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1. Introduction

In this paper, we are concerned with the oscillatory behavior of the nonlinear difference
equation with a sub-linear neutral term

∆(an∆(xn + pnx
α
n−k)) + qnx

β
n+1−l = 0, n ≥ n0, (1.1)

where n0 is a nonnegative integer, subject to the following conditions:

(H1) 0 < α ≤ 1 and β are ratios of odd positive integers;

(H2) {an}, {pn}, and {qn} are positive real sequences for all n ≥ n0;

(H3) k is a positive integer, and l is a nonnegative integer.

Let θ = max{k, l}. By a solution of equation (1.1), we mean a real sequence {xn}
defined for all n ≥ n0 − θ that satisfies equation (1.1) for all n ≥ n0. A solution
of equation (1.1) is called oscillatory if its terms are neither eventually positive nor
eventually negative, and nonoscillatory otherwise.

In the last few years there has been a great interest in investigating the oscillatory
and asymptotic behavior of neutral type difference equations, see [1, 2, 4, 5, 6, 7, 8,
9, 10, 11, 12] and the references cited therein.



60 C. Dharuman, J.R. Graef, E. Thandapani and K.S. Vidhyaa

In [4], Lin considered the equation of the form

∆(xn − pnxαn−k) + qnx
β
n−l = 0, n ≥ n0, (1.2)

and studied its oscillatory behavior. In [5], Thandapani et al. investigated the oscil-
lation of all solutions of the equation

∆(an∆(xn − pxαn−k)) + qnx
β
n+1−l = 0, n ≥ n0, (1.3)

where p > 0 is a real number, k and l are positive integers, 0 < α ≤ 1 and β are ratios
of odd positive integers, and

∑∞
n=n0

1
an

=∞.
A special case of the equation studied by Yildiz and Ogunmez [11] has the form

∆2(xn + pnx
α
n−k) + qnx

β
n−l = 0, (1.4)

where {pn} is a real sequence, {qn} is a nonnegative real sequence, and α > 1 and
β > 0 are again ratios of odd positive integers. They too discussed the oscillatory
behavior of solutions.

In [6], Thandapani et al. considered equation (1.3), and obtained criteria for the
oscillation of solutions provided

∑∞
n=n0

1
an

<∞.
In this paper, we obtain sufficient conditions for the oscillation of all solutions of

equation (1.1) in the two cases
∞∑

n=n0

1

an
=∞ (1.5)

and
∞∑

n=n0

1

an
<∞. (1.6)

Our technique of proof makes use of some inequalities and Riccati type transfor-
mations. The results we obtain here are new and generalize those reported in
[4, 5, 6, 11, 12]. Examples are provided to illustrate the main results.

2. Oscillation results

In this section, we obtain sufficient conditions for the oscillation of all solutions of
equation (1.1). We set

zn = xn + pnx
α
n−k.

Due to the form of our equation, we only need to give proofs for the case of eventually
positive nonoscillatory solutions since the proofs for eventually negative solutions
would be similar.

We begin with the following two lemmas given in [7].

Lemma 2.1. Assume that β ≥ 1 and a, b ∈ [0,∞). Then

aβ + bβ ≥ 1

2β−1
(a+ b)β .
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Lemma 2.2. Assume that 0 < β ≤ 1 and a, b ∈ [0,∞). Then

aβ + bβ ≥ (a+ b)β .

The next lemma can be found in [3, Theorem 41, p. 39].

Lemma 2.3. Assume that a > 0, b > 0, and 0 < β ≤ 1. Then

aβ − bβ ≤ βbβ−1(a− b).

Here is our first oscillation result.

Theorem 2.4. Assume that (H1)–(H3) and (1.5) hold. If β ≥ 1 and there exists a
positive nondecreasing real sequence {ρn} such that

lim sup
n→∞

n∑
s=n0

([
(1− αps+1−l)

β

2β−1
−

(1− α)βpβs+1−l
Mβ

]
ρsqs −

as−l(∆ρs)
2

4βMβ−1ρs

)
=∞ (2.1)

holds for all constants M > 0, then every solution of equation (1.1) is oscillatory.

Proof. Assume to the contrary that equation (1.1) has an eventually positive solution
{xn}, say xn > 0, xn−k > 0, and xn−l > 0 for all n ≥ n1 for some n1 ≥ n0. From
equation (1.1), we have

∆(an∆zn) = −qnxβn+1−l < 0, n ≥ n1. (2.2)

In view of condition (1.5), it is easy to see that ∆zn > 0 for all n ≥ n1. Now, it follows
from the definition zn, and using Lemma 2.3, we have

xn = zn − pnxαn−k ≥ zn − pn(zαn − 1)− pn
≥ zn − αpn(zn − 1)− pn
= (1− αpn)zn − (1− α)pn

or

(xn+1−l + (1− α)pn+1−l)
β ≥ (1− αpn+1−l)

βzβn+1−l, n ≥ n1.

Using Lemma 2.1, in the last inequality, we obtain

xβn+1−l ≥
1

2β−1
(1− αpn+1−l)

βzβn+1−l − (1− α)βpβn+1−l, n ≥ n1. (2.3)

From (2.2) and (2.3), we have

∆(an∆zn) ≤ −(1− αpn+1−l)
β

2β−1
qnz

β
n+1−l + (1− α)βqnp

β
n+1−l, n ≥ n1. (2.4)

Define

wn =
ρnan∆zn

zβn−l
, n ≥ n1. (2.5)
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Then, wn > 0 for all n ≥ n1, and

∆wn =
ρn∆(an∆zn)

zβn+1−l
+

(∆ρn)an+1∆zn+1

zβn+1−l
− ρnan∆zn

zβn+1−lz
β
n−l

∆(zβn−l). (2.6)

By the Mean Value Theorem

zβn+1−l − z
β
n−l ≥

 βzβn−l∆zn−l, if β ≥ 1,

βzβ−1n+1−l∆zn−l, if β < 1.
(2.7)

Combining (2.7) with (2.6) and then using the facts that an∆zn is positive and de-
creasing and zn is increasing, we have

∆wn ≤ −(1− αpn+1−l)
β

2β−1
ρnqn +

ρn(1− α)β

Mβ
pβn+1−lρnqn

+
∆ρnwn+1

ρn+1
− βMβ−1 ρn

ρ2n+1an−l
w2
n+1, n ≥ n1, (2.8)

where we have used the fact that zn ≥M for some M > 0 and all n ≥ n1. Completing
the square on the last two terms on the right, we obtain

∆wn ≤ −
[

(1− αpn+1−l)
β

2β−1
− (1− α)β

Mβ
pβn+1−l

]
ρnqn +

an−l(∆ρn)2

4βMβ−1ρn
, n ≥ n1.

Summing the last inequality from n1 to n yields

n∑
s=n1

([
(1− αps+1−l)

β

2β−1
− (1− α)β

Mβ
pβs+1−l

]
ρsqs −

as−l(∆ρs)
2

4βMβ−1ρs

)
≤ wn1

,

which contradicts (2.1) and completes the proof of the theorem.

The proof of the following theorem is similar to that of Theorem 2.4 only using
Lemma 2.2 instead of Lemma 2.1. We omit the details.

Theorem 2.5. Assume that (H1)–(H3) and (1.5) hold. If 0 < β < 1 and there exists
a positive nondecreasing real sequence {ρn} such that

lim sup
n→∞

n∑
s=n0

([
(1− αps+1−l)

β − (1− α)β

Mβ
pβs+1−l

]
ρsqs −

as−l(∆ρs)
2

4βMβ−1ρs

)
=∞ (2.9)

holds for all constants M > 0, then every solution of equation (1.1) is oscillatory.

Our next two theorems are for the case where (1.6) holds in place of (1.5). We let

An =

∞∑
s=n

1

as
.

We will also need the condition

1− αpn
An−k
An

> 0 for all n ≥ n0. (2.10)
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Theorem 2.6. Let β ≥ 1 and (H1)–(H3), (1.6), and (2.10) hold. Assume that
there exists a positive nondecreasing real sequence {ρn} such that (2.1) holds for all
constants M > 0. If

lim sup
n→∞

n−1∑
s=n0

(
Aβs+1

[(
1− αps+1−l

As+1−l−k

As+1−l

)β
1

2β−1

−
(1− α)βpβs+1−l

DβAβs+1

]
qs −

βAβ−1s

4Dβ−1asA
β
s+1

)
=∞ (2.11)

holds for every constant D > 0, then every solution of equation (1.1) is oscillatory.

Proof. Assume to the contrary that equation (1.1) has an eventually positive solution
such that xn > 0, xn−k > 0, and xn−l > 0 for all n ≥ n1 ≥ n0. From (1.1), we
have that (2.2) holds. We then have that either ∆zn > 0 or ∆zn < 0 eventually. If
∆zn > 0 holds, then we can proceed as in the proof of Theorem 2.4 and again obtain
a contradiction to (2.1).

Now assume that ∆zn < 0 for all n ≥ n1. Define

un =
an∆zn

zβn
, n ≥ n1. (2.12)

Then un < 0 for all n ≥ n1 and from (2.2), we have

∆zs ≤
an∆zn
as

, s ≥ n.

Summing the last inequality from n to j, we obtain

zj+1 − zn ≤ an∆zn

j∑
s=n

1

as
;

and then letting j →∞ gives

an∆znAn
zn

≥ −1, n ≥ n1. (2.13)

Thus,
−an∆zn(−an∆zn)β−1Aβn

zβn
≤ 1

for n ≥ n1. Since −an∆zn > 0 and (2.2) and (2.12) hold, we have

− 1

Lβ−1
≤ unAβn ≤ 0, (2.14)

where L = −an1
∆zn1

. On the other hand, from (2.13),

∆

(
zn
An

)
≥ 0, n ≥ n1. (2.15)
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From the definition of zn, (2.15), and Lemma 2.3, we have

xn = zn − pnxαn−k ≥ zn − pn(zαn−k − 1)− pn
≥ zn − αpn(zn−k − 1)− pn

≥
(

1− αpn
An−k
An

)
zn + (α− 1)pn,

or

(xn+1−l + (1− α)pn+1−l)
β ≥

(
1− αpn+1−l

An+1−l−k

An+1−l

)β
zβn+1−l.

Using Lemma 2.1, in the last inequality, we obtain

xβn+1−l ≥
1

2β−1

(
1− αpn+1−l

An+1−l−k

An+1−l

)β
zβn+1−l − (1− α)βpβn+1−l. (2.16)

From (2.2) and (2.16), we have

∆(an∆zn) ≤ − qn
2β−1

(
1− αpn+1−l

An+1−l−k

An+1−l

)β
zβn+1−l + qn(1− α)βpβn+1−l.(2.17)

From (2.12),

∆un =
∆(an∆zn)

zβn+1

− an∆zn

zβnz
β
n+1

∆zβn , n ≥ n1. (2.18)

By the Mean Value Theorem,

zβn+1 − zβn ≤

 βzβ−1n+1∆zn, if β ≥ 1,

βzβ−1n ∆zn, if 0 < β < 1,
(2.19)

so combining (2.19) and (2.18) and using the fact that ∆zn < 0 gives

∆un ≤ ∆(an∆zn)

zβn+1

− β u
2
n

an
zβ−1n . (2.20)

Since zn/An is increasing, there is a constant D > 0 such that zn/An ≥ D for n ≥ n1.
Using this together with (2.15) and (2.17) in (2.20), we obtain

∆un ≤
−qn
2β−1

(
1− αpn+1−l

An+1−l−k

An+1−l

)β
+
qn(1− α)β

DβAβn+1

pβn+1−l−βD
β−1Aβ−1n

u2n
an
. (2.21)

Multiplying (2.21) by Aβn+1 and then summing the resulting inequality from n1 to
n− 1, we see that

Aβnun −Aβn1
un1

+

n−1∑
s=n1

Aβs+1

[(
1− αps+1−l

As+1−l−k

As+1−l

)β
1

2β−1
− (1− α)β

DβAβs+1

pβs+1−l

]
qs

+

n−1∑
s=n1

βAβ−1s us
as

+

n−1∑
s=n1

βDβ−1Aβ−1s Aβs+1

u2s
as
≤ 0,
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which upon completing the square on the last two terms yields

n−1∑
s=n1

(
Aβs+1

[(
1− αps+1−l

As+1−l−k

As+1−l

)β
1

2β−1
− (1− α)β

DβAβs+1

pβs+1−l

]
qs

− βAβ−1s

4Dβ−1asA
β
s+1

)
≤ 1

Lβ−1
+An1

un1

in view of (2.14). This contradicts (2.11), and completes the proof of the theorem.

The proof of the following theorem is similar to that of Theorem 2.6 using Lemma
2.2 instead of Lemma 2.1. We again omit the details.

Theorem 2.7. Let 0 < β < 1 and (H1)–(H3), (1.6), and (2.10) hold. Assume that
there exists a positive nondecreasing real sequence {ρn} such that (2.9) holds for all
constants M > 0. If

lim sup
n→∞

n−1∑
s=n0

(
Aβs+1

[(
1− αps+1−l

As+1−l−k

As+1−l

)β
−

(1− α)βpβs+1−l

DβAβs+1

]
qs

− βAβ−1s

4Dβ−1asA
β
s+1

)
=∞ (2.22)

holds for all constants D > 0, then every solution of equation (1.1) is oscillatory.

3. Examples

In this section, we present two examples to illustrate our main results.

Example 3.1. Consider the neutral difference equation

∆

(
(n+ 1)∆

(
xn +

1

n
x
1/3
n−2

))
+

(
4n+ 10 +

2n+ 1

n(n+ 1)

)
x3n−3 = 0, n ≥ 1. (3.1)

Here an = (n + 1), pn = 1
n , qn = 4n + 10 + 2n+1

n(n+1) , α = 1
3 , β = 3, k = 2, and l = 4.

By taking ρn = 1, we see that all conditions of Theorem 2.4 are satisfied and hence
every solution of equation (3.1) is oscillatory. In fact {xn} = {(−1)3n} is one such
oscillatory solution of equation (3.1).

Example 3.2. Consider the neutral difference equation

∆

(
(n+ 1)(n+ 2)∆

(
xn +

1

n(n+ 1)
x
1/3
n−1

))
+

(
4(n+ 2)2 − 2(2n2 + 4n+ 1)

n(n+ 1)

)
x3n−1 = 0, n ≥ 1. (3.2)
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Here an = (n+ 1)(n+ 2), pn = 1
n(n+1) , qn = 4(n+ 2)2 − 2(2n2+4n+1)

n(n+1) , α = 1
3 , β = 3,

k = 1, and l = 2. Simple calculation shows that An = 1
n+1 and 1 − αpn

An−k

An
=

1− 1
3n2 > 0. The conditions (2.1) and (2.11) are also satisfied with ρn = 1. Therefore,

by Theorem 2.6, every solution of equation (3.2) is oscillatory. In fact {xn} = {(−1)n}
is one such oscillatory solution of equation (3.2).

We conclude this paper with the following remark.

Remark 3.3. Condition (2.10) is somewhat restrictive. It implies that we must have
{pn} → 0 as n → ∞. It would be good to see a result that did not need this added
condition. Note also that it can be seen from the proof of Theorem 2.6 that (2.10) is
not needed if α = 1.
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