(t) = I1−αa

d

dt
g(t) , t ∈ [a, b].

Now, we shall state the following theorems which are used in the sequel.

Theorem 2.1 Schauder’s fixed-point Theorem [8]
Let S be a convex subset of a Banach space B, let the mapping T : S → S be
compact and continuous. Then T has at least one fixed-point in S.
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Theorem 2.2 Arzela -Ascoli Theorem [4]
Let E be a compact metric space and C(E) be the Banach space of real or complex
valued continuous function normed by

‖f‖ = sup
t∈E
|f(t)|.

If A = {fn} is a sequence in C(E) such that fn is uniformly bounded and equi-
continuous, then Ā is compact.

3 Main results

Let C(I), I = [0, 1] be the class of continuous functions defined on I.

In this section we present our main result by proving the existence of monotonic
positive solution x ∈ C(I) for the mixed type integral equation (1).
To facilitate our discussion, let us first state the following assumptions:

(i) p : [0, 1]→ R+ is continuous. There is a positive constant p such that |p(t)| < p.

(ii) fi : [0, 1]×R+ → R+, i = 1, 2 satisfy caratheodory condition i.e. f is measur-
able in t for any x ∈ R+ and continuous in x for almost all t ∈ [0, 1].
There exist two functions a1, a2 ∈ L1 and two positive numbers b1, b2 such that

|fi(t, x)| ≤ ai(t) + bi|x|, i = 1, 2 ∀ t ∈ [0, 1] and x ∈ R+.

(iii) k : [0, 1]× [0, 1]→ R+ is continuous in t for any s ∈ [0, 1] and measurable in
s for any t ∈ [0, 1] such that∫ 1

0

k(t, s)(a1(s) + b1I
βa2(s)) ds ≤M1 and

∫ 1

0

k(t, s)sβds < M2.

(iv) b1 b2 M2 < Γ(β + 1).

Remark: It must be noticed that assumption (iii) implies that the two functions∫ 1

0

k(t, s)(a1(s) + b1I
βa2(s)) ds and

∫ 1

0

k(t, s)sβds.

are continuous in t, t ∈ [0, 1].

Now, we are in position to formulate and prove our main result.
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Theorem 3.1 Let the assumptions (i)-(iv) be satisfied. Then equation (1) has at
least one positive solution x ∈ C(I).

Proof Define the subset S of C(I) by

S = { x ∈ C : |x(t)| ≤ r }, t ∈ [0, 1],

where r is a positive constant. It is clear that S is closed and convex.
Let T be an operator defined by

(Tx)(t) = p(t) +

∫ 1

0

k(t, s)f1(s, Iβf2(s, x(s)))ds ∀ x ∈ S. (5)

Assumption (ii) implies that T : S → C is continuous in x.
Now for every x ∈ S we have

|(Tx)(t)| ≤ |p(t)|+
∫ 1

0

k(t, s) |f1(s, Iβ f2(s, x(s)))|ds

≤ p +

∫ 1

0

k(t, s) [a1(s) + b1I
βf2(s, x(s))|]ds

≤ p +

∫ 1

0

k(t, s)a1(s)ds + b1

∫ 1

0

k(t, s)Iβ [a2(s) + b2|x(s)|]ds

≤ p +

∫ 1

0

k(t, s)[a1(s) + b1I
βa2(s)]ds + b1b2

∫ 1

0

k(t, s) Iβ |x(s)|ds

≤ p + M1 +
b1b2r

Γ(β + 1)

∫ 1

0

k(t, s)sβds

≤ p + M1 +
b1b2 M2 r

Γ(β + 1)
.

Therefore,

|(Tx)(t)| ≤ p + M1 +
b1b2 M2 r

Γ(β + 1)
. (6)

From the last estimate we deduce that

r = (p + M1)

(
1− b1b2M2

Γ(β + 1)

)−1
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and Tx ∈ S and hence TS ⊂ S.
Also for t1, t2 ∈ [0, 1] such that t1 < t2, we have

(Tx)(t2)− (Tx)(t1) = p(t2)− p(t1) +

∫ 1

0

(k(t2, s)− k(t1, s))f1(s, Iβf2(s, x(s)))ds.

Then

|(Tx)(t2)− (Tx)(t1)| ≤ |p(t2)− p(t1)|+
∫ 1

0

|k(t2, s)− k(t1, s)|f1(s, Iβf2(s, x(s)))|ds

≤ |p(t2)− p(t1)|+
∫ 1

0

|k(t2, s)− k(t1, s)|[a1(s) + b1|Iβf2(s, x(s))|]ds

≤ |p(t2)− p(t1)|+
∫ 1

0

|k(t2, s)− k(t1, s)|a1(s)ds

+b1

∫ 1

0

|k(t2, s)− k(t1, s)||Iβf2(s, x(s))|ds

≤ |p(t2)− p(t1)|+
∫ 1

0

|k(t2, s)− k(t1, s)|a1(s)ds+ b1

∫ 1

0

|k(t2, s)− k(t1, s)|Iβa2(s)ds

+ b1b2

∫ 1

0

|k(t2, s)− k(t1, s)|Iβ |x(s)|ds

≤ |p(t2)− p(t1)| +

∫ 1

0

|k(t2, s)− k(t1, s)| [ a1(s) + b1I
βa2(s) ] ds

+ b1b2r

∫ 1

0

|k(t2, s)− k(t1, s)|
∫ s

0

(s− τ)β−1

Γ(β)
dτds

≤ |p(t2)− p(t1)|+
∫ 1

0

|k(t2, s)− k(t1, s)| [ a1(s) + b1I
βa2(s) ] ds

+
b1b2r

Γ(β + 1)

∫ 1

0

|k(t2, s)− k(t1, s)|sβds.
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From the last inequality, the continuity of the function p and assumption (iii) we
deduce the equicontinuity of the functions of TS on [0, 1]. Then by Arzela-Ascoli
Theorem the closure of TS is compact.
Now, all conditions of Schauder’s fixed-point Theorem are hold, then T has a fixed
point in S. Hence there exists at least one positive solution x ∈ C(I) of (1).

Corollary 3.1 Let the assumption (i)-(iv) are satisfied. If the function p is non-
decreasing and k is nondecreasing in t ∈ I, then the solution of (1) is nondecreasing.
Proof For t1, t2 ∈ I and t1 < t2, we have

x(t1) = p(t1) +

∫ 1

0

k(t1, s) f1(s, Iβf2(s, x(s))) ds

≤ p(t2) +

∫ 1

0

k(t2, s) f1(s, Iβf2(s, x(s))) ds = x(t2).

4 Mixed type integral inclusion

Consider now the integral inclusion (2), where F1 : [0, 1]×R+ → 2R
+

has nonempty
closed convex values.
As an important consequence of the main result we can present the following:

Theorem 4.1 Let the assumptions of Theorem 3.1 are satisfied and the multi-
function F1 satisfies the following assumptions:

(1) F1(t, x) are non empty, closed and convex for all (t, x) ∈ [0, 1]×R+,

(2) F1(t, .) is lower semicontinuous from R+ into R+,

(3) F1(., .) is measurable,

(4) There exist a function a1 ∈ L1 and a positive number b1 such that

|F1(t, x)| ≤ a1(t) + b1 |x| ∀ t ∈ [0, 1].

Then there exists at least one positive solution x ∈ C(I) of the integral inclusion (2).

Proof By conditions (1) − (4) (see [1], [3], [5] and [11]) we can find a selection
function f1 (Caratheodory function) f1 : [0, 1] × R+ → R+ such that f1(t, x) ∈
F1(t, x) for all (t, x) ∈ [0, 1] × R+, this function satisfies condition (ii) of Theorem
3.1.
Clearly all assumption of Theorem 3.1 are hold, then there exists a continuous positive
solution x ∈ C(I) such that

x(t)−p(t) =

∫ 1

0

K(t, s) f1(s, Iβ f2(s, x(s)))ds ∈
∫ 1

0

K(t, s) F1(s, Iβ f2(s, x(s)))ds.
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Now, we can easily prove the following Corollary.

Corollary 4.1 Let the assumptions of Theorem 4.1 and the Corollary 3.2 are satisfied,
then the solution of (1) is nondecreasing.

5 Differential inclusion

Consider now the initial value problem of the differential inclusion (3) with the initial
data (4).

Theorem 5.1 Let the assumptions of Theorem 4.1 are satisfied, then the initial
value problem (3)-(4) has at least one positive nondecreasing solution x ∈ C(I).

Proof Let y(t) = dx(t)
dt , then equation (3) transformed to the integral inclusion

y(t) ∈ p(t) +

∫ 1

0

k(t, s)F1(s, I1−αy(s))ds

which by Theorem 4.1 has at least one positive solution y ∈ C(I).
This implies that the existence of the absolutely continuous solution

x(t) = x◦ +

∫ t

0

y(s)ds

which is nondecreasing solution of the initial-value problem (3)-(4).
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1 Introduction

The nonlinear composition operator (which is also known as the superposition oper-
ator) is frequently used in many branches of nonlinear analysis and its applications.
In order to define such an operator let us assume that I is a real interval (bounded
or not) and f(t, x) = f : I × R → R is a given function. For an arbitrary function
x(t) = x : I → R we may assign the function Fx defined as (Fx) (t) = f(t, x(t))
for t ∈ I. The operator F defined in such a way is called the composition operator
generated by the function f(t, x).

One of the basic problems considered in the theory of composition operator can
be formulated as follows. Let us assume that S(I) is a set (a space, an algebra, etc.)
of some functions acting from I into R. One has to formulate assumptions on the
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function f(t, x) guaranteeing that the composition operator F generated by f(t, x)
transforms S(I) into itself.
Such a problem was solved in a lot of particular cases. We refer to the monograph [1]
for more details concerning that problem.

The second important problem concerning the composition operator depends on
the characterization of operators being Lipschitzian in a suitable function space. Such
a problem in various situations was studied in a lot of papers (for instance [1], [2], [3],
[4], [6], [7], [8], [11]).

In the paper we investigate the problem of characterization of the composition
operator being a self-mapping of the Banach algebra of functions of two variables
with bounded total variation in the Schramm sense. Namely, we show that such a
composition operator is Lipschitzian if and only if it is affine.

The results obtained in the paper generalize those obtained for example in the
papers [4], [10].

2 Preliminaries

In this section we collect all auxiliary facts which will be needed in the sequel. Let
be R the set of real numbers and R+ = [0,∞). A function ϕ : R+ → R+ is said to be
ϕ-function if it is continuous on R+, ϕ(0) = 0, ϕ is increasing on R+ and ϕ(t) → ∞
as t→∞.
Further, let Φ = {φn} be a sequence of ϕ-functions. The sequence Φ is called the
Φ-sequence if φn is convex and φn+1(t) ≤ φn(t) for n = 1, 2, . . . and for t ∈ R. Apart
from this we assume that these series

∑
φn diverge for each t > 0.

Next, let us fix an interval I = [a, b]. Assume that u : [a, b] → R is a given
function. Let φn be a Φ-sequence of functions. If In = [an, bn] is a subinterval of the
interval I we write u (In) = u (bn)− u (an) (for n = 1, 2, . . .).

We say that the function u has the bounded total Φ-variation in the Schramm
sense on the interval [a, b] if ∑

n

φn (|u (In) |) <∞

for each sequence {In} of closed subintervals of I such that the intersection Ii ∩ Ij is
empty or is a singleton for all i, j = 1, 2, . . ., i 6= j.
We introduced the Φ = {φn,m} bidimensional sequence of increasing convex functions,
such that φn,m(0) = 0 and φn,m(t) > 0 for t > 0 and n, m = 1, 2, . . .. We shall say
that Φ is a Φ∗-sequence if φn′,m′(t) ≤ φn,m(t) for each n′ ≤ n, m′ ≤ m and t ∈ [0,∞).

If
∞∑
n=1

∞∑
m=1

φn,m diverge for t > 0, we will say that Φ is a Φ-sequence.

In what follows let us assume that a = (a1, c1), b = (b1, d1) are two fixed points
in the plane R2. Denote by Iba the rectangle generated by the points a and b, i.e.
Iba = [a1, b1]× [c1, d1].
Further, let us take two sequences {In}, {Jm} of the closed subintervals of the intervals
[a1, b1] and [c1, d1], respectively. In other words, In = [an, bn] (n = 1, 2, . . .), Jm =
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[cm, dm] (m = 1, 2, . . .). Moreover, let Φ = {φn,m} be a fixed double Φ-sequence and
let u : I1 → R be a given function. Now, fix x2 ∈ J1 = [c1, d1] and consider the
function u(·, x2) : I1 → R. The quantity V SΦ,I1 defined by the formula

V SΦ,I1(u) = sup

∞∑
n=1

φn,m (|u(In, x2)|)

= sup

∞∑
n=1

φn,m (|u(bn, x2)− u(an, x2)|) (1)

is called the Φ-variation in the Schramm sense of the function u(·, x2). In the case
when V SΦ,I1(u) < ∞ we will say that u has a bounded Φ-variation in the sense of
Schramm with respect to the first variable (with the second one fixed).
In the same way we define the Φ-variation of the function u(x1, ·) in the Schramm
sense, which will be denoted by V SΦ,J1 . If V SΦ,J1(u) <∞ then u is said to be a function
with bounded Φ-variation in Schramm sense with respect to the second variable (with
the first one fixed).

Additionally, let us explain that the supremum in formula (1) is taken with respect
to all sequences {In} of the closed subintervals of the interval I1. Obviously, in a
similar way we understand the supremum in the formula of the quantity V SΦ,J1 .
Below we provide the definition of the main concept introduced in [4].

Definition 2.1. The quantity V SΦ,Iba
defined by the formula

V SΦ,Iba(u) = sup

∞∑
n=1

∞∑
m=1

φn,m (|u(In, Jm)|)

= sup

∞∑
n=1

∞∑
m=1

φn,m (|u(bn, Jm)− u(an, Jm)|)

= sup

∞∑
n=1

∞∑
m=1

φn,m (|u(an, cm) + u(bn, dm)− u(an, dm)− u(bn, cm)|)

is said to be the bidimensional variation in the sense of Schramm of the function u.
Now, let us set the quantity TV SΦ by putting

TV SΦ (u) = V SΦ,I1(u) + V SΦ,J1(u) + V SΦ,Iba(u). (2)

This quantity is referred to the total Φ-variation of the function u in the Schramm
sense. In the case when TV SΦ < ∞ we say that u is a function with bounded total
Φ-variation in Schramm sense.
The set of all functions u : Iba → R having a bounded total Φ-variation will be denoted
by BV SΦ (Iba).

Next, let us consider the functional PΦ defined on the set BV SΦ (Iba) by the formula

PΦ(f) = inf

{
ε > 0 : TV SΦ

(
f

ε

)
≤ 1

}
. (3)
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The main result proved in [4] asserts that the set BV SΦ (Iba) forms a Banach algebra
with the norm obtained by the formula

‖f‖SΦ = |f(a)|+ PΦ(f). (4)

Our next result depends on the following lemma.

Lemma 2.1. Let f ∈ BV SΦ (Iba) and Φ ∈ Φ∗. Then f has the following properties:

(a) If (t, s), (t′, s′) ∈ Iba then |f(t, s)− f(t′, s′)| ≤ 4φ−1
n,m

(
1
2

)
PΦ(f).

(b) If PΦ(f) > 0 then TV SΦ (f/PΦ(f)) ≤ 1.

(c) Let r > 0. Then TV SΦ (f/r) ≤ 1 if and only if PΦ(f) ≤ r.

(d) If r > 0 and TV SΦ (f/PΦ(f)) = 1 then PΦ(f) = r.

In what follows let us fix arbitrary f ∈ BV SΦ (Iba). Then, the function f∗ : Iba → R
defined by formula

f∗(x1, x2) :=



lim
y1→x1−0
y2→x2−0

f(y1, y2) if (x1, x2) ∈ (a1, b1]× (c1, d1],

lim
y1→x1−0
y2→c1+0

f(y1, y2) if x1 ∈ (a1, b1] and x2 = c1,

lim
y1→a1+0
y2→x2−0

f(y1, y2) if x1 = a1 and x2 ∈ (c1, d1],

lim
y1→a1+0
y2→c1+0

f(y1, y2) if x1 = a1 and x2 = c1

will be called the left-left regularization of the function f .
The existence of all one-side limits used above was proved in the book [5].

In the sequel we will denote by G−(Iba) the class of all left-left regularizations of
the function f ∈ BV SΦ (Iba). It can be shown that G−(Iba) forms a linear space ([9]).
Apart from this space G−(Iba) has the structure of a Banach space with respect to
the norm

‖f‖ = sup{|f | : (x, y) ∈ Iba}.

To present the first result of this paper let us denote by BV SΦ,∗(I
b
a) the subspace

of the space BV SΦ (Iba) containing all functions being left-left continuous on (a1, b1]×
(c1, d1].
We have the following result.

Lemma 2.2. If f ∈ BV SΦ (Iba) then f∗ ∈ BV SΦ,∗(Iba).

Proof. First, let us note that according to the definition of the left-left regularization,
if f ∈ BV SΦ (Iba) then the function f∗ is left-left continuous on the set (a1, b1]×(c1, d1].
We show that f∗ ∈ BV SΦ,∗(Iba), i.e.

TV SΦ (f∗) = V SΦ,I1(f∗) + V SΦ,J1(f∗) + V SΦ,Iba(f∗) <∞.

(cf. formulas (1) and (2)).
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At the beginning we show that V SΦ,I1(f∗) <∞.
To do this we fix ε > 0 and take a partition π of the interval I1 generated by the
points a1 = t0 < t1 < · · · < tn = b1. Then by virtue of the definition of f∗ we can
find t′i ∈ (ti−1, ti) ⊂ [ti−1, ti] = Îi (i = 1, 2, . . . , n) and t′0 ∈ (a1, t

′
1), s0 ∈ (c1, d1) ⊂ J1

such that

|f∗(ti, c1)− f∗(ti−1, c1)| ≤
∣∣f(t′i, s0)− f(t′i−1, s0)

∣∣+
1

4
φ−1
n,m

( ε
m

)
.

Hence, keeping in mind that φn,m is increasing, we deduce the following estimate

φn,m (|f∗(ti, c1)− f∗(ti−1, c1)|)

≤ φn,m

(∣∣f(t′i, s0)− f(t′i−1, s0)
∣∣+

1

4
φ−1
n,m

( ε
m

))
= φn,m

(
2

[∣∣f(t′i, s0)− f(t′i−1, s0)
∣∣

2
+

1

2

(
φ−1
n,m

(
ε
m

)
4

)])

≤ 1

2
φn,m

(
2
∣∣f(t′i, s0)− f(t′i−1, s0)

∣∣)+
1

2
φn,m

(
1

2
φ−1
n,m

( ε
m

))
, (5)

which is also a consequence of the convexity of φn,m.
On the other hand, since φ−1

n,m is concave, we have

φ−1
n,m

( ε
m

)
= φ−1

n,m

(
2 ·
( ε

2m

))
≤ 2φ−1

n,m

( ε

2m

)
. (6)

From (5) i (6) we obtain

φn,m (|f∗(ti, c1)− f∗(ti−1, c1)|)

≤ 1

2
φn,m

(
2
∣∣f(t′i, s0)− f(t′i−1, s0)

∣∣)+
1

2
φn,m

(
φ−1
n,m

( ε

2m

))
≤ φn,m

(
2
∣∣f(t′i, s0)− f(t′i−1, s0)

∣∣)+ φn,m

(
φ−1
n,m

( ε

2m

))
= φn,m

(
2
∣∣f(t′i, s0)− f(t′i−1, s0)

∣∣)+
1

2

ε

m
.

Consequently, we get

k∑
n=1

φn,m

(∣∣∣f∗(Îi, c1)
∣∣∣) ≤

k∑
n=1

φn,m
(
2
∣∣f(t′i, s0)− f(t′i−1, s0)

∣∣)+ ε

≤ V SΦ,I1(2f(·, s0)) + ε

≤ V SΦ,I1(2f(·, d1)) + ε,

since c1 < s0 < d1. The last estimate allows us to derive the following one

V SΦ,I1(f∗(·, c1)) ≤ V SΦ,I1(2f(·, d1)) <∞. (7)
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Analogically we can show that

V SΦ,J1(f∗(a1, ·)) ≤ V SΦ,J1(2f(b1, ·)) <∞. (8)

In what follows fix two partitions π1, π2 of the intervals I1, J1, respectively, i.e.
π1 : a1 = t0 < t1 < · · · < tn = b1, π2 : c1 = s0 < s1 < · · · < sm = d1. In view of the
definition of f∗ we infer that there exist t′i ∈ (ti−1, ti) ⊂ [ti−1, ti] = Îi (i = 1, 2, . . . , n)

and s′j ∈ (sj−1, sj) ⊂ [sj−1, sj ] = Ĵj (j = 1, 2, . . . ,m), t′0 ∈ (a1, t
′
1), s′0 ∈ (c1, s

′
1) such

that ∣∣∣f∗(Îi, Ĵj)∣∣∣ = |f∗(ti−1, sj−1) + f∗(ti, sj)− f∗(ti−1, sj)− f∗(ti, sj−1)|

≤
∣∣f(t′i−1, s

′
j−1) + f(t′i, s

′
j)− f(t′i−1, s

′
j)− f(t′i, s

′
j−1)

∣∣+
1

4
φ−1
n,m

( ε

nm

)
.

In a similar way, as earlier, we obtain

φn,m

(∣∣∣f∗(Îi, Ĵj)∣∣∣)
≤ φn,m

(
2
∣∣f(t′i−1, s

′
j−1) + f(t′i, s

′
j)− f(t′i−1, s

′
j)− f(t′i, s

′
j−1)

∣∣)+
ε

nm
.

This yields

k∑
n=1

l∑
m=1

φn,m

(∣∣∣f∗(Îi, Ĵj)∣∣∣) ≤
k∑

n=1

l∑
m=1

φn,m (2| f(t′i−1, s
′
j−1) + f(t′i, s

′
j)

−f(t′i−1, s
′
j)− f(t′i, s

′
j−1)|) + ε.

Consequently, we get

V SΦ (f∗, Iba) ≤ V SΦ (2f, Iba) + ε <∞. (9)

Finally, combining (7), (8) and (9) we derive

TV SΦ (f∗) ≤ TV SΦ (2f) <∞,

which means that f∗ ∈ BV SΦ,∗(Iba).
Thus the proof is complete. �

3 Main result

In this section we prove the main theorem of the paper.
This result characterizes the composition operator acting from the space BV SΦ (Iba)
into itself which is Lipschitzian.

Theorem 3.1. Let Φ be convex and let H : BV SΦ (Iba) → BV SΦ (Iba) be a composition
operator generated by the function h : Iba × R→ R, i.e.

(Hf)(t, s) = h(t, s, f(t, s)), f ∈ RI
b
a for (t, s) ∈ Iba.
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If the operator H acts from the space BV SΦ (Iba) and is Lipschitzian, then

|h(x, u1)− h(x, u2)| ≤ δ|u1 − u2| (10)

for all x ∈ Iba and u1, u2 ∈ R, where δ > 0 is a constant.
Moreover, there exist functions h0, h1 ∈ BV SΦ,∗(Iba) such that

h∗(x, u) = h0(x) + h1(x)u, (11)

for x ∈ Iba and u ∈ R. Conversely, if h0, h1 ∈ BV SΦ,∗(Iba) are functions such that (11)

holds, then H acts from the space BV SΦ (Iba) into itself and is Lipschitzian.

Proof. Let us fix arbitrarily α, β ∈ R, α < β and define an auxiliary function
η
α,β : R→ R

ηα,β (t) :=


0 for t ≤ α,
t− α
β − α

for α ≤ t ≤ β,

1 for t ≥ β.

(12)

Keeping in mind that the operator H : BV SΦ (Iba)→ BV SΦ (Iba) is Lipschitzian, we infer
that there exists a constant µ > 0 such that ‖Hf1 − Hf2‖SΦ ≤ µ‖f1 − f2‖SΦ for any
f1, f2 ∈ BV SΦ (Iba). The definition of the norm implies

PΦ(Hf1 −Hf2) ≤ ‖Hf1 −Hf2‖SΦ ≤ µ‖f1 − f2‖SΦ. (13)

In order to simplify the notation let us put H = Hf1 −Hf2. Then, in view of (13)
we get

PΦ(H) ≤ ‖H‖SΦ ≤ µ‖f1 − f2‖SΦ. (14)

If ‖f1 − f2‖SΦ > 0 then from Lemma 2.1 (c) in (14) we have

TV SΦ

(
H

µ‖f1 − f2‖SΦ

)
≤ 1.

From the definition of TV SΦ , we infer that

φn,m

(∣∣∣∣ H(·, c1)

µ‖f1 − f2‖SΦ

∣∣∣∣) ≤ V SΦ,I1

(
H(·, x2)

µ‖f1 − f2‖SΦ

)
≤ 1, (15)

φn,m

(∣∣∣∣ H(a1, ·)
µ‖f1 − f2‖SΦ

∣∣∣∣) ≤ V SΦ,J1

(
H(x1, ·)

µ‖f1 − f2‖SΦ

)
≤ 1,

φn,m

(∣∣∣∣ H(·, ·)
µ‖f1 − f2‖SΦ

∣∣∣∣) ≤ V SΦ,Iba

(
H(·, ·)

µ‖f1 − f2‖SΦ

)
≤ 1.

Thus, for any u1, u2 ∈ R and a = (a1, c1), b = (b1, d1), x = (x1, x2) ∈ Iba we deduce

|h(x1, x2, u1)− h(x1, x2, u2)| = |H(x)|
= |H(x1, c1)−H(a1, c1) +H(a1, x2)−H(a1, c1)

+H(a1, c1)−H(a1, x2)−H(x1, c1) +H(x) +H(a1, c1)|
≤ |H(x1, c1)−H(a1, c1)|+ |H(a1, x2)−H(a1, c1)|

+ |H(a1, c1)−H(a1, x2)−H(x1, c1) +H(x)|+ |H(a1, c1)|
≤ 3φ−1

n,m(1)µ‖f1 − f2‖SΦ + |H(a1, c1)| . (16)
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To prove the inequality (10) we consider the following cases:

(i) a1 < x1 ≤ b1 and c1 < x2 ≤ d1,

(ii) a1 < x1 ≤ b1 and x2 = c1,

(iii) x1 = a1 and c1 < x2 ≤ d1,

(iv) x1 = a1 and x2 = c1.

Case (i). Consider the functions f1, f2 ∈ BV SΦ
(
Iba
)

defined by the formulas
f`(y1, y2) := (ηa1,x1

(y1) + ηc1,x2
(y2))u` such that a1 ≤ y1 ≤ b1, c1 ≤ y2 ≤ d1 for

` = 1, 2. Note that f`(a) = f`(a1, c1) = 0 and f`(x1, c1) = u` for ` = 1, 2, and
|H(a)| = |H(a1, c1)| = 0.

Let ε > 0 such that TV SΦ

(
f1−f2
ε

)
= 1. Next, we get

V SΦ,I1

(
(f1 − f2)

ε
(·, c1)

)
= sup

{ ∞∑
n=1

φn,m

(∣∣∣∣ (f1 − f2)

ε
(In, c1)

∣∣∣∣) : {In}

}

= sup

{ ∞∑
n=1

φn,m

(∣∣∣∣ (f1 − f2)

ε
(bn, c1)− (f1 − f2)

ε
(an, c1)

∣∣∣∣) : {In}

}

= sup

{ ∞∑
n=1

φn,m

(∣∣∣∣ (bn − an)

ε(x1 − a1)
(u1 − u2)

∣∣∣∣) : {In}

}

= φn,m

(∣∣∣∣ (b1 − a1)

ε(x1 − a1)
(u1 − u2)

∣∣∣∣) ,

V SΦ,J1

(
(f1 − f2)

ε
(a1, ·)

)
= sup

{ ∞∑
m=1

φn,m

(∣∣∣∣ (f1 − f2)

ε
(a1, Jm)

∣∣∣∣) : {Jm}

}
= 0,

V SΦ,Iba

(
(f1 − f2)

ε
(·, ·)

)
= sup

{ ∞∑
n=1

∞∑
m=1

φn,m

(∣∣∣∣ (f1 − f2)

ε
(In, Jm)

∣∣∣∣) : {In}, {Jm}

}
= 0.

Hence

1 = TV SΦ

(
f1 − f2

ε

)
= φn,m

(∣∣∣∣ (b1 − a1)

ε(x1 − a1)
(u1 − u2)

∣∣∣∣) .
Moreover, we deduce

ε =
|b1 − a1| |u1 − u2|
φ−1
n,m(1) |x1 − a1|

.
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By virtue of Lemma 2.1 (d), we choose PΦ (f1 − f2) = ε and derive

‖f1 − f2‖SΦ = |(f1 − f2)(a)|+ PΦ (f1 − f2)

= 0 +
|b1 − a1| |u1 − u2|
φ−1
n,m(1) |x1 − a1|

. (17)

Now, employing (17) in the inequality (16) we obtain (10), i.e.

|h(x, u1)− h(x, u2)| ≤ 3φ−1
n,m(1)µ

|b1 − a1| |u1 − u2|
φ−1
n,m(1) |x1 − a1|

+ |H(a1, c1)|

= 3µ
|b1 − a1| |u1 − u2|
|x1 − a1|

+ 0

= δ |u1 − u2|
(

where δ = 3µ
|b1 − a1|
|x1 − a1|

)
.

Case (ii). Define the functions

f`(y1, y2) = (ηa1,x1
(y1))u` for ` = 1, 2, a1 ≤ y1 ≤ b1, c1 ≤ y2 ≤ d1. (18)

Observe that f`(a) = f`(a1, c1) = (ηa1,x1
(a1))u` = 0 for ` = 1, 2. As in the case (i),

we get

V SΦ,I1

(
(f1 − f2)

ε
(·, c1)

)
= sup

{ ∞∑
n=1

φn,m

(∣∣∣∣ (f1 − f2)

ε
(In, c1)

∣∣∣∣) : {In}

}

= φn,m

(∣∣∣∣ (b1 − a1)

ε(x1 − a1)
(u1 − u2)

∣∣∣∣) ,
V SΦ,J1

(
(f1 − f2)

ε
(a1, ·)

)
= 0 = V SΦ,Iba

(
(f1 − f2)

ε
(·, ·)

)
.

Fix some arbitrary ε > 0 such that

1 = TV SΦ

(
f1 − f2

ε

)
= φn,m

(∣∣∣∣ (b1 − a1)

ε(x1 − a1)
(u1 − u2)

∣∣∣∣) .
We obtain

ε =
|b1 − a1| |u1 − u2|
φ−1
n,m(1) |x1 − a1|

.

Taking PΦ (f1 − f2) = ε and using the Lemma 2.1 (d) we get

‖f1 − f2‖SΦ = 0 +
|b1 − a1| |u1 − u2|
φ−1
n,m(1) |x1 − a1|

. (19)

Employing (19) in the inequality (16) we get (10), i.e.

|h(x, u1)− h(x, u2)| ≤ 3φ−1
n,m(1)µ

|b1 − a1| |u1 − u2|
φ−1
n,m(1) |x1 − a1|

+ |H(a1, c1)|

= δ |u1 − u2|
(

where δ = 3µ
|b1 − a1|
|x1 − a1|

)
.
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Case (iii). In this case we proceed in the analogous manner as in the case (ii),
for which the functions f1, f2 ∈ BV SΦ

(
Iba
)

are defined by the formulas

f`(y1, y2) = (ηc1,x2
(y2))u` for ` = 1, 2, a1 ≤ y1 ≤ b1, c1 ≤ y2 ≤ d1.

Case (iv). Consider the functions f1, f2 ∈ BV SΦ
(
Iba
)

defined by

f`(y1, y2) = [2− ηa1,b1(y1)− ηc1,d1(y2)]u` for ` = 1, 2

such that a1 ≤ y1 ≤ b1 and c1 ≤ y2 ≤ d1.

Observe that

f1(a) = f1(a1, c1) = [2− ηa1,b1(a1)− ηc1,d1(c1)]u1 = [2− 0− 0]u1 = 2u1,

f2(a) = f2(a1, c1) = [2− ηa1,b1(a1)− ηc1,d1(c1)]u2 = [2− 0− 0]u2 = 2u2,

f1(b) = f1(b1, d1) = [2− ηa1,b1(b1)− ηc1,d1(d1)]u1 = [2− 1− 1]u1 = 0,

f2(b) = f2(b1, d1) = [2− ηa1,b1(b1)− ηc1,d1(d1)]u2 = [2− 1− 1]u2 = 0,

H(a) = h(a, u1)− h(a, u2),

H(b) = H(b1, d1) = 0,

(f1 − f2) (a1, Jm) = [2− ηc1,d1(dm)− 2 + ηc1,d1(cm)] (u1 − u2)

=

[
−dm − c1
d1 − c1

+
cm − c1
d1 − c1

]
(u1 − u2)

=

[
−dm − cm
d1 − c1

]
(u1 − u2),

(f1 − f2) (In, c1) =

[
−bn − an
b1 − a1

]
(u1 − u2),

(f1 − f2) (In, Jm) = 0.

Hence

V SΦ,I1

(
(f1 − f2)

ε
(In, c1)

)
= φn,m

(∣∣∣∣ (u1 − u2)

ε

∣∣∣∣) ,
V SΦ,J1

(
(f1 − f2)

ε
(a1, Jm)

)
= φn,m

(∣∣∣∣ (u1 − u2)

ε

∣∣∣∣) ,
V SΦ,Iba

(
(f1 − f2)

ε
(In, Jm)

)
= 0.

Therefore

TV SΦ

(
f1 − f2

ε

)
= 2φn,m

(∣∣∣∣ (u1 − u2)

ε

∣∣∣∣) .
Taking ε > 0 such that

1 = TV SΦ

(
f1 − f2

ε

)
= 2φn,m

(∣∣∣∣ (u1 − u2)

ε

∣∣∣∣) ,



On composition operator in the algebra of... 45

we get the following

ε =
|u1 − u2|
φ−1
n,m(1/2)

.

Now, we select PΦ (f1 − f2) = ε and by virtue of the Lemma 2.1 (d) we get the
result

‖f1 − f2‖SΦ =
2φ−1

n,m(1/2) + 1

φ−1
n,m(1/2)

|u1 − u2|. (20)

In consequence

|h(a1, c1, u1)− h(a1, c1, u2)| = |H(a)|
= |H(b1, c1)−H(a1, c1) +H(a1, d1)−H(a1, c1)

+H(a1, c1)−H(a1, d1)−H(b1, c1) +H(b1, d1)−H(b1, d1)|
≤ |H(b1, c1)−H(a1, c1)|+ |H(a1, d1)−H(a1, c1)|

+ |H(a1, c1)−H(a1, d1)−H(b1, c1) +H(b1, d1)|+ |H(b1, d1)|
≤ 3φ−1

n,m(1)µ‖f1 − f2‖SΦ + |H(b1, d1)|

= 3φ−1
n,m(1)µ

2φ−1
n,m(1/2) + 1

φ−1
n,m(1/2)

|u1 − u2|+ |0|

= δ|u1 − u2|

(
where δ = 3φ−1

n,m(1)µ
2φ−1

n,m(1/2) + 1

φ−1
n,m(1/2)

)
. (21)

From the foregoing cases we conclude that h is Lipschitzian.

Next, we show the estimation expressed in (11). Let us fix arbitrarily x1 ∈ (a1, b1],
x2 ∈ (c1, d1] and put x = (x1, x2) ∈ Iba. For each k ∈ N we consider

a1 < α1 < β1 < α2 < β2 < α3 < β3 < · · · < αk < βk < x1,

c1 < α1 < β1 < α2 < β2 < α3 < β3 < · · · < αk < βk < x2

with ηk : [a1, b1]→ [0, 1] and ηk : [c1, d1]→ [0, 1] two auxiliaries functions defined by
the following formulas

ηk(t) :=


0 for a1 ≤ t ≤ α1,

ηα
i
,β
i
(t) for αi ≤ t ≤ βi, i = 1, 2, . . . , k,

1− ηβ
i
,α
i+1

(t) for βi ≤ t ≤ αi+1, i = 1, 2, . . . , k − 1,

1 for βk ≤ t ≤ b1

(22)

and

ηk(s) :=


0 for c1 ≤ s ≤ α1,

ηα
i
,β
i

(s) for αi ≤ s ≤ βi, i = 1, 2, . . . , k,

1− ηβ
i
,α
i+1

(s) for βi ≤ s ≤ αi+1, i = 1, 2, . . . , k − 1,

1 for βk ≤ s ≤ d1.

(23)
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For any u1, u2 ∈ R we define the functions f1, f2 by

f`(y1, y2) = [−ηk(y1) + ηk(y2)]u1 + (2− `)u2, a1 ≤ y1 ≤ b1, c1 ≤ y2 ≤ d1,

where ` = 1, 2.
We denote the intervals Iαk and Iαk by Iαk = [αk, βk] ⊂ [a1, b1] = I1 and Iαk =
[αk, βk] ⊂ [c1, d1] = J1, then

f1(·, ·)− f2(·, ·) = u2 and ‖f1 − f2‖SΦ = |u2|.

Using inequality (15) we have

k∑
i=1

φi,m

(∣∣∣∣H(βi, βi)−H(αi, βi)

µ‖f1 − f2‖SΦ

∣∣∣∣)

≤ sup

{ ∞∑
k=1

φk,m

(∣∣∣∣ H(Iαk , βk)

µ‖f1 − f2‖SΦ

∣∣∣∣) : {Iαk}

}

≤ V SΦ,I1

(
H(Iαk , βk)

µ‖f1 − f2‖SΦ

)
≤ 1.

Thus
k∑
i=1

φi,m

(
|h
(
βi, βi, f1(βi, βi)

)
− h

(
βi, βi, f2(βi, βi)

)
− h

(
αi, βi, f1(αi, βi)

)
µ|u2|

+
h
(
αi, βi, f2(αi, βi)

)
|

µ|u2|

)
≤ 1.

Since f1(βi, βi) = u2, f2(βi, βi) = 0, f1(αi, βi) = u1 + u2, f2(αi, βi) = u1, we get
from the foregoing estimation

k∑
i=1

φi,m

(
|h
(
βi, βi, u2

)
− h

(
βi, βi, 0

)
− h

(
αi, βi, u1 + u2

)
µ|u2|

+
h
(
αi, βi, u1

)
|

µ|u2|

)
≤ 1. (24)

It is great importance to remark that the constant functions of two variables defined
on the rectangle Iba belong to the space BV SΦ

(
Iba
)

since the composition operator

H generated by h acts from BV SΦ
(
Iba
)

into BV SΦ
(
Iba
)

and the functions h(·, u)[x 7→
h(x, u)] belong to the space BV SΦ

(
Iba
)

for each u ∈ R. On the other hand, we know
from Lemma 2.2 that the regularization left-left in the first two variables h∗(·, u)
belongs to the spaceBV SΦ,∗

(
Iba
)

for all u ∈ R. If we apply limit in (24) when (α1, α1) 7→
(x1 − 0, x2 − 0) we obtain

k∑
i=1

φi,m

(
|h∗ (x1, x2, u2)− h∗ (x1, x2, 0)− h∗ (x1, x2, u1 + u2)

µ|u2|

+
h∗ (x1, x2, u1) |

µ|u2|

)
≤ 1.
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Without losing generality we fix i = n for n = 1, 2, . . . , k

kφn,m

(
|h∗ (x1, x2, u2)− h∗ (x1, x2, 0)− h∗ (x1, x2, u1 + u2)

µ|u2|

+
h∗ (x1, x2, u1) |

µ|u2|

)
≤ 1.

Hence

φn,m

(
|h∗ (x1, x2, u2)− h∗ (x1, x2, 0)− h∗ (x1, x2, u1 + u2)

µ|u2|

+
h∗ (x1, x2, u1) |

µ|u2|

)
≤ 1

k
.

Since k ∈ N is arbitrary we derive

φn,m

(
|h∗ (x1, x2, u2)− h∗ (x1, x2, 0)− h∗ (x1, x2, u1 + u2)

µ|u2|

+
h∗ (x1, x2, u1) |

µ|u2|

)
= 0.

Because φn,m is convex for n,m = 1, 2, . . . and φ(t) = 0 only if t = 0, then

|h∗ (x1, x2, u2)− h∗ (x1, x2, 0)− h∗ (x1, x2, u1 + u2) + h∗ (x1, x2, u1) |
µ|u2|

= 0.

Therefore

h∗ (x1, x2, u2)− h∗ (x1, x2, 0)− h∗ (x1, x2, u1 + u2) + h∗ (x1, x2, u1) = 0

or equivalently

h∗ (x, u1 + u2) + h∗ (x, 0) = h∗ (x, u1) + h∗ (x, u2) (25)

for each x = (x1, x2) ∈ (a1, b1]× (c1, d1] and all u1, u2 ∈ R.
Let x1 ∈ (a1, b1] and x2 = c1, now we consider the following inequalities

a1 < α1 < β1 < α2 < β2 < α3 < β3 < · · · < αk < βk < x1,

c1 < α1 < β1 < α2 < β2 < α3 < β3 < · · · < αk < βk < d1, k ∈ N.

We proceed in the similar way as in the result (24). Taking limit when (α1, β1) 7→
(x1− 0, x2 + 0) in (24) we obtain (25). The cases x1 = a1 and x2 ∈ (c1, d1] or x1 = a1

and x2 = c1 are similar.
Thus the equation (25) holds for each x = (x1, x2) ∈ Iba and for any u1, u2 ∈ R.

Now, we fix x = (x1, x2) ∈ Iba and define the mapping Tx : R→ R by

Tx(u) = h∗(x, u)− h∗(x, 0) ∀u ∈ R.
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Note that we can rewrite the expression in (25) as follows

Tx (u1 + u2) = Tx (u1) + Tx (u2) ∀u1, u2 ∈ R. (26)

This shows that Tx is an additive operator.
For any u1, u2 ∈ R we have

|Tx (u1)− Tx (u2)| = |h∗ (x, u1)− h∗ (x, 0)− h∗ (x, u2) + h∗ (x, 0)|
= |h∗ (x, u1)− h∗ (x, u2)|
≤ µ |u1 − u2| ,

i.e. Tx(·) is Lipschitz-continuous on R. Then exists a mapping h1 : Iba → R such that

Tx(u) = h1(x)u ∀x ∈ Iba, ∀u ∈ R.

Taking h0(x) = h∗(x, 0), x ∈ Iba we derive

h∗(x, u) = Tx(u) + h∗(x, 0) = h1(x)u+ h0(x).

Since h0(·) = h∗(·, 0), h1(·) = h∗(·, 1)− h∗(·, 0) and Lemma 2.2 we have that h0, h1 ∈
BV SΦ,∗

(
Iba
)
. Thus

h∗(x, u) = h1(x)u+ h0(x) ∀x ∈ Iba, ∀u ∈ R with h0, h1 ∈ BV SΦ,∗
(
Iba
)
.

Sufficient Condition. Suppose that the composition operator H is given by

(Hf)(x) = h0(x) + h1(x)f(x), x ∈ Iba, f ∈ BV SΦ
(
Iba
)
.

As BV SΦ
(
Iba
)

is a Banach algebra, then H maps the space BV SΦ
(
Iba
)

into itself.
Further

‖H(f1)−H(f2)‖SΦ = ‖h0 + h1f1 − h0 − h1f2‖SΦ
≤ K ‖h1‖SΦ ‖f1 − f2‖SΦ
= λ ‖f1 − f2‖SΦ

(
where λ = K ‖h1‖SΦ

)
. (27)

In consequence H is a Lipschitzian operator. �
Remark 3.1.

1) The Theorem 3.1 is valid for the regularization right-right, left-right and right-
left of h(·, u) ∀u ∈ R.

2) If h0, h1 ∈ BV SΦ,∗
(
Iba
)

and ‖h1‖SΦ < 1/K, then by Principium of contraction of

Banach in combination with (27), exists only one function f ∈ BV SΦ
(
Iba
)

such
that

f(x) = h0(x) + h1(x)f(x) ∀x ∈ Iba ⊂ R.
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The following corollary is the immediate consequence of the Theorem 3.1.

Corollary 3.1. Suppose that h : Iba × R → R is such that h∗ = h in Iba × R → R,
and composition operator H maps space BV SΦ

(
Iba
)

into itself. Then it is Lipschitzian

if and only if there exist functions h0, h1 ∈ BV SΦ,∗
(
Iba
)

such that

h(x, u) = h0(x) + h1(x)u ∀x ∈ Iba, u ∈ R.
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Abstract: In this paper we prove the interior approximate controlla-
bility of the following Generalized Benjamin-Bona-Mahony type equation
(BBM) with homogeneous Dirichlet boundary conditions{

zt − a∆zt − b∆z = 1ωu(t, x), t ∈ (0, τ), x ∈ Ω,
z(t, x) = 0, t ≥ 0, x ∈ ∂Ω,

where a ≥ 0 and b > 0 are constants, Ω is a domain in IRN , ω is an open
nonempty subset of Ω, 1ω denotes the characteristic function of the set
ω and the distributed control u ∈ L2(0, τ ;L2(Ω)). We prove that for all
τ > 0 and any nonempty open subset ω of Ω the system is approximately
controllable on [0, τ ]. Moreover, we exhibit a sequence of controls steering
the system from an initial state to a final state in a prefixed time. As a
consequence of this result we obtain the interior approximate controllabil-
ity of the heat equation by putting a = 0 and b = 1.

AMS Subject Classification: 93B05, 93C25
Key Words and Phrases: interior controllability, reaction diffusion equations, strongly
continuous semigroups

1 Introduction.

The original Benjamin-Bona-Mahony equation was proposed in [4] for the case N = 1
as a model for the propagation of long waves. This equation and related types of
pseudo-parabolic equations have been studied by many authors. Results about ex-
istence and uniqueness of solutions can be found in [3]; the long time behavior of
solutions and the existence of attractors were studied e.g. in [5], [7], [8] and [15], and

1This work was supported by the CDHT-ULA-project: C-1667-09-05-AA
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the controllability for the case N = 1 with control in the boundary has been studied
in [13]. Recently the BBM equation with boundary conditions has been studied in [6]
and [12].

The interior approximate controllability is a well known, fascinating and important
subject in systems theory; there are some works done by [14], [16], [17], [18] and [19].
Particularly, Zuazua in [19] proves the interior approximate controllability of the heat
equation  zt = ∆z + 1ωu(t, x), in (0, τ)× Ω,

z = 0, on (0, τ)× ∂Ω,
z(0, x) = z0(x), in Ω,

(1.1)

in two different ways. In the first one, he uses the Hahn-Banach theorem, integration
by parts, the adjoint equation, the Carleman estimates and the Holmgren Uniqueness
Theorem([11]).

The second method is constructive and uses a variational technique: fix the control
time τ > 0, the initial and final state z0 = 0, z1 ∈ L2(Ω) respectively and ε > 0; the
control steering the initial state z0 to a ball of radius ε > 0 and center z1 is given by
the point in which the following functional achieves its minimum value

Jε(ϕτ ) =
1

2

∫ τ

0

∫
ω

ϕ2dxdt+ ε‖ϕτ‖L2(Ω) −
∫

Ω

z1ϕτ ,

where ϕ is the solution of the corresponding adjoint equation with initial data ϕτ .

In this paper we prove the interior approximate controllability of the following
Generalized Benjamin-Bona-Mahony type equation (BBM) with homogeneous Dirich-
let boundary conditions{

zt − a∆zt − b∆z = 1ωu(t, x), t ∈ (0, τ), x ∈ Ω,
z(t, x) = 0, t ≥ 0, x ∈ ∂Ω,

(1.2)

where a ≥ 0 and b > 0 are constants, Ω is a domain in IRN , ω is an open nonempty
subset of Ω, 1ω denotes the characteristic function of the set ω and the distributed
control u ∈ L2(0, τ ;L2(Ω)).
The controllability of such systems, with the controls acting on the whole set Ω was
studied in [1]; they considered the approximate controllability of the system{

zt − a∆zt − b∆z = b1(x)u1 + . . .+ bm(x)um, t ≥ 0, x ∈ Ω,
z(t, x) = 0, t ≥ 0, x ∈ ∂Ω,

(1.3)

where bi ∈ L2(Ω; IR), the control functions ui ∈ L2(0, τ ; IR); i = 1, 2, . . . ,m and Ω is
a bounded domain in IRN (N ≥ 1). More precisely, they prove the following result:
the system (1.3) is approximately controllable on [0, τ ], τ > 0 iff each of the following
finite dimensional systems are controllable on [0, τ ]

y′ = − bλj
1 + aλj

y +Bju, y ∈ R(Ej), j = 1, 2, . . . ,∞, (1.4)
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where

Bj : IRm → R(Ej), BjU =

γj∑
i=1

1

1 + aλj
EjbiUi,

λj ’ s are the eigenvalues of −∆ with Dirichlet boundary condition and γj the corre-
sponding multiplicity, Ej ’ s are the projections on the corresponding eigenspaces and
R(Ej) denotes the range of Ej . Since dimR(Ej) = γj < ∞, the controllability of
(1.4) is equivalent to the following algebraic condition:

Rank[Bj ] = γj , j = 1, 2, . . . ,∞. (1.5)

In this paper, we are interested in the interior approximate controllability of system
(1.2). This is an important problem from the applications point of view, and more
general since the control is acting only on a subset ω of Ω. We prove that for all τ > 0
and any nonempty open subset ω of Ω the system is approximately controllable on
[0, τ ]. Moreover, we can exhibit a sequence of controls steering the system from an
initial state to a final state in a prefixed time (see Theorem 3.2). As a consequence
of this result we obtain the interior approximate controllability of the heat equation
(1.1) by putting a = 0 and b = 1.

The technique given here is simple and based on the following results:

Theorem 1.1 (see Theorem 1.23 from [2], pg. 20) Suppose Ω ⊂ IRn is an open,
non-empty and connected set, and f is real analytic function in Ω with f = 0 on a
non-empty open subset ω of Ω. Then, f = 0 in Ω.

Lemma 1.1 (see Lemma 3.14 from [9], pg. 62) Let {αj}j≥1 and {βi,j : i = 1, 2, . . . ,m}j≥1

be two sequences of real numbers such that: α1 > α2 > α3 · · · . Then

∞∑
j=1

eαjtβi,j = 0, ∀t ∈ [0, τ ], i = 1, 2, · · · ,m

iff

βi,j = 0, i = 1, 2, · · · ,m; j = 1, 2, · · · ,∞.

Theorem 1.2 The eigenfunctions of the operator −∆ with Dirichlet boundary con-
ditions on Ω are real analytic functions in Ω.

2 Abstract Formulation of the Problem

In this section we choose the space in which this problem will be set as an abstract
ordinary differential equation.
Let Z = L2(Ω) = L2(Ω, IR) and consider the linear unbounded operator A : D(A) ⊂
Z → Z defined by Aφ = −∆φ, where

D(A) = H2(Ω, IR) ∩H1
0 (Ω, IR).
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The operator A has the following very well known properties: the spectrum of A
consists of eigenvalues

0 < λ1 < λ2 < · · · < λj < · · · with λj →∞, (2.1)

each one with finite multiplicity γj equal to the dimension of the corresponding
eigenspace. Therefore:
a) there exists a complete orthonormal set {φj,k} of eigenvectors of A.
b) for all z ∈ D(A) we have

Az =

∞∑
j=1

λj

γj∑
k=1

< z, φj,k > φj,k =

∞∑
j=1

λjEjz, (2.2)

where < ·, · > is the inner product in Z and

Ejz =

γj∑
k=1

< z, φj,k > φj,k. (2.3)

So, {Ej} is a family of complete orthogonal projections in Z and

z =

∞∑
j=1

Ejz, z ∈ Z. (2.4)

c) −A generates the analytic semigroup
{
e−At

}
given by

e−Atz =

∞∑
j=1

e−λjtEjz. (2.5)

Hence, the equation (1.3) can be written as an abstract ordinary differential equation
in Z as follows

z′ + aAz′ + bAz = 1ωu(t), t ∈ (0, τ ]. (2.6)

Since (I + aA) = a(A− (− 1
a )I) and − 1

a ∈ ρ(A)(ρ(A) is the resolvent set of A), then
the operator:

I + aA : D(A)→ Z

is invertible with bounded inverse

(I + aA)−1 : Z → D(A).

Therefore, the equation (2.6) also can be written as follows

z′ + b(I + aA)−1Az = (I + aA)−11ωu(t) t ∈ (0, τ). (2.7)

Moreover, (I + aA) and (I + aA)−1 can be written in terms of the eigenvalues of A:

(I + aA)z =

∞∑
j=1

(1 + aλj)Ejz
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(I + aA)−1z =

∞∑
j=1

1

1 + aλj
Ejz.

Therefore, if we put B = (I + aA)−1, the equation (2.7) can be written as follows

z′ + bBAz = BBωu(t), t ∈ (0, τ), (2.8)

whereBωf = 1ωf is a linear a bounded operator from Z to Z and u ∈ L2(0, τ ;L2(Ω)) =
L2(0, τ ;Z).

Now, we formulate a simple proposition.

Proposition 2.1 The operators bBA and T (t) = e−bBAt are given by the following
expression

bBAz =

∞∑
j=1

bλj
1 + aλj

Ejz (2.9)

T (t)z = e−bBAtz =

∞∑
j=1

e
−bλj
1+aλj

t
Ejz, (2.10)

and

‖ T (t) ‖≤ e−βt, t ≥ 0, (2.11)

where

β = inf
j≥1

{
bλj

1 + aλj

}
=

bλ1

1 + aλ1
. (2.12)

With this notation the system (2.8) can be written as follows

z′ = −Az +BBωu(t), t ∈ (0, τ ], (2.13)

where A = bBA.

3 Main Theorem

In this section we shall prove the main result of this paper on the controllability of the
linear system (2.13). But first we give the definition of approximate controllability
for this system. To this end, for all z0 ∈ Z and a control u ∈ L2(0, τ ;Z) the equation
(2.13) with z(0) = z0 has a unique mild solution given by

z(t) = T (t)z0 +

∫ t

0

T (t− s)BBωu(s)ds, 0 ≤ t ≤ τ. (3.1)

Definition 3.1 We say that (2.13) is approximately controllable in [0, τ ] if for all z0,
z1 ∈ Z and ε > 0, there exists a control u ∈ L2(0, τ ;Z) such that the solution z(t)
given by (3.1) satisfies

‖z(τ)− z1‖ ≤ ε. (3.2)
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Consider the following bounded linear operator:

G : L2(0, τ ;Z)→ Z, Gu =

∫ τ

0

T (τ − s)BBωu(s)ds, (3.3)

whose adjoint operator G∗ : Z −→ L2(0, τ ;Z) is given by

(G∗z)(s) = (BBω)∗T ∗(τ − s)z = B∗ωB
∗T ∗(τ − s)z, ∀s ∈ [0, τ ], ∀z ∈ Z. (3.4)

The following lemma is trivial:

Lema 3.1 The equation (2.13) is approximately controllable on [0, τ ] if, and only if,
Rang(G) = Z.

The following result is well known from linear operator theory:

Lema 3.2 Let W and Z be Hilbert spaces and G∗ ∈ L(Z,W ) the adjoint operator of
the linear operator G ∈ L(W,Z). Then

Rang(G) = Z ⇐⇒ Ker(G∗) = {0}.

As a consequence of the foregoing Lemma one can prove the following result:

Lema 3.3 Let W and Z be Hilbert spaces and G∗ ∈ L(Z,W ) the adjoint operator
of the linear operator G ∈ L(W,Z). Then Rang(G) = Z if, and only if, one of the
following statements holds:

a) Ker(G∗) = {0}.

b) 〈GG∗z, z〉 > 0, z 6= 0 in Z.

c) limα→0+ α(αI +GG∗)−1z = 0.

d) supα>0 ‖α(αI +GG∗)−1‖ ≤ 1.

The following theorem follows directly from (3.4), lemma 3.1 and lemma 3.3.

Theorem 3.1 (2.13) is approximately controllable on [0, τ ] iff

B∗ωB
∗T ∗(t)z = 0, ∀t ∈ [0, τ ], ⇒ z = 0. (3.5)

Theorem 3.2 (Main Result) For all τ > 0 and any open nonempty subset ω of Ω the
system (2.13) is approximately controllable on [0, τ ]. Moreover, a sequence of controls
steering the system (2.13) from initial state z0 to an ε neighborhood of the final state
z1 at time τ > 0 is given by

uα(t) = B∗ωB
∗T (τ − t)(αI +GG∗)−1(z1 − T (τ)z0),

and the error of this approximation Eα is given by

Eα = α(αI +GG∗)−1(z1 − T (τ)z0).
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Proof. We shall apply Theorem 3.1 to prove the controllability of system (2.13). To
this end, we observe that

T ∗(t)z =

∞∑
j=1

e
−bλj
1+aλj

t
Ejz, B∗ω = B∗ω and B∗ = B.

Then,

(BBω)∗T ∗(t)z = BωBT
∗(t)z =

∞∑
j=1

e
−bλj
1+aλj

t 1

1 + aλj
BωEjz = 0, ∀t ∈ [0, τ ].

Since { −bλj1+aλj
: j = 1, 2, . . . } is a decreasing sequence, then from Lemma 1.1 we obtain

that

(BωEjz)(x) =

γj∑
k=1

< z, φj,k > 1ωφj,k(x) = 0, ∀x ∈ Ω, j = 1, 2, . . . .

i.e.,
γj∑
k=1

< z, φj,k > φj,k(x) = 0 ∀x ∈ ω, j = 1, 2, . . . ..

Now, from theorem 1.2 we know that φj,k’ s are analytic functions, which implies the
analyticity of Ejz. Then, from Theorem 1.1 we get that

γj∑
k=1

< z, φj,k > φj,k(x) = 0 ∀x ∈ Ω, j = 1, 2, . . . ..

Hence, Ejz = 0, j = 1, 2, . . . , which implies that z = 0.
Now, given the initial and the final states z0 and z1, we consider the sequence of
controls

uα(·) = B∗ωB
∗T (τ − ·)(αI +GG∗)−1(z1 − T (τ)z0)

= G∗(αI +GG∗)−1(z1 − T (τ)z0), α > 0.

Then,

Guα = GG∗(αI +GG∗)−1(z1 − T (τ)z0)

= (αI +GG∗ − αI)(αI +GG∗)−1(z1 − T (τ)z0)

= z1 − T (τ)z0 − α(αI +GG∗)−1(z1 − T (τ)z0).

From part c) of Lemma 3.3 we know that

lim
α→0+

α(αI +GG∗)−1(z1 − T (τ)z0) = 0.

Therefore,
lim
α→0+

Guα = z1 − T (τ)z0.
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i.e.,

lim
α→0+

{T (τ)z0 +

∫ τ

0

T (τ − s)BBωu(s)ds} = z1.

This completes the proof of the Theorem.

Corollary 3.1 For all τ > 0 and all open nonempty subset ω of Ω the heat equation
(1.1) is approximately controllable on [0, τ ].

Proof. It is enough to take a = 0 and b = 1 in the equation (1.2).

4 Final Remarks

The original Benjamin -Bona-Mohany Equation is a non-linear one, here we have
proved the approximate controllability of the linear part of this equation, which is the
fundamental base for the study of the controllability of the non linear BBM equation.
So, our next work is concerned with the controllability of non linear BBM equation{

zt − a∆zt − b∆z = 1ωu(t, x) + f(t, z, u(t)), t ∈ (0, τ), x ∈ Ω,
z(t, x) = 0, t ≥ 0, x ∈ ∂Ω,

(4.1)

where a ≥ 0 and b > 0 are constants, Ω is a domain in IRN , ω is an open nonempty
subset of Ω, 1ω denotes the characteristic function of the set ω, the distributed control
u ∈ L2(0, τ ;L2(Ω)) and f(t, z, u(t)) is a nonlinear perturbation.
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Caracas -Venezuela

Received 17.09.2009



J o u r n a l of
Mathematics
and Applications

No 33, pp 61-65 (2010)

COPYRIGHT c© by Publishing Department Rzeszów University of Technology
P.O. Box 85, 35-959 Rzeszów, Poland

The Demyanov metric
and measurable multifunctions1

Andrzej Leśniewski
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Abstract: We present in this paper measurability multifunctions in
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1 Introduction and Preliminares

We introduction the following family subsets of Rd:

Cd =
{
A ∈ Rd : A 6= ∅, convex, bounded

}
Kd =

{
A ∈ Cd : A is compact

}
For any A ∈ Rd, u ∈ Rd we denote

pA(u) = sup
a∈A

< a, u > , A(u) = {a ∈ A : < a, u >= pA(u)}

where < . > is the scalar product, and by recurrence

A(u1, ..., ui) = A(u1, ..., ui−1)(ui).

By E denote the set of all orthonormal sequences (e1, ..., ek), 1 ≤ k ≤ d. We shall
often use a single letter to denote elements of E , like E = (e1, ..., ek).

Let A,B ⊂ Rd. The Hausdorff distance is defined by

ρH(A,B) = max {e(A,B), e(B,A)}
1This research was supported by a grant from the Faculty of Mathematics & Information Science

of Warsaw University of Technology.
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where

e(A,B) = sup
a∈A

dist(a,B) = sup
a∈A

inf
b∈B
||a− b||

This is a metric in the family of closed sets in Rd.
In the [4] we give the following formula for the Demyanov’s metric which permitts

further extensions to the case of convex but not necessarily closed sets. Let

Ek = {(e1, ..., ej) ∈ E : j ≥ k}

For A,B ∈ Kd and 1 ≤ k ≤ d

ρD(A,B) = sup
E∈Ek

ρH(A(E), B(E))

The metric is that of uniform convergence in the set of mappings whose arguments
are orthonormal systems of vectors in Rd and values are convex sets orthogonal to
these vectors.

2 Demyanov’s metric in Cd and XU
Let E0 = E ∪ {0}. We introduce in Cd the following equivalence relation.

Definition 2.1 A ≡ B iff for every E ∈ E0 we have

A(E) 6= ∅ ⇔ B(E) 6= ∅

Remark that the set U of E ∈ E0 for which A(E) 6= ∅ is common for all elements of
the same equivalence class-this equivalence class will be then denoted as Kd

U .
If a set U ⊂ E0 corresponds to some equivalence class then it will be called admis-

sible. Any admissible set U satisfies the following two conditions:

(i) 0 ∈ U

(ii) (e1, ..., ek, ek+1) ∈ U ⇒ (e1, ..., ek) ∈ U

The following example showing that the conditions (i),(ii) are not sufficient for a set
U to be admissible.

Example 2.1 Let d = 2 and U = {0} ∪ S1

Let Kd
U 6= ∅. We remark that the closed ball of Rd is an element of Kd

U . Let A ∈ Kd
U

and e1 be such that Ā(e1) is an exposed point in Ā-the bar over A denotes the closure.
Then Ā(e1) ∈ A. For any e2 ∈ S1 orthogonal to e1 we have A(e1) = A(e1, e2) 6= ∅,
hence (e1, e2) /∈ U .

Remark that the family off all A(E), E ∈ E0 consists of all faces of the set A ∈ Cd.
The following counterpart of Theorem 2.1.2 [5] is valid for arbitrary A ∈ Cd (the
relintA denote the relative interior of set A).
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Theorem 2.1 If A(E) 6= A(F ) then relintA(E) ∩ relintA(F ) = ∅. Morever, the
family of sets relintA(E), for all E ∈ E0 provides a decomposition of A.

Fix an admissible family U . Let E = (e0, e1, ..., ek) ∈ U , where 0 ≤ k ≤ d. By ZE we
denote the family of all convex, nonempty, relatively open sets A such that

∀ei ∈ E,∀u, v ∈ A : < u− v, ei >= 0

By AE denote the element of ZE . We prove the following lemma:

Lemma 2.1 The space (ZE , ρH) is a complete.

Proof: Let E = (e0, e1, ..., ek) ∈ U where 0 ≤ k ≤ d. We consider the Cauchy sequence
(An

E). Then also (Ān
E) is a Cauchy sequence and is element of Kd. The space (Kd, ρH)

is complete. Thus limn→∞ ρH(Ān
E , B) = 0, where B ∈ Kd.

If dimB < d − k, then the limit is equal B. If dimB ≥ d − k then the limit is
equal relintB.

The set of all elements A of the Cartezian product
∏

E∈U ZE for which the union⋃
E∈U AE is a bounded subset of Rd will by denoted by XU .

Example 2.2 Let d = 2 and U = {e0, (eo, e1), (e0, e1, e2)}, where e0 = {0} , e1 =
(0, 1), e2 = (1, 0). We define A ∈ XU :

Ae0 = intco {(1, 1), (−1, 1), (−1,−1), (1,−1)}

A(e0,e1) = relintco

{
(
1

2
, 1), (1, 1)

}
A(e0,e2) = relintco

{
(1,−1

2
), (1,

1

2

}
A(e0,e1,e2) = {(1, 1)}

The union of all AE is not convex. Remark that putting

A(e0,e1) = relintco

{
(−1

2
, 1), (

1

2
, 1)

}
and

A(e0,e1,e2) =

{
(
1

2
, 1)

}
we get A for which the union of values is a convex set belonging to KU ,

In XU we introduce the following metric

ρP (A,B) = sup
E∈U

ρH(AE ,BE)

The following lemma is a standard result about completeness of the space of bounded
maps with the metric uniform convergence.

Lemma 2.2 The metric space (XU , ρP ) is complete
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Proof: Let U the admissible set and (An) the Cauchy sequence in XU . Using
the definition of the metric ρP we have that for all E ∈ U , (An

E) is the Cauchy
sequence in ZE . Hence for all E ∈ U , lim

n→∞
ρH(An

E ,A0
E) = 0, where A0

E ∈ ZE . Let

A0 =
⋃

E∈U A0
E .

We have that A0 ∈ ZU and lim
n→∞

ρP (An,A0) = 0

We remark the following fact. The theorem 2.1 says that for A ∈ Kd
U the union⋃

E∈U AE is equal A, so it is convex.

3 Measurable multifunctions in XU
By (T,M, µ) will denote a measurable space, i.e., T is a set, M is a σ-field and µ is
a measure such that µ(A) <∞.

Definition 3.1 F : T → XU is simple if F takes only finitely many values A1, ..., Ak

such that
{t : F (t) = Ai} ∈ M for i = 1, ..., k

Definition 3.2 A multifunction F : T → XU is a measurable if there are simple
multifunctions Fn : T → XU such that

lim
n→∞

ρP (Fn(t), F (t)) = 0 a.e. t ∈ T

We can now proof the following result

Theorem 3.1 If F : T → Kd is measurable, then for any A ∈ Kd the set

TA = {t : F (t) ∩A 6= ∅} ∈ M

and the multifunction FA : TA → Kd defined by FA(t) = F (t) ∩A is measurable

Proof: Let An =
{
x ∈ Rd : dist(x,A) ≤ 1

n

}
for n = 1, 2, ..., and Fn be a sequence of

simple multifunctions such that

lim
n→∞

ρP (Fn(t), F (t)) = 0 a.e.

We define
Tn =

⋃
j

⋂
i=j

{t : Fi(t) ∩An 6= ∅}

Remark that if t0 ∈ TA then F (t0) ∩ A 6= ∅, and for all n exist i0(n) such that
Fi(t0) ∩An 6= ∅ for i ≥ i0(n). So t0 ∈ Tn for any n, hence TA ⊂

⋂
n Tn.

We now prove that
⋂

n Tn ⊂ TA.
Let t0 ∈

⋂
n Tn, then for any n exist j0(n) such that Fi(t0)∩An 6= ∅ for i ≥ j0(n).

We assume that j0 → ∞ when n → ∞. Exist a sequence xn ∈ Fj0(n)(s0) ∩ An for
n = 1, 2, ....
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Put limn→∞ xn = x0. We have that x0 ∈ A becouse dist(xn, A) ≤ 1
n and

dist(xn, F (t0)) ≤ ρH(Fj0(n)(t0), F (t0)) ≤ ρP (Fj0(n)(t0), F (t0))→ 0

so x0 ∈ F (t0), hence TA =
⋂

n Tn.
The Tn is measurable then TA is also.
We remark that Gn(t) = Fn(t) ∩An for t ∈ TA is a sequence of simple multifunc-

tions converges to FA(t) for almost everywhere t ∈ TA.
Acknowledgements: The author is grateful to Tadeusz Rzeżuchowski for valu-

able remarks and to unknown Referee for the remarks that helped us to improve the
text.
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Abstract: In the present paper we define a new operator using
the generalized Sălăgean operator and Ruscheweyh operator. Denote by
DRnλ the Hadamard product of the generalized Sălăgean operator Dn

λ

and Ruscheweyh operator Rn, given by DRnλ : A → A, DRnλf (z) =
(Dn

λ ∗Rn) f (z) and An = {f ∈ H(U) : f(z) = z+an+1z
n+1+. . . , z ∈ U}

is the class of normalized analytic functions with A1 = A. We study some
differential subordinations regarding the operator DRnλ.
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1 Introduction

Denote by U the unit disc of the complex plane, U = {z ∈ C : |z| < 1} and H(U)
the space of holomorphic functions in U .

Let
An = {f ∈ H(U) : f(z) = z + an+1z

n+1 + . . . , z ∈ U},

for n ∈ N and A1 = A.
Denote by

K =

{
f ∈ A : Re

zf ′′(z)

f ′(z)
+ 1 > 0, z ∈ U

}
the class of normalized convex functions in U .

If f and g are analytic functions in U , we say that f is subordinate to g, written
f ≺ g, if there is a function w analytic in U , with w(0) = 0 and |w(z)| < 1 for all
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z ∈ U, such that f(z) = g(w(z)) for all z ∈ U . If g is univalent, then f ≺ g if and
only if f(0) = g(0) and f(U) ⊆ g(U).

Let ψ : C3×U → C and h be an univalent function in U . If p is analytic in U and
satisfies the (second-order) differential subordination

ψ(p(z), zp′(z), z2p′′(z); z) ≺ h(z), for z ∈ U, (1.1)

then p is called a solution of the differential subordination. The univalent function q
is called a dominant of the solutions of the differential subordination, or more simply
a dominant, if p ≺ q for all p satisfying (1.1).

A dominant q̃ that satisfies q̃ ≺ q for all dominants q of (1.1) is said to be the best
dominant of (1.1). The best dominant is unique up to a rotation of U .

Definition 1 (Al Oboudi [2]) For f ∈ A, λ ≥ 0 and n ∈ N, the operator Dn
λ is

defined by Dn
λ : A→ A,

D0
λf (z) = f (z)

D1
λf (z) = (1− λ) f (z) + λzf ′(z) = Dλf (z)

...

Dn
λf(z) = (1− λ)Dn−1

λ f (z) + λz (Dn
λf (z))

′
= Dλ

(
Dn−1
λ f (z)

)
, for z ∈ U.

Remark 1 If f ∈ A and f(z) = z +
∑∞
j=2 ajz

j, then

Dn
λf (z) = z +

∑∞
j=2 [1 + (j − 1)λ]

n
ajz

j, for z ∈ U .

Remark 2 For λ = 1 in the above definition we obtain the Sălăgean differential
operator [5].

Definition 2 (Ruscheweyh [4]) For f ∈ A and n ∈ N, the operator Rn is defined by
Rn : A→ A,

R0f (z) = f (z)

R1f (z) = zf ′ (z)

...

(n+ 1)Rn+1f (z) = z (Rnf (z))
′
+ nRnf (z) , for z ∈ U.

Remark 3 If f ∈ A and f(z) = z +
∑∞
j=2 ajz

j, then

Rnf (z) = z +
∑∞
j=2 C

n
n+j−1ajz

j, for z ∈ U .

Lemma 1 (Miller and Mocanu [3]) Let g be a convex function in U and let

h(z) = g(z) + nαzg′(z), for z ∈ U,

where α > 0 and n is a positive integer.
If

p(z) = g(0) + pnz
n + pn+1z

n+1 + . . . , for z ∈ U
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is holomorphic in U and

p(z) + αzp′(z) ≺ h(z), for z ∈ U,

then

p(z) ≺ g(z)

and this result is sharp.

2 Main Results

Definition 3 Let λ ≥ 0 and n ∈ N. Denote by DRnλ : A → A the operator given by
the Hadamard product (the convolution product) of the generalized Sălăgean operator
Dn
λ and the Ruscheweyh operator Rn:

DRnλf (z) = (Dn
λ ∗Rn) f (z) ,

for any z ∈ U and each nonnegative integer n.

Remark 4 If f ∈ A and f(z) = z +
∑∞
j=2 ajz

j , then

DRnλf (z) = z +
∑∞
j=2 C

n
n+j−1 [1 + (j − 1)λ]

n
a2jz

j, for z ∈ U .

Remark 5 For λ = 1 we obtain the Hadamard product SRn [1] of the Sălăgean
operator Sn and Ruscheweyh operator Rn.

Theorem 2 Let g be a convex function such that g (0) = 1 and let h be the function
h (z) = g (z) + zg′ (z), for z ∈ U . If λ ≥ 0, n ∈ N, f ∈ A and the differential
subordination

n+ 1

λz
DRn+1

λ f (z)− n (1− λ)

λz
DRnλf (z)−

(
n− 1 +

1

λ

)
(DRnλf (z))

′ ≺ h (z) , (2.2)

for z ∈ U , holds, then

(DRnλf (z))
′ ≺ g (z) , for z ∈ U,

and this result is sharp.

Proof. With notation

p (z) = (DRnλf (z))
′

= 1 +

∞∑
j=2

Cnn+j−1 [1 + (j − 1)λ]
n
ja2jz

j−1

and p (0) = 1, we obtain for f(z) = z +
∑∞
j=2 ajz

j ,
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p (z) + zp′ (z) = 1 +

∞∑
j=2

Cnn+j−1 [1 + (j − 1)λ]
n
j2a2jz

j−1

=
n+ 1

λz

z +

∞∑
j=2

Cn+1
n+j [1 + (j − 1)λ]

n+1
a2jz

j

+
λ− n− 1

λ

−
∞∑
j=2

Cnn+j−1 [1 + (j − 1)λ]
n
a2jz

j−1
(
n− 1 +

1

λ

)
j

−
∞∑
j=2

Cnn+j−1 [1 + (j − 1)λ]
n
a2jz

j−1n (1− λ)

λ

=
n+ 1

λz
DRn+1

λ f (z)−
(
n− 1 +

1

λ

)
(DRnλf (z))

′ − n (1− λ)

λz
DRnλf (z) .

We have p (z) + zp′ (z) ≺ h (z), for z ∈ U . By using Lemma 1 we obtain p (z) ≺
g (z), for z ∈ U , i.e. (DRnλf (z))

′ ≺ g (z), for z ∈ U and this result is sharp.

Corollary 3 (see [1]) Let g be a convex function such that g (0) = 1 and let h be
the function h (z) = g (z) + zg′ (z), for z ∈ U . If n ∈ N, f ∈ A and the differential
subordination

1

z
SRn+1f (z) +

n

n+ 1
z (SRnf (z))

′′ ≺ h (z) , for z ∈ U, (2.3)

holds, then

(SRnf (z))
′ ≺ g (z) , for z ∈ U

and this result is sharp.

Theorem 4 Let g be a convex function, g (0) = 1 and let h be the function h (z) =
g (z) + zg′ (z), for z ∈ U . If n ∈ N and f ∈ A verifies the differential subordination

(DRnλf (z))
′ ≺ h (z) , for z ∈ U, (2.4)

then
DRnλf (z)

z
≺ g (z) , for z ∈ U,

and this result is sharp.

Proof. For f ∈ A and f(z) = z +
∑∞
j=2 ajz

j we have

DRnλf (z) = z +

∞∑
j=2

Cnn+j−1 [1 + (j − 1)λ]
n
a2jz

j for, z ∈ U
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Consider

p (z) =
DRnλf (z)

z
=
z +

∑∞
j=2 C

n
n+j−1 [1 + (j − 1)λ]

n
a2jz

j

z

= 1 +

∞∑
j=2

Cnn+j−1 [1 + (j − 1)λ]
n
a2jz

j−1.

We have p (z) + zp′ (z) = (DRnλf (z))
′
, for z ∈ U .

Then (DRnλf (z))
′ ≺ h (z), for z ∈ U, becomes p (z) + zp′ (z) ≺ h (z) = g (z) +

zg′ (z), for z ∈ U . By using Lemma 1 we obtain p (z) ≺ g (z), for z ∈ U , i.e.
DRnλf(z)

z ≺ g (z), for z ∈ U.

Corollary 5 (see [1]) Let g be a convex function, g (0) = 1 and let h be the function
h (z) = g (z) + zg′ (z), for z ∈ U . If n ∈ N and f ∈ A verifies the differential
subordination

(SRnf (z))
′ ≺ h (z) , for z ∈ U, (2.5)

then
SRnf (z)

z
≺ g (z) , for z ∈ U,

and this result is sharp.

Theorem 6 Let g be a convex function such that g (0) = 1 and let h be the function
h (z) = g (z) + zg′ (z), for z ∈ U . If n ∈ N and f ∈ A verifies the differential
subordination (

zDRn+1
λ f (z)

DRnλf (z)

)′
≺ h (z) , for z ∈ U, (2.6)

then
DRn+1

λ f (z)

DRnλf (z)
≺ g (z) , for z ∈ U,

and this result is sharp.

Proof. For f ∈ A and f(z) = z +
∑∞
j=2 ajz

j we have

DRnλf (z) = z +

∞∑
j=2

Cnn+j−1 [1 + (j − 1)λ]
n
a2jz

j , forz ∈ U

. Consider

p (z) =
DRn+1

λ f (z)

DRnλf (z)
=
z +

∑∞
j=2 C

n+1
n+j [1 + (j − 1)λ]

n+1
a2jz

j

z +
∑∞
j=2 C

n
n+j−1 [1 + (j − 1)λ]

n
a2jz

j

=
1 +

∑∞
j=2 C

n+1
n+j [1 + (j − 1)λ]

n+1
a2jz

j−1

1 +
∑∞
j=2 C

n
n+j−1 [1 + (j − 1)λ]

n
a2jz

j−1 .
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We have p′ (z) =
(DRn+1

λ f(z))
′

DRnλf(z)
− p (z) · (DR

n
λf(z))

′

DRnλf(z)
.

Then p (z) + zp′ (z) =
(
zDRn+1

λ f(z)

DRnλf(z)

)′
.

Relation (2.6) becomes p (z) + zp′ (z) ≺ h (z) = g (z) + zg′ (z), for z ∈ U, and, by

using Lemma 1 we obtain p (z) ≺ g (z), for z ∈ U , i.e.
DRn+1

λ f(z)

DRnλf(z)
≺ g (z), for z ∈ U.

Corollary 7 (see [1]) Let g be a convex function such that g (0) = 1 and let h be the
function h (z) = g (z) + zg′ (z), for z ∈ U . If n ∈ N and f ∈ A verifies the differential
subordination (

zSRn+1f (z)

SRnf (z)

)′
≺ h (z) , for z ∈ U, (2.7)

then
SRn+1f (z)

SRnf (z)
≺ g (z) , for z ∈ U,

and this result is sharp.
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Abstract: The problem of many (L > 2) hypotheses testing on distri-
butions of a finite state Markov chain is studied. We apply large deviation
techniques (LDT). It is demonstrated that this method of investigation in
solving the problem of logarithmically asymptotically optimal (LAO) hy-
potheses testing is easier, compared with the procedure introduced by
Haroutunian. The matrix of exponents E = {El|m}, m, l = {1, 2, . . . , L},
of error probabilities of the LAO test El|m(φ) = lim

N→∞
− 1

N logα
(N)
l|m (φN ),

where α
(N)
l|m (φN ) for l 6= m is the probability to accept the hypothesis l,

when the hypothesis m is true, is determined.
Moreover, the identification of distributions for one object and two

independent objects via simple homogeneous stationary Markov chains
with finite number of states is discussed in the present paper.

AMS Subject Classification: 62M02
Key Words and Phrases: Error probability, irreducible matrix, simple homogeneous
stationary Markov chain, type

1. Introduction

Applications of information-theoretical methods in mathematical statistics are illus-
trated in the monographs presented by Kullback [9], Csiszár and Körner [4], Blahut
[2], Csiszár and Shields [3], Gutman [6] and others. Numerous papers have been de-
voted to the study of exponential decrease, as the sample size N goes to infinity, of the

error probabilities α
(N)
1 of the first kind and α

(N)
2 of the second kind of the optimal

tests for two simple statistical hypotheses. Similar problems for Markov dependence
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of experiments were investigated by Natarajan [10], Haroutunian [7], [8], Dembo and
Zeitouni [5], and others. In the book of Csiszár and Shields [3] different asymptotic
aspects of two hypotheses testing for independent identically distributed observations
are considered via theory of large deviations.

In this paper, we aim to solve the problem in order to describe the matrix of

exponents E = {El|m},m, l = {1, 2, . . . , L} of probabilities α
(N)
l|m = exp(−NEl|m),

where α
(N)
l|m for l 6= m is the probability to accept hypothesis l, when hypothesis m is

true, for finite state Markov chain by application of large deviation techniques (LDT).
We will demonstrated that the solution of the mentioned problem is more concise and
hence easier than the procedure introduced by Haroutunian [7].

Ahlswede and Haroutunian [1], formulated an ensemble of problems on multiple
hypotheses testing for multiple objects and on identification of hypotheses under
reliability requirement. In this paper, we also solve this problem through identification
of distributions of many hypotheses for one object and two independent objects, using
simple homogeneous stationary finite states of Markov chains.

In Section 2, we present a Theorem of LDT for Markov chains and the result for
hypotheses testing and in Section 3, the problem of identification for Markov chain
and finally in Section 4, we discuss the general case of the problem of identification
of distributions for two independent Markov chains.

2. Application of LDT On Many Hypotheses Opti-
mal Testing for Markov chains

Let x = (x0, x1, x2, . . . , xN ), xn ∈ X = {1, 2, . . . , I}, x ∈ XN+1, N = 0, 1, 2, ..., be
vectors of observations of a simple homogeneous stationary Markov chain with finite
number I of states. The hypotheses concern the irreducible matrices of the transition
probabilities

Pl = {Pl(j|i), i, j = {1, 2, . . . , I}}, l = {1, 2, . . . , L}.

The stationarity of the chain provides existence for each l = {1, 2, . . . , L} of the unique
stationary distribution Ql = {Ql(i), i = {1, 2, . . . , I}, such that∑

i

Ql(i)Pl(j|i) = Ql(j),
∑
i

Ql(i) = 1, i, j = {1, 2, . . . , I}.

We define the joint distributions

Ql ◦ Pl = {Ql(i)Pl(j|i), i, j = {1, 2, . . . , I}}, l = {1, 2, . . . , L}.
Let us denote D(Q ◦ P‖Ql ◦ Pl) Kullback-Leibler divergence(P is an irreducible

matrix of transition probabilities of some sttionary Markov chain and Q be the cor-
responding stationary PD)

D(Q ◦ P‖Ql ◦ Pl) =
∑
i,j

Q(i)P (j|i)[logQ(i)P (j|i)− logQl(i)Pl(j|i)]
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= D(Q‖Ql) +D(Q ◦ P‖Q ◦ Pl),

of distribution
Q ◦ P = {Q(i)P (j|i), i, j = {1, 2, . . . , I}},

with respect to distribution Ql ◦ Pl where

D(Q‖Ql) =
∑
i

Q(i)[logQ(i)− logQl(i)], l = {1, 2, . . . , L}.

Let us name the second order type of vector x the square matrix of I2 relative
frequencies {N(i, j)N−1, i, j = {1, 2, . . . , I}} of the simultaneous appearance in x of
the states i and j on the pairs of neighbor places. It is clear that

∑
ij N(i, j) = N .

Denoted by T N
Q◦P , the set of vectors from XN+1 have the second order type in a way

that for some joint PD Q ◦ P

N(i, j) = NQ(i)P (j|i), i = {1, 2, . . . , I}, j = {1, 2, . . . , I}.
The set of all joint PD Q ◦P on X is denoted by Q◦P(X ) and the set of all possible
second order types for joint PD Q ◦ P is denoted by Q ◦ PN (X ). Note that if vector
x ∈ T N

Q◦P , then∑
j

N(i, j) = NQ(i), i = {1, 2, . . . , I},
∑
i

N(i, j) = NQ′(j), j = {1, 2, . . . , I},

for somewhat different from Q PD Q′, which in accordance with the definition of
N(i, j), are closed enough

|NQ(i)−NQ′(i)| ≤ 1, i = {1, 2, . . . , I},

and in the limit, when N → ∞, the distribution Q coincides with Q′ and may be
taken as stationary for conditional PD P :∑

i

Q(i)P (j|i) = Q(j), j ∈ X .

The probability of vector x ∈ XN+1 of the Markov chain with transition probabilities
Pl and stationary distribution Ql, is the following

Ql ◦ PN
l (x) = Ql(x0)

N∏
n=1

Pl(xn|xn−1), l = {1, 2, . . . , I},

Ql ◦ PN
l (A) =

⋃
x∈A

Ql ◦ PN
l (x), A ⊂ XN+1.

Note that for l = {1, 2, . . . , L} the probability of x from T N
Q◦P can be written as

Ql ◦ PN
l (x) = Ql(x0)

∏
i,j

Pl(j|i)NQ(i)P (j|i).
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Note also that if Q ◦ P is absolutely continuous relative to Ql ◦ Pl, then

Ql ◦ PN
l (T N

Q◦P ) = exp{−N(D(Q ◦ P‖Q ◦ Pl)) + o(1)},

where
o(1) = max(max

i
|N−1 logQl(i)| : Ql(i) > 0),

(max
i
|N−1 logQl(i)| : Ql(i) > 0)→ 0, whenN →∞.

Indeed, this is not difficult to verify, taking into account the number |T N
Q◦P | of vectors

in T N
Q◦P which is equal to

exp{−N(
∑
i,j

Q(i)P (j|i) logP (j|i)) + o(1)}.

Non-randomized test φN (x) accepts one of the hypotheses Hl, l = {1, 2, . . . , L}
on the basis of the trajectory x = (x0, x1, . . . , xN ) of the N + 1 observations. Let

us denote α
(N)
l|m (φN ) the probability to accept the hypothesis Hl under the condition

that Hm, m 6= l, is true. For l = m we denote α
(N)
m|m(φN ) the probability to reject the

hypothesis Hm. It is clear that

α
(N)
m|m(φN ) =

∑
l 6=m

α
(N)
l|m (φN ), m = {1, 2, . . . , L}. (1)

This probability is called the error probability of the m-th kind of the test φN .

The quadratic matrix of L2 error probabilities {α(N)
l|m (φ), m, l = {1, 2, . . . , L} is oc-

casionally called the power of the tests. To every trajectory x, the test φN puts in
one correspondence from L hypotheses. Thus, the space XN+1 will be divided into L
parts,

GNl = {x, φN (x) = l}, l = {1, 2, . . . , L},

and
αN
l|m(φN ) = Qm ◦ Pm(GNl ), m, l = {1, 2, . . . , L}.

We study the matrix of “reliabilities”,

El|m(φ) = lim
N→∞

− 1

N
logα

(N)
l|m (φN ), m, l = {1, 2, . . . , L}. (2)

Note that from definitions (1) and (2) it follows that:

Em|m = min
l 6=m

El|m. (3)

Definition. The test sequence Φ∗ = (φ1, φ2, . . .) is called LAO if for a given family
of positive numbers E1|1, E2|2, . . . , EL−1|L−1, the reliability matrix contains in the
diagonal these numbers and the remained L2 − L + 1 components take the maximal
possible values.
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Let P = {P (j|i)} be a irreducible matrix of transition probabilities of some stationary
Markov chain with the same set X of states, and Q = {Q(i), i = {1, 2, . . . , I} be the
corresponding stationary PD.

For a given family of positive numbers E1|1, E2|2, . . . , EL−1|L−1, let us define the
decision rule φ∗ by the following sets

Rl = {Q ◦ P : D(Q ◦ P‖Q ◦ Pl) ≤ El|l, D(Q‖Ql) <∞}, l = {1, 2, . . . , L− 1},
RL = {Q ◦ P : D(Q ◦ P‖Q ◦ Pl) > El|l, l = {1, 2, . . . , L− 1}, (4)

RN
l = Rl ∩Q ◦ PN (X ), l = {1, 2, . . . , L}.

and introduce the functions:

E∗l|l(El|l) = El|l, l = {1, 2, . . . , L− 1} (5)

E∗l|m(El|l) = inf
Q◦P∈Rl

D(Q ◦ P‖Q ◦ Pm), m = {1, . . . , L}, l 6= m, l = {1, . . . , L− 1},

E∗L|m(E1|1, . . . , EL−1|L−1) = inf
Q◦P∈RL

D(Q ◦ P‖Q ◦ Pm), m = {1, 2, . . . , L− 1},

E∗L|L(E1|1, . . . , EL−1|L−1) = min
l={1,2,...,L−1}

E∗l|L.

We cite the statement of the general case of large deviation result for types by Natara-
jan [10].

Theorem 1. Let X = {1, 2, . . . , I} be a finite set of the states of the stationary
Markov chain, possessing an irreducible transition matrix P and A be a nonempty
and open subset or convex subset of joint distributions Q ◦ P and Qm is stationary
distribution for Pm, then for the type Q ◦ P (x) of a vector x from Qm ◦ Pm on X :

lim
N→∞

− 1

N
logQm ◦ PN

m {x : Q ◦ P (x) ∈ A} = inf
Q◦P∈A

D(Q ◦ P‖Q ◦ Pm).

Now we formulate the theorem from [7], which we prove by application of Theorem
1.

Theorem 2. Let X be a fixed finite set, for a family of distinct distributions P1, . . . , PL

the following two statements hold. If the positive finite numbers E1|1, . . . , EL−1|L−1
satisfy conditions:

0 < E1|1 < min [D(Qm ◦ Pm‖Qm ◦ P1), m = {2, . . . , L}] , (6)

. . .

0 < El|l < min

[
E∗l|m(Em|m), m = {1, 2, . . . , l − 1},
D(Qm ◦ Pm‖Qm ◦ Pl), m = {l + 1, . . . , L}

]
, l = {2, . . . , L− 1},

then:
a) there exists a LAO sequence of tests φ∗, the reliability matrix of which

{
E∗l|m(φ∗)

}
is defined in (5), and all elements of it are positive,
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b) even if one of conditions (6) is violated, then the reliability matrix of an arbitrary
test necessarily has an element equal to zero, (the corresponding error probability does
not tend exponentially to zero).

Proof: First we remark that D(Q ◦ Pl‖Q ◦ Pm) > 0, for l 6= m, because all measures
Pl, l = {1, 2, . . . , L}, are distinct. Let us prove the statement a) of the theorem 2 about
the existence of the sequence corresponding to a given E1|1, · · · , EL−1|L−1 satisfying
condition (6). Consider the following sequence of tests φ∗ given by the sets

BNl =
⋃

Q◦P∈RN
l

T N
Q◦P (x), l = {1, 2, . . . , L}. (7)

Notice that on account of condition (6) and the continuity of divergence D for N
large enough the sets RN

l , l = {1, 2, . . . , L} from (4) are not empty. The sets BNl , l =
{1, 2, . . . , L}, satisfy conditions :

BNl
⋂
BNm = ∅, l 6= m,

L⋃
l=1

BNl = XN .

Now let us demonstrate that, exponent El|m(φ∗) for sequence of tests φ∗ defined in
(7) is equal to E∗l|m. We know from (4) that Rl, l = {1, 2, . . . , L−1}, are convex subset

and RL is open subset of the decision rule of φ∗, therefore Rl, l = {1, 2, . . . , L},
satisfy in condition of Theorem 1. With relations (4), (5), by Theorem 1 we have

lim
N→∞

− 1

N
logαN

l|m(φ∗) = lim
N→∞

− 1

N
logQ ◦ PN

m (Rl) = inf
Q◦P∈Rl

D(Q ◦ P‖Q ◦ Pm).

Now using (2) we obtain the following:

El|m(φ∗) = inf
Q◦P∈Rl

D(Q ◦ P‖Q ◦ Pm) m, l = {1, 2, . . . , L}.

Using (6), (4) and (5) it can be realized that all E∗l|m are strictly positive. The

proof of part (a) will be concluded if one demonstrates that the sequence of the tests
φ∗ is LAO, that is at given finite E1|1, · · · , EL−1|L−1 for any other sequence of tests
φ∗∗

E∗l|m(φ∗∗) ≤ E∗l|m(φ∗), m, l = {1, 2, . . . , L}.
For this purpose it is sufficient to demonstrate that the sequence of tests will not

asymptotically become better if the sets RN
l are not a union of some number of whole

types T N
Q◦P (x), indeed, if a test φ∗∗ is defined, for instance, by sets GN1 , · · · ,GNL and,

furthermore, Q ◦ P is such that

0 6= Ql ◦ PN
l (GNl

⋂
T N
Q◦P (x)) = Ql ◦ PN

l (T N
Q◦P (x)) + o(1),

Then, the test φ∗∗ will be improved, if instead of the set GNl one takes GNl
⋃
T N
Q◦P (x),

as the error probability αN
l|m can decrease for m 6= l. The statement of part (b) of

theorem is evident, since the violation of one of the conditions (6) reduces to the
equality to zero of at least one of the elements E∗l|m defined in (5).
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3. On Statistical Identification of Markov Chain of
Distribution Subject to the reliability

Assume that there are L ≥ 2 hypothetical distributions. The question here is whether
or not r-th distribution has occurred.

There are two error probabilities for each r = {1, 2, . . . , L}, the probability α
(N)
l 6=r|m=r

to accept l different from r, when r is in reality, and the probability α
(N)
l=r|m 6=r that

r is accepted, when it is not correct. The probability α
(N)
l 6=r|m=r we already know, it

is the probability α
(N)
r|r which is equal to

∑
l:l 6=r

α
(N)
l|r . The reliability El 6=r|m=r coincides

with Er|r, with (3). Our aim is to find the interdependence between El 6=r|m=r and
Em 6=r|l=r. The latter, can have values satisfying in conditions (6), thus, we will have
the following conditions:

0 < Er|r < min
l:l 6=r

[D(Ql ◦ Pl‖Ql ◦ Pr), r = {1, 2, . . . , L}.

We need to use the probabilities of different hypotheses. Let us assume that the hy-
potheses Hl, l = {1, 2, . . . , L}, have positive probabilities say Pr(r), r = {1, 2, . . . , L}.
We will see that the formulated result in the following theorem, does not depend on
values of Pr(r), r = {1, 2, . . . , L}, if they all are strictly positive. Thus we can make
the following calculations for r = {1, 2, . . . , L} :

α
(N)
l=r|m6=r =

P
(N)
r (l = r,m 6= r)

Pr(m 6= r)
=

1∑
m:m 6=r

Pr(m)

∑
m:m6=r

P (N)
r α

(N)
r|m,

and also for r = {1, 2, . . . , L}, we obtain the following:

El=r|m6=r = lim
N→∞

(− 1

N
logα

(N)
l=r|m 6=r) (8)

= lim
N→∞

1

N
(log

∑
m:m6=r

Pr(m)− log
∑

m:m 6=r

P (N)
r α

(N)
r|m) = min

m:m 6=r
E∗r|m.

Using (8) by analogy with Theorem 1 and Theorem 2, we conclude (with Rr as in
(4) for each r including r = L by the values of Er|r from (0,minD(Ql ◦Pl‖Ql ◦Pr))),
that

El=r|m6=r(Er|r) = min
m:m6=r

inf
Q◦P∈Rr

D(Q ◦ P‖Q ◦ Pm) (9)

= min
m:m6=r

inf
Q◦P :D(Q◦P‖Q◦Pr)≤Er|r

D(Q ◦ P‖Q ◦ Pm), r = {1, 2, . . . , L}.

Thus, the obtained result may be formulate in the following theorem.

Theorem 3. For the model with distinct distributions for the given sample x, we can

determine its type Q ◦P, and when Q ◦P ∈ R(N)
r , we accept the hypotheses r. Under

the condition that the probabilities of all L hypotheses are positive, the reliability of
such test El=r|m6=r for given El 6=r|m=r is defined in (9).
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4. On Identification of Two Independent Markov
chain of Distributions

In this section, we expand the concept of section 3 for two independent homogenies
stationary finite Markov chain. Let x1 and x2 be independent RV, taking values in the
same finite state of Markov chain of set X with one of L PDs, being characteristics
of corresponding independent objects, the random vector (X1, X2) assume values
(x1, x2) ∈ X × X .

Let
(x1,x2) = ((x10, x

2
0), . . . , (x1n, x

2
n), . . . , (x1N , x

2
N )), xi ∈ X , i = 1, 2, n = {0, 2, . . . , N},

be a sequence of results of N + 1 independent observations of a simple homogeneses
stationary Markov chain with finite number I of states . The statistication must
define unknown PDs of the objects on the basis of observed data. The selection for
each object was done and it was denoted by ΦN . The objects independence test ΦN

may be considered as the pair of tests ϕ1
N and ϕ2

N for the respective separate objects.
We will show the whole compound test sequence by Φ. The test ϕi

N is defined by a
partition of the space XN+1 on the L sets and to every trajectory x the test φN puts
in one correspondence from L hypotheses. So the space XN+1 will be divided into L
parts,

GNl,i = {xi, φN (xi) = l}, l = {1, 2, . . . , L}, i = 1, 2.

We define

αl1,l2|m1,m2
(ΦN ) = Qm1

◦ Pm1
(GNl1,1)Qm2

◦ Pm2
(GNl2,2),

as the probability of the erroneous acceptance by the test ΦN of the hypotheses
pair (Hl1 , Hl2), provided that (Hm1

, Hm2
) is true, where (m1,m2) 6= (l1, l2),mi, li =

{1, 2, . . . , L}, i = 1, 2. The probability to reject a true pair of hypotheses (Hm1
, Hm2

)
by analogy with(1) is the following:

αN
m1,m2|m1,m2

(ΦN ) ,
∑

(l1,l2) 6=(m1,m2)

αN
l1,l2|m1,m2

(ΦN ). (10)

We also study corresponding limits El1,l2|m1,m2
(ΦN ) of error probability exponents

of the sequence of tests Φ, called reliabilities :

El1,l2|m1,m2
(Φ) , lim

N→∞
− 1

N
logαl1,l2|m1,m2

(ΦN ), mi, li = 1, L, i = 1, 2. (11)

We denote by E(ϕi) the reliability matrices of the sequences of tests ϕi, i = 1, 2,
for each of the objects.

Applying (10) and (11), we obtain the following :

Em1,m2|m1,m2
(Φ) = min

(l1,l2)6=(m1,m2)
El1,l2|m1,m2

(Φ).

In this section we use the following lemma.
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Lemma. [8], [11] If elements El|m(ϕi),m, l = {1, 2, . . . , L}, i = 1, 2, are strictly
positive, then the following equalities hold for Φ = (ϕ1, ϕ2) :

El1,l2|m1,m2
(Φ) = El1|m1

(ϕ1) + El2|m2
(ϕ2), if m1 6= l1, m2 6= l2, (12a)

El1,l2|m1,m2
(Φ) = Eli|mi

(ϕi), if m3−i = l3−i mi 6= li, i = 1, 2. (12b)

Consider for given positive elements Em,m|m,L and Em,m|L,m,m = {1, 2, . . . , L −
1}, the family of regions:

R(1)
m , {Q ◦ P : D(Q ◦ P‖Q ◦ Pm) ≤ Em,m|L,m}, m = {1, 2, . . . , L− 1},

R(2)
m , {Q ◦ P : D(Q ◦ P‖Q ◦ Pm) ≤ Em,m|m,L}, m = {1, 2, . . . , L− 1},

R(1)
L , {Q ◦ P : D(Q ◦ P‖Q ◦ Pm) > Em,m|L,m, m = {1, 2, . . . , L− 1},

R(2)
L , {Q ◦ P : D(Q ◦ P‖Q ◦ Pm) > Em,m|m,L, m = {1, 2, . . . , L− 1}.

What is the identification of the probability distributions for two independent
objects? The answer for this question constitutes a reply of the question whether or
not the pair of the pair of distributions (r1, r2) have occurred.

There are two error probabilities for each (r1, r2), ri = {1, 2, . . . , L}, i = 1, 2, the

probability α
(N)
(l1,l2) 6=(r1,r2)|(m1,m2)=(r1,r2)

to accept (l1, l2) different from (r1, r2), when

(r1, r2) is in reality, and the probability α
(N)
(l1,l2)=(r1,r2)|(m1,m2) 6=(r1,r2)

that (r1, r2) is

accepted, when it is not correct. The probability α
(N)
(l1,l2)6=(r1,r2)|(m1,m2)=(r1,r2)

is al-

ready known, it coincides with the probability α
(N)
(r1,r2)|(r1,r2). Our aim is to determine

the dependence of α
(N)
(l1,l2)=(r1,r2)|(m1,m2)6=(r1,r2)

on given α
(N)
(r1,r2)|(r1,r2).

We need to use the probabilities of different hypotheses. Let us assume that the
hypotheses Hl : l = {1, 2, . . . , L} have, say, probabilities Pr(r), r = {1, 2, . . . , L}. The
only supposition we shall use is that Pr(r) > 0, r = {1, 2, . . . , L}. We demonstrate, the
result formulated in the following theorem does not depend on values of Pr(r), r =
{1, 2, . . . , L}, if they all are strictly positive. Thus, the following reasoning can be
made for each ri = {1, 2, . . . , L}, i = 1, 2 :

α
(N)
(l1,l2)=(r1,r2)|(m1,m2) 6=(r1,r2)

=
P

(N)
r ((l1, l2) = (r1, r2), (m1,m2) 6= (r1, r2))

Pr(m1,m2) 6= (r1, r2))
,

α
(N)
(l1,l2)=(r1,r2)|(m1,m2)6=(r1,r2)

=
1∑

m:(m1,m2) 6=(r1,r2)

Pr(m1,m2)

∑
m:(m1,m2)6=(r1,r2)

α(m1,m2)|(r1,r2)P
(N)
r (m1,m2).

Finally, for r = 1, L, we obtain the following:

E(l1,l2)=(r1,r2)|(m1,m2)6=(r1,r2) = min
(m1,m2):(m1,m2) 6=(r1,r2)

E∗(r1,r2)|(m1,m2)
. (13)
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For every LAO test Φ∗ from (11), (12) and (13) we obtain the following:

E(l1,l2)=(r1,r2)|(m1,m2)6=(r1,r2) = min
m1 6=r1,m2 6=r2

(E1
r1|m1

, E2
r2|m2

),

where, E1
r1|m1

, E2
r2|m2

are determined by (5) for, correspondingly, the first and the

second objects. For every LAO test Φ∗ from (11) and (12) we deduce that

E(r1,r2)|(r1,r2) = min
m1 6=r1,m2 6=r2

(E1
r1|m1

, E2
r2|m2

) = min(E1
r1|r1 , E

2
r2|r2). (14)

and each of E1
r1|r1 , E

2
r2|r2 satisfy the following conditions (see theorem 2, condition

(6)).

0 < E1
r1|r1 < min

[
min

l={1,...,r1−1}
E∗l|m(E1

l|l), min
l={r1+1,...,L}

D(Ql ◦ Pl‖Ql ◦ Pr1)

]
, (15a)

0 < E2
r2|r2 < min

[
min

l={1,2,...,r2−1}
E∗l|m(E2

l|l), min
l={r2+1,...,L}

D(Ql ◦ Pl‖Ql ◦ Pr2)

]
, (15b)

From (5), we see that the elements E∗l|m(E1
l|l), r1 = {1, 2, . . . , r1−1} and E∗l|m(E2

l|l), r2 =

{1, 2, . . . , r2 − 1} are determined by only E1
l|l and E2

l|l. However, we are considering

only elements E1
r1|r1 and E2

r2|r2 . Using theorem 1 and (15) we have

0 < E1
r1|r1

< min

[
min

l={1,2,...,r1−1}
D(Ql ◦ Pl‖Ql ◦ Pr1), min

l={r1+1,...,L}
D(Ql ◦ Pl‖Ql ◦ Pr1)

]
, (16a)

0 < E2
r2|r2

< min

[
min

l={1,2,...,r2−1}
D(Ql ◦ Pl‖Ql ◦ Pr2), min

l={r2+1,...,L}
D(Ql ◦ Pl‖Ql ◦ Pr2)

]
. (16b)

Let us denote r = max(r1, r2) and k = min(r1, r2). From (14) we have that, when
E(r1,r2)|(r1,r2) = E1

r1|r1 , then E1
r1|r1 ≤ E2

r2|r2 and when E(r1,r2)|(r1,r2) = E2
r2|r2 ,

then E1
r1|r1 ≥ E2

r2|r2 . Thus, it can be implied that given strictly positive elements

E(r1,r2)|(r1,r2) must meet both inequalities (16) and the combination of these restric-
tions gives

0 < E(r1,r2)|(r1,r2)

< min

[
min

l={1,2,...,,r−1}
D(Ql ◦ Pl‖Ql ◦ Pr), min

l={r+1,...,L}
D(Ql ◦ Pl‖Ql ◦ Pk)

]
. (17)

Using (15) we can determine reliability E(l1,l2)=(r1,r2)|(m1,m2)6=(r1,r2) in function of
E(r1,r2)|(r1,r2) as follows:
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E(l1,l2)=(r1,r2)|(m1,m2)6=(r1,r2)(E(r1,r2)|(r1,r2))

= min
m1 6=r1,m2 6=r2

(Er1|r1(E(r1,r2)|(r1,r2)), Er2|r2(E(r1,r2)|(r1,r2)), (18)

where, (Er1|r1(E(r1,r2)|(r1,r2)) and Er2|r2(E(r1,r2)|(r1,r2)) are determined by (5). The
obtained results can be summarized in the following theorem:

Theorem 4. If the distributions Hm, m = {1, 2, . . . , , L}, are different and the given
strictly positive numbers E(r1,r2)|(r1,r2) satisfies condition (17), then the reliability
E(l1,l2)=(r1,r2)|(m1,m2)6=(r1,r2)is defined in (18).

Acknowledgments: I wish to express my gratitude and indebtedness to Professor E.
A. Haroutunian for his very helpful comments and criticism which led to a substantial
improvement of the earlier version of the paper.
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1 Introduction

The notion of a fuzzy set was introduced by L.A.Zadeh [12], and since then this
concept has been applied to various algebraic structures. The idea of “Intuitionistic
Fuzzy Set” was first introduced by K.T.Atanassov [1] as a generalization of the notion
of fuzzy set. N.Nobusawa [10] introduced the notion of a Γ - ring, as more general than
a ring. W.E.Barnes[2] weakened slightly the conditions in the definition of the Γ - rings
in the sense of Nobusawa. W.E.Barnes [2], S.Kyuno [7,8] and J.Luh [9] studied the
structure of Γ - rings and obtained various generalizations analogous to corresponding
parts in ring theory. Y.B.Jun and C.Y.Lee [5] introduced the concept of fuzzy ideals
in the theory of Γ- rings. In this paper, we study the notion of intuitionistic fuzzy
ideals in Γ - rings and prove some of its properties.

2 Preliminaries

In this section the definition of Γ-ring in the sense of Nobusawa and Barnes is discussed
with examples. Also we include some elementary concepts that are necessary for
this paper. Professor N.Nobusawa introduced the concept of Γ-ring and Professor
W.Barnes generalized this concept.

Definition 2.1[2]. If M = {x, y, z, · · · } and Γ = {α, β, γ · · · } be two additive
abelian groups and for all x, y, z ∈ M and α, β ∈ Γ, the following conditions are
satisfied:
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1. xαy ∈M ,

2. (x+ y)αz = xαz + yαz, x(α+ β)y = xαy + xβy, xα(y + z) = xαy + xαz,

3. (xαy)βz = xα(yβz), then M is called a Γ - ring.

If these conditions are strengthened to

(1′) xαy ∈M , αxβ ∈ Γ,

(2′) (x+ y)αz = xαz + yαz, x(α+ β)y = xαy + xβy, xα(y + z) = xαy + xαz,

(3′) (xαy)βz = x(αyβ)z = xα(yβz),

(4′) xαy = 0 for all x, y ∈M implies α = 0,

we then have a Γ - ring in the sense of Nobusawa [10]. As indicated in [10], an example
of a Γ - ring is obtained by letting X and Y be abelian groups, M = Hom(X,Y ),
Γ = Hom(Y,X) and xαy be the usual composite map. (While Nobusawa does not
explicitly require that M and Γ be abelian groups, it appears clear that this is in-
tended.) We may note that it follows from (1) - (3) that 0αy = x0y = xα0 = 0 for
all x, y ∈M and all α ∈ Γ.
Example 2.2. If G and G’ are two additive abelian groups, M = Hom(G,G’), Γ =
Hom(G’,G) then M is a Γ-ring with respect to point wise addition and composition
of mappings.
Example 2.3. If U and V be vector spaces over the same field F, M = Hom(U,V),
Γ = Hom(V,U). Then M is a Γ-ring with respect to point wise addition and compo-
sition of mappings.
Definition 2.4[2]. A subset A of a Γ - ring M is a left (resp. right) ideal of M
if A is an additive subgroup of M such that MΓA ⊆ A (resp.AΓM ⊆ A), where
MΓA =

{
xαy|x ∈ M,α ∈ Γ, y ∈ A

}
and AΓM =

{
yαx|y ∈ A,α ∈ Γ, x ∈ M

}
. If A

is both a left and a right ideal, than A is a two sided ideal or simply an ideal of M .

Definition 2.5[11]. A fuzzy set A in M is a function A : M → [0, 1].

Definition 2.6[11]. Let µ be a fuzzy set in a Γ - ring M . For any t ∈ [0, 1], the set
U(µ, t) =

{
x ∈M |µ(x) ≥ t

}
is called a level set of µ.

Definition 2.7[11]. A fuzzy set µ in a Γ - ring M is called a fuzzy left (resp. right)
ideal of M , if it satisfies:

(i) µ(x− y) ≥ µ(x) ∧ µ(y),

(ii) µ(xαy) ≥ µ(y) (resp. µ(xαy) ≥ µ(x)),
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for all x, y ∈ M and α ∈ Γ. If µ is both a fuzzy left and right ideal of M , then µ is
called a fuzzy ideal of M .

Definition 2.8[1]. Let X be a nonempty fixed set. An intuitionistic fuzzy set A
in X is an object having the form A =

{
〈 x, µA(x), νA(x) 〉 |x ∈ X

}
, where the

functions µA : X → [0, 1] and νA : X → [0, 1] denote the degree of membership and
the degree of non-membership of each element x ∈ X to the set A, respectively, and
0 ≤ µA(x) + νA(x) ≤ 1, for every x ∈ X.

Notation. For the sake of simplicity, we shall denote the intuitionistic fuzzy set
(IFS in short) A =

{
〈x, µA(x), νA(x)〉 |x ∈ X

}
by A = 〈µA, νA〉.

Definition 2.9[1]. Let X be a non empty set and let A = 〈µA, νA〉 and B = 〈µB , νB〉
be IFSs in X. Then

1. A ⊂ B iff µA ≤ µB and νA ≥ νB .

2. A = B iff A ⊂ B and B ⊂ A.

3. Ac = 〈νA, µA〉.

4. A ∩B = (µA ∧ µB , νA ∨ νB).

5. A ∪B = (µA ∨ µB , νA ∧ νB).

6. �A = (µA, 1− µA), ♦A = (1− νA, νA).

Definition 2.10[5]. Let A be an IFS in a Γ - ring M . For each pair 〈t, s〉 ∈ [0, 1]
with t+ s ≤ 1, the set A〈t,s〉 = {x ∈ X | µA(x) ≥ t and νA(x) ≤ s} is called a 〈t, s〉 -
level subset of A.

Definition 2.11.[6]. Let A = 〈µA, νA〉 be an intuitionistic fuzzy set in a Γ -
ring M and let t ∈ [0, 1]. Then the sets U(µA; t) = {x ∈ M : µA(x) ≥ t} and
L(νA; t) = {x ∈ M : νA(x) ≤ t} are called upper level set and lower level set of A
respectively.

3 Intuitionistic fuzzy ideals

In what follows, let M denote a Γ - ring unless otherwise specified. In this section,
an example of an intuitionistic fuzzy ideal is given.
Definition 3.1. An IFS A = 〈µA, νA〉 in M is called an intuitionistic fuzzy left (resp.
right) ideal of a Γ - ring M if
(i) µA(x− y) ≥

{
µA(x) ∧ µA(y)

}
and µA(xαy) ≥ µA(y)

(
resp. µA(xαy) ≥ µA(x)

)
,
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(ii) νA(x− y) ≤
{
νA(x) ∨ νA(y)

}
and νA(xαy) ≤ νA(y)

(
resp.νA(xαy) ≤ νA(x)

)
,

for all x, y ∈M and α ∈ Γ.

Example 3.2. [Intuitionistic fuzzy ideal of a Γ-ring]
Let R be the set of all integers. Then R is a ring.
Take M = Γ = R.
Let a, b ∈M,α ∈ Γ. Suppose aαb is the product of a, α, b ∈M . Then M is a Γ-ring.
Define an IFS A = 〈µA, νA〉 in M as follows.
µA(0) = 1 and µA(±1) = µA(±2) = .....= t and
νA(0) = 0 and νA(±1) = νA(±2) = .....= s, where t ∈ [0, 1], s ∈ [0, 1] and t+ s ≤ 1.
By routine calculations, clearly A is an intuitionistic fuzzy ideal of a Γ-ring M.

Theorem 3.3. If A is an ideal of a Γ - ring M , then the IFS Â = 〈χA, χA〉 is an
intuitionistic fuzzy ideal of M .
Proof. Let x, y ∈M .
If x, y ∈ A and α ∈ Γ, then x− y ∈ A and xαy ∈ A, since A is an ideal of M .
Hence χA(x− y) = 1 ≥ {χA(x) ∧ χA(y)} and χA(xαy) = 1 ≥ χA(y).
Also, we have
0 = 1− χA(x− y) = χA(x− y) ≤ {χA(x) ∨ χA(y)} and
0 = 1− χA(xαy) = χA(xαy) ≤ χA(y).
If x /∈ A or y /∈ A, then χA(x) = 0 or χA(y) = 0. Thus wwe have
χA(x− y) ≥ {χA(x) ∧ χA(y)} and
chiA(xαy) ≥ χA(y) for all α ∈ Γ.
Also χA(x− y) ≤ {χA(x) ∨
overlineχA(y)} =

(
1− χA(x)

)
∨
(
1− χA(y)

)
= 1

and χA(xαy) = 1− χA(xαy) ≤ 1− χA(y) = χA(y).
This completes the proof.

Definition 3.4[3]. An intuitionistic fuzzy left (resp. right) ideal A = 〈 µA, νA 〉 of a
Γ - ring M is said to be normal if µA(0) = 1 and νA(0) = 0.

Theorem 3.5. Let A = 〈 µA, νA 〉 be an intuitionistic fuzzy left (resp. right) ideal
of a Γ-ring M and let µ+

A(x) = µA(x) + 1 − µA(0), ν+
A (x) = νA(x) − νA(0). If

µ+
A(x) + ν+

A (x) ≤ 1 for all x ∈ M , then A+ =
〈
µ+
A, ν

+
A

〉
is a normal intuitionistic

fuzzy left (resp. right) ideal of M .
Proof. We first observe that µ+

A(0) = 1, ν+
A (0) = 0 and µ+

A(x), ν+
A (x) ∈ [0, 1] for every

x ∈M . So, A+ =
〈
µ+
A, ν

+
A

〉
is a normal intuitionistic fuzzy set.

To prove that it is an intuitionistic fuzzy left (resp. right) ideal, let x, y ∈ M and
α ∈ Γ.
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Then µ+
A(x− y) = µA(x− y) + 1− µA(0) ≥ {µA(x) ∧ µA(y)}+ 1− µA(0)

= {µA(x) + 1− µA(0)} ∧ {µA(y) + 1− µA(0)} = µ+
A(x) ∧ µ+

A(y),

ν+
A (x− y) = νA(x− y)− νA(0) ≤ {νA(x) ∨ νA(y)} − νA(0)

= {νA(x)− νA(0)} ∨ {νA(y)− νA(0)} = ν+
A (x) ∨ ν+

A (y),

and µ+
A(xαy) = µA(xαy) + 1− µA(0) ≥ µA(y) + 1− µA(0) = µ+

A(y),

ν+
A (xαy) = νA(xαy)− νA(0) ≤ νA(y)− νA(0) = ν+

A (y).

This shows that A+ is an intuitionistic fuzzy left(resp. right) ideal of M .
So, A+ =

〈
µ+
A, ν

+
A

〉
is a normal intuitionistic fuzzy left(resp. right)ideal of M .

Definition 3.6 [2]. Let I be an ideal of a Γ - ring M . If for each a+ I, b+ I in the
factor group M/I and each α ∈ Γ, we define (a+ I)α(b+ I) = aαb+ I, then M/I is
a Γ - ring which we shall call the Γ - residue class ring of M with respect to I.

Theorem 3.7. Let I be an ideal of a Γ - ring M . If A is an intuitionistic fuzzy left
(resp. right) ideal of M , then the intuitionistic fuzzy set Ã of M/I defined by

µÃ(a+ I) =
∨
x∈I

µA(a+ x) and νÃ(a+ I) =
∧
x∈I

νA(a+ x)

is an intuitionistic fuzzy left (resp. right) ideal of the Γ - residue class ring M/I of M
with respect to I.
Proof. Let a, b ∈M be such that a+ I = b+ I.
Then b = a+ y for some y ∈ I and so

µÃ(b+I) =
∨
x∈I

µA(b+x) =
∨
x∈I

µA(a+y+x) =
∨

x+y=z∈I
µA(a+z) = µÃ(a+I),

νÃ(b+ I) =
∧
x∈I

νA(b+ x) =
∧
x∈I

νA(a+ y+ x) =
∧

x+y=z∈I
νA(a+ z) = νÃ(a+ I).

Hence Ã is well defined.
For any x+ I, y + I ∈M/I and α ∈ Γ, we have

µÃ
(
(x+ I)− (y + I)

)
= µÃ

(
(x− y) + I

)
=
∨
z∈I

µA
(
(x− y) + z

)
=

∨
z=u−v∈I

µA
(
(x− y) + (u− v)

)
=

∨
u,v∈I

µA
(
(x+ u)− (y + v)

)
≥

∨
u,v∈I

(
µA(x+ u) ∧ µA(y + v)

)
=
( ∨
u∈I

µA(x+u)
)
∧
( ∨
v∈I

µA(y+v)
)

= µÃ(x+ I) ∧ µÃ(y + I),

νÃ
(
(x+ I)− (y + I)

)
= νÃ

(
(x− y) + I

)
=
∧
z∈I

νA
(
(x− y) + z

)



96 N. Palaniappan, P. S. Veerappan, M. Ramachandran

=
∧

z=u−v∈I
νA
(
(x− y) + (u− v)

)
=

∧
u,v∈I

νA
(
(x+ u)− (y + v)

)
≤

∧
u,v∈I

(
νA(x+ u) ∨ νA(y + v)

)
=
( ∧
u∈I

νA(x+u)
)
∨
( ∧
v∈I

νA(y+v)
)

= νÃ(x+ I) ∨ νÃ(y + I),

µÃ
(
(x+ I)α(y + I)

)
= µÃ

(
(xαy) + I

)
=
∨
z∈I

µA
(
(xαy) + z

)
≥
∨
z∈I

µA
(
xαy+xαz

)
because xαz ∈ I

=
∨
z∈I

µA
(
xα(y + z)

)
≥
∨
z∈I

µA(y + z)

= µÃ(y + I),

νÃ
(
(x+ I)α(y + I)

)
= νÃ

(
(xαy) + I

)
=
∧
z∈I

νA
(
(xαy) + z

)
≤
∧
z∈I

νA
(
xαy+xαz

)
because xαz ∈ I

=
∧
z∈I

νA
(
xα(y + z)

)
≤
∧
z∈I

νA(y + z)

= νÃ(y + I).
Similarly,

µÃ
(
(x+ I)α(y + I)

)
≥ µÃ(x+ I) and νÃ

(
(x+ I)α(y + I)

)
≤ νÃ(x+ I).

Hence Ã is an intuitionistic fuzzy left (resp. right) ideal of M/I.

Theorem 3.8. If the IFS A = 〈µA, νA〉 is an intuitionistic fuzzy left (resp. right)
ideal of M , then the set MA = {x ∈ M |µA(x) = µA(0) and νA(x) = νA(0)} is an
ideal of M .

Proof. Let x, y ∈MA.
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Then µA(x) = µA(y) = µA(0) and νA(x) = νA(y) = νA(0).

Since A is an intuitionistic fuzzy ideal of M , it follows that

µA(x− y) ≥ {µA(x) ∧ µA(y)} = {µA(0) ∧ µA(0)} = µA(0),

νA(x− y) ≤ {νA(x) ∨ νA(y)} = {νA(0) ∨ νA(0)} = νA(0).

Hence µA(x− y) = µA(0) and νA(x− y) = νA(0). So x− y ∈MA.

Let x ∈M,α ∈ Γ and y ∈MA.

Therefore µA(xαy) ≥ µA(y) = µA(0) (resp. µA(xαy) ≥ µA(x) = µA(0)) and

νA(xαy) ≤ νA(y) = νA(0) (resp. νA(xαy) ≤ νA(x) = νA(0)).

Hence µA(xαy) = µA(0) and νA(xαy) = νA(0).
So xαy ∈ MA.Hence MA is an ideal of M .

Theorem 3.9. Let A be an intuitionistic fuzzy left (resp. right) ideal of a Γ - ring
M . For each pair 〈t, s〉 ∈ [0, 1], the level set A〈t,s〉 is an ideal of M .

Proof. Let x, y ∈ A〈t,s〉.
Then µA(x) ≥ t, µA(y) ≥ t and νA(x) ≤ s, νA(y) ≤ s.
Since A is an intuitionistic fuzzy left (resp. right) ideal, we have
µA(x− y) ≥ {µA(x) ∧ µA(y)} ≥ t and νA(x− y) ≤ {νA(x) ∨ νA(y)} ≤ s.
So x− y ∈ A〈t,s〉.
Let x ∈M,y ∈ A〈t,s〉 and α ∈ Γ.
Then µA(xαy) ≥ µA(y) ≥ t and νA(xαy) ≤ νA(y) ≤ s. So xαy ∈ A〈t,s〉.
Hence A〈t,s〉 is an ideal of M .

Definition 3.10. Let A and B be two intuitionistic fuzzy subsets of a Γ - ring
M and α ∈ Γ. Then the product AΓB is defined by

µAΓB(x) =
∨

x=yαz

(
µA(y) ∧ µA(z)

)
if x = yαz,

νAΓB(x) =
∧

x=yαz

(
νA(y) ∨ νA(z)

)
if x = yαz.

Otherwise, we define µAΓB(x) = 0 and νAΓB(x) = 1.

Definition 3.11[4]. Let A = 〈µA, νA〉 and B = 〈µB , νB〉 be two IFSs in a Γ - ring
M . Then the composition of A and B is defined to be the intuitionistic fuzzy set
A ◦B = 〈µA◦B , νA◦B〉 in M given by

µA◦B(x) =
∨{ ∧

1≤i≤k
µA(ai) ∧ µB(bi) : x =

∑k
1 aiαbi, ai, bi ∈M,α ∈ Γ, k ∈ N

νA◦B(x) =
∧{ ∨

1≤i≤k
νA(ai) ∨ νB(bi) : x =

∑k
1 aiαbi, ai, bi ∈M,α ∈ Γ, k ∈ N

if we can express x =
∑k
i=1 aiαbi for some ai, bi ∈ M , where each aiαbi 6= 0 and

k ∈ N .
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Otherwise, we define A ◦B = 0 , i.e., µA◦B(x) = 0 and νA◦B(x) = 1.

Theorem 3.12. If A = 〈µA, νA〉 and B = 〈µB , νB〉 are intuitionistic fuzzy ideals in
a Γ - ring M then A ◦B is an intuitionistic fuzzy ideal in M .
Proof. For any x, y ∈M , we have

µA◦B(x− y)

=
∨{ ∧

1≤i≤k
µA(ui) ∧ µB(vi) : x− y =

∑k
1 uiαvi, ui, vi ∈M,α ∈ Γ and k ∈ N

}
≥
∨ {( ∧

1≤i≤m
µA(ai) ∧ µB(bi)

)
∧
( ∧

1≤i≤n
µA(−ci) ∧ µB(di)

)
: x =

∑m
1 aiαbi,−y =

∑n
1 −ciαdi, ai, bi,−ci, di ∈M,α ∈ Γ and m,n ∈ N

}
=
∨{( ∧

1≤i≤m
µA(ai) ∧ µB(bi)

)
∧
( ∧

1≤i≤n
µA(ci) ∧ µB(di)

)
: x =

∑m
1 aiαbi, y =

∑n
1 ciαdi, ai, bi, ci, di ∈M,α ∈ Γ and m,n ∈ N

}
=
∨{ ∧

1≤i≤m
µA(ai) ∧ µB(bi) : x =

∑m
1 aiαbi, ai, bi,∈M,α ∈ Γ and m ∈ N

}
∧
∨{ ∧

1≤i≤n
µA(ci) ∧ µB(di) : y =

∑n
1 ciαdi, ci, di,∈M,α ∈ Γ and n ∈ N

}
= µA◦B(x) ∧ µA◦B(y)

νA◦B(x− y)

=
∧{ ∨

1≤i≤k
νA(ui) ∨ νB(vi) : x− y =

∑k
1 uiαvi, ui, vi ∈M,α ∈ Γ and k ∈ N

}
≤
∧{( ∨

1≤i≤m
νA(ai) ∨ νB(bi)

)
∨
( ∨

1≤i≤n
νA(−ci) ∨ νB(di)

)
: x =

∑m
1 aiαbi,−y =

∑n
1 −ciαdi, ai, bi,−ci, di ∈M,α ∈ Γ and m,n ∈ N

}
=
∧{( ∨

1≤i≤m
νA(ai) ∨ νB(bi)

)
∨
( ∨

1≤i≤n
νA(ci) ∨ νB(di)

)
: x =

∑m
1 aiαbi, y =

∑n
1 ciαdi, ai, bi, ci, di ∈M,α ∈ Γ and m,n ∈ N

}
=
∧{ ∨

1≤i≤m
νA(ai) ∨ νB(bi) : x =

∑m
1 aiαbi, ai, bi ∈M,α ∈ Γ and m ∈ N

}
∨
∧{ ∨

1≤i≤n
νA(ci) ∨ νB(di) : y =

∑n
1 ciαdi, ci, di ∈M,α ∈ Γ and n ∈ N

}
= νA◦B(x) ∨ νA◦B(y).

Also,we have
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µA◦B(x) =
∨{ ∧

1≤i≤m
µA(ai) ∧ µB(bi) : x =

∑m
1 aiαbi, ai, bi ∈M,α ∈ Γ and m ∈ N

}
≤
∨{ ∧

1≤i≤m
µA(ai) ∧ µB(biαy) : xαy =

∑m
1 aiα(biαy), ai, biαy ∈ M,α ∈ Γ and m ∈

N
}
≤
∨{ ∧

1≤i≤m
µA(ui) ∧ µB(vi) : xαy =

∑m
1 uiαvi, ui, vi ∈M,α ∈ Γ and m ∈ N

}
= µA◦B(xαy)

νA◦B(x) =
∧{ ∨

1≤i≤m
νA(ai) ∨ νB(bi) : x =

∑m
1 aiαbi, ai, bi ∈M,α ∈ Γ and m ∈ N

}
≥
∧{ ∨

1≤i≤m
νA(ai) ∨ νB(biαy) : xαy =

∑m
1 aiα(biαy), ai, biαy ∈ M,α ∈ Γ and m ∈

N
}
≥
∧{ ∨

1≤i≤m
νA(ui) ∨ νB(vi) : xαy =

∑m
1 uiαvi, ui, vi ∈M,α ∈ Γ and m ∈ N

}
= νA◦B(xαy).
Hence µA◦B(xαy) ≥ µA◦B(x) and νA◦B(xαy) ≤ νA◦B(x).
Similarly we get µA◦B(xαy) ≥ µA◦B(y) and νA◦B(xαy) ≤ νA◦B(y).
Therefore A ◦B = (µA◦B , νA◦B) is an intuitionistic fuzzy ideal of M .
Definition 3.13[2]. A function f : M → N , where M and N are Γ - rings, is said
to be a Γ - homomorphism if f(a + b) = f(a) + f(b), f(aαb) = f(a)αf(b), for all
a, b ∈M and α ∈ Γ.
Definition 3.14[2]. A function f : M → N , where f is a Γ - homomorphism and M
and N are Γ - rings, is said to be a Γ - endomorphism if N ⊆M .

Definition 3.15[2]. Let f : X → Y be a mapping of Γ - rings and A be an intu-
itionistic fuzzy set of Y . Then the map f−1(A) is the pre-image of A under f , if
µf−1(A)(X) = µA(f(x)) and νf−1(A)(X) = νA(f(x)), for all x ∈ X.

Theorem 3.16 Let f be a Γ - homomorphism of M . If the IFS A = 〈µA, νA〉 is an
intuitionistic fuzzy left (resp. right) ideal of M , then B =

〈
µf−1(A), νf−1(A)

〉
is an

intuitionistic fuzzy left (resp. right) ideal of M .
Proof. For any x, y ∈M , α ∈ Γ, we have

µf−1(A)(x− y) = µA
(
f(x− y)

)
= µA

(
f(x)− f(y)

)
≥ µA

(
f(x)

)
∧ µA

(
f(y)

)
= µf−1(A)(x) ∧ µf−1(A)(y)

and µf−1(A)(xαy) = µA
(
f(xαy)

)
= µA

(
f(x)αf(y)

)
≥ µf−1(A)(y).

Similarly, νf−1(A)(x− y) = νA
(
f(x− y)

)
= νA

(
f(x)− f(y)

)
≤ νA

(
f(x)

)
∨ νA

(
f(y)

)
= νf−1(A)(x) ∨ νf−1(A)(y)

and νf−1(A)(xαy) = νA
(
f(xαy)

)
= νA

(
f(x)αf(y)

)
≤ νf−1(A)(y).

Hence B is an intuitionistic fuzzy left (resp. right) ideal of M .

Theorem 3.17. If A = 〈µA, νA〉 is an intuitionistic fuzzy set in M such that the



100 N. Palaniappan, P. S. Veerappan, M. Ramachandran

non-empty sets U(µA; t) and L(νA; t) are ideals of M for all t ∈ [0, 1], then A is an
intuitionistic fuzzy left (resp. right) ideal of M .
Proof. Suppose that there exists x0, y0 ∈M such that
µA(x0 − y0) <

(
µA(x0) ∧ µA(y0)

)
.

Let t0 = 1
2

{
µA(x0 − y0) +

(
µA(x0) ∧ µA(y0)

)}
.

Then
(
µA(x0) ∧ µA(y0)

)
≥ t0 > µA(x0 − y0).

It follows that xo, yo ∈ U(µA; t0) and x0 − y0 /∈ U(µA; t0).
This is a contradiction.
Hence µA(x− y) ≥

(
µA(x) ∧ µA(y)

)
, for all x, y ∈M .

Now let x0, y0 ∈M and α ∈ Γ such that µA(x0αy0) < µA(y0).
Let t0 = 1

2

{
µA(x0αy0) + µA(y0)

}
.

Then we get µA(x0αy0) ≤ t0 < µA(y0).
It follows that y0 ∈ U(µA; t0) and x0αy0 /∈ U(µA; t0).
This is a contradiction.
Thus µA(x0αy0) ≥ µA(y0) (resp. µA(x0αy0) ≥ µA(x0)).
Similarly, suppose that there exists x0, y0 ∈M such that
νA(x0 − y0) >

{
νA(x0) ∨ νA(y0)

}
.

Let t0 = 1
2

{
νA(x0 − y0) +

(
νA(x0) ∨ νA(y0)

)}
.

Then
(
νA(x0) ∨ νA(y0)

)
≤ t0 < νA(x0 − y0).

It follows that xo, yo ∈ L(µA; t0) and x0 − y0 /∈ L(µA; t0).
This is a contradiction.
Hence νA(x− y) ≤

(
νA(x) ∨ νA(y)

)
, for all x, y ∈M .

Now let x0, y0 ∈M and α ∈ Γ such that νA(x0αy0) > νA(y0).
Let t0 = 1

2

{
νA(x0αy0) + νA(y0)

}
.

Then we get νA(x0αy0) > t0 > νA(y0).
It follows that y0 ∈ L(µA; t0) and x0αy0 /∈ L(νA; t0).
This is a contradiction.
Thus νA(x0αy0) ≤ νA(y0) (resp. νA(x0αy0) ≤ νA(x0)).
Hence A is an intuitionistic fuzzy left (resp. right) ideal of M .
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1 Introduction

Let A denote the class of functions of the form

f(z) = z +

∞∑
n=2

anz
n, (1.1)

that are analytic in the open unit disc ∆ := {z ∈ C : |z| < 1}. Let S be a subclass of
A consisting of functions univalent in ∆.

Let f and g be functions analytic in ∆. Then we say that f is subordinate to g
if there exists a Schwarz function w(z), analytic in ∆ with w(0) = 0 and |w(z)| <
1 (z ∈ ∆), such that

f(z) = g(ω(z)) (z ∈ ∆).

We denote this subordination by

f ≺ g or f(z) ≺ g(z) (z ∈ ∆).
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In particular, if g is univalent in ∆, the above subordination is equivalent to

f(0) = g(0) and f(∆) ⊂ g(∆).

For functions f ∈ A given by (1.1) and g ∈ A given by g(z) = z +
∑∞
n=2 bnz

n, we
define the Hadamard product (or Convolution) of f and g by

(f ∗ g)(z) = z +

∞∑
n=2

anbnz
n, z ∈ ∆. (1.2)

By using the Hadamard product, Ruscheweyh [10] defined an operator

Dγf(z) =
z

(1− z)γ+1
∗ f(z), γ ≥ −1. (1.3)

Ruscheweyh [10] observed that

Dnf(z) =
z(zn−1f(z))(n)

n!
(1.4)

where n = γ ∈ N0 = {0, 1, 2, . . . }. This symbol Dnf(z), n ∈ N0 is called by Al-Amiri
[1], the nth order Ruscheweyh derivative of f(z).

We note that D0f(z) = f(z), D1f(z) = zf ′(z), and

Dnf(z) = z +

∞∑
k=2

σ(n, k)akz
k, (1.5)

where

σ(n, k) =

(
n+ k − 1

n

)
(1.6)

Let T denote the subclass of S consisting of functions of the form

f(z) = z −
∞∑
k=2

akz
k, ak ≥ 0 (1.7)

Several new classes of analytic functions defined by Ruscheweyh derivatives have
been studied and continue to be introduced and investigated in the literature (See for
example [12, 13, 8] to mention a few interesting studies). Several investigations on
functions with negative coefficients have been done. (See for example [3, 2, 6, 9, 11]).
In particular, results on functions with negative coefficients related to Ruscheweyh
derivatives have been derived. See for example, [4, 5, 7]).

Motivated by the aforementioned works, we introduce a new class
Qnm(Φ,Ψ, λ, A,B) by using mth and nth order Ruscheweyh derivative of f(z).

Definition 1 Let Φ(z) = z +

∞∑
k=2

βkz
k, and Ψ(z) = z +

∞∑
k=2

γkz
k be fixed analytic

functions in ∆ and βk > 0, γk > 0, k ≥ 2. We define a class Qnm(Φ,Ψ, λ, A,B)
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consisting of analytic functions of the form

f(z) = z −
∞∑
k=2

akz
k, ak ≥ 0,

which satisfy the subordination condition

(1− λ)(Dm(f ∗ Φ)(z))′ + λ(Dn(f ∗Ψ)(z))′ ≺ 1 +Az

1 +Bz
(1.8)

for z ∈ ∆, where λ ≥ 0, −1 ≤ A < B ≤ 1, 0 < B ≤ 1 and m,n ∈ N0.

By specializing the parameters m,n, λ,A and B, and the functions Φ and Ψ, we
obtain the subclasses studied by various authors as listed below:

(i) Qm+1
m

(
z

1− z
,

z

1− z
, λ,A,B

)
= Q(m,λ,A,B) [4]

(ii) Q1
0

(
z

1− z
,

z

1− z
, λ, 2α− 1, 1

)
= R(λ, α) (0 ≤ α < 1) [3]

(iii) Q1
0

(
z

1− z
,

z

1− z
, 0, 2α− 1, 1

)
= T ∗(α) (0 ≤ α < 1) [11, 2]

(iv) Qm+1
m

(
z

1− z
,

z

1− z
, 0, 2α− 1, 1

)
= Qn(α) (0 ≤ α < 1) [14]

(v) Q1
0

(
z

1− z
,

z

1− z
, 0, (2α− 1)β, β

)
= p∗(α, β)

(0 ≤ α < 1, 0 < β ≤ 1) [6]

(vi) Q1
0

(
z

1− z
,

z

1− z
, 0, ((1 + µ)α− 1)β, µβ

)
= p∗(α, β, µ)

(0 ≤ α < 1, 0 < β ≤ 1, 0 ≤ µ < 1) [9]

It is of interest to note that the class Qnm(Φ,Ψ, λ, A,B) gives several well-known
subclasses of functions for suitable choices of Φ(z), Ψ(z) and m,n. We obtain coeffi-
cient inequality, coefficient estimate, distortion theorem, extreme points and integral
representation for functions in the class Qnm(Φ,Ψ, λ, A,B).

2 Coefficient Estimates

Theorem 1 A function f(z) = z −
∞∑
k=2

akz
k ∈ Qnm(Φ,Ψ, λ, A,B) if and only if

∞∑
k=2

k [(1− λ)σ(m, k)βk + λσ(n, k)γk] ak ≤
B −A
B + 1

(2.1)
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Proof. Suppose f(z) ∈ Qnm(Φ,Ψ, λ, A,B). In view of the definition of subordination
we get,

h(z) = (1− λ)(Dm(f ∗ Φ)(z))′ + λ(Dn(f ∗Ψ)(z))′ =
1 +Aw(z)

1 +Bw(z)
(2.2)

−1 ≤ A < B ≤ 1, 0 < B ≤ 1, z ∈ ∆, and |ω(z)| < 1. From (2.2), we get

w(z) =
1− h(z)

Bh(z)−A
.

In view of (2.2), one can easily obtain through a simple computation that,

h(z) = 1−
∞∑
k=0

k [(1− λ)σ(m, k)βk + λσ(n, k)γk] akz
k−1

and |w(z)| < 1 implies∣∣∣∣∣∣∣∣∣∣

∞∑
k=2

k [(1− λ)σ(m, k)βk + λσ(n, k)γk] akz
k−1

(B −A)−B
∞∑
k=2

k [(1− λ)σ(m, k)βk + λσ(n, k)γk] akz
k−1

∣∣∣∣∣∣∣∣∣∣
< 1 (2.3)

and hence,(2.1)holds.
Conversely, Suppose f ∈ T and satisfies (2.1). For |z| = r, 0 ≤ r < 1, we have by

(2.1),

|1− h(z)| − |Bh(z)−A| ≤
∞∑
k=2

k [(1− λ)σ(m, k)βk + λσ(n, k)γk] akr
k−1

−(B −A) +B

∞∑
k=2

k [(1− λ)σ(m, k)βk + λσ(n, k)γk] akr
k−1 ≤ 0

which gives (2.2) and hence follows that

(1− λ)(Dm(f ∗ Φ)(z))′ + λ(Dn(f ∗Ψ)(z))′ =
1 +Aw(z)

1 +Bw(z)
,

z ∈ ∆, −1 ≤ A < B ≤ 1, 0 < B ≤ 1. Hence, f(z) ∈ Qnm(Φ,Ψ, λ, A,B).
Finally the function f(z) given by

f(z) = z − B −A
k(1 +B) [(1− λ)σ(m, k)βk + λσ(n, k)γk]

zk, k ≥ 2 (2.4)

is an extremal function for the class.
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Corollary 1 Let the function f(z) defined by (1.7) be in the class Qnm(Φ,Ψ, λ, A,B).
Then we have

an ≤
B −A

k(1 +B) [(1− λ)σ(m, k)βk + λσ(n, k)γk]
, k ≥ 2. (2.5)

Theorem 2

Qnm(Φ,Ψ, λ2, A,B) ⊆ Qnm(Φ,Ψ, λ1, A,B)

for −1 ≤ A < B ≤ 1, 0 < B ≤ 1, λ2 ≥ λ1 ≥ 0 and n > m.

Proof. Let f(z) ∈ Qnm(Φ,Ψ, λ2, A,B).
∞∑
k=2

k [(1− λ1)σ(m, k)βk + λ1σ(n, k)γk] ak

≤
∞∑
k=2

k [σ(m, k)βk + (σ(n, k)γk − σ(m, k)βk)λ2] ak ≤
B −A
1 +B

Therefore f(z) ∈ Qnm(Φ,Ψ, λ1, A,B). Hence the proof of Theorem 2 is complete.

3 Closure Theorems

Let the functions fi(z) be defined, for i = 1, 2, . . . , ` by

fi(z) = z −
∞∑
k=2

ak,`z
k, ak,` ≥ 0. (3.1)

We shall prove the following results for the closure of functions in the class
Qnm(Φ,Ψ, λ, A,B).

Theorem 3 Let the function fi(z) defined by (3.1) be in the class Qnm(Φ,Ψ, λ, Ai, Bi),
for i = 1, 2, . . . , `. Then the function h(z) defined by

h(z) = z − 1

`

∞∑
k=2

(∑̀
i=1

ak,iz
k

)
(3.2)

is in the class Qnm(Φ,Ψ, λ, A,B),

where A = min
1≤i≤`

{Ai} and B = max
1≤i≤`

{Bi}. (3.3)

Proof. Since fi(z) ∈ Qnm(Φ,Ψ, λ, A,B), for i = 1, 2, . . . , `, we have

∞∑
k=2

k [(1− λ)σ(m, k)βk + λσ(n, k)γk] ak,i ≤
Bi −Ai
1 +Bi

, by Theorem 1
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Hence we obtain,
∞∑
k=2

k [(1− λ)σ(m, k)βk + λσ(n, k)γk]

[
1

`

∑̀
i=1

ak,i

]

≤ 1

`

∑̀
i=1

{ ∞∑
k=2

k [(1− λ)σ(m, k)βk + λσ(n, k)γk] ak,i

}

≤ 1

`

∑̀
i=1

Bi −Ai
1 +Bi

≤ B −A
1 +B

.

Thus, we get

∞∑
k=2

k [(1− λ)σ(m, k)βk + λσ(n, k)γk]

[
1

`

∑̀
i=1

ak,i

]
≤ B −A

1 +B

given (3.3), which shows that f(z) ∈ Qnm(Φ,Ψ, λ, A,B).

Theorem 4 Let the functions fi(z) (i = 1, 2, . . . , `) defined by (3.1) be in the class

Qnm(Φ,Ψ, λ, A,B). Then the function h(z) defined by h(z) =
∑̀
i=1

difi(z) is also in the

same class Qnm(Φ,Ψ, λ, A,B), where
∑̀
i=1

di = 1.

Proof. According to definition of h(z) we can write that

h(z) = z −
∞∑
k=2

(∑̀
i=1

diak,i

)
zk.

Further, since fi(z) are in Qnm(Φ,Ψ, λ, A,B) for every i = 1, 2, . . . , `, we get

∞∑
k=2

k [(1− λ)σ(m, k)βk + λσ(n, k)γk] ak,i ≤
B −A
1 +B

for every i = 1, 2, . . . , `.
Hence, we can see that

∞∑
k=2

k [(1− λ)σ(m, k)βk + λσ(n, k)γk]

(∑̀
i=1

diak,i

)

=
∑̀
i=1

di

( ∞∑
k=2

k [(1− λ)σ(m, k)βk + λσ(n, k)γk] ak,i

)

≤

(∑̀
i=1

di

)
B −A
1 +B

=
B −A
1 +B

.

This proves that the function h(z) ∈ Qnm(Φ,Ψ, λ, A,B). Thus we have the theorem.
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Corollary 2 The class Qnm(Φ,Ψ, λ, A,B) is closed under convex linear combination.

Proof. Putting ` = 2 in the above theorem, we prove the corollary.

Theorem 5 Let
f1(z) = z

and

fk(z) = z − B −A
k(B + 1) [(1− λ)σ(m, k)βk + λσ(n, k)γk]

zk, k ≥ 2.

Then f(z) ∈ Qnm(Φ,Ψ, λ, A,B) if and only if it can be expressed in the form

f(z) =

∞∑
k=1

µkfk(z) (3.4)

where µk ≥ 0 (k ≥ 1) and

∞∑
k=1

µk = 1.

Proof. Assume that f(z) =

∞∑
k=1

µkfk(z). Then

f(z) = z −
∞∑
k=2

(B −A)µk
k(B + 1) [(1− λ)σ(m, k)βk + λσ(n, k)γk]

zk (3.5)

Then it follows that
∞∑
k=2

k(B + 1) [(1− λ)σ(m, k)βk + λσ(n, k)γk]

B −A

· (B −A)µk
k(B + 1) [(1− λ)σ(m, k)βk + λσ(n, k)γk]

=

∞∑
k=2

µk

= 1− µ1

≤ 1

Then f(z) ∈ Qnm(Φ,Ψ, λ, A,B).
Conversely, assume that f(z) defined by (1.7) belongs to the class

Qnm(Φ,Ψ, λ, A,B). Then

ak ≤
(B −A)

k(B + 1) [(1− λ)σ(m, k)βk + λσ(n, k)γk]
(k ≥ 2).

Setting,

µk =
k(B + 1) [(1− λ)σ(m, k)βk + λσ(n, k)γk]

(B −A)
, µ1 = 1−

∞∑
k=2

µk

we can see that f(z) can be expressed in the form (3.4). This completes the proof.
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4 A Set of Distortion Inequalities

Theorem 6 Let the function f(z) defined by (1.7) be in the class Qnm(Φ,Ψ, λ, A,B)
and let

[(1− λ)σ(m, 2)β2 + λσ(n, 2)γ2] ≤ [(1− λ)σ(m, k)βk + λσ(n, k)γk] .

Then, we have for |z| = r < 1,

r − B −A
2δ2

r2 ≤ |f(z)| ≤ r +
B −A

2δ2
r2 (4.1)

and

1− B −A
δ2

r ≤ |f ′(z)| ≤ 1 +
B −A
δ2

r. (4.2)

The results are sharp for the function

f(z) = z − B −A
2δ2

r2, (4.3)

where δ2 = 2(1 +B) [(1− λ)σ(m, 2)β2 + λσ(n, 2)γ2] .

Proof. Since k [(1− λ)σ(m, k)βk + λσ(n, k)γk] is an increasing function of k (k ≥
2), and f(z) ∈ Qnm(Φ,Ψ, λ, A,B), by Theorem 1, we have

2 [(1− λ)σ(m, 2)β2 + λσ(n, 2)γ2]

∞∑
k=2

ak ≤
∞∑
k=2

k [(1− λ)σ(m, k)βk + λσ(n, k)γk] ak

≤ B −A
1 +B

.

That is

∞∑
k=2

ak ≤
B −A

2(1 +B) [(1− λ)σ(m, 2)β2 + λσ(n, 2)γ2]
=
B −A

2δ2
.

|f(z)| ≤ z +

∞∑
k=2

|ak||z|k

≤ r +

∞∑
k=2

akr
k ≤ r + r2

∞∑
k=2

ak

≤ r + r2
[

B −A
2(1 +B) [(1− λ)σ(m, 2)β2 + λσ(n, 2)γ2]

]
= r + r2

(
B −A

2δ2

)
and

|f(z)| ≥ r −
∞∑
k=2

akr
k ≥ r − r2

∞∑
k=2

ak = r − r2
(
B −A

2δ2

)
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Hence (4.1) follows.
Also, in view of the inequality (2.1), we have

[(1− λ)σ(m, 2)β2 + λσ(n, 2)γ2]

∞∑
k=2

kak ≤
B −A
1 +B

,

which gives,

∞∑
k=2

kak ≤
B −A
δ2

. Thus

|f ′(z)| ≤ 1 +

∞∑
k=2

kakr
k−1 ≤ 1 + r

∞∑
k=2

kak ≤ 1 +
B −A
δ2

r.

Similarly we can prove the other inequality |f ′(z)| ≥ 1− B−A
δ2

r.
Hence (4.2) follows also.

5 Integral Operator

Theorem 7 Let the function f(z) defined by (1.7) be in the class Qnm(Φ,Ψ, λ, A,B),
and let d be a real number such that d > −1. Then the function F (z) defined by

F (z) =
d+ 1

zd

∫ z

0

td−1f(t)dt (5.1)

also belongs to the class Qnm(Φ,Ψ, λ, A,B).

Proof. From the representation of F (z), it follows that

F (z) = z −
∞∑
k=2

(
d+ 1

d+ k

)
akz

k, (5.2)

Therefore,

∞∑
k=2

k [(1− λ)σ(m, k)βk + λσ(n, k)γk]

(
d+ 1

d+ k

)
ak

≤
∞∑
k=2

k [(1− λ)σ(m, k)βk + λσ(n, k)γk] ak ≤
B −A
1 +B

.

Hence, F ∈ Qnm(Φ,Ψ, λ, A,B).

Theorem 8 Let the function F (z) = z −
∞∑
k=2

akz
k (ak ≥ 0) be in the class

Qnm(Φ,Ψ, λ, A,B) and let d be a real number such that d > −1. Then the function
f(z) defined by (5.1) is univalent in |z| < R∗, where

R∗ = inf
k

[
(1 +B) [(1− λ)σ(m, k)βk + λσ(n, k)γk] (d+ 1)

(B −A)(d+m)

]1/k−1
(k ≥ 2). (5.3)

The result is sharp.
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Proof. From (5.1), we have

f(z) =
z1−d(zdF (z))′

d+ 1
(d > −1)

= z −
∞∑
k=2

(
d+ k

d+ 1

)
akz

k.

In order to obtain the required result it suffices to show that

|f ′(z)− 1| < 1, (5.4)

for |z| < R∗. Now

|f ′(z)− 1| ≤
∞∑
k=2

k(d+ k)

(d+ 1)
ak|z|k−1.

Thus |f ′(z)− 1| < 1, if

∞∑
k=2

k(d+ k)

(d+ 1)
ak|z|k−1 < 1.

Hence by Theorem 1, (5.4) is true if

k(d+ k)

(d+ 1)
|z|k−1 ≤ k(B + 1) [(1− λ)σ(m, k)βk + λσ(n, k)γk]

B −A

or if

|z| <
[

(B + 1) [(1− λ)σ(m, k)βk + λσ(n, k)γk] (d+ 1)

(B −A)(d+ k)

]1/k−1
, k ≥ 2

which proves that f is univalent in |z| < R∗.
Sharpness follows if we take,

f(z) = z − (B −A)(d+ k)

k(B + 1) [(1− λ)σ(m, k)βk + λσ(n, k)γk] (d+ 1)
zk k ≥ 2.

6 Radii of Close-to-convexity, Starlikeness
and Convexity

Theorem 9 Let the function f(z) defined by (1.7) be in the class
Qnm(Φ,Ψ, λ, A,B). Then f(z) is close-to-convex of order ρ (0 ≤ ρ < 1) in |z| < r1 ≡
r1(m,n,Φ,Ψ, λ, A, ρ), where

r1 = inf
k

[
(1− ρ)(1 +B) [(1− λ)σ(m, k)βk + λσ(n, k)γk]

(B −A)

]1/k−1
k ≥ 2. (6.1)

The result is sharp with the extremal function f(z) is given by (2.4).
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Proof. We must show that |f ′(z)− 1| ≤ 1− ρ for |z| < r1. We have

|f ′(z)− 1| ≤
∞∑
k=2

kak|z|k−1.

Hence, |f ′(z)− 1| ≤ 1− ρ if

∞∑
k=2

(
k

1− ρ

)
ak|z|k−1 ≤ 1. (6.2)

By Theorem 1, we have

∞∑
k=2

k(B + 1) [(1− λ)σ(m, k)βk + λσ(n, k)γk] ak
(B −A)

≤ 1.

Hence, (6.2) will be true if

k|z|k−1

1− ρ
≤ k(B + 1) [(1− λ)σ(m, k)βk + λσ(n, k)γk] ak

(B −A)

or if

|z| ≤
[

(1− ρ)(B + 1) [(1− λ)σ(m, k)βk + λσ(n, k)γk] ak
(B −A)

]1/k−1
, k ≥ 2. (6.3)

The theorem follows easily from (6.3).

Theorem 10 Let the function f(z) defined by (1.7) be in the class Qnm(Φ,Ψ, λ, A,B),
then f(z) is starlike of order ρ (0 ≤ ρ < 1) in |z| < r2 ≡ r2(m,n,Φ,Ψ, λ, A,B, ρ)
where

r2 = inf
k

[
(1− ρ)k(1 +B) [(1− λ)σ(m, k)βk + λσ(n, k)γk]

(B −A)(k − ρ)

]1/k−1
(k ≥ 2). (6.4)

The result is sharp with the extremal function f(z) given by (2.4).

Proof. It is sufficient to show

∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ ≤ 1 − ρ for |z| < r2. By making use of

the inequality,

∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ ≤
∞∑
k=2

(k − 1)ak|z|k−1

1−
∞∑
k=2

ak|z|k−1
(6.5)

we get,
∣∣∣ zf ′(z)
f(z) − 1

∣∣∣ ≤ 1− ρ if

∞∑
k=2

(k − ρ)ak|z|k−1

1− ρ
≤ 1. (6.6)
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Hence, by using (6.3), (6.6) will be true if

(k − ρ)|z|k−1

1− ρ
≤ k(1 +B) [(1− λ)σ(m, k)βk + λσ(n, k)γk]

(B −A)

or if

|z| ≤
[

(1− ρ)k(1 +B) [(1− λ)σ(m, k)βk + λσ(n, k)γk]

(k − ρ)(B −A)

]1/k−1
, k ≥ 2. (6.7)

The theorem follows easily from (6.7).

Corollary 3 Let the function f(z) defined by (1.7) be in the class Qnm(Φ,Ψ, λ, A,B),
then f(z) is convex of order ρ (0 ≤ ρ < 1) in |z| < r3 ≡ r3(m,n,Φ,Ψ, λ, A,B, ρ),
where

r3 = inf
k

[
(1− ρ) [(1− λ)σ(m, k)βk + λσ(n, k)γk] (1 +B)

k(k − ρ)(B −A)

]1/k−1
, (k ≥ 2).

The result is sharp with the extremal function f(z) given by (2.4).
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1 Introduction

In previous works of the first author [5], [6], a nonlinear evolution problem in a Banach
space (X, ‖ ‖), of the form

ẋ = Ax+R(t, x),
x(0) = a,

(1)

is considered, and the existence of the solution in a neighborhood of x = 0 as well
as the Lyapunov stability of the null solution are studied via the implicit operator
theorem.

In [5] the operator A : D(A) ⊂ X → X (D(A) dense in X) is a closed linear
operator that generates a strongly continuous, exponentially decreasing semigroup
T (t) on X, while the nonlinear operator R is continuous, R(t, 0) = 0 for all t ∈ R+

and for some β > 0, C > 0 the inequality
||R(t, x1)−R(t, x2)|| ≤ C maxβ(||x1||, ||x2||)||x1−x2|| holds for all t ∈ R+, and x1, x2
in a centered in 0 ball of X.

1This work was supported by Romanian Academy Grant 11/05.06.2009 and by Russian Foun-
dation for Fundamental Research Grant 09-01-00586, both within the framework of the RFBR -
Romanian Academy collaboration
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The hypothesis on the nonlinear operator R is weakened in [6], where the constant
C in the above inequality is replaced with a continuous function C(.) with exponential
growth. In both papers above it is proved that, for an initial condition with small
enough norm, the problem has an unique mild solution (solution of some integral
equations associated to the differential abstract equation) and the null solution is
exponentially stable in the class of mild solutions. If, moreover, a Hölder condition
in t is imposed to R, then the above conclusions hold for the classical solutions also.

2 Problem 1.

We consider the nonautonomous problem

ẋ = Ax+R(t, x), t ∈ R, (2)

with the initial condition
x(s) = a, (3)

for some fixed s ∈ R.
In [7] the corresponding autonomous problem (R(t, x) = R(x)) was considered.

2.1 Hypotheses

I. A : D(A) ⊂ X 7→ X, is a closed linear operator, D(A) is dense in X.

II. The null space V = N(A) of the operator A is nontrivial, closed, and X may be
written as the direct sum of V and U = R(A) (X = N(A)⊕R(A) ).

Hence for any x ∈ X, there is an unique decomposition x = u+ v with u ∈ U , v ∈
V. The mapping P from X onto U , given by P (x) = u, is continuous.

The restriction of the operator A to the subspace U is the generator of the expo-
nentially decreasing semigroup U(t) of class C0 (there exist the constants M > 0 and
α > 0 such that for all t ∈ R+ = [0,+∞) the inequality ||U(t)|| ≤ Mexp(−αt) is
fulfilled).

III. The nonlinear mapping R, defined on the Cartesian product of R with a neigh-
borhood of 0 in X, is continuous, R(t, 0) = 0 for all t ∈ R and there is a β > 0 and a
continuous function C(t) > 0 such that for all t ∈ R and x1, x2 in a neighborhood of
0 in X, the inequality

||R(t, x1)−R(t, x2)|| ≤ C(t) max (||x1||β , ||x2||β)||x1 − x2|| (4)

holds, where C(·) ∈ L1(R) hence there is a C̃ > 0 such that, for every s ∈ R∫ ∞
s

|C(θ)|dθ ≤ C̃.

We remark that the kernel of A may be infinite dimensional, hence A is not
necessarily a Fredholm operator. We do not insist here on the conditions on A such
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that the above hypotheses hold. A comprehensive study of linear semigroups is given
in [1].

By hypothesis II, I − P maps X on N(A) and it is continuous. We denote, for
simplicity, ‖P‖L(X) by ‖P‖.

We set in (2) x(t) = u(t) + v(t), where u(t) = Px(t), v(t) = (I − P )x(t) and we
project the problem (2), (3) on U and V . We get the system of Cauchy problems

u̇ = PAu+ PR(t, u+ v), u(s) = Pa, (5)

v̇ = (I − P )Au+ (I − P )R(t, u+ v), v(s) = (I − P )a. (6)

We consider the system of integral equations

u(t) = U(t− s)Pa+

∫ t

s

U(t− θ)PR(θ, u(θ) + v(θ))dθ, (7)

v(t) = (I − P )a+

∫ t

s

(I − P )[Au(θ) +R(θ, u(θ) + v(θ))]dθ. (8)

If the pair (u(t), v(t)) is a solution of the integral equations (7)-(8) then x(t) =
u(t) + v(t) is called the mild solution of the Cauchy problem (2), (3).

Hypothesis II implies (I − P )A = 0 and the equations above become

u(t) = U(t− s)Pa+

∫ t

s

U(t− θ)PR(θ, u(θ) + v(θ))dθ, (9)

v(t) = (I − P )a+

∫ t

s

(I − P )R(θ, u(θ) + v(θ))dθ. (10)

We set t = τ + s and we perform the change of variables θ′ = θ − s, to obtain

u(τ + s) = U(τ)Pa+

∫ τ

0

U(τ − θ′)PR(θ′ + s, u(θ′ + s) + v(θ′ + s))dθ′, (11)

v(τ + s) = (I − P )a+

∫ τ

0

(I − P )R(θ′ + s, u(θ′ + s) + v(θ′ + s))dθ′. (12)

For every s ∈ R, and any function x : [s,∞) 7→ X we define the function x|s :
[0,∞) 7→ X, by x|s(θ) = x(s+ θ).

For a space X1 ⊆ X, we consider the space Cb([0,∞), X1) of continuous bounded
functions defined on [0,∞) with values in X1, with the supremum norm (‖x‖0 =
sup
t≥0
‖x(t)‖), and denote it shortly by Cb(X1).

We define the operators

D1 : X 7→ Cb(U), a 7→ D1(a), D1(a)(τ) = U(τ)Pa, τ ≥ 0;

D2 : X 7→ Cb(V), a 7→ D2(a), D2(a)(τ) = (I − P )a;
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F1s : Cb(X ) 7→ Cb(U), F1s(x)(τ) =

∫ τ

0

U(τ − θ)PR(s+ θ, x(θ))dθ,

where x = u+ v, and

F2s : Cb(X ) 7→ Cb(V), F2s(x)(τ) =

∫ τ

0

(I − P )R(s+ θ, x(θ))dθ.

For these operators the following relations hold:

‖D1‖L(X,Cb(U)) ≤M‖P‖,

‖D2‖L(X,Cb(V)) ≤ 1 + ‖P‖,

‖F1s(x)(τ)‖ ≤
∫ τ

0

Me−α(τ−θ)‖P‖C(s+ θ)‖x(θ)‖β+1dθ ≤MC̃‖P‖ ‖x‖β+1
0 ,

‖F2s(x)(τ)‖ ≤ C̃(1 + ‖P‖)‖x‖β+1
0 .

The two integral equations (11), (12) may be written as the equation

x|s = D(a) + Fs(x|s), (13)

where
D = D1 +D2, Fs = F1s + F2s.

Equation (13) may be regarded as a fixed point problem in Cb(X),

φ = Φ(a, φ) (14)

where
Φ(a, φ) = D(a) + Fs(φ). (15)

We remark that φ∗(a) is a fixed point of Φ(a, .) if and only if the function x(·; s, a) :
[s,∞) 7→ X, defined by x(s + θ; s, a) = φ∗(θ, a), θ ≥ 0, is a mild solution of problem
(2), (3).

2.2 Results

Theorem 1. There are two positive numbers r0, r1, such that for ‖a‖ ≤ r0, the
mapping Φ(a, ·) given by (15) is an uniform (with respect to a) contraction from
B(0, r1) ⊂ Cb(X) to itself.

Proof. We have, for any φ1, φ2 ∈ Cb(X)

||Φ(a, φ1)− Φ(a, φ2)||0 = ||Fs(φ1)− Fs(φ2)||0 ≤

≤ ||F1s(φ1)− F1s(φ2)||0 + ||F2s(φ1)− F2s(φ2)||0.

We have

‖F1s(φ1)− F1s(φ2)‖0 ≤
∫ t

s

Me−α(t−θ)‖PR(s+ θ, φ1(θ))− PR(s+ θ, φ2(θ))‖dθ ≤
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≤
∫ t

s

Me−α(t−θ)‖P‖C(s+ θ) max(‖φ1(θ)‖β , ‖φ2(θ)‖β)‖φ1(θ)− φ2(θ)‖dθ ≤

≤MC̃‖P‖max{‖φ1‖β0 , ‖φ2‖
β
0}‖φ1 − φ2‖0, (∀)φ1, φ2 ∈ Cb(X), (16)

and

‖F2s(φ1)− F2s(φ2)‖0 ≤
∫ τ

0

‖(I − P )R(s+ θ, φ1(θ))− (I − P )R(s+ θ, φ2(θ))‖dθ

≤
∫ τ

0

(1 + ‖P‖)|C(s+ θ)|dθmax{‖φ1‖β0 , ‖φ2‖
β
0}‖φ1 − φ2‖0

≤ C̃(1 + ‖P‖) max{‖φ1‖β0 , ‖φ2‖
β
0}‖φ1 − φ2‖0.

For φ1, φ2 ∈ B(0, r) ⊂ Cb(X), we have

‖Fs(φ1)− Fs(φ2)‖0 ≤ C̃[(M + 1)‖P‖+ 1]rβ‖φ1 − φ2‖0.

Let r1 > 0 be such that r1 <
{
C̃[(M + 1)‖P‖+ 1]

}−1/β
. On the sphere B(0, r1) ⊂

Cb(X), the mapping Φ(a, ·) is an uniform (with respect to a) contraction.
If ‖a‖ ≤ r0, ‖φ‖0 ≤ r1, then

‖Φ(a, φ)‖0 ≤ [(M + 1)‖P‖+ 1]r0 + C̃[(M + 1)‖P‖+ 1]rβ+1
1 .

By imposing to this last quantity to be less than r1, we find the restriction

‖a‖ ≤ r0 :=
r1

(M + 1)‖P‖+ 1

{
1− C̃[(M + 1)‖P‖+ 1]rβ1

}
.

Hence, for ‖a‖ ≤ r0, Φ is an uniform contraction on B(0, r1). �
The uniform Banach contraction principle implies that, for ‖a‖ ≤ r0, the fixed

point problem (14) has an unique solution ϕ∗(a) ∈ Cb(X).
Hence the function x(·; s, a) given by x(s + θ; s, a) = ϕ∗(θ, a), θ ≥ 0 is a mild

solution of problem (2), (3). Since Φ is an uniform contraction with respect to a, the
fixed point ϕ∗ is continuous with respect to a. Hence the function that maps a ∈ X to
x(s+ ·; s, a) ∈ Cb(X) is continuous. From here and from x(.; s, 0) = 0, the Lyapunov
stability of the null solution in the class of mild solutions follows, where the Lyapunov
stability is understood in the following sense

Definition 1. [2] A classical (resp. -mild) solution x(.; s, a) of problem (2), (3)
is called stable if for every ε > 0 and every s′ > s there is a δ = δ(ε, s′) such that for
every y ∈ X with ‖y − x(s′; s, a)‖ ≤ δ, the classical (resp. -mild) solution x(·; s′, y)
exists, is defined on [s′,∞), and

‖x(t; s, a)− x(t; s′, y)‖ < ε

for every t ≥ s′.
If a Hölder condition with respect to time is added on R, then we obtain the

existence of classical solutions and also the stability of the 0 solution in the class of
classical solutions.

Remark. If we assume also that R(t, v) = 0 for every v ∈ V, then by observing
that in this case ‖R(θ, u(θ) + v(θ))‖ ≤ C(θ)‖u(θ)‖β+1 holds, and by the reasoning of
[5] we obtain that ‖u(t)‖ tends exponentially to 0 when t→∞.
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3 Problem 2.

We consider a perturbation of Problem 1, that is

ẋ = Ax+Bx+R(t, x), t ∈ R, (17)

with the initial condition
x(s) = a. (18)

Here B is a linear bounded operator B : X 7→ R(A) with norm such that

L :=
M

α
‖P‖ ‖B‖L(X) < 1. (19)

Due to the range of B, only the first equation of the projected equations differs from
those of the previous section. The projected equations are, in this case,

u̇ = PAu+ PB(u+ v) + PR(t, u+ v), u(s) = Pa, (20)

v̇ = (I − P )R(t, u+ v), v(s) = (I − P )a. (21)

We consider the integral equations

u(t) = U(t− s)Pa+

∫ t

s

U(t− θ)PBu(θ)dθ+

∫ t

s

U(t− θ)PR(θ, u(θ) + v(θ))dθ, (22)

v(t) = (I − P )a+

∫ t

s

(I − P )R(θ, u(θ) + v(θ))dθ. (23)

We say that a function x(·) = u(·) + v(·) is an A-mild solution of equation (17)
if (u(·), v(·)) is the solution of (22)-(23). We named this solution A-mild because
the semigroup generated only by A (and not by A + B) is used in the first integral
equation. We proceed as for Problem 1, only that we define also the operator

E : Cb(X ) 7→ Cb(U), E(x)(t) =

∫ t

s

U(t− θ)PB(x(θ))dθ,

for which
‖E(φ)‖0 ≤ L‖φ‖0,

with L given by (19) and

‖E(φ1)− E(φ2)‖0 ≤ L‖φ1 − φ2‖0.

The integral equations above are equivalent with the fixed point problem in Cb(X)

φ = Φ(a, φ),

where
Φ(a, φ) = D(a) + E(φ) + Fs(φ). (24)
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Theorem 2. There are two positive numbers r0, r1, such that for ‖a‖ ≤ r0,
the mapping Φ(a, ·) given by (24) is an uniform (with respect to a) contraction from
B(0, r1) ⊂ Cb(X) to itself.

Proof. The computations in the proof of Theorem 1 and the properties of E lead
to

‖Φ(a, φ1)− Φ(a, φ2)‖0 ≤
{
C̃[(M + 1)‖P‖+ 1]rβ + L

}
‖φ1 − φ2‖0

for ‖φi‖0 ≤ r, i = 1, 2.

We choose a r1 > 0 such that r1 <
(

1−L
C̃[(M+1)‖P‖+1]

)1/β
.

On the closed sphere ‖φ‖0 ≤ r1 the mapping Φ is a contraction (uniform with
respect to a). We have

‖Φ(a, φ1)‖0 ≤ [(M + 1)‖P‖+ 1]‖a‖+ C̃[(M + 1)‖P‖+ 1]rβ+1
1 + Lr1.

We impose the condition

[(M + 1)‖P‖+ 1]‖a‖+ C̃[(M + 1)‖P‖+ 1]rβ+1
1 + Lr1 ≤ r1

and we find that this condition is satisfied for

‖a‖ ≤ r0 :=
1

(M + 1)‖P‖+ 1

{
1− L− C̃[(M + 1)‖P‖+ 1]rβ1

}
r1.

The assertion of the theorem follows. �
From this point, with the same reasonings as in the preceding section, we obtain

that, for ‖a‖ ≤ r0, r0 defined in the proof of Theorem 2, the problem (17), (18) has an
unique A-mild solution x(·; s, a) in the space of continuous bounded functions defined
from [s,∞) to X. Moreover, from the continuity of the function that maps a ∈ X to
x(s+ ·; s, a) ∈ Cb(X) the Lyapunov stability of the null solution in the class of A-mild
solutions follows.

If the nonlinear map R(., .) satisfies a Hölder condition with respect to time, then
the above assertions are valid in the classical sense also.

Remark. If we assume also that R(t, v) = 0 for v ∈ V, then by observing that
‖R(θ, u(θ) + v(θ))‖ ≤ C(θ)‖u(θ)‖β+1, and by reasonings similar to those of Section 4
of [3] we obtain that ‖u(t)‖ → 0 when t→∞.

4 Problem 3.

We consider again equation (2) with condition (3), but here we assume that only
Hypothesis I on A and Hypothesis III on R are fulfilled (with no special hypotheses
on the kernel of A). Moreover, we assume that A generates a bounded semigroup
{T (t)}t≥0 of operators on X, that is for a M > 0, ‖T (t)‖L(X) ≤M, ∀t ≥ 0.

We consider the integral equation

x(t) = T (t− s)a+

∫ t

s

T (t− θ)R(θ, x(θ))dθ. (25)
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A solution of this equation is called a mild solution of problem (2), (3). Obviously,
any classical solution is a mild solution of this problem. As before, we successively
transform the integral equation (25) into a fixed point problem:

x(s+ τ) = T (τ)a+

∫ τ

0

T (τ − θ′)R(s+ θ′, x(s+ θ′))dθ′,

hence

x|s(τ) = T (τ)a+

∫ τ

0

T (τ − θ′)R(s+ θ′, x|s(θ′))dθ′. (26)

Now, we defineD : X 7→ Cb(X), a→ D(a)(.), D(a)(τ) = T (τ)a, and Fs : Cb(X) 7→
Cb(X)

Fs(φ) =

∫ τ

0

T (τ − θ′)R(s+ θ′, φ(θ′))dθ′,

for which we have ‖D(a)‖0 ≤M‖a‖, and, respectively

‖Fs(φ)‖0 ≤
∫ τ

0

MC(s+ θ′)‖φ(θ′)‖β+1dθ′ ≤MC̃‖φ‖β+1
0 ,

hence Fs takes indeed values in Cb(X). Moreover,

‖Fs(φ1)−Fs(φ2)‖0 ≤
∫ τ

0

MC(s+θ′) max(‖φ1(θ′)‖β , ‖φ2(θ′)‖β)‖φ1(θ′)−φ2(θ′)‖dθ′ ≤

≤MC̃ max(‖φ1‖β0 , ‖φ2‖
β
0 )‖φ1 − φ2‖0.

We define the mapping Φ : X × Cb(X) 7→ Cb(X), given by

Φ(a, φ) = D(a) + Fs(φ) (27)

and remark that equation (26) is equivalent to the fixed point problem in Cb(X)

φ = Φ(a, φ). (28)

Now consider a positive number r1 such that MC̃rβ1 < 1. On the ball B(0, r1) the
mapping Φ is a contraction (uniform with respect to a). Now we take an a such that

M‖a‖+MC̃rβ+1
1 ≤ r1 ⇔ ‖a‖ ≤ r0 := r1(1−MC̃rβ1 )/M.

We thus proved
Theorem 3. There are two positive numbers r0, r1, such that for ‖a‖ ≤ r0,

the mapping Φ(a, ·) given by (27) is an uniform (with respect to a) contraction from
B(0, r1) ⊂ Cb(X) to itself.

Hence, if ‖a‖ < r0, there is an unique solution of equation (28) in B(0, r1). Thus
an unique mild solution x(.; s, a) of problem (2), (3) exists. Then, the local Lyapunov
stability of the mild 0 solution follows from the continuity of the function a ∈ X →
x(s+ · ; s, a) ∈ Cb(X).

If we add a Hölder condition in t on R the local stability of 0 as a classical solution
follows also.
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4.1 Problem 4.

We show in this section that similar results may be obtained also in the case when
the linear operator is a function of time, that is for the equation

ẋ = A(t)x+R(t, x), t ∈ R, (29)

with the initial condition
x(s) = a.

Here A(t) : D ⊂ X 7→ X are closed linear operators, defined on the domain D
(independent of t), dense in X, and we assume that the problem

u̇ = A(t)u, u(s) = a (30)

has an unique classical solution, that is a function u ∈ C([s,∞), X) ∩ C1([s,∞), X)
such that u(t) ∈ D for t > s and (30) is satisfied. In this situation by the relation

U(t, s)u(s) = u(t)

an evolution family is generated.
An evolution family is a family of linear bounded operators

{U(t, s), t ≥ s, s ∈ R} that satisfy

U(t, r)U(r, s) = U(t, s), U(s, s) = I.

We say that an evolution family is strongly continuous if the mapping (t, s)→ U(t, s)
is strongly continuous on the set t, s ∈ R, t > s.

The most difficult problem concerning this case is that of giving sufficient condi-
tions in order that the linear problem attached to the above problem generates such
an evolution family. This is not the subject of this paper and we indicate the work
[4] and the references therein.

The evolution family is named exponentially bounded if the inequality

‖U(t, s)‖L(X) ≤Meω(t−s),

M ≥ 1, ω ∈ R, holds. If ω < 0, the evolution family is named exponentially stable.
We first assume that the evolution family generated by (30) is exponentially stable

hence there is a positive α such that

‖U(t, s)‖L(X) ≤Me−α(t−s). (31)

In order to study the existence of the solution of problem (29), we consider the integral
equation

x(t) = U(t, s)a+

∫ t

s

U(t, θ)R(θ, x(θ))dθ. (32)

Any classical solution of problem (29) is a solution of (32). A solution of (32) is called
a mild solution of (29). From this point, formally, the reasoning may be lead as in
[6], since only the norm estimates and the hypotheses on R will be used.
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In [6] the hypotheses on R differ from Hypothesis III from the beginning of this
work only in what concerns the function C(·). More precisely, it is assumed that one
of the inequalities

C(t)e−γβ ≤ C∗, for a γ ∈ (0, α), C∗ > 0;∫ ∞
0

C(s)e−αβsds <∞

holds (hence C(.) may be unbounded).
As in [6], the problem may be brought to the form of a fixed point problem in

the space Cγ(X) = {x : [0, ∞) 7→ X | sup[0,∞) ‖x(t)‖eγt < ∞}. It follows that for
sufficient small ‖a‖ there is an unique mild solution of (29) and that the null solution
is locally asymptotically stable (in the class of mild solutions), in the sense given by

Definition 2. [2] A classical (resp. -mild) solution x(.; s, a) of problem (2), (3) is
called asymptotically stable if it is stable and, for every s′ > s, there is a δ = δ(s′) > 0
such that for y ∈ X with ‖y − x(s′; s, a)‖ < δ, the classical (resp. -mild) solution
x(·; s′, y) exists, is defined on [s′, ∞), and

‖x(t; s, a)− x(t; s′, y)‖ → 0

as t→∞.
If we assume that the evolution family is only bounded (α = 0), then with the

same reasonings as in Section 3 of the present paper, we obtain that for sufficient small
‖a‖ there is an unique mild solution of (29) and that the null solution is Lyapunov
stable (in the class of mild solutions).

If the function R(·, ·) satisfies also a Hölder condition in t the above conclusions
are valid in the classical sense also.
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