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ABSTRACT: The current article concerns an existence criteria of so-
lutions of nonlinear fractional differential inclusions in the sense of the
hybrid Caputo-proportional fractional derivatives in Banach space. The
investigation of the main result relies on the set-valued issue of Ménch
fixed point theorem incorporated with the Kuratowski measure of non-
compactness.

AMS Subject Classification: 34A08, 34A12, 34A08, 34A12, 34A37, 34G20.
Keywords and Phrases: Hybrid Caputo-proportional fractional derivatives; Measure
of non-compactness; Monch fixed point theorem.

1. Introduction

It is recently seen that there is a wide-spread of fractional differential systems because
of their great relevance to reality and their dignified influence in describing several
real-world problems in physics, mechanics and engineering. For intance, we refer the
reader to the monographs of Baleanu et al.[7], Hilfer [21], Kilbas et al. [24], Mainardi
[26], Miller and Ross [27], Podlubny [30], Samko et al. [32] and the papers [17, 33].

Due to the importance of fractional differential inclusions in mathematical model-
ing of problems in game theory, stability, optimal control, and so on. For this reason,
many contributions have been investigated by some researchers [1, 4, 11, 12, 13, 18, 29].

COPYRIGHT (C) by Publishing House of Rzeszéw University of Technology
P.O. Box 85, 35-959 Rzeszéw, Poland
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On the other hand, the theory of measure of non-compactness is an essential tool
in investigating the existence of solutions for nonlinear integral and differential equa-
tions, see, for example, the recent papers [5, 10, 15, 19, 31] and the references existing
therein.

In [14], Benchohra et al. studied the existence of solutions for the fractional
differential inclusions with boundary conditions

CDry(t) € G(t,y(t)), ae on[0,T], 1<r<2,
y(0) =vo, y(T)=yr,

where ©D" is the Caputo fractional derivative, G : [0, 7] x E — B(E) is a multi-valued
map, yo,yr € E and (E, |- |) is a Banach space.

Motivated by the above work, in this paper, we will extend the Caputo fractional
derivative with a broader and more general one, which can be written as a Riemann-
Liouville integral of a proportional derivative, or in some important special cases as
a linear combination of a Riemann-Liouville integral and a Caputo derivative. To
be more precise we will study the existence of solutions for the following nonlin-
ear fractional differential inclusions with the hybrid Caputo-proportional fractional
derivatives

{ PEDag(t) € F (¢ (), ae onJ:=[0b], 0<a<l,

2(0) = 70, (1.1)

where ¥ ng‘ denotes the hybrid proportional-Caputo fractional derivative of order
a, (E,|-|) is a Banach space, B(E) is the family of all nonempty subsets of E, z¢ € E
and F : J x E — P(E) is a given multi-valued map. We study the inclusion problem
(1.1) in the case where the right hand side is convex-valued by means of the set-valued
issue of Moénch fixed point theorem incorporated with the Kuratowski measure of non-
compactness.

It is worth noting that the relevant results of fractional differential inclusions
with the hybrid Caputo-proportional fractional derivatives are scarce. So the main
goal of the present work is to contribute to the development of this area. Further,
the topic of research has attracted lots of interests as a powerful tool for modeling
scientific phenomena. Therefore, we refer the reader to some recent results which can
be helpful for more related extensions or generalizations of the results in this paper
in the future research works, see [22, 23, 28].

2. Preliminaries

First, we recall from [6] the following definition of the proportional (conformable)
derivative of order a:

§D%g(t) = ki(a, t)g(t) + ko(a, t)g'(t),
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where ¢ is differentiable function and kg, k1 : [0,1] x R — [0,00) are continuous
functions of the variable ¢ and the parameter o € [0,1] which satisfy the following
conditions for all t € R:

lim ko(a,t) =0, lim ko(a,t) =1, ko(a,t) #0, a € (0,1], (2.1)
a—07t a—1—
lim ky(a,t) =1, lim ki(a,t) =0, ki(o,t) #0, a€[0,1). (2.2)
a—07t a—1—

Next, we explore the new definitions of the generalized hybrid proportional-Caputo
fractional derivative.

Definition 2.1. [8] The hybrid Caputo-proportional fractional derivative of order
a € (0,1) of a differentiable function g(t) is given by

1 i o

PEDRg(t) = 7/ (k1(a, m)g(t) + kola, 7)g'(t)) (t = 7)7% dr,  (2.3)
'l—a) /o

where the function space domain is given by requiring that ¢ is differentiable and

both g and ¢’ are locally L' functions on the positive reals.

Definition 2.2. [8] The inverse operator of the hybrid Caputo-proportional fractional
derivative of order is given by

PEIRg(t) = /0 exp (— L t Z;Ezz;ds> Riﬁijg(“) du, (2.4)

where ELD1=2 denotes the Riemann-Liouville fractional derivative of order 1 — «
and is given by

1 d

"D g() = e | (09 ale) s (25)

For more details, we refer the reader to the book of Kilbas et al. [24].

Proposition 2.3. [8] The following inversion relations:

PCryoa PCqa _ _ " 3 RL7o
D8 TGI00) = o(0) — oy i “TRa0) (2.6)
"k (a, s)
PCra PCopHa _ _ _ 1 ’
oL ToDrg(t) =g(t) exp( /O ko(a,s)d8> 9(0) (2.7)

are satisfied.

Proposition 2.4. [8] The hybrid Caputo-proportional fractional derivative operator
PEDS is non-local and singular.
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Remark 2.5. [8] In the limiting cases o — 0 and o — 1, we recover the following
special cases:

t
i T§Dpg0) = [ o) ar
lm  TEDYg(t) = g(t).

Denote by C(J, E) the Banach space of all continuous functions from J to E with
the norm ||z|| = sup,cy |z(t)]. By L'(J,E), we indicate the space of Bochner inte-

grable functions from J to E with the norm ||z||; = fob |z(t)] dt.

2.1. Multi-valued maps analysis

Let the Banach space be (E,|-|). The expressions we have used are P(E) = {Z €
BE) : Z # 0}, Pa(E) = {Z € B(E) : Z is closed}, Poa(E) = {Z € P(E) :
Z is bounded}, Pep(E) = {Z € P(E) : Z is compact}, Pevx(E) = {Z € P(E) :

Z is convex}.

e A multi-valued map i : E — PB(E) is convex (closed) valued, if 4(z) is convex
(closed) for all z € E.

e il is bounded on bounded sets if $(B) = Uzepi(x) is bounded in E for any
B € Poa(E), L.e. sup,ep{sup{llyll : y € Uz)}} < oo

$1is called upper semi-continuous on E if for each z* € E, the set $(x*) is nonempty,
closed subset of E, and if for each open set NV of E containing $((z*), there exists
an open neighborhood N* of z* such that L(N*) C N.

e il is completely continuous if ${(B) is relatively compact for each B € Ppa(E).

If 40 is a multi-valued map that is completely continuous with nonempty compact
values, then & is u.s.c. if and only if 4 has a closed graph (that is, if x,, —
20, Yn — Yo, and yp, € U(zy), then yo € U(zo).

For more details about multi-valued maps, we refer to the book of Deimling [16].

Definition 2.6. A multi-valued map F : J x E — P(E) is said to be Carathéodory
if

(i) t+— F(t, ) is measurable for each u € E;
(ii) =~ F(t,z) is upper semi-continuous for almost all ¢ € J.

We define the set of the selections of a multi-valued map F' by

Sk ={f € LY(J,E): f(t) € F(t,x(t)) for a.e. t € J}.
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Lemma 2.7. [25] Let J be a compact real interval and E be a Banach space. Let
F be a multi-valued map satisfying the Carathéodory conditions with the set of L'-
selections Sg,., nonempty, and let © : LY(J,E) — C(J,E) be a linear continuous
mapping. Then the operator

©0Sp, : C(J,E) = Pbd,clevx(CJE)), z— (00Sr,)(x):=0(Sry)
is a closed graph operator in C(J,E) x C(J, E).

2.2. Measure of non-compactness

We specify this part of the paper to explore some important details of the Kuratowski
measure of non-compactness.

Definition 2.8. [9] Let Ag be the family of bounded subsets of a Banach space E.
We define the Kuratowski measure of non-compactness x : Ag — [0,00] of B € Ag as

k(B)=inf{e >0:B C U B; and diam(B;) < €}.

j=1

Lemma 2.9. [9] Let C,D C E be bounded, the Kuratowski measure of non-
compactness possesses the next characteristics:

i. k(C)=0< C is relatively compact;

ii. CcCD = k(C) < k(D)

iii. k(C) = k(C), where C is the closure of C;

iv. k(C) = k(conv(C)), where conv(C) is the convex hull of C;

v. k(C+D)<k(C)+k(D), where C+D ={u+v:ueC, veD};

vi. k(vC) = |v|k(C), for any v € R.

Theorem 2.10. (Mdnch’s fized point theorem) Let Q be a closed and convex subset of

a Banach space E; U a relatively open subset of Q, and N : U — P(Q). Assume that

graph N is closed, N' maps compact sets into relatively compact sets and for some

xo € U, the following two conditions are satisfied:

(i) G c U, G C conv(zg UN(G)), G = C implies G is compact, where C is a
countable subset of G;

(i) = &€ (1 — pwxo + pN(z) YuelU\U, pe(0,1).

Then there exists x € U with x € N(z).

Theorem 2.11. [20] Let E be a Banach space and C C L'(J,E) countable with

lu(t)] < h(t) for a.e. t € J , and every u € C; where h € L*(J,Ry). Then the
function z(t) = k(C(t)) belongs to L*(J,R) and satisfies

b

b
H({/O u(T)dT:uEC’}) §2/0 k(C(7)) dT.
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3. Main results

We start this section with the definition of a solution of the inclusion problem (1.1).

Definition 3.1. A function z € C(J,E) is said to be a solution of the inclusion
problem (1.1) if there exist a function f € L'(J,E) with f(t) € F(t,z(t)) for a.e.
t € J, such that P§Dex(t) = f(t) on J, and the condition z(0) = z is satisfied.

Lemma 3.2. For 0 < a <1 and h € C(J,R) the solution x of the linear hybrid
Caputo-proportional fractional differential equation

PC g —
{x(o())l:)txo(t) ht), ted, 51)

s giwen by the following integral equation

t
k1 (o, )
t) = d
x(t) = exp< /0 Fo(.s) s)xo
t a—2
ki (o, s) (u—1)
d h(tT)drd teld.
T(a—1) / / P ( w Kola,s) S> ko(av,u) (7) dr du,

Proof. Applying the operator F'“If(-) on both sides of (3.1), we get

§ I O DR (t) = 5 ITh(L).
Using (2.4) and (2.5) together with Proposition 2.3, we get

-en(- [ H30) 0 (- 30) A
_ ﬁ /0 exp (— /u Z;Egg%) - (;u)i /0 (=) h(r)drdu  (3.3)

Using the following Leibniz’s rule:

az(u) az(u)
i iy VT ‘“:/m(u) () dr -+ w(a,a2(0))a 1) = (o, a1 (1)) 1),

where w(u,7) = (u—7)2 1 h(7), a1(u) = 0, and az(u) = u, we obtain that
4 4= ) dr = (a— 1) / (= 7)°=2h(r) dr. (3.4)
du Jg 0

Therefore, the substitution from (3.4) in (3.3), we get
¢
k1(a, s)
z(t) = exp ( /0 Fo (. s) ds) Zo
t a—2
ki1(a, s) (u—7)
d h(7) dr du.
T(a—1) / / P ( w Kko(a, s) 8) ko(cv, w) (r) dr du

This completes the proof. O
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Remark 3.3. The result of Lemma 3.2 is true not only for real valued functions
z € C(J,R) but also for a Banach space functions z € C(J, E).

Lemma 3.4. Assume that F : J x E — P(E) satisfies Carathéodory conditions, i.e.,
t — F(t,x) is measurable for every x € E and x — F(t,x) is continuous for every
te€J. A function x € C(J,E) is a solution of the inclusion problem (1.1) if and only
if it satisfies the integral equation

comen [ )

e ] oo (- Ree) S e s

where f € LY(J,E) with f(t) € F(t,x(t)) for a.e. t €J.

Now, we are ready to present the main result of the current paper.

Theorem 3.5. Let 0 > 0, K={z € E: ||z < ¢}, U ={z € C(J,E) : ||z| < o},
and suppose that:

(H1) The multi-valued map F : J X E = Pop ovx (E) is Carathéodory,
(H2) For each o > 0, there exists a function ¢ € L*(J,R) such that
IE@ )l = {If]: f(t) € F(t,2)} < @),

for a.e. t €J and x € E with |z| < o, and

Jy lt)dt
0

lim inf =/ < 0.
Q_)OO

(H3) There is a Carathéodory function ¥ : J x [0,20] — Ry such that
K (F(t,G)) < 9(t K(Q)),

a.e. t € J and each G C K, and the unique solution 8 € C(J,[0,20]) of the
inequality

o(t) < 2{F(al_1) /(Jt/}xp (—/: 283 ds> (1;0—(;7)2)219(7,5(@(7))) deu},

teld,

is 0 =0.
Then the inclusion problem (1.1) possesses at least one solution, provided that

F(a)Mko

l< b ,

(3.6)

where My, = infiey |ko(a, t)| # 0.
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Proof. Define the multi-valued map N : C(J,E) — PB(C(J,E)) by
feCJ,E):
Wa)(t) = { f(t) = exp( Jy e ds) g
t ky(ovs) (u=7)* 2
+ F(ail) fo fo exp (—fu ko(z’z) ds) “ko(a’u) w(r)dr du, w € Sp.
(3.7)
In accordance with Lemma 3.4, the fixed points of A/ are solutions to the inclusion

problem (1.1). We shall show in five steps that the multi-valued operator N satis-
fies all assumptions of Ménch’s fixed point theorem (Theorem 2.10) with &/ = C(J, K).

Step 1. N (z) is convex, for any z € C(J,K).

For fi, fo € N(x), there exist wy, ws € S, such that for each t € J, we have

fi(t)—exp< [ B 1)
a—l // exp< t:;gzz;dcs’) (12()_(;’);)_2w¢(7)d7du,i:1,2.

Let 0 < p < 1. Then, for t € J,

(fr+ (1 = p) f2)(t) = exp <—/0 :;EZ:;; ds) To

+ﬁ /Ot /Ou oxXp (_ /ut Z;EZ:Z; ds) (120_(;7);)_2 (w1 + (1 = p)wz)(7) dr du.

Since Sp, is convex (because F has convex values), then pfi + (1 — p)fo € N(z).

Step 2. N(G) is relatively compact for each compact G € U.

Let G € U be a compact set and let {f,} be any sequence of elements of N'(G).
We show that {f,} has a convergent subsequence by using the Arzela-Ascoli criterion
of non-compactness in C'(J, K). Since f,, € N(G), there exist z,, € G and w,, € Sp,,,
such that

t
k1(a, s)
n(t) = d
fa(t) = eXP( /O Fo(as) &) @0
t oa—2
k1 (o, s) (u—1)
d n(7) dT du,
T(a—1) / / exp( / ko(a, s) s ko(a,u) Wn(T) dr du
for n > 1. In view of Theorem 2.11 and the properties of the Kuratowski measure of
non-compactness, we have

K({a(O)) < { L ({exp(/t:;gzzzids)(:;(;)’szn(r):nZl})dfdu}.

(3.8)
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On the other hand, since G is compact, the set {w,(7) : n > 1} is compact. Con-
sequently, kK ({wn(7) : n > 1}) = 0 for a.e. 7 € J. Therefore, x ({f(t)}) = 0 which
implies that {f,(¢) : n > 1} is relatively compact in K for each ¢ € J. Furthermore,
For each t1,t5 € J, t; < to, one obtain that:

|fn(t2) - fn(t1)|

2 k(o 8) "k (ay8)
< exp(—  Folars) ds)xo—exp<— | Folars) ds)xo
L el (s N (s N[
*ram | leXp< ; ko<a,s>ds) p( o Fofas)" )1 oo D
L uex [ i) s (U_T)aﬁw 7)dr du
= p( / k0<a78>d> ol AT

By applying the mean value theorem to the function exp (— g z;gzz% ds) on (t1,1ts),

we obtain that

7t2 k1o, s) ) ox 7t1 ki(a, s) Al
ool e oo )|

€
k@8 ( fhas) ),
ko(a,g)exp<b/k0(a,3)d>(t2 tl)
kl(a,f)
kO(avg)

(ta —t1), V&€ (t1,t2).

Therefore, we get

|fn(t2) = fult1)] < Z;EZ’E; ‘ |zo|(t2 —t1)

! 1) - N uu—7a72w )| d7 du

o~ 1)y | kol €) |2 tl)/o /0 (= 7)* " wn(7)| dr d
1 " h a—2

+F(a1)]wko/tl /O(U—T) |wy, (7)] d7 du

]{?1(0(, )

= ko(a,ﬁ)‘|x0|(t2 —h)
1 k1(a7§) B t2 uu_T"_z N i du

o =00, Fo(a, ) |2 t1)/0 /0 (u—7)""p(r)drd

1 to u _
+7F(a )My, /t1 /0 (u—7)"“p(7) dr du.
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As t; — to, the right hand side of the above inequality tends to zero. Thus,
{wy(7) : n > 1} is equicontinuous. Hence, {w,(7) : n > 1} is relatively compact
in C(J,K).

Step 3. The graph of A is closed.

Let Ty, — T, fn € N(xy), and f,, — fi. It must be to show that f. € N(x.).
Now, f, € N(z,) means that there exists w,, € S, such that, for each t € J,

t
ki(a,s) )
n(t) = ex ds | x
ult) p< e as) ag
t -2
k1 (a, s) (w—T1)"
Ta—1) / / exp ( / Fo(.s) ds Fo(@. 1) wp(7) d7 du.
Consider the continuous linear operator © : L'(J, E) — C(J, E),

o)1) i fult) = exp( / B0 i)

ko(a, s)

t a—2
k1 (a, s) (u—7)
d dr du.
T(a—1) / / xp < / ko(a, s) S) ko(ov, w) wn(r) dr du
It is obvious that || f, — f«|| = 0 as n — oo. Therefore, in the light of Lemma 2.7, we

infer that © o Sg is a closed graph operator. Additionally, f,,(t) € O(SF, ). Since,
Tn — X4, Lemma 2.7 gives

fu(t) = exp ( / t i) ds) ”

i e (- e i) Y i) e,

for some w € Sp 4.

Step 4. G is relatively compact in C(J, K).

Assume that G C U, G C conv ({0} UN(G)), and G = C for some countable set
C C G. Using a similar approach as in Step 2, one can obtain that N'(G) is equicon-
tinuous. In accordance to G C conv ({0} UN(G)), it follows that G is equicontinuous.
In addition, since C' C G C conv ({0} UN(G)) and C is countable, then we can find
a countable set P = {f, : n > 1} € N(G) with C' C conv ({0} UP). Thus, there
exist x,, € G and w,, € S, such that

fnm_exp( e,

0 kO 04,8)

rramn e ([ i) Sy e e
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In the light of Theorem 2.11 and the fact that G C C C conw ({0} UP), we get

K(G(1) <k (C(1) < k(P) =K ({falt) :n > 1}).

By virtue of (3.8) and the fact that w,(7) € G(7), we get

ko(a,u)

o [ [ ([ )

ds> (=) Gy dr du}

(u—T)22
d$> ol 0) I (1, k (G(1))) dr du}.

Also, the function 6 given by 0(t) = x (G(t)) belongs to C(J,[0,2¢]). Consequently
by (H3), § =0, that is x (G(t)) =0 for all t € J.

Now, by the Arzela-Ascoli theorem, G is relatively compact in C'(J, K).

Step 5. Let f € N(z) with 2 € U. Since x(7) < g and (H2), we have N'() C U,
because if it is not true, there exists a function z € U but |N(z)|| > ¢ and

F(t) = exp ( RACH) ds) 0

o ko(a,s)
t a—2
kl(avs) (’LL — T)
d drd
Oé - 1 / / exp( / kO(Oé,S) S) ko(a,u) U)(T) T du,
for some w € Sg. On the other hand we have
ka(a, s)
0 <IN (@) ||<]exp - [ e as)m)
0 s)
K a—2
k1o, s) (u—7)
P ( /u ko(a, s) ds) ‘ ko (a, w))| |w(T)| dT du
t pru
< |zo T 1\@0/ / (u — 7)2 Jw(7)| dr du

oc 2
= ol + o [ 0 )l duar

= |zo| + F(Oé)]\/fko/o (t — 1) w(r)|dr

a—l
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¢ t
<|x —&—7/ 7)dTr
ol (o) My, Jo #(7)

b b
< —_ .
— ‘JZO' + F(OZ)MkO /0 QO(T) dr

Dividing both sides by ¢ and taking the lower limit as ¢ — oo, we infer that

Wﬁ > 1 which contradicts (3.6). Hence N'(U) C U.

As a consequence of Steps 1-5 together with Theorem 2.10, we infer that A/ pos-
sesses a fixed point « € C'(J, K) which is a solution of the inclusion problem (1.1). O

4. Example
Consider the fractional differential inclusion

{Pﬁﬁﬂ@eF@wm% a.e. on [0,1], 1)

(O) = 07

where a = %, b=1,20=0,and F : [0,1] x R — PB(R) is a multi-valued map given by

x> F(t,z) = (el +sint,3 + 2 + 563 ).
1+ 22
For f € F, one has

Ed
14 22

| f| = max (e|w+sint,3+ +5t3> <9, zeR

Thus

1E(E @)l = {If] = f € F(t,2)}

= max (elx +sint, 3 + 2]

1422

+ 5t3> <9=(1),

for t € [0,1], « € R. Obviously, F' is compact and convex valued, and it is upper
semi-continuous.

Furthermore, for (¢,z) € [0,1]x € R with |z| < g, one has

lim inf
0—00

1
t)dt
heWdt__,
1%

Therefore, for a suitable My, , the condition (3.6) implies that

'(1/2) My,

b :Mk0ﬁ>0.
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Finally, we assume that there exists a Caratheodory function 9 : [0,1] x [0,2¢] — R
such that
k& (F(t,G)) < O(t k(G)),

ae. t € [0,1] and each G C K = {z € R : |z| < p}, and the unique solution
0 € C([0,1],[0,20]) of the inequality

O(t)SZ{F(O}_l)/Ot/OueXp (-/ut :;Ezgds) (ZO_(;);;Q@ (1.5 (G(T)))drdu}, ted,

is8=0.

Hence all the assumptions of Theorem 3.5 hold true and we infer that the inclusion
problem (4.1) possesses at least one solution on [0, 1].

5. Conclusions

In this paper, we extend the investigation of fractional differential inclusions to the
case of hybrid Caputo-proportional fractional derivatives in Banach space. Based on
the set-valued version of Monch fixed point theorem together with the Kuratowski
measure of non-compactness, the existence theorem of the solutions for the proposed
inclusion problem is founded. An clarified example is suggested to understand the
theoretical finding. Furthermore, the obtained results in this paper can be employed
in future work in the sense of the generalized fractional derivative (GFD) definition
which was recently proposed in [2, 3]. This new definition overcomes some issues
associated with some conformable derivative and some other fractional derivatives.
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A Contribution on Real and Complex
Convexity in Several Complex Variables

Jamel Abidi

ABSTRACT: Let f,g : C* — C be holomorphic functions. Define
u(z,w) = Jw — F(2)[E+ o — g(2)[*, v(zw) = fw — F(2)2 + [w — g(=)2,
for (z,w) € C™ x C. A comparison between the convexity of u and v is
obtained under suitable conditions.

Now consider four holomorphic functions ¢1,ps : C™ — C and g1, 9> :
C™ — C. We prove that F' = |p1 — g1]® + |2 — g2|? is strictly convex on
C" x C™ if and only if n = m =1 and 1, @2, g1, g2 are affine functions
with (¢1g5 — ¥591) # 0.

Finally, it is shown that the product of four absolute values of plurihar-
monic functions is plurisubharmonic if and only if the functions satisfy
special conditions as well.

AMS Subject Classification: 32A10, 32A60, 32F32, 32005, 32W50.
Keywords and Phrases: Holomorphic, convex, plurisubharmonic functions; Inequali-
ties; Srictly; Maximum principle.

1. Introduction

Convex functions recently are studied in complex analysis because they appear in the
theory of holomorphic functions, plurisubharmonic (psh) functions, currents, Lelong
numbers, extension problems, holomorphic representation theory (see [2], [5], [6], [7],
[8], [10], [11], [13], [14], [15], [16], [17] and [19]).

It is worth mentioning that an interesting relation between convex and plurisubhar-
monic functions has been obtained in [2].

Several papers appeared recently to this topic, let us mention [2], [3], [5], [6], [15], [19]
and the monographs [11], [14], [19] and more recently [5].

COPYRIGHT (C) by Publishing House of Rzeszéw University of Technology
P.O. Box 85, 35-959 Rzeszéw, Poland
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Let n > 1. We can construct a C'°° strictly psh function F' defined on C™ x C,
such that F is not convex (and not concave) on each Euclidean not empty open ball
subset in C™ x C. For instance,

F(z,w) = |w— e * + ... 4+ |w—e* |2, for z = (21, ..., 2,) € C", w € C.

Moreover, for the case of one complex variable, let \(z) = 222 — 2, z = (z +1y) € C,
x = Re(z). Then A is a C* strictly sh function on C, while A is not convex (respec-
tively not concave) at each point of C.
This proves that the new class of functions, consisting of convex and strictly psh func-
tions, is well defined because we can not compare the two families (convex functions)
and (convex and strictly psh functions).
Now thanks to [2], we know the holomorphic representation of each holomorphic
function f : C™ — C under the suitable condition of the convexity of its modulus.
Let ¢ € [1, +o0]. We have the following observation.
Put K (z,w) = |w— f(2)|° and H(z,w) = |w— f(2)|, for (z,w) € C?, where f : C — C
is holomorphic. Assume that K is convex on C? and § > 1. Then H is convex on
C? and we have H® is convex on C2, for each s € [1,+oo[ independently of § and
conversely.
Now let fi,fs : C — C be two holomorphic functions and s € N\{0}. Define
Kos(z,w) = |w — f1(2)]?* + |w — f2(2)|?, for (z,w) € C2. By theorem 10, we have
that Ky is convex on C? implies that K is convex on C2. But the converse is not
true. For instance, let fi(2) = 2%, fo(2) = —2*, 2z € C. Then K is convex on C2. But
K4 is not convex on C2. This remark leads to the following problem.
Let N € N\{0,1} and F7, ..., Fy : C* — C be holomorphic functions. Define

Ys(z,w) = |w— Fy(2)]° + ... +|w — Fn(2)]°, for (z,w) € C" x C.

Suppose that s is convex on C” x C.

Firstly, for the study of the convexity of 15, we observe that we study separately

the following two cases.

Case 1. d € [1, +oo[\{2}.

Case 2. 6 = 2.

Is it true that 6 € [1,+oo[\{2}, implies that F}, ..., Fiy are affine functions?

Recall that for § = 2, there exists several cases where 15 is convex on C" x C, but
Fy, ..., Fy are not affine functions.

Moreover, for N = 2, by a limiting argument and a specific holomorphic differential
equation, we prove that v is convex on C" x C if and only if F} and F» are affine
functions. Indeed, ¥ is convex on C™ x C if and only if F} and F5 are affine functions,
for k& € N\{0, 1}.

The paper is organized as follows. In section 2, we shall use an elementary holo-
morphic differential equation in the proofs of the following two technical questions.
Let Ay, Ay € C and n,m € N\{0}. Characterize exactly all the 3 holomorphic func-
tions ¢ : C™ — C and g1, g2 : C"* — C such that u is convex (respectively convex and
strictly plurisubharmonic) on C™ x C™, where

u(z,w) = |Arp(w) — g1(2)|* + [A2pp(w) — g2(2)[?, for (z,w) € C" x C™.
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In this case find the expressions of ¢, g; and ga.
Moreover, find all the three holomorphic functions ¢ : C"™ — C and fy, fo : C* - C
such that v is convex and strictly psh on C" x C™, where

v(z,w) = [Arp(w) = fi(2)? + [Azp(w) = f2(2)?, (2,w) € C" x C™.

We prove that we have a great differences between the 2 classes of functions defined
similar as v and v.

Now let ki,ks : G — C! be two holomorphic functions. Then the functions
| k1 + ke ||? and (|| k1 + A ||? + || k2 + 6 ||?) have the same hermitian Levi form on G,
where G is a domain of C*, \,§ € C! and s,t € N\{0}.

For the applications, we can see the proof of theorem 4, corollary 1, theorem 5 and
others.

In section 3, we consider the following problems.

Problem 1. Let n,m > 1. Find all the 4 holomorphic functions ¢, ps : C™ — C and
g1, 92 : C* — C such that ) = |1 — g1]® + |2 — g2/|? is strictly convex on C" x C™.
Problem 2. Characterize all the holomorphic functions ¢1, ¢y : C™ — C and g1, 92 :
C™ — C such that v = |p1 — g1]* + |p2 — g2|? is convex and strictly psh (respectively
convex) on C" x C™.

Before stating it, we can study the analysis question. Find all the holomorphic
functions 1, @2, ¥1,1%2 : C™ — C and f1, f2,91,92 : C* — C, such that u; and
ug are convex and u = (uj + ug) is strictly psh on C* x C™. Where u;(z,w) =
1) — ()P + oo (w) — a(2) 2, ua(z,w) = [ (w) — g1 (=) + [s () — ga(2) 2,
for (z,w) € C" x C™.

In section 4, we use an algebraic method to mainly focus on properties of the
new structure (convex and strictly psh) and their relations with the holomorphic
representation theory.

In section 5 we study the product of several absolute values of pluriharmonic (prh)
functions and some auxiliary results are proved.

Let U be a domain of R, (d > 2). Put sh(U) the set of all subharmonic functions on U.
For f : U — C be a function, |f] is the modulus of f. For N > 1 and h = (hq, ..., hn),
where hy,....,hy : U = C, || h||= (|h]? + ... + |hn[?)2.

Let g : D — C be an analytic function, D is a domain of C. We denote g::f the
holomorphic derivative of g of order m, for all m € N\{0}.

If € = (&1,.,&) €C™ and z = (21, .., 2, € C" we write < 2/€ >= 21&1 + ... + 2,.&n
and B(&,r) = {C e C"/ || (=& ||< r} for r > 0, where \/< /&> =] £ | is th
Euclidean norm of &. The Lebesgue measure on C" is denoted by ma,, and C*¥(U) =
{p:U — C / pis a function of class C* on U}, k € NU {o0}\{0}.

Let D be a domain of C™, (n > 1). An usual psh(D) and prh(D) are respectively the
classes of plurisubharmonic and pluriharmonic functions on D. For all a € C, |a| is
the modulus of a, Re(a) is the real part of @ and D(a,r) = {2z € C / |z —a| < r} for
r > 0.

For the study of properties and extension problems of analytic and plurisubhar-
monic functions we cite the references [1], [6], [7], [8], [9], [10], [12], [13], [15], [16] and
[17]. For the study of convex functions in complex convex domains, we cite [5], [11],
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[14], [2] and [19].
For the theory of n— subharmonic functions we cite [18].

2. A family of analytic functions and the holomorphic
representation theory

We have

Lemma 1. Let g = (g91,..,98),f = (f1,- fn) : D — CVN be two holomorphic
functions, N > 1, D is a domain of C*, n > 1 and a,b € CN. Then

| f+g1*>and (|| f+al*+ || g+0b]|?*) have the same hermitian Levi form on D.
On the other hand, let w : D — R be a function of class C?. Define u; = (u+
| F+712), ua =t || f+a 2+ g+b ).

Then uy and uy are functions of class C? on D and we have the assertion.

The function uy is strictly psh on D if and only if us is strictly psh on D.

(Observe that if N < n, then || g ||* is not strictly psh at each point of D).

Proof. We have || f+7 ||?= |fi + 311> +... + |fx +an5 12 = |1l + g1l + ... + | fv]? +
N N

NP+ (g5t + G 5) =l g P+ 1 £ 1P+ _(9: 15 +T5.5)-

Jj=1 Jj=1

N
Since (g; f; +3;f;) is prh on D, then Z(gjfj +9;f;) is prh on D.
j=1
Consequently, || f+g[|? and (|| f +a |> + || g+ b ||*) have the same hermitian Levi
form on D.

By [4], we have

Theorem 1. Let ¢ : C™ — C be a holomorphic nonconstant function, m > 1. Given
Ay, Ay € C\{0} andn > 1.

The following conditions are equivalent

(I) There exists 2 holomorphic functions g1,g2 : C* — C such that u is convex on
" x ™, u(z,w) = [A1p(w) — g1(2)[ + [Asip(w) — ga(2)2, (2,w) € C* x C™

(II) There exists ¢ € C such that |p + c|? is convex on C™.

Now in all of this section, (A;,As) € C2 Let ¢ : C™ — C be a holomor-
phic nonconstant function, m > 1. Let ¢1,g2 : C* — C be 2 holomorphic func-
tions, n > 1. Define u(z,w) = |A1p(w) — g1(2)|* + |A2p(w) — g2(2)|?, ui(z,w) =
|A1p(w) — g1(2)]? + |Asp(w) — 2(2)|?, uz = u + uy, for (z,w) € C* x C™. v(z,w) =
[A1B(w) = g1(2) P+ A2B(w) = g2(2)[?, v1 (2, w) = | A1 B(w) = g1 (2)]* +]A28(w) — G2 (2)
and ve = v 4 v1, (2,w) € C* x C™. We have

Theorem 2. Assume that (A, Az) € C2\{0}. The following conditions are equivalent
(I) w is conver on C™ x C™;

(II) ¢ is an affine function on C™, or ¢ is not affine and there exists ¢ € C such that

|o + c|? is convez on C™ and we have the following cases.
Case 1. The function ¢ is affine on C™.
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Then we have the representation

{ 91(2) = Ai(< z/M > +pn) + Az (2)
g2(2) = Aa(< 2/ A1 > +u1) — A1p1(2)
for each z € C", where A\ € C", py € C, o1 : C* — C is analytic, |p1]? is convex on
cn.
Case 2. ¢ is not affine on C™.
In this case there exists ¢ € C such that |¢ + ¢|? is convex on C™. Then we have the
representation

{ g1(2) = Arc+ Azp1(2)

g2(2) = Aac — A191(2)

for every z € C™, where oy : C* — C is analytic, |p1|? is convex on C".

We can discuss the cases (A1, A2 € C\{0}), or (4; € C\{0}, A2 = 0), or (41 =0,
A € C\{0}).

This theorem motivates the following questions. Find all the holomorphic represen-
tation of the analytic functions fi, fo, f3 : C* — C, such that ¥ is convex on C™ x C.
Y(z,w) = |Byw — f1(2)|? +|Baw — fa(2)|* + | Bsw — f3(2)|?, for (2,w) € C* x C, where
(Bl, Bs, B3) € (C3\{0}

Indeed, for instance, in harmonic analysis and convex analysis, actually the following
question appeared naturally.

Find all the representation of the harmonic functions Fy, Fs, F5 : C — C, such that ¢
is convex and strictly 2—sh on C2. Where 11 (2, w) = |w—Fy(2)|? +|w— Fa(2)|* + |w —
F3(2)|?, (2,w) € C2. (We study here functions on harmonic representation theory).
Define ¢ (2, w) = |w— F1(2) > + |w — Fy(2)|?, for (z,w) € C2. If we choose F} is affine
on C and 1) is convex and strictly 2— sh on C?, then we have a family of harmonic
functions which satisfy the above condition.

The proof of this theorem is obvious and analogous to the proof of the following.

Theorem 3. The following conditions are equivalent

(1) u is convex and strictly psh on C" x C™;

(II) (A1, Ay) € C?\{0}, n = m = 1, there exists c € C such that |p + c|? is conver on
C and we have the following cases.

Case 1. A1As #0. Then

{ 91(2) + Arc = Ay (az +b) + Ag9(2)
92(2) + Azc = Ag(az +b) — A19(2)

for each z € C, where a,b € C, ¢ : C — C is holomorphic, || is convex with |3)'| > 0
and |¢'| >0 on C.
Case 2. A1 #0 and Ay = 0.

If ¢ is affine and nonconstant on C. Then we have the representation

{ 91(2) = AL (A2 + p)
92(2) = —A1p2(2)
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for each z € C, where A € C\{0}, u € C, ¢2 : C — C is analytic, |p2|* is convex and
strictly subharmonic (sh) on C.
If ¢ is not affine on C. Then we have the representation

{ 91(z) = —Aic

92(2) = —A1p3(2)

for every z € C, where 3 : C — C is analytic, |p3|? is convex and strictly subharmonic
on C. In this situation we have p(w) = (@ +%) — ¢ for each w € C, with a € C\{0}
and b € C.

Case 3. Ay =0 and As # 0. (Obviously analogous to case 2).

Proof. (I) implies (II). We choose the following proof which have technical ap-
plications in the case when we study the convexity of the function F, F(z,w) =
|w — 1 (2)|2Y + Jw — o (2)[2N, N €N, N > 2, (2,w) € C" x C, 11,109 : C* — C be
two holomorphic functions. In this situation we prove that ¢y and 15 have analytic
representations using the holomorphic differential equation k”(k + ) = v(k’)?, where
k : C — C is a holomorphic function and A, € C.

If (A1, A2) = (0,0), then w is independent of w. Thus u is not strictly psh on C™ x C™.
A contradiction.

The case where A; # 0 and Ay = 0.

Since u(0, .) is strictly psh on C™. Then the function |A;¢ — g1(0)|? is strictly psh on

C™. Thus by lemma 1, m = 1. Since u(.,0) is convex on C, then | — ‘”A—(IWP is convex

and strictly sh on C. Put ¢ = 7%(10). Now |¢ + ¢|? is convex and strictly sh on C,
therefore, by Abidi [2], we have

p(w) = aw + b, for all w € C, where a € C\{0} and b € C, or

p(w) = el@w+b) ¢ for all w € C, with a; € C\{0} and b, € C.

If p(w) = aw + b, Yw € C.

Then for each fixed wg € C, the function (., wp) is convex on C™.

Therefore,

0 0
_|Z T (2 + |Z P (2)ayl?,

for each z € C", wy € C and a = (g, ..., ) € C™.
Since the right hand side of the above inequality is independent of wg € C, it follows
that for every fixed z € C™,

n 82
Z 91 (2)ajoy =0, for all @ = (ay,...,ap) € C™.

Therefore g7 is affine on C”.
Put g1(z) = A1(< z/v > 49), for z € C", where v € C" and ¢ € C.
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Let T:C"xC—->C"xC, T(z,w) = (z,w+ 51141752) — %), for (z,w) € C™ x C.

Note that T is a C linear bijective transformation on C™ x C.

Since u is convex and strictly psh on C™ x C, then v is convex and strictly psh
on C" x C, where ¥(z,w) = uoT(z,w) = |Ai(aw + b — §)|* + |g2(2)|?, for every
(z,w) e C" x C.

But 1 is convex and strictly psh on C" x C, then |go
C™. Thus n = 1.

Put ga(2) = —Aypa(2), for z € C (2 is analytic on C). Thus |pa|? is convex and
strictly sh on C.

(IT) implies (I). Obvious.

Question. Let By, By € C\{0}. For fi,fs : C* — C, define ¥(z,w) = |Bjw —
f1(2)]2 + |Baw — f2(2)|?, (z,w) € C™ x C. Find all the pluriharmonic (respectively
n — harmonic) functions f1, fo : C* — C, such that 1 is convex (respectively convex
and strictly n — subharmonic) on C* x C.

|2 is convex and strictly psh on

Theorem 4. The following conditions are equivalent

(1) uy is convex and strictly psh on C™ x C™;

(I) m = 1, n € {1,2}, (A1, A2) € C*\{0}, there exists c € C such that | + c|? is
convezr on C and we have the following cases.

Case 1. For allw € C, p(w) = aw + b, where a € C\{0} and b € C.

We have the representation

{ 91(2) = A1 (< 2/M > +u1) + Asipr (2)
g2(2) = Aa(< 2/ M1 > +u1) — Arpa(2)

for each z € C", where A\ € C", py € C, @1 : C* — C is analytic, |p1|? is convex on
C™, such that

(n=1,A\ #£0), or

(n=1,A\ =0, aa‘le (z) £ 0, for each z € C), or

n =2, (A, (gfll (2), gf; (2))) is a basis of the complex vector space C2,

for each z = (21, z) € C2.

Case 2. For every w € C, p(w) = @+ — ¢ where a € C\{0} and b € C.

Then n =1 and we have the representation

{ q1(z) = —EE + Astp1(2)
gg(z) = —Asc— A1y (Z)

for each z € C, where 1y : C — C is analytic, [¢1|? is convex and strictly sh on C.

The proof follows from the above 3 theorems and lemma 1.
We have

Corollary 1. The following conditions are equivalent

(1) u is convex on C™ x C™ and us is strictly psh on C™ x C™;

(II) w is conver on C™ x C™ and w; is strictly psh on C™ x C™;

(IIT) (A1, Ay) € C2\{0}, m = 1, n € {1,2}, there exists c € C such that | + c|* is
convez and strictly sh on C and we have the following 2 cases.
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Case 1. For allw € C p(w) = aw + b, (a € C\{0},b € C).
Then we have the holomorphic representation

{ 91(2) = A (< 2/M > +) + Az (2)
92(2) = Az(< 2/ A1 > +p1) — A1 (2)

for each z € C", where A\ € C", py € C, o1 : C* — C is analytic, |p1]? is convezx on
C™, such that

(n=1,A#0), or (n=1,A\ =0, 85’;1 () # 0, for each z € C), or

(n=2and (A, (%11(2), gf; (2))) is a basis of the complex vector space C?,

for every z = (21, 22) € C?).

Case 2. For allw € C, p(w) = (T — ¢ where a € C\{0} and b € C.

Then n =1 and we have the holomorphic representation

{ g1(2) = *A16+§¢1(2’)
92(z) = —Asc — A1y (2)

for every z € C, where ¢y : C — C is analytic, |{1|? is convexr and strictly sh on C.

Proof. (I) implies (IIT). Note that u, u; and ug are functions of class C* on C"* x C™.
We have

ug is strictly psh on C™ x C™ if and only if u; is strictly psh on C* x C™.

Assume that (A, As) = (0,0). Then w; is independent of w € C™ and w4 is strictly
psh on C™ x C™. A contradiction.

Consequently, (A1, Ay) € C*\{0}.

Define uz(z,w) = (|A1]* + |A2*)[o(w)[* + 191 (2)|* + 1g2(2) [, (2,w) € C* x C™.
Then us is a function of class C*° on C™ x C™. But w; is strictly psh on C* x C™ if
and only if ugz is strictly psh on C"* x C™.

By lemma 1, we have m =1 and n < 2.

Now u(0, .) is convex on C and u3(0, .) is strictly sh on C. In fact (|A1¢ —g1(0)|* +
| A2 — g2(0)|?) is convex on C and ((|A1|* 4 |A42]?)|¢]? + |91 (0)|*> +]g2(0)|?) is strictly
sh on C. Then there exists ¢ € C such that | + ¢|? is convex on C and |p|? is strictly
sh on C. Which yields | + ¢|? is convex and strictly sh on C.

By Abidi [2], using the holomorphic differential equation k" (k +¢) = y(k')? (k: C —
C be a holomorphic function ,~, ¢ € C), we have

p(w) = aw + b, for all w € C, where a € C\{0} and b € C, or

p(w) = el@w+b) ¢ for all w € C, with a; € C\{0} and b, € C.

The rest of the proof is now obvious.

Theorem 5. The following conditions are equivalent

(1) v is convex and strictly psh on C™ x C™;

(II) m =1, n € {1,2}, (A1, A2) € C*\{0}, there exists c € C such that | + c|? is
convez and strictly sh on C and we have the following 2 cases.

Case 1. For allw € C, p(w) = aw + b, (a € C\{0},b € C).

Then we have the representation

{ 91(2) = A1(< 2/A > +p) + Az (2)
g2(2) = A2 (< 2/A > +p) — Arpi(2)
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for each z € C", where A\ € C", u € C, o1 : C"* — C is analytic, |p1]? is convex on
C™, such that
(n=1,A#0), or (n=1,A
(n=2,and (A (52(2), 32
for any z = (21, 20) € C?).
Case 2. For each w € C, p(w) = e+ — ¢ (a € C\{0} and b € C).
Then n =1 and we have the representation

{ gl(Z) = —EE-F Agwl(z)
gg(Z) = 7A26 — Aﬂ/}l (Z)

0, 85’;1 () # 0, for every z € C), or
)

(2))) is a basis of the complex vector space C2,

2

for every z € C, where ¢ : C — C is analytic, |[11|? is convexr and strictly sh on C.

Moreover, we can consider the function vy for a study. According to lemma 1, we
obtain several holomorphic representations of g; and g» from the assumptions v and
vy are convex on C"” x C™ and vg = (v + v1) is strictly psh on C” x C™.

3. Some study in the theory of convex and strictly
psh functions

3.1. The analysis of strictly convex functions

Put u(z,w) = |p1(w) —g1(2) > +|p2(w) —g2(2)[?, 1,2 : C™ — Cand g1,92 : C" = C
be four holomorphic functions, (z,w) € C"* x C™.

Recall that, for two holomorphic functions ¢ : C"™ — C and g : C* — C, if we denote
P(z,w) = |p(w) — g(2)|?, for (z,w) € C™ x C™. 4 is not strictly convex at each point
of C™ x C™ (this is the case of one absolute value of a holomorphic function). But,
if we consider the sum of two absolute values of holomorphic functions, there exists
several cases where 1, is strictly convex on C2. For example

P1(z,w) = |fr(w) — k1 (2)]* + [ f2(w) — ka(2)[?

for (z,w) € C? and fi(w) = w, fo(w) = 2w + 1, k1 (2) = 22, ka(2) = 0.

Before the two above technical remarks, we pose the following question.

Question. Characterize all the holomorphic functions @1, @2, g1, 92 such that w is
strictly convex on C™ x C™ (we prove that n = m = 1).

Remark 1. Let Fy(2) = 22, Fa(z) = =22, F3(2) = 2z, K1 (w) = K2(w) = K3(w) = w,
(z,w) € C2. F\, Fy, F3, Ky, Ko, K3 are holomorphic functions on C. Put u(z,w) =
|K1(w) — F1(2)]? + |K2(w) — Fa(2)|? + |K3(w) — F3(2)|?. Observe that u is strictly
convex on C2, but F} and F, are not affine functions.

We begin by

Lemma 2. Let f1,fs : CV — C be two holomorphic functions, N > 1. Put v =

|f11? + | f2]?. We have
If v is strictly psh on CV, then N < 2.
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Using the holomorphic differential equation k”(k + ¢) = v(k')?, for k : C — C be a
holomorphic function and (7, c) € C2, we have

Lemma 3. Let g1,92 : C* — C and w2 : C™ — C be three holomorphic functions
and a € C.

Put u(z,w) = |g1(2) — a|® + |p2(w) — g2(2)|?, for (z,w) € C* x C™.

Then w is strictly convex on C" x C™ if and only if n =m =1, g1 is affine noncon-
stant, go s affine and s is affine nonconstant on C.

Proof. Assume that w is strictly convex on C"” x C™. By lemma 2, it follows that

n=m = 1. We have
1

|05 (w) (B2 (w) — F2(2))| < lh(w)[?

for each w € C and for every fixed z € C.

Put 92(w) = |pa(w) — g2(2)|?, for w € C. By Abidi [2], for each fixed z € C, the
function v is strictly convex in C. Then 5 is affine nonconstant on C, (see [2], [3]).
Now we have the inequality

195 (2)(92(2) — P2(w)) + g1 (2)71(2)] < |91(2)|* + |92 (2)?
for each (z,w) € C2. Therefore the function F(w) = g (2)@2(w) is holomorphic and
bounded on C, for every fixed z € C. Therefore F' is constant on C, for each fixed
ze€C.
Since (9 is affine nonconstant, it follows that g5 = 0 on C. Then g- is affine on C.
Now write wo(w) = Agw + Ba, g2(2) = agz + by, Ay € C\{0}, Ba,as,by € C. Let
T(z,w) = (z,w+ F2z+ %22)
Thus 7 is an affine holomorphic transformation and bijective on C2. Then u; = uoT
is strictly convex on C? and uoT'(z,w) = |g1(2) — al® + |p2(w)|* = uy (2, w).
Consequently, g; is affine nonconstant on C.
The converse is obvious and the proof is complete.

Now let ¥1,9, f1, fo,k : C — C be holomorphic functions and v,c € C. Using the
holomorphic differential equation k”(k 4 ¢) = y(k")? and the two partial differential
equations ¥} (w) f](z) + ¥4 (w) f3(z) = 0, f{(2)¢](w) + f3(2)h(w) = 0 on C?, we
prove

Theorem 6. Let p1,p0 : C™ — C and g1,92 : C* — C be four holomorphic
functions. Put u(z,w) = |p1(w) — g1(2)|? + |p2(w) — g2(2)|?, (2,w) € C* x C™.

The following assertions are equivalent

(I) u is strictly convex on C™ x C™;

(II) n =m =1, g1, 92, ¢1,p2 are affine functions on C and satisfying the condition
(192 — g21) # 0.

Proof. We have n = m = 1, because u is strictly psh on C™ x C™. Since w is strictly
convex on C"™ x C™ then the function u(z,.) is strictly convex on C, for each z € C.
Therefore,

|0 (w) (@1 (w) — F1(2)) + 5 (W) (@2 (w) — F2(2))] < [ (w)[* + [ (w)[*
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for each w € C™ and for every fixed z € C". Thus, for every fixed w € C, the

holomorphic function on the variable z, defined by F(z) = (g1(2)¢} (w)+ g2(2) ¢} (w))
is bounded on C.

By Liouville theorem, F is constant on C. Thus (g} ()¢ (w) + g5(2)¢4(w)) = 0,
for every z,w € C.
We discuss the cases ¢} # 0 or ¢4 # 0 on C. (Also we have (¢} (w)g}(z) +
Ph(w)gl(2)) = 0 on C2).
Assume that ¢ # 0 and ¢} # 0. Therefore

" T

z

pa(w) g

—_—
—

Thus, ¢f(w) = Refy(w) and g(z) = —Rgj(z), for each z,w € C. It follows that
p1(w) = Rpz(w) + aw + b and g2(2) = —Rgi(2) + A, a,b, A € C.
The function F is strictly convex on C?, where

Fi(z,w) = |Rpa(w) + aw +b — g1(2)[* + [02(w) + Rg1 (2) = A%
This proves |g; + &;]? is strictly convex on C, where ¢; € C.

By the holomorphic differential equation &”(k + ¢) = v(k")?, (k : C — C be a holo-
morphic function and ¢,y € C), we have g7 is affine nonconstant on C. Therefore,
lg1 — p1|? + |[Rg1 — (A — p2)|? is strictly convex on C2.

By theorem 2, ¢; and 9 are affine functions. A contradiction.

Consequently, ¢ =0, or ¢4 =0 on C.

Assume that ¢} # 0 and ¢ = 0 on C. Therefore ¢}g; = 0 on C. Thus g} = 0 on C
and then g; is constant on C. We have |1 — g1(0)[? + |2 — ga|? is strictly convex
on C2. By lemma 3, we have ¢; and go are affine nonconstant, ¢, is affine on C.
Therefore ¢, is affine nonconstant on C. A contradiction.

Consequently, ¢ and @5 are affine functions on C.

Now since the function u(.,w) is strictly convex on C (for each fixed w € C), then
g1, 92,1 and s satisfy the partial differential equation g7'¢} + gi¢h = 0 in C2.
Using the last above partial differential equation, we prove that ¢g; and g, are affine
functions on C. Note that if ¢; and g; are constant functions, then |go — @2 |? is strictly
convex on C2. This is impossible.

Therefore, we have

(¢1 or g1 is non constant) and (¢2 or go is non constant).

Analogously,

(g1 or g2 is non constant) and (¢1 or s is non constant).

Since now w is strictly convex on C?, then

|01 (w)B = gi(2)al® + |¢h(w)B — gy(2)af* > 0

for each (z,w) € C? and (a, B) € C*\{0}. Therefore, (¢}¢h — gh}) # 0.
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3.2. The analysis of convex and strictly psh functions

Let 91,42, f1, f2,k : C — C be holomorphic functions and v,c € C. In the sequel,
using the holomorphic differential equation k”(k + ¢) = W(k; )? and the two partial
differential equations v (w) f{(2) + ¢35 (w) f3(2) = 0, f1'(2)d1 (w) + 3 (2)¥5(w) = 0 on

C?, we have

Theorem 7. Let g1,92 : C* — C and p1,02 : C™ — C be four holomorphic
functions. Put u(z,w) = |p1(w) — g1(2)|? + |p2(w) — g2(2)|?, for (z,w) € C* x C™.
The following conditions are equivalent

(1) u is convex and strictly psh on C"* x C™;

(I) n=m =1, pgi + sgh = 0 and g{'p} + g5 05 = 0 on C?,

(¢1 or s is nonconstant) and (g1 or g is nonconstant) and we have the following
cases.

Case 1. The functions 1 and ¢, satisfies ¢ # 0 and ¢§ # 0.

Assume that g7 # 0.

If ¢ =0, then g4 = 0 on C (therefore g; and g, are affine functions with g; or go
is non constant. In this case, by theorem 2 or theorem 3, we can find 7 and @9 by
their holomorphic expressions).

If gy # 0. Thus g4 # 0. Since u(z,.) is convex on C (for z fixed), then s = cpy + &o,
c,& € C.

u=lp1 = g1f* +lepr + & — g2|?, on C*.

Assume that g} # 0.

We have an analogous situation to the above case.

Case 2. The function ¢, is not affine and the function s is affine on C.

Then g; is constant on C, |p1 — ¢1(0)|* and |ga — 2(0)|? are convex functions and
|¥195] > 0 on C?, or

g2 is affine nonconstant and |gplgz\ > 0 on C?.

We can study also the case ¢} =0 and ¢j # 0.

Case 3. The functions 1 and 9 are affine on C.

The discussion is similar to cases 1, 2 and theorem 3.

Proof. (I) implies (II). By lemma 2, we have 2 < n+m < 2. Then n = m = 1. Since
w is convex and of class C? on C2, we have the inequality

0%u
|6’LU2 +72 ﬂ|

on C2. It follows that

|B|2+ |2+2Re( Pu @p)
= a ow 9z a* 9z0w

Y (B1—91)+¢5 (P2—72)) 8 +9! (G1—21)+ 95 (T2—92) || < |} B—gial*+]phB—ghal®

for each (o, 3) € C2. If « = 0 and § # 0, then

o} (@1 — 91) + 5 (@2 — 52)| < |0 ]> + b

on C%. Now let ¥(2) = g1(2)¢ (w) + g2(2) 25 (w) — @1 (w)¢ (w) — pa(w)es (w), for
2 € C, (wis fixed on C). 9 is holomorphic on C and ¥ (2)| < |} (w)|? + ¢4 (w)|?, for
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every z € C, (w fixed). Thus v is constant on C. Consequently, ¢’(z) = 0, for each
z € C. Therefore o o

91(2)¢7 (w) + g3(2)¢5 (w) = 0
for each z,w € C. o o
Now if a # 0 and 8 = 0. We obtain ¢} (w)gy(z) + @5(w)gy(z) = 0, for every (z,w) €
C2.
For the rest of the proof we use theorem 1, theorem2, theorem 3 and the proof of
theorem 7.

Remark 2. Using the above technical methods, the following three partial differen-
tial equations

k' (k4 c) = y(K)?,
(w) f1(2) + 5 (w) f5(2) = 0 on C?,
T ()W (w) + £ (2)dh(w) = 0 on C2,
where (1,2, f1, f2, k : C — C are holomorphic functions and ~, ¢ € C), we can solve
the analogous problem when u is convex on C" x C™ and u = |1 — g1|% + |¢2 — 92|%;

p1,02 : C" — C and g1,92 : C* — C are four holomorphic functions with the
conditions (¢1 or ¢ is nonconstant) and (g; or gs is nonconstant).

3.3. Essential properties in function theory

In the sequel, we give technical tools for the study of the following families of functions
consisting of: convex and not strictly psh functions on any not empty Euclidean open
ball subset of C™ x C; convex and strictly sh functions but not strictly psh on each
Euclidean open ball; convex and n— strictly sh functions but not strictly psh on every
open ball,... . We have

Theorem 8. Let u: D — R be a function of class C%, D is a domain of C*,n > 1.
The following conditions are equivalent

(I) u is not strictly psh on each not empty Euclidean open ball subset of D;

(II) w is not strictly psh at each point of D.

Example. Let v(z,w) = [w" — g1(2)]? + [wY — g2(2)|?>, n,N € N, n, N > 2, g1, 92 :
C™ — C be two holomorphic functions. v is convex and not strictly psh at each point
of C" x C, if for example g2(2) = —g1(2), for each z € C* and |g;|? is convex on C".
Remark 3. (R1). Let uy(z,w) = |w — 2|, ua(z,w) = |w — 22|, (2,w) € C%

w1 and ug are C* and not strictly psh functions at each point of C2. But u = (u1+uz)
is strictly psh on C2.

(R2). Put v(z) =| z |*, 2 = (21,...,2n) € C™ v is psh on C" and strictly psh on
C™\{0}. Therefore v is strictly psh almost everywhere on C™. But v is not strictly
psh on C™.

Example. Let u = (u1 + u2), v = (v1 + v2), where

ur(z,w) = |w = f1(2)]* + [w = f2(2)],
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° 2)%,

2)I%,

us(z,w) = |lw—g1(2)|° + |w — g2

v1(z,w) = [w — fi(2)]> + |w — fa
va(z,w) = [w —g1(2)[* + lw — g2(2)]?,
f1(2) = —fa(2) = (2 = 22), g1(2) = —ga(2) = (2 + 2?), for (z,w) € C°.

f1, f2, 91, g2 are holomorphic functions on C. We have u and v are strictly convex
functions on C2. But uq, ug, v1, vy are not convex functions on C2.
b ) b

Example. Let N € NN N > 2 and A € Ry, A > 2 such that v is convex on
C, Y(z) = Alz|? + |2V — 12, for z € C. Put u = (u; + ug), where u;(z,w) =
w = g1 ()] + [ — ga(2) 2, uz(z,w) = | — F7(2)? + | — 72(2) .

g1(2) = Az + (2N = 1), ga(2) = Az — (2N — 1), for (z,w) € C%

Note that g; and g2 are holomorphic functions on C. We have u; is not strictly psh
and not convex on C2. uy is strictly psh and not convex on C2. But v is convex and
strictly psh on C2.

We have

(
(

Proposition 1. Let g1,g92 : C — C be two holomorphic functions. Put u(z,w) =
w—g1(2)]* + o — 22|, 0(zw) = [w—Gr()|! + [w— g3 ()", for (z,w) € C2. We
have w is not strictly psh on C2, for each tuple of holomorphic functions g, and gs.
But there exists several cases where v is strictly psh on C2.

Proof. u and v are functions of class C>° on C2. The hermitian Levi form of u
is L(u)(z,w)(0, 8) = 4w — gu()218 — gh(z)af + 4w — ga(=) I8 — gh(=)al?, for
(z,w) € C?, (o, B) € C2,

Let 29 € C. Put wg = g1(20). Let 8 = g4(20), for a € C\{0}.

Then L(u)(z20, wo) (e, g5(z0)a) = 0 and « # 0.

The hermitian Levi form of v is

L)z, w)(e, B) = (219} (2) Pl —Fi(2)[? +21gb(2) 2hw — Ga(2)P) a2 + (2w —i(2) P +
2lw —32(2)|*)|B1% + 2|91 (2) (w — Gr(2))a — (@ — 91(2)) BI* +21g5(2) (w — T2 (2) ) — (W —
g2(2))B|?, for (z,w), (o, B) € C2. Now choose |g;| > 0, |gh| > 0 and |g1 —ga| > 0 on C.
Let (2,w) € C%. We discuss the following three cases (a # 0,8 = 0), (o = 0,3 # 0))
and (a # 0, 8 # 0), we obtain L(v)(z,w)(a, 8) > 0 if (o, B) € C*\{0}.

Then v is strictly psh on C2.

Let (2, w) = [ — 1 (2)|? + [ — ()] + [ — (),

(2,0) = [w— G5 (2) P+ [ — T3 (2) P+ [ — T (), for (2,) € C2, where . s, s -
C — C are three holomorphic functions. Recall that if v is strictly psh on C?, then
¢ is strictly psh on C2. But we have

Proposition 2. There exists three holomorphic functions g1,92,g93 : C = C such
that if we define u(z,w) = |w — g1(2)|[* + |w — g2(2)[* + |w — g3(2)|* and v(z,w) =
|w—g1(2)[* + |w —g2(2)|* + |w — g3(2)|*, for (z,w) € C2. We have u is convex on C?
and strictly psh on a neighborhood of (0,4). But v is not strictly psh at (0,1), while v
is conver on C2.

Example. Let g1(z) = z — 4, g2(2) = 2z — 4, g3(z) =32z — 4, 2 € C. g1, g2 and g3 are
holomorphic functions on C.
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20 = 0,wp = i. Put u(z,w) = |w — g1(2)|* + |w — g2(2)|* + |w — g3(2) |4,

v(z,w) = |w—gi(2)|[* + |w = G (2)[* + [w — Gz (2)|*, for (z,w) € C*.

Then v and v are functions of class C* and convex on C2.

Let ¢(z,w) = |w — g1(2)[4, (z,w) € C%. ¢ is a C°° function on C? and the hermitian
Levi form of ¢ is

L) (z,w) (o, B) = 4Jw = g1(2)’|B = g1 (2)af*, (@, B) € C*.

Denote by L(u)(z,w)(e, 3) the hermitian Levi form of u at (z,w) and («, 8). Then
L(u)(z0,wo)(c, B) = 16|8—|?>+16|3—2a|* +16|8 —3|?> = 0 implies that o = 8 = 0.
Thus L(u)(z0, wo)(a, B) > 0, for each (o, 3) € C?\{0}.

Let S = {(a,8) € C? / |a|* +|B|*> = 1}. Thus {(20,w)} x S = K is a compact on
C? x C2.

The function F, defined by

0%u 9 0%u 9 0%u _

F(zw)(a, 8) e

is continuous on C% x C2.

Since F' > 0 on K, then F' > 0 on B((z9,wp),r) x S, where > 0. Therefore v is
strictly psh on a neighborhood of (0,7) and convex on C2.

The hermitian Levi form of the C* function § on C? is

LO)(z,w)(e, B) = 2[g)(2)(w —Fi(2))a — (W — g1(2))B° + 2|91 (2) (@ — g1(2))|
+ 2lw—71(2)?I8%

for (z,w), (o, B) € C?, where 0(z,w) = |w — g1(2)|*.
Observe that we have wy — g1(20) = wo — g2(20) = wo — g3(20) = 0. Therefore
L(v)(z0,wp)(c, B) = 0, for each (a, 3) € C2.

We have the following technical remark.

Remark 4. Let fi,...,fy : C* — C be holomorphic functions, n, N,k € N\{0},

k> 2. Put
2k

u(z,w) = [w = fi(2)*F 4+ o = [ (2)]

v(z,w) = [w = fi(2)|* + o fw = v (2)PF,

ui(z,w) = Jw — fi(2)]* + o+ Jw — fn(2) %,

vi(z,w) = lw— fi(2)* + ..+ [w = fn(2)
¢ =(u+wv)and p1 = (ug + v1).

If w is strictly psh on C™ x C, we can not deduce that v is strictly psh on C™ x C.

If ¢ is strictly psh on C™ x C, we can not conclude that u (or v) is strictly psh on

C" x C.

But we have the technical properties.

(I) If w is strictly psh on C™ x C, then w; is strictly psh on C" x C.

(IT) v is strictly psh on C™ x C implies that v, is strictly psh on C" x C.
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(III) If ¢4 is strictly psh on C™ x C, then v; is strictly psh on C™ x C.

(IV) If ¢ is strictly psh on C™ x C, then ¢ is strictly psh on C™ x C.

(V) (u+ wuy) is strictly psh on C™ x C, implies that w; is strictly psh on C" x C.
For example for the proof of the above property (I), since

u(z,w) = [(w— f1(2))*]2 + ... + |(w — fn(2))¥|?, then u is a function of class C*° on
C™ x C. Therefore the hermitian Levi form of u is

L)z w)f) = fw— A28 - §f1<>aj|2+

T N L D= LT
j=1""

for z = (21,...,2n) €C", w € C, a = (aq,...,a,) € C", g € C.
Now u; is a function of class C* on C™ x C. The hermitian Levi form of u; is

8f1 2 _ YJN 12
5y (Il et 19 = 35 0l

(el = 18- 35
Let (z,w),(a,8) € C™ x C. Observe that L(u)(z, w)(a B) > 0 implies that
8f5

L(u1)(z,w)(a, B) > 0, because the absolute value |3 — Z
j= 1

z)a;|* > 0, for each

se{l,..,N}.

The technical properties (IT), (IIT), (IV) and (V) can be be proved similarly.
Observe that for ¢ : C* — R, if 92 is convex on C", then ¢* is convex on C". The
converse, for instance, is in general not true. But in the sequel, using the holomorphic
differential equation, k" (k+¢) = v(k')? (k : C — C be holomorphic and ¢,y € C), we
have

Theorem 9. Let g1,92 : C* — C be two holomorphic functions. Put u(z,w) =
= g1 () + [w — ga(2) 2, 0z, w) = [w— gy ()[4 + |w — ga(2)|*, for (z,w) € C" x C.
We have

(I) Assume that v is convex on C" x C, then u is convex on C" x C.

(II) Suppose that u is convex on C" x C, we can not conclude that v is conver on
Cr x C.

Proof. (I). Note that u and v are functions of class C*° on C" x C.
Assume that n = 1. We have

0? H? 0%v
|5 (2 w)a® + 556 4+ 25— aB| < L(v) (=, w)(a, B)
for each (z,w), (o, B) € C?, where
o ) a 0
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We obtain the inequality

(E): [[—297 (2)w + 2g1(2) g (2) + 2(91(2))*|(@* — 271 ()@ + 77°(2))a®+

(=295 (2)w + 2g2(2) g5 (2) + 2(g5(2))*] (@ — 202(2)W + 72°(2))o® + 2(W — F1(2)) B>+
2(w — 72(2))? B — 201 (2)(@ — 71(2))*aB — 295(2) (W — G2(2))*a| <

203 —2B91(2)—2wg} (2)a+29] (2)91(2)al*+|2wB—2Bg2(2) —2wgs (2) a+2g5(2) g2 (2)al?,
for each (z,w), (o, 8) € C2.

If 3 =0 and w € R, the coefficient of w3 is equal to 0. Therefore (g7 (2) + g5 (2)) = 0,
for every z € C.

Now we divide the left hand side of the inequality (E) by [w|> > 0 (for w € C\{0})
and the right hand side of (E) by |w|? (observe that [w|* = |w|?), and letting |w| go
to (+00), we obtain

(497 (2)g1(2) + 495 (2)72(2) + 2(91(2))* + 2(g5(2))*)0® + 45 — 4(g(2) + g5(2))af|
<128 —2g1(2)al? + 128 — 2g5(2)al’.
Put 5 = g{(z)a. Then

497 (2)71(2) + 495 (2)72(2) + 2(91(2) — 95(2))?| < 4191 (2) — g5(2) .

Thus
197 (2)(g1(2) = 92(2))? < 6lg1(2) — g2(2)|?

for each z € C. Now also we prove that

195 (2) (71(2) — 32(2))| < 6lg1(2) — g (=)

for every z € C. Using the triangle inequality, we have then

197 (2)(g1(2) — g2(2)) — g5 (2)(91(2) — g2(2))| < 12|g1(2) — g5 (2)[?

for each z € C.
Therefore the function (g1 — g2) satisfies

(97 (2) = 95 (2))(91(2) — g2(2))| < 12|g}(2) — g5(2)[?

for every z € C. Therefore the function |g; — g2|? is convex on C, by Abidi [2],
(we can see [3]).

Since (g1 + g2) is affine on C, thus ¢1(2) = (az + b) + ¢(2), g2(2) = (az +b) — p(z),
for each z € C, where ¢ : C — C is a holomorphic function such that |¢| is convex on
C. Therefore u is convex on C2.

In the sequel, we can prove that g; and go are affine functions on C (see proposition 3).
Assume that n > 2. Actually by the above case, it is easy to prove that g; and go
are affine functions on every complex line L C C™. Therefore, g; and g, are affine
functions on C™.

(IT). Assume that n = 1. Put g;(2) = 22, g2(2) = —22, for 2 € C. Then

u(z,w) = |[w— g1 () + [w — g2(2)* = 2w]* + 2/, (2,w) € C*.
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Thus u is convex on C2. But v is not convex on C2, because v(z,1) = |1 — 22|*+
+[1 + 22|* = 2¢(2), for each 2z € C. Observe that ¢ is not convex in a neighborhood
of %

Proposition 3. Let u(z,w) = |w+ < z/a > +b+p(2)|* + |[w+ < z/a > +b— p(2)[4,
a€C™ beC, p:C"— C be holomorphic not affine, |p| is convex on C".

Then the function u is not convexr on C" x C.

Proof. Define v(z,w) = |w + ¢(2)|* + |w — p(2)|*, (z,w) € C"® x C. Observe that v
is convex on C™ x C if and only if u is convex on C" x C.
Suppose that n = 1. Since ¢ is not affine and || is convex on C, then by Abidi [3],
we have the holomorphic representations
©(2) = (a1z + by)¥, for each z € C, where a; € C\{0}, b, € C, k€N, k> 2 or
@(z) = el®2#+b2)for every z € C, with ay € C\{0} and b, € C.
Now for the study of the convexity of the function v, by an affine change of variable,
we can assume that ¢(z) = z¥, for any 2 € C, or ¢(z) = €, for each z € C.
(I) Assume that ¢(z) = 2F, k € N, k > 2.
If k = 2. We can see the above proof and we have the function F' = wv(.,1) is not
convex on C.
Now suppose that k > 3.
Define ¢ (z) = v(z,1), for z € C. Then v is a function of class C* on C.
If 4 is convex on C, then , ,
% 9%
w(z)‘ < 92057

for each z € C.
0%

=) = (2222572 4 2k (k — 1)2F72(1 + 2F)](1 + 2F)?
z
+ [2K%2%F 2 42k (k — 1)2F 2 (2R - 1))(EF - 1)2
2
882(;2(2) e P L L T P R P

For 2 = 1, 2%(1) = 4(6k2 — 4k) > 0 and 254 (1) = 16k2. Then 2-%(1) = |2%(1)| <
g:g%(l). Therefore 6k? — 4k < 4k? and k > 3. This is a contradiction.
(IT) Assume that ¢(z) = e*, for z € C.

Let ¥(z) = v(z,2), z € C. ¢ is a function of class C* on C.

9?1

@(z) = 2(2e7 +2e%*)(2 + €)% + 2(2e% — 2¢7)(e* — 2)2.
32¢ (242) (2 z (242) (2 z
5205 (2) = de (e +2)(e® +2) +4e (e —2)(e* —2).

?;;f (0) = 72 and %(0) = 40. Therefore |g?§
on C. Consequently, v is not convex on C2.

Comparing the preceding theorem and proposition 3, we observe that the exponent 2 is

0)| > gng(O). Then 1) is not convex



A Contribution on Real and Complex Convexity in Several Complex Variables 39

special in our considerations. For instance, let uy(z,w) = |w— f1(2)|?* +|w— f2(2)|?*,
k € N\{0}, f1, f2 : C* — C be two holomorphic functions and (z,w) € C" x C. We
can prove that uy is convex on C™ x C implies that u; is convex on C™* x C if (k > 2),
but the converse is not true.

Let vs(z,w) = [Ajw — f1(2)|° + |Aaw — f2(2)]°, § € [1,4+00[ and (A3, A5) € C?\{0}.
Observe that the study of the convexity of the function vs is based on two additional
cases.

Moreover, observe that by the above technical proof, we have

Theorem 10. Let f1, fo : C* — C be two holomorphic functions. Define u(z,w) =
|w — f1(2)|* + |w — f2(2)|%, for (z,w) € C" x C. We have u is convex on C" x C if
and only if f1 and fo are affine functions on C™.

Proof. We can see the proof of theorem 9 and proposition 3. O

Remark 5. Let fi(2) = 2V, fa(2) = =2V, f3(2) = iz" and fy(2) = —izV, N ¢
N\{0, 1}, for z € C.

Put u(z ) = [w — () 4w — fa(+ Jw— fo(2) + [w— Fa(2)], (2,w) € C.

u is convex on C2, because u(z, w) = c(jw|? + |2V|?)2, where ¢ € R, ¢ > 0. But f1, fa,
f3 and f4 are not affine functions.

We have the following.

Question 1. Let Fy, Fy, F3 : C* — C be holomorphic functions. Put 11(z) =
(RN + [Fa(2)[), va(2) = (P () + a2 + [Fy()]9), 2 € C°.

(I) Is it true that ¢ is convex on C" implies that F; and F are affine functions on
cm?

(IT) Assume that 15 is convex on C™. Is it true that Fy, F and F3 are affine functions
on C™?

The number of holomorphic functions is it fundamental in the above two situations?

We have

Proposition 4. Let k € N\{0,1} and ¢ : C"* — C be holomorphic. Define v(z,w) =
lw+ < z/a > +b+o(2) |2 +|w+ < z/a > +b—¢(2)[**,a € C", b € C, (2,w) € C"xC.
Assume that ¢ is not affine and || is convex on C™. Then v is not conver on C" x C.
Proof. Obviously follows from the proof of proposition 3. Observe that, using the
holomorphic differential equation cited above, we have the additional result. O

Theorem 11. Let g1,g2 : C" — C be two holomorphic functions and k € N\{0, 1}.
Put u(z,w) = [w— g1 (2)* + [ — g2(2)2* and v(z,w) = Jw— gu ()2 + Jw — ga(2)]%,
(z,w) e C™ x C.

(1) Assume that u is convex on C"™ x C. Then v is convex on C™ x C.

(II) Suppose that v is conver on C™ x C. We can not conclude that u is convex on
C" x C. But we have

(II1) w is conver on C™ x C if and only if g1 and g2 are affine functions.

Extension of the results. Let ¢5 = |w — fi(2)]° + |[w — f2(2)[°, § € [1,+o],
f1,f2 : C* — C be two holomorphic functions and (z,w) € C™ x C. We observe
without any assumption on § € [1, 400, for instance , for the study of the convexity
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of the function v, the proof is organized in two separately cases.

Case 1. § = 2. (In this case, we obtain several solutions not affine functions).

Case 2. § € [1,+oo[\{2}.

In general we have the following two remarks (R1) and (R2).

(R1). Let f: C — C be a function. Put ¢s(z,w) = |w — f(2)|°, § € [1, +oo] and
(z,w) € C2. We have s is convex on C? if and only if f is affine (and in particular
f is a function of class C* on C).

(Let N € N\{0}, 2N > ¢ and put G(z,w) = |w — f(2)|*V, (z,w) € C% Suppose
that ¢s is convex on C2. Consequently, G is psh on C2. By Abidi [1], it follows that
f is harmonic on C. Now let T : C — C be an R— linear bijective transformation.
Consider M (z,w) = (T(z),w), for (z,w) € C?. Note that M is R— linear and a
bijective transformation on C2. Therefore G o M is convex on C? and consequently,
G oM is psh on C2. Since Go M (z,w) = |w — foT(z)|, for (z,w) € C2. Then foT
is harmonic on C, for any R— linear transformation 7. Then f is affine on C).

But if we define Fs(z,w) = |w — f1(2)|° + |w — g1(2)|°, where

1if Re(z) > 0
hilz) = { “1if Re(z) < 0

and

—1if Re(z) >0
() = { 1if Re(i) <0

for (z,w) € C2. Then we have

Fs(z,w) = |w — 1|° 4+ |w + 1]° and consequently, the function Fjs is convex on C2, for
each § > 1. But f; and g; are noncontinuous functions at any point of C. Moreover,
we have

(R2). There exists two continuous functions f,g : C — C, with K;(z,w) = |w —
f(2)]° + |w — g(2)]°, (z,w) € C?, Ks is convex on C? (for each § > 1), but f and g
are not functions of class C* on C.

Example. Let f(z) = |z|, g(2) = —|z|, 2 = (z +iy) € C, x = Re(2).

Question 2. Let ¢1,...,9%n : C* — C be analytic functions, N,k € N, k > 2. Define
(zw) = o — Pu (D + e+ o — G ()|, (z,w) € C" x C.

Assume that N < 2k —1 and 1 is convex on C" x C. Characterize 91, ..., ¥ by their
analytic expressions.

Question 3. Let @1, @2, 3,04 : C™ — C and g1, 92,93,94 : C* — C be 8 holomor-
phic functions. Put u = (u1 +uz), where u; (2, w) = |1 (w)—g1(2)|*+|p2(w) —g2(2) |4,
uz(z,w) = |ps(w) — g3(2)|* + |pa(w) — ga(2)[*, (z,w) € C* x C.

Characterize @1, 2, 3, @4, 91, g2, g3, g4 by their expressions such that u; and us are
convex functions on C™ x C and w is strictly psh on C™ x C.

In the sequel, for instance, observe that there exists a great differences between the
exponent 2 and the exponent 4 (or 2k, k € N\{0,1}) in real convexity.

We have
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Lemma 4. (I) There exists 11,19 : C* — C two holomorphic functions such that
[1|% and |12|? are not convex functions, while u = (|11]? + [1b2]?) is convex on C",
but v = (|11 |*+[1h2|*) is not convex on C™ (respectively (|11|?* 4 [1b2|?*) is not convex
on C™ for each k € N\{0,1}).

(II) There ezists @1, pa : C* — C holomorphic functions, with |¢1]?
lpa|? is not convex on C™, (|¢1]? + |p2|?) is convex on C™, but (|¢1|?*
convex on C", for each k € N\{0,1}.

(Example. ¢1(2) = 2z, pa(2) =22 -1, 2 € C).

is convexr and

+ |p2|?F) is not

We introduce this lemma because it yields the following questions.

Question 4. Let f1,f : C* — C be analytic functions and § € [1,+oo[. Put
u = (|f1]® + | f2]°). Suppose that u is convex on C" and & # 2. Is it true that | f;| and
| f2| are convex functions on C™?

Question 5. Let n,m € N\{0}. Find all the holomorphic functions f1, fo : C* — C,
©1,2 : C™ — C, such that ¢ is convex on C" x C™, where ¥(z,w) = |¢1(w) —
F@)P +[p2(w) = fo(2)]°, for (2,w) € C* x C™.

4. Some study of a particular case and algebraic
method

Theorem 12. Let Ay, Ay, As, Ay, A5 € C\{0}. Consider g1, 92,93, 94,95 : C* — C be
five holomorphic functions. Define ui(z,w) = |Ajw — g1(2)|* +

[Asw — g2(2) %, v1(z,w) = [Agw — g3(2)* + [Aaw — a(2)?, u(z,w) = wi(z,w) +
v1(z,w) + |[Asw — g5(2)]?, (z,w) € C" x C.

The following conditions are equivalent

(I) w1 and vy are convex functions on C™ x C and w is (convex and strictly psh) on
C" x C;

(II) n € {1,2,3,4} and we have

{ 91(2) = A1(< z/a > +Db) +§QD(Z)
92(2) = A2(< z/a > +b) — A1p(2)

9a(2) = Au(< z/c > +d) — Azi)(2)

and gs(z) = (< z/\ > +u), (for all z € C*, where a,c,\ € C", b,d,u € C, ¢, :
C™ — C are 2 holomorphic functions, |p| and || are convex functions on C™) with
the following 4 cases.

(1) n=4. We have (a — c,a — X\, (92(2), 22(2), 22 (2), 22.(2)),

éﬁi(z%%(z),gi(z), %(Z))) is a basis of the complex vector space C*, for all z €
(2) n = 3. Then we have for all z € C3, z = (21, 22, 23), o

(a—ca— A (22(2), 22(2), 22(2))), or (a — c;a — A (L(2), 22(2), 22(2))), or

{ 93(2) = A3(< z/c > +d) + Ag1)(z)
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(a—c, (22(2), 22 (2), 22(2)). (B2 (2), 22 (2), 22(2))), or

(a=2A, (ng (2), g—z‘i(z), g—fs(z)), (8—2(2), %(2)’ g—i(z))) is a basis of the complex vector
space C3.

(3) n = 2. Then for each z = (z1,2z2) € C2, the quantity (a — c,a — \), or (a —
& (g;i (Z), 3852 (Z)))7 or (a;c, (%( ) 871/’(7))) 7(0“ - )‘ (gi(z% gzi (z)))7 or (a -
/\,(g—i(z),g—i(z))), or ((g—fl(z),@(z)),(%ﬁ(z),g—i(z))) is a basis of the complex
vector space C2.

(4) n = 1. Then we have for all z € C, (a —¢) # 0, or (a — \) # 0, or(a—‘P( z) #0),

or (2L(2) #0).
Proof. (I) implies (II). Since u; is convex on C" x C, then

{ 91(2) = A1(< z/a > +b) + Ayp(2)
g2(2) = Aa(< z/a > +b) — A1p(2)

(for each z € C™, where a € C", b € C, ¢ : C" — C is analytic, |¢| is convex on C").
ug is convex on C™ x C, then

{ 93(2) = A3(< z/c > +d) + Agyp(z)

g4(2) = Ay(< z/ec > +d) — Az(2)

(for every z € C", with ¢ € C", d € C, ¢ : C" — C is analytic and |¢| is convex
on C").

Note that u is a function of class C*° on C™ x C. Now since u is convex on C" x C,
then if we put z = (21,...,2n) € C", w = 2,41, a = (a1, ..., ) € C", B = g1 € C,
we have

n+1 n+1 8211,
Z 82 azk ajoy| < Z m(z)ajak, V(z,w) € C" x C, VY(a,B) € C" x C.
J j.k=1 J

It follows that gs is an affine function on C™. Therefore gs(z) = (< z/A > +u), for
each z € C", where A € C" and p € C. Then

)
%)

u(zw) = (|4 + [A2P)(lw— < z/a > =b]* + |p(2)]
+ (143 + A (lw— < z/e > —d” + [¢(2)]
+  |Asw— < z/A > —pf*, (2,w) € C" x C.

Define

v(z,w) = |w—<z/a> b+ |p(2)]* +|w— < z/c> —d|?
+ [Y2)* + |Asw— < 2/A > —pl?, (z,w) € C" x C.
Then v is a function of class C* on C" x C and we have (u is strictly psh on C"* x C

if and only if v is strictly psh on C" x C). Therefore by lemma 1, n+ 1 <5.
Consequently, n € {1,2,3,4}.



A Contribution on Real and Complex Convexity in Several Complex Variables 43

Now let T'(z,w) = (z,w+ < z/a >), (z,w) € C" x C. T is a C— linear bijective
transformation on C™ x C.

Let va(z,w) = voT(z,w) = |w—b]> + |p(2)]* + |w+ < z/a —c > —d]* + |[¢(2)]* +
|Asw+ < z/a— X > —ul?, (z,w) € C" x C.

Therefore vy is a function of class C*° on C™ x C. We have v is strictly psh on C"* x C
if and only if vq is strictly psh on C" x C. The Levi hermitian form of vy is

L(v2)(z,w)(ev, ‘5|2+|Za (2)oy)* + B+ <afa—c> | +
|Z Oéj|2 + |As8+ < afa— A > |2 (z,w) = ((21, o, 2n),w) € C" x C, (a0, B) =
((@1, e an),B3) € C" x C.

Now L(v3)(z,w)(a, f) =0 if and only if 8 = 0 and

9y

"9
|Zaj()a]|2+|ﬁ+<a/a c>|2+|za ()| + |Asp+ < afa— A > > =
j=1""7

j=1

(z,w), (o, B) € C™ x C. Tt follows that, if we define uy(2) = |p(2)> +| < 2/a — ¢ >
—d]? + ()2 +| < z/a— X > —p|?, for z € C", then uy is a function of class C™
on C™.

Now Observe that vs is strictly psh on C™ x C if and only if us is strictly psh on C™.
Case 1. n = 4. In this case observe that u is strictly psh on C* x C if and only if the
quantity

00 ) 00 ) 09\ 00\ 00 \Ob OY  0)
821()8222’8232’82’42 ’ 821(2)’82227623 2)7824(2)))

is a basis of the complex vector space C*, for all z = (21, 29, 23, 24) € C*.
Case 2. n = 3. The Levi hermitian form of us is

o
—|Z aa|2+|<a/a—0>|2+|za (2)y|* +
Jj=1
| <afa—X> | , for z=(21,22,23) € C3, a = (al,ag,ag,) € C3.
L(uz2)(z)(a) = 0 if and only if

(afcﬂl*)‘v(

<afa—c>=0,
<ala—A>=0,
3. 9
Za—zj(z)aj =0, and
j=1
3

oy
Zi(z) ;=0
jzlﬁzj

Therefore uy is strictly psh on C? if and only if for all z = (21, 2, 23) € C3, we can
choose a basis (of the complex vector space C?) consisting of 3 vectors from the set
of vectors
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{a —¢a— )‘7 (%(z)a %(2)7 %(Z))a (%(2), %(Z)v 687:;(2))}
Case 3. n = 2. In this case uy is strictly psh on C? if and only if for all z = (21, 29) €

C?, we can choose a basis (consisting by 2 vectors basis of the complex vector space

C2) from the set {a — c,a — A, (22 (2), 22 (2)), (22 (=), 22 (2))}.

Case 4. n = 1. uy is strictly sh on C if and only if for all z € C, we have (a — ¢) # 0,

or (a—A\)#0,or (g—f(z) #0), or (g—f(z) #0).
The proof is now finished.

Moreover, we have

Question 6. Let n,m,N € N\{0} and (A1, B1),...,(An,Bn) € C*\{(0,0)}.
Find all the holomorphic functions ¢i, f1,...,9n, fnv : C* — C and all the holo-
morphic (respectively prh) nonconstant functions ki,...,ky : C™ — C such that
Uy, ...,uny are convex and u = (uy + ... + uy) is strictly psh on C" x C™, where
uj(z,w) = [Ajk;(w) — f;(2)]* +|Bjk;(w) — g;(2) |, for (z,w) € C* xC™, 1 < j < N.
In general we prove that this question have applications in the theory of (partial dif-
ferential equations and (convex and strictly psh functions) in several variables), and
therefore for the resolution of certain holomorphic partial differential equations in
complex analysis. Because, in the sequel, we have a relation between partial differen-
tial equations and the subject (convex and strictly psh functions) in complex analysis
and geometry.

Example. Find all the holomorphic functions f,g : C — C, such that

(a) |f2 + f| and |g* — g| are convex functions on C, and

(b) 9 is strictly psh on C2, where ¥(21, 22) = |f2(21) + f(21)|? + |g%(22) — g(22)|?, for
(,2'17 22) € C2.

In this case we solve the holomorphic differential equation

2+ 0"(f2+ f) =7@2ff + [')? where v € {*7+,1 /s € N\{0}}, ..

Example. Let N > 2. Find all the holomorphic functions f1,..., fy : C* — C, such
that v is convex and strictly psh on C" x C. We can see the problem v is convex and
v1 is strictly psh on C™ x C (in this case we apply lemma 1). Where

v(z,w) = lw = fi(2)]* + .+ fw = ()
vi(z,w) = [w = fi(2)]* + . 4w = fn ()

for (z,w) € C™ x C. In this situation, we solve several holomorphic partial differential
equations which characterize the complex structure strictly psh. Finally, we choose
the solution which gives the convexity of v (or conversely).

Question 7. Let n,m,k € N\{0}. Find all the holomorphic functions g1, g2, g3, 94 :
C"™ — C and all the holomorphic functions 1, 2, @3, ¢4 : C™ — C such that v; and
vy are convex and v = (v1 + vq) is strictly convex on C™ x C™, where

vi(z,w) = |1 (w) = g1(2)** + l2(w) — g2(2)[**,

va(z,w) = |pa(w) — g3(2)** + lpa(w) — ga(2)[**,
for (z,w) € C* x C™.
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5. The product of several psh functions and applica-
tions

The main objective of this section is to study the behaviour of the product of several
absolute values of prh functions. Note that it is well known that the product of many
psh functions is not in general psh.

Example. Let v1(z,w) = |w — Z||w — 2z|, for (2,w) € C2. Then v is not psh on C2.
In the sequel, let D be a domain of C*, n € N\{0}, N € N\{0,1} and ¢1,...,on : D —
C be holomorphic functions. Define u(z,w) = H |lw —%;(2)|, for (z,w) € D x C.

1<j<N
Find conditions should satisfy N, ¢1,...,on so that u is psh on D x C.
Now let fo,...,fn—1 : D — C be holomorphic functions. Put v(z,w) = |[w" +

v 1 (2)wN "+ 4 fi(2)w+ fo(2)], (z,w) € D x C. Characterize N, fx_1, ..., f1, fo
such that v is psh on D x C.

Proposition 5. Let f,g: D — C be two functions, D is a domain of C"*, n > 1. Put
u(z,w) = |w? + f(2)w+ g(2)|, (z,w) € D x C. Assume that f is continuous and g of
class C? on D. Then u is psh on D x C if and only if we have one assertion of the
following conditions.

(I) f is holomorphic on D and g is prh on D.

(IT) f is prh and not holomorphic and g = f; on D.
Proof. Put v = u?. Assume that u is psh on D x C. Then v is psh on D x C. By

Abidi [2], f is pluriharmonic (prh) on D. Thus v is a function of class C? on D x C.
Without loss of generality we assume that n = 1. Let (z,w) € D x C.

0% 9
m(%w) = 2w + f(2)[".
9%v Of (/oo | _Oof g
T (ew) = L)@ +TI) +5() + )T () + 22(2))
We have o2 o2 o2
v 9 v v
< -
7700 " = Gugw ") 5257 )
for each (z,w) € C2. Now observe that if w = —@, then %(7;, —%Z)) =0.
It follows that 82261;; (2, —f(;)) =0= %(2)@(2) - %), for each z € D. Now since

f is real analytic on D, then %(z) =0, for every z € D, or there exists zy € D, such

that 2L (z) # 0.
Case 1. For each z € D, %(z) =0.
Then f is holomorphic on D. Since u(z, w) = |(w+ @)2 - @ +g(2)]|, for (z,w) €
I(2)
2

D xC. Therefore uoT ispshon DxC. uoT(z,w) = |w2—¥+g(z)|, (z,w) € DxC.

By Abidi [1], the function (f; — g) is harmonic on D. Consequently, g is harmonic
on D.

DxC, we consider T'(z,w) = (z,w—2.2), for (z,w) € DxC. T is a biholomorphism on
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Case 2. There exists zy € D such that %(20) # 0.

We consider £ = {¢£ € D / %(g) = 0}. Since % is antianalytic on D, then E is an
analytic closed subset on D. Therefore, D\ E is a domain dense on D. Now since the
function (fff — g) is continuous on D and (%2 —g) = 0 on D\E, then (f; —g9)=0
on D.

Let us mention that, if n > 2 and f = (f; + f2) is not holomorphic on an open polydisc
P =P x..x P, CD, where fy, fo : P — C are holomorphic functions, P, ..., P,
are discs on C. Since f, is nonconstant on P, we assume that [2£2| > 0 on P.

Oz
Thus | 524 [% < 522520 on P, Since 22 (2, —L3) = 0, then z2Z5 (2, -2 =
0, for each z € P. We obtain g—ﬁf[f; — g] =0 on P. Consequently, g = f; on P.
Now since f is not holomorphic on each not empty open polydisc subset of D, it
follows that g = f; on D. The proof in now complete. O

Now we have

Theorem 13. Let f,9,k:C" - C, n > 1.

Define u(z,w) = |w* + w?f(2) + wg(2) + k(2)|, for (z,w) € C" x C.

Assume that f is continuous on C"™ and g and k are functions of class C% on C".
Then u is psh on C™ x C if and only if we have the following two cases.

Case 1. f and g are holomorphic functions and k is prh on C™.

Case 2. f is prh and not holomorphic on C™.

Put g(w) = 3w? + 2wf(z) + g(z), for each w € C and every fized z on C™.

q have an only one zero on C, for each z fized on Cm", (therefore g¢(z) =

2Z 32
—f?f ) and k(z) = f2(7)).

Proof. Put v = 2. Assume that w is psh on C™ x C. Then v is psh on C” x C. We

can prove that f is prh on C", using Abidi [2]. Therefore v is a function of class C?

on C* x C.

Case 1. The function f is holomorphic on C™. r .

W+ wf(2) + wg(z) + k(z) = (w+ L2 +w(g(z) - L) — LB 4 k(2), for

(z,w) € C™ x C.

Since psh func(ti)ons are invariant by any change by holomorphic functions, we can
f(z

replace (w + *5~) by w, we obtain

w® + (w — L) (g(2) - L) = L& 4 j(z) = w® + w(glz) — L) + ki(2), b is a
function of class C? on C".

Now using the proof described in [2], we can prove that g is prh on C™. Suppose that
g is holomorphic on C™. We can prove that k is prh on C™. Therefore u = |h|, where
h:C" x C — C is prh. Then w is psh on C" x C. Suppose that g is not holomorphic
on C". Assume that n = 1. We have
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0%v 2 2
awﬁf(z w) = 3w’ +2wf(z)+ g(2)|"
) = (o) + ) + R + gl + k)

B+ 2f() + o) (@2 L () + () + X)),

Since v is psh then we have the inequality

0% 9 0% 0%
Dl <
(B): | 0) < 5 (2 0) 5 (5, )

for each (z,w) € C2.

Since ¢ is not holomorphic on C, then there exists zg € C, such that \%| >0ona
neighborhood of zy.

Let q1(w) = w3 + w?f(2) + wg(z) + k(z) and g2(w) = 3w? + 2wf(z) + g(2), for
(z,w) € C.

Note that ¢; and g2 are holomorphic polynomials in the variable w € C, for each fixed
z € C. Also ¢} = ¢2. The holomorphic polynomial g» has two zeros denoted w; and
wy € C.

Assume that wy # we. Then wy and wy are distinct zeros of the polynomial ¢; by the
inequality (E). Since ¢ = ¢o then w; and wy are two distinct zeros of order 2 of ¢;.
A contradiction because deg(q1) = 3. Therefore w1 = wy is a zero of g of order 2.
Thus w; is a zero of g; of order 3. Then we have ¢; (w) = (w —wy )3, for every w € C.
Consequently, f = —3w; and then ¢;(w) = (w+ @)3, for each z in a neighborhood

of zp. Then g(z) = ﬁ and therefore ¢ is holomorphic in a neighborhood of z5. A
contradiction. This btep is impossible.

Case 2. The function f is not holomorphic on C™.

Assume that n = 1. Therefore g—é # 0. Put ¢1(w) = w? + w?f(2) + wg(z) + k(2),
@(w) = 3w +2wf(2) +g(2), g3(w) = 2w%(z) + g—g(z), for (z,w) € C?. Note that ¢,
g2 and g3 are holomorphic polynomials in the variable w € C, for every fixed z € C.
We have ¢ = go2. Let zp € C, such that %(2) # 0, for every z € Vj, where V) is
an Euclidean open disc in C, 2y € Vy. Now ¢ have two zeros wp(z) and w;(z) € C.
Suppose that wo(z) = w1 (z). From the inequality (F), wq is a zero of g;. Since ¢4 = ¢1,
then wq is a zero of q; of order 3. Therefore q;(w) = (w — wp)3. If for every z € Vg,
wo(z ) = wo = wy(2) = wy, then ¢ (w) = (w—wp(2))® = (w+ M)3 in Vo x C. Then

g= f— * and k = f— If there exists z; € Vp such that wg(z1) = a # wy(z1) = b. The
condltlon a and b are zeros of ¢ is impossible because deg(q1) = 3. By the inequality
(E), for example we have b is a zero of ¢; of order 2 and a is a zero of g3.

Let ws the second zero of ¢; of order 1. Then we have the following relations between
the zeros and the coefficients of the polynomial g3, a + b = —27, ab = 3¢ and
2b + wy = —f. Thus we have the equalities 3a + 3b = 4b + 2ws, 3a = b + 2wy and
b? + 2bwy = g = %ab.
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If b # 0 on a neighborhood of z;., then b + 2wy = ga = 3a. Consequently, a = 0.

Therefore ¢ = 0 and k # 0 We have then b = 2f, wo = g Thus u defined by,
u(z,w) = |w—|—2f( )P w — ( )|, is psh on C2. Put uy(z,w) = |[w+2f(2)*|lw — f(2)],
for (z,w) € C% Then u is psh on C2. But it is obvious (by theorem 14 below), that
f is holomorphic on C. A contradiction. Consequently, b = 0 on a neighborhood of
z1. Thus wy = —f and a = 0 (because g = 0 on a neighborhood of z;). Therefore
q2(w) = 3w? and observe that f = 0. A contradiction. Therefore, the assumption
a # b is impossible. It follows that wo(z) = wi(2), for each z € Vj. Therefore
q1(w) = (w — wp)3, for each w € C. We obtain g = f— and k = f—

Assume now that n > 2. Obviously we consider in thls 51tuat10n an analogous proof
of the above theorem as well. The proof is now complete.

Recall that for each f : D — C, ¢ is psh on DxC if and only if f is pluriharmonic (prh)
on D, where ¥(z,w) = |w — f(2)|Y, N € N\{0}, D is a domain of C" and (z,w) €
D x C. Now we prove that there exists a similar characterization of holomorphic
functions. We have

Theorem 14. Let f: C" — C be continuous. Put u(z,w) = |w + 2f(2)]*|w — f(2)],
(z,w) € C" x C. Then u is psh on C™ x C if and only if f is holomorphic on C™.

Proof. Assume that u is psh on C* x C. Since u(z,w) = |w3 + 3f(2)w? — 4£3(2)|,
for each (z,w) € C™ x C. Then f is prh on C”, (see [2], page 336). In particular, f is
a function of class C*° on C™. If f is holomorphic on C", then wu is psh on C" x C.
Assume that f is not holomorphic on C™. Then f is nonconstant. Without loss of
generality we suppose that n = 1 in all of the rest of the proof.

Case 1. The function g = f is holomorphic on C.

Put v = u?. Then v(z,w) = |w? + 37(2)w? — 4¢3(2)|?, (z,w) € C2. Note that v is a
function of class C* on C2. We have

0% g — =
—e(mw) = 652 (Julw’ +35()w? — 4g%(2)),
ﬁ(z w) = [3w?+ 6g(z)wl?
owow " T g ’

0%v B ag 9 _ ag
@(zaw) = |3£(z)w —12(g)*(= )8*( 2)%.

Suppose that % = 0 on C. Then g is constant on C. It follows that f is con-
stant on C. A contradiction. Consequently, % # 0. Since m(z 29( )) = 0 and

aa;:;iu(z,w)ﬁ < azgz(z,w)aig (z,w), for each (z,w) € C?, then BESw (2,29(2)) =0,
for any z € C. Thus g(2)[16(g éu)( )] =0, for all z € C. Tt follows that g =0 on C. A
contradiction. Therefore this case is impossible.

Case 2. The function g = f is not holomorphic on C.

Let v = u2. Then v is a function of class C> and psh on C2. Let g1, go : C — C be two
harmonic functions and (z,w) € C2. Define F(z,w) = (w — ¢1(2))?(w — g1(2))*(w —
g2(2)) (W — g2(2)). Note that F is a C> function on C2. Assume that F is psh on C2.
We have
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o (2 0) = 20— ga(2) + (@ — 1 ()Pl — )2
L (2 w) = =292 (2)(@ — 91(2)) (w — g2(2)) (W = 73(2) — 492 (2) (w — 1 (=) (@ —
91(2) (w0 —g2(2)) (0 —7(2)) ~2%2 () (w— 1 (2)) (@ =1 (2))* (@ —7a(=)) — 252 (=) (w—
01 (2))(T—75(2) P (w—g2(2)) ~ 2. (=) (w—g1 (2) P (g1 (2) P —2 28 (=) (w1 (2)) (77—
3(2)) (7 — G(2))° — 228 (2)(T — 72(2)) (5 — 75(2) (0 — 31 (2)

LI (2,w) = 298 (2) 92 (2) (@ — 71(2))*(w — g2(2))(@ — Gal=

71(2)) (w = g1(2)) (w — g2(2)) (@ — 2(2)) + 252 () 2 (w — 1 (W — g1(2))*(W —
72(2)) + 252 ()2 (2)(w — 91(2))(@ — Fi(2))*(w — g2(2)) + 252 (2) G2 (=) (w —
91(2))(w — ga(2 ))( —72(2)) + 452 (2) B2 (2) (w — g1.(2)) (@ — F1(2)) (w — g2(2)) (W —
72(2)) + 258 (2) B2 (2)(@ — g1(2)) (w — 92(2))* (@ — Ga(2))+
28 (= )%92( )@ — gi(2)(w — g1(2))*(w = g2(2)) + 252 (2) G2 (2)(w — g1.(2)(@ —
91(2))*(@ — 72(2)) + 252 (2) B2 (2) (w — 91(2)) (@ — 91(2))* (@ — Ga(2))+
252 (2) 52 (2) (W — g1(2)(@ — F3(2)) (w — 91(2))* + F2(2) FE (=) (w — g1())*(W —
71(2))? + 292 (2) G2 (=) (w — g1(2))(w — g2(2)(@ — u(2))* + 252 (=) FZ (=) (W —

91( ) (w = g1(2))*(w — ga(2)).

Let n > 0. Observe that if we replace g; and g» respectively by ng; and ngs, the new
function Fy, defined by Fi(z,w) = |w — ng1(2)|*|w — nga(2)|? for (z,w) € C2?, is also
of class C* and psh on C2.

Therefore if we divide by n? and letting 1 go to 0, then

2 2 2
02 Fy () < lim | 1 82F F

1 LN )T w))
9z0uw oo+ dwow ) azd

1m )
n—0t+"

Let N € N\{0}. Write f = fi + f2, where f; and fo are holomorphic functions on C.
Consider T(z,w) = (z,w + Nfi(z)), (z,w) € C2 T is a biholomorphism of CZ.
Therefore uoT is a function of class C* and psh on C2.

woT(2,w) = |w+ (N +2) fi(2)2fa(2)P|w + (N = 1) fi(2) — fa(2)]-

Define gy = —(N +2)f1 +2f> and go = —(N — 1) f; + f> on C.

g1 and go are harmonic functions on C.

Thus for wg = 1 and using the above inequality and letting n go to 0

(we replace g, and go respectively by ng; and ngs).

We obtain )

12922 (2) + 49 (2) + 292 (2) + 29 (2) + 9B (2) + 29 (2) + 29 (=) <
(2) +

D2 () 48(2) + 4% () B (2) + 290 () o) + 2 () BB () + 28 () 2B(2) +
IRERE) 4 2BOEE ¢ WO + 2B OP ) + 25O +
L)) + 28 () () + B L) + 5B (),

Then [422(2) + 4(N + 2)2L(2) 4+ 292 (2) + 3(N — 1)%2(2) + 492 (2) + 2(N +
2)%L () <
I4(N +2)%| 52 (2) 2 +2(N +2)(N = 1)| %2 (2) 2 +2(N - 1)(N +2)| G2 (2)]* + AN, 2)],
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1
where A(N, z) is a function defined on N x C and satisfy Nlin+1 WA(N’ z) =0, for
—+00

each z fixed on C.

We divide the last above inequality by N? and letting N go to +oco. We obtain

9% 9191(2)|2 <9 x 8/91(2)|2, for all z € C. Thus % (2) =0, for each z € C.
Consequently, f; is constant on C. Write f; = ¢, ¢ € C. Therefore f = c+ f, on C. It
follows that ¢ = f is holomorphic on C. A contradiction.

Consequently, this case is impossible. Therefore the above hypothesis is false and f
is holomorphic on C. The converse is obvious.

Remark 6. To compare the above theorem and some results of [2], observe that
we can not write (w + 2f)(w — f) on the form p(w — f), where p is a holomorphic
polynomial on C and f : C — C, f # 0. But if ¢ is the following holomorphic
polynomial on C?, defined by ¢(&,w) = (w+ 2£)(w — £), for (£, w) € C?, we can write
(w+2f)(w— f) = q(f, w). Denote ¥ (&, w) = |q(€,w)|. Then 9 is not psh on C2. (We
say in this case that |g| characterize holomorphic functions).

Proposition 6. Let f1, 491, f2, 92, f3,93 : C" — C be holomorphic functions. Define
u(z,w) = |w— f1(2) — i — fo() - G ()lw — f3(2) —Ga(2)], for (2,w) € €7 x C.
The following conditions are equivalent

(1) u is psh on C™ x C;

(II) We have only case 1, or case 2.

Case 1. (g1 + g2 + g3) is constant,

(fi+70)(f2+72) + (f1 + 70)(fs +75) + (f2+52)(fs + g5) is holomorphic on C" and
(f1 +70)(f2 + 52)(f3 + 73) is prh on C".

Case 2. (g1 + g2 + g3) is non constant and

(fr+9)(f2492)+(f1+71) (fs+73)+ (f24+72) (f3+73) = 3 (fr+ fo+ f3+ g1 +02+73)*
on C™.

Proof. Obvious by the preceding theorem. In general, we have the following prob-
lems.

Problem 1. Let n, N € N, N > 2, D is a domain of C™. Find all the analytic functions
91, gn : D — C, such that u is psh on DxC. Here u(z,w) = |lw—g1(2)|...|lw—gn(2)],
for (z,w) € D x C.

Problem 2. Let v(z,w) = |f1(2) —g1(w)|...|fn(2) — g5 (w)], f1,..., fnv : C* — C and
J1,--,gn : C™ — C be 2N holomorphic functions, N > 2 and (z,w) € C" x C™. Find
all the conditions described by fi, ..., fn, g1, ---» gn such that v is convex on C™ x C™.

Problem 3. Put v = |g1 —1]...|gnv —¢n|, where g1, ...,gn : C"™ — C and ¢1, ..., on :
C" — C be 2N prh functions. Establish all the conditions satisfying by ¢1, ..., g,
©1, ..., N such that v is psh on C™ x C™.

Problem 4. Let aq,...,any € C™, ¢1,...,o5 : C* — C be holomorphic functions,
N > 2. Put v(z,w) = | <w/a; > —p1(2)|...| <w/an > —pn(2)], (z,w) € C* x C™.
Characterize a1, ...,an, 1, ---, N, such that v is psh on C"* x C™.

Remark 7. Let vy(z,w) = |lw — 21(2)]...Jlw — &N (2)], ¥1,..,on : C* = C be
holomorphic functions, N > 2, (z,w) € C"™ x C.
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Consider the problem (Ey) : vy is psh on C™ x C.

A technical key for the study of the problem (Fy) is a consequence of the classical
cases (Fs), (E3) and (Fy4) which are proved. Note that if |w —@7||w — 3] is psh then
for each holomorphic function 3, the new function |w — Pr||w — P3||w — P3| is not
psh on C™ x C if 1 and ¢y are nonconstant functions and @3 # 1, or w3 # @a.
The converse. Let u(z, w) = |w —$1(2)||w — @2(2)||lw — P3(2)|. Suppose that u is psh
on C" x C and ¢; is non constant, 1 < j < 3. Then |w —&1||w — @3], |w —&1||w —P3]
and |w — @3||w — P3| are not psh if (w1 + w2 + @3) is constant, p1 # P2, P1 # @3 and
P2 # P3.

Recall that u is psh on C™ x C if and only if (¢1 + @2 + ¢3) is constant and (192 +
P1p3 + wap3) is constant, or (¢1 + @2 + @3) is nonconstant and 1 = 3 = p3 on C".

Remark 8. Consider the functions g1(z) = z, g2(2) = —z, g3(2) = iz, g4(2) = —iz,
for z € C. g1, g2, g3 and g4 are holomorphic functions on C. Let (z,w) € C2.

v(z,w) = |lw = gi(2)|lw - B(2)|lw - G)|Jw — Ga(2)] = [w? = (2)*[|w? + (2)?| =
[wt — ().

v = |h|, where h : C? — C is prh. Then v is psh on C2. But vy, va, v3 and vy are not
psh functions on C2, where

vi(z,w) = [w = g1(2)||w = g2(2)|Jw = g3(2)],
va(z,w) = |w = g1(2)[Jw — G2(2)[|[w — ga(2)];
v3(2,w) = |w = g1(2)[Jw = g3(2)[|[w - ga ()],

va(z,w) = |w = g2(2)||w — g3(2)[|w — ga(2)]:

Note that a precise study of the plurisubharmonicity of the two functions 7 and
1o extends some interesting and sharp results in the framework of a slightly differ-
ent direction. We can study the complex nature of the function ¢3(z,w) = |w —
71(2)].--|lw —gn(2)], where (N—2k or N=3x2F keN, k>2) 1y N : (C”—)C

are holomorphic functions, ¥ (2, w) H lw—7;(2)|, Ya2(z, w) H |lw—%; (=
1<j<4 1<5<8

and ¢; : C* — C is a holomorphic function, 1 < j <8.

In the sequel, the next result gives the exact characterization according to algebraic

methods in the theory of holomorphic polynomials and related topics. We have

Theorem 15. Let p1, 92,903,014 : D — C be four holomorphic functions, D is a
domain of C. Put u(z,w) = lw—p71(2)||lw—p2(2)||lw—p3(2)||lw—p1(2)], (z,w) € DxC.
Let v = u?. The following conditions are equivalent

(1) u is psh on D x C;

(II) We have the following cases.

Case 1. 0‘9;81;” =0onDxC.

Case 2. aa;a”w # 0 on D x C and we have the following two conditions.
4

Step 1. (Zg@j) is nonconstant and 1 = Y2 = w3 = 4 on D.
j=1
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4
Step 2. (Z(pj) is constant on D and we have the following assertion.

j=1
There exists ji,j2,Js, ja, satisfying j1 < j2, js < ja, {J1,J2,0s, 72} = {1,2,3,4},
Vi1 = Pjas Pjs = Pj. and the function pj, @;, is nonconstant on D.
Proof. (I) implies (II). Let (z,w) € D x C. We have
v(z,w) = [w* = F1(2)w’ + 52 (2)w? — F(2)w +52(2) >

4
SI=) P S2= Y 9Pk S3= D ©jPkPs, 51= P1920304.
j=1 1<j<k<4 1<j<k<s<4

S1, So2, 83 and s4 are holomorphic functions on D.
v is a function of class C*° and psh on D x C.

2
o (2, w) = [4w? — 357(2)w? + 255(2)w — 55(2)[* > 0.
gz (7 w) = | = 57 (2w + 85 (2)w? — S5(2)w + $4(2)” > 0 and i (z,w) =
(=351 (2)w? + 255 (2)w — s(2))[w* — 51(2)w? + 52 (2)w? — 53(2)w + 52(2)]-
Since v is psh on D x C, then we have the inequality

0% 5 _ 0% 0%
D — <
(B): |55, 5wl < o5, (5 w) gy ()
for each (z,w) € D x C.
Put

@1 (w) = (w —21(2))(w = P2(2)) (w = P3(2)) (w — Pa(2)),
g2(w) = =35} (2)w” + 255 (2)w — s}(2),

gz(w) = 4w® — 357(2)w? + 253(2)w — 53(2),

2

qa(w) = =5 (2w’ + sh(2)w? — sh(2)w + 54 (2).

q1, 92, g3 and g4 are holomorphic polynomials on C, for each fixed z on D.

We have ¢] = g3 and ¢} = qo. By the inequality (F) we have then |q1¢2| < |g3q4] on
C.

Case 1. ga(w) = 0, for every w € C and for any z € D.

Then s1, s3 and sz are constant functions on D. Therefore 83;92 =0on D x C. Thus
we have

u(z,w) = Jw* + 1w’ + ew® + cyw + Pr(2)Pa(2)Ps(2)Pa(2)]

where ¢1, ¢2,c3 € C. Therefore u = |h|, when h is a pluriharmonic (prh) function on
D x C. Consequently, u is psh on D x C.

Case 2. g2 # 0 on C. o o o

Now fix z € D, such that [—3s](2)w? + 255 (z)w — s4(2)] # 0. Since q1g2 # 0 and the
inequality (E), there exists ¢ € C\{0} such that g3q4s = cq1¢2 on C.

Step 1. 8§ # 0 on C.

Then ¢ = 3. We have A = {¢1(2),92(2),@3(2), @a(2)} is the set of all zeros of the
analytic polynomial ¢;. Assume that the cardinality of A is equal to 4. Observe that
because of the property of the order of multiplicity of zeros of a polynomial and the
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relation gsqs = 3q142, we have @1(2), $2(2), @3(2), Pa(z) are distinct zeros of gy.
Therefore deg(qs) > 4. A contradiction. Consequently, the cardinal of the subset A
is less than or equal 3.

Without loss of generality, we assume that @1 = po. Assume that ¢; # p3. We have
?1(2) is a zero of g3 and ¢4. Note that {p1(2), P3(2), Pa(2)} is exactly the set of zeros
of the holomorphic polynomial ¢4. Let w7 and w3 the two zeros of the polynomial ¢s.
Indeed, for instance, using possible relations between all the coefficients of a holomor-
phic polynomial and its zeros, we have then

mm= 2 = L) + () + )
arms = 20 _ Loym(e) + pre)ma) + m)w()
1W2 3¥(Z) 3 1 3 1 4 3 4 .

Assume that p1(z), ®3(z) and P4(z) are zeros of ¢4 of order 1. Then wy and w; are
not zeros of qq.

wy and wy are zeros of gs.

Therefore p1(z) + Wy + Wz = %H(z) = %(2@(2) + @3(2) + Pa(2)). Then wy + we =
3(01(2) + @3(2) + pa(2)).

w1 4 wa = 21(2) + 3(p3(2) + pa(2)). Thus @3(z) + @a(z) = 2¢1(2) and then

wy, +wy = Qfl(z).
T = = SRR + B + T
= SREE) + R,

We have also

wip1(2) + wapr(2) + wrwe = = =
S +201(2)05(2) + 201 (a(2) + ea2)a(2) = 5 (5 () + @a(a(2)
= (w1 +w2)p1 + wiws.
Therefore,

263(2) + wiws = S (563() + pa(2)a(2).

1 1 1
wiwy = @1 (2) + 593(2)¢a(2) = 3(201(2) + p3(2)a(2)).
Thus 3¢1(2) + 3ps(2)pa(2) = 401 (2) + 23(2)¢a(2). Then @3(2)pa(2) = ¢i(2). Since
©3 + @4(2) = 2¢1(2). Thus p3(z) = w4(2) = 1(2). A contradiction.
Assume now that $1(z), P3(%) and P4(z) are not zeros of ¢4 of order 1. Recall that
{@1(2),23(2), @1(2)} is exactly the set of zeros of ¢4. Since ¢1(2) # p3(2), then

©1(2) = pa(2).
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Because if ¢1(2) # pa(z), then @3(z) = wa(2). Since ¢1(z) = p2(2) # @3(%), then
u(&,w) = Jw —51(&) 2w — 3(£)|?, for each (£, w) € G = D(z,R) x C, where R > 0
satisfying D(z, R) C D. Since u is a function of class C*° and psh on the domain G,
we can prove that we have the condition p; = @3 on D(z, R), or (1 + ¢3) = 3 is
constant on D(z, R).

Now since s; is holomorphic nonconstant on D, then s; is nonconstant on the open
Euclidean disc D(z, R). It follows that ¢1 = 3 on D(z, R). A contradiction, because
©1(2) # p3(z). Consequently, p1(z) = @4(z). Therefore P1(z) is a zero of ga of order
1. Assume that p1(z) = wi. We have ¢1(2) = @2(2) = @a(2), p1(2) # p3(z). It
follows that p1(z) is a zero of g3 of order 2.

P3(2) is not a zero of gs.

Now we use the classical relations between all the coefficients of a polynomial and

its zeros, we have ¢1(2) + wy = :2;%8 = 2(2¢1(2) + ¢3(2)). Also 2p1(2) + wy =

1391(2) + p3(2)) and @1(2) + w2 = §(2¢1(2) + @3(2)). Then v1(2) + F(2p1(2) +
03(2)) = §(3¢1(2) + w3(2)). Thus, 121 (2) +8(2¢1(2) + w3(2)) = 9Bw1(2) + 3(2))-
Consequently, ¢1(z) = @3(z). A contradiction. It follows that the assumption
p1(z) # p3(2) is impossible. Consequently, p1(z) = p2(2) = w3(2).

Now assume that ¢4(2) # ¢1(2). Let wg the zero of ¢o, wg # ¢1(2). Note that p1(2)
is a zero of the polynomial go because P1(z) is a zero of g4 of order 2.

©1(z) is a zero of ¢; of order 3.

Therefore p1(z) is a zero of g3 of order 2. Consequently, Wy is a zero of g3 of order 1.

We have wg + ¢1(z) = ;i%g; = 2(2¢1(2) + pa(2)). Also 2¢1(2) + wy = 2s1(2) =

3 (301 (2) + 4 (2)). Therefore, we have ;1 () + 2(2¢1 (2) +94(2) = $(391(2) +a(2)).
Thus ¢1(2) = pa(2z). A contradiction. Consequently, the assumption ¢1(z) # @4(z)
is impossible. We conclude that ¢ = @9 = w3 = ¢4 on D.

Step 2. s; is constant on D.

Let (z,w) € D x C, such that 6‘9;:9';(2,11)) # 0. Assume that s5(z) # 0. We have
q192 = cq3qq, where ¢ = % Let wg = % be the only zero of ¢s. Note that
{@1(2),92(2), @3(2), Pa(2)} is the set of zeros of the holomorphic polynomial ¢; on C.
If for example $1(z) is a zero of ¢; of order 1. Then 7(2) is not a zero of g3 = ¢j.
Since now ¢1¢2 = 3344, then pi(z) is a zero of g4.

Now if p1(2) is a zero of ¢; of order 2. Then p1(2) is a zero of g3 = ¢} of order 1. By
the fundamental relation g1qo = %q3q4, we obtain p1(z) is a zero of ¢4. We conclude
that the set of zeros of g4 is {®1(2), P2(2), ?3(2), P2(2)}.

Since now deg(qs) = 2 (because s5(z) # 0), then there exists ji, jo, J3, Ja,
{j1,j2,j3,j4} = {1,2,3,4}, such that Pip = P, = Pjs 75 @4, on l)7 or @5, = Py,
and ¢j, = @;, on D.

Suppose that we have 1 = @2 = @3 # 4. Then P1(z) is a zero of ¢; of order 3. P1(z)
is a zero of g3 of order 2.

wy is a zero of g of order 1.

©1(z) is not a zero of gs.

We have

261(2) + g = 51(2) = 5 (Br(2) + pa(2)).
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wo = 532 = S(e1(2) + 9a(:)).

Thus 261(2) + 3 (1(2) + 94(2)) = 23¢1(2) + @4(2). Therefore 3p1(2) + Spa(2) =
2¢1(2) + 3¢4(z). Then ¢1(z) = @a(z). A contradiction. Consequently, the above
assumption is impossible. It follows that ¢;, = ¢;, and @;, = @;, on D, (for example).
We suppose without loss of generality that j; < j2 and j; < j4. Then u(z,w) =
lw — 35, (2)]*|w — 755 (2)|?, for (z,w) € D x C.

Actually, we observe that ¢;, = ¢;, on D, or (¢j, + ¢j,) is constant on D. Suppose
that ¢;, = ¢;, on D. Then ¢1 = 2 = @3 = ¢4 on D. Since s§ = 0 on D, then ¢, is
constant on D. Thus aa;avw =0on D x C. A contradiction. Consequently, (¢;, + ¢;,)
is constant on D and observe that the product ¢;, ¢;, is nonconstant on D.

Assume that s, = 0 on D. Then s5 # 0 on D, because 6‘%2“; # 0 on D x C. The set of
zeros of qy is {P1(2), P2(2), P5(2), Pa(2)}. Since deg(qa) = 1, then 1 = 2 = @3 = ¢4
on D.

sy = 0 on D implies that ¢, is constant on D. Therefore, % =0on D xC. It
follows that this case is impossible.

(IT) implies (I). Obvious.

Remark 9 . Let F : C?> — C be holomorphic, a1, az, as,as € C* and by, bo, b3, by € C.
Define

v(z,w) = |[w—=<F(z)/ar >—b]w—<F(z)/az > —be] -
Jw—< F(2)/az > — bs][w — < F(z)/as > — b4,

for (z,w) € C? x C. We can characterize all the conditions on ay,az, a3, a4, b1, bs,
b3, by, which ensure technical hypothesis for the plurisubharmonicity of v. Indeed, we
have the following of various behaviour.

Theorem 16. Let 1, p2, 93,04 : D — C be holomorphic functions, D is a domain
of C", n > 1.
Put u(z, w) = [w —21(2)||w = P2 (2)[|[w — @3(2)||w — ()], (2,w) € D x C.

4

Let v = u?, 51 = Zgaj, So = Z PiPr, 83 = Z PiPKPs, S4 =
j=1 1<j<k<4 1<j<k<s<4

P1p20304, (81,82, 83,84 are holomorphic functions on D).

The following assertions are equivalent

(1) u (respectively v) is psh on D x C;

(II) We have the following three cases.

Case 1. s1, s3 and s3 are constant on D.

Case 2. sy is nonconstant on D and p1 = w2 = w3 = @4 on D.

Case 3. s1 is constant on D, so is nonconstant on D and there exits ji1, j2, Jj3, Jja,

{jlanaj37j4} = {1a27374}7 J1 < J2, J3 < ja, with Pir = Pia and Pjz = Pja OT D.

Proof. Obvious by the above theorem.

Example. Let ai,a2,a3,a4 € C?, Ay, Ay, A3, A4 € C™ and F : C* — C2 be a
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holomorphic function, n,m > 1. Define

Y(z,w) = | <w/A; >—<F(2)/a; >|| <w/Ay > —< F(2)/ay >| -
| <w/Az > —< F(z)/ag >|| < w/As > —< F(z)/a4 >,

for (z,w) € C™ x C™.
In a slightly different direction, we can show all the conditions formulated by the
constants ay, as, as, a4, Ay, As, Az, Ay, which characterize the plurisubharmonicity

of 9.

Example. Let N > 2 and p({1, ..., En, w) = (w—E&1)...(w—En), for (§1,...,&n) € CN,
w € C. Define F(&,....ENn,w) = |p(&1, ..., €N, w)|. Then for each Euclidean open ball
B(a,R) C CV, (a € CN, R > 0), the function F is not psh on B(a, R) x C.

Remark 10. (I) Let g1(2) = 22, g2(2) = —22, g3(2) = i22, g4(2) = —iz?, z € C. gy,
g2, g3 and g4 are holomorphic functions on C. Let

(z,w) = lw —g1(2)|[w = G2(2)[|[w — g5(2)],

U1

UQ(Z,'U} )
u3(z,w
Uyq w

(
jw —g1(2)[|[w - g5(2)[[w — Ga(z

= (2) (2)
) = |w—g1(2)|lw — g2(2)[|w — ga(2)|
)= (2) (2),

(z,w) = |w =2 (2)|Jw — g3(2)[|[w — ga()];

u(z,w) = [w = gi(2)|Jw - F2(2)|lw — G5 (2)||w — ga(2)], (2,w) € C*.
We have u1, ug, uz and u4 are not psh functions on C?. But u is psh on C2.
(I1) g1(=) = ga(2) = 2+ 1, gs(2) = ga(2) = —2 + 1, 2 € C.
g1, 92, g3 and g4 are holomorphic functions on C.
(g1 + g2 + 93 + ga) is constant on C.
(9192 + 9193 + 9194 + 9293 + g294 + g394) is non constant on C.
Let (2, w) € C2. Put u(z, w) = [w—g7(2)|lw—g3(2) |jw—7a(2) llw—7i(2)] = | —dw’+
[6-2(2)*w® —4w[1—(2)*]+[1~(2)?]?|. Observe that (g19293+919294+919394+929394)
is nonconstant on C. But u is psh on C?, because

u(z,w) = lw—1-2Flw - 1+2 = [(w - 1)* - (2)*]* = |,

where h is a prh function on C2.

Question 8. Let Niy,..., Ng,s1,mq,...,se,my € N\{0}, k,t > 1 and ¢1,..., gk,
01,...,0; : C* — C be prh functions. Put

u(z,w) = [w — g1 ()| |w — gr(2) [V [t = 07 (2)].Jw = 07 (2)],
for (z,w) € C™ x C. Find conditions g1, ..., gk, 01, ..., 0 should satisfy so that u is psh
on C" x C.

Question 9. Let N € N\{0,1} and Ag,...,Ay_1 € C. Define v(z,w) = [w" +
An_1wN =1z 4+ 4+ AjwzN-1 + ApzN|. Find all conditions on N, Ay, ..., Ax_; such
that v is psh on C2.




A Contribution on Real and Complex Convexity in Several Complex Variables 57

Conclude that we can characterize all the holomorphic polynomials ¢ on C?, such that
F is psh on C?, where F(z,w) = |q(Z,w)| for (z,w) € C%

Let p be a holomorphic polynomial on C2. Put Fy(z,w) = |[p(z,w)| and Fy(z,w) =
|p(z,w)|, for (z,w) € C2 Moreover, thanks to the above characterization, we can
prove that F) is psh on C? if and only if F; is psh on C2.

In the following question, we recall some properties and sharp results in the framework
of complex analysis of the appeared function 6, defined by 6(z,w) = (w + z)¥, for
N € N\{0,1} and (z,w) € C2.

Question 10. Let N € N\{0,1}, A € C\{0}, (Bu, ..., B,) € C"\{0} and s € [1,+o0].
Let g, fo, ..., fn—2 : D — C be continuous functions, where D is a domain on C™.
Define 9(z,w) = [(Aw + B1Z1 + ... + BuZn)N + g(2)|° and (2, w) = |(Aw + B1z1 +
it BoZa) N 4 v (2)wN "2+ 4 fo(2)], for (z,w) = (21, ..., 2n, w) € D x C. Assume
that ¢ is psh on D x C. Prove that g = 0 on D. Suppose that ¢ is psh on D x C.
Prove that fy_o=...= fo =0.
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On the Basis Property of Root Vectors
Related to a Non-Self-Adjoint Analytic
Operator and Applications

Hanen Ellouz, Ines Feki and Aref Jeribi

ABSTRACT: In the present paper, based on a separation condition on
the spectrum of a self-adjoint operator T on a separable Hilbert space H,
we prove that the system of root vectors of the perturbed operator T'(g)
given by

T(e) =Ty +eTy +2To+ ...+ T + ...

is complete and forms a basis with parentheses in H, for small enough
le]. Here e € C and Ti,T3,... are linear operators on H having the
same domain D D D(Ty) and satisfying a specific growing inequality. The
obtained results are of importance for applications to a non-self-adjoint
Gribov operator in Bargmann space and to a non-self-adjoint problem
deduced from a perturbation method for sound radiation.

AMS Subject Classification: 15A42, 47TA55, 47B25, 46A35, 46B15, 65F15, 656H17.
Keywords and Phrases: Basis with parentheses; Elastic membrane; Gribov operator;
Not condense; Spectrum.

1. Introduction

For non-self-adjoint perturbations of a self-adjoint operator, the crucial problem is
the study of the spectral properties. For instance, the existence of a basis (possibly
with parentheses) of root vectors is an important property. In order to prove the
existence of such basis, several authors studied the comportment of the eigenvalues
and established different conditions in terms of the spectrum (see [3]-[5], [8]-[13], [16]-
[20], [22], [24] and [25]). Indeed, many non-self-adjoint ordinary differential operators
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can be considered as a perturbation 7'+ B of a leading self-adjoint component 7" by its
subordinate B. In [22], A. S. Markus claimed that G = T+ B admits an unconditional
basis with parentheses of root vectors if B is p-subordinate to 7" and the eigenvalue-
counting function of T satisfy a certain asymptotic growth condition. One might ask
whether we can construct a basis if the p-subordinate condition is relaxed. A positive
answer is given by A. A. Shkalikov [24]. He assumed that T is positive, self-adjoint
with discrete spectrum and its eigenvalues (p, )nen+ are not condense, i.e.,

Hntq — Hn > 1, for some ¢ € N*. (1.1)
Further, he required that B verify
[ BYnll < b, (1.2)

where (¢, )nen+ is an orthonormal system of eigenvectors associated to the eigenval-
ues (fn)nen+ of T. Under these assumptions, he established an asymptotic relation
between the eigenvalue-counting functions of G and 7" and he claimed that the system
of root vectors of G forms a basis with parentheses in H. More precisely, he proved
the existence of a spectral condition

n(r,G) —n(r,T) = O(1),

under which he guarantees the existence of a basis with parentheses of root vectors
(see [24, Theorem 2]).

Here n(r,T) (respectively, n(r, G)) denotes the sum of multiplicities of all eigenvalues
of T (respectively, G) contained in the disk {A € C such that |A| <r}.

Notice that in classical perturbation theorems for bases or Riesz bases, the authors
always required that the eigenvalues of T are with multiplicity one (for instance, see
[6], [7, Theorem XIX.2.7] and [21, Theorem V.4.15a]). Although, by assuming that
the eigenvalues are with finite multiplicity, several authors such as A. Jeribi [18, 19],
A. S. Markus [22], A. A. Shkalikov [24] and C. Wyss [25] proved the existence of bases
with parentheses or unconditional bases with parentheses.

It is interesting to note here that the concept of bases (or unconditional bases) with
parentheses is a natural generalization of the one of the bases (or Riesz bases).
Furthermore, [24, Theorem 2] ameliorates the result stated in [22]. Indeed, A. A.
Shkalikov obtained a basis with parentheses under Eqs (1.1) and (1.2) which are
much weaker.

Besides, in many situations, this result presents an important tool in the determining
of the existence of bases. Among this direction we had the idea to exploit this outcome
to study the Gribov operator (see [1], [2], [12] and [15]) originated from Reggeon field
theory and constructed as a polynomial in the standard annihilation operator A and
the standard creation operator A*:

(A*A)3 + A" (A + A*)A + e2(A*A)3v2 + . + b (A*A)3ur 4

where € € C and (ug)ken is a strictly decreasing sequence with strictly positive terms
such that ugp = 1 and u; = %; while the expressions of the operators A and A* are
given by:
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A:DA)cB—B

d
¢ — Ap(z) = 2£(2)
D(A) = {¢ € B such that Ap € B}

and
A*:DA*)CB—B
p — ATp(2) = 2p(2)
D(A*) = {p € B such that A*¢ € B},
B = {gp : C — C entire such that / e_‘2|2|<p(z)|2dzd2 < oo} .
C
Since {p, = %}nZl is an orthonormal basis of eigenvectors of (A*A)? associated

to the eigenvalues {n3},>1, then we have

H(m* A+ A A—i—Za (A*A )3%) ©n

k=2

<1 €|€| (14 2v2)(1 +n?), for|e| < 1.

(1.3)
It is clear here that Eq. (1.3) does not verify Eq. (1.2). Consequently,
[24, Theorem 2] can not be applied.
Further, if we consider the following integro-differential operator initially motivated
by P. J. T. Filippi et al. [14] and deduced from a perturbation method for sound
490

radiation (see also [8], [11] and [13]):
1 d d* d*

where K is the integral operator with kernel the Hankel function of the first kind and
order 0 and ¢ is a complex number such that |g| < H—}(H; we obtain

N

(I+¢eK)™!

o0

Z(_ k kde Pn

dx?
k=1

le]

< | K| wnt, for |e] <
L= [el[| K]

1
1K
Here (¢n)n>1 denotes the system of eigenvectors of the operator

D)  L2( = L) — 12( - L, L)
PR ¢
D(ik) = H3() - L, L)) N H'(] - L, L])

associated to the eigenvalues (A, = kn?),>1 (k > 0). It is easy to check that (¢, )n>1
forms an orthonormal basis of L?(] — L, L[).

Hence, Eq. (1.2) is not fulfilled and consequently [24, Theorem 2] can not be applied.
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Among this direction and in order to overcome these bumps, we had the idea to extend
[24, Theorem 2] to an abstract setting. More precisely, we continue the analysis
started in [9] and we focus on the property of bases with parentheses of the analytic
operator

T(e):=To+eTy +2To+ ...+ T + ..., (1.4)

where € € C, Ty is a closed linear densely defined operator on a separable Hilbert
space ‘H with domain D(Ty) while Ty, Ts, ... are linear operators on H having the
same domain D D D(Tp) and satisfying

ITkeell < ¢**(alloll + bl Towll” o]l *~7)

for all ¢ € D(Tp) and for all k > 1, where 3 €]0, %[ and a,b and ¢ > 0.

We would like to mention here that the perturbed operator (1.4) was introduced by
B. Sz. Nagy in [23] and considered later in some valuable papers such as [3], [5] and
[8]-[13].

Furthermore, it is interesting to note here that in [9] we derived a precise description
to the localization of the spectrum of the perturbed operator (1.4) and we proved
an asymptotic relation between the eigenvalue-counting functions of Ty and T'(g). In
other words, we claimed that the difference between the eigenvalue-counting functions
of Ty and T'(¢) is bounded by a constant. This generalization is of great importance.
In fact, it allows us to control the jump of the eigenvalue-counting function of some
analytic operators where the criteria of A. A. Shkalikov [24] can not be applied.

Now, based on the asymptotic relation between the eigenvalue-counting functions of
To and T'(¢) developed in [9], can we construct a basis with parentheses of root vectors
of the perturbed operator T'(£)? Indeed, in view of [9, Proposition 3.1] the spectrum
of T'(¢g) is discrete for |e] < ﬁ. So, we consider E,, = Uy,>1N(T'(g) — Ay (e))™ the
root linear finite dimensional subspace whose dimension is called algebraic multiplicity
of the eigenvalue A, (g). These subspaces are linearly independent and vectors in E,,
are called root vectors of T'(¢). Following some ideas due to A. A. Shkalikov [24], we
prove first that the system of root vectors of the perturbed operator T'(¢) is complete.
Notice that our result improves Theorem 4.3 stated in [12]. In fact, not only the
assumptions used in [12] are relaxed but also the values that takes |e| are greater
than the one considered in [12, Theorem 4.3]. Furthermore, it can be considered as
an extension of [24, Lemma 7] to an analytic operator.

Having obtained this aforementioned result, one might seek if it forms a basis with
parentheses. Actually, using the spectral condition developed in [9], we prove that for
le| enough small, the system of root vectors of T'(¢) forms a basis with parentheses in
H.

We point out here that our result ameliorates [13, Theorem 3.4] since they established
the existence of Riesz basis using a spectral analysis method based on the fact that
the eigenvalues of Tj) are with multiplicity one; while we investigate the existence of
basis with parentheses by supposing that the eigenvalues are with finite multiplicity.
Further, our result might be regarded as an extension of [24, Theorem 2]. In fact, we
guarantee the existence of basis with parentheses for some analytic operators where
Eq. (1.2) considered by A. A. Shkalikov in [24] is not verified.
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The present paper consists of four sections: In section 2, we introduce some basic
definitions and auxiliary results connected to the main body of the paper. Section
3 is devoted to prove the completeness of the system of root vectors of T'(¢) and
the existence of basis with parentheses of root vectors. In the last section, we apply
the obtained results to a Gribov operator in Bargmann space and to a problem of
radiation of a vibrating structure in a light fluid.

2. Preliminaries

In order to state our main results, let us begin with some definitions and preliminary
results that we will need in the sequel. For this, let us consider a Hilbert space H.

Definition 2.1. [22, p. 16] Let A be a linear operator such that its resolvent set,
p(A), is not empty. An operator B is said to be A-compact if its domain D(B)
contains D(A) and if the operator BR)(A) is compact, where A € p(A). O

Definition 2.2. Let K be a compact operator on H. K is said to belong to
the Carleman-class C, (p > 0), if the series > o0 [s,(VK)]P converges, where
sn(VK),n =1,2,..., are the eigenvalues of the operator v K*K. O

Definition 2.3. [22, p. 18] An operator K is said to be of finite order if it belongs
to the Carleman-class C, (p > 0). %

Markus’s theorem is formulated as:

Theorem 2.1. [22, Theorem 4.3] Let A be a normal operator whose resolvent belongs
to the Carleman-class Cp, (p > 0), and whose spectrum lies on a finite number of rays
argA = ai(k = 1,...,n). If B is A-compact, then the operator G = A+ B has a
compact resolvent and the system of its root vectors is complete in H. O

Lemma 2.1. [2/, Lemma 8] Let F(\) be a scalar meromorphic function with finite
order in an angle Ao, = {) : |argA| < a} and the poles of F(A) in this angle lie
inside the strip |[ImA < h, h > 0. Suppose that |F(N)| < M on the half-lines
ImA = £(h 4+ 0), 6 > 0, inside the angle A,. Then the following estimate holds
inside the strip [ImA| < h+ 9§ as Reh — oo outside an exceptional set of disks D:

lnF()\)|§C<M—|- sup (n(t—!—l,F)—n(t,F))), r=|Al

Jt—r|<r

where n(t, F') is the pole-counting function for F and the number n can be taken
arbitrarily small. For any d > 0, the exceptional set of disks D can be chosen in
such a way that the total sum of the radii of the disks from D inside the rectangle
[ImA| < h, t < ReX < t+1 does not exceed d for any sufficiently large t. The constant
C depends on d,n, and d (the dependence on d is proportional to Ind) but does not
depend on v and F'. &

In the remaining part of this section, we introduce the concept of basis (possibly with
parentheses).
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Definition 2.4. [22, p. 25] A sequence {V,,}52; of subspaces of a Hilbert space H is
called a basis (of subspaces), if any vector belonging to #H can be uniquely represented
as a series

p= Z pn  such that ¢, € V,. &
n=1

Definition 2.5. [22, p. 27] A linearly independent sequence {p,,}52 ; is called a basis
with parentheses for a Hilbert space H, if there exists a sequence of positive integers
(ng)r such that ng = 1 and the subspaces spanned by the vectors {cpn}ﬁ’;jll form a

basis for H. &

Theorem 2.2. [22, Lemma 6.1] Let {P}72, be a sequence of disjoint projections
(i.e.,

P; P, = 6;1Py). If the sequence of subspaces Ry, = ImPy, (k € N*) is complete in H,
then it is a basis for H if and only if

n

Sh

k=1

sup < 0. ¢

n

3. Main results

Let H be a separable Hilbert space and Ty be a linear operator on H verifying the
following hypotheses:

(H1) Tp is self-adjoint, positive and with domain D(Tp) in H.

(H2) The resolvent of T is compact and its eigenvalues (Ay,),, verify

Angp — Ap > 1 for some p € N*.

Let T1,T15,T5, . .. be linear operators on ‘H having the same domain D and satisfying
the hypothesis:

(H3) D D D(Tp) and there exist a,b,q > 0 and S €]0, %[ such that for all & > 1
I Teell < ¢ Halloll + bl Toel® o] F) for all ¢ € D(To).
Let € be a non zero complex number and consider the eigenvalue problem

{ Top+eTip+ T+ +e"Tho+--- = Ap
¢ € D(To).

Before stating our main results, we shall recall the following theorem.

Theorem 3.1. [12, Theorem 2.1] Suppose that hypotheses (H1) and (H3) hold.
Then for |e| < q~', the series Y.~ Ty converges for all ¢ € D(Ty). If T(e)y
denotes its limit, then T(¢) is a linear operator with domain D(Ty) and for |e| <
(g + Bb)~L, the operator T(g) is closed.
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3.1. Completeness of the system of root vectors of T'(¢)

The aim of this part is to establish the completeness of the system of root vectors of
the perturbed operator T'(¢) in H.

To this end, we need first to recall the following proposition developed in [9].

Taking into account Theorem 3.1, we denote by B(e) := > 3=, e*T}.

Proposition 3.1. [9, Proposition 3.1] Assume that hypotheses (H1)-(H3) hold.
Then, for |e| < ﬁ, the operator B(g) is To-compact. Moreover, the operator T(e)
is with compact resolvent. &

Now, we are ready to state our result.

Theorem 3.2. Assume that hypotheses (H1)-(H3) are verified. Then, for |e] < ﬁ,

the system of root vectors of the operator T (g) is complete in H.
Remark 3.1.

(i) Theorem 3.2 extends [24, Lemma 7] to an analytic operator instead of the sum
of two operators. Besides, we have proved that the system of root vectors of
T(e) is complete even if the criteria of A. A. Shkalikov (Eq. (1.2)) is not satisfied.

(#7) Theorem 3.2 ameliorates Theorem 4.3 stated in [12]. Indeed, in order to guar-
antee that the operator B(e) is To-compact, the authors in [12] assumed that T},
is Ty-compact for all £ > 1; whereas Proposition 3.1 ensure this result without
this assumption. On the other hand, the values of |e| for which the system of
root vectors of the operator T'(¢) is complete in H, are greater than the one
considered in [12, Theorem 4.3]. &

Proof of Theoerm 3.2.
In view of hypotheses (H1) and (H2), we have Tj is self-adjoint with compact resol-
vent. Further, it follows from hypothesis (H2) that

An-l-l — A = /\n+1 - )‘(n+1)7p + )‘(n+1)7p - A(nJrl)pr + ..

>1

1

A = A1) - 2p=1) 2 (3.1)

[I IV

>1

Thus, Eq. (3.1) yields A, > "le + A1. So, there exists P > 1 such that the series

Y on>1 (/\%)P is convergent. Consequently, the resolvent of Ty belongs to the Carleman-
class Cp. Moreover, in virtue of Proposition 3.1, the operator B(e) is Tp-compact for
le] < ﬁ. Consequently, Theorem 2.1 implies that for |¢| < ﬁ, the system of root
vectors of the operator T'(¢) is complete in H. O
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Corollary 3.1. Suppose that hypotheses (H1) and (H3) are verified. Moreover,
assume that

)\}H_(; AT > 1, where 0 < a < 1. (3.2)
Hence, for B €]0,1+ O‘%[ and || < q+/3b the system of root vectors of the operator
T(e) is complete in H. O

Proof. It follows from Eq. (3.2) that AL=® > "le + A17%. Hence, there exists
P > 1 — o such that the series Zn>1(ﬁ)P is convergent. As Ty is self-adjoint
with compact resolvent, then the resolvent of T belongs to the Carleman-class Cp.
Further, due to [9, Corollary 3.1] the operator B(e) is Tp-compact for |e| < ﬁ.
Hence, according to Theorem 2.1, we deduce that the system of root vectors of the

operator T'(¢) is complete in H for le] < q+,6’b O

3.2. Basis with parentheses of root vectors of 7T'(¢)

In Theorem 3.2, we have proved that the system of root vectors of the operator T'(¢)
is complete. The question that occurs is whether this system forms a basis in H. In
other words, if

P, — /8 =Ty

denotes the spectral projection corresponding to the spectrum of T'(¢) inside A,, where
A,, is a bounded closed isolated part of the spectrum of T'(¢), then the series > P, . f
is convergent and its sum is it f.

To answer to this question, we shall prove some preliminary results.

Lemma 3.1. Let 7 be an arbitrary positive number. If |[ImA| > 7, then for |e] < %
there exists a positive number N(g,a,p,q,T) such that

IB(e)en®
Z |A A |2 N(Eva’7p7q77—)' (33)

If ReX < —7, then for |e| < % there exists also a positive number Ni(e,a,p,q,T) such
that

Z ||A ;\0774'! < N1(€7a7p7Q7T)' (34)

O

Proof. Let n € N* and A, be the eigenvalue number n of Ty. We have
[BE)gnll = lI(eT1 + 2T + ... )ul

oo

<3 [eTipnll
=1
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Then, in view of hypothesis (H3) we obtain

[ B(e)enl ZW Hallgnll + bl Toenll®lenl =)
< Z\E\Z “La +bAD). (3.5)

Hence, for [e] < % it follows from Eq. (3.5) that

IBE)enll® _ el < a? 2abA; bzA?f’)

3.6
Dl S U= el TP TR (3:6)

Now, let 0 = ReX and A = o £ i7, where 7 > 0. So, there exists k € N* such that
Ae—1 <o and A\ > 0. Thus, we have

Ao — 0>\ (A};B - o—l—ﬂ) > O\ () > 0) (3.7)
and
A= deal 2 M= A > P (A7 A 2 X, (>0, (3)

Then, Egs (3.7), (3.8) imply that

Zp\ — o2 < 0712 2+ Z An _U|2 Zp\ _J|2
n<k—1
2 AP )\25
< = .
S @t L Rt P (3.9)

n<k—1

where C' := min{C1, C,}. Further, since 3 €]0, 5[, hence for n < k — 1 we obtain

o—An > A1 —
> (1= Mot = 2) 77 ey = M) A7
> n(1=BN M=), o<y <1 (3.10)
and for n > k& we have
Ap— 0 > Ay — A\
> (1= BN =) P = A7
> w1 =N A=), 0<p <1 (3.11)

So, Egs (3.9), (3.10) and (3.11) yield
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o0

)\25 1
St X

= WS (L= B)2 (Nemr — AP

+Z !

531 B)2 (A — )PP

Consequently, if we put v := min{~y1,72}, we obtain

X N\ 2

n ].
DY ey AP

+
WS 2= B)2 (Aer — AR

1
g V2(1 = B)2 (A — M) 27 (3.12)

As Ay > 251 4 Ay, Eq. (3.12) yields

> A28 s A28
DS e
|)‘_>‘n‘2 ‘)‘n_0|2
n=1 n=1
p2(1—5) p2(1—ﬁ)

n)2(175) + Z

n>k 72(1 - ﬁ)Q (n - k)z(liﬁ)

ChiDS

n<k—1"7 (1_5)2(k_1_

2 2(1-8) e 2(1-5)
=zt Z : 2(1-5) T Z 2 . 2,,2(1—f)
¢ n<k—1 72(1_6)2 (k_l_n) m:1,y (1_ﬁ) m
2 2(1
< @ 2 Z m2(1 251 < 00.

m=1
Moreover, if we use the same argument as above with é we get

2

Zp\ )\|2 o2 2Zm23 §2 < 0.

. 2abA? b2A28 .
Consequently, the series ) Maiklz and ) Doz are convergent. So, there exists

& > 0 verifying

2. 2ab\? >
Z FEWE Z |A /\ \2 <D+ 20b6; = &, (3.13)

To complete the proof of our result, we follow some ideas due to [24].

o Let us consider [ImA| > 7. For |e < ¢, it follows from Egs (3.6) and (3.13) that

ZH eull® _ el Hazz
PP (R E Ou—of 7))
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On the other hand, hypothesis (H2) implies that
Aitjysp —0 =8 and 00— Ap_j_sp—1 >S5, where j=0,...,p—1and s=0,1,....

Hence, for |e| < % we obtain

k3

LTI R D D,
n=1 |)\ )\ ‘2 (1 - ‘€|q)2 s=0 s T 72 s=0 5? + m

So, for |¢| < 1 we have
|B(e)enll® le[? o [x 1 1
) R T
Z |>\ >\ 2 S e \C T gsuﬂ*ﬂ
le|? 5 (1 /°° dx
R bl B 2 — -
RRTEErEA R P A

< N(e,a,p,q,7),

2
N(e,a,p,q,7) = (1—|€£|q)2 (§+a25 <7r+ i)) .

e Now, if ReX < —7. It follows from hypothesis (H2) that

where

AMijpsp— 0 >5—0>5+7, where j =0,...,p—1land s=0,1,..., (3.14)

since Ai4; > 0 and A4 j4sp —0 > s+ Ay — 0. So, Egs (3.6), (3.13) and (3.14) imply
that for |e] < % we have

=, |BE)gal? ef? P

DD e WA (e (“ Z —A|2>
< P (i3
= = PG

<t (0 ([ e 3))

S N1(57a7p7%7')7

where

el 1
N1(57a,p,q,’r) :(1—|E|q)2<€+a 7_(]."‘ >) O

The following proposition holds (see [24]).
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Proposition 3.2. We have

oo

BT < 3 O

¢
We denote by Sy, := { such that [ImA| < h and ReX > —h}, with A > 0 (see Figure

1).

h

T 777770770 7777777777077 7077 070070070070 07070000077000070070070070070070070070070070070070070277777

VTV D N Vo Vv v -

A A A A A A A A A
7 7 77

707 o i 77 TP I I I I I I I I I I I I 7171 7171777177777 7777777777777 777
Y11 I s N s s s 77 77777777777 777707777777707777777777777777777777
7r7 P s s s s I s I I I I I I I 7171771777777 777777777777 77777
2777 YN I I 1717777777777 777777707 777777707777707277777777777777

0 000000000000000000000000000

—h Sh

Figure 1
Proposition 3.3. For small enough ||, the spectrum of the operator T'(g) lies in the
half-strip Sh,. %

Proof. Let A € C such that |[ImA| > h or Re\ < —h. Since Ty is self-adjoint and
positive, then we have

A—=T(e) =[I — B(e)(\—Tp) (A — Tp). (3.15)

Further, combining Eq. (3.3) together with Proposition 3.2, we obtain for |[ImA| > h
and |e| <
1B(e)(A = To)~H|I* < N(e,a,p,q.h). (3.16)

[ S
So, for [ImA| > h and |e| < Ve e get

[B(e)(A—To)~*| < 1.
On the other hand, for ReA < —h and |e| < %, Eq. (3.4) and Proposition 3.2 yield

IB(e)(A = To) '[I* < Ni(e, a,p, g, h). (3.17)

Hence, for Re\ < —h and |¢| < ———-——— we obtain
/e E(+ )

1B(e)(A = To)~HI < L.
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Consequently, for
1 1
g+ \fE+aBa+2) g+ fE+aE(+ )
1

g+ \/E+a?l(m+3)

|B(e)(A—=Ty) Y| <1 for [ImA >h or Re\ < —h.

le| < min

we have

Hence, I — B(e)(\ — Tp) ! is invertible with bounded inverse outside Sj. Then, Eq.
(3.15) implies that A — T'(¢) is invertible with bounded inverse and we obtain

(A=T()™ = (A= Ty) "I - BE)(A—To) "]~ (3.18)

Consequently A € p(T'(¢)). So, the spectrum of the operator T'(¢) lies in the half-strip
Sh,. O

These results are of importance to prove the aim of this subsection.

Theorem 3.3. Assume that hypotheses (H1)-(H3) hold. Then, for small enough |¢|,
the system of root vectors of the operator T(g) forms a basis with parentheses in H.{

Remark 3.2. (i) Theorem 3.3 guarantees basicity with parentheses not only for
the sum of two operators such as in [24, Theorem 2] but for an analytic operator.
Further, we prove that even if Eq. (1.2) considered in [24] is not verified, we can get
a similar result.

(#4) Theorem 3.3 improves [13, Theorem 3.4] since we prove the existence of a basis
with parentheses of root vectors of T'(¢) where the eigenvalues of T are with finite
multiplicity instead of multiplicity one. Indeed, in order to prove the existence of a
Riesz basis related to the eigenvectors of T'(¢), the authors in [13] used a spectral
analysis method based on the fact that the eigenvalues of Ty are with multiplicity
one. However, this spectral analysis can not be applied when the eigenvalues of Ty
are with finite multiplicity. &

Before going further, we recall the following result stated in [9].

Theorem 3.4. [9, Theorem 4.3.2] Suppose that hypotheses (H1)-(H3) are satisfied.
Then, for small enough |e|, the spectrum of the operator T'(€) is constituted by isolated
eigenvalues satisfying

n(r,T(e)) =n(r,To) + O(1) i.e., |n(r,T(e)) —n(r,To)| <Cs as r — oo,

where n(r,To) (respectively, n(r,T(e))) denotes the sum of multiplicities of all eigen-
values of Ty (respectively, T'(e)) contained in the disk {\ € C such that |\ <r} and
C53 is a constant. &
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Proof of Theorem 3.3.
Let A € C. In view of Proposition 3.3, the spectrum of T'(¢) lies in the half-strip

Sp = { such that [ImA| < h and ReX > —h}, for |e] < ——=———. So, let
gt+y/E+a? E(m+7)

(Ag)g>1 be the rectangles bounded by the straight lines ImA = +h, ReX = r, and
Re\ = rp_1, where 1o = —h and rp — oo (see Figure 2).

We note here that the numbers r; are chosen in such away that the boundary 0A
of any rectangle Ay does not pass through the eigenvalues of the operator T'(¢).

A

M 71 Tk—1

ey

NNNNNNNNNNINNNNNNNNNY
Y NN
Y

Ay Sh

Figure 2

1

a+/E+a? L (n+32)
> — A=T() " dr =) Pu(e),
k=1 2mi Jon,, k=1

where Py (g) designates the spectral projection corresponding to the spectrum of T'(¢)
inside Ay.

Then, for |e] < we have

To prove our result, it suffices to show that

< o0. (3.19)

22_711 (A =T(e))"tdx
k=1

sup
n Oy

In order to do, so we are going first to estimate ||(A — T'(g)) | for:

(¢) [ImA =7 > h and |g| < .
g+ \/E+a?2(n+2)

1

g+ \Je+a22(1+ 1)

For this purpose, let us consider A = o + i7.

(i) RehA = —7 and |e| <
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(7) In view of Eq. (3.16), we have

IB(e)(A = To) ' < V/N(e,a,p,9,7) < 1, (3.20)
where
o |e]? a2£ . 2
vemp )= i (642 (n+ 1))
Further,
IO =TI < o = 2. (3.21)
Then, Egs (3.20) and (3.21) yield
0= = ||o-T) - BEO-T)7]"
< =) |1 - BT
< % (1 — N(aa,p,q,T))_l.
(ii) Eq. (3.17) implies that
I1B(e)(A—To) Y| < /Nile,a,p,q,7) < 1, (3.22)

where

2
Ni(e,a,p,q,7) := (1—|E||5q)2 (f—i—agf (1+ 71_)> .

Furthermore, since

1
B e N |
< T N N | n T 9
STRea—ay  nEo@
then we get
1
—T)7Y < — =
IA=To) 7 < 5 ReA=-7
< 2 (3.23)
- .
Consequently, due to Eqgs (3.22) and (3.23) we obtain
_ _ _qq-1
IA=TE) M = || =To) 7 [1 = B - To) "]

1

—1
7(1_ N1(€7aap7Q7T)) .
T

IN

Now, to prove Eq. (3.19) it remains to show the existence of vertical segments in the
half-strip S}, that tend to infinity and on which (A — T'(¢))~! is uniformly bounded
(see [24, p. 292]).
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Let us begin with the boundedness of ||(A — T'())~!||. Let f,g € H and consider the
scalar function F.()) defined as

F.(A) =((A=T()" 1, 9)-

It is easy to see that

* F.(\) is meromorphic and belongs to the Carleman-class Cp, P > 1. In fact, due
to [22, p. 13] the set of the Carleman-class Cp is a two-sided ideal of the algebra of
bounded operators L(H). Further, the resolvent of T belongs to the Carleman-class
Cp (see the proof of Theorem 3.2). Then, in view of Eq. (3.18) the resolvent of T'(¢)
belongs to the Carleman-class Cp.

* The poles of F¢(\) lie in the strip [ImA| < h. Indeed, in view of [21, p. 38], the
poles of (A —T(g))~! are exactly the eigenvalues of T'(¢) which lies in the half-strip
Sh.

1 -1
x |F.(\)| < - (1— N(&,a,p7q,7)) ,for [ImA| =7 =h+J, § >0 and |¢] <
1

g+ JE+a2E(m+ 2)

Then, in view of Lemma 2.1 we have

1 —1
m[F(N)] < ( (1- VNEapan) + sw <n<t+1,F€)—n<t,F€>>>,
T [t—r|<rn

for |[ImA| < 7 and ReA = r,, — 0o outside an exceptional set of disks D, with r = |A|.
On the other hand, in virtue of Theorem 3.4 there exists a positive constant W such
that for |e| < W we have

n(r,T(e)) = n(r,Tp) + O(1). (3.24)
Hence, hypothesis (H2) and Eq. (3.24) imply that for || < W
n(t+1,F)—n(t,F.) =n(t+1,T(e)—n(tT(e))
= [n(t+1,To) + O(1)] — [n(t, Tp) + O(1)]
= O(l) + [n(t + 17T0) - ’I’L(t,To)]
<O()+p=p.
Consequently, for |¢| <V := min {VV, 12} we have
q+/E+a? L (n+3)
[Fe(M)| < C,

where C; is a constant independent of f,g.
Therefore, for |e| < V' we obtain

A =T(e) ] < C,
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where [ImA| <7 and ReA = r,, — 0o outside an exceptional set of disks D.
Then, for |¢] <V we have

< Q.

no_q »
I;M/Mk(x—ﬂg)) i

Hence,

sup < 00.
n

n ;1 B .
;m /Mk()\ T(e))™t dA

Thus,

n

ZPk(E)

k=1

sup < 00.

n

As a consequence, due to Theorem 2.2, we claim that the family (R(Px(¢)))r>1 forms
a basis in H which means that the family of root vectors of T'(¢) forms a basis with
parentheses in H.

To complete the proof of our result, we show by a similar way as [24] the existence
of vertical segments that do not pass through the eigenvalues of the operator T'(¢).
Indeed, in each rectangle bounded by the straight lines ReA = n, ReA = n+ 1 and
Im\ = £h, there are at most p’ points of the eigenvalues A, (e) for |e| < W. Hence,
the projection of the disks from D onto the real axis does not fill the interval [n, n+1].
In fact, it suffices to choose d < 2%, (where d is the total radii of the disks from D
inside each rectangle). So, there exists a vertical segment in this rectangle that does
not intersect D (see Figure 3). Moreover, the vertical segments can be chosen in
such a way that only points Ay (e) with |[Re(Ag(€)) — Re(\;(€))| < d fall between the
neighboring segments.

A

®

®

_h 0 a9 et

@

Figure 3
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Corollary 3.2. Assume that hypotheses (H1) and (H3) and Eq. (3.2) hold. Then,
for B €]0,1 4+ O‘T_l[ and small enough ||, the system of root vectors of the operator
T(e) forms a basis with parentheses in H. O

Proof. Using (H3) and making the same reasoning as the one developed in the proof
of Lemma 3.1, we get for |g| < %

IBE)enl* o lel? @ _2abhp BN
A=2al2 T A= lelg? \IA=2al? A =20l A= A2

Now, let 0 = ReA. Then there exists k € N* such that A\p_1 < o and A\, > 0. Since

1

AT > 2l AT then A, > (Ll + A O‘) . Hence, for n < k — 1 we obtain

T > A1 —Aa
ALY =AY

1-p8
—9 o 1 i—a
A8 ((’gp + A}—a> - (” =+ A}‘”‘) > . (3.25)

Equivalently to Eq. (3.25), for n > k we have

1-58 1-5
— 11—« —_ 11—«
An—0 > M ((”1 + A}“) - (kl + A}“) ) . (3.26)
p p

Two cases are presented: If 5 €]0,a], then we have % > 1. Hence, Eq. (3.25)
implies that

Y

%

1-p5
k—1—n)i-=
o= Ay > Aﬁ% (3.27)
p «@
and Eq. (3.26) yields
.~
— k T—a
An— 0 > )\ﬁ%. (3.28)
pl—a

Consequently, it follows from Egs (3.9), (3.27) and (3.28) that

2 2(1-6) 1
Z |)\ _ 02 +p oo ( Z 2(1-8) + Z 2(1 [3))
n<k—1 (k )

—1- TL) T—o n>k
2 20-9) 1 1
= 02 +p e ( Z i + Z 2<1B)>
n<k—1 (k -1- n) e m=1Mm 1=«
2 201-5) ~— 1 ,
<t Y i = <o (3.29)

m=1 m 1—a
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Now, if 8 €]a, 1+ 251, Then, we have 0 < =28 < Lland 1 <1 =240 = =20 .
So, in view of [22, p 33] and Eq. (3.25) we get
(E)eomwE
o—XAn > N — , 0<y <1. (3.30)
pm
Further, based on [22, p. 33] and Eq. (3.26) we obtain
(= ) =
An—0 > A L 0<y <1 (3.31)

Hence, similarly to Eq. (3.29), Egs (3.9) (3.30) and (3.31) imply that

2 —

o
2 2p 1 ,
Z |>\ _ U|2 @ 2 Z 208 - §o < 00,

,.)/1 (1 a) m= 1m 1—a

where v, := min{y',7" }. Consequently, for 8 €]0,1 + =11 we get

oo

A28 e

Z|A—A |2<Z|0__/\ |2<max{§i,f§}::§§.

n=1 n n=1 n

On the other hand, if we replace 3 by g we get
[eS) 2=5 0o

3 2 2pi-a 1 ,

B Wl R D D= bl
n=1 n 712 (17(1) m=1 1"~

2000 and Y, i t. So, let & b iti
o, 7 an oy are convergent. So, le & be a positive

Hence, the series )
constant satisfying

oo
2ab\?
n b2 U 2 b / —. I.
PO e Z \A . |2 <2 =4
Furthermore, it follows from [9, Corollary 3.2] that for small enough |¢| and 8 €
10,14 252[ we have

n(r,T(g)) = n(r,Tp) + O(1).

To get the desired result, we advise that the rest of the proof is similar to that of
Theorem 3.3. O

4. Applications

4.1. Application to a Gribov operator in Bargmann space

We are interested in a family of non self-adjoint operators, said of Gribov, stud-
ied by the specialists of physics of height energy. A representant of this family is
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a combination between the creation operator A* and the annihilation operator A
([1], [2] and [15]) given by:

(A*A)3 + e A*(A+ A*)A + e2(A*A)3v2 + . + b (A*A)3ur 4

where € € C and (ug)ken is a strictly decreasing sequence with strictly positive terms

such that ug = 1 and u; = %

We define the Bargmann space B by:
B= {gp : C — C entire such that / e_‘z‘2|<p(z)\2dzd2 < oo} .
C

This space is equipped with the following scalar product:

(,):BxB—C
(o) — (o.9) ::/fe**“2w<z>¢<z>dzdz
C

and its associated norm is denoted by |||

The expressions of the operators A and A* are given by:

A:DA)CB-—B
d
¢ — Ap(z) = Z£(2)
D(A) = {¢ € B such that Ap € B}
and

A" :D(A*) CB— B
p — A%p(2) = 2p(2)
D(A*) = {p € B such that A*p € B}.

We consider the problem on E = {¢ € B such that ¢(0) = 0} and we denote by Tj
and H; the following operators:

Ty:D(Ty) C E — E
¢ — Top(z) = (A" A)’p(2)
D(Ty) = {¢ € E such that Ty € E},

and

Hy :DH,) CE—E
p — Hip(z) = A"(A+ A%) Ap(2)
D(H,) = {¢ € E such that Hyp € E}.

Now, we recall a straightforward, but useful result from [12].

Proposition 4.1. [12, Proposition 6.2] We have the following assertions:
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(i) Ty is a self-adjoint operator.
(#4) The resolvent set of Ty is compact.
(#i1) {en(2) = \jﬁ}‘fo is a system of eigenvectors associated to the eigenvalues {n3},>1

ijb. O
Proposition 4.2. The resolvent of the operator Ty belongs to the Carleman-class Cp
for any P > % O

Due to Proposition 4.1, Ty is a self-adjoint operator with compact resolvent in F.
Then, let

Ty = Z n3{., en)en
n=1

be its spectral decomposition. So, for a strictly decreasing sequence (ug)ren with
strictly positive terms such that ug = 1 and u; = %, the operators (T5*)r>o are
defined by:

T D(Ty*) C E — E

o — Tg*e = Z n3U (o, e )en
n=1
D(Ty*) = {¢ € E such that Zn6“k|(4p7en>|2 < 00}

n=1

It is easy to check that for all k > 0, D(Tg*) C D(Ty*™). Then, s, D(Ty*) =
D(T5?).

Let D = D(1y*) N D(H1), Th, (Tk)k>2 be the restrictions of Hy and Tj* to D,
respectively. So, the operators (T})r>1 have the same domain D and we have D(Tp) C
D.

Proposition 4.3. [12, Proposition 6.3] There exist positive constants a,b,q > 0 and
B e [%, 1] such that for all ¢ € D(Ty) and for all k > 1 we have

ITeell < ¢*~*(allell + bl Towll®lle ') &
Remark 4.1. In Proposition 4.3, we take g =1 and a = b =1 + 2V/2. &

Proposition 4.4. For |e| < 1, the series Y, <, Ty converges for all ¢ € D(Tp).
If we denote its sum by T(c)p, then we define a linear operator T(g) with domain

D(Ty). Also, for |e| < ﬁ, the operator T'(g) is closed. &

The main results of this part are formulated as follows:
1

14+Ba
operator T'(g) is complete in E. O

Proposition 4.5. For |e] < and 5 € [%, %[, the system of root vectors of the

Proof. Let ), be the eigenvalue number n of (A*A)3. It is easy to see that

/\éﬂ,—/\é:(n—f—p)—n:pzl, (where a = 2). (4.1)
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Consequently, Corollary 3.1, Propositions 4.1, 4.2 and 4.4 and Eq. (4.1) imply that
the system of root vectors of the operator T'(¢) is complete in E for |e] < ﬁ O
We have proved that the system of root vectors of the operator T'(¢) is complete in
FE. Now, it remains to show that it forms a basis with parentheses in F.

Theorem 4.1. For small enough |e| and B € [%, g[, the system of root vectors of the
Gribov operator forms a basis with parentheses in E. &

Proof. It suffices to apply Corollary 3.2, Propositions 4.1 and 4.4 and Eq. (4.1). O

Remark 4.2. Theorem 4.1 ameliorates Theorem 4.1 stated in [4]. In fact, we have
proved that for 8 € [3, 2[ the system of root vectors of the Gribov operator forms a
basis with parentheses in E; while in [4], the authors showed the existence of a Riesz
basis of finite-dimensional invariant subspaces for 8 = % &

4.2. Application to a problem of radiation of a vibrating struc-
ture in a light fluid

An elastic membrane is stimulated by a harmonic force F(z)e~ ™. It occupies the
domain —L < x < L of the plane z = 0. The two half-spaces z < 0 and z > 0
are filled with gas. The mechanical parameters of the membrane are E the Young
modulus, v the Poisson ratio, m the surface density, i the thickness of the membrane
and D:= #’i%) the rigidity. The fluid is characterized by po the density, ¢ the
sound speed and k:= ¢ the wave number.

Now, let us consider the following boundary value problem:

d74_m70.)2 u(z
L 2 (df4 d4D ) :4) 3 F
im/pﬂakxfb<%7n<m%<m%>>>Mfo g% (4.2)

for all x €] — L, L[ where u denotes the displacement of the membrane such that

u(z) = du(z) =0 for v = —L and & = L and Hy is the Hankel function of the first
x
kind and order 0 (see [20, p. 11]).

The problem (4.2) satisfy the following system:

(ddx4 _me ) u(z) = %(F(x) — P(x)) forall ze€|—L, L],

where dulz)
u(z
u(m)—67—0 for x=—L and z=1L,
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P(x) = lim (p(z,n) —p(z, —n))

n—0+
and
p(z, 2)
L 4 4\ 3
. Po 2 D d d 2 ’ ’
- _ e H, _ 2 2 I - | —
sgn 2i% [L ok (z — ') —|—z)<w m(dm4 (dw‘*) ))u(z)dw,

for z < 0 or z > 0 such that p designates the acoustic pressure in the fluid.

In order to study this problem, we consider the following operators:

Ty : D(Ty) € L*(] - L, L) — L*(] - L, L)
4
¢ — Top(x) = i%f

D(Ty) = H3(]— L, L)) n H*(] - L, L)

and

K:L*(]—L,L[) — L*(] - L, L[)

-
i
o — Ko(z) = 3 / i Ho(k|lx — 2'|) (2 )dz'.

Now, we recall the following result from [20].

Lemma 4.1. [20, Lemmas 3.1 and 3.2 and Theorem 3.1] The following assertions
hold:

(i) Ty is a self-adjoint operator.

(ii) The injection from D(Ty) into L?(] — L, L) is compact.

(#it) The spectrum of Ty is constituted only of point spectrums which are positive,
denumerable and of which the multiplicity is one and which have no finite limit points
and satisfies

0<>\1§)\2§§>\n—>+00
Further,
2n+ 1)m\* @n+3)m\" nmwy4
EREIT) <, < (T e, Anwoo<—).
( AL =M=\ e +oo \2f,

(iv) The resolvent of the operator Ty belongs to the Carleman-class Cp for any P > %.

O

Due to Lemma 4.1, Ty is a self-adjoint operator and has a compact resolvent. Then,
let
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TOSQ = Z )\n<507 90n>§0n

n=1
be its spectral decomposition, 4Vvhelre An = kn? is th@1 nth eigenviulue of Ty associated
to the eigenvector o, () = pe VA% 4 e VAT 4 i Vant 4 §e=iVAnz (see [20, p. 7)).
Hence, we define the operator B by:

1
2

B=T¢ :D(B)c L*(] - L,L]) — L*(] - L, L))

d4 2
¢ — By(z) = (#f)

D(B) = {(p € L?(] — L, L]) such that Z>m|<90790n>|2 < oo}

n=1

and we consider the following eigenvalue problem:
Find the values A(¢) € C for which there is a solution ¢ € H3(]— L, L[)nH*(]—L, L),
¢ # 0 for the equation

Too+eK(To—B)p=Me)(I +eK)p (4.3)

2
where A = #5- and €=

Note that both A and ¢ depend on the value of €. So, we denote this by A := A(e)
and ¢ := p(e).
For || < ﬁ, the operator I + ¢K is invertible. Then, the problem (4.3) becomes:

Find the values A(¢) € C for which there is a solution ¢ € H3(]—L, L[)nH*(]—L, L),
i # 0 for the equation

2po

(I+eK) 'Top+e(I+cK) ' K(Ty — B)p = Ae)p. (4.4)

The problem (4.4) is equivalent to:
Find the values A(¢) € C for which there is a solution ¢ € H3(]—L, L[)NH*(]—L, L),
i # 0 for the equation

(To+eTh +To+ ...+ T +...) ¢ = M)y,

d4 %
where T,, :== (=1)"K™ (dx4> , for all n > 1.
Proposition 4.6. [11, Proposition 4.1] The following properties hold:
(i) There exist positive constants a,b,q > 0 and 8 € [%, 1] such that for all ¢ € D(Tp)
and for all k > 1 we have

1Tkl < ¢ (allell + bl ol llsel* 7).
Note that it suffices to take a = b= q = || K]|.
(#) For le| < m, the series » 1 ek Ty converges for all ¢ € D(Ty). If we denote

its sum by T'(e)p, we define a linear operator T(g) with domain D(Tp). For |e| <

m’ the operator T(€) is closed.
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Using the results described above, we can now prove the objective of this part.

Proposition 4.7. For |e] < m and B € [%, %[, the system of root vectors of
the operator T'(e) is complete in L*(] — L, L[). &

Proof. Let A, be the eigenvalue number n of Ty. We have

1 1

Mtp = At Zfﬁ((n—l—p)—n)zl, Wherea:%andpzﬁ. (4.5)
Then, in view of Corollary 3.1, Lemma 4.1 and Proposition 4.6 the system of root
vectors of the operator T'(¢) is complete in L?(] — L, L) for |¢| < m O

Theorem 4.2. For small enough |e| and B € [% I, the system of root vectors of the

operator T'(€) forms a basis with parentheses in L% (- L, L]). &

Proof. The result follows immediately from Corollary 3.2, Lemma 4.1, Proposition
4.6 and Eq. (4.5). O

Remark 4.3. Theorem 4.2 improves [11, Theorem 4.3]. Indeed, in [11] the authors
proved that the system of root vectors of the operator T'(¢) forms an unconditional
basis with parentheses in L2(] — L, L[) for 8 € [, 3], whereas in Theorem 4.2 we
assure the existence of a basis with parentheses of root vectors for 5 € [%, %[ &
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for Fractional Schrodinger-Maxwell System
With Concave-Convex Power
Nonlinearities
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ABSTRACT: Employing critical theory and concentration estimates,
we establish the existence of two classes of infinitely many weak solutions
fractional Schrodinger-Poisson system involving critical Sobolev growth.
The first classe of solutions with negative energy is found by using of
notion genus while the second one contains infinitely many weak solutions
with positive energy via Fountain theorem.
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1. Introduction

In this paper we focus our attention on the following critical fractional system

(=A)*u + u + ¢pu = Xa(z)|u|"%u + b(z)|u|? 2u  in R,
(1)
()= in B9,
where s € (2,1), t € (0,1) with 4s + 2t > 3,1 <r <2 < 2% := 35 Xis a positive
parameter, a(x

(z),b(z) € C(R?).
The system (1) is made up of a fractional Schrodinger equation coupled to a frac-
tional poisson equation. It is well known that the system (1) has a strong physical
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significance, because it appears in many quantum mechanics modules (see for example
[5, 14]) and in semiconductor theory [3], and so on. In recent years, there has been
an increasing attention to this type of system on the existence and the multiplicity of
positive solutions, see the following references [2, 6, 8, 10, 11, 12, 15, 16, 21]. To our
knowledge, there are few recent articles dealing with the result of the existence of two
classes of solutions of infinite types and different signs of energies. By using the trun-
cation tip at the level of the functional to make it bounded from below and satisfied
the condition of (P.S), for any ¢ < 0. Following the Ljusternick-Schnirelmann theory,
we obtain a negative class with infinitely solutions. Via the Fountain Theorem, we
obtain the second class of infinitely positive solutions.

(A) Let 1 < 7 <2 <2, 0 = 72 and 2 = 35, a(2) € C(R®) N L7(R?),
b(z) € C(R%) N L=(R3),

(A2) a(z) > 0 in some open bounded subset Q of R? with strictly positive Lebesgue
measure,

(G1) Let G be a subgroup of O3, #G = oo, a(z), b(x) are G—invariant,
(G2) a(z) € C(R3,RT) N LL(R3), b(x) € C(R®,RT), b(z) = b(|z|) for any = € R® and
b(0) = b(c0) = 0.
Our first main result is the following:

Theorem 1.1.
If (A1) and (A2) are satisfied. Then there exists Ao > 0 such that, for each A € (0, \o),
the problem (1) has infinitely many solutions with negative energy.

Our next goal is the following:

Theorem 1.2.
If (G1) and (G2) are satisfied. Then for all X > 0 the problem (1) has infinitely many
solutions with positive energy.

The paper is organized as follows. In Section 2, we present some preliminaries re-
sults and we give the interval parameter A for which the energy functional is compact.
In Section 3, when A is small enough, we prove the first Theorem 1.1 by application
of genus. In Section 4, we give the proof of the second Theorem 1.2 without condition
under the parameter A\ > 0, we establish this result via Fountain theorem.

2. Functional framework and preliminary

For any s € (0,1), we define the homogeneous fractional Sobolev space D%?(R?) as
follows

DR = {ue LZ®RY) : [gla(e) € LARY)},
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which is the completion of C§°(R?) under the norm

ooy = ([ 1aria) = ([ eerac)”

The fractional Sobolev space H*®(R?) can be described by means of the Fourier trans-
form, i.e.

/2

HP(B®) = {ueL?R?’ [ e 1aP + late >|2d5<+oo}

which is a Hilbert space under the norm. In this case, the inner product and the norm
are defined as

(o) = [ 16Pa 70 + (e

1/2
fulla- = ([ Il + aeyPae)

From Plancherel’s theorem we have [lul|z2@s) = |4 r2®s) and ||[£]*|@]]|2ms) =

| (—A)% ul| 12 (gs). Hence

m

1/2
fullre = ([ 188 ) + uw)ac) v 1@
In our context, the Sobolev constant is given by
g des | A 50 + fula) P
(fR3 |u]? dz) %

From the embedding results, we know that H®(R3) is continuously and compactly
embedded in LP(R?) when 1 < p < 2%, where 2; = 3% and the embedding is
continuous but not compact if p = 2%. For more general facts about the fractional
Laplacian we refer the reader to the paper [7].

From [20], the author has proved that if 4s 4+ 2t > 3, for each u € H*(R?), the
Lax-Milgram theorem implies that there exists a unique ¢!, € D1?(R3) such that

/(—A)%¢Z(—A)%vd$:/ u?vdz
R3 R3

Vv € DV2(R3), that is ¢!, is a weak solution of
(7A)t¢f¢ = u2’ T e RB

(2)

and the representation formula holds
2 r 3—2t
¢Z(l‘) = ct/ “ (y3)72t dya S Rsa Ct = ﬂ-_%2_2t ( 2 )a
s [T — Yl

which is called ¢t—Riesz potential.
The properties of the function ¢!, are given in the following lemma (see [[20],
Lemma 2.3]).




90 M. Khiddi

Lemma 2.1. If 4s + 2t > 3, then for any u € H*(R?), we have
(i) ¢, =0;
(ii) ¢ : H*(R3?) — D*%(R3), is continuous and maps bounded sets into bounded sets;
(iif) Jo du?de < STull?ys < Clullfy. ps);
(iv) If up = u in H*(R3), then ¢! — ¢, in D¥*(R?), and
Jas O wtdr — [og ¢l uPda.
Substituting ¢!, in (1), it reduces as follows
(—A)*u +u+ ¢hu = Na(z)|ul""*u + b(z)|u|* ~*u in R?,

To find solutions of (1), we will use a variational approach. Hence, we will associate
a suitable functional to our problem. More precisely, the Euler-Lagrange functional
related to problem (1) is given by I : H*(R3) — R defined as follows

D) = gl + 5 [ oo =2 [ a@plds = o [ sl s
3 s JR3

Obviously, Iy € C'(H*(R3),R) and its critical points are weak solutions to (1). We

call u € H*(R3) is a weak solution of (1) if
(I\(u),v) = / (=A)? u(—A)2 vda —|—/ wvdx + ¢Zuvdm
R3

—)\/ x)|u|"" 2uvdm—/ b(x)|ul? ~2uvde = 0,

for any v € H*(R?).

Defined N : H*(R?*) — R by N(u) = [gs ¢! u?dx. The following lemma shows that
the functional and possesses property which is similar to the well-known Brezis-Lieb
lemma [4].

[N

Lemma 2.2. Assume that 4s + 2t > 3. Let u,, — u in H*(R3) and u, — u a.e. in
R3. Then

(1) N(up —u) = N(un) — N(u)+ 0,(1);
(i) N'(un, —u) = N'(up) — N'(u) + 0, (1); in H=5(R3).
Proof. We can consult for example ([[20], Lemma 2.4]). O

Along the way one can easily the following lemma

Lemma 2.3. Under the same conditions as the Lemma 2.2. Let v, = u, —u — 0.
Then
I(vn) = ¢ — I\(u),
(3)
I} (v,) — 0.
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We recall that
Definition 1. Let X be a Banach space

(i) For ¢ € R, a sequence {u,} C H*(R3) is a (PS). for I if I (u,) = ¢+ o(1) and
I, (u,,) = o(1) strongly in H~*(R3) as n — 400;

(i) I, satisfies the (PS). condition in X if any (PS). sequence for I contains a
convergent subsequence.

Let us show firstly the (PS). sequence is bounded.

Lemma 2.4. Let ¢ € R. If {u,} is (PS)c- sequence for I, then {u,} is bounded in
H*(R3).

Proof. We have
In(un) = ¢+ o(1) and Iy (u,) = o(1) in H—*(R%), (4)

By contradiction, we assume that ||u,||gs — +oo.
Let un, = 2. Clearly, @, || s = 1 is bounded in H*(R?). Up to a subsequence,
we may assume that

7

U, — 0 in H*(R3).
This implies

U, —u in L"(R%), 1 <r <2k

By (4), we have

1 N 1 . 1 2r ~ 2
e+ 001) = a3l + Fulye [ 6%, e = Ll [ bl
R3 s R3
A ~
— —|wn|s / a(x)|u,|"dz, as n — 400,
T R3
and

.
% dx

~ ~ 2 ~
o) = I 7 + e | 08, Tz = . [ ot

Al / o(2)|@n|"dz, as n — +oc.
RB

By using the above two equalities, we have

1 1 1 1
D) = (2 = Nanll + (- — ) [ ¢ a2d
o) = (¢ = Pl + G =) [ ok,

1 1 2% _9 ~
. n SS b n
+ (2: T) llwn 7 /R3 (z)|u

% da,
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as n — +oo, that is

11, ., 1 1 L
~ 9 n s - m d
= Plnlle: + G =) [ o, e
1 1 2" -2 ~ 2t
=% l|lwn 7 b(x)|u,|%sdx + o(1),
T s R3
as n — +00.
This implies,
1 1., . 1 1 s
(= Nalle + (= ) [ oh, Tde = +ox,

as n — +o00. By Lemma 2.1 (iii), there C > 0 and ||ty ||z = 1 we have

11 11 .
= = Maallde + (== 2) | ¢, @2d
400 = (7 = lnlf + (- =) [ oh T

1 1 1 1
< G = Aallf +Cllaal* = (= 5) + C. asn— +oo,

which is a contradiction. Thus {uy,} is bounded in H*(R3). O

Lemma 2.5. There exists Ay > 0 such that for every 0 < A < Ag the functional Iy
satisfies (PS). for all ¢ < 0.

Proof. Cousider a (PS). sequence {uy,} for I with ¢ < 0. From Lemma 2.4 {u,}
is bounded in H*(R?). Going if necessary to a subsequence, we can assume that

Up — u, in H*(R3),

(5)

up, = u, in L7(R3), 1 <r < 2%

By Lemma 2.3 we have

<I;\(u),cp> =0 for any ¢ € H*(R?). (6)

With (4) and o = 23 ET and the Holder Inequality we get

1
Iy(tn) = 5= (T (), ) = €+ 0(1)un 172 — € < 0

11 ) 11 A 11 /
> (= = ) lunlde + (5 - = de+ A — — - o|7d
_.<2 2§>Hu % +(2 22) | G tind + (2: T) | a@lun|"d

Then, there exists some constant C' > 0 such that

2: < OAT, (7)

Iun
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and Brezis-Lieb Lemma [4] implies
lula: < OATT.
By (6), note that

[l +/ ol u’dr = )\/ a(z)|ul"dz +/ b(x)
R3 R3 R3
also, using Lemma 2.3, Lemma 2.1 (iv) and (4) we have
on s = / b(z)|vn]* dz + o(1).
R3
Now, we suppose that
lim o3 = lim b(z)|v, % de =1 # 0.

n—-+o0o n—-+oo R3

By Sobolev inequality, we have

ol >S( [ 1en )
_ (3-2s)
> Sboo ° </ b(x)
R3

2s—3
1> Sib2 .

2
o 23
s dx) ,

which implies that

Let 1 < 7 < 2 < 2%, By Lemmas 2.3, 2.1 (iv), (7),(9),(10), (1

inequality, we have

o(l) +c = = ||u||H5 / ot de—f/ a(x)|urdx—2i*/ b(a)|ul d
3 s JR3

%dx + o(1)

gl = 5 [ v,

1 1 1
= b+ (5= g ) NonlBee 4 (el + [ obaca)

1 x
- é/ a(x)|u]"de — — [ b(x)ul*dx
RS RS

*
T 2%

2 de,

1, 11 11
=l + (5 2 +A (= == rd
e+ (5= 2 ) lonlle + (5 - 7) [ atluras

11 .
+ <4 — 2*> b(x)|u|®s dx
—4
Z—S%b 5 -|-)\( o )|a§|u§:.

25 3 253 2 (r—4
> S35 p 28 = o
= 3 SZ boo +C)\2 ( dr ) |a‘g

93

(10)

(11)

1) and the Holder
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Then there exists K > 0 such that

2s—3
0>c¢> %S%bogs — KAT7,

which is a contradiction for A small enough. Then, [ = 0, that is, u,, — u strongly in
HS(R3). O

3. Proof of the first Theorem 1.1
First by the Sobolev inequality we obtain
Ix(u) = h([[ullg2), (12)

where

An easy computation shows that, there exists A, > 0 such that for all 0 < A < A,,
the real valued function x — h(z) has exactly two positive zeros denoted by Ry, Ry
and the point R is where h attains its nonnegative maximum, verifies Ry < R < R;.
We now introduce the following truncation of the functional Iy. Take the nonincreasing
function 7 : Rt — [0,1] and C*°(R™") such that

() =1 if z < Ry,
(13)
T(x) =0 ifz>R;

Let p(u) = 7(||ul|g+). We consider the truncated functional

Zip(u)dz. (14)

. 1 1 A . 1
B) = gl + 5 [ dtwidr =3 [ a@uris = [ @)

Similar to 12, we have

In(u) = h(|jull#-) (15)
where . b
Rla) = 3o — 5 a?ir(a) — 0
2¥S=
Clearly, 7
h(x) = h(z) (16)
for > 0 and h(z) = ()ing:USRO,E(x) > 0,if Ry < < Ry and if
x> Ry, h(z) = 2"(32*7" — 2C,) is strictly increasing and so h(z) > 0, if z > R;.
Consequently B
h(z) >0 for x > Ry. (17)

We have the following result.
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Lemma 3.1. This lemma can be expressed as three assertions:
1. I, € C*(H*(R?),R), is even.

2. If Ix(up) < 0 then |luol|gs < Ro. Moreover, Ix(u) = Ix(u) for all u in a small
enough neighborhood of uyg.

8. There exists A\g > 0, such that if 0 < A < Ag, then I, verifies a local Palais-Smale
condition for ¢ < 0.

Proof. Since ¢ € C®(H*(R?),R) and ¢(u) = 1 for u near 0, I, € C}(H*(R?),R)
and assertion 1 holds. .
Note that Ix(ug) > Ix(ug). By taking I (ug) < 0, we can deduce from 15 that

A([luollm+) < 0.
Then By (16) and (17) we have
l[woll = < Ro. (18)

For the proof of (3), let {u,} C H*(R?) is a (PS). sequence I, with ¢ < 0. Then we
may assume that I(u,) < 0, I} (un) — 0. By (2) and for 0 < A < Ao, ||un| ms < Ro,
50 In(un) = Ix(uy) and T} (up) = I} (u,). By Lemma 2.5, Iy satisfies (PS). condition
for ¢ < 0, so there is a subsequence {u,} such that u, — u in H*(R?). Thus I\
satisfies (P.S). condition for ¢ < 0. O

We first recall some concepts and results in minimax theory.
Let X be a Banach space, and ) denote all closed subsets of X — {0} which are
symmetric with respect to the origin. For A € Y, we define the genus v(A) by

¥(A) =min {k € N: 3¢ € C(AR" — {0}), ¢(—2) = ¢()},
if the minimum exists, and if such a minimum does not exist then we define y(A) = co.
The main properties of genus are contained in the following lemma (see[9] for the
details).
Lemma 3.2. Let A,B €. Then
1. If A C B, then v(A) < ~(B).
2. If there exists an odd homeomorphism between A and B, then y(A) = ~(B).

3. If SN=1 s the sphere in RN | then v(SN—1) = N.

4- 7(AU B) < ~y(A) +~(B).
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5. If y(A) < oo, then v(A — B) > v(A) —v(B).

6. If A is compact, then y(A) < oo, and there exists 6 > 0 such that y(A) =
v(Ns(A)) where Ns(A) = {z € X : d(z, A) < 5}.

7. If X is a subspace of X with codimension k, and y(A) > k, then AN X, # 0.

It is possible to prove the existence of level sets of I, with arbitrarily large genus,
more precisely:

Lemma 3.3. Vn € N Je(n) > 0 such that
(€ BB Iy(w) < —e()}) > n.

Proof. Let Q is an open bounded subset with strictly positive Lebesgue measure
such that a(z) > 0 in Q. Let X§(€2) be the function space defined as

X§(Q) =={ue H*R?) :u=0ae. in R\Q}.

So, X5(2) C H*(R?). Observe that by [[7], Proposition 3.6] we have the following

identity
1/2
lullxs ) = (/ [(=A)2u(z))? + |u( )|2d33> = ||t g--

For n € N, we consider E,, be a n—dimensional subspace of X§(12). Let u,, € E,, with
norm ||u,||gs = 1. By (A42) there exists a ¢, > 0 such that

/ a(z)|uy|"dx > ¢, > 0.
Q

For 0 < p < Ry and using Lemma 2.1 (iii), we get

1
Bpun) < 52 + 508 = [ b(o)

. A
< Zde — fpr/ a(x)|up|"dz.  (19)
2 T 0

Since E, is a finite-dimensional space, all the norms in F,, are equivalent. Thus we
can define

O 1nf{/ )| up|"dx s uy € Ep, ||upl|lgs =1} > ¢, >0,

1nf{/ Dunl%da : un € En, Junllss = 13 > 0.

By using the definitions of a.,, 8, and inequality 19, we obtain

- 1 1 . A
< IR lOA 2 D e
In(puy) 2,0 +4C’p 0% Bn Tp ay,
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Then, there exists ¢(n) > 0 and 0 < p < Ry such that
F(pu) < —e(n)
for u € B, and |luy|| g = 1. Let S, = {u € H*(R®)/||ul|ms = n}, so
S, NE, C {uc H*(R®)/I\(u) < —¢(n)},
therefore, by Lemma 3.2 we see that

Y({u € HYR®)/T(w) < —€}) = (S, N By) = n.

We are now in a position to prove the first result.

Proof of the Theorem 1.1.
For n € N, we define

I, ={AcC H*(R?) — {0}/A is close, A = —A,v(A) > n}.

Let us set
¢, = min max I (u
"™ Aer, ueA A(w),

and R R
K.={uec H*R?: I(u) = 0,1\(u) = c},

and suppose 0 < A < A, where A, is the constant given by Lemma 3.1.
We claim if n,r € N are such that ¢ = ¢,, = ¢y 41 = - * “Cpyr, then y(K.) > r + 1. For
simplicity, we call ~ 3

I7¢={ue H¥(R?)/I\(u) < —€}.

By lemma 3.3 there exists e(n) > 0 such that v(I,€) > n, for all n € N. Because
I\ (u) is continuous and even,I; € € T',,, then ¢, < —e(n) < 0 for all n in N. But I, is
bounded from below, hence ¢, > —oc for all n in N.

Let us assume that ¢ = ¢, = ¢p41 = ... = cpqr. Note that ¢ < 0 therefore, f)\ verifies
the Plais-Smale condition in ¢, and it is easy to see that K, is a compact set.

If v(K.) < r, there exists a closed and symmetric set U verifying K. C U, such that
v(U) < r. By the deformation lemma (see [19]), we have an odd homeomorphism

n: H3(R3) — H*(R?), such that n(I{™ — U) € IS0, for some & > 0. By definition,

c=c¢, = inf suply(u).
A€lnirucA

There exists then A € T',,,., such that sup,c 4 Ir(u) < ¢+ 8. i.e A CI{,
n(A-U) cn(I5F —U) I,

By Lemma 3.2 (5) again y(A—U) > v(4) —v(U) > n, and y(n(A-U)) >
Y(A-U))=>n.
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Then, n(A — U) € I'y. Impossible, in fact n(A — U) € I', implies sup,, ¢, a= Ii(u) >
Cn = cC.

So we have proved that v(K.) > r+1. We are now ready to show that I has infinitely
many critical point solutions. Note that ¢, is non-decreasing and strictly negative.
We distinguish two cases.

Case 1 Suppose that there are 1 < n; < ---n; < -- -, satisfying

Cn1<...<cni<...

In this case, we have infinitely many distinct critical points.

Case 2 We assume in this case, that for some positive integer ng, there is a r > 1

such that ¢ = ¢py = Cng+1 = *+* = Cng+4r, then ’y(KcnO) > r + 1 which shows that

K., contains infinitely many distinct elements. Since Ii(u) = In(u) if Ix(u) < 0, we

see that there are infinitely many critical points of I (u). The theorem 1.1 is proved.
O

4. Proof of the second Theorem 1.2

In this section, we show the existence of infinitely many solutions via the Fountain
Theorem [22].
We consider

HE(R?) :={u € H*(R®) : u(rz) = u(z),7 € G},

where G is a subgroup of the group of orthogonal linear transformations Os. Let us
consider the functional Iy ¢ : HE(R?) — R as Iy g = IA|H5(]R3)- By the principle of
symmetric criticality of Krawcewicz-Marzantowicz [13], we know that u is a critical
point of I if and only if u is a critical point of Iy ¢ = I>\|Hf;(]R3)~

Lemma 4.1. For any A > 0, s € (3,1) and t € (0,1) such that 4s + 2t > 3, the
functional I ¢ satisfies (PS). for all c € R.

Proof. Let {u,} in H4(R?) such that Iy ¢(un) — ¢ and I} 4(u,) — 0 strongly in
H;*(R?). Following the same arguments as in the proof of Lemma 2.4 we have {u,}
is bounded. Therefore, up to a subsequence, we may assume that

Up — u, in H*(R3);
up, — u, in L7(R3), 1 <r < 2% (20)
un(r) = u(z), ae. in R3.

From the concentration-compactness alternative for bounded sequences in the frac-
tional space H (R?), see [[18], Theorem 2.2 ]: There exists a subsequence, still denoted
by {u,}, at most countable set A, a set of points {z;};en C R* and real numbers
pj,vj € [0,00) such that

(=A)*Pun > = dp > [(=A)Pul® + > pibe,, ny = pla;), (21)
JEA
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|t % s dy = |u 2 +Zyj5Ij7 v; = v(zj), (22)
JEA
%

We claim that the concentration of v cannot occur at any x # 0. Now we suppose
that there exists z; # 0, where jo € A such that v;, = vy, > 0. The measure v is
G—invariant. For all 7 € G, v(z;,) = v(rzj,) > 0. We know that #G = oo, thus

v({rz;, : 7€ G}) = o0,

Note that the measure v is finite, which is a contradiction. Then, for any xz; # 0
where j € A, we get v; = v(z;) = 0. Now we suppose that 0 ¢ {z; : j € A}. In fact,
assume ¢ > 0 small enough such that for any 0 ¢ B.(0). Let ¢, € C§°(R?) be a cut-off
function centered at 0 satisfying

1if |z| < £,

Since (peuy) is bounded, (I3 o (un), peun) — 0, that is

(M

(=) () (=8)F () + ((=8)F () (<8)F () + [ e

+ qﬁtunuiapgdx = )\/ a(x)|un|"pedr +/ b(x)|un, 2«:g05d9: +0(1)
R3 RS RS
tim ((-2)% (un), 92 (~8)% () = [ e (24)
n o0 Rg
lim b()|un|? podz = / b(x)pedv = / b(z)|u|® pedz 4 b(x;)v; (25)
n—+00 Jp3 R3 R3

lim lim [((—A)2 (up), un (—A)2 (02))

o

e—0n—0
1/2 1/2
I, CAVS L, 12 21 (A2 |2
sgg(( [ 18 dx) X(/RS'%' TN dx) )
1/2
< ; 21 (_A)2 2
<Cli (/ uf?] (~2)F | dx) o)

< Clim / |u
e—0 BE(O)

< Clim / |u
e—0 BE(O)

o

s
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100
and
lim | (—A)2 ul?podz =0
e—0 R3
lim b(a)|u|® p.dx = 0,
e—0 R3
(27)
lim a(x)|u|"pedr =0, lim |u|?peda = 0,
e—0 R3 e—0 R3
lim [ ¢ up.de = 0.
e—0 R3
Thus,

p({0}) = b(0)r({0}).

Note that b(0) = 0, then p({0}) = 0. In the next step, we claim that the concentration
of v cannot occur at infinity.

Voo = lim limsup/ |un |** da,
R—+400 n—4o0 |z|>R

oo =limsup [ | (-8)% u, P,
z|>R

n—-+o0o

Hence, by using the concept of the concentration-compactness in ([17],[18]) at
infinity, vo, and peo exist and satisfy :

2 dy = / dv + Vs
RS

limsup [ |up
n—4+oo JR3

limsup [ |
n—+oco JR3

() e = [ du+ .
R3
Sugf: < foo- (28)

For any R > 0, take a radially symmetric function xz € C°°(R?) such that 0 < yz < 1,
Xr = 1 in R®\Bag, xgr = 0 in Bg. It is easy to obtain that ygu, is bounded on
HE(R3?). Then

. 7 _
nEI_POOUA,G(“n)a XRUn) = 0.

We have

()% () (=) (1)) + (=) () (=) ) + [ v

+/ P uiXRdac:)\/ a(x)|un|’"XRd:E+/ b(x)|un|2:XRda:+0(1)
RS R3 R3
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Similar to the proof of (26), we have

(M

12
lim limsup((—=A)? (up), un (—A)2 (xg)) < C lim / u|? da: = 0.
R<|z|<2R

R—+00 p—+400 R—+4o0
Also,
lim hmsup/ a(z)|un|" xrdx = hm a(x)|u|"xrdx =0,
R—+400 n—s+4oo JR3 —+o0 JRr3

lim hmsup/ uiXRd:r: lim u?xrdx =0,
R3

R—+00 p—+40co R—+o0 g3
t o2 1 t,2 —
lim limsup | ¢, u,xrdx = lim ¢, u"xrdxr = 0.
R—+00 n—+00 R3 " R—+o00 |z|>R
Since b(o0) = 0,

lim hmsup/ b()|un|? dz = 0.
R—=+00 nstoo Jjz|>R

Then,

2 dx = 0.

loo = lim hmsup/ | (=A% up|?de < lim hmsup/ b(x)
>R R |z|>R

R—+400 n—s4oo —++00 n—+4oco

Thus pteo = 0. Then, from (28) we obtain v, = 0. Hence, up to a subsequence, we

derive
L dr = /

By Brézis-Leib [4] u,, — u in L (R3) Note that b € L (R?) we obtain

n—-+o0o

lim b(x)|uy, Zide = 0.

n—-4oo R3

Then u,, — u strongly in HE(R?). O

Since HE (R3) is separable (see [1]), there exist {e;, tnen C HE(R?) and {fp }nen C
Hg*(R?) with

He(R?) = span{en}p2y, Hg*(R?) =span{fn};Z,

[ 1lifi=y,
<f“ej>_{ 0if i # j,
where (,) is the duality pairing between Hg*(R?) and HE (R?).

Let X; = span{e;}, Y, = @Xj, Zy = @Xj.
j=n

Jj=0

Let
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Lemma 4.2. ([22] Fountain theorem,)
Consider an even functional I g € C(HE(R3),R). If, for every k € N, there exist
pr > 1K > 0 such that

1. ap := max {Ixjc;(u) cu €Yy, Jullpg, = pk} <0.
2. B :=inf {Ixg(u):u € Zy, ||ullms, = pr} — oo as k — 4o0.
3. I satisfying (PS) condition for every ¢ > 0.
Then Iy g has an unbounded sequence of critical values.
Proof of Theorem 1.2.
The functional Iy ¢ is even, I ¢ € C(HE(R?),R). By Lemma 4.1 I, ¢ satisfying (PS)
condition for any ¢ € R. We only need to verify I ¢ satisfying (1) and (2) of Lemma

4.2. Since X; is a finite-dimensional subspace of HE (R?) for each j € N and b(z) > 0
a.e. in R3, this implies that there exists a constant €5 > 0 such that for all v € X

with [[v]| gz, = 1 we have
/ b(z)|v|*dx > ¢;.
R3
On the other hand,

for any v € X;\{0}, with ||lu|[zs, = 1 and by using the Lemma Sobolev inequality
we get

AtT
Iw(tu):ﬂunm +0—||u||Hs 2 @)l dz—— / ()l
T R3
t2 tt %
— C*
=5 + B 5 €;

Since 4 < 2%, there exists t; > 1 such that e; = t;u satisfies I ¢(e;) < 0. This proves

(1) of Lemma 4.2.
1/2*
B = sup (/ b(x) 25dx> .
u€Zj |lull g, =1 \J/R?

Define

By the definition of Z;, we get u; — 0 in H&(R?). Since b(z) is continuous, b(0) = 0,
b(c0) = 0 and by the same argument using in Lemma 4.1 we see that a concentration
of the measure v can only occur at 0 and oco. We deduce that

RIS

ﬂj—>0.

sdx — 0,

as j — 00, SO
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For all u € Z;, we have

o
1 AC B;° 2%
Bu(u) 2 gl — 2l — 2l

1

2:,72

Let u € Zj, such that |ul[mg, = A; = (ﬁ;) Since 3; — 0 we have A; — +00 as
J

j — 4o00. Since 1 < r < 2 we have

1 1 AC
Ing(u) > <2 - 22&) A — TA; — 400, as j — +o0.
So, I ¢ satisfies (2). All the assumptions of Lemma 4.2 are satisfied. Therefore, this
concludes the proof of Theorem 1.2. O
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Karakostas Fixed Point Theorem and
Semilinear Neutral Differential Equations
with Impulses and Nonlocal Conditions

Hugo Leiva, Lenin Riera and Sebastian Lalvay

ABSTRACT: This paper is concerned with the existence and unique-
ness of solutions for a semilinear neutral differential equation with impulses
and nonlocal conditions. First, we assume that the nonlinear terms are lo-
cally Lipschitz, and to achieve the existence of solutions, Karakostas Fixed
Point Theorem is applied. After that, under some additional conditions,
the uniqueness is proved as well. Next, assuming some bound on the non-
linear terms the global existence is proved by applying a generalization of
Gronwall inequality for impulsive differential equations. Then, we suppose
stronger hypotheses on the nonlinear functions, such as globally Lipschitz
conditions, that allow us to appy Banach Fixed Point Theorem to prove
the existence and uniqueness of solutions. Finally, we present an example
as an application of our method.

AMS Subject Classification: 93B05, 93C10.
Keywords and Phrases: Semilinear neutral differential equations; Impulses; Delay;
Nonlocal conditions; Karakostas fixed point theorem.

1. Introduction and Preliminaries

This work is devoted to study the existence of solutions for the following semilinear
neutral differential equation with impulses and nonlocal conditions.

%[z(t)_f—l(tzt)} :AO(t)Z(t)+f1(taZt)7 t#tka te [O?T]a
2(0) + M2 s 2rys - -5 20,)(0) = 0(0), 0 € [—r,0], (1.1)

)
2(t5) = 2(t;) + Ju(te, 2(t)), k=1,2,...,p,

COPYRIGHT (C) by Publishing House of Rzeszéw University of Technology
P.O. Box 85, 35-959 Rzeszéw, Poland
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where Ag(t) is a n X n continuous matrix, the functions f_1, f1, and h are smooth
enough and 0 < 1 < to < - < tp < 7,0 <7 <79, <7y <7 < 7. Here,
z 2 [—r,0] — R™ is defined by z(0) = z(t + 6), and 1 belongs to the Banach space

PW,. = {77 : [=7,0] — R™ : i is continuous except at sg,k =1,2,...,p points

where the side limits exist 77(5:77)’ N(8g,) = 1(sky), and are finite }

with the norm

[nll, = sup [[n(t)lgn-
te[—r,0]

There are many papers on the study of linear neutral differential equations, to mention
[6,12-14, 19, 20], particularly, the controllability of such equations has been studied
in [12-14, 19, 20] where Kalman-type algebraic condition is proved (see [9]). In [6],
the existence of solutions for an abstract neutral functional differential equations is
discussed. To our knowledge, there are a few works on the existence of solutions for
semilinear neutral equations with impulses and nonlocal conditions simultaneously.
Karakostas Fixed Point Theorem will be applied to prove our main result on the
existence of solutions of (1.1).

Theorem 1.1 (Karakostas Fixed Point Theorem- see[7,10,11]). Let Z and
Y be Banach spaces and D be a closed convex subset of Z, and let B: D — Y be a
continuous operator such that B(D) is a relatively compact subset of Y, and

T:DxB(D)— D

a continuous operator such that the family {T (-,y) : y € B(D)} is equicontractive.
Then, the operator equation

T(z,B(z) ==
admits a solution on D.

Now, we define natural Banach spaces where the solutions of problem (1.1) will
take place and present some notations to be used through this work. We begin defining
the Banach spaces

PWhi, .4, ([0, 7);R") = {2 : [0,7] = R" : z is continuous except at tx,k=1,...,p
points where the side limits exist z(t]), z(tx) = z(t ),

and are finite},

and

PW,={n:[-r1]—R":y € PW, and n .

—r,0]

| € Pth..tp}a

T

equipped with the supremum norm and

Inll, = sup{In(®)]gn
t

el—rT
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respectively. We will also consider

q
Rq”:R”xR”xme":HR”
k=1

g—times

equipped with the norm
q
lylly = > lyillgn-
i=1

Analogously, we define the Banach space

PWep = {77 : [-r,0] — R : n is continuous except atsy,, k =1,2,...,p, points

where the side limits exist n(s,jn), N(8k,) = 1(sky), and are finite }

o, f1:[0,7] X PWy — R™, h:PWyp — PW,, Ji:[0,7] x R® — R".

endowed with the norm

q
Imllep = sup (@)l = sup (Z [[:(#)]
i=1

—r, te[—r,0]

The functions in system (1.1) are defined as follows:

To conclude this section, we define the evolution operator U(t, ) = ®(t)®~1(0) where
® is the fundamental matrix of the linear system of ordinary differential equations

y'(t) = Ao(t)y(t).
Also, we shall consider the following bound

M= sup [U(t0).
t,0€[0,7]

Remark 1.1. We will omit the subscript in the functions space norms defined above
as long as this does not lead to confusion.

2. Formula for the solutions of system (1.1).

We devote this section to find a formula for solutions of the semilinear neutral differen-
tial equations with impulses and nonlocal conditions (1.1). Specifically, we transform
problem (1.1) into an integral differential equation problem, which allows us to apply
Karakostas Fixed Point Theorem to prove the existence of solutions for (1.1) in the
next section.
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Proposition 2.1. The system (1.1) has solution z on [—r, 7] if, and only if, z is a
solution of the following integral equation

Z/[(t 9) [77(0) - h(’z‘ruz‘rzv s 7Z‘Fq)(0) - f*l(ovn - h(zﬁvz'rz’ R Z'rq))]
+ [ U0) AaO)1(0,20) + A0, 2)]d0 + Fr(8,2)

+ ) Ut )it 2(tk)), €0,
0<tr <t

N(t) = h(zr, 20y - -5 27,)(t), t€[=70].

Proof. ( =) Suppose that z is a solution for system (1.1) on [—r,7]. Let

20 = 77(0) - h(z7'17z7'2a <. '7ZTq)(0)'

e On [0,t1), z is the solution of the following system

{(Z[z(t) — f-1(t 2)] = Ao(t)2(t) + fi(t, 20), t€[0,t1),
2(t) + h(zr, - 20 () = (1), te€[-r0]

and by the variation of parameters formula
z2(t) =f-1(t, ze) + U(,0)[z0 — f-1 (0,77 — W2y Zrgy e e s qu))]

+/ UL, 0)[Ao(0) f_1(0, 2) + f1(0,2)]d0, t € [0,21).

0

Ast — t1_7
Z(tl_) :f—l(thztl) +u(t1,0)[250 - f—l (Oan - h’(ZTUZTz?' . '7Z7'q))]

+ / U1, 0)[Ao(6) f1(8, 20) + F1(6. 7)) db.
0

e On [t1,t2), z is the solution of the following system

{d[z(t) — fa(t, z)] = Ao(D)2(t) + fi(t, 21), € [t1,t2),

and again the variation constant formula yields
2(t) =f-1(t, 20) U ) [2(t) + it 2(0) = for (B0 = Blery, 20,0 27,))]

+ / U O)[A(0) f-1 (0, 20) + f1(60, 26)ld0, ¢ € [, 12),
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therefore

2(t) =f-1(t,z) + Ut t1){ f-1(t1, 20,) FU1,0)[20 — fo1 (0,1 = B(2ry, 20y, -+, 27,))]

+ / U1, 0)[Ao(8) f-1 (0. 20) + f1(6, 20)}d0 + Ty (11, (1))

—f1 (tl,n — h(Zryy Zrgy - - - ,qu)) } + [ U, 0)[A0(0)f-1(0,20) + f1(6,20)]db.

ty

:ffl(t, Zt) + U(t, tl){U(th O)[ZO —f1 (0, n— h(Z-,—l,ZTZ, ey ZTq))]

+ / Utr, 0)[Ao(6)f1(6, 20) + 2 (6 20)]d8 + Ty (11, 2(t1)) }

U(t,0)[Ao(0) f-1(0, z0) + f1(0, 29)]d6.

t1

Using the cocycle property of U,

2(t) =f-1(t,z) +U(E,0)[20 — f-1 (0,7 — h(zry, 2rys - -1 21,))]

+ / U 0)[A0(B) 1 (6. 76) + F1(8. 20))dB + U(t,12) ]y (1, 2(11))

t UL, 0)[Ao(0) f-1(0,2¢) + f1(0, 26)]dO

=f_1(t,z¢) + U(t,0)[z0 — f-1 (0,17 — h(Zryy Zrgy e v s qu))]

+ /Otu(t,ﬂ)[Ao(H)f_l(G,zg) + f1(0, 20)]d0 + U(t, t1)J1(t1, 2(t1))-

Proceeding inductively as above, we have that for ¢ € [t,,t,11)

2(t) = foa(t,z) +U(L,0)[z0 — f1 (0 M= h(2rs 2rys -0 20,))]
/ UL, 0)[Aog(0) f-1(0, 20) + f1(6, 29 d9+Zu (t, tr) T (tr, 2(t)), t€[0,7]
= for(t, 2) + U O)(0) = hzry, 2rgs - qu)fo)l— For (0,0 = h(zmrs Zrms s 2,)]
+/tu(t,9)[A0(9)f_1(0,za) + f1(0, z¢)]dO + Z Ut tr) Tk (tr, 2(tk)), te€0,7]

0 0<ty <t

( <= ) Assume that z is solution of the integral equation (2.1).
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Then, at tq,

2(t7) =f-1(t1, 2,) + U(t1,0)[z0 — f=1 (0,0 = h(zry s 21y - -5 22,))]
t1

+ | U(t1,0)[Ao(0)f-1(0,20) + f1(0, 20)]d0,

2(t5) =f_1(t1, 2e,) + U(t1,0)[20 — f-1 (O,n — h(Zryy Zrgy e e s qu))]
ty

+ | U(t1,0)[Ao(0) f-1(0, z9) + f1(0,29)]d0 + U(t1,t1)J1(t1, 2(t1)),

which implies that
2(67) = 2(t7) + Ji(t1, 2(t).
Near to,
Z(tZ_) :f—l(tQ’ th) —|—Z/[(t2,0)[2’0 - f—l (0777 - h(ZTl’ZT27 teey ZTq))]

+ /0 U2, 0)[A0(8) f-1 (6 70) + f1(6, 26)}d0 + Ulta, 1)y (11, (1),

2(t) =f-1(ta, 21,) + Ut2,0)[20 — f-1 (0,0 = h(Zr, 21,y -+, 21,))]

ta

+ , U(tg,H)[AO(O)f_l(H, 29) + f1(0, Z@)]d@ +Z/{(t2,t1)J1(t1, Z(tl))

+ U(tg, t2)J2<t2, Z(tg)),
which means that
z(ty) = 2(t3) + Ja(ta, 2(t2)).
Proceeding inductively as above, we get that for K =1,2,...p,
2(tF) = 2(t;) + Ji(te, 2(ty)).

On the other hand, differentiating z with respect to ¢, for t € [0,7) and ¢ # tx, k =
1,2,...,p, we obtain that

4 (00 = (Fa(820) £ U(0.0) 0 = 0.0 oy,

+/0 U(t,0) [Ao(0)f-1(0, 20) + f1(0,20)] O+ Y U(tvtk)Jk(%Z(tk))),
0<trp<t
@ (2(0)) = Fa(ts20) + AoDULE 020 — 1 (0,1 = hlzry, 20y 22,)]

+Ao(t)/OU(YZ9)[A0(9)f—1(9,Za)+f1(9aZe)]d9+z40(t)f—1(tvZt)+f1(t’Zt)

+ Ag(1) Z U(t,tr) i (tr, 2(tk))-

0<trp<t
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By rearranging terms it follows that

d

% [Z(t) - f*l(t’ Zt)] :Ao(t){fl(t’ Zt) +u(t’0> [ZO - f71(0,77 - h(ZTUZTz’ SR ZTq)ﬂ

- U(E,0) [40(0) F1(8,20) + 10, 20)] O

£ ¥ U, 0) | + il )

0<tp<t
=Ao(t)2(t) + f1(t, 20),

that is to say, z is a solution of (1.1). O

3. Main Theorems

In this section we shall prove our main result about the existence of solutions for
the semilinear neutral equation with impulses and nonlocal conditions (1.1) and their
behavior.To achieve that, we consider the following hypotheses on the terms involving
the system (1.1).

(H1) There exist constants di, Lg,v > 0,k = 1,2,...,p such that Vy,z € R,
teo,7]

P
. 1
i. LggM < 7+ng_1dk < >

ii. We have that h(0) = 0 and

Tk (t, y) — Ji(t, 2)|

e < dilly — 2|

Rn -

A (y)(t) — h(v)(t)HR" < ng lly:(t) — Ui(t)Han Y, v € PWyp.

(H2) The function f_; satisfies
i
[ Ao (t) f1(t,m) = Ao(6) f-1 (8 m2) g < Kl Il e = mall,es 915 me € PV,
1f=1(tm) = faa @) llgn < lm =2l mm2 € PW:

[ Ao (@) f-1(t;)llgn < W (lInll,), 1€ PW,,
Hf—l(tan)”Rn <V (||77||r)7 ne PW!

and f; satisfies

ii.

11 m) = fr( ) g < Kl ln2ll) im = nell.s 10,12 € PW,
A& Mllgn < ¥ nll,), nePWs,
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where K : Ry x Ry — R, ¥ : Ry — R, are continuous and non decreasing
functions.
(H3)  There exists p, 7 > 0 such that

MW (|lnll + Lya (Inll + p) ) + (Mqu+Mfdk> (Il +»)

k=1
+ M7+ 1)¥ (gl +p) < p

where the function 7} is defined as follows

(H4)  Assume the following relation holds

M {Lya (L) + 20k (Jal 4 .l + )} < 5.

Remark 3.1. The hypothesis (H2) is not a whim, it appears naturally when one
studies the well-known Burgues equation and the Benjamin-Bona-Mahony equation;
and since we will extend this work to infinite-dimensional Hilbert spaces, these hy-
potheses are considered here. For more details about it, one can see [10,11].

Theorem 3.1. Suppose that (H1)-(H3) hold. Then, the system (1.1) has at least
one solution on [—r,T].

Proof. We shall transform the problem of proving the existence of solutions for sys-
tem (1.1) into a fixed point problem. For this, we define the following operators

T : PW, x PW, — PW,,

and
B:PW, — PW,
given by
y(t) + fa(tz) + Y Ut ) Tk(te, 2(t), € [0,7],
T(Z7y)(t) = O<tp<t
n(t)_h'(ZTNZTzv"'?ZTq)(t)’ te [—T,O],
and

U(t, ?) [77(0) - h(yn yYras et 7y7'q)(0) - f—l(oa n—= h(yﬁ yYras e 7y7'q))]
Bly)(t) = { + / Ut 0) [Ao(0) f-1(0,y) + F1(0, o)) dO, ¢ € [0,7],
n(t)a te [_Ta 0]7
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respectively. We also consider the following closed and convex set

D = D(p,7,n) ={y € PWp: lly —ill, < p}.

With this setting, the problem of finding solutions for system (1.1) has been reduced
to the problem of finding solutions of the following operator equation

T (2,B(%)) = =.
The rest of the proof will be given by statements as follows:
Statement 1. B is a continuous mapping.

For any z,y € PW, we have that

1B(2)(6) — B)(0)]| < ||u<t,o>||{y|h<yn,y727 e )0) = Bz 2 2O
+||f71(0777_h(y7‘17y7'27 "'7qu)) _ffl(ovn_h(z‘rnzﬁﬂ RS Z‘Fq)) H}
+f ||U<t,a>{||Ao<e>f1<0,29>—Ao<0>f1<9,ye>||

+ [|.f1(6, 20) — f1(9,y9)}d9

< M [Loqllz =yl + 7| 9(zr1 s 2ras - -3 20,) = B(Yry s Yras - -5 Y ||]
+ MKzl lyIDllz = gl + K10, vz =yl

< M [Lgqllz — yll + vLgallz — yll]
+2M7E(|[ 2]l lyID Iz — vl

where the last two inequality comes from (H1-ii) and (H2). It follows that
1B(2) = By)ll < M{Lgq(1+)+ 27K (llz[], lyID} [z — vl

by taking supremum over ¢ € [—r,7]. Hence B is locally Lipschitz, which implies the
continuity of B.

Statement 2. B maps bounded sets of PW,, into bounded sets of PW,p.
In order to prove this statement, we will show that
VR>03X>0Vy € Br: |[|B(y)|| <A,

where Br = {z € PW,, : ||z]| < R}. Let R > 0 and consider A\ = max{?, ||n||}, ¥ to
be determined later. Let y € Br. Then, on one hand, we have that

IBy)@ON = lIn®)] < lInll,
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if t € [-r,0]. While, on the other hand,

HB( ) )H < ||Z/{ t 0 HHU (ynay‘rzv"'ay‘rq)(o)_ffl(oan_h(yn?y‘rzv"'7y‘rq))H
+/0 [24(t, ) [l Ao () f-1(0, wo) |l + 110, yo)ll] dO

< MO+ Arys Yros -+ Y O |+ F1 0, 1= 2 (Yrys Ym0 || }
+ 7M [|| Ao (0) f-1(0,y0) || + [1/1(0,y0)l]

< M{[nO)l + Lyallyll + © (|1 = by, yras - -5 y2)||) } + 7M29(|Jyl)

< M{{nO) + Lyallyll + ¥ (Inll + [|A(yrys Yras -5 y2)|]) T+ 7M2%(yl])

< M{{nO)|| + Lggllyll + ¥ (Il + Lggllyll) } +72¥(|[y])

< M{|In(0)[| + LggR + ¥ (||n]| + LgqR) + 72V (R)} =9,

if t € [0,7]. Here we have used (H1-ii) and (H2). Now, taking supremum over
t € [-r, 7], we have that

IBy)ll < A
Statement 3. B maps bounded sets of PW, into equicontinuous sets of PW,p.

Let us consider Bg as above and let us show that B(Bg) is equicontinuous on
[-7,7]. On [—r,0], the continuity of  immediately implies the result. On (0, 7], we
have that

1B(y)(t2) = Bly)(t)|| < [[U(t2,0) — U1, 0)[[[[1(0) = h(Yrys Yrss - - - 47, ) (0)
_ffl (0777_h(y711y727"'»y'rq)) ”

[ 02 0) 01 O A1 0,00) + o000
+ [ 042, 0) 1 Ao(6) 1.6, yo) + 110, o)1 d8

< Jutt2,0) = Ut O){ In(O)] + Lyaly
+ || f=1 (0,77h(yn,ym,-..,yfq))||}
" Otlnuuz, 0)— (k1,0 [140(6) 1 (0. 30)]| + .1 (0, o) ) 0
+ (0422, 6) | 146 8) 16, 5o + 1110 50)]) 4O

< [[U(ts,0) = U(ts, )II{IIn( )II+qu||y|+‘I’(|nll+qu|y||)}

+ 20 (Jyl) / U (t2,0) — Ulty, 0)d6 + 200 (Jy]]) (t2 — 1)
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< |lU(t2,0) — U(t1,0)||{||77(0)|| + LgqR+ ¥ ([|n]| + LyqR) }
+ 20 (R) /tl WU (t2,6) — Ut1,0)[[d6 + 2MW (R) (t — t1) — 0
0

as to — t; by the continuity of ¢ and the fact that ||n(0)|| + LyqR + ¥ (||n|| + LggR)
is bounded. Here we have considered (H1-ii) and (H2). This shows that B(Bg) is
equicontinuous.

Statement 4. The subset B(D) is relatively compact in PW,p.

Let us prove Statement 4. Let D be a bounded subset of PW,. By Statements 2
and 3, B(D) is bounded and equicontinuous in PW,,. Let {y, }nen € B(D), then

=n, VneN.

[-7,0

Yn

converges uniformly on [—r, 0].

Hence, vy,
—7,0

Now, putting ¢,, = yp

o’ we get that {¢nfnen © PWy, -

Let us put tg = 0 and ¢,41 = 7. Then, applying Arzela-Ascoli Theorem, the sequence
{n }nen contains a subsequence {pl}, ey that converges in the interval [to, t;]. Now,
applying Arzela-Ascoli Theorem again, we get that the sequence {¢?},en contains
a subsequence {2}, en that converges in the interval [t;,#;]. Continuing with this
process we find a subsequence {pPt1}, oy of {¢, }nen that converges in each interval
[tkytrt1], with & =0,1,2,...,p. Therefore,

p+1

+1
©h y

=yb converges on [0, 7].

’ 0,7

Consequently, {¢2™},en = {y2T1},en converges uniformly on [—r,7]. Thus, B(D)
is relatively compact, and the proof of Statement 4 is completed.

Statement 5. The family {T(-, y):y € B(D)} is equicontractive.

On the one hand, for any u,v € PW,, and t € [—r, 0], we get that

||T(U7B(y))(t) - T(va(y))(t)H < Hh(u7'17u7'2’ s ’uTq)(t) - h(le’szv ce ’UTq)(t)H
< Lygllu — o]
< MLggllu— ]|

While on the other hand, by using (H1-i) and (H2-i), for all ¢ € (0,7] we obtain
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that

17 (u, B(y))(£) = T (v, By)) (O < [f-1(t,ue) = fa(t, 0]
> U ) [Tate ultn) = Ju(te, o(t)]|

0<tp<t

< Allu =l + MY T (tr, ultr)) = Jr(te, v(te)) |
k=1

p
< yllu—oll + MY dilu(t) — o(ti)]
k=1

P
< llu = oll + Mlju— ol Y da
k=1

p
< (7 + MZ%) [lu—l.
k=1
It follows that
p
1
17 (w, B(y)) — T (v, B(y))|| < (v + Mde> lu =]l < Sllu—vl
k=1

by taking supremum over ¢ € [—r, 7] and using (H1-i). This shows that T (-, B(y)) is
a contraction which does not depend on y € B(D).

Statement 6. The inclusion T (-, B(:)) (D(p,T,n)) C D(p,T,n) holds.

Let z € D(p, T,n) be arbitrary. Notice that

U(t,?) [77(0) - h(ZTMZTzﬂ T Z‘Fq)(o)_ffl(o?n - h(ZTl7ZT27 Tt ZTq))}
+/ U(,0) [Ao(0) f-1(0, z9) + f1(0,29)] dO + f_1 (¢, 2t)
T(z,B(2))(t) = {

+ Z u(tatk)‘]k(tkaz(tk))7 te [OaT]a
0<tp<t

N(t) = h(zr, 2rys -0y 27,) (1), t € [—r0].

On the one hand, for ¢ € [—r, 0], we have that

1T BENE =A@ < |9 (rs 20 2) O
< Lydllz]
< MLyg|l2|
< MLyq (|Inll + )
< p.
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While on the other hand, for ¢ € [0, 7], we have that
||T(Z,B(Z))(t) - ﬁ(t)H < MHh(ZT17Z7'27 teey ZTq)(O) - f—l(O; n— h(ZT1?ZT27 RN ZTq))H
¢
+/ [24(,0) [Ao(0) f-1(0, 20) + f1(6, z0)]|dO + [|f -1 (E, 20) |
0

Yt ) Tt 2(E)

0<trp<t
< M {Lygllz]l + || f-1(0,0 = Blzr,, 20y, 22))[}

+2MrU () + C(l) + MY (e (1)
0<trp<t

< M {Lygll2ll + ¥ (Inll + Lyallz])}
+ M2l + W () + (Mzdk> Iz
k=1
< M {Lyq (Il +p) + (Inll + Lya (Il + ) ) }

+ 207 ([l + p) + (Il + ) + (Midk>(||ﬁ||+p)

k=1
< MW (|0l + Log (JInll+p) ) + (Mqu+ Midk>(||ﬁ||+p)
k=1

+ M7+ 1) ([l +p) < p.
Here we have used (H3). Now, by taking supremum over ¢t € [—r, 7], we get that
17(2,B(2)) =l < p.
and by Karakostas Fixed Point Theorem the operator equation
T(z,B(2)) ==
admits a solution on D. This finishes the proof. O

Theorem 3.2. System (1.1) has a unique solution if (H4) is additionally assumed.

Proof. Suppose u and v are two solutions of system (1.1). Now, considering (H1)
and (H2) we have that

[u()—v(t)] < ||u<t70){Hh(u‘r1’u727"'?u7q>(0> — (Vry Vryy 07, ) (0)|
—|—Hf,1 (0,17— h(uﬁ,um,...7u¢q)) —f1 (0,77— h(le,sz,...,qu))H}

+f IIU(t,G)II{IIAo((?)f1(0,Ua)Ao(9)f1(97ve)||+||f1(9,w)f1(9,vo)|}d9
0
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) = foalt o)l + Y NG ) ks ultr)) = T (e, o(t)]

0<tp<t

p
S M A{Lgq (1 +7) 4+ 27K ([[ull, o)} [lu = vl + (7 + MZ%) [l — vl
k=1

- ~ 1
< M {Lyq(1+7) + 20K (Il + . lall + ) }llu = o]l + 5l — ol

Bearing in mind the hypothesis (H4), and taking supremum over ¢ € [—r, 7], we have
that
lu — ]| < wllu—of

with 0 < w < 1. This implies |Ju — v|| = 0, and therefore u = v. O
Next, we consider the following subset D of R":
D={veR":|v|ge <p}. (3.1)

Therefore, for all y € D we have y(t) — 7(t) € D for t € [—r,7].

Definition 3.1. We shall say that [—r,67) is a maximal interval of existence for the
solution z of problem (1.1) if there is not solution of (1.1) on [—r,02) with 62 > 6;.

Theorem 3.3. Suppose that the conditions of Theorem 3.1 hold. If z is a solution
of problem (1.1) on [~r,01) and 01 is maximal, then either 61 = +oc or there exists
a sequence T, — 61 as n — oo such that z(1,) — (1) — OD.

Proof. Suppose 6; < oo. For the purpose of contradiction assume the existence of a

neighborhood N of D such that {z(t) —7(t)} does not enter in it, for 0 < 6y <t < 6;.

We can take N = D\B, where B is a closed subset of D, then z(t) —7j(t) € B for 0 <

tp < 02 <t < 6;. We need to prove that lim {z(t) —7(¢)} = z1 —7(61) € B, which is
-

- 1
enough to prove that lim z(t) = z1. Indeed, if we consider 0 < ¢, < 0y <l <t < by,
t—0,

then:
12(t) = 2(0) || <[lU(t,0) =UE O (IO + [|h(zrys 2755 - -, 2, (0)]
+ Hffl(O,n — h(2ry s 27y - - ,qu))H)

l
+AHuwm—ummmmwwquw+ﬁwwwwe

+/Z [24(E, 0)I[1| A(0) f-1(0, 20)+ f1(6, z0) | dO+ [ f-1 (£, z¢) — f-1 (£, 20|

+ > U te) = U@ )| Tk (s 2(E)

0<tr <l

3 I ), ()

L<trp<t
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<[t (t,0) = U@, 0)[[(In(O)]l + Lyall=ll + @ (Inll + Lyallzll) )

/I\Ut@ w||d9+/|| (t,0)d0) 29| 2]

1t 20) = Fa (b 2| + U 6) = I Z (e ti) [l T (= ()

k=1

3 It T, 2(t0)

L<tp<t

<lled(t,0) = UL 0)[[(In(0)]| + Lgall2ll + ¥ (lnll + Lyall=[l))

/Hute ee||de+/|| (t,0) | d0) 2w (]| )
laltoz) = Fa (60l + U0 = TS (et

+ > Ut ) Tkt 2 ()|

<t <t

Since Y is uniformly continuous for ¢ > 0, then ||z(¢) — z(1)||r~ goes to zero as I — 67 .

Therefore, lim z(t) = z; exists in R™ and, since B is closed, z; — 7j(61) belongs to
t—01

B. This will contradict the maximality of 6;. In fact, we have that z; € B + 7j(6;) is
contained in the interior of the ball D+7(6;). Hence, z(-) can be extended to [—r, 61].
In this regard, for ¢ small enough, the following initial value problem admit only one
solutions on [—r, 6 + €)

d
dt[ ( ) f—l(ta Ut)} = Ao(t)u(t) + fl (tv U’t)v te [91, 91 + 6)7 (32)
u(@) = z(0), 0¢€[b—r b4

This is a contradiction with the maximality of #;. So, the proof is completed. O

Corollary 3.1. In the conditions of Theorem 3.1, if the second part of hypothesis
(H1) is changed to

(& mF < p@) (1 + [n(0)]

where [ is a continuous function on [—r,00), then a unique solution of problem (1.1)
exists on [—r, 00).

Proof.
2Ol I OIO) — Bzres s 220)0) — F1 (00— hzrss 222, )
01 [ 140510, 20)) + 120, 20)1a8 + 17112
£ Ml (6]

0<tp <t

R")a n € PWT‘? te [77n7 OO),
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<[t (t, 0)[[ (IO + Lygllzll + @ ([In]| + Lgall=]))
t
+ M/ [ A0(0).f-1(0, z0) || + p(O) (1 + [|2(0)]))dO + (| f -1 (£, 20
0

+ ) Mdg2(t)]-

0<tp<t

Then, applying Gronwall Inequality for impulsive differential equations(see [8,15,16,
18]), we obtain that

lz2(t)||rr < M (||z(0)||Rn —I—/ u(@)d@) H (1 +Mdk)efoT Mu(e)de,
0 to<tp<t

This implies that ||z(¢)]
get the result.

rr remains bounded as t — 67 and applying Theorem 3.3 we

O

4. Global Lipschitz Conditions

This section will assume stronger hypotheses on the nonlinear terms that allow us to
apply Banach Fixed Point Theorem. Specifically, we will suppose that the nonlinear
functions that appear in our system are globally Lipschitz. Moreover, we shall consider
the following simpler system

%[Z(t) - flt, Zt)} = Ao(t)z(t) + F(t,zt), te [Oa T] \ {t17t27 s vtp}

2(s) = g(2)(s) + &(s), s€[-n0] (4.1)
z(t;r) =2(ty ) + Je(te, 2(te)), k=1,2,...,p,

where the nonl