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Abstract: This article concerns with the existence of solutions of the
a quadratic integral equation of Fredholm type with a modified argument,

x(t) = p(t) + (Fx) (t)

∫ 1

0

k(t, τ)x(q (τ))dτ,

where p, k are functions and F is an operator satisfying the given condi-
tions. Using the properties of the Hölder spaces and the classical Schauder
fixed point theorem, we obtain the existence of solutions of the equation
under certain assumptions. Also, we present two concrete examples in
which our result can be applied.
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1. Introduction

Integral equations arise from naturally in many applications in describing numer-
ous real world problems (see, for instance, the books [2, 3] and references therein).
Quadratic integral equations arise naturally in applications of real world problems.
For example, problems in the theory of radiative transfer in the theory of neutron
transport and in the kinetic theory of gases lead to the quadratic equation [12, 20].
There are many interesting existence results for all kinds of quadratic integral equa-
tions, one can refer to [6, 1].
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The study of differential equations with a modified arguments arise in a wide
variety of scientific and technical application, including the modelling of problems
from the natural and social sciences such as physics, biological and economics sci-
ences. A special class of these differential equations have linear modifications of their
arguments, and have been studied by several authors, [7] - [23].

Recently, Banaś and Nalepa [7] have studied the space of real functions defined on
a given bounded metric space and having the growths tempered by a given modulus
of continuity, and derive the existence theorem in the space of functions satisfying the
Hölder condition for some quadratic integral equations of Fredholm type

x(t) = p(t) + x(t)

∫ b

a

k(t, τ) x(τ)dτ. (1.1)

Further, Caballero et al. [9] have studied the solvability of the following quadratic
integral equation of Fredholm type

x(t) = p(t) + x(t)

∫ 1

0

k(t, τ) x(q (τ))dτ (1.2)

in Hölder spaces. The purpose of this paper is to investigate the existence of solutions
of the following integral equation of Fredholm type with a modified argument in Hölder
spaces

x(t) = p(t) + (Fx) (t)

∫ 1

0

k(t, τ) x(q (τ))dτ, t ∈ I = [0, 1] (1.3)

where p, k, q and F are functions satisfying the given conditions. To do this, we will
use a recent result about the relative compactness in Hölder spaces and the classical
Schauder fixed point theorem.

Notice that equation (1.1) in [9] is a particular case of (1.3), for (Fx)(τ) = x(τ).
The obtained result in this paper is more general than the result in [9].

2. Preliminaries

Let we introduce notations, definitions and theorems which are used throughout this
paper.

By C[a, b], we denote the space of continuous functions on [a, b] equipped with
usually the supremum norm

‖x‖∞ = sup{|x(t)| : t ∈ [a, b]}

for x ∈ C[a, b]. For a fixed α with 0 < α 6 1, we write Hα[a, b] to denote the set of all
the real valued functions x defined on [a, b] and satisfying the Hölder condition with
α, that is, there exists a constant H such that the inequality

|x(t)− x(s)| 6 H|t− s|α (2.1)
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holds for all t, s ∈ [a, b]. One can easily seen that Hα[a, b] is a linear subspaces of
C[a, b]. In the sequel, for x ∈ Hα[a, b], by Hα

x we will denote the least possible
constant for which inequality (2.1) is satisfied. Rather, we put

Hα
x = sup

{
|x(t)− x(s)|
|t− s|α

: t, s ∈ [a, b], t 6= s

}
. (2.2)

The space Hα[a, b] with 0 < α 6 1 can be equipped with the norm:

‖x‖α = |x(a)|+ sup

{
|x(t)− x(s)|
|t− s|α

: t, s ∈ [a, b], t 6= s

}
(2.3)

for x ∈ Hα[a, b]. In [7], the authors proved that (Hα[a, b], ‖ · ‖α) with 0 < α 6 1 is a
Banach space. The following lemmas in [7] present some results related to the Hölder
spaces and norm.

Lemma 2.1. For 0 < α 6 1 and x ∈ Hα[a, b], the following inequality is satisfied

‖x‖∞ 6 max {1, (b− a)α} ‖x‖α.

In particular, the inequality ‖x‖∞ 6 ‖x‖α holds, for a = 0 and b = 1.

Lemma 2.2. For 0 < α < γ 6 1, we have

Hγ [a, b] ⊂ Hα[a, b] ⊂ C[a, b].

Moreover, for x ∈ Hγ [a, b] the following inequality holds

‖x‖α 6 max
{

1, (b− a)γ−α
}
‖x‖γ .

In particular, the inequality ‖x‖∞ 6 ‖x‖α 6 ‖x‖γ is satisfied for a = 0 and b = 1.

Now we present the important theorem which is the sufficient condition for rela-
tive compactness in the spaces Hα[a, b] with 0 < α 6 1.

Theorem 2.3. [9] Suppose that 0 < α < β 6 1 and that A is a bounded subset of
Hβ [a, b] (this means that ‖x‖β 6 M for certain constant M > 0, for all x ∈ A) then
A is a relatively compact subset of Hα[a, b].

Lemma 2.4. [9] Suppose that 0 < α < β 6 1 and by Bβr we denote the closed ball
centered at θ with radius r in the space Hβ [a, b], i.e., Bβr = {x ∈ Hβ [a, b] : ‖x‖β 6 r}.
Then Bβr is a closed subset of Hα[a, b].

Corollary 2.5. Suppose that 0 < α < β 6 1 then Bβr is a compact subset of the space
Hα[a, b], [9].

Theorem 2.6 (Schauder’s fixed point theorem). Let L be a nonempty, convex, and
compact subset of a Banach space (X, ‖·‖) and let T : L→ L be a continuity mapping.
Then T has at least one fixed point in L, [24].
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3. Main Result

In this section, we will study the solvability of the equation (1.3) in the space Hα[0, 1]
(0 < α 6 1). We will use the following assumptions:

(i) p ∈ Hβ [0, 1], 0 < β 6 1.

(ii) k : [0, 1] × [0, 1] → R is a continuous function such that it satisfies the Hölder
condition with exponent β with respect to the first variable, that is, there exists
a constant kβ > 0 such that:

|k(t, τ)− k(s, τ)| 6 kβ |t− s|β ,

for any t, s, τ ∈ [0, 1].

(iii) q : [0, 1]→ [0, 1] is a measurable function.

(iv) The operator F : Hβ [0, 1] → Hβ [0, 1] is continuous with respect to the norm

‖ · ‖α for 0 < α < β 6 1 and there exists a function f : R+ → R+

= [0,∞)
which is non-decreasing such that it holds the inequality

‖Fx‖β 6 f(‖x‖β),

for any x ∈ Hβ [0, 1].

(v) There exists a positive solution r0 of the inequality

‖p‖β + (2K + kβ)rf(r) 6 r,

where K is a constant is satisfying the following inequality,

K = sup

{∫ 1

0

|k(t, τ)|dτ : t ∈ [0, 1]

}
.

Theorem 3.1. Under the assumptions (i)-(v), Equation (1.3) has at least one solu-
tion belonging to the space Hα[0, 1].

Proof. Consider the operator T below that defined on the space Hβ [0, 1] by

(Tx)(t) = p(t) + (Fx) (t)

∫ 1

0

k(t, τ)x(q (τ))dτ, t ∈ [0, 1].

We will firstly prove that T transforms the space Hβ [0, 1] into itself. For arbitrar-
ily fixed x ∈ Hβ [0, 1] and t, s ∈ [0, 1] with (t 6= s), taking into account assumptions
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(i), (ii) and (iii), we obtain

|(Tx)(t)− (Tx)(s)|
|t− s|β

=

∣∣∣p(t) + (Fx) (t)
∫ 1

0
k(t, τ)x (q(τ)) dτ − p(s)− (Fx) (s)

∫ 1

0
k(s, τ)x (q(τ)) dτ

∣∣∣
|t− s|β

6
1

|t− s|β

[
|p(t)− p(s)|+

∣∣∣∣(Fx) (t)

∫ 1

0

k(t, τ)x (q(τ)) dτ

− (Fx) (s)

∫ 1

0

k(s, τ)x (q(τ)) dτ

∣∣∣∣
]

6
|p(t)− p(s)|
|t− s|β

+
1

|t− s|β

∣∣∣∣(Fx) (t)

∫ 1

0

k(t, τ)x (q(τ)) dτ − (Fx) (s)

∫ 1

0

k(t, τ)x (q(τ)) dτ

∣∣∣∣
+

1

|t− s|β

∣∣∣∣(Fx) (s)

∫ 1

0

k(t, τ)x (q(τ)) dτ − (Fx) (s)

∫ 1

0

k(s, τ)x (q(τ)) dτ

∣∣∣∣
6
|p(t)− p(s)|
|t− s|β

+
|(Fx) (t)− (Fx) (s)|

|t− s|β

∫ 1

0

|k(t, τ)| |x (q(τ))| dτ

+
|(Fx) (s)|

∫ 1

0
|k(t, τ)− k(s, τ)| |x (q(τ))| dτ
|t− s|β

6
|p(t)− p(s)|
|t− s|β

+
|(Fx) (t)− (Fx) (s)|

|t− s|β
‖x‖∞

∫ 1

0

|k(t, τ)| dτ

+
‖Fx‖∞ ‖x‖∞

∫ 1

0
|k(t, τ)− k(s, τ)| dτ
|t− s|β

6
|p(t)− p(s)|
|t− s|β

+
|(Fx) (t)− (Fx) (s)|

|t− s|β
‖x‖∞K +

‖Fx‖∞ ‖x‖∞
∫ 1

0
kβ |t− s|β dτ

|t− s|β

6 Hβ
p +Hβ

Fx ‖x‖∞K + ‖Fx‖∞ ‖x‖∞ kβ .

By using the facts that ‖x‖∞ 6 ‖x‖β and Hβ
x 6 ‖x‖β concluded Lemma 2.1 and the

definition ‖x‖β , respectively we infer that

|(Tx)(t)− (Tx)(s)|
|t− s|β

6 Hβ
p + (K + kβ)‖x‖β ‖Fx‖β .

From this inequality, we have Tx ∈ Hβ [0, 1] . This proves that the operator T
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maps the space Hβ [0, 1] into itself. On the other hand we can write

‖Tx‖β = |(Tx) (0)|+ sup

{
|(Tx)(t)− (Tx)(s)|

|t− s|β
: t, s ∈ [0, 1] , t 6= s

}
6 |(Tx) (0)|+Hβ

p + (K + kβ)‖x‖β ‖Fx‖β

6 |p(0)|+ |(Fx) (0)|
∫ 1

0

|k(0, τ)| |x (q(τ))| dτ +Hβ
p + (K + kβ)‖x‖β ‖Fx‖β

6 ‖p‖β + ‖Fx‖∞ ‖x‖∞
∫ 1

0

|k(0, τ)| dτ + (K + kβ)‖x‖β ‖Fx‖β

6 ‖p‖β +K ‖Fx‖β ‖x‖β + (K + kβ)‖x‖β ‖Fx‖β

= ‖p‖β + (2K + kβ)‖x‖β ‖Fx‖β

6 ‖p‖β + (2K + kβ)‖x‖βf
(
‖x‖β

)
, (3.1)

for any x ∈ Hβ [0, 1]. So, if we take x in Bβr0 then by assumption (v) we get Tx ∈ Bβr0 .
As a result, it follows that T transforms the ball

Bβr0 = {x ∈ Hβ [0, 1] : ‖x‖β 6 r0}

into itself. That is,

T : Bβr0 → Bβr0 .

Next, we will prove that the operator T is continuous on Bβr0 , according to the induced
norm by ‖ · ‖α, where 0 < α < β 6 1. To do this, let us take any fixed y ∈ Bβr0 and
arbitrary ε > 0. Since the operator F : Hβ [0, 1] → Hβ [0, 1] is continuous on Hβ [0, 1]
with respect to the norm ‖ · ‖α, there exists δ > 0 such that the inequality

‖Fx− Fy‖α <
ε

4 (K + kβ) r0

is satisfied for all x ∈ Bβr0 , such that ‖x− y‖α 6 δ and

0 < δ <
ε

2 (2K + kβ) f (r0)
.

Then, for any x ∈ Bβr0 and t, s ∈ [0, 1] with t 6= s and 0 < α 6 1 we have
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|[(Tx)(t)− (Ty)(t)]− [(Tx)(s)− (Ty)(s)]|
|t− s|α

=

∣∣∣∣∣∣
[
(Fx) (t)

∫ 1

0
k(t, τ)x (q(τ)) dτ − (Fy) (t)

∫ 1

0
k(t, τ)y(q(τ))dτ

]
|t− s|α

−

[
(Fx) (s)

∫ 1

0
k(s, τ)x (q(τ)) dτ − (Fy) (s)

∫ 1

0
k(s, τ)y(q(τ))dτ

]
|t− s|α

∣∣∣∣∣∣
=

1

|t− s|α
∣∣∣∣[(Fx) (t)

∫ 1

0

k(t, τ)x (q(τ)) dτ − (Fy) (t)

∫ 1

0

k(t, τ)x (q(τ)) dτ

]

+

[
(Fy) (t)

∫ 1

0

k(t, τ)x (q(τ)) dτ − (Fy) (t)

∫ 1

0

k(t, τ)y(q(τ))dτ

]

−
[
(Fx) (s)

∫ 1

0

k(s, τ)x (q(τ)) dτ − (Fy) (s)

∫ 1

0

k(s, τ)x (q(τ)) dτ

]

−
[
(Fy) (s)

∫ 1

0

k(s, τ)x (q(τ)) dτ − (Fy) (s)

∫ 1

0

k(s, τ)y(q(τ))dτ

]∣∣∣∣
=

1

|t− s|α
∣∣∣∣[[(Fx) (t)− (Fy) (t)]

∫ 1

0

k(t, τ)x (q(τ)) dτ

]

+

[
(Fy) (t)

∫ 1

0

k(t, τ) [x (q(τ))− y (q(τ))] dτ

]

−
[
[(Fx) (s)− (Fy) (s)]

∫ 1

0

k(s, τ)x (q(τ)) dτ

]

−
[
(Fy) (s)

∫ 1

0

k(s, τ) [x (q(τ))− y (q(τ))] dτ

]∣∣∣∣
=

1

|t− s|α
∣∣∣∣{[(Fx) (t)− (Fy) (t)]− [(Fx) (s)− (Fy) (s)]}

∫ 1

0

k(t, τ)x (q(τ)) dτ

+

[
[(Fx) (s)− (Fy) (s)]

∫ 1

0

k(t, τ)x (q(τ)) dτ

]

−
[
[(Fx) (s)− (Fy) (s)]

∫ 1

0

k(s, τ)x (q(τ)) dτ

]

+

[
(Fy) (t)

∫ 1

0

k(t, τ) [x (q(τ))− y (q(τ))] dτ

]

−
[
(Fy) (s)

∫ 1

0

k(s, τ) [x (q(τ))− y (q(τ))] dτ

]∣∣∣∣
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=
1

|t− s|α
∣∣∣∣{[(Fx) (t)− (Fy) (t)]− [(Fx) (s)− (Fy) (s)]}

∫ 1

0

k(t, τ)x (q(τ)) dτ

+

[
[(Fx) (s)− (Fy) (s)]

∫ 1

0

(k(t, τ)− k(s, τ))x (q(τ)) dτ

]

+

[
(Fy) (t)

∫ 1

0

k(t, τ) [x (q(τ))− y (q(τ))] dτ

]

−
[
(Fy) (s)

∫ 1

0

k(s, τ) [x (q(τ))− y (q(τ))] dτ

]∣∣∣∣ .
From the last inequality it follows that

|[(Tx)(t)− (Ty)(t)]− [(Tx)(s)− (Ty)(s)]|
|t− s|α

6
1

|t− s|α
|[(Fx) (t)− (Fy) (t)]− [(Fx) (s)− (Fy) (s)]|

∣∣∣∣∫ 1

0

k(t, τ)x (q(τ)) dτ

∣∣∣∣
+

1

|t− s|α
|(Fx) (s)− (Fy) (s)|

∣∣∣∣∫ 1

0

(k(t, τ)− k(s, τ))x (q(τ)) dτ

∣∣∣∣
+

1

|t− s|α
∣∣∣∣(Fy) (t)

∫ 1

0

k(t, τ) [x (q(τ))− y (q(τ))] dτ

− (Fy) (s)

∫ 1

0

k(s, τ) [x (q(τ))− y (q(τ))] dτ

∣∣∣∣
6
|[(Fx) (t)− (Fy) (t)]− [(Fx) (s)− (Fy) (s)]|

|t− s|α
‖x‖∞

∫ 1

0

|k(t, τ)| dτ

+ |[(Fx) (s)− (Fy) (s)]− [(Fx) (0)− (Fy) (0)]| ‖x‖∞
∫ 1

0

|k(t, τ)− k(s, τ)|
|t− s|α

dτ

+ |(Fx) (0)− (Fy) (0)| ‖x‖∞
∫ 1

0

|k(t, τ)− k(s, τ)|
|t− s|α

dτ

+
1

|t− s|α
∣∣∣∣(Fy) (t)

∫ 1

0

k(t, τ) [x (q(τ))− y (q(τ))] dτ

− (Fy) (s)

∫ 1

0

k(t, τ) [x (q(τ))− y (q(τ))] dτ

∣∣∣∣
+

1

|t− s|α
∣∣∣∣(Fy) (s)

∫ 1

0

k(t, τ) [x (q(τ))− y (q(τ))] dτ

− (Fy) (s)

∫ 1

0

k(s, τ) [x (q(τ))− y (q(τ))] dτ

∣∣∣∣
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6 Hα
Fx−Fy ‖x‖∞K

+ sup
u,v∈[0,1]

|[(Fx) (u)− (Fy) (u)]− [(Fx) (v)− (Fy) (v)]| ‖x‖∞
∫ 1

0

|k(t, τ)− k(s, τ)|
|t− s|α

dτ

+ |(Fx) (0)− (Fy) (0)| ‖x‖∞
∫ 1

0

|k(t, τ)− k(s, τ)|
|t− s|α

dτ

+
|(Fy) (t)− (Fy) (s)|

|t− s|α
∫ 1

0

|k(t, τ)| |x (q(τ))− y (q(τ))| dτ

+ |(Fy) (s)|
∫ 1

0

|k(t, τ)− k(s, τ)|
|t− s|α

|x (q(τ))− y (q(τ))| dτ

6 K ‖x‖∞ ‖Fx− Fy‖α

+ sup
u,v∈[0,1]

|[(Fx) (u)− (Fy) (u)]− [(Fx) (v)− (Fy) (v)]| ‖x‖∞
∫ 1

0

kβ |t− s|β

|t− s|α
dτ

+ |(Fx) (0)− (Fy) (0)| ‖x‖∞
∫ 1

0

kβ |t− s|β

|t− s|α
dτ

+
|(Fy) (t)− (Fy) (s)|

|t− s|α
∫ 1

0

|k(t, τ)| |x (q(τ))− y (q(τ))| dτ

+ |(Fy) (s)|
∫ 1

0

kβ |t− s|β

|t− s|α
|x (q(τ))− y (q(τ))| dτ.

In view of the inequalities ‖x‖∞ 6 ‖x‖α, Hβ
x 6 ‖x‖α ,we derive the following inequli-

ties

|[(Tx)(t)− (Ty)(t)]− [(Tx)(s)− (Ty)(s)]|
|t− s|α

6 K ‖x‖∞ ‖Fx− Fy‖α + kβ ‖x‖∞ |t− s|
β−α ·

sup
u,v∈[0,1],u 6=v

{
|[(Fx) (u)− (Fy) (u)]− [(Fx) (v)− (Fy) (v)]|

|u− v|α
|u− v|α

}
+ kβ ‖x‖∞ |t− s|

β−α |(Fx) (0)− (Fy) (0)|+KHα
Fy ‖x− y‖∞

+ kβ ‖Fy‖∞ ‖x− y‖∞ |t− s|
β−α

6 K ‖x‖β ‖Fx− Fy‖α + 2kβ ‖x‖β ‖Fx− Fy‖α

+K ‖Fy‖α ‖x− y‖α + kβ ‖Fy‖α ‖x− y‖α
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= (K + 2kβ) ‖x‖β ‖Fx− Fy‖α

+ (K + kβ) ‖Fy‖α ‖x− y‖α . (3.2)

Since ‖y‖α 6 ‖y‖β 6 r0 (see Lemma 2.2 ) and from the assumption (iv) and (3.2) we
deduce the following inequality

|[(Tx)(t)− (Ty)(t)]− [(Tx)(s)− (Ty)(s)]|
|t− s|α

6 (K + 2kβ) ‖x‖β ‖Fx− Fy‖α + (K + kβ) ‖Fy‖β ‖x− y‖α

6 (K + 2kβ) ‖x‖β ‖Fx− Fy‖α + (K + kβ) f
(
‖y‖β

)
‖x− y‖α

6 (K + 2kβ) r0 ‖Fx− Fy‖α + (K + kβ) f (r0) δ. (3.3)

On the other hand,

|(Tx) (0)− (Ty) (0)| =
∣∣∣∣(Fx) (0)

∫ 1

0

k(0, τ)x (q(τ)) dτ − (Fy) (0)

∫ 1

0

k(0, τ)y (q(τ)) dτ

∣∣∣∣
6

∣∣∣∣(Fx) (0)

∫ 1

0

k(0, τ)x (q(τ)) dτ − (Fx) (0)

∫ 1

0

k(0, τ)y (q(τ)) dτ

∣∣∣∣
+

∣∣∣∣(Fx) (0)

∫ 1

0

k(0, τ)y (q(τ)) dτ − (Fy) (0)

∫ 1

0

k(0, τ)y (q(τ)) dτ

∣∣∣∣
6 |(Fx) (0)|

∫ 1

0

|k(0, τ)| |x (q(τ))− y (q(τ))| dτ

+ |(Fx) (0)− (Fy) (0)|
∫ 1

0

|k(0, τ)| |y (q(τ))| dτ

From the last inequality it follows that

|(Tx) (0)− (Ty) (0)| 6 K ‖Fx‖∞ ‖x− y‖∞ +K ‖y‖∞ ‖Fx− Fy‖∞
6 K ‖Fx‖β ‖x− y‖α +K ‖y‖β ‖Fx− Fy‖α

6 Kf
(
‖x‖β

)
‖x− y‖α +K ‖y‖β ‖Fx− Fy‖α

6 Kf (r0) δ +Kr0 ‖Fx− Fy‖α . (3.4)

From (3.3) and (3.4), it follows that

‖Tx− Ty‖α
= |(Tx) (0)− (Ty) (0)|+Hα

Tx−Ty

= |(Tx) (0)− (Ty) (0)|+ sup
t,s∈[0,1],t6=s

{
|[(Tx) (t)− (Ty) (t)]− [(Tx) (s)− (Ty) (s)]|

|t− s|α
}
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6 Kf (r0) δ +Kr0 ‖Fx− Fy‖α + (K + 2kβ) r0 ‖Fx− Fy‖α + (K + kβ) f (r0) δ

= 2 (K + kβ) r0 ‖Fx− Fy‖α + (2K + kβ) f (r0) δ

<
ε

2
+
ε

2
= ε.

This show that the operator T is continuous at the point y ∈ Bβr0 . We conclude that T
is continuous on Bβr0 with respect to the norm ‖·‖α. In addition the set Bβr0 is compact
subset of the space Hα[0, 1] from [9] (see [9; the appendix at the p. 9]). Therefore,
applying the classical Schauder fixed point theorem, we complete the proof.

4. Examples

In this section, we provide an example illustrating the main results in the above.

Example 1. Let us consider the quadratic integral equation:

x(t) = ln
(

4
√
n sin t+ n̂+ 1

)
+ x2 (t)

∫ 1

0

3
√
mt3 + τx

(
1

τ + 1

)
dτ (4.1)

where t ∈ [0, 1] and n, n̂,m are the suitable non-negative constants.

Observe that (4.1) is a particular case of (1.3) if we put p(t) = ln
(

4
√
n sin t+ n̂+ 1

)
,

k(t, τ) = 3
√
mt3 + τ and q (τ) = 1

τ+1 . The operator F defined by (Fx) (t) = x2 (t) for
all t ∈ [0, 1].

Since functions s, h : R+ → R+ defined by s (t) = ln (t+ 1), h (t) = 4
√
t are

concav and s (0) = 0, h (0) = 0, then from Lemma 4.4 in [9] these functions are
subadditive. If we consider the result of subadditivity and the inequalities lnx < x
for x > 0 and |sinx− sin y| 6 |x− y| for x, y ∈ R, we can write

|p(t)− p(s)| =
∣∣∣ln( 4
√
n sin t+ n̂+ 1

)
− ln

(
4
√
n sin s+ n̂+ 1

)∣∣∣
6 ln

∣∣∣ 4
√
n sin t+ n̂− 4

√
n sin s+ n̂

∣∣∣
<
∣∣∣ 4
√
n sin t+ n̂− 4

√
n sin s+ n̂

∣∣∣
6
∣∣∣ 4
√
n |sin t− sin s|

∣∣∣
6 4
√
n |t− s|

1
4 .

It means that p ∈ H 1
4
[0, 1] and, moreover, H

1
4
p = 4

√
n. We can take the constants

α and β as 0 < α < 1
4 and β = 1

4 . Therefore, assumption (i) of Theorem (3.1) is
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satisfied. Note that

‖p‖ 1
4

= |p(0)|+ sup

{
|p(t)− p(s)|
|t− s| 14

: t, s ∈ [0, 1], t 6= s

}
= |p(0)|+H

1
4
p = ln

(
4
√
n̂+ 1

)
+ 4
√
n.

Further, we have

|k(t, τ)− k(s, τ)| =
∣∣∣ 3
√
mt3 + τ − 3

√
ms3 + τ

∣∣∣
6 3
√
|mt3 −ms3|

= 3
√
m 3
√
|t3 − s3|

= 3
√
m 3
√
|t− s| 3

√
|t2 + ts+ s2|

6 3
√

3m|t− s| 13

=
3
√

3m|t− s| 14 |t− s| 1
12

6 3
√

3m|t− s| 14

for all t, s ∈ [0, 1]. Assumption (ii) of Theorem (3.1) is satisfied with kβ = k 1
4

= 3
√

3m.

It is clear that q (τ) = 1
τ+1 satisfies assumption (iii). The constant K is given by

K = sup

{∫ 1

0

|k(t, τ)|dτ : t ∈ [0, 1]

}

= sup

{∫ 1

0

∣∣∣ 3
√
mt3 + τ

∣∣∣ dτ : t ∈ [0, 1]

}

=

∫ 1

0

3
√
m+ τdτ

=
3

4

(
3
√

(m+ 1)4 − 3
√
m4
)
.

For all x ∈ Hβ [0, 1] ,

‖Fx‖β = |(Fx) (0)|+ sup

{
|(Fx) (t)− (Fx) (s)|

|t− s|β
: t, s ∈ [0, 1] , t 6= s

}

=
∣∣x2 (0)

∣∣+ sup

{∣∣x2 (t)− x2 (s)
∣∣

|t− s|β
: t, s ∈ [0, 1] , t 6= s

}
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=
∣∣x2 (0)

∣∣+ sup

{
|x (t)− x (s)| |x (t) + x (s)|

|t− s|β
: t, s ∈ [0, 1] , t 6= s

}

6
∣∣x2 (0)

∣∣+ 2 ‖x‖∞ sup

{
|x (t)− x (s)|
|t− s|β

: t, s ∈ [0, 1] , t 6= s

}

6
∣∣x2 (0)

∣∣+ 2 ‖x‖β sup

{
|x (t)− x (s)|
|t− s|β

: t, s ∈ [0, 1] , t 6= s

}

6 ‖x‖2β + 2 ‖x‖2β = 3 ‖x‖2β .

Therefore, F is an operator from Hβ [0, 1] into Hβ [0, 1] and we can chose the function
f : R+ → R+ as f (x) = 3x2. This function is non-decreasing and satisfies the
inequality in assumption (iv).

Now, we will show that the operator F is continuous on the Hβ [0, 1] with respect
to the norm ‖.‖α . To this end, fix arbitrarily y ∈ Hβ [0, 1] and ε > 0. Assume that
x ∈ Hβ [0, 1] is an arbitrary function and ‖x− y‖α < δ, where δ is a positive number

such that 0 < δ <
√
‖y‖2α + ε

3 − ‖y‖α.

Then, for arbitrary t, s ∈ [0, 1] we obtain

(Fx− Fy) (t)− (Fx− Fy) (s)

= x2 (t)− y2 (t)−
(
x2 (s)− y2 (s)

)
= (x (t)− y (t)) (x (t) + y (t))− (x (s)− y (s)) (x (s) + y (s))

= [x (t)− y (t)− (x (s)− y (s))] (x (t) + y (t)) + (x (s)− y (s)) (x (t) + y (t))

− (x (s)− y (s)) (x (s) + y (s))

= [x (t)− y (t)− (x (s)− y (s))] (x (t) + y (t))

+ (x (s)− y (s)) [x (t) + y (t)− (x (s) + y (s))] . (4.2)

By (4.2), we have

|(Fx− Fy) (t)− (Fx− Fy) (s)|

6 |x (t)− y (t)− (x (s)− y (s))| |x (t) + y (t)|+ |x (s)− y (s)| |x (t) + y (t)− (x (s) + y (s))|

6 ‖x+ y‖∞ |x (t)− y (t)− (x (s)− y (s))|+ ‖x− y‖∞ |x (t) + y (t)− (x (s) + y (s))|

6 ‖x+ y‖α |x (t)− y (t)− (x (s)− y (s))|+ ‖x− y‖α |x (t) + y (t)− (x (s) + y (s))| .
(4.3)

By (4.3), we observe
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sup

{
|(Fx− Fy) (t)− (Fx− Fy) (s)|

|t− s|α
: t, s ∈ [0, 1] , t 6= s

}

6 ‖x+ y‖α sup
t,s∈[0,1], t 6=s

|x (t)− y (t)− (x (s)− y (s))|
|t− s|α

+ ‖x− y‖α sup
t,s∈[0,1], t 6=s

|x (t) + y (t)− (x (s) + y (s))|
|t− s|α

6 ‖x+ y‖α ‖x− y‖α + ‖x− y‖α ‖x+ y‖α
= 2 ‖x+ y‖α ‖x− y‖α . (4.4)

From (4.4), it follows

‖Fx− Fy‖α = |(Fx− Fy) (0)|+ sup
t6=s

{
|(Fx− Fy) (t)− (Fx− Fy) (s)|

|t− s|α
: t, s ∈ [0, 1]

}
6
∣∣x2 (0)− y2 (0)

∣∣+ 2 ‖x+ y‖α ‖x− y‖α
= |x (0)− y (0)| |x (0) + y (0)|+ 2 ‖x+ y‖α ‖x− y‖α
6 ‖x− y‖∞ ‖x+ y‖∞ + 2 ‖x+ y‖α ‖x− y‖α
6 3 ‖x+ y‖α ‖x− y‖α
6 3 ‖x− y‖α (‖x− y‖α + 2 ‖y‖α)

6 3δ (δ + 2 ‖y‖α)

< ε. (4.5)

So that, the inequality

‖Fx− Fy‖α 6 3δ (δ + 2 ‖y‖α) < ε

is satisfied for all x ∈ Hβ [0, 1], where 0 < δ <
√
‖y‖2α + ε− ‖y‖α . Therefore, we can

chose the positive number δ as δ = 1
2

√
‖y‖2α + ε−‖y‖α . This shows that the operator

F is continuous at the point y ∈ Hβ [0, 1] . Since y is chosen arbitrarily, we deduce
that F is continuous on Hβ [0, 1] with respect to the norm ‖.‖α .

In this case, the inequality appearing in assumption (v) of Theorem (3.1) takes
the following form

‖p‖ 1
4

+ (2K + k 1
4
)rf(r) 6 r

which is equivalent to

ln
(

4
√
n̂+ 1

)
+ 4
√
n+

[
3

2

(
3
√

(m+ 1)4 − 3
√
m4
)

+
3
√

3m

]
3r3 6 r. (4.6)



Solvability of a Quadratic Integral Equation of Fredholm Type 61

Obviously, there exists a positive number r0 satisfying (4.6) provided that the con-
stants n, n̂ and m can chosen as suitable. For example, if one chose n = 1

216 , n̂ = 0
and m = 1, r0 = 1

4 , then the inequality

‖p‖ 1
4

+ (2K + k 1
4
)rf(r)

= ln
(

4
√
n̂+ 1

)
+ 4
√
n+

[
3

2

(
3
√

(m+ 1)4 − 3
√
m4
)

+
3
√

3m

]
3r3

≈ 0, 23696 <
1

4
.

Finally, applying Theorem (3.1) we conclude that equation (4.1) has at least one
solution in the space Hα[0, 1] with 0 < α < 1

4 .

Example 2. Let us consider the quadratic integral equation

x(t) = ln

(
t

7
+ 1

)
+ (ax (t) + b)

∫ 1

0

√
mt2 + τx (eτ ) dτ, t ∈ [0, 1]. (4.7)

Set p(t) = ln
(
t
7 + 1

)
, k(t, τ) =

√
mt2 + τ , q (τ) = eτ for t, τ ∈ [0, 1] and m are

non-negative constant. The operator F defined by (Fx) (t) = ax (t) + b, where a and
b are any real number.

In what follows, we will prove that assumption (i)-(v) of Threom (3.1) are sat-
isfied. Since function p : R+ → R+ defined by p(t) = ln

(
t
7 + 1

)
, is concav and

p (0) = 0, then from Lemma 4.4 in [9] these functions are subadditive. By the result
of subadditive

|p(t)− p(s)| =
∣∣∣∣ln( t7 + 1

)
− ln

(s
7

+ 1
)∣∣∣∣

6 ln

∣∣∣∣ t− s7

∣∣∣∣
<
|t− s|

7

6
1

7
|t− s|

1
2

where we have used that lnx < x for x > 0 . This says that p ∈ H 1
2
[0, 1] (i.e. β = 1

2 )

and, moreover, H
1
2
p = 1

7 . Therefore, assumption (i) of Theorem (3.1) is satisfied. Note
that

‖p‖ 1
2

= |p(0)|+ sup

{
|p(t)− p(s)|
|t− s| 12

: t, s ∈ [0, 1], t 6= s

}
= |p(0)|+H

1
2
p = H

1
2
p =

1

7
.
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Further, we have

|k(t, τ)− k(s, τ)| =
∣∣∣√mt2 + τ −

√
ms2 + τ

∣∣∣
6
√
|mt2 −ms2|

=
√
m
√
|t2 − s2|

=
√
m
√
|t− s|

√
|t+ s|

6
√
m
√

2|t− s| 12

6
√

2m|t− s| 12

for all t, s ∈ [0, 1]. Assumption (ii) of Theorem (3.1) is satisfied with kβ = k 1
2

=
√

2m.

It is clear that q (τ) = eτ satisfies assumption (iii). In our case, the constant K is
given by

K = sup

{∫ 1

0

|k(t, τ)|dτ : t ∈ [0, 1]

}
= sup

{∫ 1

0

∣∣∣√mt2 + τ
∣∣∣ dτ : t ∈ [0, 1]

}
=

∫ 1

0

√
m+ τdτ

=
2

3

(√
(m+ 1)3 −

√
m3
)
.

For all x ∈ Hβ [0, 1]

‖Fx‖β = |(Fx) (0)|+ sup

{
|(Fx) (t)− (Fx) (s)|

|t− s|β
: t, s ∈ [0, 1] , t 6= s

}

= |ax (0) + b|+ sup

{
|ax (t) + b− ax (s)− b|

|t− s|β
: t, s ∈ [0, 1] , t 6= s

}

= |a| |x (0)|+ |b|+ sup

{
|x (t)− x (s)| |a|
|t− s|β

: t, s ∈ [0, 1] , t 6= s

}

6 |a| |x (0)|+ |b|+ |a| sup

{
|x (t)− x (s)|
|t− s|β

: t, s ∈ [0, 1] , t 6= s

}

6 |a|

(
|x (0)|+ sup

{
|x (t)− x (s)|
|t− s|β

: t, s ∈ [0, 1] , t 6= s

})
+ |b|

6 |a| ‖x‖β + |b| .

Therefore, F is an operator from Hβ [0, 1] into Hβ [0, 1] and we can chose the function
f : R+ → R+ as f (x) = |a|x + |b| . This function is non-decreasing and satisfies the
inequality in Assumption (iv).
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Now, we will show that the operator F is continuous on the Hβ [0, 1] with respect
to the norm ‖.‖α . To this end, fix arbitrarily y ∈ Hβ [0, 1] and ε > 0. Assume that
x ∈ Hβ [0, 1] is an arbitrary function and ‖x− y‖α < δ, where δ is a positive number
such that 0 < δ < ε

|a| (in this place a 6= 0. It is obvious that if a is zero, the operator

F is continuous).
Then, for arbitrary t, s ∈ [0, 1] we obtain

‖Fx− Fy‖α = |(Fx− Fy) (0)|+ sup
t 6=s

{
|(Fx− Fy) (t)− (Fx− Fy) (s)|

|t− s|α
}

= |ax (0)− ay (0)|+ sup
t 6=s

{
|(ax (t)− ay (t))− (ax (s)− ay (s))|

|t− s|α
}

= |a| |x (0)− y (0)|+ |a| sup
t 6=s

{
|(x (t)− y (t))− (x (s)− y (s))|

|t− s|α
}

= |a|

(
|x (0)− y (0)|+ sup

t 6=s

{
|(x (t)− y (t))− (x (s)− y (s))|

|t− s|α
})

= |a| ‖x− y‖α
6 |a| δ
< ε.

This shows that the operator F is continuous at the point y ∈ Hβ [0, 1] . Since
y was chosen arbitrarily, we deduce that F is continuous on Hβ [0, 1] with respect to
the norm ‖.‖α .

In this case, the inequality appearing in assumption (v) of Theorem (3.1) takes
the following form

‖p‖ 1
2

+ (2K + k 1
2
)rf(r) 6 r

which is equivalent to

1

7
+

[
4

3

(√
(m+ 1)3 −

√
m3
)

+
√

2m

]
r (|a| r + |b|) 6 r. (4.8)

Obviously, there exists a number positive r0 satisfying (4.8) provided that the con-
stants a, b and m can chosen as suitable. For example, if one chose a = 1

10 , b = 1
60

and m = 1
2 , r0 = 1

6 , then the inequality

‖p‖ 1
2

+ (2K + k 1
2
)r0f(r0)

=
1

7
+

[
4

3

(√
(m+ 1)3 −

√
m3
)

+
√

2m

]
r0 (|a| r0 + |b|)

≈ 0, 15939 <
1

6
.

Therefore, using Theorem (3.1), we conclude that equation (4.7) has at least one
solution in the space Hα[0, 1] with 0 < α < 1

2 = β.
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Inönü University
44280-Malatya
TURKEY
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