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1 Introduction

Nonlinear integral equations are an important part of nonlinear analysis. It
is caused by the fact that this theory is frequently applicable in other branches of
mathematics and mathemathical physics, engineering, economics, biology as well in
describing problems connected with real world, [5]. The measure of noncompactness
and theory of integral equations are rapidly developing with the help of tools in
functional analysis, topology and fixed-point theory. Many articles in the field of
functional integral equations give different conditions for the existence of the solutions
of some nonlinear functional integral equations. A. Aghajani and Y. Jalilian in [1],
J. Banaś and K. Sadarangani in [3], Zeqing Liu et al. in [11] and so on are some of
these. The following equation has been considered in [6] :

x(t) = f(t, x(α(t)))

∫ 1

0

u(t, s, x(s))ds,

for t ∈ [0, 1] . K. Maleknejad et al. in [7] and [8] studied the existence of the solutions
of the following equations

x(t) = f(t, x(α(t)))

∫ t

0

u(t, s, x(s))ds, t ∈ [0, 1]
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and

x(t) = g(t, x(t)) + f

(

t,

∫ t

0

u(t, s, x(s))ds, x (α(t))

)

, t ∈ [0, a] ,

respectively. Then, İ. Özdemir et al. dealt with the following equation in [9] and [10]

x(t) = g(t, x(β(t))) + f(t, x(α(t)))

∫ ϕ(t)

0

u(t, s, x(γ(s)))ds, t ∈ [0, a] .

In this paper, we consider the following nonlinear functional integral equation:

x(t) = g(t, x(α(t))) + f

(

t,

∫ ϕ(t)

0

u(t, s, x(γ(s)))ds, x(β(t))

)

(1)

for t ∈ [0, a] . Note that the mentioned equation has rather general form and contains
as particular cases a lot of nonlinear integral equations of Volterra type.

In next section, we present some definitions and preliminaries results about the
concept of measure of noncompactness. In final section, we give our main result
concerning with the solvability of the integral equation (1) by applying Darbo fixed
point theorem associated with the measure of noncompactness defined by J. Banaś
and K. Goebel [2] and finally we present some examples to show that our result is
applicable.

2 Notations, definitions and auxiliary facts

In this section, we give some notations, definitions and results which will be
needed further on. Assume that (E, ‖.‖) is an infinite Banach space with zero element
θ. We write B (x, r) to denote the closed ball centered at x with radius r and especially,
we write Br instead of B(θ, r). If X is a subset of E then the symbols X and Conv
X stand for the closure and the convex closure of X, respectively. Moreover, let ME

indicates the family of all nonempty bounded subsets of E and NE indicates the its
subfamily of all relatively compact sets. Finally, the standard algebraic operations on
sets are denoted by λX and X + Y , respectively.

We use the following definition of the measure of noncompactness, given in [2].

Definition 1 A mapping µ : ME → R+ = [0,+∞) is said to be a measure of non-

compactness in E if it satisfies the following conditions:

1. The family kerµ = {X ∈ ME : µ(X) = 0} is nonempty and kerµ ⊂ NE .

2. X ⊂ Y ⇒ µ(X) ≤ µ(Y ).

3. µ(X) = µ(X) = µ(Conv X).



On the solutions of a class of nonlinear functional integral ... 107

4. µ(λX + (1− λ)Y ) ≤ λµ(X) + (1− λ)µ(Y ) for λ ∈ [0, 1] .

5. If (Xn) is a sequence of closed sets from ME such that Xn+1 ⊂ Xn (n = 1, 2, ...)
and if limn→∞ µ(Xn) = 0, then the intersection set ∩∞

n=1Xn is nonempty.

Now, let us suppose that M is nonempty subset of a Banach space E and T :
M → E is a continuous operator which transforms bounded sets onto bounded ones.
We say that T satisfies the Darbo condition (with a constant k ≥ 0) with respect to
measure of noncompactness µ if for any bounded subset X of M the inequality

µ(TX) ≤ kµ(X)

holds. If T satisfies the Darbo condition with k < 1, then it is said to be a contraction
with respect to µ, [4]. Now, we introduce the following Darbo type fixed point theorem.

Theorem 2 Let C be a nonempty, closed, bounded and convex subset of the Banach

space E, µ be a measure of noncompactness defined in E and let F : C → C be a

continuous mapping. Assume that there exists a constant k ∈ [0, 1) such that

µ(FX) ≤ kµ(X) (2)

for any nonempty subset X of C. Then F has a fixed point in set C, [2].

As is known the family of all real valued and continuous functions defined on
interval [0, a] is a Banach space with the standart norm

‖x‖ = max {|x(t)| : t ∈ [0, a]} .

Let X be a fixed subset of MC[0,a]. For ε > 0 and x ∈ X, by ω(x, ε) we denote the
modulus of continuity of function x, i.e.,

ω(x, ε) = sup {|x(t1)− x(t2)| : t1, t2 ∈ [0, a] and |t1 − t2| ≤ ε} .

Furthermore let ω(X, ε) and ω0(X) are defined by

ω(X, ε) = sup {ω(x, ε) : x ∈ X} ,

and

ω0(X) = lim
ε→0

ω(X, ε). (3)

The authors have shown in [2] that function ω0 is a measure of noncompactness in
space C [0, a] .
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3 The main result

First of all we write I to denote interval [0, a] throughout this section. We
study functional integral equation (1) with the following hypotheses.

(a) Functions α, β : I → I, ϕ : I → R+ and γ : [0, C] → I are continuous.

(b) g : I × R → R is continuous and there exists nonnegative constant k such that

|g(t, x1)− g(t, x2)| ≤ k |x1 − x2|

for all t ∈ I and x1, x2 ∈ R.

(c) f : I × R× R → R is continuous and there exist nonnegative constants l and q

such that

|f(t, x1, y)− f(t, x2, y)| ≤ l |x1 − x2| ,
|f(t, x, y1)− f(t, x, y2)| ≤ q |y1 − y2|

for all t ∈ I and x1, x2, y1, y2, x, y ∈ R.

(d) u : I × [0, C]×R → R is continuous and there exist positive constants m,n and
p such that

|u(t, s, x)| ≤ m+ n |x|p

for all t ∈ I and s ∈ [0, C] , x ∈ R.

(e) The inequality

M +N + Cl(m+ n) + k + q < 1

holds, where C,M and N are the positive constants such that ϕ(t) ≤ C,

|g(t, 0)| ≤ M and |f(t, 0, 0)| ≤ N for all t ∈ I.

Theorem 3 Under assumptions (a) − (e) Eq.(1) has at least one solution in space

C [0, a] .

Proof. We define the continuous function h : [0, 1] → R such that

h(r) = (k + q − 1)r + Cnlrp + Clm+M +N,

where p is the constant given in assumption (d). Then h(0) > 0 and h(1) < 0 by
assumption (e). Continuity of h guarantees that there exists number r0 ∈ (0, 1) such
that h(r0) = 0. Now, we will prove that Eq.(1) has at least one solution x = x(t)
belonging to Br0 ⊂ C [0, a] . We define operator T by

(Tx)(t) = g(t, x(α(t))) + f

(

t,

∫ ϕ(t)

0

u(t, s, x(γ(s)))ds, x (β(t))

)

, x ∈ C [0, a] .
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Using the conditions of Theorem 3, we infer that Tx is continuous on I. For any
x ∈ Br0 , we have

|(Tx)(t)| =

∣

∣

∣

∣

∣

g(t, x(α(t))) + f

(

t,

∫ ϕ(t)

0

u(t, s, x(γ(s)))ds, x (β(t))

)∣

∣

∣

∣

∣

≤ |g(t, x(α(t))) − g(t, 0)|+ |g(t, 0)|

+

∣

∣

∣

∣

∣

f

(

t,

∫ ϕ(t)

0

u(t, s, x(γ(s)))ds, x (β(t))

)

− f(t, 0, x (β(t)))

∣

∣

∣

∣

∣

+ |f(t, 0, x (β(t))))− f(t, 0, 0)|+ |f(t, 0, 0)|

≤ k |x(α(t))| +M + l

∣

∣

∣

∣

∣

∫ ϕ(t)

0

u(t, s, x(γ(s)))ds

∣

∣

∣

∣

∣

+ q |x (β(t))|+N

≤ k ‖x‖ +M + Cl (m+ n ‖x‖p) + q ‖x‖+N

≤ kr0 +M + Cl (m+ n (r0)
p
) + qr0 +N

= h(r0) + r0

= r0.

This result shows that operator T transforms ball Br0 into itself. Now, we will prove
that operator T : Br0 → Br0 is continuous. To do this, consider ε > 0 and any
x, y ∈ Br0 such that ‖x− y‖ ≤ ε. Then, we obtain the following inequalities by
taking into account the assumptions of Theorem 3.

|(Tx)(t)− (Ty)(t)|

=

∣

∣

∣

∣

∣

g(t, x(α(t))) + f

(

t,

∫ ϕ(t)

0

u(t, s, x(γ(s)))ds, x (β(t))

)

−g(t, y(α(t)))− f

(

t,

∫ ϕ(t)

0

u(t, s, y(γ(s)))ds, y (β(t))

)∣

∣

∣

∣

∣

≤ |g(t, x(α(t))) − g(t, y(α(t)))|

+

∣

∣

∣

∣

∣

f

(

t,

∫ ϕ(t)

0

u(t, s, x(γ(s)))ds, x (β(t))

)

− f

(

t,

∫ ϕ(t)

0

u(t, s, y(γ(s)))ds, x (β(t))

)
∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

f

(

t,

∫ ϕ(t)

0

u(t, s, y(γ(s)))ds, x (β(t))

)

− f

(

t,

∫ ϕ(t)

0

u(t, s, y(γ(s)))ds, y (β(t))

)∣

∣

∣

∣

∣

≤ k |x(α(t)) − y(α(t))| + l

∫ ϕ(t)

0

|u(t, s, x(γ(s)))− u(t, s, y(γ(s)))| ds

+q |x (β(t))− y (β(t))|
≤ (k + q) ‖x− y‖+ Clωu3

(I, ε)

≤ (k + q) ε+ Clωu3
(I, ε), (4)
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where

ωu3
(I, ε) = sup {|u(t, s, x)− u(t, s, y)| : t ∈ I, s ∈ [0, C] , x, y ∈ [−r0, r0] and |x− y| ≤ ε} .

On the other hand, from the uniform continuity of function u = u(t, s, x) on set
I×[0, C]×[−r0, r0] , we derive that ωu3

(I, ε) → 0 as ε → 0. Hence, estimate (4) proves
that operator T is continuous on Br0 . Moreover, we show that operator T satisfies (2)
with respect to measure of noncompactness ω0 given by (3). To do this, we choose a
fixed arbitrary ε > 0. Let us consider x ∈ X and t1, t2 ∈ I with |t1 − t2| ≤ ε, for any
nonempty subset X of Br0 . Then,

|(Tx)(t1)− (Tx)(t2)|

=

∣

∣

∣

∣

∣

g(t1, x(α(t1))) + f

(

t1,

∫ ϕ(t1)

0

u(t1, s, x(γ(s)))ds, x(β(t1))

)

−g(t2, x(α(t2)))− f

(

t2,

∫ ϕ(t2)

0

u(t2, s, x(γ(s)))ds, x(β(t2))

)
∣

∣

∣

∣

∣

≤ |g(t1, x(α(t1))) − g(t2, x(α(t1)))| + |g(t2, x(α(t1))) − g(t2, x(α(t2)))|

+

∣

∣

∣

∣

∣

f

(

t1,

∫ ϕ(t1)

0

u(t1, s, x(γ(s)))ds, x(β(t1))

)

−f

(

t1,

∫ ϕ(t2)

0

u(t1, s, x(γ(s)))ds, x(β(t1))

)
∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

f

(

t1,

∫ ϕ(t2)

0

u(t1, s, x(γ(s)))ds, x(β(t1))

)

−f

(

t1,

∫ ϕ(t2)

0

u(t2, s, x(γ(s)))ds, x(β(t1))

)∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

f

(

t1,

∫ ϕ(t2)

0

u(t2, s, x(γ(s)))ds, x(β(t1))

)

−f

(

t1,

∫ ϕ(t2)

0

u(t2, s, x(γ(s)))ds, x(β(t2))

)
∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

f

(

t1,

∫ ϕ(t2)

0

u(t2, s, x(γ(s)))ds, x(β(t2))

)

−f

(

t2,

∫ ϕ(t2)

0

u(t2, s, x(γ(s)))ds, x(β(t2))

)∣

∣

∣

∣

∣
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≤ ωg(I, ε) + k |x(α(t1))− x(α(t2))|

+l

∣

∣

∣

∣

∣

∫ ϕ(t1)

0

u(t1, s, x(γ(s)))ds −
∫ ϕ(t2)

0

u(t1, s, x(γ(s)))ds

∣

∣

∣

∣

∣

+l

∫ ϕ(t2)

0

|u(t1, s, x(γ(s)))− u(t2, s, x(γ(s)))| ds+ q |x(β(t1))− x(β(t2))| (5)

+ωf(I, ε)

≤ ωg(I, ε) + kω(x, ω(α, ε)) + l

∣

∣

∣

∣

∣

−
∫ ϕ(t2)

ϕ(t1)

u(t1, s, x(γ(s)))ds

∣

∣

∣

∣

∣

+ Clωu1
(I, ε)

+qω(x, ω(β, ε)) + ωf(I, ε)

≤ ωg(I, ε) + kω(x, ω(α, ε)) + lω(ϕ, ε) (m+ n (r0)
p
)

+Clωu1
(I, ε) + qω(x, ω(β, ε)) + ωf(I, ε), (6)

where

ωg(I, ε) = sup {|g(t, x)− g(t′, x)| : t, t′ ∈ I, x ∈ [−r0, r0] and |t− t′| ≤ ε} ,
ωu1

(I, ε) = sup {|u(t, s, x)− u(t′, s, x)| :
t, t′ ∈ I, s ∈ [0, C] , x ∈ [−r0, r0] and |t− t′| ≤ ε} ,

ωf(I, ε) = sup {|f(t, s, x)− f(t′, s, x)| :
t, t′ ∈ I, s ∈ [−A,A] , x ∈ [−r0, r0] and |t− t′| ≤ ε}

and A = C(m+ n (r0)
p
). Also,

ω(αi, ε) = sup {|αi(t)− αi(t
′)| : t, t′ ∈ I and |t− t′| ≤ ε} ,

for i = 1, 2, 3, 4 such that α1 = α, α2 = β, α3 = ϕ and α4 = x. Thus, by using
estimate (6) we get

ω(TX, ε) ≤ ωg(I, ε) + kω(X,ω(α, ε)) + lω(ϕ, ε)(m+ n (r0)
p
)

+Clωu1
(I, ε) + qω(X,ω(β, ε)) + ωf (I, ε). (7)

Since functions α, β and ϕ are uniformly continuous on set I by condition (a), we
deduce that ω(α, ε) → 0, ω(β, ε) → 0 and ω(ϕ, ε) → 0 as ε → 0. Similarly, we
have ωg(I, ε) → 0, ωf (I, ε) → 0 and ωu1

(I, ε) → 0 as ε → 0 since the functions g,

f and u are uniformly continuous on sets I × [−r0, r0] , I × [−A,A] × [−r0, r0] and
I × [0, C]× [−r0, r0] , respectively. Hence, (7) yields that

ω0(TX) ≤ (k + q)ω0(X).

Thus, since k + q < 1 from condition (e), we get that operator T is a contraction on
ball Br0 with respect to measure of noncompactness ω0. Therefore, Theorem 2 gives
that operator T has at least one fixed point in Br0 . Consequently, nonlinear functional
integral equation (1) has at least one continuous solution in Br0 ⊂ C [0, a] . This step
completes the proof of Theorem 3.
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4 Examples

In this section, we shall discuss some examples to illustrate the applicability of
Theorem 3.

Example 4 We examine the nonlinear functional integral equation having the form

x(t) =
2 + x(t2)

56 + t3
+

2t + t2

21
+

x(
√
t) + 1

9 + t4
+

2

10 + t

∫ t

0

cos t+
√

|x(s2)|
2 + ln(t+ 1) + s2t3

ds, (8)

for t ∈ I = [0, 1] . Put

β(t) =
√
t, ϕ(t) = t, α(t) = t2, γ(s) = s2,

g(t, x) =
2 + x

56 + t3
, u(t, s, x) =

cos t+
√

|x|
2 + ln(t+ 1) + s2t3

,

f(t, v, z) =
2t + t2

21
+

z + 1

9 + t4
+

2v

10 + t

and

k =
1

56
, M =

1

28
, l =

1

5
, q =

1

9
, N =

17

70
, C = 1, m = n = p =

1

2
.

It can be easily seen that conditions (d) and (e) are verified. On the other hand, it is

easy to verify that the other assumptions of Theorem 3 hold. Therefore, Theorem 3
guarantees that Eq.(8) has at least one solution x = x(t) ∈ C [0, 1].

Example 5 Let us consider the nonlinear functional integral equation of the form

x(t) = g(t, x(t)) + f

(

t,

∫ t

0

u(t, s, x(s))ds, x (β(t))

)

, (9)

where g, f, u and β are the functions in Example 4. Since the conditions of Theorem

3 hold, Eq.(9) has at least one solution x = x(t) ∈ C [0, 1] from Theorem 3.
Since

|u(t, s, x)| =
∣

∣

∣

∣

∣

cos t+
√

|x|
2 + ln(t+ 1) + s2t3

∣

∣

∣

∣

∣

≤ 1

2
+

1

2
|x|

1

2

for all t, s ∈ [0, 1] and x ∈ R, condition (H3) in [8] doesn’t hold. Hence, the result

presented in [8] is inapplicable to integral Eq.(9).

Example 6 Consider the following nonlinear functional integral equation:

x(t) =
1 + x(

√
t)

32 + t
+

cos(
√
1 + t2)

8
+

x(t2)

8 + t2

+
4

16 + t

∫ t2

0

exp(−t) + x(s2)

1 + t2 + s sin2(1 + x2(s2))
ds. (10)
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We will look for solvability of this equation in space C [0, 1] . Put

α(t) =
√
t, ϕ(t) = β(t) = t2, γ(s) = s2,

g(t, x) =
1 + x

32 + t
, u(t, s, x) =

exp(−t) + x

1 + t2 + s sin2(1 + x2)
,

f(t, v, z) =
cos(

√
1 + t2)

8
+

z

8 + t2
+

4v

16 + t

and

k = M =
1

32
, l =

1

4
, q = N =

1

8
, C = m = n = p = 1.

One can see easily that conditions (d) and (e) of Theorem 3 are verified. On the other

hand, it is easy to verify that the other assumptions of Theorem 3 hold. Therefore,

Theorem 3 guarantees that Eq.(10) has at least one solution x = x(t) ∈ C [0, 1].

Example 7 Let us consider the nonlinear functional integral equation given as

x(t) = g(t, x(t)) + f

(

t,

∫ t

0

u(t, s, x(s))ds, x (β(t))

)

, (11)

where g, f, u and β are the functions in Example 6. It is clear that the conditions

of Theorem 3 satisfy. So, Eq.(11) has at least one solution x = x(t) ∈ C [0, 1] by
Theorem 3.

Since

κ =
1

4
, λ =

1

8
, a = n = 1

and κ > 1−λ
2+2an in condition (H4), the result in [8] is inapplicable to integral Eq.(11) .
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