Journal of Mathematics and Applications

JMA No 36, pp 79-83 (2013)

Supra b-compact and supra b-Lindelöf spaces

Jamal M. Mustafa

Submitted by: Jan Stankiewicz

ABSTRACT: In this paper we introduce the notion of supra b-compact spaces and investigate its several properties and characterizat eions. Also we introduce and study the notion of supra b-Lindelöf spaces.

AMS Subject Classification: 54D20

Keywords and Phrases: b-open sets, supra b-open sets, supra b-compact spaces and supra b-Lindelöf spaces

1.Introduction and preliminaries

In 1983, A. S. Mashhour et al. [3] introduced the supra topological spaces. In 1996, D. Andrijevic [1] introduced and studied a class of generalized open sets in a topological space called b-open sets. This type of sets discussed by El-Atike [2] under the name of γ -open sets. In 2010, O. R. Sayed et al. [4] introduced and studied a class of sets and maps between topological spaces called supra b-open sets and supra b-continuous functions respectively. Now we introduce the concepts of supra b-compact and supra b-Lindelöf spaces and investigate several properties for these concepts.

Throughout this paper (X,τ) , (Y,ρ) and (Z,σ) (or simply X, Y and Z) denote topological spaces on which no separation axioms are assumed unless explicitly stated. For a subset A of (X,τ) , the closure and the interior of A in X are denoted by Cl(A) and Int(A), respectively. The complement of A is denoted by X-A. In the space (X,τ) , a subset A is said to be b-open [1] if $A \subseteq Cl(Int(A)) \cup Int(Cl(A))$. The family of all b-open sets of (X,τ) is denoted by BO(X). A subcollection $\mu \subseteq 2^X$ is called a supra topology [3] on X if $X \in \mu$ and μ is closed under arbitrary union. (X,μ) is called a supra topological space. The elements of μ are said to be supra open in (X,μ) and the complement of a supra open set is called a supra closed set. The supra closure of a set A, denoted by $Cl^{\mu}(A)$, is the intersection of all supra closed sets including A. The supra interior of a set A, denoted by $Int^{\mu}(A)$, is the union of all supra open sets included in A. The supra topology μ on X is associated with the topology τ if $\tau \subseteq \mu$.

80 Jamal M. Mustafa

Definition 1.1 [4] Let (X, μ) be a supra topological space. A set A is called a supra b-open set if $A \subseteq Cl^{\mu}(Int^{\mu}(A)) \cup Int^{\mu}(Cl^{\mu}(A))$. The complement of a supra b-open set is called a supra b-closed set.

Theorem 1.2 [4]. (i) Arbitrary union of supra b-open sets is always supra b-open.

(ii) Finite intersection of supra b-open sets may fail to be supra b-open.

Definition 1.3 [4] The supra b-closure of a set A, denoted by $Cl_b^{\mu}(A)$, is the intersection of supra b-closed sets including A. The super b-interior of a set A, denoted by $Int_b^{\mu}(A)$, is the union of supra b-open sets included in A.

2. Supra b-compact and supra b-Lindelöf spaces

Definition 2.1 A collection $\{U_{\alpha} : \alpha \in \Delta\}$ of supra b-open sets in a supra topological space (X, μ) is called a supra b-open cover of a subset B of X if $B \subseteq \bigcup \{U_{\alpha} : \alpha \in \Delta\}$.

Definition 2.2 A supra topological space (X, μ) is called supra b-compact (resp. supra b-Lindelöf) if every supra b-open cover of X has a finite (resp. countable) subcover.

The proof of the following theorem is straightforward and thus omitted.

Theorem 2.3 If X is finite (resp. countable) then (X, μ) is supra b-compact (resp. supra b-Lindelöf) for any supra topology μ on X.

Definition 2.4 A subset B of a supra topological space (X, μ) is said to be supra b-compact (resp. supra b-Lindelöf) relative to X if, for every collection $\{U_{\alpha} : \alpha \in \Delta\}$ of supra b-open subsets of X such that $B \subseteq \bigcup \{U_{\alpha} : \alpha \in \Delta\}$, there exists a finite (resp. countable) subset Δ_0 of Δ such that $B \subseteq \bigcup \{U_{\alpha} : \alpha \in \Delta_0\}$.

Notice that if (X, μ) is a supra topological space and $A \subseteq X$ then $\mu_A = \{U \cap A : U \in \mu\}$ is a supra topology on A.

 (A, μ_A) is called a supra subspace of (X, μ) .

Definition 2.5 A subset B of a supra topological space (X, μ) is said to be supra b-compact (resp. supra b-Lindelöf) if B is supra b-compact (resp. supra b-Lindelöf) as a supra subspace of X.

Theorem 2.6 Every supra b-closed subset of a supra b-compact space X is supra b-compact relative to X.

Prof: Let A be a supra b-closed subset of X and \tilde{U} be a cover of A by supra b-open subsets of X. Then $\tilde{U}^* = \tilde{U} \cup \{X - A\}$ is a supra b-open cover of X. Since X is supra b-compact, \tilde{U}^* has a finite subcover \tilde{U}^{**} for X. Now $\tilde{U}^{**} - \{X - A\}$ is a finite subcover of \tilde{U} for A, so A is supra b-compact relative to X.

Theorem 2.7 Every supra b-closed subset of a supra b-Lindelöf space X is supra b-Lindelöf relative to X.

Prof: Similar to the proof of the above theorem.

Theorem 2.8 Every supra subspace of a supra topological space (X, μ) is supra b-compact relative to X if and only if every supra b-open subspace of X is supra b-compact relative to X.

Prof: \Rightarrow) Is clear.

 \Leftarrow) Let Y be a supra subspace of X and let $\tilde{U} = \{U_{\alpha} : \alpha \in \Delta\}$ be a cover of Y by supra b-open sets in X. Now let $V = \cup \tilde{U}$, then V is a supra b-open subset of X, so it is supra b-compact relative to X. But \tilde{U} is a cover of V so \tilde{U} has a finite subcover \tilde{U}^* for V. Then $V \subseteq \cup \tilde{U}^*$ and therefore $Y \subseteq V \subseteq \cup \tilde{U}^*$. So \tilde{U}^* is a finite subcover of \tilde{U} for Y. Then Y is supra b-compact relative to X.

Theorem 2.9 Every supra subspace of a supra topological space (X, μ) is supra b-Lindelöf relative to X if and only if every supra b-open subspace of X is supra b-Lindelöf relative to X.

Prof: Similar to the proof of the above theorem.

For a family \tilde{A} of subsets of X, if all finite intersection of the elements of \tilde{A} are non-empty, we say that \tilde{A} has the finite intersection property.

Theorem 2.10 A supra topological space (X, μ) is supra b-compact if and only if every supra b-closed family of subsets of X having the finite intersection property, has a non-empty intersection.

Prof: \Rightarrow) Let $A = \{A_{\alpha} : \alpha \in \Delta\}$ be a supra b-closed family of subsets of X which has the finite intersection property. Suppose that $\cap \{A_{\alpha} : \alpha \in \Delta\} = \phi$. Let $\tilde{U} = \{X - A_{\alpha} : \alpha \in \Delta\}$ then \tilde{U} is a supra b-open cover of X. Then \tilde{U} has a finite subcover $\tilde{U}' = \{X - A_{\alpha_1}, X - A_{\alpha_2}, ..., X - A_{\alpha_n}\}$. Now $\tilde{A}' = \{A_{\alpha_1}, A_{\alpha_2}, ..., A_{\alpha_n}\}$ is a finite subfamily of \tilde{A} with $\cap \{A_{\alpha_i} : i = 1, 2, ..., n\} = \phi$ which is a contradiction.

 \Leftarrow) Let $\tilde{U} = \{U_{\alpha} : \alpha \in \Delta\}$ be a supra *b*-open cover of X. Suppose that \tilde{U} has no finite subcover. Now $\tilde{A} = \{X - U_{\alpha} : \alpha \in \Delta\}$ is a supra *b*-closed family of subsets of X which has the finite intersection property. So by assumption we have $\cap \{X - U_{\alpha} : \alpha \in \Delta\} \neq \phi$. Then $\cup \{U_{\alpha} : \alpha \in \Delta\} \neq X$ which is a contradiction.

The proof of the following theorem is straightforward and thus omitted.

Theorem 2.11 The finite (resp. countable) union of supra b-compact (resp. supra b-Lindelöf) sets relative to a supra topological space X is supra b-compact (resp. supra b-Lindelöf) relative to X.

Theorem 2.12 Let A be a supra b-compact (resp. supra b-Lindelöf) set relative to a supra topological space X and B be a supra b-closed subset of X. Then $A \cap B$ is supra b-compact (resp. supra b-Lindelöf) relative to X.

Prof: We will show the case when A is supra b-compact relative to X, the other case is similar. Suppose that $\tilde{U} = \{U_{\alpha} : \alpha \in \Delta\}$ is a cover of $A \cap B$ by supra b-open sets in X. Then $\tilde{O} = \{U_{\alpha} : \alpha \in \Delta\} \cup \{X - B\}$ is a cover of A by supra b-open sets in X, but A is supra b-compact relative to X, so there exist $\alpha_1, \alpha_2, ..., \alpha_n \in \Delta$ such that $A \subseteq (\cup \{U_{\alpha_i} : i = 1, 2, ..., n\}) \cup (X - B)$. Then $A \cap B \subseteq \cup \{(U_{\alpha_i} \cap B) : i = 1, 2, ..., n\} \subseteq \cup \{U_{\alpha_i} : i = 1, 2, ..., n\}$. Hence, $A \cap B$ is supra b-compact relative to X.

Definition 2.13 [4] Let (X, τ) and (Y, ρ) be two topological spaces and μ be an associated supra topology with τ . A function $f:(X,\tau)\to (Y,\rho)$ is called a supra b-continuous function if the inverse image of each open set in Y is a supra b-open set in X.

Theorem 2.14 A supra b-continuous image of a supra b-compact space is compact.

Prof: Let $f: X \to Y$ be a supra b-continuous function from a supra b-compact space X onto a topological space Y. Let $\tilde{O} = \{V_{\alpha} : \alpha \in \Delta\}$ be an open cover of Y. Then $\tilde{U} = \{f^{-1}(V_{\alpha}) : \alpha \in \Delta\}$ is a supra b-open cover of X. Since X is supra b-compact, \tilde{U} has a finite subcover say $\{f^{-1}(V_{\alpha_1}), f^{-1}(V_{\alpha_2}), ..., f^{-1}(V_{\alpha_n})\}$. Now $\{V_{\alpha_1}, V_{\alpha_2}, ..., V_{\alpha_n}\}$ is a finite subcover of \tilde{O} for Y.

Theorem 2.15 A supra b-continuous image of a supra b-Lindelöf space is Lindelöf.

Prof: Similar to the proof of the above theorem.

Definition 2.16 Let (X, τ) and (Y, ρ) be two topological spaces and μ , η be associated supra topologies with τ and ρ respectively. A function $f:(X,\tau) \to (Y,\rho)$ is called a supra b-irresolute function if the inverse image of each supra b-open set in Y is a supra b-open set in X.

Theorem 2.17 If a function $f: X \to Y$ is supra b-irresolute and a subset B of X is supra b-compact relative to X, then f(B) is supra b-compact relative to Y.

Prof: Let $\tilde{O}=\{V_\alpha:\alpha\in\Delta\}$ be a cover of f(B) by supra b-open subsets of Y. Then $\tilde{U}=\{f^{-1}(V_\alpha):\alpha\in\Delta\}$ is a cover of B by supra b-open subsets of X. Since B is supra b-compact relative to X, \tilde{U} has a finite subcover $\tilde{U}^*=\{f^{-1}(V_{\alpha_1}),f^{-1}(V_{\alpha_2}),...,f^{-1}(V_{\alpha_n})\}$ for B. Now $\{V_{\alpha_1},V_{\alpha_2},...,V_{\alpha_n}\}$ is a finite subcover of \tilde{O} for f(B). So f(B) is supra b-compact relative to Y.

Theorem 2.18 If a function $f: X \to Y$ is supra b-irresolute and a subset B of X is supra b-Lindelöf relative to X, then f(B) is supra b-Lindelöf relative to Y.

Prof: Similar to the proof of the above theorem.

Definition 2.19 [4]. A function $f:(X,\tau)\to (Y,\rho)$ is called a supra b-open function if the image of each open set in X is a supra b-open set in (Y,η) .

The proof of the following theorem is straightforward and thus omitted.

Theorem 2.20 Let $f:(X,\tau) \to (Y,\rho)$ be a supra b-open surjection and η be a supra topology associated with ρ . If (Y,η) is supra b-compact (resp. supra b-Lindelöf) then (X,τ) is compact (resp. Lindelöf).

Definition 2.21 A subset F of a supra topological space (X, μ) is called supra b- F_{σ} -set if $F = \bigcup \{F_i : i = 1, 2, ...\}$ where F_i is a supra b-closed subset of X for each i = 1, 2,

Theorem 2.22 A supra b- F_{σ} -set F of a supra b-Lindelöf space X is supra b-Lindelöf relative to X.

Prof: Let $F = \bigcup \{F_i : i = 1, 2, ...\}$ where F_i is a supra b-closed subset of X for each i = 1, 2, Let \tilde{U} be a cover of F by supra b-open sets in X, then \tilde{U} is a cover of F_i for each i = 1, 2, ... by supra b-open subsets of X. Since F_i is supra b-Lindelöf relative to X, \tilde{U} has a countable subcover $\tilde{U}_i = \{U_{i_1}, U_{i_2}, ...\}$ for F_i for each i = 1, 2, Now $\cup \{\tilde{U}_i : i = 1, 2, ...\}$ is a countable subcover of \tilde{U} for F. So F is supra b-Lindelöf relative to X.

References

- [1] D. Andrijevic, On b-open sets, Mat. Vesnik, 48 (1996), 59 64.
- [2] A. A. El-Atik, A study on some types of mappings on topological spaces, MSc Thesis, Egypt, Tanta University, 1997.
- [3] A. S. Mashhour, A. A. Allam, F. S. Mahmoud and F. H. Khedr, On supra topological spaces, Indian J. Pure Appl. Math., 14(4) (1983), 502 510.
- [4] O. R. Sayed and T. Noiri, On supra b-open sets and supra b-continuity on topological spaces, Eur. J. Pure Appl. Math., 3 (2010), 295 302.

DOI: 10.7862/rf.2013.7

Jamal M. Mustafa

email: jjmmrr971@yahoo.com
Department of Mathematics,
Al al-Bayt University, Mafraq, Jordan

Received 16.11.2011, Revisted 1.12.2012, Accepted 25.10.2013