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Abstract: This paper focuses on the problem concerning the loca-
tion and the number of zeros of polynomials in a specific region when their
coefficients are restricted with special conditions. We obtain extensions of
some classical results concerning the number of zeros of polynomials in a
prescribed region by imposing the restrictions on the moduli of the coeffi-
cients, the real parts(only) of the coefficients, and the real and imaginary
parts of the coefficients.
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1. Introduction

Locating zeros of polynomials with special conditions for the coefficients, in particu-
lar, the number of zeros of complex polynomials in a disk when their coefficients are
restricted with special conditions has applications in many areas of applied mathe-
matics, including linear control systems, electrical networks, root approximation and
signal processing, and for this reason there is always a need for better and better esti-
mates for the region containing some or all the zeros of a polynomial. A review on the
location of zeros of polynomials can be found in ([1], [5], [8], [11]). If P (z) =

∑n
j=0 ajz

j

is a polynomial of degree n such that an ≥ an−1 ≥ ... ≥ a1 ≥ a0 > 0, then P (z) has
all its zeros in |z| ≤ 1. This famous result is known as Eneström-Kakeya theorem, for
reference see (section 8.3 of [11]). In the literature, for example see ([1] - [12]), there
exist various extensions and generalizations of Eneström-Kakeya theorem. Taking



136 A. Mir, A. Ahmad and A.H. Malik

account of the restrictions on the coefficients of a polynomial allows for establishing
improved bounds and here, in this paper, we impose some restrictions on the coeffi-
cients of polynomials in order to count the number of zeros in a specific region. The
following result concerning the number of zeros of a polynomial in a closed disk can
be found in Titchmarsh’s classic “The Theory of Functions”, see ([13], page 171, 2nd
edition).

Theorem A. Let F (z) be analytic in |z| ≤ R. Let |F (z)| ≤M in |z| ≤ R and suppose
F (0) 6= 0. Then for 0 < δ < 1, the number of zeros of F (z) in the disk |z| ≤ Rδ does
not exceed

1

log 1
δ

log
M

|F (0)|
.

Regarding the number of zeros in |z| ≤ 1
2 and by putting a restriction on the coeffi-

cients of a polynomial similar to that of the Eneström-Kakeya theorem, Mohammad
[9] used a special case of Theorem A to prove the following result.

Theorem B. If P (z) =
∑n
j=0 ajz

j is a polynomial of degree n such that 0 < a0 ≤
a1 ≤ ... ≤ an, then the number of zeros of P (z) in |z| ≤ 1

2 does not exceed

1 +
1

log2
log

(
an
a0

)
.

The above result of Mohammad [9] was generalized in different ways for example
see ([1], [2], [4], [5], [11]). Using hypotheses related to those of Theorem B, very
recently Qasim et al. [6] imposed a monotonic condition on the moduli and then on
the real and imaginary parts of the coefficients of the Lucanary type of polynomials

P (z) = a0 +
n∑
j=µ

ajz
j and proved the following results.

Theorem C. Let P (z) = a0 +
n∑
j=µ

ajz
j , 1 ≤ µ ≤ n − 1, a0 6= 0 be a polynomial of

degree n. If for some real α and β

|arg aj − β| ≤ α ≤
π

2
, µ ≤ j ≤ n,

and for some t > 0 and some k with µ ≤ k ≤ n,

tµ|aµ| ≤ ... ≤ tk−1|ak−1| ≤ tk|ak| ≥ tk+1|ak+1| ≥ ... ≥ tn−1|an−1| ≥ tn|an|,

then the number of zeros of P (z) in |z| ≤ 1
2 does not exceed

1

log2
log

(
M

|a0|

)
,

where

M =2|a0|t+ |aµ|tµ+1(1− sinα− cosα) + 2|ak|tk+1cosα+

|an|tn+1(1− sinα− cosα) + 2

n∑
j=µ

|aj |tj+1sinα.
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Theorem D. Let P (z) = a0 +
n∑
j=µ

ajz
j , 1 ≤ µ ≤ n − 1, a0 6= 0 be a polynomial of

degree n with Re aj = αj and Im aj = βj for µ ≤ j ≤ n. Suppose that for some t > 0
and some k with µ ≤ k ≤ n, we have

tµαµ ≤ ... ≤ tk−1αk−1 ≤ tkαk ≥ tk+1αk+1 ≥ ... ≥ tn−1αn−1 ≥ tnαn,

then the number of zeros of P (z) in |z| ≤ t
2 does not exceed

1

log2
log

(
M

|a0|

)
,

where

M =2(|α0|+ |β0|)t+ (|aµ| − αµ)tµ+1 + 2|αk|tk+1+

(|αn| − αn)tn+1 + 2

n∑
j=µ

|βj |tj+1.

Theorem E. Let P (z) = a0 +
n∑
j=µ

ajz
j , 1 ≤ µ ≤ n − 1, a0 6= 0 be a polynomial of

degree n with Re aj = αj and Im aj = βj for µ ≤ j ≤ n. Suppose that for some t > 0
and some k with µ ≤ k ≤ n, we have

tµαµ ≤ ... ≤ tk−1αk−1 ≤ tkαk ≥ tk+1αk+1 ≥ ... ≥ tn−1αn−1 ≥ tnαn

and for some µ ≤ l ≤ n we have

tµβµ ≤ ... ≤ tl−1βl−1 ≤ tkβl ≥ tl+1βl+1 ≥ ... ≥ tn−1βn−1 ≥ tnβn,

then the number of zeros of P (z) in |z| ≤ t
2 does not exceed

1

log2
log

(
M

|a0|

)
,

where

M =2(|α0|+ |β0|)t+ (|aµ| − αµ + |βµ| − βµ)tµ+1

+ 2(αkt
k+1 + βlt

l+1) + (|αn| − αn + |βµ| − βµ)tn+1.

In this paper, we further weaken the hypotheses of the above results and prove
the following.
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2. Main results

Theorem 1. Let P (z) = a0 +
n∑
j=µ

ajz
j , 1 ≤ µ < n, a0 6= 0, where for some t > 0 and

some µ ≤ k ≤ n,

tµ|aµ| ≤ ... ≤ tk−1|ak−1| ≤ tk|ak| ≥ tk+1|ak+1| ≥ ... ≥ tn−1|an−1| ≥ tn|an|

and |arg aj − β| ≤ α ≤ π
2 for µ ≤ j ≤ n, for some real α and β. Then for 0 < δ < 1,

the number of zeros of P (z) in the disk |z| ≤ δt does not exceed

1

log 1
δ

log
M

|a0|
,

where

M =2|a0|t+ (|aµ|tµ+1 + |an|tn+1)(1− cosα− sinα)

+ 2|ak|tk+1cosα+ 2

n∑
j=µ

|aj |tj+1sinα.

Notice that when t = 1 in Theorem 1, we get the following.

Corollary 1. Let P (z) = a0+
n∑
j=µ

ajz
j , 1 ≤ µ < n, a0 6= 0, where for some µ ≤ k ≤ n,

|aµ| ≤ ... ≤ |ak−1| ≤ |ak| ≥ |ak+1| ≥ ... ≥ |an−1| ≥ |an|

and |arg aj − β| ≤ α ≤ π
2 for µ ≤ j ≤ n, for some real α and β. Then for 0 < δ < 1,

the number of zeros of P (z) in the disk |z| ≤ δ does not exceed

1

log 1
δ

log
M

|a0|
,

where

M =2|a0|+ (|aµ|+ |an|)(1− cosα− sinα)

+ 2|ak|cosα+ 2

n∑
j=µ

|aj |sinα.

Clearly for δ = 1
2 , Theorem 1 reduces to Theorem C and Corollary 1 reduces to

Corollary 1.1 of Qasim et al. [6]. With t = 1 and k = n in Theorem 1, the hypothesis
becomes |aµ| ≤ ... ≤ |an−1| ≤ |an|, and the value of M becomes 2|a0|+(|aµ|+|an|)(1−

cosα− sinα) + 2|an|cosα+ 2
n∑
j=µ

|aj |sinα, and hence Theorem 1 implies Corollary 1.2

of Qasim et al. [6]. In the same way for t = 1, k = µ and for δ = 1
2 , Theorem 1

implies Corollary 1.3 of Qasim et al. [6].
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Theorem 2. Let P (z) = a0 +
n∑
j=µ

ajz
j , 1 ≤ µ < n, a0 6= 0, where Re aj = αj and

Im aj = βj for µ ≤ j ≤ n. Suppose that for some t > 0 and some k with µ ≤ k ≤ n,
we have

tµαµ ≤ ... ≤ tk−1αk−1 ≤ tkαk ≥ tk+1αk+1 ≥ ... ≥ tn−1αn−1 ≥ tnαn.

Then for 0 < δ < 1, the number of zeros of P (z) in the disk |z| ≤ δt does not exceed

1

log 1
δ

log
M

|a0|
,

where

M =2(|α0|+ |β0|)t+ (|αµ| − αµ)tµ+1

+ 2αkt
k+1 + (|αn| − αn)tn+1 + 2

n∑
j=µ

|βj |tj+1.

Remark 1. For δ = 1
2 , Theorem 2 reduces to Theorem D.

Notice that with t = 1 in Theorem 2, we get the following.

Corollary 2. Let P (z) = a0 +
n∑
j=µ

ajz
j , 1 ≤ µ < n, a0 6= 0, where Re aj = αj and

Im aj = βj for µ ≤ j ≤ n. Suppose we have for some µ ≤ k ≤ n,

αµ ≤ ... ≤ αk−1 ≤ αk ≥ αk+1 ≥ ... ≥ αn−1 ≥ αn.

Then for 0 < δ < 1, the number of zeros of P (z) in the disk |z| < δ does not exceed

1

log 1
δ

log
M

|a0|
,

where M = 2(|α0|+ |β0|) + (|αµ| − αµ) + 2αk + (|αn| − αn) + 2
n∑
j=µ

|βj |.

Clearly for δ = 1
2 , the Corollary 2 reduces to Corollary 2.1 of Qasim et al. [6].

With t = 1, k = n in Theorem 2, the hypothesis becomes αµ ≤ ... ≤ αn−1 ≤ αn, 1 ≤
µ < n and the value of M becomes

2(|α0|+ |β0|) + (|αµ| − αµ) + (|αn|+ αn) + 2

n∑
j=µ

|βj |,

therefore, Corollary 2.2 of Qasim et al. [6] follows from Theorem 2.
By manipulating the parameter k, µ and t, we easily get Corollary 2.3 and Corollary
2.4 of Qasim et al. [6] from Theorem 2.
Finally, we put the monotonicity-type condition on the real and imaginary parts of
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the coefficient of P (z) = a0 +
n∑
j=µ

ajz
j and get the following result.

Theorem 3. Let P (z) = a0 +
n∑
j=µ

ajz
j , 1 ≤ µ < n, a0 6= 0 where Re aj = αj and

Im aj = βj for µ ≤ j ≤ n. Suppose that for some t > 0, for some µ ≤ k ≤ n, we have

tµαµ ≤ ... ≤ tk−1αk−1 ≤ tkαk ≥ tk+1αk+1 ≥ ... ≥ tn−1αn−1 ≥ tnαn

and for some µ ≤ l ≤ n, we have

tµβµ ≤ ... ≤ tl−1βl−1 ≤ tkβl ≥ tl+1βl+1 ≥ ... ≥ tn−1βn−1 ≥ tnβn.

Then for 0 < δ < 1, the number of zeros of P (z) in the disk |z| ≤ δt does not exceed

1

log 1
δ

log
M

|a0|
,

where

M = 2(|α0|+ |β0|)t+ (|aµ| − αµ + |βµ| − βµ)tµ+1

+2(αkt
k+1 + βlt

l+1) + (|αn| − αn + |βµ| − βµ)tn+1.

Taking δ = 1
2 in Theorem 3, we get Theorem E. Theorem 3 gives several corollaries

with hypotheses concerning monotonicity of real and imaginary parts. For example,
with t = 1, we have the following result.

Corollary 3. Let P (z) = a0 +
n∑
j=µ

ajz
j , 1 ≤ µ < n, a0 6= 0, where Re aj = αj and

Im aj = βj for µ ≤ j ≤ n. Suppose that for some µ ≤ k ≤ n, we have

αµ ≤ ... ≤ αk−1 ≤ αk ≥ αk+1 ≥ ... ≥ αn−1 ≥ αn

and for some µ ≤ l ≤ n, we have

βµ ≤ ... ≤ βl−1 ≤ βl ≥ βl+1 ≥ ... ≥ βn−1 ≥ βn.

Then for 0 < δ < 1, the number of zeros of P (z) in the disk |z| ≤ δ does not exceed

1

log 1
δ

log
M

|a0|
,

where

M = 2(|α0|+ |β0|) + (|aµ| − αµ + |βµ| − βµ) + 2(αk + βl) + (|αn| − αn + |βµ| − βµ).

With t = 1 and k = l = n in Theorem 3, we get the following.
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Corollary 4. Let P (z) = a0 +
n∑
j=µ

ajz
j , 1 ≤ µ < n, a0 6= 0, where Re aj = αj and

Im aj = βj for µ ≤ j ≤ n. Suppose that for some µ ≤ k ≤ n, we have

αµ ≤ ... ≤ αn−1 ≤ αn

and
βµ ≤ ... ≤ βn−1 ≤ βn.

Then for 0 < δ < 1, the number of zeros of P (z) in the disk |z| ≤ δ does not exceed

1

log 1
δ

log
M

|a0|
,

where

M = 2(|α0|+ |β0|) + (|aµ| − αµ + |βµ| − βµ) + (|αn|+ αn + |βµ|+ βµ).

For t = 1, k = l = µ in Theorem 3, we get the following

Corollary 5. Let P (z) = a0 +
n∑
j=µ

ajz
j , 1 ≤ µ < n, a0 6= 0, where Re aj = αj and

Im aj = βj for µ ≤ j ≤ n. Suppose that

αµ ≥ ... ≥ αn−1 ≥ αn

and
βµ ≥ ... ≥ βn−1 ≥ βn.

Then for 0 < δ < 1, the number of zeros of P (z) in the disk |z| ≤ δ does not exceed

1

log 1
δ

log
M

|a0|
,

where

M = 2(|α0|+ |β0|) + (|aµ|+ αµ + |βµ|+ βµ) + (|αn| − αn + |βµ| − βµ).

3. Proofs of theorems

We need the following lemma for the proofs of theorems.

Lemma 1. For any two complex numbers b0 and b1 such that |b0| ≥ |b1|. Suppose
|arg bj − β| ≤ α ≤ π

2 , for j = 0, 1 for some real α and β, then

|b0 − b1| ≤ (|b0| − |b1|)cosα+ (|b0|+ |b1|)sinα.
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The above lemma is due to Govil and Rahman [5].

Proof of Theorem 1. Consider the polynomial

F (z) = (t− z)P (z)

= (t− z)
(
a0 +

n∑
j=µ

ajz
j

)

= a0t+

n∑
j=µ

tajz
j − a0z −

n∑
j=µ

ajz
j+1

= a0(t− z) +

n∑
j=µ

tajz
j −

n+1∑
j=µ+1

aj−1z
j

= a0(t− z) + taµz
µ +

n∑
j=µ+1

(taj − aj−1)zj − anzn+1.

For |z| = t, we have

|F (z)| ≤ 2t|a0|+ |aµ|tµ+1 +

n∑
j=µ+1

|taj − aj−1|tj + |an|tn+1

= 2t|a0|+ |aµ|tµ+1 +

k∑
j=µ+1

|taj − aj−1|tj +

n∑
j=k+1

|aj−1 − taj |tj + |an|tn+1.

Using Lemma 1 with b0 = ajt and b1 = aj−1 when µ+ 1 ≤ j ≤ k and with b0 = aj−1

and b1 = ajt when k + 1 ≤ j ≤ n,

|F (z)| ≤ 2t|a0|+ |aµ|tµ+1 +

k∑
j=µ+1

{
(|aj |t− |aj−1|)cosα+ (|aj |t+ |aj−1|)sinα

}
tj

+
n∑

j=k+1

{
(|aj−1| − |aj |t)cosα+ (|aj |t+ |aj−1|)sinα

}
tj + |an|tn+1

= 2|a0|t+ |aµ|tµ+1 +

k∑
j=µ+1

|aj |tj+1cosα−
k∑

j=µ+1

|aj−1|tjcosα

+

k∑
j=µ+1

|aj |tj+1sinα+

k∑
j=µ+1

|aj−1|tjsinα+

n∑
j=k+1

|aj−1|tjcosα

−
n∑

j=k+1

|aj |tj+1cosα+

n∑
j=k+1

|aj−1|tjsinα+

n∑
j=k+1

|aj |tj+1sinα+ |an|tn+1
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= 2|a0|t+ |aµ|tµ+1 − |aµ|tµ+1cosα+ |ak|tk+1cosα+ |aµ|tµ+1sinα

+ |ak|tk+1sinα+ 2

k−1∑
j=µ+1

|aj |tj+1sinα+ |ak|tk+1cosα− |an|tn+1cosα+ |ak|tk+1sinα

+ |an|tn+1sinα+ 2

n−1∑
j=k+1

|aj |tj+1sinα+ |an|tn+1.

= 2|a0|t+ |aµ|tµ+1 + |aµ|tµ+1(sinα− cosα) + 2

n−1∑
j=µ+1

|aj |tj+1sinα

+ 2|ak|tk+1cosα+ (sinα− cosα+ 1)|an|tn+1

= 2|a0|t+ |aµ|tµ+1(1− sinα− cosα) + 2|ak|tk+1cosα+ |an|tn+1(1− sinα− cosα)

+ 2

n∑
j=µ

|aj |tj+1sinα.

= M(say).

Now F (z) is analytic in |z| ≤ t and |F (z)| ≤M for |z| = t. So by Theorem A and the
Maximum Modulus Theorem, the number of zeros of F (and hence of P ) in |z| ≤ δt
is less than or equal to

1

log 1
δ

log

(
M

|a0|

)
.

Hence the Theorem 1 follows.
Proof of Theorem 2. As in the proof of Theorem 1,

F (z) = (t− z)P (z)

= a0(t− z) + taµz
µ +

n∑
j=µ+1

(taj − aj−1)zj − anzn+1,

and so

F (z) = (α0 + iβ0)(t− z) + (αµ + iβµ)tzµ +

n∑
j=µ+1

(αjt− αj−1)zj

+ i

n∑
j=µ+1

(βjt− βj−1)zj − (αn + iβn)zn+1.
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For |z| = t, we have

|F (z)| ≤ 2(|α0|+ |β0|)t+ (|αµ|+ |βµ|)tµ+1 +

n∑
j=µ+1

|αjt− αj−1|tj

+

n∑
j=µ+1

(|βj |t+ |βj−1|)tj + (|αn|+ |βn|)tn+1

= 2(|α0|+ |β0|)t+ (|αµ|+ |βµ|)tµ+1 +

n∑
j=µ+1

(αjt− αj−1)tj

+

n∑
j=k+1

(αj−1 − αjt)tj + |βµ|tµ+1 + 2

n−1∑
j=µ+1

|βj |tj+1 + |βn|tn+1

+ (|αn|+ |βn|)tn+1

= 2(|α0|+ |β0|)t+ (|αµ| − αµ)tµ+1 + 2αkt
k+1 + (|αn| − αn)tn+1

+ 2

n∑
j=µ

|βj |tj+1

= M

The result follows as in the proof of Theorem 1.

Proof of Theorem 3. As in the proof of Theorem 2,

F (z) = (t− z)P (z)

= a0(t− z) + taµz
µ +

n∑
j=µ+1

(ajt− aj−1)zj − anzn+1

= (α0 + iβ0)(t− z) + (αµ + iβµ)tzµ +

n∑
j=µ+1

(αjt− αj−1)zj

+ i

n∑
j=µ+1

(βjt− βj−1)zj − (αn + iβn)zn+1.

For |z| = t, we have

|F (z)| ≤ 2(|α0|+ |β0|)t+ (|αµ|+ |βµ|)tµ+1 +

n∑
j=µ+1

|αjt− αj−1|tj

+

n∑
j=µ+1

|βjt− βj−1|tj + (|αn|+ |βn|)tn+1
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= 2(|α0|+ |β0|)t+ (|αµ|+ |βµ|)tµ+1 +

k∑
j=µ+1

(αjt− αj−1)tj +

n∑
j=k+1

(αj−1 − αjt)tj

+

l∑
j=µ+1

(βjt− βj−1)tj +

n∑
j=l+1

(βj−1 − βjt)tj + (|αn|+ |βn|)tn+1

= 2(|α0|+ |β0|)t+ (|αµ| − αµ + |βµ| − βµ)tµ+1 + 2(αkt
k+1 + βlt

l+1)

+ (|αn| − αn + |βn| − βn)tn+1

= M.

The result now follows as in the proof of Theorem 1.
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