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1. Introduction and Preliminaries

Banach contraction theorem is one of the fundamental theorems in metric fixed point
theory. Banach proved existence of unique fixed point for a self contraction in com-
plete metric space. Since the contractions are always continuous, Kannan introduced
a new type of contractive map known as Kannan mapping [8] and proved analogues
results of Banach contraction theorem. The importance of Kannan mapping is that
it can be discontinuous and it characterizes completeness of the space [14, 15]. In [11]
Reich introduced a new type of contraction which is a generalization of Banach con-
traction and Kannan mapping and proved existence of unique fixed point in complete
metric spaces. Later Chatterjea defined a contraction similar to Kannan mapping
known as Chatterjea mapping [4] and proved various fixed point results. Inspired by
these contractions, several authors did research in this area using different spaces and
by weakening the contraction conditions [2, 7, 9, 12].

The concept of coupled fixed point was introduced by Guo and Lakshmikantham
[6]. They proved fixed point theorems using mixed monotone property in cone spaces.
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In [3] Gnana Bhaskar and Lakshmikantham proved coupled fixed point theorems for
contractions in partially ordered complete metric spaces using mixed monotone prop-
erty. Kannan, Chatterjea and Reich type contractions are further explored in coupled
fixed point theory and the results are reported in [1, 5, 13]. Recently the concept of
FG-coupled fixed point was introduced in [10] and they proved FG-coupled fixed point
theorems for various contractive type mappings.

In this paper we prove existence of FG-coupled fixed point theorems using Kannan,
Chatterjea and Reich type contraction on partially ordered complete metric spaces.

Now we recall some basic concepts of coupled and FG-coupled fixed points.

Definition 1.1 ([3]). An element (x, y) ∈ X ×X is said to be a coupled fixed point
of the map F : X ×X → X if F (x, y) = x and F (y, x) = y.

Definition 1.2 ([10]). Let (X, dX ,≤P1
) and (Y, dY ,≤P2

) be two partially ordered
metric spaces and F : X × Y → X and G : Y ×X → Y . We say that F and G have
mixed monotone property if for any x, y ∈ X
x1, x2 ∈ X, x1 ≤P1 x2 ⇒ F (x1, y) ≤P1 F (x2, y) and G(y, x1) ≥P2 G(y, x2)
y1, y2 ∈ Y, y1 ≤P2

y2 ⇒ F (x, y1) ≥P1
F (x, y2) and G(y1, x) ≤P2

G(y2, x).

Definition 1.3 ([10]). An element (x, y) ∈ X × Y is said to be FG-coupled fixed
point if F (x, y) = x and G(y, x) = y.

If (x, y) ∈ X × Y is an FG-coupled fixed point then (y, x) ∈ Y × X is a GF-
coupled fixed point. Partial order ≤ on X × Y is defined as (u, v) ≤ (x, y) ⇔
x ≥P1

u, y ≤P2
v ∀(x, y), (u, v) ∈ X × Y . Also the iteration is given by

Fn+1(x, y) = F (Fn(x, y), Gn(y, x)) and Gn+1(y, x) = G(Gn(y, x), Fn(x, y)) for ev-
ery n ∈ N and (x, y) ∈ X × Y .

2. Main Results

Theorem 2.1. Let (X, dX ,≤P1), (Y, dY ,≤P2) be two partially ordered complete metric
spaces. Let F : X × Y → X and G : Y ×X → Y be two continuous functions having

the mixed monotone property. Assume that there exist p, q, r, s ∈
[
0,

1

2

)
satisfying

dX(F (x, y), F (u, v)) ≤ p dX(x, F (x, y)) + q dX(u, F (u, v));∀x ≥P1
u, y ≤P2

v (1)

dY (G(y, x), G(v, u)) ≤ r dY (y,G(y, x)) + s dY (v,G(v, u));∀x ≤P1 u, y ≥P2 v. (2)

If there exist x0 ∈ X, y0 ∈ Y satisfying x0 ≤P1
F (x0, y0) and y0 ≥P2

G(y0, x0) then
there exist x ∈ X, y ∈ Y such that x = F (x, y) and y = G(y, x).
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Proof. Given x0 ≤P1
F (x0, y0) = x1 and y0 ≥P2

G(y0, x0) = y1.
Define xn+1 = F (xn, yn) and yn+1 = G(yn, xn) for n = 1, 2, 3..
Then we can easily show that {xn} is increasing in X and {yn} is decreasing in Y.
Using inequalities (1) and (2) we get

dX(xn+1, xn) = dX(F (xn, yn), F (xn−1, yn−1))

≤ p dX(xn, F (xn, yn)) + q dX(xn−1, F (xn−1, yn−1))

= p dX(xn, xn+1) + q dX(xn−1, xn)

ie, (1− p) dX(xn+1, xn) ≤ q dX(xn−1, xn)

ie, dX(xn, xn+1) ≤ q

1− p
dX(xn−1, xn)

= δ1 dX(xn−1, xn) where δ1 =
q

1− p
< 1

≤ δ21 dX(xn−2, xn−1)

...

≤ δn1 dX(x0, x1).

Similarly we get dY (yn+1, yn) ≤ δ2n dY (y1, y0) where δ2 =
r

1− s
< 1.

Consider m > n

dX(xm, xn) ≤ dX(xm, xm−1) + dX(xm−1, xm−2) + ...+ dX(xn+1, xn)

≤ δ1m−1 dX(x1, x0) + δ1
m−2 dX(x1, x0) + ...+ δ1

n dX(x1, x0)

= δ1
n
(

1 + δ1 + ...+ δ1
m−n−1

)
dX(x1, x0)

6
δ1

n

1− δ1
dX(x1, x0).

Since 0 ≤ δ1 < 1, δ1
n converges to 0(as n→∞). Therefore {Fn(x0, y0)} is a Cauchy

sequence in X. Similarly we can prove that {Gn(y0, x0)} is a Cauchy sequence in Y .
Since by the completeness of X and Y , there exist x ∈ X and y ∈ Y such that
limn→∞ Fn(x0, y0) = x and limn→∞Gn(y0, x0) = y.
Now we have to prove the existence of FG-coupled fixed point.
Consider,

dX(F (x, y), x) = lim
n→∞

dX(F (Fn(x0, y0), Gn(y0, x0)), Fn(x0, y0))

= lim
n→∞

dX(Fn+1(x0, y0), Fn(x0, y0))

= 0

ie, F (x, y) = x. Similarly we get G(y, x) = y.

By replacing the continuity of F and G by other conditions we obtain the following
existence theorems of FG-coupled fixed point.
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Theorem 2.2. Let (X, dX ,≤P1
) and (Y, dY ,≤P2

) be two partially ordered complete
metric spaces and F : X × Y → X, G : Y × X → Y be two mappings having the
mixed monotone property. Assume that X and Y satisfy the following property

(i) If a non-decreasing sequence {xn} → x then xn ≤P1
x ∀n.

(ii) If a non-increasing sequence {yn} → y then y ≤P2
yn ∀n.

Also assume that there exist p, q, r, s ∈
[
0,

1

2

)
satisfying

dX(F (x, y), F (u, v)) ≤ p dX(x, F (x, y)) + q dX(u, F (u, v)); ∀x ≥P1
u, y ≤P2

v (3)

dY (G(y, x), G(v, u)) ≤ r dY (y,G(y, x)) + s dY (v,G(v, u)); ∀x ≤P1 u, y ≥P2 v. (4)

If there exist x0 ∈ X, y0 ∈ Y satisfying x0 ≤P1
F (x0, y0) and y0 ≥P2

G(y0, x0) then
there exist x ∈ X, y ∈ Y such that x = F (x, y) and y = G(y, x).

Proof. Following as in the proof of Theorem 2.1 we get limn→∞ Fn(x0, y0) = x and
limn→∞Gn(y0, x0) = y.
Now we have

dX(F (x, y), x) ≤ dX(F (x, y), Fn+1(x0, y0)) + dX(Fn+1(x0, y0), x)

= dX(F (x, y), F (Fn(x0, y0), Gn(y0, x0)) + dX(Fn+1(x0, y0), x)

≤ p dX(x, F (x, y)) + q dX(Fn(x0, y0), F (Fn(x0, y0), Gn(y0, x0)))

+ dX(Fn+1(x0, y0), x) (using (3))

ie, dX(F (x, y), x) ≤ p dX(x, F (x, y)) as n→∞.
This holds only when dX(F (x, y), x) = 0. Therefore we get F (x, y) = x.
Similarly using (4) and limn→∞Gn(y0, x0) = y we can prove y = G(y, x).

Remark 2.1. If we put k = m and l = n in Theorems 2.1 and 2.2, we get Theorems
2.7 and 2.8 respectively of [10].

Theorem 2.3. Let (X, dX ,≤P1), (Y, dY ,≤P2) be two partially ordered complete metric
spaces. Let F : X × Y → X and G : Y ×X → Y be two continuous functions having

the mixed monotone property. Assume that there exist p, q, r, s ∈
[
0,

1

2

)
satisfying

dX(F (x, y), F (u, v)) ≤ p dX(x, F (u, v)) + q dX(u, F (x, y)); ∀ x ≥P1
u, y ≤P2

v (5)

dY (G(y, x), G(v, u)) ≤ r dY (y,G(v, u)) + s dY (v,G(y, x)); ∀ x ≤P1
u, y ≥P2

v. (6)

If there exist x0 ∈ X, y0 ∈ Y satisfying x0 ≤P1 F (x0, y0) and y0 ≥P2 G(y0, x0) then
there exist x ∈ X, y ∈ Y such that x = F (x, y) and y = G(y, x).
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Proof. As in Theorem 2.1 we have {xn} increasing in X and {yn} decreasing in Y .
We have

dX(xn+1, xn) = dX(F (xn, yn), F (xn−1, yn−1))

≤ p dX(xn, F (xn−1, yn−1)) + q dX(xn−1, F (xn, yn)) (Using (5))

= p dX(xn, xn) + q dX(xn−1, xn+1)

≤ q [dX(xn−1, xn) + dX(xn, xn+1)]

ie, dX(xn, xn+1) ≤ q

1− q
dX(xn−1, xn)

= δ1 dX(xn−1, xn) where δ1 =
q

1− q
< 1

≤ δ21 dX(xn−2, xn−1)

...

≤ δn1 dX(x0, x1).

Similarly we get dY (yn+1, yn) ≤ δ2ndY (y1, y0) where δ2 =
r

1− r
< 1

Now, we prove that {Fn(x0, y0)} and {Gn(y0, x0)} are Cauchy sequences in X and
Y respectively.
For m > n,

dX(xm, xn) ≤ dX(xm, xm−1) + dX(xm−1, xm−2) + ...+ dX(xn+1, xn)

≤ δ1m−1 dX(x1, x0) + δ1
m−2 dX(x1, x0) + ...+ δ1

n dX(x1, x0)

≤ δ1
n

1− δ1
dX(x1, x0).

Since 0 ≤ δ1 < 1, δ1
n converges to 0 (as n→∞). Therefore {Fn(x0, y0)} is a Cauchy

sequence in X.
Similarly we can prove that {Gn(y0, x0)} is a Cauchy sequence in Y .
By the completeness of X and Y , there exist x ∈ X and y ∈ Y such that
limn→∞ Fn(x0, y0) = x and limn→∞Gn(y0, x0) = y.
As in the proof of Theorem 2.1 we can show that x = F (x, y) and y = G(y, x).

Theorem 2.4. Let (X, dX ,≤P1
) and (Y, dY ,≤P2

) be two partially ordered complete
metric spaces and F : X × Y → X, G : Y × X → Y be two mappings having the
mixed monotone property. Assume that X and Y satisfy the following property

(i) If a non-decreasing sequence {xn} → x then xn ≤P1
x ∀n.

(ii) If a non-increasing sequence {yn} → y then y ≤P2
yn ∀n.

Also assume that there exist p, q, r, s ∈
[
0,

1

2

)
satisfying

dX(F (x, y), F (u, v)) ≤ p dX(x, F (u, v)) + q dX(u, F (x, y)); ∀x ≥P1
u, y ≤P2

v (7)
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dY (G(y, x), G(v, u)) ≤ r dY (y,G(v, u)) + s dY (v,G(y, x)); ∀x ≤P1
u, y ≥P2

v. (8)

If there exist x0 ∈ X, y0 ∈ Y satisfying x0 ≤P1
F (x0, y0) and y0 ≥P2

G(y0, x0) then
there exist x ∈ X, y ∈ Y such that x = F (x, y) and y = G(y, x).

Proof. Following as in the proof of Theorem 2.3 we get limn→∞ Fn(x0, y0) = x and
limn→∞Gn(y0, x0) = y.
Consider

dX(F (x, y), x) ≤ dX(F (x, y), Fn+1(x0, y0)) + dX(Fn+1(x0, y0), x)

= dX(F (x, y), F (Fn(x0, y0), Gn(y0, x0))) + dX(Fn+1(x0, y0), x)

≤ p dX(x, F ((Fn(x0, y0), Gn(y0, x0))) + q dX(Fn(x0, y0), F (x, y))

+ dX(Fn+1(x0, y0), x)

= p dX(x, Fn+1(x0, y0)) + q dX(Fn(x0, y0), F (x, y))

+ dX(Fn+1(x0, y0), x)

ie, dX(F (x, y), x) ≤ q dX(x, F (x, y)) as n→∞, which implies that dX(F (x, y), x) = 0.
Therefore we get F (x, y) = x.
Similarly using (8) and limn→∞Gn(y0, x0) = y, we get y = G(y, x).

Remark 2.2. If we put p = r and q = s in Theorems 2.3 and 2.4, we get Theorems
2.9 and 2.10 respectively of [10].

The following example illustrates the above results.

Example 2.1. Let X = [0, 1] and Y = [−1, 1] with usual metric. Partial order on X
is defined as x ≤P1

u if and only if x = u and partial order on Y is defined as y ≤P2
v

if and only if either y = v or (y, v) = (0, 1). The mapping F : X × Y → X is defined

by F (x, y) =
x+ 1

2
and G : Y ×X → Y is defined as G(y, x) =

x− 1

2
. Then F and

G satisfies (1), (2), (5), (6) with p, q, r, s ∈ [0, 12 ). Also (1, 0) is the FG-coupled fixed
point.

Theorem 2.5. Let (X, dX ,≤P1), (Y, dY ,≤P2) be two partially ordered complete metric
spaces. Let F : X × Y → X and G : Y ×X → Y be two continuous functions having
the mixed monotone property. Assume that there exist a, b, c with a + b + c < 1
satisfying

dX(F (x, y), F (u, v)) ≤ a dX(x, F (x, y)) + b dX(u, F (u, v)) + c dX(x, u);

∀x ≥P1
u, y ≤P2

v
(9)

dY (G(y, x), G(v, u)) ≤ a dY (y,G(y, x)) + b dY (v,G(v, u)) + c dY (y, v);

∀x ≤P1
u, y ≥P2

v.
(10)

If there exist x0 ∈ X, y0 ∈ Y satisfying x0 ≤P1
F (x0, y0) and y0 ≥P2

G(y0, x0) then
there exist x ∈ X, y ∈ Y such that x = F (x, y) and y = G(y, x).
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Proof. Following as in Theorem 2.1 we have {xn} is increasing in X and {yn} is
decreasing in Y .
Now we claim that

dX(Fn+1(x0, y0), Fn(x0, y0)) ≤
( b+ c

1− a

)n
dX(x0, x1) (11)

dY (Gn+1(y0, x0), Gn(y0, x0)) ≤
(a+ c

1− b

)n
dY (y0, y1). (12)

The proof is by mathematical induction with the help of (9) and (10).
For n = 1, consider

dX(F 2(x0, y0), F (x0, y0)) = dX(F (F (x0, y0), G(y0, x0)), F (x0, y0))

≤ a dX(F (x0, y0), F 2(x0, y0)) + b dX(x0, F (x0, y0))

+ c dX(F (x0, y0), x0)

ie, dX(F 2(x0, y0), F (x0, y0)) ≤ b+ c

1− a
dX(x0, x1).

Thus the inequality (11) is true for n = 1.
Now assume that (11) is true for n ≤ m, and check for n = m+ 1.
Consider,

dX(Fm+2(x0, y0), Fm+1(x0, y0))

= dX(F (Fm+1(x0, y0), Gm+1(y0, x0)), F (Fm(x0, y0), Gm(y0, x0)))

≤ a dX(Fm+1(x0, y0), Fm+2(x0, y0)) + b dX(Fm(x0, y0), Fm+1(x0, y0))

+ c dX(Fm+1(x0, y0), Fm(x0, y0))

ie, dX(Fm+2(x0, y0), Fm+1(x0, y0)) ≤ b+ c

1− a
dX(Fm(x0, y0), Fm+1(x0, y0))

≤
( b+ c

1− a

)m+1

dX(x0, x1)

ie, the inequality (11) is true for all n ∈ N.
Similarly we can prove the inequality (12).
For m > n, consider

dX(Fn(x0, y0), Fm(x0, y0))

≤ dX(Fn(x0, y0), Fn+1(x0, y0)) + dX(Fn+1(x0, y0), Fn+2(x0, y0)) + ...

+ dX(Fm−1(x0, y0), Fm(x0, y0))

≤

[( b+ c

1− a

)n
+
( b+ c

1− a

)n+1

+ ...+
( b+ c

1− a

)m−1]
dX(x0, x1)

≤ δ1
n

1− δ1
dX(x0, x1) where δ1 =

b+ c

1− a
< 1.
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Since 0 ≤ δ1 < 1, δ1
n converges to 0 (as n→∞) ie, {Fn(x0, y0)} is a Cauchy sequence

in X. Similarly by using inequality (12) we can prove that {Gn(y0, x0)} is a Cauchy
sequence in Y.
By the completeness of X and Y, there exist x ∈ X and y ∈ Y such that
limn→∞ Fn(x0, y0) = x and limn→∞Gn(y0, x0) = y.
As in the proof of Theorem 2.1, using continuity of F and G we can prove that
F (x, y) = x and G(y, x) = y.

If we take X = Y and F = G in the above theorem we get the following corollary.

Corollary 2.1. Let (X, d,≤) be a partially ordered complete metric space. Let
F : X ×X → X be a continuous function having the mixed monotone property. As-
sume that there exist non-negative a, b, c such that a+ b+ c < 1 satisfying

d(F (x, y), F (u, v)) ≤ a d(x, F (x, y)) + b d(u, F (u, v)) + c d(x, u); ∀x ≥ u, y ≤ v.

If there exist x0, y0 ∈ X satisfying x0 ≤ F (x0, y0) and y0 ≥ F (y0, x0) then there exist
(x, y) ∈ X ×X such that x = F (x, y) and y = F (y, x).

Theorem 2.6. Let (X, dX ,≤P1
) and (Y, dY ,≤P2

) be two partially ordered complete
metric spaces and F : X × Y → X, G : Y × X → Y be two mappings having the
mixed monotone property. Assume that X and Y satisfy the following property

(i) If a non-decreasing sequence {xn} → x then xn ≤P1 x ∀n.

(ii) If a non-increasing sequence {yn} → y then y ≤P2
yn ∀n.

Also asuume that there exist a, b, c with a+ b+ c < 1 satisfying

dX(F (x, y), F (u, v)) ≤ a dX(x, F (x, y)) + b dX(u, F (u, v)) + c dX(x, u);

∀x ≥p1 u, y ≤p2 v
(13)

dY (G(y, x), G(v, u)) ≤ a dY (y,G(y, x)) + b dY (v,G(v, u)) + c dY (y, v);

∀x ≤P1
u, y ≥P2

v.
(14)

If there exist x0 ∈ X, y0 ∈ Y satisfying x0 ≤P1
F (x0, y0) and y0 ≥P2

G(y0, x0) then
there exist x ∈ X, y ∈ Y such that x = F (x, y) and y = G(y, x).

Proof. Following as in the proof of Theorem 2.5 we obtain limn→∞ Fn(x0, y0) = x
and limn→∞Gn(y0, x0) = y.
We have

dX(F (x, y), x) ≤ dX(F (x, y), Fn+1(x0, y0)) + dX(Fn+1(x0, y0), x)

= dX(F (x, y), F (Fn(x0, y0), Gn(y0, x0))) + dX(Fn+1(x0, y0), x)

≤ a dX(x, F (x, y)) + b dX(Fn(x0, y0), F (Fn(x0, y0), Gn(y0, x0)))

+ c dX(x, Fn(x0, y0)) + dX(Fn+1(x0, y0), x)

= a dX(x, F (x, y)) + b dX(Fn(x0, y0), Fn+1(x0, y0))

+ c dX(x, Fn(x0, y0)) + dX(Fn+1(x0, y0), x)
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ie, dX(F (x, y), x) ≤ a dX(x, F (x, y)) as n→∞, which implies that dX(F (x, y), x) = 0.
Therefore F (x, y) = x.
Similarly using (14) and limn→∞Gn(y0, x0) = y we get y = G(y, x).

By assuming X = Y and F = G in the above theorem we will get the following
corollary.

Corollary 2.2. Let (X, d,≤) be a partially ordered complete metric space and
F : X ×X → X be a mapping having the mixed monotone property. Assume that
X satisfy the following property

(i) If a non-decreasing sequence {xn} → x then xn ≤ x ∀n.

(ii) If a non-increasing sequence {yn} → y then y ≤ yn ∀n.

Also assume that there exist non-negative a, b, c such that a+ b+ c < 1 satisfying

d(F (x, y), F (u, v)) ≤ a d(x, F (x, y)) + b d(u, F (u, v)) + c d(x, u); ∀x ≥ u, y ≤ v.

If there exist (x0, y0) ∈ X×X satisfying x0 ≤ F (x0, y0) and y0 ≥ F (y0, x0) then there
exist x, y ∈ X such that x = F (x, y) and y = F (y, x).

Remark 2.3. If we take c = 0 in Theorems 2.5 and 2.6, we get Theorems 2.7 and
2.8 respectively of [10].

Theorem 2.7. Let (X, dX ,≤P1), (Y, dY ,≤P2) be two partially ordered complete metric
spaces. Let F : X × Y → X and G : Y ×X → Y be two continuous functions having
the mixed monotone property. Assume that there exist non-negative a,b,c satisfying

dX(F (x, y), F (u, v)) ≤ a dX(x, F (u, v))+ b dX(u, F (x, y)) + c dX(x, u);

∀x ≥P1
u, y ≤P2

v; 2b+ c < 1
(15)

dY (G(y, x), G(v, u)) ≤ a dY (y,G(v, u))+ b dY (v,G(y, x)) + c dY (y, v);

∀x ≤P1
u, y ≥P2 v; 2a+ c < 1.

(16)

If there exist x0 ∈ X, y0 ∈ Y satisfying x0 ≤P1 F (x0, y0) and y0 ≥P2 G(y0, x0) then
there exist x ∈ X, y ∈ Y such that x = F (x, y) and y = G(y, x).

Proof. As in the proof of Theorem 2.1, it can be proved that {xn} is increasing in
X and {yn} is decreasing in Y.
Now we claim that

dX(Fn+1(x0, y0), Fn(x0, y0)) ≤
( b+ c

1− b

)n
dX(x0, x1) (17)

dY (Gn+1(y0, x0), Gn(y0, x0)) ≤
(a+ c

1− a

)n
dY (y0, y1). (18)
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We prove the claim by mathematical induction, using (15) and (16).
For n = 1, consider

dX(F 2(x0, y0), F (x0, y0))

= dX(F (F (x0, y0), G(y0, x0)), F (x0, y0))

≤ a dX(F (x0, y0), F (x0, y0)) + b dX(x0, F
2(x0, y0)) + c dX(F (x0, y0), x0)

≤ b [dX(x0, F (x0, y0)) + dX(F (x0, y0), F 2(x0, y0))] + c dX(F (x0, y0), x0)

ie, dX(F 2(x0, y0), F (x0, y0)) ≤ b+ c

1− b
dX(x0, x1).

Thus the inequality (17) is true for n = 1.
Now assume that (17) is true for n ≤ m, then check for n = m+ 1.
Consider,

dX(Fm+2(x0, y0), Fm+1(x0, y0))

= dX(F (Fm+1(x0, y0), Gm+1(y0, x0)), F (Fm(x0, y0), Gm(y0, x0)))

≤ a dX(Fm+1(x0, y0), Fm+1(x0, y0)) + b dX(Fm(x0, y0), Fm+2(x0, y0))

+ c dX(Fm+1(x0, y0), Fm(x0, y0))

≤ b [dX(Fm(x0, y0), Fm+1(x0, y0)) + dX(Fm+1(x0, y0), Fm+2(x0, y0))]

+ c dX(Fm+1(x0, y0), Fm(x0, y0))

ie,

dX(Fm+2(x0, y0), Fm+1(x0, y0)) ≤ b+ c

1− b
dX(Fm(x0, y0), Fm+1(x0, y0))

≤
( b+ c

1− b

)m+1

dX(x0, x1)

ie, the inequality (17) is true for all n ∈ N.
Similarly we can prove the inequality (18).
For m > n, consider

dX(Fn(x0, y0), Fm(x0, y0))

≤ dX(Fn(x0, y0), Fn+1(x0, y0)) + dX(Fn+1(x0, y0), Fn+2(x0, y0)) + ...

+ dX(Fm−1(x0, y0), Fm(x0, y0))

≤

[( b+ c

1− b

)n
+
( b+ c

1− b

)n+1

+ ...+
( b+ c

1− b

)m−1]
dX(x0, x1)

≤ δ1
n

1− δ1
dX(x0, x1); where δ1 =

b+ c

1− b
< 1.

Since 0 ≤ δ1 < 1, δ1
n converges to 0 (as n→∞) ie, {Fn(x0, y0)} is a Cauchy sequence

in X. Similarly we can prove that {Gn(y0, x0)} is a Cauchy sequence in Y .
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SinceX and Y are complete, there exist x ∈ X and y ∈ Y such that limn→∞ Fn(x0, y0)
= x and limn→∞Gn(y0, x0) = y.
By continuity of F and G, as in the Theorem 2.1 we can show that F (x, y) = x and
G(y, x) = y.

If X = Y and F = G in the above theorem we get the following corollary.

Corollary 2.3. Let (X, d,≤) be a partially ordered complete metric space. Let
F : X ×X → X be a continuous function having the mixed monotone property. As-
sume that there exist non-negative a, b, c such that 2a+c < 1 and 2b+c < 1 satisfying

d(F (x, y), F (u, v)) ≤ a d(x, F (u, v)) + b d(u, F (x, y)) + c d(x, u); ∀ x ≥ u, y ≤ v.

If there exist (x0, y0) ∈ X×Y satisfying x0 ≤ F (x0, y0) and y0 ≥ F (y0, x0) then there
exist x, y ∈ X such that x = F (x, y) and y = F (y, x).

In the following theorem we replace the continuity by other conditions to obtain
FG-coupled fixed point.

Theorem 2.8. Let (X, dX ,≤P1
) and (Y, dY ,≤P2

) be two partially ordered complete
metric spaces and F : X × Y → X, G : Y × X → Y be two mappings having the
mixed monotone property. Assume that X and Y satisfy the following property

(i) If a non-decreasing sequence {xn} → x then xn ≤P1 x ∀n.

(ii) If a non-increasing sequence {yn} → y then y ≤P2
yn ∀n.

Also assume that there exist non-negative a,b,c satisfying

dX(F (x, y), F (u, v)) ≤ a dX(x, F (u, v))+b dX(u, F (x, y)) + c dX(x, u);

∀x ≥P1
u, y ≤P2

v; 2b+ c < 1
(19)

dY (G(y, x), G(v, u)) ≤ a dY (y,G(v, u))+b dY (v,G(y, x)) + c dY (y, v);

∀x ≤P1
u, y ≥P2

v; 2a+ c < 1.
(20)

If there exist x0 ∈ X, y0 ∈ Y satisfying x0 ≤P1
F (x0, y0) and y0 ≥P2

G(y0, x0) then
there exist x ∈ X, y ∈ Y such that x = F (x, y) and y = G(y, x).

Proof. Following as in the proof of Theorem 2.7 we get limn→∞ Fn(x0, y0) = x and
limn→∞Gn(y0, x0) = y.
We have

dX(F (x, y), x) ≤ dX(F (x, y), Fn+1(x0, y0)) + dX(Fn+1(x0, y0), x)

= dX(F (x, y), F (Fn(x0, y0), Gn(y0, x0)) + dX(Fn+1(x0, y0), x)

≤ a dX(x, F (Fn(x0, y0), Gn(y0, x0))) + b dX(Fn(x0, y0), F (x, y))

+ c dX(x, Fn(x0, y0)) + dX(Fn+1(x0, y0), x)

= a dX(x, Fn+1(x0, y0)) + b dX(Fn(x0, y0), F (x, y))

+ c dX(x, Fn(x0, y0)) + dX(Fn+1(x0, y0), x)
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ie, dX(F (x, y), x) ≤ b dX(x, F (x, y)) as n→∞, which implies that dX(F (x, y), x) = 0.
Therefore F (x, y) = x.
Also by using (20) and limn→∞Gn(y0, x0) = y we can show that y = G(y, x).

Taking X = Y and F = G in the above corollary we get the corresponding coupled
fixed point result.

Corollary 2.4. Let (X, d,≤) be a partially ordered complete metric spaces and
F : X × Y → X be a mapping having the mixed monotone property. Assume that
X satisfy the following property

(i) If a non-decreasing sequence {xn} → x then xn ≤ x ∀n.

(ii) If a non-increasing sequence {yn} → y then y ≤ yn ∀n.

Also assume that there exist non-negative a, b, c such that 2a + c < 1 and 2b + c < 1
satisfying

d(F (x, y), F (u, v)) ≤ a d(x, F (u, v)) + b d(u, F (x, y)) + c d(x, u);∀x ≥ u, y ≤ v.

If there exist (x0, y0) ∈ X×Y satisfying x0 ≤ F (x0, y0) and y0 ≥ F (y0, x0) then there
exist (x, y) ∈ X × Y such that x = F (x, y) and y = F (y, x).

Remark 2.4. If we take c = 0 in Theorems 2.7 and 2.8, we get Theorems 2.9 and
2.10 respectively of [10].
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