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ABSTRACT: The aim of the paper is to provide sufficient conditions for
starlikeness of order a for meromorphic m-valent functions in the punc-
tured disc. The present work is based on some results involving differential
subordinations.

AMS Subject Classification: 30C45
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1 Introduction and preliminaries

Let 3, denote the class of functions of the form

1 %)
f(Z) =— + Z am+n—1zm+n71, m € N* (11)

m
n=1

which are analytic and m-valent in the punctured disc
U={2€C: 0<|z| <1} =U\{0}.

A function f € %,, is said [1] to be in the class () of meromorphic m-valently
starlike functions of order « in U if and only if

!
Re {Zf(z)}>a, zeU, 0<a<m, meN*, (1.2)
f(z)
We denote ,,(0) = Q.
The following definitions and lemmas will be used in the next section.
Let H(U) denote the space of analytic functions in U. For n a positive integer
and a € C let

Ho={fEHU): f(2)=an2" +an 12" +...} (1.3)

COPYRIGHT (© by Publishing Department Rzeszéw University of Technology
P.O. Box 85, 35-959 Rzeszow, Poland



6 Adriana Catas
and
Hla,n) ={f € HU): f(z) =a+anz" +an1z" +... }. (1.4)

For two functions f and g analytic in U, we say that the function f(z) is subor-
dinate to g(z) in U and write

f=<g or f(z)=<g(z), z€U
if there exists a Schwarz function w(z), analytic in U with
w(0)=0 and |w(z)|<1, z€U,

such that
f(z) =g(w(z)), zeU. (1.5)

In particular, if the function g is univalent in U, the above subordination is equiv-
alent to

f(0) =g(0) and f(U) C g(U).

Lemma 1.1 [2] Let m be a positive integer and let o be real, with 0 < o < m. Let
q € H(U), with ¢(0) =0, ¢'(0) # 0 and

W)\ e
Re <1+ 70 ) > — (1.6)
Define the function h as
h(z) = mzq'(2) — aq(z). (1.7)
If pe Hy, and
2p'(z) — ap(z) < h(z) (1.8)

then p(z) < q(z) and this result is sharp.

Lemma 1.2 [3] Let n € N*, let o € [0,1] and let

- n+1l—a
Mn(a)i\/(n—i-l—a)2+0¢2+1—oz' (1.9)
If the function f(z) of the form
f(z) = % + gakzk (1.10)
satisfies the condition
|22f(2) + (1 —a)z2f(2) + a| < My(a), z€U (1.11)

then

JEOR
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2 Main results

Theorem 2.1 If f € ¥,,,, m € N*, on the form

I =
flz) = e + Z apz
k=m
and satisfies the condition
(1 — a)mz™f(2) + 2" f'(2) +am| < M, a€]0,2) (2.1)
then
m —1 _— 2.2
) =1l < s (2.2
and this result is sharp.
Proof. If we let
p(z) =2"f(z) -1 (2.3)
then p € Hap, and (2.1) can be rewritten as
|zp' (2) — amp(z)| < M (2.4)
or
2p'(z) — amp(z) < Mz. (2.5)
If we take in Lemma 1.1
Mz
q(2) ma—ay 9€ H(U),

/!
o (149 0

q'(2)

then from (1.7), h(z) = Mz and the result follows from Lemma 1.1, that is p(z) < ¢q(z)

m Mz
z f(z)—1<7m(2_a)
m M
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Theorem 2.2 Let m e N*, 0 < a < and let

+1
B m(2 —a)(m— a)
M(m, @) = m(l—a)—a+m(m—a)y/a?+(2—a)? (2:6)

If f € X, satisfies the condition

(1= @)ma™ f(2) + 2™/ (2) + am| < M(m, o) (2.7)
then f € Q).
Proof. Let
0< M < M(m,a), (2.8)
where M (m, «) is given by (2.6), and suppose that f € ¥, satisfies the condition
(1 —a)ymz"f(2) + 2" f'(2) + am| < M. (2.9)
If we set
P(z) = 2" f(2), (2.10)
then by Theorem 2.1 we obtain
|P(z) — 1] < m(QJM—a) =R, zeUl. (2.11)
From (2.6), we easily deduce R < 1, which implies P(z) # 0, z € U. Hence if we
let
p(z) = —a— zﬁg), (2.12)
then p(z) € H[m — a,2m] and (2.9) can be written in the form
| —p(2)P(2) + [m(1l — o) — a]P(2) + am| < M. (2.13)

We claim that this inequality implies Re p(z) > 0, z € U. If this is false, then
there exists a point zg € U, such that p(zg) = ip, where p is real. We will show that
at such a point the negation of condition (2.13) holds, that is

| —ipP(z0) + [m(1 — a) — a]P(z0) + am| > M, (2.14)

for all real p.
If we let Py = P(zp), one obtains

| —ipPo + [m(1 — a) = o] Py + am[* = p*| Po|* + [m(1 — @) — af*| Po[*

+a?m? 4 2am[m(1 — o) — a]Re Py + 2amplm P.
The inequality (2.14) is equivalent to

E = p?|Py]? + 2ampIm Py + [m(1 — o) — o?| Po|* + a®m?+ (2.15)
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+2am[m(1 — a) — a]Re Py — R*m?(2 — a)? > 0.
Since from (2.11) we have
|[Po)) >1—R and Re Py >1-R,
from (2.11) and (2.15) one obtains
E > |Py*p? + 2amIm Pyp + [m(1 — a) — a)*(1 — R)*+

+a?m? 4 2am[m(1 — a) — a](1 — R) — R*m?(2 — a)?.
Hence £ > 0 if

o?m?*(Im Py)? < |Po)*{[(m(1 — a) — ) (1 — R) + am]® — R*m?*(2 — a)*} (2.16)

or
o*m?*(Im Py)? < |Po)*{[m — a — [m(1 — a) — o] R]* — R*m?(2 — a)*}. (2.17)
A simple geometric argument shows that the inequality (2.11) implies
(Im Py)* < R?*|Py|? (2.18)
By comparing (2.17) and (2.18) we deduce that (2.14) holds if
?m?R?* < {m —a—[m(l —a) — a]R}* — R*m?*(2 — a)? (2.19)
or
R*{a*m? + m?(2 — a)? — [m(1 — o) — a]®}+ (2.20)

+2(m — a)[m(l —a) —a]R— (m —a)? <0
This last inequality holds if R < Ry, where
Ro = n-d L 0<a< 2 (2.21)
m(l—a)—a+my/a?+ (2 —a)? m+1

that is M < M(m, ).
Thus we have a contradiction of (2.13), therefore Re p(z) > 0, z € U and f €
Q). O

Remark 2.1 Note that for the special case m = 1, a = 0, the value M (1,0) = 2/3
is the same with that obtained from (1.9) Lemma 1.2: M;(0) = 2/3.

We obtain the following criterion of starlikeness for meromorphic m-valent func-
tions.

Corollary 2.1 Let m € N* and let f € X, satisfies the condition

() + ) < (2.22)

then f € Q7.
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Since a function f € ¥, can be written as
1

where g € H,,,, Theorem 2.2 can be rewritten in the following equivalent form, that
is useful for the other results.

Corollary 2.2 Let m e N*, 0 < a <

™ and let f € X, have the form
m-+1

where g € Hy,. If
(1 —a)ymz"g(z) + 2" (2)| < M(m,a), z€U (2.24)
where M (m, a) is given by (2.6), then f € Q. (a).
This form has an interesting interpretation in terms of integral operators. If we let
h(z) = (1 —a)mz"g(2) + 2™ g (2), (2.25)

then
1

z
9() = —a=aym / h(t)t~(Fam) g (2.26)
Z 0

which leads to the following result.

Corollary 2.3 Let h € Hap, and M(m, ) is given by (2.6) with 0 < a < mnjr 1 If
h satisfies the condition
[h(z)| < M(m,a), z€U (2.27)
then ) ) ;
_ - - —(1+am)
flz) = p; + —aym /0 h(t)t dt € Q). (2.28)
Example 2.1 For the Corollary 2.3 we consider the following function
h(z) = az®(z — sin 2) (2.29)

Since h € Hg we deduce that m = 3 and we choose for « a value such that

2
0<ax< mm 1 Let the value be o = 3" Then, from (2.28) we get
1 a "3 : -3
flz)==+— [ 2@t —sint)t™>dt (2.30)
z Z Jo
or )
1) =< (1 — 2asin® g) + C;—Z (2.31)
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From (2.27) we obtain

Ih()] < M(m,a) = M (3, g) . (2.32)

The above inequality leads to the relation

249 —1
jaz3||z — sin 2| < a| SF2C (2.33)
2e
The condition (2.32) will be satisfied if
249 —1 21
o] S22 < , (2.34)
2e 14 7v20
and we obtain 19
la| < c —0.208...

(2 + €2 — 1)(1 + 7v/20)

1
Hence, if we take a = 1 we conclude that

f(z):i(l—;sin2;>+§€§23 (;)
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1 Introduction
Let A denote the class of functions which are analytic in U = U(1), where
U(r)={z€C:|z| < r}.

and let A (p, k) (p,k e N={1,2,3...}, p < k) denote the class of functions f € A of
the form

oo
f(z) = ap2? + Z anz" (2 €U; a, > 0). (1)
n=~k
For multivalent fuction f € A (p, k) the normalization
1) =0 and 1) =1. (2)
Zp_l z=0 2P z=0

is clasical. One can obtain interesting results by applying normalization of the form

=0 and F(2)

p—1 P
< 2=0 Z z2=p

~1. (3)

COPYRIGHT (© by Publishing Department Rzeszéw University of Technology
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14 Jacek Dziok, Anna Szpila

where p is a fixed point of the unit disk /. In particular, for p = 1 we obtain Montel’s
normaliztion (cf. [1]). We see that for p = 0 the normalization (3) is the clasical.
We denote by A, (p, k) the classes of functions f € A (p, k) with the normalization
(3). Tt will be called the class of functions with two fixed points.
Also, by T (p,k;n) (n € R) we denote the class of functions f € A (p, k) of the
form (1) for which

arg(a,)=m+(p—-n)n (n=kk+1,..). (4)

For n = 0 we obtain the class T (p, k; 0) of functions with negative coefficients. More-
over, we define
T (p,k):={J T (p,kim) . (5)
neR

The classes T (p, k) and T (p, k;n) are called the classes of functions with varying
argument of coefficients. The class T (1,2) was introduced by Silverman [2] (see also

3)-
Let oo € (0,p), r € (0,1). A function f € A(p,k) is said to be convex of order

a in U(r) if and only if

2f"(2)

f'(z)

A function f € A(p,k) is said to be starlike of order o in U(r) if and only if

Re (1—1— ) >a (zeU(r)).

Re (fo(g)> >a (zeU(r)). (6)

We denote by S ¢ («) the class of all functions f € A(p,p + 1), which are convex of
order a in U and by S ; (a) we denote the class of all functions f € A(p,p+1),
which are starlike of order a in Y. We also set

8¢ =87(0) and §* = S7(0).

It is easy to show that for a function f from the class T (p, k) the condition (6) is
equivalent to the following

2f'(2)
f(2)

—p\ <p-a (zeU). (7)

Let B be a subclass of the class A (p, k). We define the radius of starlikeness of
order o and the radius of convexity of order o for the class B by

R,(B) =
Ro(B) =

}ng (sup{r € (0,1] : f is starlike of order o in U(r)}),

€

}ng (sup {r € (0,1] : f is convex of order « in U(r)}),
€

respectively.
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We say that a function f € A is subordinate to a function F' € A, and write f(z) <
F(z) (or simply f < F'), if and only if there exists a functionw € A (Jw(z)| < |z|, z€U) }
such that

f(z) = Fw(z)) (z€ U).

In particular, if F' is univalent in U, we have the following equivalence.

f(z) < F(z2) <= f(0) = F(0) and f(U) C F(UU).
For functions f,g € A of the form

Zanz and g(z sz

by f * g we denote the Hadamard product (or convolution) of f and g, defined by
(f*g) Z anbnz™  (z€U).

Let 7,0 be real parameters, 0 <y <1, § > 0, and let ¢, ¢ € Ao (p, k) .
By W (p, k; ¢, v;, ) we denote the class of functions f € A (p, k) such that

(x f)(2) #0 (z €U\{0}) (8)

e 6+ 1)(2) N
ES z * V4
5 - .
Re{(w &) ”}> ‘w*f)(z) 1‘ el ®)
Also, let us denote
TW (p,k; 6,07, 0) =T (p, k) "W (p, k; ¢, 057, 6),
TW (p, ks ¢, 037,65m) =T (p,k;n) "W (D, k; 6, 037,0)
TW, (p, k; b, 0;7,05m) =A, (0. k)NTW (p,k; b, 0:7,03m)
TW, (p, k; &, 057, 9) = A, (p, k) NTW (p, k; ¢, 0:7,9) .

For the presented investigations we assume that ¢, ¢ are the functions of the form
oo o0
=2+ ", d(z) =2+ B2 (z€U), (10)
n=k n=~k

where
0<a,<fB, (m=kk+1,..).

Moreover, let us put

=48, -+ an (m=kk+1,.). (11)
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The families W, (p, k; ¢, ¢;7,0;m) and W, (p, k; ¢, ¢;, ) unify various new and
well-known classes of analytic functions. In particular, the class

20 (2
W, (57, 95m) :=Wp( ks s@p( )#P(Z)Wﬂs;ﬂ),

contains functions f € A, (p, k), such that

(S e hE e | een

The class
Hr (p57,0) == TWo (1,2;¢;7,0;0)

was introduced and studied by Raina and Bansal [4]. If we set

h(al’z) = Zqu(al,...,Oéq;ﬁl,...768;2)7

where . F} is the generalized hypergeometric function (see for details [5] and [6]), then
we obtain the class

UH (g,5,N,7,0) :=TWo (1,2 Ah(ag +1,2) + (1 = A) h(ay,2);7,8;0)  (0<A<1)
defined by Srivastava et al. [7]. The classes

WO (1727 12:77a5> )
—Z
z
2% 1a2777 75 )
( -2 )

are the well-known classes of of d-starlike function of order v and J-uniformly convex
function of order 7, respectively. In particular, the classes UCV := UCV (1,0),
0 —UCV :=UCV(4,0) were introduced by Goodman [8] (see also [9, 10, 11]), and
Kanas and Wisniowska [12], respectively.

Many other classes, are also particular cases of the class investigated here, see for
example [13, 14, 15].

The object of the present paper is to investigate the coefficients estimates, distor-
tion properties and the radii of starlikeness and convexity.

5 —UST (v)

0 —UCV (v)

2 Coefficients estimates

We first mention a sufficient condition for the function to belong to the class
W (p, k; ¢, 05, 6).

Theorem 1 Let {d,,} be defined by (11), and let 0 < v < 1. If a function f of the
form (1) satisfies the condition

S dolanl < (1-7) ay, (12)
n=~k

then f belongs to the class W(p, k; ¢, @;,9).
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Proof. By definition of the class W (p, k; ¢, ¢;v,9) , it suffices to show that

@xNG) | g f@xN(z) I
6‘<¢*f><z> 1‘ R{wf)(z) 1}“ 7 (zeld). (13)

Simply calculations give

e A (i)

S (B — ) [an]|2]7
< (6+1)‘W—1‘<(5+1)”="‘ .
(o= f)(2) ap — ioj un|an ||z —P
n==k

Now the last expression is bounded above by (1 — ) if (12) holds. Whence f €
W(p, k;9,0;7,6). R

Our next theorem shows that the condition (12) is necessary as well for functions
of the form (1), with (4) to belong to the class TW (p, k; ¢, ;7,03 1).

Theorem 2 Let f be a function of the form (1), satisfying the argument property

(4). Then f belongs to the class TW (p, k; b, v;7,0;m) if and only if the condition
(12) holds true.

Proof. In view of Theorem 1 we need only show that each function f from
the class TW (p, k; ¢, ¢;7,9;n) satisfies the coefficient inequality (12). Let a func-
tion f of the form (1), satisfying the argument property (4) belong to the class
TW (p, k; &, 037, 6;m). Then by (9), we have

o0 oo
apz? + 3 B,an2" apz? + Y Bhanz”
n=~k n=k
o — —1| <Re — -Y7,
apzP + Y ananz” apzP + Y apanz®
n=k n==k

or equivalently

oo o0
> By —an)anz"P (1- 'Y)QP + > (B —yan) anz"7?
p L — < Re n=k
ap+ > papz" P ap+ > apapz"P
n==k n=~k

In view of (4), we set z = 7¢" (0 < r < 1) in the above inequality to obtain

Zk5 (B — an) lan| =P (1- 'V)GP - Zk (B, —yan) lan|r"=P

ap — Y. Oy lap| TP ap — Y. Qplap|rmP
n=~k n=k
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Thus, by (8) we have

oo

ST U6 +1) B, — (5 +7) ] lanlr™ P < (1—7)ay,

n=~k

which, upon letting r — 1 ~, readily yields the assertion (12). H
By applying Theorem 2 we can deduce following result.

Theorem 3 Let f be a function of the form (1), satisfying the argument property
(4). A function f of the form (1) belongs to the class TW, (p, k; ¢, ¢;v,8;m) if and
only if it satisfies (3) and

> (dn = (1= lpl" ") lan <17, (14)

n==k

where {d,} is defined by (11).

Proof. For a function f of the form (1) with the normalization (3), we have

)
ap =1+ laa o7 (15)
n=~k

Applying the equality (15) to (12), we obtain the assertions (14). H
Since the condition (14) is independent of 1, Theorem 3 yields the following the-
orem.

Theorem 4 Let [ be a function of the form (1), satisfying the argument property
(4). Then f belongs to the class TW, (p, k; ¢, v;7,0) if and only if the condition (14)
holds true.

By applying Theorem 3 we obtain the following lemma.

Lemma 1 Let {d,} be defined by (11), p € U, and let us assume, that there exists
an integer ng (ng € Ny = {k,k +1,...}) such that

dny — (1 =) p|""" £ 0. (16)
Then the function
Frg(2) = (1 + ap"o_p) 2P — qet(P—no)n no

belongs to the class TW, (p, k; ¢, 0;7,0;n) for all positive real numbers a. Moreover,
for alln (n € Ny) such that

dp — (1=7)|p|" 7" >0, (17)
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the functions
fa(2) = (1 +ap™ =P + b2"7P) 2P — qe'PTmoIn gm0 _ peilp=minn
where
1=+ (A=) T~ dn ) @
dn — (1 =) [p["™"
belong to the class TW, (p, k; ¢, ¢;7v,0;m) .

)

By Lemma 1 and Theorem 3, we have following corollary.

Corollary 1 Let a function f of the form (1) belongs to the class
TW,(p, k; &, ¢;7,0;m) and let {d,,} be defined by (11). Then all of the coefficients a,
for which

dp—(1=7)p|" " =0

are unbounded. Moreover, if there exists an integer ng (ng € Ny = {k,k+1,...}) such
that
dng — (1 =) p["7" <0,

then all of the coefficients of the function f are unbounded. In the remaining cases

-y
(T=)]pl""

The result is sharp, the functions f,, of the form

an| <
oul £ —

_ dpa? — (1 — ) ellPmngn

dp — (1 =) |p" ™"

are the extremal functions.

fnan(2) (zeld; n=k,k+1,...)

Remark 1 The coefficients estimates for the class TW,, (p, k; ¢, ¢;7,0) are the same
as for the class TW, (p,k; ¢, ¢;7,0;n).

By puting p = 0 in Theorems 3 and 4, and Corollary 1, we have the corollaries
listed below.

Corollary 2 Let f be a function of the form (1), satisfying the argument property
(4). A function f of the form (1) belongs to the class

TWo (p, k3 &, 037, 6;m) if and only if
Z dnlan| <1 -7, (18)
n=~k

where {d,} is defined by (11).
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Corollary 3 Let f be a function of the form (1), satisfying the argument property
(4). Then f belongs to the class TWy (p, k; ¢, v;7, ) if and only if the condition (18)
holds true.

Corollary 4 If a function [ of the form (1) belongs to the class
TWo (p, k; ¢, 037, 05m), then

1—
jan] € — (n=kk+1,..), (19)

n

where d,, is defined by (11). The result is sharp. The functions f, , of the form

1— .
fn,n(z) =2P - Tfyez(p—n)nzn (ZEZ/{; n:k,kﬁ-i-l,) (20)

n

are the extremal functions.

Corollary 5 If a function f of the form (1) belongs to the class TWo (p, k; ¢, ©;7,9),
then the coefficients estimates (19) holds true. The result is sharp. The functions fy, ,,
(n € R) of the form (20) are the extremal functions.

3 Distortion theorems

From Theorem 2 we have the following lemma.

Lemma 2 Let a function f of the form (1) belong to the class TW, (p, k; ¢, ¢;7,0;7) .
If the sequence {d,,} defined by (11) satisfies the inequality

0<dy—(1=)[p/" " <dy— (1= """ (n=kk+1,..), (21

then

o0 1 _
Z |an| S ! k—p"
ot dr. — (1 =) |pl

Moreover, if

B €)1 R P € 1
k - n

0 (n=kk+1,..), (22

then

ad k(1—
Zn|an| < (1=7) prl
ik di — (1 =) |pl

Remark 2 The second part of Lemma 2 we can rewritten in terms of o-neighborhood

N, defined by

Ng:{f(z)zapzp—i—Zanz"ET(p,k‘;n): Zn|an|§a}

n=k n==k
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in the following form:
if the sequence {dy,} defined by (11) satisfies (22), then

TW, (p, k; ¢, 037,0;m) C No.

where

__ kKA=-7
di = (1 =) [p|*™?

Theorem 5 Let a function f belong to the class TW,, (p, k; ¢, ¢;7v,0;n) and let |z| =
r < 1. If the sequence {d,} defined by (11) satisfies (21), then

dgr? + (1 — ) rk

o(r) < |f(2)] < —» (23)
di = (L=7) |p/"™"
where <)
rP rsp
¢(r) = { dyer? —(1—)r* (24)
de—aere (>0
Moreover, if (22) holds, then
1— P 1— k—1
paprp—l i k ( 7) Tk_l < |f/(Z)‘ < pdr? +k ( 7) r ) (25)

dp — (1 =) [p|"" dp — (1 =) [p|""
The result is sharp, with the extremal function fi, of the form (20) and f(z) = z.

Proof. Suppose that the function f of the form (1) belongs to the class
TW, (p, k; ¢, ¢;7,0;n). By Lemma 2 we have

o0 o0
] =|ape? + ¥ anzn| <rv (ap+ > |an|r”‘”>
n=k n==k
o0 oo
= <1+ 5 Janl |7 + 3 )
n==k n==k

k— — = dprP+(1—~)r"
ST’p (1+(|p| p+7’k p) Z |an|> S %,

n=~k
and
f(2)] =7 ( = lau ) - (1 +3 (ol =) |an|> - (26)
n=~k n==k

If r < p, then we obtain |f(z)| = r?. If r > p, then the sequence {(p"~! —r""1)} is
decreasing and negative. Thus, by (26), we obtain

o (1 (kp .= dkrp—(l—v)r’“’
|f(z)|_r< (r ol );a>—dk_(1—7)|p|’“‘p

and we have the assertion (23). Making use of Lemma 2, in conjunction with (15),
we readily obtain the assertion (25) of Theorem 5. W
Theorem 5 implies the following results.
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Corollary 6 Let a function f belong to the class TW, (p,k; ¢, ¢;v,9). If the se-
quence {d,} defined by (11) satisfies (21), then the assertion (23) holds true.
Moreover, if we assume (22), then then the assertion (25) holds true. The result is
sharp, with the extremal functions fr, (n € R) of the form (20).

Corollary 7 Let a function [ belong to the class TWq (p, k; &, p;7,0;m) and let the
sequence {d,} be defined by (11). If

dp <dp, ((n=kk+1,...), (27)
then 1 1
- < @) <t (e =1 <), (28)
k
Moreover, if
nd <kd, (n=kk+1,...), (29)
then
k(11— k(1 —
prP=t — 7( 7 7)1“’“_1 <I1f'(2)] < prP=t 4 %rk_l (lzl=r<1). (30)
k k

The result is sharp, with the extremal function fi.,, of the form (20).

Corollary 8 Let a function f belong to the class TWy (p, k; ¢, v;7, 6). If the sequence
{d,} defined by (11) satisfies (27), then the assertion (28) holds true. Moreover,
if we assume (29), then then the assertion (28) holds true. The result is sharp, with
the extremal functions fr, (n € R) of the form (20).

4 The Radii of convexity and starlikeness

Theorem 6 The radius of starlikeness of order o for the class TW (p, k; ¢, v;7, 6;n)
s given by

. (p—a)d, P
* . . . — f 1
R (TW (ks b)) = int (2298077 )
where d,, is defined by (11). The functions fy , of the form

1 —~ .
fan(2) =ap <zp — fye“”””’z") (zeU; n=k,k+1,...;5a, >0) (32)
are the extremal functions.

Proof. A function f € T (p,k;n) of the form (1) is starlike of order o in the disk
U(r), 0 <r <1, if and only if it satisfies the condition (7). Since

5 (n— pagz" § (n = p) [an] |27

<

o0 o0 _
apzP + Y. apz" ap— > lanllz]""
n=~k n=~k

3

') ‘ _|&
i)
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putting |z| = r the condition (7) is true if

S a7 <y, (33)
n==~k p
By Theorem 2, we have
e} dn
Z 1— lan| < ap, (34)
n==k v

Thus, the condition (33) is true if

n_ar”_p§ dn (n=kk+1,...),
p—a -~
that is, if
@—w¢l)n%
r< | —" n=kk+1,..). 35
(maﬂlw ( (35)

It follows that each function f € TW (p, k; ¢, v;,d;n) is starlike of order @ in the

disk U(r), where
_ s (p—a)d, =7
= ((n—a)(l—’y)

The functions f, , of the form (32) realize equality in (34), and the radius r can not
be larger. Thus we have (31). W
The following result may be proved in much the same way as Theorem 6.

Theorem 7 The radius of convezity of order v for the class TW (p, k; ¢, ©;7,6;n)
s given by

C . . . — 3 (p _ Oé) dn o
Ra (TW(p7k7¢aS&7ﬁya6an))7ég€c <n(n_a) (1_7)) ’

where d,, is defined by (11). The functions f,, of the form (32) are the extremal
functions.

It is clear that for p
ap - 2 n—p > O
dn — (L=7)1p|
the extremal functions f,, ,, of the form (32) belong to the class TW, (p, k; ¢, ©;7, ;).
Moreover, we have

TW, (p, ks ¢, 057, 8;m) CTW (p, ks ¢, 057, 6;m) -

Thus, by Theorems 6 and 7 we have the following results.
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Corollary 9 Let the sequence {dn —(1—9) |p|"_p}, where d,, is defined by (11), be
positive. The radius of starlikeness of order a for the class TW, (p, k; ¢, p;y,0;n) is
given by

Ro (TW, (0. k: 6,917, 83m)) = tnf (%) o

The functions f, ., of the form (32) are the extremal functions.

Corollary 10 Let the sequence {dn —(1—-7) \p\"_p}, where d,, is defined by (11),

be positive. The radius of convezity of order o for the class TW, (p, k; ¢, ¢;7, ;1) is
given by

. b o S = (p=a)dn )™
Ra(TWp(p7k7¢7(pa'7767n))_;r;flg(n(na)(lry)) ’

where d,, is defined by (11).

Remark 3 We conclude this paper by observing that, in view of the definitions of
investigated classes which is expressed in terms of the convolution of the functions
in (10), involving arbitrary sequences, our main results can lead to several additional
new results. In fact, by appropriately selecting these arbitrary sequences, the results
presented in this paper would find further applications for the class of analytic func-
tions which would incorporate linear operators. Some of these results were obtained
in earlier works, see for example [16, 17, 18, 19, 20].
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ABSTRACT: In this paper we are concerned with the mixed type inte-
gral inclusion

z(t) € p(t) +/O k(t, s) F1(57Iﬁf2(871'(8)))d87 t €[0,1].

The existence of monotonic continuous solution will be proved. As an
application the initial-value problem of the arbitrary (fractional) orders
differential inclusion

dz(t)
dt

1
€ p(t) +/ k(t,s)Fi(s, D%x(s))ds, a.e., t>0
0

will be studied.
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Key Words and Phrases: Fractional calculus; Caratheodory condition; fixed point
theorem; mized type integral inclusion.

1 Introduction

The existence of monotonic integrable solution for the mixed type nonlinear integral
equation

z(t) = p(t) +/0 k(t,s) fi(s,I? fo(s,x(s))ds, te€[0,1], B>0 (1)

has been studied in [6] where the given function P is nondecreasing on [0, 1] and the
two functions f; and fo are monotonic nondecreasing (in both variables) and satisfy
Caratheodory condition.

COPYRIGHT (© by Publishing Department Rzeszéw University of Technology
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Here we relax the condition of monotonicity on the two functions f; and fo and
prove the existence of positive continuous solution of (1).

When the given function p is nondecreasing and the kernel k(¢, s) is nondecreasing in
t, t € [0,1], we prove that the solution of (1) is nondecreasing.

As a generalization of our results we study the existence of positive monotonic con-
tinuous solution of the mixed type integral inclusion

1
x(t) € p(t) Jr/o k(t,s)Fl(s,Iﬁfg(s,z(s)))ds, te[0,1], 8>0 (2)

where the set-valued map F'(t,.) is lower semicontinuous from R™ into R* and F(.,.)
is measurable.
Finally the differential inclusion of arbitrary (fractional) orders

dx(t !
xdi) € p(t) +/ k(t,s)Fi(s, D%z(s))ds, a.e., t>0 (3)
0
with the initial data
z(0)=xz, >0 (4)

will be studied.

2 Preliminaries

Let L'(I) be the class of Lebesgue integrable functions defined on the interval I =
[a, b], where 0 < a< b < 0o and let I'(.) be the gamma function.

Definition 2.1 The fractional integral of the function f € L!(I) of order a € R™ is
defined by ([7], [9] and [12])

ﬁf@=/wﬂw4ﬂ$@

Definition 2.2 The (Caputo) fractional derivative D® of order a € (0,1] of the
absolutely continuous function g is defined as ([2], [9], [10] and [12])

d
g g(t) =127 L gt) . € [ad],

Now, we shall state the following theorems which are used in the sequel.

Theorem 2.1 Schauder’s fixed-point Theorem [§]
Let S be a convex subset of a Banach space B, let the mapping 7 : S — S be
compact and continuous. Then T has at least one fixed-point in S.
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Theorem 2.2 Arzela -Ascoli Theorem [4]

Let E be a compact metric space and C(FE) be the Banach space of real or complex
valued continuous function normed by

[fIl = sup [£(2)]-
tek

If A= {f.} isasequence in C(E) such that f, is uniformly bounded and equi-
continuous, then A is compact.

3 Main results

Let C(I), I =[0,1] be the class of continuous functions defined on I.
In this section we present our main result by proving the existence of monotonic

positive solution = € C(I) for the mixed type integral equation (1).
To facilitate our discussion, let us first state the following assumptions:

(i) p:[0,1] — RT is continuous. There is a positive constant p such that |p(t)| < p.

(i) fi:[0,1] x RT — R*, i = 1,2 satisfy caratheodory condition i.e. f is measur-
able in ¢ for any z € R and continuous in x for almost all ¢ € [0, 1].
There exist two functions a1, as € L' and two positive numbers by, by such that

Ifi(t,2)| < a;(t) + bijz|, i=1,2 V ¢t €[0,1] and x€ RT.

(iii) k:[0,1] x [0,1] — R™ is continuous in ¢ for any s € [0,1] and measurable in
s for any t € [0,1] such that

1 1
/ k(t,s)(a1(s) + bi1Pas(s)) ds < M; and / k(t,s)sPds < M,.
0 0
(iV) bl bg My < F(ﬁ—F 1)

Remark: It must be noticed that assumption (iii) implies that the two functions

/1 k(t,s)(a1(s) + b1I%as(s)) ds and /1 k(t,s)sPds.
0 0

are continuous in ¢, t € [0,1].

Now, we are in position to formulate and prove our main result.
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Theorem 3.1 Let the assumptions (i)-(iv) be satisfied. Then equation (1) has at
least one positive solution = € C(I).

Proof Define the subset S of C(I) by

S={zeC : |z@®)|< r}, te]0,1],

where r is a positive constant. It is clear that S is closed and convex.
Let T be an operator defined by

1
(Tw)(t) = p(t) + / k(t,8)f1(s, 17 fals,a(s)))ds ¥ @ € S. (5)

Assumption (ii) implies that T : S — C is continuous in z.
Now for every = € S we have

|(Tz)(t)| < |p(t)] +/O k(t,s) |fi(s, I? fa(s,z(s)))|ds
1
<p+ [k )+ bl s al)]ds
0
<+ /0 k(t, $)a1 (s)ds + b1/0 k(t, )P [as(s) + bola(s)[]ds
<p+ /0 k(t,s)[a1(s) + bil%as(s)]ds + b1b2/0 k(t,s) I?|x(s)|ds

bib
<p+ M o+ 2 /kts )sPds

T(B+1)
b1b2 M2 r
< + M, + ————.
= p 1 F(ﬂJrl)
Therefore,
b1b2 M2 T
Tx)(t)| < + My + ————. 6
(@O < p o+ M+ FET (6)
From the last estimate we deduce that
b1ba Mo )
= + M
r=0 1)< T(B+1)
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and Tx € S and hence T'S C S.
Also for t1,t5 € [0, 1] such that ¢; < tg, we have

(Tz)(t2) — (Tx)(t1) =p(t2)—p(t1)+/o (k(ta, s) — k(t1,5)) fi(s, 17 fa(s, 2(s)))ds.
Then

|(Tz)(t2) — (Tx)(t1)| < [p(t2) — p(ta |+/ k(t2, s) — k(t1, s)| fi(s, 17 fa(s, 2(s)))|ds
< Ip(ta) — p(t1) |+/ le(ta, 5) — k(t1, 5)|[as(s) + ba | I° fa(s, o(s))[|ds

< |p t2 tl |+/ |]€ tQ, tl S |a1( )ds

+b1/ e(ta, 5) — k(tr, $)1T° fols, 2(s))|ds

< Ip(ta) — plts |+/ le(ta, 8) — k(ty, 8)|as (s ds+b1/ le(ta, 5) — k(t1, 5)|IPas(s)ds

+ blbg/ |k(ta, s) — k(t1, s)|I°|x(s)|ds
0

< |p tz tl | + / ‘k tQ, tl S | [al(s) +b1]ﬁa2(s) ] ds

+ blbgT/ ‘k’ t2 S tl |/

<|p(t2) — p(t1)] + / |k(ta, s) — k(t1, 9)] [a1(8)+b115a2(s) | ds

des

b1b
Bljrrl / |k(ta, s) — k(t1, s)|s"ds.
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From the last inequality, the continuity of the function p and assumption (iii) we
deduce the equicontinuity of the functions of T'S on [0,1]. Then by Arzela-Ascoli
Theorem the closure of T'S is compact.

Now, all conditions of Schauder’s fixed-point Theorem are hold, then 7" has a fixed
point in S. Hence there exists at least one positive solution z € C(I) of (1).

Corollary 3.1 Let the assumption (i)-(iv) are satisfied. If the function p is non-
decreasing and k is nondecreasing in ¢ € I, then the solution of (1) is nondecreasing.
Proof For ti,t5 € I and t; < ty, we have

1
o) = pltr) + / k(t1,) fu(s, I fa(s, 2(s))) ds
< plta) + / K(ta.5) f1(5. 1% fo(s, 2(5))) ds = x(ts).

4 Mixed type integral inclusion

Consider now the integral inclusion (2), where Fj : [0,1] x RT — 2%" has nonempty
closed convex values.
As an important consequence of the main result we can present the following;:

Theorem 4.1 Let the assumptions of Theorem 3.1 are satisfied and the multi-
function F satisfies the following assumptions:

(1) Fi(t,x) are non empty, closed and convex for all (¢,z) € [0,1] x RT,

(2)
(3)
(4)

4) There exist a function a; € L' and a positive number b; such that

Fi(t,.) is lower semicontinuous from R* into RT,
Fi(.,.) is measurable,

IFi(t,z)] < ay(t) + by 2| ¥V telo,1].

Then there exists at least one positive solution = € C(I) of the integral inclusion (2).

Proof By conditions (1) — (4) (see [1], [3], [5] and [11]) we can find a selection
function f; (Caratheodory function) f; :[0,1] x RT — RT such that fi(t,z) €
Fy(t,z) for all (t,z) € [0,1] x RT, this function satisfies condition (ii) of Theorem
3.1

Clearly all assumption of Theorem 3.1 are hold, then there exists a continuous positive
solution = € C(I) such that

z(t) —p(t) :/0 K(t,s) fi(s, I fa(s,(s)))ds € /0 K(t,s) Fi(s,I? fo(s,x(s)))ds.
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Now, we can easily prove the following Corollary.

Corollary 4.1 Let the assumptions of Theorem 4.1 and the Corollary 3.2 are satisfied,
then the solution of (1) is nondecreasing.

5 Differential inclusion

Consider now the initial value problem of the differential inclusion (3) with the initial
data (4).

Theorem 5.1 Let the assumptions of Theorem 4.1 are satisfied, then the initial

value problem (3)-(4) has at least one positive nondecreasing solution « € C(I).

Proof Let y(t) = dﬁt), then equation (3) transformed to the integral inclusion

u(t) € plt) + / K(t, $)Fi (s, T2 y(s))ds

which by Theorem 4.1 has at least one positive solution y € C(I).
This implies that the existence of the absolutely continuous solution

z(t) = zo + /Oy(s)ds

which is nondecreasing solution of the initial-value problem (3)-(4).
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1 Introduction

The nonlinear composition operator (which is also known as the superposition oper-
ator) is frequently used in many branches of nonlinear analysis and its applications.
In order to define such an operator let us assume that I is a real interval (bounded
or not) and f(t,z) = f : I x R — R is a given function. For an arbitrary function
xz(t) = x : I — R we may assign the function Fx defined as (Fz)(t) = f(t,z(t))
for t € I. The operator F defined in such a way is called the composition operator
generated by the function f(¢,x).

One of the basic problems considered in the theory of composition operator can
be formulated as follows. Let us assume that S(I) is a set (a space, an algebra, etc.)
of some functions acting from I into R. One has to formulate assumptions on the
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function f(¢,z) guaranteeing that the composition operator F' generated by f(¢,x)
transforms S(I) into itself.

Such a problem was solved in a lot of particular cases. We refer to the monograph [1]
for more details concerning that problem.

The second important problem concerning the composition operator depends on
the characterization of operators being Lipschitzian in a suitable function space. Such
a problem in various situations was studied in a lot of papers (for instance [1], [2], [3],
], [6], [7). [8], [11)).

In the paper we investigate the problem of characterization of the composition
operator being a self-mapping of the Banach algebra of functions of two variables
with bounded total variation in the Schramm sense. Namely, we show that such a
composition operator is Lipschitzian if and only if it is affine.

The results obtained in the paper generalize those obtained for example in the
papers [4], [10].

2 Preliminaries

In this section we collect all auxiliary facts which will be needed in the sequel. Let
be R the set of real numbers and Ry = [0,00). A function ¢ : Ry — Ry is said to be
-function if it is continuous on Ry, ¢(0) = 0, ¢ is increasing on Ry and ¢(t) — oo
as t — oo.

Further, let ® = {¢,,} be a sequence of p-functions. The sequence & is called the
D-sequence if ¢, is convex and ¢p41(t) < ¢y (t) for n =1,2,... and for t € R. Apart
from this we assume that these series > ¢, diverge for each ¢ > 0.

Next, let us fix an interval I = [a,b]. Assume that u : [a,b] — R is a given
function. Let ¢, be a ®-sequence of functions. If I, = [an, b,] is a subinterval of the
interval I we write u (I,) = u (b,) — u (a,) (for n =1,2,...).

We say that the function u has the bounded total ®-variation in the Schramm
sense on the interval [a, b] if

S 6 (lu (L) ) < o0

for each sequence {I,} of closed subintervals of I such that the intersection I; N I; is
empty or is a singleton for all 4, j = 1,2,..., 9 # j.

We introduced the ® = {¢y, ,, } bidimensional sequence of increasing convex functions,
such that ¢, ,,(0) = 0 and ¢y m(t) > 0 for t > 0 and n, m = 1,2,.... We shall say
that @ is a ®*-sequence if ¢p/ s (t) < Py, m(t) for each n’ <n, m’ <mand ¢ € [0, o).

If > > ¢nm diverge for t > 0, we will say that @ is a $-sequence.
n=1 m=1
In what follows let us assume that a = (a1,¢1), b = (b1,d1) are two fixed points
in the plane R2. Denote by I° the rectangle generated by the points a and b, i.e.
Ig = [al,bl] X [Cl,dl].
Further, let us take two sequences {I,, }, {J} of the closed subintervals of the intervals
[a1,b1] and [c1,d1], respectively. In other words, I, = [an,by] (n = 1,2,...), Jp, =



On composition operator in the algebra of... 37
[¢m,dm] (m=1,2,...). Moreover, let ® = {¢,, ,»} be a fixed double ®-sequence and

let w : I; — R be a given function. Now, fix 9 € J; = [c¢1,d;] and consider the
function u(-, z2) : I1 — R. The quantity Vgh defined by the formula

Vq?,[l (u)

sup Z ¢n,m (|u(1na 372)')
n=1

SUPZ‘an,m (|u(bn, x2) — ulan, x2)|) (1)

is called the ®-variation in the Schramm sense of the function u(-,x2). In the case
when ngg’h (u) < oo we will say that u has a bounded ®-variation in the sense of
Schramm with respect to the first variable (with the second one fixed).
In the same way we define the ®-variation of the function wu(z1,-) in the Schramm
sense, which will be denoted by Vg e If Vq;g, 7, (u) < oo then u is said to be a function
with bounded ®-variation in Schramm sense with respect to the second variable (with
the first one fixed).

Additionally, let us explain that the supremum in formula (1) is taken with respect
to all sequences {I,} of the closed subintervals of the interval I;. Obviously, in a
similar way we understand the supremum in the formula of the quantity V¢,37 g
Below we provide the definition of the main concept introduced in [4].

Definition 2.1. The quantity qu v defined by the formula

Vi () =sup Y > b ([u(Tns Jn)|)

n=1m=1

Supz Z ¢n,m (|U(bn, Jm) - u(an, Jm)D

n=1m=1

sup Z Z n,m (|uan, em) + u(bn, dim) — ulan, dm) — u(bn, cm)|)

n=1m=1

is said to be the bidimensional variation in the sense of Schramm of the function wu.
Now, let us set the quantity TV4 by putting

TV (u) = Vi 1, (w) + Va5 g, (u) + Vi o (w). (2)

This quantity is referred to the total ®-variation of the function w in the Schramm
sense. In the case when TV{ < oo we say that u is a function with bounded total
®-variation in Schramm sense.
The set of all functions u : I? — R having a bounded total ®-variation will be denoted
by BV (I%).

Next, let us consider the functional Py defined on the set BV (1Y) by the formula

P<p(f)inf{e>0:TVq§ ({) 31}. (3)
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The main result proved in [4] asserts that the set BV (I%) forms a Banach algebra
with the norm obtained by the formula

1115 = If (@) + Pa(f)- (4)

Our next result depends on the following lemma.
Lemma 2.1. Let f € BVF (1Y) and ® € ®*. Then f has the following properties:

(a) If (t,5), (t',s") € I then |f(t,s) = f(t',s)] < 4oy} (3) Po(f)-
(b) If Ps(f) > 0 then TVE (f/Ps(f)) < 1.

(c) Let 7> 0. Then TVE(f/r) <1 if and only if Ps(f) <

(d) If r >0 and TV (f/Po(f)) = 1 then Ps(f) =

In what follows let us fix arbitrary f € BV{ (18). Then, the function f*: 12 — R
defined by formula

lim  f(y1,y2) if (21,22) € (a1,b1] x (c1,d4],
y1—x1—0
Y2 —>T2— 0

lim  f(y1,y2) if z1 € (a1,b1] and z2 = ¢4,

U1—>11;0
[ (@1, @0) = 2 .
lim  f(y1,y2) if 1 =a; and x5 € (¢1,d4],

y1—ra1+0
ya—x2—0

lim  f(yi,y2) if 2y =a; and 23 =c;
y1—a1+0
Yy2—c1+0

will be called the left-left regularization of the function f.
The existence of all one-side limits used above was proved in the book [5].

In the sequel we will denote by G~ (I%) the class of all left-left regularizations of
the function f € BV (I?). It can be shown that G~ (I?) forms a linear space ([9]).
Apart from this space G~ (I?) has the structure of a Banach space with respect to
the norm

I£1l = sup{|f] : (z,9) € I3}
To present the first result of this paper let us denote by Bti . (I%) the subspace

of the space BV (1Y) containing all functions being left-left continuous on (a1, b1] x
(c1,di].
We have the following result.

Lemma 2.2. If f € BV (1Y) then f* € BVy (I7).
Proof. First, let us note that according to the definition of the left-left regularization,

if f € BV (1Y) then the function f* is left-left continuous on the set (a1, b1] x (c1, d1].
We show that f* € BVg (I0), i.e.

TVE (F*) = Vi, (f) + Vi (F) + Vg pp (f) < oo

(cf. formulas (1) and (2)).
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At the beginning we show that Vq;g,h (f*) < 0.
To do this we fix € > 0 and take a partition 7 of the interval I; generated by the
points a; = to < t1 < --- <t, = b;. Then by virtue of the definition of f* we can
find t; € (tifl,ti) C [tifl,ti] =1I; (Z =1,2,.. .,n) and t6 € (aht’l), So € (C1,d1) cJp
such that
1 _ €
£ b e) = £ (ki e0)| < [ (Hhs0) = F(E-s50)| + gk ().
Hence, keeping in mind that ¢,, ,,, is increasing, we deduce the following estimate

('bnvm (|f*(tla Cl) - f*(ti_l,cl)b
< nan (1000 = 11050 + Jonke (5)

- £ (t,50) = f(ti_gs50)| 1 (b (
= Onm (2[ + -1

2

3n

SN—
~—
—_
~—

2
1 1 1
< g LS50~ sl + 00 (50 (5)). O

which is also a consequence of the convexity of ¢, p,.
On the other hand, since (;S;’lm is concave, we have

2 (2) - e ()
< 2000 (5-)- (6)
From (5) i (6) we obtain

Grm (IF*(tisc1) — fH(tiz1, 1))
S %d)n,m (2 ’f(t;,SO) - f(t;_l,so)‘) + %(bnﬂn ( ;,%rn ( ‘ ))

2m
< Gnom (2170t 50) = F(E1,50)]) + dman (670 (5))
= Gum (2170 50) — Ft1,50)]) + 5

Consequently, we get

k k
Z¢n,m ( f*(jzacl)D S Z(bn,m (2‘f(t:a80)_f(t;71780)|) te
n=1 n=1
< tifl(Qf(',So)) +e
< Vo, (2f(,d)) +e

since ¢; < sg < di. The last estimate allows us to derive the following one

Vi, (£ (o)) < Vip, (2f (- dh)) < oo (7)
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Analogically we can show that

Vi 5 (f*(a1,2) < Vg 5, (2f(by, ) < 0. (8)

In what follows fix two partitions 7y, w9 of the intervals I;, Ji, respectively, i.e.
moiap =tg <ty < <t =0y, M1 =80 <851 << Sy =dy. In view of the
definition of f* we infer that there exist t; € (t;—1,t;) C [ti—1,t:] =1; (i=1,2,...,n)
and s} € (sj-1,5;) C [sj-1,85] = J; (j = 1,2,...,m), tg € (a1,1}), 55 € (c1,5}) such
that

£, jj)‘ = [f"(tic1,85-1) + [ (tiy s5) — ["(tim1,85) — f7(ti,55-1)]

S P $50) (s s5) — F(Ermsh) = £t )|+ ot ().

nm
In a similar way, as earlier, we obtain

Dnm ( df>)
€
< ( |f i—155 ] 1)+f( [ j) f(t27173;)—f(t;73;‘71)|)+%~
This yields
ko1 1
ZZ ( IJD S Zz¢nm 2|f21’]1)+f(2’ j)
n=1m=1 n=1m=1
—ftiy,s5) — f(ti, s5_1)]) + e

Consequently, we get

Ve (F*,13) < Vg (2f,13) + € < oo. (9)
Finally, combining (7), (8) and (9) we derive

TV3 () STV (2f) < o0

which means that f* € BVg*(I(ZL’).
Thus the proof is complete. ([l

3 Main result

In this section we prove the main theorem of the paper.
This result characterizes the composition operator acting from the space BVg (1%)
into itself which is Lipschitzian.

Theorem 3.1. Let ® be convex and let H : BV (1Y) — BVE (1Y) be a composition
operator generated by the function h: I? x R = R, i.e.

(Hf)(t,s) = h(t,s, f(t,5)), f€RM for (t,s) € I.
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If the operator H acts from the space BVg(IS) and is Lipschitzian, then
|h(z,u1) — h(z, uz)| < 6ur — ugl (10)

for all x € I” and uy,us € R, where § > 0 is a constant.
Moreover, there exist functions hg, h1 € BVg)*(Ig) such that

h*(xz,u) = ho(x) + hy(z)u, (11)
for x € I? and u € R. Conversely, if ho, h1 € BVg*(IQ) are functions such that (11)
holds, then H acts from the space BVq;q(If;) into itself and is Lipschitzian.

Proof. Let us fix arbitrarily a,8 € R, a < § and define an auxiliary function
Nos ' R =R

0 for t < a,
t—«

Nas(t) = o for a<t<g, (12)
1 for t > .

Keeping in mind that the operator H : BV (I°) — BV{ (1Y) is Lipschitzian, we infer
that there exists a constant p > 0 such that |Hf; — Hfa|3 < ullfi — f2l|3 for any
f1, fo € BVF(I). The definition of the norm implies

Py(Hf1 — Hfs) < |Hf1 — Hfollg < pllf1 — foll3- (13)

In order to simplify the notation let us put H = Hf; — H fo. Then, in view of (13)
we get

Py(H) < |[H|3 < M||f1 - f2ll3- (14)
If || f1 — fa||3 > O then from Lemma 2.1 (c ) ) we have

TV ( ) 1.
® pllfr — f2||<1>
From the definition of TV(I> , we infer that

Hiver) ) (H ) 1 .
¢"”"(m|f1—fz||g < A - sz<1> =h 15

H(ay,-) ) ( (z1,-) >
¢”’m(u||f1—f2llé = unfl f2||¢ =h

) < (ot
¢’”””(u||f1—f2||g = unfl szcp =t

Thus, for any u;,uz € R and a = (ay,c1), b= (b1,d1), © = (z1,72) € I? we deduce
|h(z1, 22, u1) — h(z1, 22, u2)| = |H(x)
= |H(z1,c1) — H(ar,e1) + H(ar, x2) — H(ar, 1)
+H(ar, e1) — H(ar, x2) — H(zr, 1) + H(z) + H(ar, e1))]
< [H(zr, ) = H(ar, a)| + [H(ar, z2) — H(ar, e1))]
+|H(a1,c1) — H(ar, x2) — H(x1,c1) + H(z)| + |H(a1, c1)]
3bmm(Dpll fr — follg + H(ar, e1)]. (16)

IN
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To prove the inequality (10) we consider the following cases:

i) a1 <z <by and 01<x2§d1,

(
(i) a1 <z <b; and z9=c,
(iil) x1 =a1 and ¢ <o <dj,
(iv) z1=a; and xo=c;.

Case (i). Consider the functions fi, fo € BV{ (IZ) defined by the formulas

Je(yi,v2) = (Nay,zr (Y1) + Ney 2o (Y2)) we such that a1 < y1 < by, ¢ < yo < dy for
¢ = 1,2. Note that fi(a) = fi(a1,¢1) = 0 and fo(x1,¢1) = ug for £ = 1,2, and
[H(a)| = [H(ar,c1)| = 0.

Let ¢ > 0 such that TV (ﬁ;ﬁ) = 1. Next, we get

i (U520 o {5 o (|22 1
SUp{Z¢nm<J‘z> (fi=h)
:
— an)

S (| 750

~

Vi g, ((h;f?)(ah ')>

- sup{iqsn,m (|22 {Jm}}

m=1

) :{In}}
)i, }}

( nvcl) -

anacl)

) :{In}}

(u1 —u2)

Aa €
- up{ini o (|2 1,10 ) {In},{Jm}} -0

Moreover, we deduce

_ b1 — a1 |uy — us|

Grom (1) lz1 — x|
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By virtue of Lemma 2.1 (d), we choose Py (f1 — f2) = € and derive
Ifi — fll2 |(f1 = f2)(a)| + Po (f1 — f2)

b1 — a1| |u1 — us
G (1) |1 — a

Now, employing (17) in the inequality (16) we obtain (10), i.e.

0+

(17)

b1 — ay] Jur — g
Gnm (1) |21 — @
b1 — a1 Jug — us

[h(z,ur) = h(z,u2)] < 3¢y, (1)p

+|H(a, 1)l

= 3u +0

|1 — a1

by —
= §|ug — ug| (Where<5 = 3”1‘11—(Zz11||) .

Case (ii). Define the functions
fe(y1,92) = (May oy (1)) we for £=1,2, a1 <y < b, e <y < da. (18)
Observe that fo(a) = fe(a1,c1) = (May,:(@1)) ue = 0 for £ = 1,2. As in the case (i),

we get
): {In}}

vin (P2 ee) - p{iqsm(\”‘”a)

9
= ¢n,m< )a

Fix some arbitrary € > 0 such that
=g (D) — o (| )

_ b1 — a1 |ug — ug
$rm (1) 21 — a1
Taking Py (f1 — f2) = € and using the Lemma 2.1 (d) we get

‘We obtain

b1 — x| [ur — g
Grm (1) |1 — a1

Employing (19) in the inequality (16) we get (10), i.e.

Ifi—follz = 0+

b1 — ay] [ur — g
Grom (1) |21 — a1

by —
= 0lu; — ug] (Where 0= 3M||acll—zll||) .

[A(z,ur) = Wz, u2)] < 3¢5, (1)u + [H(as, e1)
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Case (iii). In this case we proceed in the analogous manner as in the case (ii),
for which the functions fi, fo € BVg (I (ZL’) are defined by the formulas

fe(y1,y2) = (Mey 2o (Y2))ue for £=1,2, a1 <y1 < by, e1 <yo < ds.
Case (iv). Consider the functions fi, fo € BV (Iab) defined by

ff(ylva) = [2 — Nay by (yl) — Ney,dy (:(/2)] up for £=1,2

SuCh that aq S Y1 S b1 and C1 S Y2 S dl.
Observe that

fl(a) fl(ahCl) = [2 Nay by (al) Nea, d1(61)] UL = [2 —0— O] ug = 2us,
fala) = falar,c1) =[2 = Nayby (@1) — Ny ay (€1)] w2 = [2 — 0 — 0] ug = 2ug,
1) = fi(bi,d1) =2 = Nay by, (b1) = Ney gy (dr)]ur = [2 =1 —1]ug =0,
fob) = fa(br,di) = [2 = Nay by (01) — Ney.ay (d1)]ug = [2 — 1 — 1] ug = 0,
H(a) = h(a,u1) — h(a,uz),
H() = H(bi,d1) =0,
(fl f2) (al’ ) = [2 — Ney,da (dm) -2+ MNey,dy (Cm)] (’LL1 — ’U,Q)
_ [ dm — 1 Cm —C1
T di—a + d1_01:| (ur — u2)
= __dczzn] (Ul —U2),
(= e = |22 (w1~ ua)
(fl - f2) (In; Jm) = 0.
Hence
Vg,h <(f1€_f2)(ln7cl)> = ¢n,m ( @ > s
Vqﬁ-h <(flng)(a17Jm)> = ¢n,m ( @ > ,
Vi 1y <(f1€fQ)(In,J )) = 0.
Therefore
Taking € > 0 such that
1=TVS <f1f2) 2¢n7m((“1“2))’
€ €
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we get the following
_u —us

E=———.

Gnm(1/2)

Now, we select Pg (f1 — f2) = € and by virtue of the Lemma 2.1 (d) we get the
result

_ 20,,(1/2) +1

S
I = folls = =22

lur — ual. (20)
In consequence

|h(a17cl7ul) - h(a1,617u2)| = ‘H(a')l
[H(b1,c1) — H(ar, c1) + H(ar,dr) — H(ar, c1)
+H(ar, 1) — H(ar, di) — H(b1,c1) + H(b1,d1) — H(b1,d1)]

< |H(bi,e1) — H(ar, e1)| + [H(ar, dr) — H(as, 1)
+|H(ar,c1) — H(ar,dr) — H(bi,c1) + H(br,dv)| + |H (b1, dy)|
< 3¢, (Wl fi — follz + [H(b1,dy)|
, 205 7,(1/2) +1
= 3¢nﬁn(1)ﬂm|ul —ug| + 0]
_ 20;70(1/2) +1
= dlup — ug (Where 0= 3¢n"1m(1)u¢’mlm(1/2)> . (21)

From the foregoing cases we conclude that h is Lipschitzian.

Next, we show the estimation expressed in (11). Let us fix arbitrarily z; € (a1, by],
w3 € (c1,d1] and put & = (x1,22) € I°. For each k € N we consider

<o <Pi<ag<fa<az<fz<---<ap<pBr<ux,

a<m<Bi<mm<Be<az<PBz<--<ay <P <

with n : [a1,b1] — [0,1] and 7, : [e1,d1] — [0, 1] two auxiliaries functions defined by
the following formulas

0 for a1y <t <ay,
Mo, .3, (t) for a; <t<p;, i=12,...,k,
k() == L () for fi<t<a o (22)
N804 or 0 =1 = Q+1, t=1,4..., ,
1 for Br <t <b
and
0 for ¢y <s<aj,
_ e 7 (5) for @ <s<PB; i=12,...k
Mi(s) := 1 t — _ o (23)
_nﬁ_,ﬁi+l(8) for B, <s<ayi, t=1,2,...,k—1,
1 for BkSSSdl-
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For any uy,us € R we define the functions f1, fo by

fe(yi,y2) = [=ne(y1) + M (y2)]ur + (2 = Ouz, a1 <y1 < by, e Syo < dy,
where ¢ =1, 2.
We denote the intervals I,, and I, by I, = [o,Bk] C [a1,01] = I and I5, =
[@k, Bi) C [c1,d1] = Jp, then
il = fol) =uz and [|fi = foll§ = [ua]-
Using inequality (15) we have

zk:d)i,m <’H(ﬂ1751) — H(asz)
=1

pll f1 —f2||§

— H(Iakagk) )
< m | |————| | {Lay
< S“p{,;¢k’ (=il }}
S H(Iak7Bk}) ) 1
- (M||f1f2||qs> =t
Thus

Ek:gb |h (ﬂmﬁmfl(ﬂwgz)) —h (517Bz7f2(ﬂ7751)) —h (ai7Bi7f1(aivﬁi))
i pluz|

<1.

+h (v, By, fo(ai, By)) |>

ilus|
Since fl(ﬁiagi) = Uz, f2(/817Bz) = 07 fl(aiagi) = U + Uz, fQ(O[i)Bi) = Ui, we get

from the foregoing estimation
zk:(b |h(/8iaBiau2) 7h(51a5170) *h(OLi,BmUlﬁ“Ug)
o |z ]

i=1

+ M <1. (24)
fulus|

It is great importance to remark that the constant functions of two variables defined
on the rectangle I’ belong to the space Bqu (Ig) since the composition operator
H generated by h acts from BV{ (1Y) into BV (I%) and the functions h(-,u)[z —
h(z,u)] belong to the space BV (I%) for each u € R. On the other hand, we know
from Lemma 2.2 that the regularization left-left in the first two variables h*(-, u)
belongs to the space BV, (1Y) for all uw € R. If we apply limit in (24) when (o, @) =
(1 — 0,22 — 0) we obtain

Xk:qﬁ <| h* (21, 22, u2) — h* (21, 22,0) — h* (z1, 22, u1 + u2)
i,m

— |z

<1

h* ) b)
n (w1, 72,u1) |>

f|uz|
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Without losing generality we fix i =n forn=1,2,...,k

k¢ (| h* (1'1,1'2,1142) - h* (1'1,1'2)0) - h* (mlvaaul + u2)
o ]z

_|_h ($1,I2,U1)|> Sl
|z
Hence
p (|h*(x17x2au2)_h*(xlal‘%o)_h*($17l‘27ul+u2)
- gl

h* (xq, 2, u1) |> <
pluz| -

| =

Since k € N is arbitrary we derive

o (| h* (.’131,$2,U2) —h* (xl,l‘g,O) —h* (xl,xg,ul + UQ)
- pfus|
h* (a:l,xg,ul) |> —0
pulus| '

Because ¢y, m, is convex for n,m =1,2,... and ¢(¢) = 0 only if ¢ = 0, then

| W (21,22, u2) — h* (21, 22,0) — h* (21, 22, u1 + ug) + A" (21,22, u1) |
pluz|

=0.

Therefore
W (x1,x2,u2) — h* (1, 22,0) — h* (21,29, u1 +ug) + h* (1, 22,u1) =0
or equivalently
W (zyuy +ug) + A" (2,0) = h* (z,u1) + h* (z,u2) (25)

for each z = (z1,x2) € (a1,b1] x (¢1,dq] and all uy,us € R.
Let z1 € (a1,b1] and 23 = ¢1, now we consider the following inequalities

<o <Pr<ag<fo<az<pfz<-<ap<pBp<ax,

a<m<Bi<m<Po<tz<Pg<---<ap<pf<di, keN.

We proceed in the similar way as in the result (24). Taking limit when (a1, 8;) —

(1 —0,2240) in (24) we obtain (25). The cases 1 = a1 and z2 € (¢1,d1] or 1 = a1

and x9 = ¢ are similar.

Thus the equation (25) holds for each 2 = (21, 22) € I? and for any uy,us € R.
Now, we fix x = (21, 72) € I’ and define the mapping T, : R — R by

Ty(u) = h*(z,u) — h*(z,0) Yue€R.
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Note that we can rewrite the expression in (25) as follows
Ty (up +ug) =Ty (ur) + Ty (u2)  Vug,ug € R. (26)

This shows that T}, is an additive operator.
For any u;,us € R we have

Ty (u1) — Ty (u2)] = |h" (x,u1) — h" (2,0) — A" (x,uz) + A* (2,0)]
= |h" (x,u1) — A" (z,usz)]
S M |’LL1 - ’LL2| )

i.e. T,(-) is Lipschitz-continuous on R. Then exists a mapping hy : I” — R such that
Tp(u) = hy(x)u Vx eI, Yuck.
Taking ho(z) = h*(x,0), x € I? we derive
h*(z,u) = Ty(u) + h*(z,0) = hi(z)u + ho(x).

Since ho(-) = h*(+,0), h1(:) = h*(-,1) — h*(,0) and Lemma 2.2 we have that hg, hy €
BV, (It). Thus

W (z,u) = hi(z)u+ ho(z) Va € IY, Vu € R with ho, by € BV, (7).
Sufficient Condition. Suppose that the composition operator H is given by
(Hf)(@) = ho(x) + hi(2)f(x), zely, feBVg(L).

As BVq;g (Ig) is a Banach algebra, then H maps the space Bqu (Ig) into itself.
Further

IH(f1) — H(f2)llg = llho +hifi —ho — hafally
< Kllhlly [Ifs — foll3
= AMf—fly (wheed=K[ml3). (1)
In consequence H is a Lipschitzian operator. ([l
Remark 3.1.

1) The Theorem 3.1 is valid for the regularization right-right, left-right and right-
left of h(-,u) Yu € R.

2) If ho,hy € BVq‘i* (1%) and ||h1Hi < 1/K, then by Principium of contraction of
Banach in combination with (27), exists only one function f € BVy (I 2) such
that

f(x) = ho(z) + hy(x)f(x) VorellcCR.
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The following corollary is the immediate consequence of the Theorem 3.1.

Corollary 3.1. Suppose that h : I? x R — R is such that h* = h in I’ x R — R,
and composition operator H maps space BV(I)S (Ig) into itself. Then it is Lipschitzian
if and only if there exist functions hg, hy € BV,;;C”* (Ig) such that

h(z,u) = ho(z) + hi(x)u Yz eI, ucR.
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ABSTRACT: In this paper we prove the interior approximate controlla-
bility of the following Generalized Benjamin-Bona-Mahony type equation
(BBM) with homogeneous Dirichlet boundary conditions

zt —alAzy — bAz = L,u(t,z), te(0,7), x € Q,
z(t,z) =0, t>0, x € 09,

where a > 0 and b > 0 are constants, ) is a domain in R", w is an open
nonempty subset of 2, 1, denotes the characteristic function of the set
w and the distributed control u € L?(0,7; L?(2)). We prove that for all
7 > 0 and any nonempty open subset w of § the system is approximately
controllable on [0, 7]. Moreover, we exhibit a sequence of controls steering
the system from an initial state to a final state in a prefixed time. As a
consequence of this result we obtain the interior approximate controllabil-
ity of the heat equation by putting a = 0 and b = 1.

AMS Subject Classification: 93B05, 953C25
Key Words and Phrases: interior controllability, reaction diffusion equations, strongly
continuous semigroups

1 Introduction.

The original Benjamin-Bona-Mahony equation was proposed in [4] for the case N =1
as a model for the propagation of long waves. This equation and related types of
pseudo-parabolic equations have been studied by many authors. Results about ex-
istence and uniqueness of solutions can be found in [3]; the long time behavior of
solutions and the existence of attractors were studied e.g. in [5], [7], [8] and [15], and
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the controllability for the case N =1 with control in the boundary has been studied
in [13]. Recently the BBM equation with boundary conditions has been studied in [6]
and [12].

The interior approximate controllability is a well known, fascinating and important
subject in systems theory; there are some works done by [14], [16], [17], [18] and [19].
Particularly, Zuazua in [19] proves the interior approximate controllability of the heat
equation

2= Az + 1,u(t,x), in (0,7)xQ,
z=0, on (0,7) x99, (1.1)
2(0,2) = zo(x), in Q,

in two different ways. In the first one, he uses the Hahn-Banach theorem, integration
by parts, the adjoint equation, the Carleman estimates and the Holmgren Uniqueness
Theorem([11]).

The second method is constructive and uses a variational technique: fix the control
time 7 > 0, the initial and final state zop = 0, z; € L?(Q) respectively and € > 0; the
control steering the initial state zg to a ball of radius € > 0 and center z; is given by
the point in which the following functional achieves its minimum value

1 T
Jé(cp.,.):i/o /¢2d$dt+6”gp7—”[‘2(g)7/92190,—,

where ¢ is the solution of the corresponding adjoint equation with initial data ..

In this paper we prove the interior approximate controllability of the following
Generalized Benjamin-Bona-Mahony type equation (BBM) with homogeneous Dirich-
let boundary conditions

{ 2t — alAzy — bAz = 1 u(t,z), te(0,7), x €1, (1.2)

z(t,x) =0, t>0, x € 01,

where @ > 0 and b > 0 are constants,  is a domain in IR", w is an open nonempty
subset of , 1, denotes the characteristic function of the set w and the distributed
control u € L%(0,7; L?(Q)).

The controllability of such systems, with the controls acting on the whole set 2 was
studied in [1]; they considered the approximate controllability of the system

{ 2zt —alzy — bAz = by (z)us + ... + b () Uy, >0, T €, (13)

z(t,z) =0, t>0, x € 09,

where b; € L?(Q; IR), the control functions u; € L2(0,7;IR); i = 1,2,...,m and § is
a bounded domain in IRY (N > 1). More precisely, they prove the following result:
the system (1.3) is approximately controllable on [0, 7], 7 > 0 iff each of the following
finite dimensional systems are controllable on [0, 7]

bA;
r_ J
¥y= 1+(L)\jy

+Bju, yeR(E), j=12,... 00, (1.4)
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where

Vi
m 1
B;: R™ — R(E;), BjU:ZmEjbiUi,
i=1 J

A;’ s are the eigenvalues of —A with Dirichlet boundary condition and «; the corre-
sponding multiplicity, £;’ s are the projections on the corresponding eigenspaces and
R(Ej) denotes the range of E; . Since dimR(E;) = v; < oo, the controllability of
(1.4) is equivalent to the following algebraic condition:

Rank[B;| =~;, j=1,2,...,00. (1.5)

In this paper, we are interested in the interior approximate controllability of system
(1.2). This is an important problem from the applications point of view, and more
general since the control is acting only on a subset w of (2. We prove that for all 7 > 0
and any nonempty open subset w of {2 the system is approximately controllable on
[0,7]. Moreover, we can exhibit a sequence of controls steering the system from an
initial state to a final state in a prefixed time (see Theorem 3.2). As a consequence
of this result we obtain the interior approximate controllability of the heat equation
(1.1) by putting a =0 and b = 1.

The technique given here is simple and based on the following results:
Theorem 1.1 (see Theorem 1.23 from [2], pg. 20) Suppose Q@ C IR" is an open,

non-empty and connected set, and f is real analytic function in Q with f =0 on a
non-empty open subset w of Q. Then, f =0 in 2.

Lemma 1.1 (see Lemma 3.14 from [9], pg. 62) Let {c;}j>1 and {B;; :i=1,2,...,m};>1
be two sequences of real numbers such that: oy > g > ag---. Then

Zeajtﬁi,jzo, Vte[0,7], i=1,2,---,m
j=1

iff
Bij=0, i=1,2-,mj=1,2--,00.

Theorem 1.2 The eigenfunctions of the operator —A with Dirichlet boundary con-
ditions on € are real analytic functions in ).

2 Abstract Formulation of the Problem

In this section we choose the space in which this problem will be set as an abstract
ordinary differential equation.

Let Z = L?(Q2) = L?(£2, IR) and consider the linear unbounded operator A : D(A) C
Z — 7 defined by A¢ = —A¢, where

D(A) = H*(Q,R) N Hy (2, IR).
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The operator A has the following very well known properties: the spectrum of A
consists of eigenvalues

0<A <A< -<Aj <o with ) = o0, (2.1)

each one with finite multiplicity v; equal to the dimension of the corresponding
eigenspace. Therefore:

a) there exists a complete orthonormal set {¢, ;} of eigenvectors of A.

b) for all z € D(A) we have

Az:i)\J

j=1 k=

Vi

%)
<z, (Zsj,k > ¢j,k = Z AjEjZ, (22)
1 j=1

where < -,- > is the inner product in Z and

Vi
Ejiz=Y_ <z¢jk> bk (2.3)
k=1

So, {E;} is a family of complete orthogonal projections in Z and
z = ZEjz, z€Z. (2.4)
j=1

c) —A generates the analytic semigroup {e~4'} given by

e Aty = ZefAthjz. (2.5)

j=1

Hence, the equation (1.3) can be written as an abstract ordinary differential equation

in Z as follows
2 +aAZ +bAz = 1,u(t), te(0,7] (2.6)

Since (I + aA) = a(A — (—=1)I) and —1 € p(A)(p(A) is the resolvent set of A), then
the operator:
I+aA:D(A)— Z

is invertible with bounded inverse
(I+aA)™':Z = D(A).
Therefore, the equation (2.6) also can be written as follows
2+ b(I+aA) Az = (I +aA) M1 u(t) t€(0,7). (2.7)

Moreover, (I + aA) and (I + aA)~! can be written in terms of the eigenvalues of A:

(I + aA)Z = i(l + GAJ‘)E]'Z

Jj=1
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oo

1
-1 _ )
(I+aA) " z= E 71+a)\jE]Z'

j=1

Therefore, if we put B = (I + aA)~!, the equation (2.7) can be written as follows
2’ +bBAz = BB,u(t), te€(0,7), (2.8)

where B, f = 1, f is a linear a bounded operator from Z to Z and u € L?(0,7; L?(Q)) =
L?(0,7; 7).
Now, we formulate a simple proposition.

Proposition 2.1 The operators bBA and T(t) = e~"BAt are given by the following

expression
o0

b,
bBAz = l_F, 2.
: ;1—|—a/\j 3% (2.9)
S —bA, .
T(t)z = e PBAL, = Ze““i E;z, (2.10)
j=1
and
IT(@) |<e™?, t>0, (2.11)
where " "
= inf i_1=_"1_ 2.12
o=t {ven | = Tren 212)

With this notation the system (2.8) can be written as follows
2 = —Az+ BB,u(t), te(0,7], (2.13)

where A = bBA.

3 Main Theorem

In this section we shall prove the main result of this paper on the controllability of the
linear system (2.13). But first we give the definition of approximate controllability
for this system. To this end, for all 29 € Z and a control u € L?(0,7; Z) the equation
(2.13) with z(0) = zp has a unique mild solution given by

z2(t) =T (t)z0 + /Ot T(t — s)BByu(s)ds, 0<t<r. (3.1)

Definition 3.1 We say that (2.183) is approzimately controllable in [0, 7] if for all z,
21 € Z and € > 0, there exists a control u € L?(0,7;Z) such that the solution z(t)
given by (3.1) satisfies

l|2(7) — 21| <e. (3.2)
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Consider the following bounded linear operator:
G:L*0,7;2) = Z, Gu= / T(r — s)BB,u(s)ds, (3.3)
0

whose adjoint operator G* : Z — L?(0,7; Z) is given by
(G*2)(s) = (BB,)"T*(r — s)z = BLB*T* (1t — )z, Vse€l[0,7], Vze€Z (34)
The following lemma is trivial:

Lema 3.1 The equation (2.13) is approximately controllable on [0, 7] if, and only if,

Rang(G) = Z.
The following result is well known from linear operator theory:

Lema 3.2 Let W and Z be Hilbert spaces and G* € L(Z,W) the adjoint operator of
the linear operator G € L(W, Z). Then

Rang(G) = Z < Ker(G") = {0}.
As a consequence of the foregoing Lemma one can prove the following result:

Lema 3.3 Let W and Z be Hilbert spaces and G* € L(Z,W) the adjoint operator

of the linear operator G € L(W,Z). Then Rang(G) = Z if, and only if, one of the
following statements holds:

a) Ker(G*) = {0}.
b) (GG*z,2z) >0, z#0 in Z.
c¢) lim,_,o+ a(al + GG*)7 1z = 0.
d) sup,~q |la(al + GG*)7Y| < 1.
The following theorem follows directly from (3.4), lemma 3.1 and lemma 3.3.
Theorem 3.1 (2.13) is approxzimately controllable on [0, 1] iff
B:B*'T*(t)z=0, Vtel0,7], =2z=0. (3.5)

Theorem 3.2 (Main Result) For all 7 > 0 and any open nonempty subset w of Q the
system (2.13) is approzimately controllable on [0,7]. Moreover, a sequence of controls
steering the system (2.13) from initial state zy to an € neighborhood of the final state
z1 at time T > 0 s given by

U (t) = BEB*T(1 — t)(al + GG*) " (21 — T(7)20),
and the error of this approxzimation E, is given by

E, = alal + GG*) (21 — T(1)20).
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Proof. We shall apply Theorem 3.1 to prove the controllability of system (2.13). To
this end, we observe that

—bA.

T (t)z = Ze”a;thjz, B’ =B! and B*=B.
7=1

Then,
i il I 1
* _ * _ Tfax; PV
(BB,)*T*(t)z = B,BT*(t)z = ;e Fa; Ta)\ijEJZ =0, Vtelo,7].
Since {1:_?/\3'_ :j=1,2,...} is a decreasing sequence, then from Lemma 1.1 we obtain
that

Vi
(BuEjz)(x) = Z <z,0ik > 1upjp(x) =0, VxeQ, j=12 ...
k=1

ie.,
Vi
Y <z ik >din(r) =0 Vrew, j=12....
k=1

Now, from theorem 1.2 we know that ¢; .’ s are analytic functions, which implies the
analyticity of E;z. Then, from Theorem 1.1 we get that

Vi
Y <zip> k(@) =0 YreQ, j=12....
k=1

Hence, Ejz =0, j=1,2,..., which implies that z = 0.
Now, given the initial and the final states zy and z;, we consider the sequence of
controls

ue() = BIB*T(r —-)(al + GG*) (2, — T(1)20)
G* (ol + GG*) Mz — T(T)2), > 0.
Then,
Guy, = GG*(al +GG*) Yz —T(1)20)

= (ol + GG* —al)(al + GG*) (21 — T(1)z)

= 21— T(1)z — alal + GG*) (21 — T(1)20).
From part ¢) of Lemma 3.3 we know that

lim a(al + GG*) "'z — T(1)20) = 0.
a—07t

Therefore,

aliglJr Guo = 21 — T(7)20.
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i.e.
lim {T(r)z0 + / T(r — 8)BBou(s)ds} = z1.
a—0t 0

This completes the proof of the Theorem.
0

Corollary 3.1 For all 7 > 0 and all open nonempty subset w of ) the heat equation
(1.1) is approzimately controllable on [0, T].

Proof. It is enough to take ¢ = 0 and b =1 in the equation (1.2). 0

4 Final Remarks

The original Benjamin -Bona-Mohany Equation is a non-linear one, here we have
proved the approximate controllability of the linear part of this equation, which is the
fundamental base for the study of the controllability of the non linear BBM equation.
So, our next work is concerned with the controllability of non linear BBM equation

z(t,x)=0, t>0, €, (4.1)

{ 2zt — alAzy — bAz = 1yu(t, z) + f(t, z,u(t)), te(0,7), x €,
where @ > 0 and b > 0 are constants, § is a domain in IR", w is an open nonempty
subset of €2, 1., denotes the characteristic function of the set w, the distributed control
u € L%(0,7; L%(Q)) and f(¢t, z,u(t)) is a nonlinear perturbation.
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1 Introduction and Preliminares
We introduction the following family subsets of R?:

cd = {A eR?: A0, conver, bounded} Kt = {A ec?: Ais compact}
For any A € R?, u € R? we denote

pa(u) =sup < a,u> , Alu)={a€ A :<a,u>=pa(u)}
acA

where < . > is the scalar product, and by recurrence
A(U,l, ceey ul) = A(ul, ceny ui_l)(ui).

By & denote the set of all orthonormal sequences (e, ..., ex), 1 < k < d. We shall
often use a single letter to denote elements of &, like E = (eq, ..., e)-
Let A, B C R?. The Hausdorff distance is defined by

pH(Aa B) = max {G(A, B)a €(B, A)}

IThis research was supported by a grant from the Faculty of Mathematics & Information Science
of Warsaw University of Technology.
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where
e(A, B) = sup dist(a, B) = sup inf ||a — b]|
a€A acA bEB

This is a metric in the family of closed sets in R9.
In the [4] we give the following formula for the Demyanov’s metric which permitts
further extensions to the case of convex but not necessarily closed sets. Let

EF ={(e1, .. e;) €E 1 j >k}
For ABeK?and1<k<d

pp(A,B) = sup py(A(E), B(E))
Eeé&k

The metric is that of uniform convergence in the set of mappings whose arguments
are orthonormal systems of vectors in R% and values are convex sets orthogonal to
these vectors.

2 Demyanov’s metric in C? and A,

Let & = £ U{0}. We introduce in C¢ the following equivalence relation.

Definition 2.1 A = B iff for every E € & we have
A(E)#0 < B(E)#£0

Remark that the set U of E € & for which A(E) # @) is common for all elements of
the same equivalence class-this equivalence class will be then denoted as ng,.

If a set U C & corresponds to some equivalence class then it will be called admis-
sible. Any admissible set U satisfies the following two conditions:

(i)0oelU
(ii) (e1,...,ex,ep41) €U = (e1,...,ex) €U

The following example showing that the conditions (i),(ii) are not sufficient for a set
U to be admissible.

Example 2.1 Letd =2 and U = {0} U S!

Let K} # (). We remark that the closed ball of R is an element of K. Let A € K,
and e; be such that A(e;) is an exposed point in A-the bar over A denotes the closure.
Then A(e;) € A. For any e; € S! orthogonal to e; we have A(e;) = A(er, eq) # 0,
hence (e1,e2) ¢ U.

Remark that the family off all A(E), E € & consists of all faces of the set A € C?.
The following counterpart of Theorem 2.1.2 [5] is valid for arbitrary A € C? (the
relintA denote the relative interior of set A).
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Theorem 2.1 If A(E) # A(F) then relintA(E) NrelintA(F) = (. Morever, the
family of sets relint A(E), for all E € & provides a decomposition of A.

Fix an admissible family U. Let E = (eg, e1,...,ex) € U, where 0 < k < d. By Zg we
denote the family of all convex, nonempty, relatively open sets A such that

Ve, € ENu,veA: <u—v,e; >=0
By Apg denote the element of Zg. We prove the following lemma:

Lemma 2.1 The space (Zg, py) is a complete.

Proof: Let E = (eg, €1, ...,er) € U where 0 < k < d. We consider the Cauchy sequence
(A%). Then also (A7) is a Cauchy sequence and is element of K¢. The space (K%, py;)
is complete. Thus lim,, . pg (A%, B) = 0, where B € K.

If dim B < d — k, then the limit is equal B. If dim B > d — k then the limit is
equal relintB.

The set of all elements A of the Cartezian product [ ], Zr for which the union
Upgew Ak is a bounded subset of R? will by denoted by Xy,.

Example 2.2 Let d = 2 and U = {eo, (€0, €1), (€0, €1,€2)}, where eg = {0} ,e1 =
(0,1),eq = (1,0). We define A € Xy :

Aoy = inteo{(1,1),(~1,1),(~1,-1),(1,~1)}
A(eg,er) = relintco {(;7 1), (1, 1)}
. 1 1
Aeore) = relmtco{(L—z),(l,Q}
‘A(Eoyel,ez) = {(17 1)}

The union of all Ag is not convex. Remark that putting

1 1
A(eq er) = relintco {(—27 1), (57 1)}

1
-A(EO,el,ez) = {(27 1)}

we get A for which the union of values is a convez set belonging to Ky,

and

In Ay, we introduce the following metric
pP(Av B) = sup pH(AEa BE)
EelU

The following lemma is a standard result about completeness of the space of bounded
maps with the metric uniform convergence.

Lemma 2.2 The metric space (Xy, pp) is complete
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Proof: Let U the admissible set and (A™) the Cauchy sequence in Xy. Using
the definition of the metric pp we have that for all E € U, (A%) is the Cauchy
sequence in Zg. Hence for all E € U, lim py (A%, A%) = 0, where AL € Z5. Let

n—oo
A? = Ugeu A
We have that A° € Z; and li_>m pp(A™, A% =0
n o0

We remark the following fact. The theorem 2.1 says that for A € ICZ‘f{ the union

UEeL{ Ag is equal A, so it is convex.

3 Measurable multifunctions in A},

By (T, M, ) will denote a measurable space, i.e., T is a set, M is a o-field and p is
a measure such that p(A) < oco.

Definition 3.1 F: T — X, is simple if F' takes only finitely many values Aq, ..., Ay
such that
{t: Ft)=A,} eM for i=1,..,k

Definition 3.2 A multifunction F' : T — Xy is a measurable if there are simple
multifunctions F,, : T — Xy such that

lim pp(F,(t),F(t)) =0 ae teT

n—oo
We can now proof the following result

Theorem 3.1 If F: T — K¢ is measurable, then for any A € K¢ the set
Ta={t: F&)NA#0D} e M
and the multifunction Fa : Ta — K2 defined by Fa(t) = F(t) N A is measurable

Proof: Let A, = {:c € R?: dist(z,A) < %} forn =1,2,..., and F, be a sequence of
simple multifunctions such that

lim pp(FL(t),F(t)) =0 a.e.

n—oo

We define
T, =\ J[(){t: Fi(t)n A, # 0}
J i=j

Remark that if tg € T4 then F(tg) N A # 0, and for all n exist io(n) such that
Fi(to) N Ay, # 0 for i > ig(n). So ty € T;, for any n, hence Ta C (), Th.

We now prove that (), T, C Ta.

Let to € (,, T, then for any n exist jo(n) such that Fi(to) N A, # 0 for i > jo(n).
We assume that jo — oo when n — co. Exist a sequence x, € Fj ) (s0) N Ay for
n=12,...
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Put lim,, o z, = 2¢. We have that zo € A becouse dist(z,, A) < + and

S|=

dist(zn, F(to)) < pu(Fjy(ny(to), F(to)) < pp(Fjo(n)(to), F(to)) — 0

so zg € F(ty), hence Ty =, Tn-

The T;, is measurable then T4 is also.

We remark that G, (t) = F,(t) N A, for t € Ty is a sequence of simple multifunc-
tions converges to F4(t) for almost everywhere t € T4.

Acknowledgements: The author is grateful to Tadeusz Rzezuchowski for valu-
able remarks and to unknown Referee for the remarks that helped us to improve the
text.

References

[1] Baier R., Farkhi E., Differences of Convex Sets in the Space of Convex Compact
Sets in the Space of Directed Sets. Part I: The Space of Directed Sets., Set-Valued
Analysis, 9, 217-245, (2001).

[2] Baier R., Farkhi E., Regularity and Integration of Set-Valued Maps Represented
by Generalized Steiner Points, Set-Valued Analysis, 15, 185-207, (2007).

[3] Diamond P., Kloeden P., Rubinov A., Vladimirov A., Comparitive Properties
of Three Metrics in the Space of Compact Convex Sets, Set-Valued Analysis 5,
267-289, (1997).

[4] Lesniewski A., Rzezuchowski T., The Demyanov Metric for Convex, Bounded

Sets and Existence of Lipschitzan Selectors, Journal of Convex Analysis,
18(2011), No 3.

[5] Schneider R., Convex Bodies: The Brunn-Minkowski Theory, Cambridge Uni-
versity Press, Great Britain, (1993).

Andrzej Le$niewski
email: E-mail:andrzejles@interia.pl

Faculty of Mathematics & Information Science,
Warsaw Unversity of Technology,
Plac Politechniki 1, 00-661 Warsaw, Poland

Received 15.04.2010



Journal of

Mathematics
and Applications

No 33, pp 67-72 (2010)

Certain differential subordinations
using a generalized Salagean operator
and Ruscheweyh operator

Alina AIb Lupas

Submitted by: Jan Stankiewicz

ABSTRACT: In the present paper we define a new operator using
the generalized Salagean operator and Ruscheweyh operator. Denote by
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and Ruscheweyh operator R", given by DR} : A — A, DRYf (z) =
(DY *R™) f(z)and A, = {f € H(U) : f(2) = z+an412" 1 +..., z€ U}
is the class of normalized analytic functions with A; = A. We study some
differential subordinations regarding the operator DRY.
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1 Introduction

Denote by U the unit disc of the complex plane, U = {z € C: |z| < 1} and H(U)
the space of holomorphic functions in U.
Let
Ay ={feHU): f(2)=z2+an 12" +..., 2€ U},

forn € Nand A; = A.
Denote by

21"(2)
f'(2)
the class of normalized convex functions in U.

If f and g are analytic functions in U, we say that f is subordinate to g, written
f < g, if there is a function w analytic in U, with w(0) = 0 and |w(z)| < 1 for all

K:{feA:Re +1>0,26U}
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z € U, such that f(z) = g(w(z)) for all z € U. If g is univalent, then f < g if and
only if f(0) = g(0) and f(U)  g(U).

Let ¢ : C?> x U — C and h be an univalent function in U. If p is analytic in U and
satisfies the (second-order) differential subordination

V(p(2), 20 (2), 220" (2); 2) < h(2), for ze€U, (1.1)

then p is called a solution of the differential subordination. The univalent function ¢
is called a dominant of the solutions of the differential subordination, or more simply
a dominant, if p < ¢ for all p satisfying (1.1).

A dominant ¢ that satisfies ¢ < ¢ for all dominants ¢ of (1.1) is said to be the best
dominant of (1.1). The best dominant is unique up to a rotation of U.

Definition 1 (Al Oboudi [2]) For f € A, A > 0 and n € N, the operator D} is
defined by DY : A — A,

DYf(z) = [(2)
Dif(z) = (1=X)f(2)+Xzf'(z) = Daf ()
Dif(z) = (1=XNDY7'f(2) +Az(DAf(2)" = Da (DY f(2)), for z€U.

Remark 1 If f € A and f(2) = 2+ 32, a;27, then
Dif(2) =24+ 372 1+ —1)N" a;27, for € U.

Remark 2 For A = 1 in the above definition we obtain the Saldgean differential
operator [5].

Definition 2 (Ruscheweyh [4]) For f € A and n € N, the operator R™ is defined by
R": A— A,

Rf(2) = f(2)
R'f(2) = 2f'(2)
(n+1)R"™f(2) = 2(R"f(2) +nR"f(2), for z€U.

Remark 3 If f € A and f(2) = 2+ 372, ajzl, then
R'f(2) =2+ 252,00 1a;27, for z € U.

Lemma 1 (Miller and Mocanu [3]) Let g be a convex function in U and let
h(z) = g(z) + nazg'(z), for z €U,
where a > 0 and n is a positive integer.

If
p(2) = g(0) + pp2™ + pup12" T+ ..., for z€U
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s holomorphic in U and
p(z) + azp'(z) < h(z), for z€U,
then
p(z) < g(2)

and this result is sharp.

2 Main Results

Definition 3 Let A > 0 and n € N. Denote by DRY : A — A the operator given by
the Hadamard product (the convolution product) of the generalized Saldgean operator
DY and the Ruscheweyh operator R":

DRYf (z) = (DX * R") f (2),
for any z € U and each nonnegative integer n.

Remark 4 If f € A and f(z) = 2+ 3272, a;27, then
DRYf(2) =2+ 22 Ch iy [L+ (G = DN a3, for z € U.

Remark 5 For A = 1 we obtain the Hadamard product SR™ [1] of the Sdldgean
operator S™ and Ruscheweyh operator R™.

Theorem 2 Let g be a convex function such that g (0) =1 and let h be the function
h(z) = g(2) + 24’ (2), for z € U. If A >0, n € N, f € A and the differential
subordination

n+1
Az

o () - "UEVDR ()~ (n- 14 1) (DRY ) <1(2), 22

for ze€ U, holds, then
(DRYf(2)) < g(2), for z€U,
and this result is sharp.

Proof. With notation

p(z) = (DRYf(2)) =1+ > Cpy [1+ (G — )N ja2" !

Jj=2

and p (0) = 1, we obtain for f(z) =2+ 2;022 ajzd,
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P+ () =1+ Chy 1+ (G- D" j2af/

=2

n+1 N . ‘ N—m—1

B ZCnI} -~ “@%a] pAznol
1
oo pras (no1e )
j=2
1—

_chﬂ VL4 (= 1) A a3 IM

Jj=2

n+1 n(1— )

= DRI f (2) — (n -1+ i) (DRYf () — — o DRIf(2).

We have p (z) + 2p’ (2 ) h( ), for z € U. By using Lemma 1 we obtain p(z) <
g(2), for z € U, ie. (DRYf(2))' < g(z), for z € U and this result is sharp. W

Corollary 3 (see [1]) Let g be a convex function such that g(0) = 1 and let h be
the function h(z) = g(z) + z2¢' (), for z € U. If n € N, f € A and the differential

subordination

%SR"“ F(2)+ 2(SR™f(2))" < h(z), for z€TU, (2.3)

n+1

holds, then
(SR"f (2)) < g(z), for z€U

and this result is sharp.

Theorem 4 Let g be a convex function, g (0) = 1 and let h be the function h(z) =
g(2)+ 24" (2), forz € U. If n € N and f € A verifies the differential subordination

(DRYf (2)) < h(2), for z€U, (2.4)
then

DR} f (2)

. <g(z), for zeU,

and this result is sharp.

Proof. For f € Aand f(2) =2+ Y]2,a;27 we have

DRYf —z—i—Z M+ G —1)N"alz) for,zeU
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Consider
DRYf(z) =2+ Z;)i2 Cryja 1+ —1) A" %Z]
= 1+ZC7L+] 1[1+(]71))‘] Zj 1
Jj=2

We have p (z) + 2p’ (2) = (DRYf (2))', for z € U.

Then (DR} f (2))" < h(z), for z € U, becomes p(z) + zp' (2) < h(z) = g(2) +
z2g' (z), for z € U. By using Lemma 1 we obtain p(z) < g(z), for z € U, i.e.
DY) <g(z),for zeU. N

z

Corollary 5 (see [1]) Let g be a convez function, g (0) =1 and let h be the function
h(z) = g(2) + 24’ (2), for z € U. If n € N and f € A verifies the differential
subordination

(SR"f (2)) < h(z), for z€U, (2.5)

then g
Tf(z) <g(z), for zeU,

and this result is sharp.

Theorem 6 Let g be a convex function such that g (0) =1 and let h be the function
h(z) = g(2) + 29’ (2), for z € U. If n € N and f € A wverifies the differential

subordination
DRI f (2) '
then +1f( )

and this result is sharp.

Proof. For f € Aand f(2) =2+ Y], a;27 we have
DRy f —z—|—Z =1 | ]—I)A]”a?zj,forzeU

. Consider

o) = DB 2R OG- DA e
DRYf (2) Z+Zj 2 n+j—1[1+(1*1)/\} azﬂ
1+Z§C2(Jg¢; [+ (= 1) A" a2zt

1+ Ej:Q n+j71 lI+@G-1) /\] ]Zj v
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(DRYf(2)) Cp(z)- (DR? f(2))’

We have p’ (z) = DR} f(2) DRyf(z)

r i (2DRITR)
Then p(2) + 2zp’ (z) = (W) .
Relation (2.6) becomes p (2) + 2zp’ (z) < h(z) = g(2) + 24’ (2), for z € U, and, by
n+1
using Lemma 1 we obtain p(z) < g (z), for z € U, i.e. Dgﬁnif@()z) < g(2), for z € U.
A

Corollary 7 (see [1]) Let g be a convex function such that g (0) =1 and let h be the
function h (2) = g (2)+ 29’ (2), for z € U. Ifn € N and f € A verifies the differential

subordination - ,
2SR f (2)
<SR"f B ) < h(z), for z€eU, (2.7)
then
SR™1F (2)

SR (2) <g(2), for zeU,

and this result is sharp.
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ABSTRACT: The problem of many (L > 2) hypotheses testing on distri-
butions of a finite state Markov chain is studied. We apply large deviation
techniques (LDT). It is demonstrated that this method of investigation in
solving the problem of logarithmically asymptotically optimal (LAO) hy-
potheses testing is easier, compared with the procedure introduced by
Haroutunian. The matrix of exponents E = {E;),,,}, m,l ={1,2,...,L},

of error probabilities of the LAO test Ejj,,(¢) = Nlim —= log oM (n),
— 00

llm
where %(f;)(w) for I # m is the probability to accept the hypothesis [,

when the hypothesis m is true, is determined.

Moreover, the identification of distributions for one object and two
independent objects via simple homogeneous stationary Markov chains
with finite number of states is discussed in the present paper.

AMS Subject Classification: 62M02
Key Words and Phrases: Error probability, irreducible matriz, simple homogeneous
stationary Markov chain, type

1. Introduction

Applications of information-theoretical methods in mathematical statistics are illus-
trated in the monographs presented by Kullback [9], Csiszdr and Koérner [4], Blahut
[2], Csiszdr and Shields [3], Gutman [6] and others. Numerous papers have been de-
voted to the study of exponential decrease, as the sample size N goes to infinity, of the
error probabilities agN) of the first kind and aéN) of the second kind of the optimal
tests for two simple statistical hypotheses. Similar problems for Markov dependence
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of experiments were investigated by Natarajan [10], Haroutunian [7], [8], Dembo and
Zeitouni [5], and others. In the book of Csiszdr and Shields [3] different asymptotic
aspects of two hypotheses testing for independent identically distributed observations
are considered via theory of large deviations.

In this paper, we aim to solve the problem in order to describe the matrix of
exponents E = {Ej,,},m,l = {1,2,..., L} of probabilities oM = exp(—=NEj),),

llm
where al(‘];? for [ # m is the probability to accept hypothesis I, when hypothesis m is
true, for finite state Markov chain by application of large deviation techniques (LDT).
We will demonstrated that the solution of the mentioned problem is more concise and
hence easier than the procedure introduced by Haroutunian [7].

Ahlswede and Haroutunian [1], formulated an ensemble of problems on multiple
hypotheses testing for multiple objects and on identification of hypotheses under
reliability requirement. In this paper, we also solve this problem through identification
of distributions of many hypotheses for one object and two independent objects, using
simple homogeneous stationary finite states of Markov chains.

In Section 2, we present a Theorem of LDT for Markov chains and the result for
hypotheses testing and in Section 3, the problem of identification for Markov chain
and finally in Section 4, we discuss the general case of the problem of identification
of distributions for two independent Markov chains.

2. Application of LDT On Many Hypotheses Opti-

mal Testing for Markov chains
Let x = (z0,21,%2,...,ZN), Tn € X = {1,2,..., I}, x € XNt N =0,1,2,..., be
vectors of observations of a simple homogeneous stationary Markov chain with finite

number I of states. The hypotheses concern the irreducible matrices of the transition
probabilities

P =A{P(jl7), i,7=11,2,...,I}}, 1 ={1,2,...,L}.

The stationarity of the chain provides existence for each | = {1,2,..., L} of the unique
stationary distribution Q; = {Q;(?), ¢ = {1,2,..., I}, such that

S QPG = @), D> Qi) =1, i,j={1,2,...,1}.
We define the joint distributions

Qio P = {QI(Z)PZ(]‘Z)azvj = {1,27' .- ,I}}al = {1,27~ .- ,L}
Let us denote D(Q o P||Q; o P;) Kullback-Leibler divergence(P is an irreducible
matrix of transition probabilities of some sttionary Markov chain and @ be the cor-
responding stationary PD)

D(Qo P|Qio P) = > Q()P(jli)log Qi) P(jli) — log Qu(i) Pi(ji)
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= D(Q|Qi) + D(Qo P||Qo P),
of distribution
Qo P ={Q()P(jli),i,j ={1,2,...,I}},

with respect to distribution Q; o P, where
D(Q||Q) ZQ [log Q(i) —log Q(d)], 1 ={1,2,...,L}.

Let us name the second order type of vector x the square matrix of I? relative
frequencies {N(i,7)N 1,4, = {1,2,...,I}} of the simultaneous appearance in x of
the states ¢ and j on the pairs of neighbor places. It is clear that Zij N(i,j) = N.

Denoted by ’T Qop- the set of vectors from X N+1 have the second order type in a way
that for some joint PD Q o P

N(i,j) = NQ(i)P(jli), i=A{12,....1}, j={1,2,....I}.
The set of all joint PD Qo P on X is denoted by Q o P(X) and the set of all possible

second order types for joint PD @ o P is denoted by Q o PV (X). Note that if vector
x € Thop, then

ZN(i,j):NQ(i), i={1,2,...,1}, ZN(i,j):NQ’(j), j={1,2,...,1},

for somewhat different from @ PD ', which in accordance with the definition of
N(i,j), are closed enough

and in the limit, when N — oo, the distribution @ coincides with @’ and may be
taken as stationary for conditional PD P:

Do RIP(I) = Q). j € X.

The probability of vector x € XN+1 of the Markov chain with transition probabilities
P, and stationary distribution @), is the following

N
Qo PN (x) = Qi(wo) H P(xn|zn_1), 1 ={1,2,...,1},

n=1
Qo PY(A) = |J Qo A¥(x), Ac aMt.
xeA
Note that for I = {1,2,..., L} the probability of x from Té\gP can be written as

Qi o PN (%) = Qu(zo) [ [ P(jIi)NLOFUID,

.3
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Note also that if @ o P is absolutely continuous relative to Q; o P;, then

Quo P (Tgep) = exp{=N(D(Q o P||Q o P)) + o(1)},

where

o(1) = max(mlax IN " log Qi(i)] : Qi(i) > 0),
(max |N~log Q;(4)| : Qi(i) > 0) = 0, when N — oco.

Indeed, this is not difficult to verify, taking into account the number |Té\é p| of vectors
in Té\g p which is equal to

exp{— NZQ i) log P(j[i)) + o(1)}.

Non-randomized test ¢x(x) accepts one of the hypotheses H;, I = {1,2,...,L}
on the basis of the trajectory x = (xg,21,...,2y5) of the N 4+ 1 observations. Let

us denote oz”m ((/)N) the probability to accept the hypothesis H; under the condition

that H,,, m # [, is true. For [ = m we denote am‘m(qu) the probability to reject the
hypothesis H,,. It is clear that

ol (on) = i (6n), m={1,2,...,L}. (1)
l#m
This probability is called the error probability of the m-th kind of the test ¢y.
The quadratic matrix of L? error probabilities {al(‘]:fn)(@, m,l ={1,2,...,L} is oc-
casionally called the power of the tests. To every trajectory x, the test ¢y puts in
one correspondence from L hypotheses. Thus, the space XV *1 will be divided into L
parts,
N ={x, on(x) =1}, 1={1,2,...,L},
and
A (ON) = Qo Pu(G)Y), m,l={1,2,...,L}.

We study the matrix of “reliabilities”,

El|m(¢) = ]\;E)noo - N lOgOl”m (QSN) ’ITL,Z = {17 2a EERE L} (2)

Note that from definitions (1) and (2) it follows that:
Definition. The test sequence ®* = (¢1, @2, ...) is called LAO if for a given family
of positive numbers Eyj1, Egja,..., Ep_1jp_1, the reliability matriz contains in the

diagonal these numbers and the remained L? — L + 1 components take the mazimal
possible values.
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Let P = {P(j]i)} be a irreducible matrix of transition probabilities of some stationary
Markov chain with the same set X of states, and Q = {Q(%), i = {1,2,...,I} be the
corresponding stationary PD.

For a given family of positive numbers Eyj1, By, ..., Er_1jr—1, let us define the
decision rule ¢* by the following sets
Ri = {QoP:D(QoP|QoP)< Ey, DQ|Q)<oo}, I={1,2,...,L -1},
Rr = {QoP:DQoP|QoPF)>Ey,, I={1,2,...,L—1}, (4)

RY = RiNQoPNWX), 1={1,2,...,L}.

and introduce the functions:

Ej(BEy) = By, 1={1,2,....,L -1} (5)
El*|m(El\l) = QoilgléRl D(QoP|QoPy),m={1,....,L}, l#m, |={1,...,L —1},
EZ\m(El\la o Broqp—1) = Qo}DnefRL D(QoP|QoPy), m={1,2,...,L—1},

EL (B, Bpoqp-1) = z:{l,gl.i._l,lL_l}EﬁL'

We cite the statement of the general case of large deviation result for types by Natara-
jan [10].

Theorem 1. Let X = {1,2,...,I} be a finite set of the states of the stationary
Markov chain, possessing an irreducible transition matrix P and A be a nonempty
and open subset or convexr subset of joint distributions Q o P and @, is stationary
distribution for P,,, then for the type Q o P(x) of a vector x from Qu, o Py, on X:

. 1 N .
Jim — - log Qo PY{x: Qo P(x) € A} = _int D(QoP|QoPy)

Now we formulate the theorem from [7], which we prove by application of Theorem
1.

Theorem 2. Let X be a fized finite set, for a family of distinct distributions Py, ..., Py,
the following two statements hold. If the positive finite numbers Enjy, ..., Ep_y—1
satisfy conditions:

0< Eyp <min[D(Qmo Pul@mnoPr), m={2,...,L}], (6)

E[*‘m(Em|m)a m = {17 2,... 7l - 1}7

0< Ej) <min D(QmoPmHQmOPl),m={l+1,~-~7L}]’ZZ{Q""7L_1}7

then:
a) there exists a LAO sequence of tests ¢*, the reliability matrixz of which {El*lm(qﬁ*)}

is defined in (5), and all elements of it are positive,
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b) even if one of conditions (6) is violated, then the reliability matriz of an arbitrary
test necessarily has an element equal to zero, (the corresponding error probability does
not tend exponentially to zero).

Proof: First we remark that D(Q o P,||Q o P,,) > 0, for | # m, because all measures
P,l={1,2,...,L}, are distinct. Let us prove the statement a) of the theorem 2 about

the existence of the sequence corresponding to a given Eyy,---, Ey_y_; satisfying
condition (6). Consider the following sequence of tests ¢* given by the sets
BY = |J 7Tdpx)1={12... L} (7)
QoPeRY

Notice that on account of condition (6) and the continuity of divergence D for N
large enough the sets R{V,l ={1,2,..., L} from (4) are not empty. The sets BlN,l =
{1,2,..., L}, satisfy conditions :

L
BY(\By=0,1#m, [ JBY=aN.
=1

Now let us demonstrate that, exponent Ey,,(¢*) for sequence of tests ¢* defined in
(7) is equal to El*lm. We know from (4) that R, = {1,2,..., L—1}, are convex subset

and Ry, is open subset of the decision rule of ¢*, therefore R;, [ = {1,2,...,L},
satisfy in condition of Theorem 1. With relations (4), (5), by Theorem 1 we have

. 1 . . 1 .
lim -~ logaﬁ’m(gb )= 1\}51100 -~ logQ o PN(R)) = Qollglele D(Qo P||Qo Py).

N—o0

Now using (2) we obtain the following:

Ey(#) = inf D(@QoP|QoPu) mil={12... L}
Using (6), (4) and (5) it can be realized that all Ej
proof of part (a) will be concluded if one demonstrates that the sequence of the tests
¢* is LAO, that is at given finite Ey|1, -+, Ef_j—; for any other sequence of tests

d)**

are strictly positive. The

El*|m(¢**) < El’im((b*), m,l={1,2,...,L}.

For this purpose it is sufficient to demonstrate that the sequence of tests will not
asymptotically become better if the sets Rfv are not a union of some number of whole
types Té\gp(x), indeed, if a test ¢** is defined, for instance, by sets G, - - ,QJLV and,
furthermore, @) o P is such that

0# Qo PN (G (705 (x)) = Quo PN (Tgip(x)) + o(1),
Then, the test ¢** will be improved, if instead of the set G} one takes G;¥ | J Té\gp(x),
as the error probability aﬁfm can decrease for m # [. The statement of part (b) of

theorem is evident, since the violation of one of the conditions (6) reduces to the
equality to zero of at least one of the elements £y defined in (5).
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3. On Statistical Identification of Markov Chain of
Distribution Subject to the reliability

Assume that there are L > 2 hypothetical distributions. The question here is whether
or not r-th distribution has occurred.

There are two error probabilities for each r = {1, 2, ..., L}, the probability o)

l#r|m=r

to accept [ different from r, when r is in reality, and the probability al(ivv),m £ that
r is accepted, when it is not correct. The probability al(;é\2|m=r we already know, it

is the probability ozi]l\;) which is equal to 0‘1(\]:)' The reliability Ej_p|,,—, coincides

L:l#r
with E, ., with (3). Our aim is to find the interdependence between Ej_y|m,—, and
Eprji=r- The latter, can have values satisfying in conditions (6), thus, we will have
the following conditions:

0< ET|7‘ < lnllylén[D(Ql o Pl”Ql o Pr)> r= {1, 2,..., L}

We need to use the probabilities of different hypotheses. Let us assume that the hy-
potheses H;,l = {1,2,..., L}, have positive probabilities say Pp(r),r = {1,2,...,L}.
We will see that the formulated result in the following theorem, does not depend on
values of Pe(r),r = {1,2,..., L}, if they all are strictly positive. Thus we can make
the following calculations for r = {1,2,...,L}:

(N)

(N) _BRT(=rm#Er) 1 (N) . (N)

o, = = P Va
l=r|mz#r P, (m £ 7“) Z Pr(m) m;;ér \

mim#r .
and also for r = {1,2,..., L}, we obtain the following:
I 1 N
El:7‘|m7$r = ]\/lgnoo(_ﬁ log al(=7?|m7ér) (8)

—1
1\/1E>nooN(log 275 Pr(m> IOg Z;é Pr ar‘m) - mI%Iglér Er\m

Using (8) by analogy with Theorem 1 and Theorem 2, we conclude (with R, as in
(4) for each r including » = L by the values of E, |, from (0, min D(Q; o P||Q; 0 P,))),
that
El:r\m;ﬁr (E7'|r) = erlrlzr;alér QoiI?efR,,, D(Q © P”Q © Pm) (9)
= min inf D(QoP||QoP,),r={1,2,...,L}.
m:m#r  QoP:D(QoP||QoP,)<E,, (Q ”Q ) { }
Thus, the obtained result may be formulate in the following theorem.

Theorem 3. For the model with distinct distributions for the given sample X, we can
determine its type Q o P, and when Qo P € ’R&N), we accept the hypotheses r. Under
the condition that the probabilities of all L hypotheses are positive, the reliability of
such test Bj—p|mx, for given Ejtp|m—, is defined in (9).



86 Leader Navaei

4. On Identification of Two Independent Markov
chain of Distributions

In this section, we expand the concept of section 3 for two independent homogenies
stationary finite Markov chain. Let x; and x5 be independent RV, taking values in the
same finite state of Markov chain of set X with one of L PDs, being characteristics
of corresponding independent objects, the random vector (Xi, X5) assume values
(zt,2?) € X x X.

Let
(x1,%x2) = ((2§,23), ..., (xL,22),..., (), 2%)), 2 € X,i=1,2,n ={0,2,..., N},
be a sequence of results of N + 1 independent observations of a simple homogeneses
stationary Markov chain with finite number I of states . The statistication must
define unknown PDs of the objects on the basis of observed data. The selection for
each object was done and it was denoted by ® . The objects independence test @
may be considered as the pair of tests ¢} and (3, for the respective separate objects.
We will show the whole compound test sequence by ®. The test ¢%; is defined by a
partition of the space XVF1! on the L sets and to every trajectory x the test ¢ puts
in one correspondence from L hypotheses. So the space XV*1 will be divided into L
parts,

gl],\i = {xi, on(xi) =1}, 1 ={1,2,...,L},i=1,2.

We define

ALy 1o |my,me ((I)N) = le © Pml (glly,l)sz © sz (gl];[,2)7

as the probability of the erroneous acceptance by the test ®n of the hypotheses
pair (Hy,, Hy,), provided that (H,,,, Hp,,) is true, where (my,ms) # (l1,12), m;, l; =
{1,2,...,L},i=1,2. The probability to reject a true pair of hypotheses (H,,,, Hmn,)
by analogy with(1) is the following:

azl,mz\ml,mQ ((PN) £ Z O‘{Y,lﬂml,mg (@N) (10)
(l1,12)#(m1,m2)

We also study corresponding limits Ey, 1, |, ,m, (®xn) of error probability exponents
of the sequence of tests @, called reliabilities :

- 1 .
Bl 1y ma (@) £ A}gﬂm - Nlogall,zz\ml,mz(@N)7 mi, i =1,L, i=1,2. (11)
We denote by E(¢") the reliability matrices of the sequences of tests ¢*,i = 1,2,
for each of the objects.
Applying (10) and (11), we obtain the following :
El17l2‘m17m2 ((‘P)

E d) = min
mymalmima (9) = in

In this section we use the following lemma.
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Lemma. (8], [11] If elements Ey,,(¢"),m,l = {1,2,...,L},i = 1,2, are strictly
positive, then the following equalities hold for ® = (¢!, p?) :

Ell,l2|m1,m2 ((I)) = El1|m1 (901) + El2|m2 (902)7 Zf m1 7£ lla mao 7é lQa (12(1)

Bty ialmyma (®) = By, (¢"), if ma—i =ls—i mi#l, i=12 (120)
Consider for given positive elements Ey, yjm,z and Epy mn,m,m = {1,2,..., L —
1}, the family of regions:
R 2{QoP:D(QoP|QoPy) < Epminm} m={1,2,...,L—1},
Rg) £ {QoP:D(QoP|QoPFy) < Em,m|m,L}a m={1,2,...,L -1},
RV 2(QoP:D(QoP|QoPn)> Emmim: m={1,2,...,L—1},
RP 2{QoP:D(QoP|QoPp)> Epimr, m={1,2,...,L—1}.

What is the identification of the probability distributions for two independent
objects? The answer for this question constitutes a reply of the question whether or
not the pair of the pair of distributions (r1, r2) have occurred.

There are two error probabilities for each (ry,79),r7; = {1,2,...,L},i = 1,2, the

11y 1O BCCEDE (I1,12) different from (rq,72), when

that (ri,7q) is

N)
l1,l2)#(r1,r2)|(m1,ma)=(
(r1,72) is in reality, and the probability oM

(l1,12)=(r1,m2)|(m1,m2)#(r1,72)

accepted, when it is not correct. The probability 0481)12) £(r1.2)|(

probability aE

myma)=(r1,rg) 15 k-

ready known, it coincides with the probability aEN

. Our aim is to determine
r1,72)|(r1,72)

the dependence of aEN)

l1,l2)=(r1,r2)[(m1,m2)#(r1,r2) (r1,r2)|(r1,r2)”

We need to use the probabilities of different hypotheses. Let us assume that the
hypotheses H; : I = {1,2,..., L} have, say, probabilities P.(r),r = {1,2,...,L}. The
only supposition we shall use is that P.(r) > 0,7 = {1,2,..., L}. We demonstrate, the
result formulated in the following theorem does not depend on values of P.(r),r =
{1,2,..., L}, if they all are strictly positive. Thus, the following reasoning can be
made for each r; = {1,2,...,L},i=1,2:

on given «

oy _ P, 1) = (r1,73), (m1,m3) # (1, 72))
(l1,l2)=(r1,m2)[(m1,m2)#(r1,72) Pe(my,my) # (r1,72)) )
o™
(l1,12)=(r1,m2)[(m1,m2)#(r1,72)
1 N
B > Py(my, ms) Z a(ml,m2)\(T1’T2)Pr( )(mhm?)'

m:(my,ma)#(r1,r2) mi(my,ma)#(r1,r2)

Finally, for » = 1, L, we obtain the following:

E(1y 15)=(r1,r2)|(m1,m2)#(r1 ) (i)l (mayma) (13)

B (m1,m2):(m1,ma)#(r1,72)
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For every LAO test ®* from (11), (12) and (13) we obtain the following:

. 1 2
E(ll’12):(7“17T2)|(m17m2)7ﬁ(rlﬂ“2) = ml#}ﬁ?“ﬂ}z#m(EﬁlmﬂErzlmQ)’

where, Erlllm17E7'22|m2 are determined by (5) for, correspondingly, the first and the

second objects. For every LAO test ®* from (11) and (12) we deduce that

= min(E1

rilry? Er2|r2)'

E(Tl,rz)l(rl,r2) = min (E'l

T Er )
my? m
m1#£T1,maF#rs 1lma 2|ma

(14)

E2

T‘2|T2

and each of E*

1l satisfy the following conditions (see theorem 2, condition
(6)).

0< E!

7‘1‘7‘1

< mi i E; (EL), i D P P, (15
e [1_{1?.1.1,?11} i (Ble) _ min ) P@re FillQue ”)] (154)

2 . . * 2 .
0< Er2|r2 < min |:l={17§7r41.1‘7n?‘2_1} El|m(El\l)7 l={7"2r{1-11r,l...,L} D(Ql o -Pl”Ql o P’r‘g):| ) (15b)

From (5), we see that the elements E7 (Ellll), r1={1,2,...,r1—1}and E}, (Elzu),rg =

llm llm
{1,2,...,79 — 1} are determined by only Ell| , and Elz‘l. However, we are considering
only elements Eil\m and Elem. Using theorem 1 and (15) we have
0< E!
Tll’l‘l
< min [l_{l’g?{lrll}D(Ql o B|Q o PTl)’l:{rf?ril?..,L}D(Ql o P||Q; 0 Prl)] , (16a)
2
0<E.,,

< mi i D P P,.), i D P P.)|. (16b
win | pin | D(QeRIQro P, win | DQioAlQio P (160
Let us denote r = max(ry,r2) and k = min(ry,r2). From (14) we have that, when
E(rl,r2)|(r1,7“2) = E71’1\T1’ then Ei1|r1 < E?zlr2 and when E(rl,r2)|(r1,r2) =
then E:lm > E32|T2. Thus, it can be implied that given strictly positive elements
E(r, r3)|(r1,r2) Must meet both inequalities (16) and the combination of these restric-
tions gives

O<E(

2
’I‘2|’l"27

r1,m2)|(r1,7r2)

< min min D(Qio P|Quo Pr) min  D(Q;o P[|Qio Pr)| . (17)

1={1,2,...,r—1} Nl={r41,...,.L}

Using (15) we can determine reliability E(;, 1,)=(r, rs)|(m1,mo)#(ri,rs) i1 function of
E(h,m)l(m,rz) as follows:
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By 15)=(r1,m2) | (mama) (1 ,r2) (B ) [ (r1,72))

= min (En\m (E(h,rz)l(rl,rz))a Ersirs (E(h,rz)l(n,rz))a (18)

M1#ETL,M2FET2

Where, (Er1|r1 (E(Tl,Tz)\(ThTQ)) and Er2|r2 (E(T17T2)\(T177‘2)) are determined by (5) The
obtained results can be summarized in the following theorem:

Theorem 4. If the distributions H,,, m = {1,2,...,, L}, are different and the given
strictly positive numbers E(y, r,)|(r,,r,) Satisfies condition (17), then the reliability

E(ll,lz):(h,rz)l(ml,mz)sé(n,rz)is deﬁned m (]8).
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1 Introduction

The notion of a fuzzy set was introduced by L.A.Zadeh [12], and since then this
concept has been applied to various algebraic structures. The idea of “Intuitionistic
Fuzzy Set” was first introduced by K.T.Atanassov [1] as a generalization of the notion
of fuzzy set. N.Nobusawa [10] introduced the notion of a I" - ring, as more general than
aring. W.E.Barnes|2] weakened slightly the conditions in the definition of the I' - rings
in the sense of Nobusawa. W.E.Barnes [2], S.Kyuno [7,8] and J.Luh [9] studied the
structure of I - rings and obtained various generalizations analogous to corresponding
parts in ring theory. Y.B.Jun and C.Y.Lee [5] introduced the concept of fuzzy ideals
in the theory of I'- rings. In this paper, we study the notion of intuitionistic fuzzy
ideals in I' - rings and prove some of its properties.

2 Preliminaries

In this section the definition of I'-ring in the sense of Nobusawa and Barnes is discussed
with examples. Also we include some elementary concepts that are necessary for
this paper. Professor N.Nobusawa introduced the concept of I'-ring and Professor
W.Barnes generalized this concept.

Definition 2.1[2]. If M = {z,y,z,---} and T' = {a, 8,7} be two additive
abelian groups and for all x,y,z2 € M and a,8 € T, the following conditions are
satisfied:

COPYRIGHT (© by Publishing Department Rzeszéw University of Technology
P.O. Box 85, 35-959 Rzeszow, Poland
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1. zay € M,
2. (x +y)az = zaz + yaz, z(a + By = zay + By, va(y + 2) = zay + zaz,
3. (zay)pBz = za(yBz), then M is called a T - ring.

If these conditions are strengthened to

(1) zay € M, axB €T,
(2") (z+y)az = zaz +yaz,x(a+ By = zay + xPy, za(y + z) = zay + zaz,

(3" (zay)Bz = z(aypB)z = xza(yBz),

(4") zay =0 for all x,y € M implies a = 0,

we then have aI" - ring in the sense of Nobusawa [10]. As indicated in [10], an example
of a T' - ring is obtained by letting X and Y be abelian groups, M = Hom(X,Y),
I' = Hom(Y, X) and zay be the usual composite map. (While Nobusawa does not
explicitly require that M and I'" be abelian groups, it appears clear that this is in-
tended.) We may note that it follows from (1) - (3) that Oay = 20y = za0 = 0 for
allz,y € M and all « € T'.

Example 2.2. If G and G’ are two additive abelian groups, M = Hom(G,G’), ' =
Hom(G’,G) then M is a I'-ring with respect to point wise addition and composition
of mappings.

Example 2.3. If U and V be vector spaces over the same field F, M = Hom(U,V),
I' = Hom(V,U). Then M is a I-ring with respect to point wise addition and compo-
sition of mappings.

Definition 2.4[2]. A subset A of a I - ring M is a left (resp. right) ideal of M
if A is an additive subgroup of M such that MTA C A (resp.ATM C A), where
MTA = {zay|lz € M,a €T,y € A} and ATM = {yazly € A,a €T,z € M}. If A
is both a left and a right ideal, than A is a two sided ideal or simply an ideal of M.

Definition 2.5[11]. A fuzzy set A in M is a function A: M — [0, 1].

Definition 2.6[11]. Let p be a fuzzy set in a I' - ring M. For any ¢ € [0, 1], the set
U(p,t) = {z € M|u(x) >t} is called a level set of .

Definition 2.7[11]. A fuzzy set p in a I - ring M is called a fuzzy left (resp. right)
ideal of M, if it satisfies:

(1) wx—y) > plx) A wy),

(ii) p(zay) > p(y) (resp. p(ray) > u(x)),
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for all z,y € M and o € I'. If p is both a fuzzy left and right ideal of M, then p is
called a fuzzy ideal of M.

Definition 2.8[1]. Let X be a nonempty fixed set. An intuitionistic fuzzy set A
in X is an object having the form A = {( @, pa(x),va(z) )|z € X}, where the
functions 14 : X — [0,1] and v4 : X — [0,1] denote the degree of membership and
the degree of non-membership of each element z € X to the set A, respectively, and
0 < pa(z)+va(z) <1, for every z € X.

Notation. For the sake of simplicity, we shall denote the intuitionistic fuzzy set
(IFS in short) A = { (z,pa(z),va(®)) |z € X} by A= (ua,va).

Definition 2.9[1]. Let X be a non empty set and let A = (ua,v4) and B = (up,vp)
be IFSs in X. Then

1. ACBiff ua < up and vgq > vp.
2. A=Bif AC Band B C A.

3. A= (va, pa).

4. ANB = (uaApup,vaVug).

5. AUB = (ua V up,va AUB).

6. OA = (,LLA71 —,uA), <>A = (1 — l/A,Z/A).

Definition 2.10[5]. Let A be an IFS in a I" - ring M. For each pair (t,s) € [0,1]
with ¢t +s <1, the set Ay o) = {2z € X | pa(x) >t and va(zx) < s} is called a (¢, s) -
level subset of A.

Definition 2.11.[6]. Let A = (pa,v4) be an intuitionistic fuzzy set in a T' -
ring M and let ¢ € [0,1]. Then the sets U(ua;t) = {x € M : pa(xz) > t} and
L(va;t) = {x € M : va(z) < t} are called upper level set and lower level set of A
respectively.

3 Intuitionistic fuzzy ideals

In what follows, let M denote a I' - ring unless otherwise specified. In this section,
an example of an intuitionistic fuzzy ideal is given.

Definition 3.1. AnIFS A = (ua,v4) in M is called an intuitionistic fuzzy left (resp.
right) ideal of a T - ring M if

(i) pa(z—y) > {pale) Apa(y)} and pa(zay) > paly) (vesp. palzay) > pa(r)),
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(i1) va(z —y) < {va(z) Vva(y)} and va(zay) < va(y)(resp.va(zay) < va(z)),
for all z,y € M and € T.

Example 3.2. [Intuitionistic fuzzy ideal of a I'-ring]

Let R be the set of all integers. Then R is a ring.

Take M =T = R.

Let a,b € M, € T'. Suppose aab is the product of a,a,b € M. Then M is a ['-ring.
Define an IFS A = (ua,v4) in M as follows.

1a(0) =1 and pa(£l) = pa(£2) = ....=t and

v4(0) = 0 and va(+1) = va(£2) = .....= s, where t € [0,1],s € [0,1] and t + s < 1.
By routine calculations, clearly A is an intuitionistic fuzzy ideal of a I'-ring M.

Theorem 3.3. If A is an ideal of a I' - ring M, then the IFS A= (xa,Xa) is an
intuitionistic fuzzy ideal of M.

Proof. Let x,y € M.

Ifx,yce Aand a €T, then x —y € A and zay € A, since A is an ideal of M.

Hence xa(x —y) =1 > {xa(@) A xa(y)} and xa(zay) =1 > xa(y).

Also, we have

0=1-xa(z—y)=Xalzr—y) <{xa(z)Vxa(y)} and

0=1-xa(zay) = Xa(zay) < Xa(y).

Ifx¢ Aory¢ A, then xa(xz) =0 or xa(y) = 0. Thus wwe have

xa(z —y) = {xa(@) A xa(y)} and

chia(zay) > xa(y) for all a € T.

Also Xa(z —y) < {xa(z) v

overlinex(y)} = (1 —xa(z)) vV (1 - xaly) =1

and Ya(zay) = 1 - xa(zay) < 1 - xa(y) = Xaly):

This completes the proof.

Definition 3.4[3]. An intuitionistic fuzzy left (resp. right) ideal A = ( pa,va ) of a
I' - ring M is said to be normal if p4(0) = 1 and v4(0) = 0.

Theorem 3.5. Let A = ( pa,v4 ) be an intuitionistic fuzzy left (resp. right) ideal
of a T-ring M and let pfi(z) = pa(z) + 1 — pa(0),vf(x) = va(x) — va(0). If
ph(z) + vi(z) <1 for all z € M, then AT = (p},v}) is a normal intuitionistic
fuzzy left (resp. right) ideal of M.

Proof. We first observe that i (0) = 1,4 (0) = 0 and p7 (z), v} (z) € [0,1] for every
x € M. So, AT = </[£, Vj‘_> is a normal intuitionistic fuzzy set.

To prove that it is an intuitionistic fuzzy left (resp. right) ideal, let x,y € M and
aecl.
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Then p}(z —y) = pa(x —y) + 1 — pa(0) > {pa(x) A paly)} +1 - pa(0)
= {pa(@) +1—pa(0)} A{paly) + 1 - pa(0)} = ph(e) A pk(y),
vi(z —y) =va(z —y) —va(0) < {ra(z) Vvaly)} —va(0)
= {va(x) = va(0)} V{ra(y) —va(0)} = vi(z) Vvi(y),

and p} (way) = pa(zay) + 1= pa(0) > pa(y) +1 - pa(0) = pk(y),
vi(zay) = va(zay) — va(0) < va(y) — va(0) = vi(y).

This shows that AT is an intuitionistic fuzzy left(resp. right) ideal of M.

So, At = (u},v}) is a normal intuitionistic fuzzy left(resp. right)ideal of M.

Definition 3.6 [2]. Let I be an ideal of a I" - ring M. If for each a + I, b+ I in the
factor group M/I and each o € T', we define (a + I)a(b+ I) = aab+ I, then M/I is
a I' - ring which we shall call the I' - residue class ring of M with respect to I.

Theorem 3.7. Let I be an ideal of a I' - ring M. If A is an intuitionistic fuzzy left
(resp. right) ideal of M, then the intuitionistic fuzzy set A of M/I defined by

pila+I)=V pala+z)and vi(a+I)= A vala+z)

xzel rzel

is an intuitionistic fuzzy left (resp. right) ideal of the T" - residue class ring M/T of M
with respect to I.
Proof. Let a,b € M be such that a+1 =b+ 1.
Then b = a + y for some y € I and so

pib+1)= \G/I/JA(ber): V pala+y+z) =V palatz)=pzla+1),

zel r+y=z€cl
vilb+I)= A valb+z)= Avale+y+z)= A\ vala+z)=vi(a+1).
xcl xel r+y=z¢cl

Hence A is well defined.
Forany x+ I,y + 1 € M/I and o € T, we have

pi(@+D)—@+D)=pi((x—y)+1) =V pa((z—y) +2)

g
_ u,YEIMA((x +u) = (y +))
> u)\v/EI (na(z +u) A paly +v))
- (u\e/l uA(x+u))A(U\e/I pa(y+v))

=pile+1)Apily+1),

ville+D) = (y+1) =vi((x—y)+1) = A va((z —y) +2)

zel
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= A va(@—y +(u-0)

z=u—v€El
= /\GIVA(($+U)—(?J+U))
< /\EI (yA(x+u)VVA(y+U))
= (A vale+) v ( A valy+0)

=vile+ 1) Vrsily+1),

pi((z+Naly+1)) =pi((zay) +1) = \E/I pa((zay) + 2)

>\ pa (xay+xaz) because zaz € I
zel

= \G/I pa(zaly + z))

>V pay+2)
zel

=pily+1),

VA((x—l—I)a(y—ﬁ—I)) = I/A((xay)—i—f) = /e\IVA((xay) +z)

< Avwva (may—i—xaz) because zaz € 1
zel

= /E\I va(zaly + 2))

< Avaly+2)
zel

=vily+1).
Similarly,

pi((@+Daly+1)) > pi(e+1) and vi((z + Daly + 1)) <vi(z+1I).

Hence A is an intuitionistic fuzzy left (resp. right) ideal of M/I.

Theorem 3.8. If the IFS A = (ua,v4) is an intuitionistic fuzzy left (resp. right)
ideal of M, then the set My = {z € M|ua(z) = 1a(0) and va(z) = v4(0)} is an
ideal of M.

Proof. Let z,y € M4.
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Then pa(z) = pa(y) = pa(0) and va(z) = va(y) = va(0).

Since A is an intuitionistic fuzzy ideal of M, it follows that

pa(@ —y) = {pa(@) Apa(y)} = {pa(0) A pa(0)} = pa(0),

valz —y) < {va(@) V va@)} = va0) V va(0)} = va(0).

Hence pa(x —y) = 1a(0) and va(z —y) = va(0). Sox —y € My.
Let ze M,acl'and y € My4.

Therefore pa(zay) > pa(y) = pa(0) (resp. pa(zay) > pa(r) = pa(0)) and
va(zay) < va(y) = va(0) (resp. va(way) < va(z) = va(0)).

Hence pa(zay) = pa(0) and va(zay) = v4(0).
So xay € M4.Hence M4 is an ideal of M.

Theorem 3.9. Let A be an intuitionistic fuzzy left (resp. right) ideal of a T" - ring
M. For each pair (t,s) € [0,1], the level set A ;) is an ideal of M.

Proof. Let z,y € Ay 4.

Then pa(x) > t,pa(y) >t and va(z) < s,va(y) < s.

Since A is an intuitionistic fuzzy left (resp. right) ideal, we have
pa(r—y) > {pa(@) Apa(y)} >t and va(r —y) < {va(z) Vva(y)} <s.
So x — Yy € A(t,s)-

Let v € M,y € Ay ) and a €T

Then pa(ray) > pa(y) >t and va(zay) <va(y) <s. So zay € Ay,q).
Hence A ) is an ideal of M.

Definition 3.10. Let A and B be two intuitionistic fuzzy subsets of a I' - ring
M and o € T'. Then the product AT'B is defined by
pare(@) =V (na(y) Apa(z)) if @ = yaz,

T=yoz

vars(z) = N (valy) Vva(2)) if z = yaz.

r=yaz
Otherwise, we define puarp(z) =0 and varp(z) = 1.
Definition 3.11[4]. Let A = (ua,v4) and B = (up,vg) be two IFSs in a I' - ring

M. Then the composition of A and B is defined to be the intuitionistic fuzzy set
Ao B = (jaop,vaon) in M given by

taop(x) =V { 1</_\<k,uA(ai) App(b):x= Z’f a;ab;,a;,b; € M,ael'ke N

Vaop(x) = /\{ V' vala) Vug(b) :z= Z’f a;ab;,a;,b; € M,ael',ke N

1<i<k

if we can express x = Zle a;ab; for some a;,b; € M, where each a;ab; # 0 and
ke N.
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Otherwise, we define Ao B =0, i.e., paop(xz) =0 and vaop(x) = 1.

Theorem 3.12. If A = (ua,v4) and B = (up,vp) are intuitionistic fuzzy ideals in
a ' - ring M then Ao B is an intuitionistic fuzzy ideal in M.
Proof. For any =,y € M, we have

paos(T —y)
=V{ 1</\<kHA(Ui) App(v):x—y =35 wavi,u;,v; € Mya €T and k € N}
>V {( /\ palaq) A pp(bi))A (1</\< pa(=ci) A pp(ds))

:93:21 a;ab;, —y = > —cad;, ai, by, —c;,d; € M, € I' and m,nEN}
=V{( A pala) Aps®))A( N pale) A ps(d))

1<i<m 1<i<n

cx =Y 1 aiabi,y = > c;ad;, i, bi,ci,d; € M, € T and m,nEN}
=V{ A pala)Apsb;):z=>7 aab,a;,b;,€ M,a el and me N}

1<i<m

AV A pale) Aps(ds) :y =371 ¢ad;,ci,di,€ M,a €T and n e N}

1<i<n

= HAOB(:U) N pAoB (y)

Vaor(T —Y)

:/\{ V VA(ui)\/VB(U,»):x—y:Z’fuiavi,ui,vieM,aeF andkeN}

1<i<k
<A {(1<\_/< va(ai) V vp(bi)) v (1<\_/< va(—ci) Vvp(ds))

cx =31 a;ab;, —y = 31 —ciad;, a;,bi, —ci,di € My €T and m,n € N}
=A{( V wvala)Vep®) vV ( V wvala)Vs(d))

1<i<m 1<i<n

cx =31 aab,y = Y7 ciad;, a;,b;,¢,d; € Mo €T and m,n € N}
:/\{ V' va(a) Ves(b):z=3 1" aab;,a;,b; € M,a €T and mEN}

1<i<m

\//\{ V vale)Vg(d) :y=>"cadi,ci,di € M, €T and nEN}

1<i<n

= VAoB(x) V VAoB(y>‘

Also,we have
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paon(z) =V { 1</\< pala) App(b;) :x =3 1" aab;,a;,b; € M,a €T and m € N}
<V{ A pale) Aps(bioy) : 2oy = X7 aia(bioy), asbiay € Mya €T and m €
N} 1<i<m

<V { 1</\< pa(ui) A pp(vi) s zay = > 7" wiow;, ui,v; € Mya €T and m € N}

= /v‘AoBEx;‘y)

Vaop(x) =\ { 1<\/ vala;) Vvg(b):xz=>"1"aabja;,bi € M,a €T and m € N}
> A{ V VA(:J,Z';\/ ve(bay) : zay = > " a;a(bay),a;,biay € M,a € T and m €
Ny 1<i<m

> A { 1<\/< va(u) Vp(v) zay =Y 1 viov;,u;,v; € Mo €T and m € N}

= VAoBEx;y).

Hence paop(zay) > paop(x) and vaop(ray) < vaop(x).

Similarly we get paop(ray) > paop(y) and vaop(rxay) < vaop(y).

Therefore Ao B = (408, Vaop) is an intuitionistic fuzzy ideal of M.

Definition 3.13[2]. A function f : M — N, where M and N are T - rings, is said
to be a I' - homomorphism if f(a +b) = f(a) + f(b), f(aad) = f(a)af(b), for all
a,be M and a € T'.

Definition 3.14[2]. A function f: M — N, where f is a I' - homomorphism and M
and N are I - rings, is said to be a I" - endomorphism if N C M.

Definition 3.15[2]. Let f : X — Y be a mapping of I' - rings and A be an intu-
itionistic fuzzy set of Y. Then the map f~!(A) is the pre-image of A under f, if

pr-1(a)(X) = pa(f(z)) and vi-1(4)(X) = va(f(2)), for all z € X.

Theorem 3.16 Let f be a T' - homomorphism of M. If the IFS A = (ua,v4) is an
intuitionistic fuzzy left (resp. right) ideal of M, then B = </’Lf*1(A)a Vf—l(A)> is an
intuitionistic fuzzy left (resp. right) ideal of M.

Proof. For any z,y € M, a € I', we have

pp-1cay(@ —y) = pa(flz—y))
=pa(f(x) = f(¥) = pa(f(z)) A MA(f(:U)) = pp-1a)(T) A pp-1ay(y)
and pup-10ay(zoy) = pa(flzoy)) = pa(f(@)af(y) = pp—10a) ().
Similarly, v-1a)(z —y) = VA( y))
=va(f(z) - f(y) < VA(f(I)) Va(f(y) =ve-1a)(@) Vi)
and vyp-1(a)(zoy) = va(f(zay)) = va(f(z)af(y)) < vi-1a) ().

Hence B is an intuitionistic fuzzy left (resp. right) ideal of M.
Theorem 3.17. If A = (ua,v4) is an intuitionistic fuzzy set in M such that the
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non-empty sets U(ua;t) and L(va;t) are ideals of M for all ¢ € [0,1], then A is an
intuitionistic fuzzy left (resp. right) ideal of M.

Proof. Suppose that there exists xqg,yo € M such that

pa(zo —yo) < (a(zo) A pa(yo))-

Let to = 5{pa(zo — yo) + (na(zo) A pa(yo))}-

Then (pa(zo) A pa(yo)) > to > palzo — yo)-

It follows that x,,y, € U(pa;to) and xo — yo ¢ U(pa;to).
This is a contradiction.

Hence pa(z —y) > (pa(z) A pa(y)), for all z,y € M.

Now let zg,y0 € M and « € T" such that pa(xoay) < pa(yo)-
Let to = 5{pa(zoayo) + pa(yo)}-

Then we get pa(zoayo) < to < pa(yo)-

It follows that yo € U(pa;to) and zoaye ¢ U(pa;to)-

This is a contradiction.

Thus pa(zoayo) > palye) (resp. pal(zoayo) = pa(wo)).
Similarly, suppose that there exists xg, yg € M such that
va(zo —yo) > {valwo) Vvalyo)}-

Let to = 5{va(zo — yo) + (va(zo) V va(yo)) }-

Then (va(xo) V va(yo)) < to < valzo— o).

It follows that ., y, € L(ua;to) and xg — yo & L(pa;to)-
This is a contradiction.

Hence va(z —y) < (va(z) Vva(y)), for all z,y € M.

Now let xg,y0 € M and « € T such that v4(xzgayo) > va(yo).
Let tg = %{VA(LI}OC%:UQ) + VA(yo)}.

Then we get va(xoayo) > to > va(yo).

It follows that yo € L(pa;to) and xoaye ¢ L(va;to).

This is a contradiction.

Thus va(zoaye) < va(yo) (resp. va(zoayo) < va(zo)).
Hence A is an intuitionistic fuzzy left (resp. right) ideal of M.
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ABSTRACT: In this paper we introduce a new class Q7 (®, U, A\, A, B)
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1 Introduction

Let A denote the class of functions of the form

fR) =2+ anz", (1.1)

n=2

that are analytic in the open unit disc A := {2z € C: |z] < 1}. Let S be a subclass of
A consisting of functions univalent in A.

Let f and g be functions analytic in A. Then we say that f is subordinate to g
if there exists a Schwarz function w(z), analytic in A with w(0) =0 and |w(z)| <
1 (z € A), such that

f(z) =gw(z)) (2€4).
We denote this subordination by
F<g or fz)=<g(z) (z€A).
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In particular, if ¢ is univalent in A, the above subordination is equivalent to

f(0)=¢(0) and f(A) Cg(A).

For functions f € A given by (1.1) and g € A given by g(z) = z+ Y-, by2", we
define the Hadamard product (or Convolution) of f and g by

(f*9)(z —z—i—Zanbz z € A. (1.2)

By using the Hadamard product, Ruscheweyh [10] defined an operator

D7f(z) = ﬁ * f(2), v=-L (1.3)
Ruscheweyh [10] observed that
D"f(z) = —Z(zn_ljl(z))(n) (1.4)

where n =y € Ny = {0,1,2,...}. This symbol D" f(z), n € Ny is called by Al-Amiri
[1], the n*" order Ruscheweyh derivative of f(z).
We note that D°f(2) = f(z), D' f(2) = 2f'(2), and

oo

D"f(z) =2+ o(n k)apz* (1.5)
k=2
where
o(n, k) — (” v 1) (1.6)

Let T denote the subclass of S consisting of functions of the form
z):z—Zaka7 ar >0 (1.7)

Several new classes of analytic functions defined by Ruscheweyh derivatives have
been studied and continue to be introduced and investigated in the literature (See for
example [12, 13, 8] to mention a few interesting studies). Several investigations on
functions with negative coefficients have been done. (See for example [3, 2, 6, 9, 11]).
In particular, results on functions with negative coefficients related to Ruscheweyh
derivatives have been derived. See for example, [4, 5, 7]).
Motivated by the aforementioned works, we introduce a new class
Q" (®, W, \, A, B) by using m*" and n'" order Ruscheweyh derivative of f(z).

oo oo

Definition 1 Let ®(z) = z + Zﬂkzk, and ¥(z2) = 2z + Z'ykzk be fired analytic
k=2 k=2

functions in A and B, > 0, v, > 0, k > 2. We define a class QI (P, U, \, A, B)



A new class of analytic functions based on ... 105

consisting of analytic functions of the form
oo

f(z)=2- Zakzk,ak >0,
k=2

which satisfy the subordination condition

14+ Az
1+ Bz

(1= X)(D™(f % ®)(2))" + AD"(f * ¥)(2))" < (1.8)

forz€ A, where A\ >0, - 1< A< B<1,0<B<1andm,n € Ny.

By specializing the parameters m,n, A\, A and B, and the functions ® and ¥, we
obtain the subclasses studied by various authors as listed below:

z

—2'1-2z

0 Qi (£ M AB) = QA AB) [

) @ (12 s A= 11) = Re) 0<a < 1) 3

(iii) Q¢ <1iz 1%2,0,204 ~1, 1) =T*(a) (0< a<1) 11, 2]

(w)@ﬁ“(liflizﬂﬁalﬂ)QM®(0§a<1HM}

z z

(v) Q(lJ <1_Za izaoa (2a — 1)575) =p*(, B)
0<a<1,0<B8<1) (6]

, z z y
(Vl) Q(l] (1—2’ fzu 07 ((1 + lu’)a - 1)57#B) =D (avﬁ7ﬂ)
0<a<1,0<B<1L0< <) [9]
It is of interest to note that the class Q7 (P, U, A\, A, B) gives several well-known
subclasses of functions for suitable choices of ®(z), ¥(z) and m,n. We obtain coeffi-

cient inequality, coefficient estimate, distortion theorem, extreme points and integral
representation for functions in the class Q7 (P, U, A\, A, B).

2 Coefficient Estimates

Theorem 1 A function f(z) =z — Zakzk eQn (P, U, A\ A B) if and only if
k=2

B-A

Brl (2.1)

> k(1= No(m, k), + Aa(n, k)y,] ax <
k=2
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Proof. Suppose f(z) € QL (P, P, \, A, B). In view of the definition of subordination
we get,

_ _ m / n ! 1 + Aw(z)
h(z) = (1 =) (D™ (f * 2)(2)) + AD"(f * ¥)(2))" = ;53  Bu(2) (2.2)
—-1<A<B<1,0<B<1,z€A, and |w(z)| < 1. From (2.2), we get
_1-h(2)
W) = =4
In view of (2.2), one can easily obtain through a simple computation that,
= Zk o(m, k)B, + Ao(n, k)y,] arz"!
k=0
and |w(z)| < 1 implies
Z k[( o(m, k)By + Ao(n, k)v,] arz""1
k=2 <1 (2.3)
BZk (1 = Na(m, k)By + Ao (n, k)vy,] apz""

and hence,(2.1)holds.
Conversely, Suppose f € T and satisfies (2.1). For |z| =r, 0 < 7 < 1, we have by

(2.1),

11 — h(2)| — |Bh(z) <>k a(m, k)By, + Ao (n, k)v,] aprt?
k=2

—(B—A)+ BZ E[(1 = XNo(m,k)B, + Aa(n, k)v] apr®1 <0
k=2

which gives (2.2) and hence follows that

1+ Aw(2)

(1= ND™(f @)= + ND"(] * ¥)))' = 1 Fues

z€A, -1<A<B<1,0<B<1. Hence, f(z) € Q1(D, T, \, A, B).
Finally the function f(z) given by

—_A .
k

B
f(z) =2z~ RO T B[ = No(m. k> 2 (2.4)

VB + Aol k)] T

is an extremal function for the class. W
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Corollary 1 Let the function f(z) defined by (1.7) be in the class QI (P, ¥, \, A, B).
Then we have

B—A
S T B (L= Vo k)b aem k] P2 (25)

Theorem 2
Q:Ln(@’ \Ilv)\QaA7B) g Q:Ln(q)7qlaAl7AaB)

for —=1< A<B<1,0<B<1,X>X>0andn >m.
Proof. Let f(2) € Q11 (D,¥, X2, A, B).
Zk (1= A)o(m, k)B), + Ao(n, k)y,] ak

- B—A
SZ a(m, k)By + (o (n, k)y, — o(m, k)Bi) 2] ax, < 1+ B

Therefore f(z) € Q7 (P, ¥, A\, A, B). Hence the proof of Theorem 2 is complete. W

3 Closure Theorems

Let the functions f;(z) be defined, for i = 1,2,...,¢ by
2)=2z— Zaklzk, ag,e > 0. (3.1)

We shall prove the following results for the closure of functions in the class
Qr.(®,V,\ A, B).

Theorem 3 Let the function f;(z) defined by (3.1) be in the class QT (P, ¥, \, A;, B;),
fori=1,2,... L. Then the function h(z) defined by

[eS) 14
h(z) =z — % Z (Z amzk) (3.2)

is in the class Q1 (®, ¥, \, A, B),

where A= 112111 {4;} and B= &1?%{3 }. (3.3)

Proof. Since f;(z) € Q" (®,V,\, A, B), for i =1,2,...,¢, we have

el B; — A,
>_ kI =No(m,k)By + do(n, k)] ans < T

k=2

, by Theorem 1
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Hence we obtain,

Zk: [(1—A mk)Bk—l-)\Unk'ykl Zakz‘|

¢
1
SZZ{Zk (1= X)a(m, k)By, + Aa(n, k)%]akz}
¢
SEZBi_AiSB_A-
/ ~ 1+ B; 1+ B
Thus, we get
= A
Zk [(1=MNo(m, k)8, + Ao(n, k)v] Zah
=2

given (3.3), which shows that f(z) € Q7 (®,¥,\, A, B). A
Theorem 4 Let the functions fi(z) (i = 1,2,...,¢) defined by (3.1) be in the class
QU (®,V, N\, A, B). Then the function h(z) defined by h(z Zd fi(z) is also in the

¢
(®,9, A\, A, B), where Zdi =1.

=1

same class Qy,

Proof. According to definition of h(z) we can write that

) === 35 ()
k=2
Further, since f;(z) are in Q7 (®, ¥, A\, A, B) for every i = 1,2,...,{, we get

B—-A

Z k[(1 = Na(m, k)By, + Aa(n, k)yi) ak,: < 1B

for every i =1,2,...,/.
Hence, we can see that

¢
Zk [(1=XNo(m,k)B) + Aa(n, k)vy,] (Zdakz>

i=1

V4 oo
:Zdi (Zk [(1 = N)a(m, k)By, + Aa(n, k)] ax z)
i=1 k=2
¢
B—-A B-A
< ) = = .
—<;dl> 1+B 1+B

This proves that the function h(z) € Q7 (®, ¥, A, A, B). Thus we have the theorem.
[ |
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Corollary 2 The class QI (®, ¥, \, A, B) is closed under convex linear combination.
Proof. Putting £ = 2 in the above theorem, we prove the corollary. W
Theorem 5 Let
fi(z) ==
B-A &
=z— , k>2.

) =2 MBI Vel BBy arm b

Then f(z) € QI (P, U, \, A, B) if and only if it can be expressed in the form

and

F2) =" mfel2) (3-4)
k=1

where py, >0 (k> 1) and Z,uk =1.
k=1

Proof. Assume that f(z) = Z g fr(z). Then
k=1

I (B—A)p .
6 =222 S Netm ko el 9
Then it follows that
k(B4 1)[(1—=XNo(m, k)b, + Xo(n, k
kz::z ( ) [( )B(_A)k (n, k)]
) (B = A, _ -
k(B +1)[(1 = No(m,k)B), + Xa(n, k)y,] kZ:Q#k
=1-1y

<1

Then f(2) € Q7 (®, ¥, \, A, B).
Conversely, assume that f(z) defined by (1.7) belongs to the class
Q%((I)a U\ A, B). Then

(B—A
U < E(B+1)[(1 = Xo(m,k)By, + Ao(n, k)v] (k22).
Setting,
e E(B+1)[(1— A)(a}g(fﬁ,j))ﬂk + Aa(n, km]7 " —1-3
k=2

we can see that f(z) can be expressed in the form (3.4). This completes the proof.
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4 A Set of Distortion Inequalities

Theorem 6 Let the function f(z) defined by (1.7) be in the class Q% (P, ¥, \, A, B)
and let

(1= Na(m,2)By + Aa(n, 2)7,] < [(1 = Na(m, k)8, + Ao(n, k)]

Then, we have for |z| =r < 1,

—B_Ar2§|f(z)|§r+B_Ar2 (4.1)

r

262 252
and B-A B-A
- ———r<|fl(z)| <14 —r (4.2)
52 2
The results are sharp for the function
B-A,
flz)=2z—- %5, re, (4.3)

where 02 = 2(1 + B) [(1 — N)o(m,2)8, + Ao(n, 2)7,) .

Proof. Since k[(1 — N)o(m, k)B;, + Ao(n, k)y,] is an increasing function of k (k >
2), and f(z) € Q" (®, ¥, \, A, B), by Theorem 1, we have

2[(1 = No(m,2)By + Ao (n, 2)7s) Z ay < Z’f (1= X)a(m, k)B), + Aa(n, k)y,] ax

k=2 k=2
—A
< .
~ 1+B
That is
i e < B—-A _B-4
£ =14 B [(1 = No(m, 2)B; + Ao(n,2)y,] 205

@ <2+ laxllzl*
k=2

(o) o]
§T+Zakrk §T+T2Zak
k=2 k=2

B-A }
(1+B)[(1 = X)a(m,2)B; + Ao(n,2)7,]

=7 472 <B26A> and
2

> —§ k> — QE —p—2
lf(z)] > kzzakr >p—r k:2ak r—r ( %5, >

< 2
<r+4r {2
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Hence (4.1) follows.
Also, in view of the inequality (2.1), we have
B-A

[(1 = Mo (m, 2)B5 + Ao (n, 2)7,] Y kay, < 1B

k=2
B —

2

> A
which gives, Z ka < . Thus

k=2

B-A

2

|f’(z)|Sl—i—Zkzakrk_lgl—&—erzakgl—i— T,
k=2 k=2

Similarly we can prove the other inequality |f'(z)| > 1 — BT;AT.

Hence (4.2) follows also. W
5 Integral Operator

Theorem 7 Let the function f(z) defined by (1.7) be in the class QL (P, ¥, \, A, B),
and let d be a real number such that d > —1. Then the function F(z) defined by

Pz =211 /Oztd_lf(t)dt (5.1)

z

also belongs to the class QL (P, ¥, \, A, B).
Proof. From the representation of F(z), it follows that

~(d+1 X
F(z)=2z— Z <d+k> apz"”, (5.2)
k=2
Therefore,
- d+1
;k a(m, k)By + Aa(n, k)v) (M) a
- B—A
Z o(m, k)By, + Ao(n, k)v,] ar < T B

Hence, FF € Q1 (®, ¥, N\, A, B). B

o0
Theorem 8 Let the function F(z) = z — Z arz® (ax > 0) be in the class

k=2
Qr.(®,V, N\, A, B) and let d be a real number such that d > —1. Then the function
f(z) defined by (5.1) is univalent in |z| < R*, where

(14 B)[(1 = AN)a(m,k)By, + Aa(n, k)] (d+1)
(B—A)(d+m)

1/k—1
R* =inf } (k>2). (5.3)
k

The result is sharp.
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Proof. From (5.1), we have

217424 (2))

= d>—1
O R (R
[ee]
d+ k) k
=z — Z ( agz .
— d+1
In order to obtain the required result it suffices to show that
[f'(z) =1 < 1, (5.4)
for |z| < R*. Now
 k(d+ k) k-1
-1 < .
| < ; d+1) ax2|

Thus |f'(z) — 1] < 1, fz d:_l];)

Hence by Theorem 1, (5 4) is true if

K R) ey KB )0 = Nolm, By +do(n k)]
d+1) = B A

k|z\k_1 < 1.

or if

(B+ 1) [(1 = No(m, k), + Ao(n, k)y,) (d+ 1)

k>2
2l < (B—A)(d+ k) e
which proves that f is univalent in |z| < R*.
Sharpness follows if we take,
B-A)(d+k
fle) =2~ (B AXd+ k) & k2

E(B+1)[(1—=XNo(m,k)B, + Ao(n, k)v] (d+ 1) -
[ ]

6 Radii of Close-to-convexity, Starlikeness
and Convexity

Theorem 9 Let the function f(z) defined by (1.7) be in the class
QM (D, U, N\, A, B). Then f(z) is close-to-convex of order p (0 < p<1)in|z|] <r =
ri(m,n, ®, ¥, A\ A, p), where

(1 p)(1 + B)[(1 = No(m, k)By + Ao(n, k)y, )]V

B E>2. (6.1)

=inf
k

The result is sharp with the extremal function f(z) is given by (2.4).
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Proof. We must show that |f'(z) — 1| <1 — p for |z| < 1. We have
(o)
[f'(2) =11 < D kaglz]
k=2
Hence, |f'(z) — 1] <1—pif

i (11;) aplz|F"t < 1. (6.2)

k=2
By Theorem 1, we have

k(B+1)[(1=No(m,k)B, + No(n,k)v.]a
Z (B+1)[( )((B_j)al)k—'— (n, k)vi] ar

<1
k=2

Hence, (6.2) will be true if

k|z|k—1 < E(B+1)[(1—No(m,k)B; + Ao(n, k)v,] ak
l—p — (B—A4)

n {(1 — P)(B+1) (1 = No(m, k)8, + Ao(n, k)y,]a
= (B-4)

The theorem follows easily from (6.3). W

1/k—1
} , k>2. (6.3)

Theorem 10 Let the function f(z) defined by (1.7) be in the class Q7 (P, ¥, \, A, B),
then f(z) is starlike of order p (0 < p < 1) in |z| < ro = ro(m,n, P, ¥, \, A, B, p)
where

(= pk(L+ B)[(1 = No(m. k)Bj, + Ao (n, k), 1V
=inf | (B A)k—p) [N

The result is sharp with the extremal function f(z) given by (2.4).

2f'(2)

ON

Proof. It is sufficient to show ‘

< 1—p for |z| < re. By making use of
the inequality,

oo

> (k= Daglz|*

!
z]{((j) _ 1’ ckz (6.5)
z
1- Zak|z|k_1
k=2
we get, ‘ }c(iz) —1‘ <1-pif
< (1 k-1
(k = pa|z]""" <1 (6.6)

k=2 L=p
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Hence, by using (6.3), (6.6) will be true if

(k= p)lel*t _ k(1 +B) [ = Na(m, k)By, + Ao(n, k)]
l—=p = (B—A)

(1 p)k(L+ B)[(1 = N (m, k)8, + Aa(n, k)v,] ]V

o= (B~ A |

The theorem follows easily from (6.7). W

Corollary 3 Let the function f(z) defined by (1.7) be in the class QT (P, U, A\, A, B),
then f(z) is convex of order p (0 < p < 1) in |z| < r3 = r3(m,n, P, ¥, \ A, B, p),
where
f—
(1= p) (1= Nalm, k), + Aoln k) A+ B o

=t K(k—p)(B — A) /

The result is sharp with the extremal function f(z) given by (2.4).
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1 Introduction

In previous works of the first author [5], [6], a nonlinear evolution problem in a Banach
space (X, ||||), of the form
&= Az + R(t, ),
z(0) = a, (1)

is considered, and the existence of the solution in a neighborhood of z = 0 as well
as the Lyapunov stability of the null solution are studied via the implicit operator
theorem.

In [5] the operator A : D(A) € X — X (D(A) dense in X) is a closed linear
operator that generates a strongly continuous, exponentially decreasing semigroup
T(t) on X, while the nonlinear operator R is continuous, R(t,0) = 0 for all ¢t € R
and for some 8 > 0, C' > 0 the inequality
||[R(t, 1) — R(t,z2)|| < Cmax?(||z1]|, [|z2|])||z1 — 22| holds for all t € R, and z1, x5
in a centered in 0 ball of X.
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The hypothesis on the nonlinear operator R is weakened in [6], where the constant
C' in the above inequality is replaced with a continuous function C(.) with exponential
growth. In both papers above it is proved that, for an initial condition with small
enough norm, the problem has an unique mild solution (solution of some integral
equations associated to the differential abstract equation) and the null solution is
exponentially stable in the class of mild solutions. If, moreover, a Holder condition
in ¢ is imposed to R, then the above conclusions hold for the classical solutions also.

2 Problem 1.

We consider the nonautonomous problem
&= Az + R(t,z), teR, (2)

with the initial condition

x(s) = a, (3)
for some fixed s € R.
In [7] the corresponding autonomous problem (R(¢,z) = R(x)) was considered.

2.1 Hypotheses
I. A: D(A) C X — X, is a closed linear operator, D(A) is dense in X.

II. The null space V = N(A) of the operator A is nontrivial, closed, and X may be
written as the direct sum of V and U = R(A) (X = N(A)® R(A)).

Hence for any x € X, there is an unique decomposition x = u~+v with u € U, v €
V. The mapping P from X onto U, given by P(z) = u, is continuous.

The restriction of the operator A to the subspace U is the generator of the expo-
nentially decreasing semigroup U(t) of class Cy (there exist the constants M > 0 and
a > 0 such that for all t € RT = [0,+00) the inequality ||U(t)|| < Mexp(—at) is
fulfilled).

III. The nonlinear mapping R, defined on the Cartesian product of R with a neigh-
borhood of 0 in X, is continuous, R(t,0) = 0 for all t € R and there is a 8 >0 and a
continuous function C(t) > 0 such that for all t € R and x1,x2 in a neighborhood of
0 in X, the inequality

|1R(t,21) = R(t,z2)|| < O(t) max (||21]|%, ||z2]|?)[Je1 — 2]] (4)
holds, where C(-) € L*(R) hence there is a C > 0 such that, for every s € R

/Oo IC(0)]do < C.

We remark that the kernel of A may be infinite dimensional, hence A is not
necessarily a Fredholm operator. We do not insist here on the conditions on A such
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that the above hypotheses hold. A comprehensive study of linear semigroups is given
in [1].

By hypothesis II, I — P maps X on N(A) and it is continuous. We denote, for
simplicity, [|P|[z(x) by [|P]-

We set in (2) z(t) = u(t) + v(t), where u(t) = Px(t), v(t) = (I — P)x(t) and we
project the problem (2), (3) on U and V. We get the system of Cauchy problems

= PAu+ PR(t,u+v), wu(s)= Pa, (5)
0= —-P)Au+ (I — P)R(t,u+v), v(s)=(I— P)a. (6)
We consider the system of integral equations
u(t) =U(t — s)Pa+ /t U(t—0)PR(0,u(f) + v(0))do, (7)
v(t)=(I — Pla+ / (I — P)[Au(0) + R(0,u(0) + v(0))]do. (8)

If the pair (u(t),v(t)) is a solution of the integral equations (7)-(8) then x(t) =
u(t) + v(t) is called the mild solution of the Cauchy problem (2), (3).

Hypothesis II implies (I — P)A = 0 and the equations above become

u(t) = U(t — s)Pa + / t U(t — 0)PR(0, u(0) + v(0))do, (9)

w(t) = (I — P)a + / t([ — P)R(0, u(0) + v(6))dd. (10)

We set t = 7 + s and we perform the change of variables 6/ = 6 — s, to obtain

u(t +s) =U(r)Pa+ /OT U(r —0)PR(O' + s,u(0 + s) +v(0' + s))do’, (11)

v(t+s)={—-Pla+ /OT(I —P)R(O' + s,u(0 +s)+v(0 +s))db'. (12)

For every s € R, and any function z : [s,00) — X we define the function z|s :
[0,00) = X, by z|s(0) = (s + 0).

For a space X; C X, we consider the space Cp([0,0), X1) of continuous bounded
functions defined on [0,00) with values in X3, with the supremum norm (||z|lo =
sup ||z(t)]|), and denote it shortly by Cp(X7).
>0

~ We define the operators
Dy : X — Cy(U), a— Di(a), Di(a)(r) =U(r)Pa, T > 0;

Dy : X — Cb(V)7 a+— Dz(a), DQ(G)(T) = (I — P)a;
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Fuu s G(X) = G0, Fiu(o)r) = [ U= 0)PR(s + 0,2(6))db.

where x = u + v, and
Fos : Cp(X) = Cp(V), Fos(z)(7) = /OT(I — P)R(s+ 6,x(0))do.

For these operators the following relations hold:
D1l ex.cowryy < MIIPY,
1D2llc(xc,v)) < 1+ (1P,

[1F1s(2)(m)] < /O Me= T PC(s +6)|l(6)| "+ d6 < MC|P|| |5,

1Fos (2)(7)]| < O+ 1P| l|zlig ™

The two integral equations (11), (12) may be written as the equation
x|s :D(a)+FS(x|S), (13)

where
D:D1+D25 Fs:Fls""F23~

Equation (13) may be regarded as a fixed point problem in Cp(X),
¢ = ®(a,9) (14)
where
®(a, ¢) = D(a) + Fy(¢). (15)

We remark that ¢*(a) is a fixed point of ®(a,.) if and only if the function z(-; s, a) :
[s,00) — X, defined by z(s + 6;s,a) = ¢*(6,a), 0 > 0, is a mild solution of problem

(2), (3).

2.2 Results

Theorem 1. There are two positive numbers ro, r1, such that for ||a| < ro, the
mapping ®(a,-) given by (15) is an uniform (with respect to a) contraction from

B(0,7r1) C Cp(X) to itself.
Proof. We have, for any ¢1, ¢2 € Cp(X)

[|®(a, $1) — @(a, ¢2)|lo = ||Fs(o1) — Fs(@2)|lo <
< ||F1s(1) — Fis(92)llo + || Fas(¢1) — Fas(2)lfo-
‘We have

t
| F1s(h1) — Fis(82)lo < / Me= "= ||PR(s +0,61(0)) — PR(s + 0, $2(0))||d6 <
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S/ Me= =D P||C(s + ) max([| g1 (9)1I, 62(0)]1)][¢1(6) — ¢2(8)l|d8 <

< MC||P|| max{||¢1[15, l$2116 i1 — d2llo, (V)é1, ¢2 € Co(X), (16)
and

[F25(1) = Fas(@2)llo < /OT I(I = P)R(s +6,01(0)) — (I = P)R(s + 0, $2(0))]|d0

S/O (1 +[IPI)IC(s + 0)|do max{ [ $1lg, I 62llo Hér — ¢2llo

< C(1+ ||P]l) max{||gallg, 62015 é1 — b2llo-
For ¢1, ¢2 € B(0,7) C Cp(X), we have

1Fs(¢1) = Fs(92)llo < OLM + )| P|| + 1) 61 — ¢2o-

_ —1/ _
Let 7 > 0 be such that 1 < {0[(M+ D[P + 1]} . On the sphere B(0,71) C

Cp(X), the mapping ®(a,-) is an uniform (with respect to a) contraction.
If flall < 7o, [|¢[lo < 71, then

18 (a, $)llo < [(M + D|IP|| + Lro + C[(M + 1)||P|| + 1]/,

By imposing to this last quantity to be less than 71, we find the restriction
r ~
! {1=C1+ )P+ 17}

<rgi=m o
lall <7 (M + 1)|[P|][+1

Hence, for ||al| < rg, ® is an uniform contraction on B(0,71). O

The uniform Banach contraction principle implies that, for |ja]| < rg, the fixed
point problem (14) has an unique solution ¢*(a) € Cp(X).

Hence the function x(-;s,a) given by x(s + 6;s,a) = ¢*(0,a), § > 0 is a mild
solution of problem (2), (3). Since ® is an uniform contraction with respect to a, the
fixed point * is continuous with respect to a. Hence the function that maps a € X to
z(s++;s,a) € Cp(X) is continuous. From here and from z(.; s,0) = 0, the Lyapunov
stability of the null solution in the class of mild solutions follows, where the Lyapunov
stability is understood in the following sense

Definition 1. [2] A classical (resp. -mild) solution x(.;s,a) of problem (2), (3)
is called stable if for every e > 0 and every s’ > s there is a § = (e, s') such that for
every y € X with ||y — x(s';s,a)| < 4, the classical (resp. -mild) solution x(-; s',y)
exists, is defined on [s',00), and

(t;s,a) — x(t; s', y)|| <€

for every t > 5.

If a Holder condition with respect to time is added on R, then we obtain the
existence of classical solutions and also the stability of the 0 solution in the class of
classical solutions.

Remark. If we assume also that R(t,v) = 0 for every v € V, then by observing
that in this case || R(6,u(0) +v(0))|| < C(6)||u(8)|?T* holds, and by the reasoning of
[5] we obtain that ||u(t)|| tends exponentially to 0 when ¢ — cc.
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3 Problem 2.
We consider a perturbation of Problem 1, that is
&= Az + Bx + R(t,z), teR, (17)

with the initial condition
x(s) = a. (18)

Here B is a linear bounded operator B : X — R(A) with norm such that
M
L= —|P[lIBllecx) < L. (19)

Due to the range of B, only the first equation of the projected equations differs from
those of the previous section. The projected equations are, in this case,

= PAu+ PB(u+v)+ PR(t,u+v), u(s)= Pa, (20)

0= —P)R(t,u+v), v(s)

I
—
~
I
v
S—
IS

(21)

We consider the integral equations

u(t) = U(t — s)Pa + / t U(t — 0)PBu(6)do + / t U(t —0)PR(O, () +v(0))do, (22)

o(t) = (I - P)a+ /t(I — PYR(8,u(6) + v(6))do. (23)

We say that a function z(-) = u(-) + v(-) is an A-mild solution of equation (17)
if (u(-), v(+)) is the solution of (22)-(23). We named this solution A-mild because
the semigroup generated only by A (and not by A + B) is used in the first integral
equation. We proceed as for Problem 1, only that we define also the operator

E:Cy(X) > C(U), E(z)(t) = /t U(t — 0)PB(x(0))dd,

for which

I1E(@)]lo < Ll|8]lo,
with L given by (19) and
[E(d1) — E(¢2)]lo < Lll¢1 — d2]o-
The integral equations above are equivalent with the fixed point problem in Cy(X)
¢ = ®(a, 9),

where

®(a,¢) = D(a) + E(9) + F(9)- (24)
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Theorem 2. There are two positive numbers 1o, r1, such that for |la]| < 7o,
the mapping ®(a,-) given by (24) is an uniform (with respect to a) contraction from
B(0,7m1) C Cy(X) to itself.

Proof. The computations in the proof of Theorem 1 and the properties of E lead
to

[9(a.61) — B(a,8)llo < {E1OT + DIPY + 157 + L} 61— dullo
for H¢l||0 S T, 1= 172

1/B
1-L
We choose a r1 > 0 such that r; < (5[(M+1)|\P||+1])

On the closed sphere ||¢]lo < r; the mapping ® is a contraction (uniform with
respect to a). We have

1@ (a, é1)llo < [(M + DIIP|| +1llal| + C[(M + V)| P|| + 1]r{ ™" + Lry.
We impose the condition
(M +1)[|P]| + flall + C[(M + D)||P|| + 1r{ ™ + Lry <y

and we find that this condition is satisfied for

1

EST e R GV L BV It

lall <o =

The assertion of the theorem follows. [J

From this point, with the same reasonings as in the preceding section, we obtain
that, for ||a|| < ro, ro defined in the proof of Theorem 2, the problem (17), (18) has an
unique A-mild solution z(+; s, a) in the space of continuous bounded functions defined
from [s,00) to X. Moreover, from the continuity of the function that maps a € X to
z(s+-;s,a) € Cp(X) the Lyapunov stability of the null solution in the class of A-mild
solutions follows.

If the nonlinear map R(.,.) satisfies a Holder condition with respect to time, then
the above assertions are valid in the classical sense also.

Remark. If we assume also that R(t,v) = 0 for v € V, then by observing that
|R(0,u(8) +v(0))| < C(0)]|u()]|®+!, and by reasonings similar to those of Section 4
of [3] we obtain that ||u(t)|| — 0 when t — co.

4 Problem 3.

We consider again equation (2) with condition (3), but here we assume that only
Hypothesis T on A and Hypothesis IIT on R are fulfilled (with no special hypotheses
on the kernel of A). Moreover, we assume that A generates a bounded semigroup
{T(t)}+>0 of operators on X, that is for a M > 0, [|T'(t)|[zx) < M, Vt > 0.

We consider the integral equation

z(t) =Tt — s)a+ /t T(t—0)R(0, x(0))do. (25)
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A solution of this equation is called a mild solution of problem (2), (3). Obviously,
any classical solution is a mild solution of this problem. As before, we successively
transform the integral equation (25) into a fixed point problem:

z(s+7)=T(r)a+ /T T(r—0)R(s+ 6 ,2(s+0"))dd
0
hence -
2l(7) = T(r)a + /O T(r— 0)R(s + 0, 2|.(0'))de". (26)

Now, we define D : X — Cy(X), a = D(a)(.), D(a)(7) = T(7)a, and Fs : Cp(X)
Co(X)

Fu(¢) = / "T(r— 0)R(s + 0/, 6(0'))d0,

for which we have ||D(a)|lo < M||al|, and, respectively
[1Es(o)llo < / MC(s +0")|lp(0") "+ a0’ < MCglg ™,
0
hence F; takes indeed values in Cp(X). Moreover,

1F5(61) = Fs(d2) o < /OT MC(s+6") max([|o1(6")]|1%, l62(6") 1) | 61.(8") — 62(8") || d6" <

< MCmax([[$1l7, 182115 |61 — @2llo-
We define the mapping ® : X x Cp(X) — Cp(X), given by

®(a,¢) = D(a) + Fis(9) (27)
and remark that equation (26) is equivalent to the fixed point problem in Cy(X)
¢ = ®(a, ¢). (28)

Now consider a positive number 7 such that Mérf < 1. On the ball B(0,71) the
mapping & is a contraction (uniform with respect to a). Now we take an a such that

M]|al| +M5rf+1 <ry & |a|| <rg:i=r(1 —Mérlﬁ)/M

We thus proved

Theorem 3. There are two positive numbers ro, r1, such that for ||a|| < ro,
the mapping ®(a,-) given by (27) is an uniform (with respect to a) contraction from
B(0,71) C Cy(X) to itself.

Hence, if ||a| < 7o, there is an unique solution of equation (28) in B(0,r;). Thus
an unique mild solution x(.; s, a) of problem (2), (3) exists. Then, the local Lyapunov
stability of the mild 0 solution follows from the continuity of the function a € X —
x(s+-;s,a) € Cp(X).

If we add a Holder condition in ¢ on R the local stability of 0 as a classical solution
follows also.
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4.1 Problem 4.

We show in this section that similar results may be obtained also in the case when
the linear operator is a function of time, that is for the equation

&= A(t)x + R(t,x), t € R, (29)

with the initial condition
z(s) = a.

Here A(t) : D € X — X are closed linear operators, defined on the domain D
(independent of t), dense in X, and we assume that the problem

= A(t)u, u(s) =a (30)

has an unique classical solution, that is a function u € C([s,00), X) N C!([s, 00), X)
such that u(t) € D for t > s and (30) is satisfied. In this situation by the relation

U(t, s)u(s) = u(t)

an evolution family is generated.
An evolution family is a family of linear bounded operators
{U(t,s), t > s, s € R} that satisfy

U(t,m\U(r,s) =U(t,s), U(s,s) =1.

We say that an evolution family is strongly continuous if the mapping (¢, s) — U(t, s)
is strongly continuous on the set t,s € R,t > s.

The most difficult problem concerning this case is that of giving sufficient condi-
tions in order that the linear problem attached to the above problem generates such
an evolution family. This is not the subject of this paper and we indicate the work
[4] and the references therein.

The evolution family is named exponentially bounded if the inequality

UL, 8)]c(x) < Me? =),

M > 1, w e R, holds. If w < 0, the evolution family is named exponentially stable.
We first assume that the evolution family generated by (30) is exponentially stable
hence there is a positive a such that

U, 8)]lgx) < Mem2). (31)

In order to study the existence of the solution of problem (29), we consider the integral
equation

¢
xz(t) =U(t, s)a +/ U(t,0)R(0, x(0))do. (32)
Any classical solution of problem (29) is a solution of (32). A solution of (32) is called

a mild solution of (29). From this point, formally, the reasoning may be lead as in
[6], since only the norm estimates and the hypotheses on R will be used.
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In [6] the hypotheses on R differ from Hypothesis III from the beginning of this
work only in what concerns the function C(-). More precisely, it is assumed that one
of the inequalities

C(t)e P < C*, foray e (0,a), C* > 0;

/ C(s)e™*P*ds < oo
0

holds (hence C(.) may be unbounded).

As in [6], the problem may be brought to the form of a fixed point problem in
the space C,(X) = {z : [0, 00) = X | supjg o) [[z(t)[[e? < oo}. Tt follows that for
sufficient small ||a|| there is an unique mild solution of (29) and that the null solution
is locally asymptotically stable (in the class of mild solutions), in the sense given by

Definition 2. [2] A classical (resp. -mild) solution x(.; s,a) of problem (2), (3) is
called asymptotically stable if it is stable and, for every s’ > s, thereis a § = 6(s') > 0
such that for y € X with |ly — z(s';s,a)|| < 9§, the classical (resp. -mild) solution
x(+;8',y) exists, is defined on [s', 00), and

|z(t; s,a) — x(t; 8", y)|| = 0

ast — oo.

If we assume that the evolution family is only bounded (a0 = 0), then with the
same reasonings as in Section 3 of the present paper, we obtain that for sufficient small
la]| there is an unique mild solution of (29) and that the null solution is Lyapunov
stable (in the class of mild solutions).

If the function R(:,-) satisfies also a Holder condition in ¢ the above conclusions
are valid in the classical sense also.
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