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Abstract: In the present paper, we make generalization of the classes
in [7] of Sǎlǎgean-Type multivalent harmonic functions. We introduce suf-
ficient coefficient condition for the class Hi

p(n;λ, β, m) and this condition
be also necessary if certain restriction is imposed on the coefficients of
these harmonic functions. Also we have obtained a representation theo-
rem, inclusion relations and distortion bounds for these functions
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1. Introduction

A continuous function f = u+ iv is a complex valued harmonic function in a complex
domain C, if u and v are real harmonic. If Ω be any simply connected domain and
Ω ⊂ C, then f = h + g, where h and g are analytic in Ω, h is analytic part and g is
co-analytic part of f · |g′(z)| < |h′(z)| if and only if f is locally univalent and sense
preserving in Ω, see [3], [5]. Denote by

H = {f : f = h+ g, f is harmonic univalent and sense-preserving in the open unit
disk U = {z : |z| < 1}}.
So f = h + g ∈ H is normalized by f(0) = h(0) = fz(0)− 1 = 0.

Ahuja and Jahangiri [1] defined the class Hp(n) (p, n ∈ IN = {1, 2, 3, · · · }) con-
sisting of all p-valent harmonic functions f = h + g that are sense-preserving U , and
h, g are of the form

h(z) = zp +
∞∑

k=n+p

akzk, g(z) =
∞∑

k=n+p−1

bkzk, |bn+p−1| < 1. (1)
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Let f = h + g given by (1), the modified Sălăgean operator of f is defined as:

Dif(z) = Dih(z) + (−1)iDig(z), p > i, i ∈ IN0 = {0, 1, 2, · · · },

where Dih(z) = pizp
∞∑

k=n+p

kiakzk and Dig(z) =
∞∑

k=n+p−1

kibkzk (see [4], [6]).

Let Hi
p(n) be a subclass consisting of harmonic functions fi = h + gi, so that h

and gi are of the form:

h(z) = zp −
∞∑

k=n+p

akzk, gi(z) = (−1)i
∞∑

k=n+p−1

bkzk, for ak, bk ≥ 0, |bn+p−1| < 1.

(2)
A function f in Hp(n) is said to be in the class Hi

p(n;λ, β, m) if

Re

{
(1− λ)

Dif(z)
∂i

∂θi zp
+ λ(1−m)

Di+1f(z)
∂i+1

∂θi+1 zp
+ λm

Di+2f(z)
∂i+2

∂θi+2 zp

}
>

β

pi+1
, (3)

where 0 ≤ β < p, λ ≥ 0, 0 ≤ m ≤ 1, p ≥ i and z = reiθ ∈ U .
As λ changes from 0 to 1, the family Hi

p(n;λ, β, m) provides a passage from the
class of Sălăgean-type multivalent harmonic functions Hi

pR(n;β) ≡ Hi
p(n; 0, β,m)

consisting of functions f , where

Re

{
Dif(z)

∂i

∂θi zp

}
>

β

pi+1

and this class was studied in [7].
To the class of Sălăgean-type multivalent harmonic functions Hi

pS(n;β, m) ≡
Hi

p(n; 1, β,m) consisting of functions f , where

Re

{
(1−m)

Di+1f(z)
∂i+1

∂θi+1 zp
+ m

Di+2f(z)
∂i+2

∂θi+2 zp

}
>

β

pi+1
,

to the class of Sălăgean-type multivalent harmonic functions (if m = 0) Hi
pT (n;β) ≡

Hi
p(n; 1, β, 0) consisting of functions f satisfying

Re

{
Di+1f(z)

∂i+1

∂θi+1 zp

}
>

β

pi+1
,

and this class was studied in [7].
If m = 0, then the class Hi

p(n;λ, β, m) reduces to the class Hi
pU(n;λ, β) ≡

Hi
p(n;λ, β, 0) consisting of functions f such that

Re

{
(1− λ)

Dif(z)
∂i

∂θi zp
+ λ

Di+1f(z)
∂i+1

∂θi+1 zp

}
>

β

pi+1
,
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and this class was studied in [7].

Now, we define the subclass Hi

p(n;λ, β, m) ≡ Hi
p(n;λ, β, m)∩Hi

p(n). If m = 0 and
i = 0, then the class Hi

p(n;λ, β, m) reduces to the class HpV (n;λ, β) ≡ H0
p(n;λ, β, 0)

that was studied in [2].

2. Representation Theorem

In the following theorem, we find a coefficient bound for functions in Hi
p(n;λ, β, m).

Theorem 1. Let f = h + g be given by (1). Then f ∈ Hi
p(n;λ, β, m) if

∞∑
k=n+p

|p+(k−p)(
mk

p
+1)λ|ki|ak|+

∞∑
k=n+p−1

|p+(k+p)(
mk

p
−1)λ|ki|bk| ≤ pi+1−β, (4)

where 0 ≤ β < p, λ ≥ 0, 0 ≤ m ≤ 1, p ≥ i and z = reiθ ∈ U .

Proof. By using the fact Re α ≥ 0 if and only if |1 + α| ≥ |1− α| in U , it suffices to
show that

|pi+1 − β + pi+1w| ≥ |pi+1 + β − pi+1w|,

where

w = (1− λ)
Dif(z)

∂i

∂θi zp
+ λ(1−m)

Di+1f(z)
∂i+1

∂θi+1 zp
+ λm

Di+2f(z)
∂i+2

∂θi+2 zp
.

Substituting for h and g in w we obtain

w = 1 +
∞∑

k=n+p

[1 + (
k

p
− 1)(m

k

p
+ 1)λ]

ki

pi
ak

zk

zp

+
∞∑

k=n+p−1

[1− (
k

p
+ 1)(1−m

k

p
)λ](−1)i k

i

pi
bk

zk

zp
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and then we have

|pi+1 − β + pi+1w| − |pi+1 + β − pi+1w|

= |2pi+1 − β +
∞∑

k=n+p

[p + (k − p)(
mk

p
+ 1)λ]kiak

zk

zp

+
∞∑

k=n+p−1

[p− (k + p)(1− mk

p
)λ](−1)ikibk

zk

zp
|

−|β +
∞∑

k=n+p

[p + (k − p)(
mk

p
+ 1)λ]kiak

zk

zp

−
∞∑

k=n+p−1

[p− (k + p)(1− mk

p
)λ](−1)ikibk

zk

zp
|

≥ 2pi+1 −
∞∑

k=n+p

|p + (k − p)(
mk

p
+ 1)λ|ki|ak||z|k−p

−
∞∑

k=n+p−1

|p + (k + p)(
mk

p
− 1)λ|ki|bk||z|k−p

−
∞∑

k=n+p

|p + (k − p)(
mk

p
+ 1)λ|ki|ak||z|k−p

−
∞∑

k=n+p−1

|p + (k + p)(
mk

p
− 1)λ|ki|bk||z|k−p

≥ 2[(pi+1 − β)−
∞∑

k=n+p

|p + (k − p)(
mk

p
+ 1)λ|ki|ak|

−
∞∑

k=n+p−1

|p + (k + p)(
mk

p
− 1)λ|ki|bk|] ≥ 0.

The proof is complete.
The coefficient bound (4) given in Theorem 1 is sharp for the function

f(z) = zp +
∞∑

k=n+p

xk

|p + (k − p)(mk
p + 1)λ|ki

zk +
∞∑

k=n+p−1

yk

|p + (k + p)(mk
p − 1)λ|ki

zk,

where
∞∑

k=n+p

|xk|+
∞∑

k=n+p−1

|yk| = pi+1 − β.

Theorem 2. Let fi = h + gi be given by (2). Then fi ∈ H
i

p(n;λ, β, m) if and only if

∞∑
k=n+p

|p+(k−p)(
mk

p
+1)λ|kiak +

∞∑
k=n+p−1

|p+(k+p)(
mk

p
−1)λ|kibk ≤ pi+1−β. (5)
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Proof. From Theorem 1, we only want to prove the “only if” part of the theorem,
since Hi

p(n;λ, β, m) ⊂ Hi
p(n;λ, β, m). If fi ∈ H

i

p(n;λ, β, m), then, for z = reiθ in U
we get

Re

{
(1− λ)

Dif(z)
∂i

∂θi zp
+ λ(1−m)

Di+1f(z)
∂i+1

∂θi+1 zp
+ λm

Di+2f(z)
∂i+2

∂θi+2 zp

}

= Re

{
(1− λ)

pi

(
Dih(z) + (−1)iDigi(z)

iizp

)

+
λ(1−m)

pi+1

(
Di+1h(z)− (−1)iDi+1gi(z)

ii+1zp

)

+
λm

pi+2

(
Di+2h(z) + (−1)iDi+2gi(z)

ii+2zp

)}

≥ 1− 1
pi+1

∞∑
k=n+p

|p + (k − p)(
mk

p
+ 1)λ|kiakrk−p

− 1
pi+1

∞∑
k=n+p−1

|p + (k + p)(
mk

p
− 1)λ|kibkrk−p ≥ β

pi+1
.

This inequality must hold for all z ∈ U . In particular, letting z = r → 1, it yields the
required condition (5).

As special cases of Theorem 2, we obtain the following corollaries :
Corollary 1. [7] fi = h + gi ∈ H

i

pR(n;β) ≡ Hi
pR(n;β) ∩Hi

p(n) if and only if

∞∑
k=n+p

pki

pi+1 − β
ak +

∞∑
k=n+p−1

pki

pi+1 − β
bk ≤ 1.

Corollary 2. fi = h + gi ∈ H
i

pS(n;β, m) ≡ Hi
pS(n;β, m) ∩Hi

p(n) if and only if

∞∑
k=n+p

|p + (k − p)(mk
p + 1)|ki

pi+1 − β
ak +

∞∑
k=n+p−1

|p + (k + p)(mk
p − 1)|ki

pi+1 − β
bk ≤ 1.

Corollary 3. [7] fi = h + gi ∈ H
i

pT (n;β) ≡ Hi
pT (n;β) ∩Hi

p(n) if and only if

∞∑
k=n+p

ki+1

pi+1 − β
ak +

∞∑
k=n+p−1

ki+1

pi+1 − β
bk ≤ 1.

Corollary 4. [7] fi = h + gi ∈ H
i

pU(n;λ, β) ≡ Hi
pU(n;λ, β) ∩Hi

p(n) if and only if

∞∑
k=n+p

|λk + (1− λ)p|ki

pi+1 − β
ak +

∞∑
k=n+p−1

|λk − (1− λ)p|ki

pi+1 − β
bk ≤ 1.
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In the following theorem, we determine a representation theorem for functions in
Hi

p(n;λ, β, m).

Theorem 3. fi = h + gi ∈ H
i

p(n;λ, β, m) if and only if fi can be expressed as

fi(z) = Xphp(z) +
∞∑

k=n+p

Xkhk(z) +
∞∑

k=n+p−1

Ykgki
(z),

where hp(z) = zp, hk(z) = pi+1−β
|p+(k−p)( mk

p +1)λ|ki z
k, (k = n + p, n + p + 1, · · · ), gki(z) =

zp + (−1)i pi+1−β
|p+(k+p)( mk

p −1)λ|ki z
k, (k = n + p− 1, n + p, · · · ), Xp ≥ 0, Yn+p−1 ≥ 0, Xp +

∞∑
k=n+p

Xk +
∞∑

k=n+p−1

Yk = 1, and Xk ≥ 0, Yk ≥ 0, for k = n + p, n + p + 1, · · · .

Proof. For functions fi of the form (2), we have

fi(z) = Xphp(z) +
∞∑

k=n+p

Xkhk(z) +
∞∑

k=n+p−1

Ykgki
(z)

= zp −
∞∑

k=n+p

pi+1 − β

|p + (k − p)(mk
p + 1)λ|ki

Xkzk

+(−1)i
∞∑

k=n+p−1

pi+1 − β

|p + (k + p)(mk
p − 1)λ|ki

Ykzk.

Consequently, fi ∈ H
i

p(n;λ, β, m), since by (5), we have

∞∑
k=n+p

|p + (k − p)(
mk

p
+ 1)λ|kiak +

∞∑
k=n+p−1

|p + (k + p)(
mk

p
− 1)λ|kibk

=
∞∑

k=n+p

|p + (k − p)(
mk

p
+ 1)λ|ki · pi+1 − β

|p + (k − p)(mk
p + 1)λ|ki

|Xk|

+
∞∑

k=n+p−1

|p + (k + p)(
mk

p
− 1)λ|ki · pi+1 − β

|p + (k + p)(mk
p − 1)λ|ki

|Yk|

= (pi+1 − β)

 ∞∑
k=n+p

|Xk|+
∞∑

k=n+p−1

|Yk|

 = (pi+1 − β)(1−Xp) ≤ pi+1 − β.

Conversely, assume fi ∈ Hi

p(n;λ, β, m). Letting Xp = 1 −
∞∑

k=n+p

Xk −
∞∑

k=n+p−1

Yk,

where Xk =
|p+(k−p)( mk

p +1)λ|ki

pi+1−β ak and Yk =
|p+(k+p)( mk

p −1)λ|ki

pi+1−β bk, we obtain the re-
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quired representation, since

fi(z) = zp −
∞∑

k=n+p

akzk + (−1)i
∞∑

k=n+p−1

bkzk

= zp −
∞∑

k=n+p

(pi+1 − β)Xk

|p + (k − p)(mk
p + 1)λ|ki

zk

+(−1)i
∞∑

k=n+p−1

(pi+1 − β)Yk

|p + (k + p)(mk
p − 1)λ|ki

zk

= zp −
∞∑

k=n+p

(zp − hk(z))Xk −
∞∑

k=n+p−1

(zp − gki
(z))Yk

=

1−
∞∑

k=n+p

Xk −
∞∑

k=n+p−1

Yk

 zp +
∞∑

k=n+p

hk(z)Xk +
∞∑

k=n+p−1

gki
(z)Yk

= Xphp(z) +
∞∑

k=n+p

Xkhk(z) +
∞∑

k=n+p−1

Ykgki(z).

3. Inclusion Relations

In the following theorem, we discuss the inclusion relations between the above men-
tioned classes. The inclusion relations between the classes for the different values of
λ are not so obvious.
Theorem 4. For n ∈ IN and 0 ≤ β < p, we have:

(1) Hi

pS(n;β, m) ⊂ Hi

p(n;λ, β, m), 0 ≤ λ < 1

(2) Hi

p(n;λ, β, m) ⊂ Hi

pS(n;β, m), λ ≥ 1

(3) Hi

p(n;λ, β, m) ⊂ Hi

pR(n;β), λ ≥ 0

(4) Hi

p(n;λ, β, m) ⊂ Hi

pU(n;λ, β), λ ≥ 0

(5) Hi

pS(n;β, m) ⊂ Hi

pR(n;β).

Proof (1) For 0 ≤ λ < 1, we have

∞∑
k=n+p

|p + (k − p)(
mk

p
+ 1)λ|kiak +

∞∑
k=n+p−1

|p + (k + p)(
mk

p
− 1)λ|kibk

≤
∞∑

k=n+p

|p + (k − p)(
mk

p
+ 1)|kiak +

∞∑
k=n+p−1

|p + (k + p)(
mk

p
− 1)|kibk

≤ pi+1 − β. (by Corollary 2)
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Therefore (1) is obtained from Theorem 2.

(2) If λ ≥ 1, then by Theorem 2

∞∑
k=n+p

|p + (k − p)(
mk

p
+ 1)|kiak +

∞∑
k=n+p−1

|p + (k + p)(
mk

p
− 1)|kibk

≤
∞∑

k=n+p

|p + (k − p)(
mk

p
+ 1)λ|kiak +

∞∑
k=n+p−1

|p + (k + p)(
mk

p
− 1)λ|kibk

≤ pi+1 − β.

Therefore, (2) is obtained from Corollary 2.

(3) If λ ≥ 0, then by Theorem 2,

∞∑
k=n+p

pkiak +
∞∑

k=n+p−1

pkibk

≤
∞∑

k=n+p

|p + (k − p)(
mk

p
+ 1)λ|kiak +

∞∑
k=n+p−1

|p + (k + p)(
mk

p
− 1)λ|kibk

≤ pi+1 − β.

Thus, (3) is obtained from Corollary 1.

(4) If λ ≥ 0, then by Theorem 2,

∞∑
k=n+p

|λk + (1− λ)p|kiak +
∞∑

k=n+p−1

|λk − (1− λ)p|kibk

=
∞∑

k=n+p

|p + (k − p)λ|kiak +
∞∑

k=n+p−1

|(k + p)λ− p|kibk

≤
∞∑

k=n+p

|p + (k − p)(
mk

p
+ 1)λ|kiak +

∞∑
k=n+p−1

|p + (k + p)(
mk

p
− 1)λ|kibk

≤ pi+1 − β.

Thus, (4) is obtained from Corollary 4.

(5) In view of Corollaries 1 and 2, since

∞∑
k=n+p

pkiak +
∞∑

k=n+p−1

pkibk

≤
∞∑

k=n+p

|p + (k − p)(
mk

p
+ 1)|kiak +

∞∑
k=n+p−1

|p + (k + p)(
mk

p
− 1)|kibk.

The result follows.
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4. Distortion Bounds

We introduce a distortion theorem for functions in Hi

p(n;β, λ, m).

Theorem 5. If fi ∈ H
i

p(n;λ, β, m), λ ≥ 1 and |z| = r < 1, then

|fi(z)| ≤ (1 + bn+p−1r
n−1)rp +

(
pi+1 − β

(p + n(mn
p + m + 1)λ)(n + p)i

−
[(n + 2p− 1)(1− 1

p (m(n + p− 1)))λ− p](n + p− 1)i

(p + n(mn
p + m + 1)λ)(n + p)i

bn+p−1

)
rn+p

and

|fi(z)| ≥ (1− bn+p−1r
n−1)rp −

(
pi+1 − β

(p + n(mn
p + m + 1)λ)(n + p)i

−
[(n + 2p− 1)(1− 1

p (m(n + p− 1)))λ− p](n + p− 1)i

(p + n(mn
p + m + 1)λ)(n + p)i

bn+p−1

)
rn+p.

Proof. We prove the left hand side inequality for |fi|. Let fi ∈ H
i

p(n;λ, β, m), then
by Theorem 2, we obtain:

|fi(z)| =

∣∣∣∣∣∣zp + (−1)ibn+p−1z
n+p−1 +

∞∑
k=n+p

(akzk + (−1)ibkzk)

∣∣∣∣∣∣
≥ rp − bn+p−1r

n+p−1 − pi+1 − β

(p + n(mn
p + m + 1)λ)(n + p)i

×

∞∑
k=n+p

(
p + n(mn

p + m + 1)λ

pi+1 − β
ak +

p + n(mn
p + m + 1)λ

pi+1 − β
bk

)
(n + p)irk

≥ rp − bn+p−1r
n+p−1 − pi+1 − β

(p + n(mn
p + m + 1)λ)(n + p)i

×

∞∑
k=n+p

(
p + (k − p)(mk

p + 1)λ

pi+1 − β
ak +

(k + p)(1− mk
p )λ− p

pi+1 − β
bk

)
kirk

≥ (1− bn+p−1r
n−1)rp − pi+1 − β

(p + n(mn
p + m + 1)λ)(n + p)i

×[
1−

[(n + 2p− 1)(1− 1
p (m(n + p− 1)))λ− p](n + p− 1)i

pi+1 − β
bn+p−1

]
rn+p

≥ (1− bn+p−1r
n−1)rp −

(
pi+1 − β

(p + n(mn
p + m + 1)λ)(n + p)i

−
[(n + 2p− 1)(1− 1

p (m(n + p− 1)))λ− p](n + p− 1)i

(p + n(mn
p + m + 1)λ)(n + p)i

bn+p−1

)
rn+p.
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The proof for the right hand side inequality can be done using similar arguments and
this completes the proof of theorem.

The following result follows from the left hand side inequality in Theorem 5.
Corollary 5. If fi ∈ H

i

p(n;λ, β, m), λ ≥ 1, then the set

{w : |w| < [(p + n(
mn

p
+ m + 1)λ)(n + p)i − pi+1 + β

−[(p + n(
mn

p
+ m + 1)λ)(n + p)i + [(n + 2p− 1)(1− 1

p
(m(n + p− 1)))λ− p]

·(n + p− 1)i]bn+p−1]/[(p + n(
mn

p
+ m + 1)λ)(n + p)i]}

is included in fi(U).
By using arguments similar to those given in the proof of Theorem 5, we get the

following corollaries.
Corollary 6. [7] If fi ∈ H

i

pR(n;β), then

|fi(z)| ≤ (1 + bn+p−1r
n−1)rp +

(
pi+1 − β

p(n + p)i
+

(n + p− 1)i

(n + p)i
bn+p−1

)
rn+p,

and

|fi(z)| ≥ (1− bn+p−1r
n−1)rp −

(
pi+1 − β

p(n + p)i
+

(n + p− 1)i

(n + p)i
bn+p−1

)
rn+p.

Corollary 7. [7] If fi ∈ H
i

pT (n;β), then

|fi(z)| ≤ (1 + bn+p−1r
n−1)rp +

(
pi+1 − β

(n + p)i+1
− (n + p− 1)i+1

(n + p)i+1
bn+p−1

)
rn+p,

and

|fi(z)| ≥ (1− bn+p−1r
n−1)rp −

(
pi+1 − β

(n + p)i+1
− (n + p− 1)i+1

(n + p)i+1
bn+p−1

)
rn+p.

Corollary 8. [7] If fi ∈ H
i

pU(n;λ, β), then

|fi(z)| ≤ (1 + bn+p−1r
n−1)rp

+
(

pi+1 − β

(λn + p)(n + p)i
− [λ(n + 2p− 1)− p](n + p− 1)i

(λn + p)(n + p)i
bn+p−1

)
rn+p,

and

|fi(z)| ≥ (1− bn+p−1r
n−1)rp

−
(

pi+1 − β

(λn + p)(n + p)i
− [λ(n + 2p− 1)− p](n + p− 1)i

(λn + p)(n + p)i
bn+p−1

)
rn+p.
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Corollary 9. If fi ∈ H
i

pS(n;β, m), then

|fi(z)| ≤ (1 + bn+p−1r
n−1)rp +

(
pi+1 − β

(p + n(mn
p + m + 1))(n + p)i

−
[(n + 2p− 1)(1− 1

p (m(n + p− 1)))− p](n + p− 1)i

(p + n(mn
p + m + 1))(n + p)i

bn+p−1

)
rn+p,

and

|fi(z)| ≥ (1− bn+p−1r
n−1)rp −

(
pi+1 − β

(p + n(mn
p + m + 1))(n + p)i

−
[(n + 2p− 1)(1− 1

p (m(n + p− 1)))− p](n + p− 1)i

(p + n(mn
p + m + 1))(n + p)i

bn+p−1

)
rn+p.
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Abstract: We present a review of ideas of a general theory of conver-
gence, developed independently of topology, with the stress on the duality
of convergence and topology. Results and problems concerning sufficient
and necessary conditions for a convergence to be topological, both in case
of the single- and multi-valued cases, are recalled. We reconstruct, filling
certain gaps, an example given in [7] to show that one of sufficient condi-
tions in the theorems proved in [1] and [9] for multi-valued convergences
to be topological is not necessary.
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1. Introduction

Convergence of sequences is often defined at first directly, without using any topology.
The corresponding topology, if it exists at all, is discussed usually later. This is
because the description of convergence via topology is more complicated or even
impossible at all (see e.g. [14]). Therefore it makes sense to develop, independently
of topology, a general theory of convergence and it was initiated already by Fréchet
and Urysohn. A convergence in an arbitrary set X can be defined, in general, by
indicating convergent sequences of elements of X and their limits in X. Fréchet [8]
and Urysohn [16] considered only single-valued convergences, i.e. convergences with
unique limits. The so-called L∗-Fréchet spaces satisfy three Fréchet’s conditions which
are fulfilled by every convergence defined by a topology. The study of single-valued
and then multi-valued convergences was continued by many authors (see e.g. [13], [5],
[15], [3], [1], [7], [9], [10], [12]).
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An important result concerning single-valued convergences is Kisyński’s theorem
[13] which says that Fréchet’s conditions are also sufficient for a single-valued conver-
gence to be topological. The situation in the multi-valued case is more complicated.
A characterization of topological multi-valued convergences given in [15] appeared to
be incorrect: a mistake in the proof was found during the international conference
on convergence held in Szczyrk in 1979. A respective counter-example was given by
the second author who later gave in [10] (see also [11], [12]) a full characterization of
topological multi-valued convergences by means of sequential closures.

Simpler sufficient conditions for a multi-valued convergence to be topological are
given in [1] and [9], but one of the conditions is not necessary as the first of the
two interesting examples sketched in [7] shows. However the examples are quite
complicated and contain ambiguities, so the ideas of the constructions may be not so
easy to follow for the reader.

The aim of this note is to reconstruct the first example shown in [7] with more
carefulness, filling gaps found in the original text. We will present this example in
section 3. The second example from [7], which brought the negative answer to the
problem of V. Koutnik (posed during the mentioned conference), but originally also
contained some gaps and inaccuracies, is reconstructed in [2]. In section 2, we recall
all necessary definitions and main properties of the notions under consideration, using
the formalism proposed in [3].

The present article is a result of discussions between the authors during the seminar
conducted by the second author at the University of Rzeszów.

2. Basic definitions and statements

We will use the notation from [3] with certain modifications. By N we will denote
as usual the set of all positive integers and by X a fixed nonempty set. The symbol
kn ↗∞ with ki ∈ N (i ∈ N) means that the sequence {ki} = {ki}∞i=1 is strictly
increasing. In general, we use a shorter notation {ξi} instead of {ξi}∞i=1 for the
sequence ξ1, ξ2, . . . of elements of an arbitrary set. Thus the symbol {ξi} may denote
either the sequence ξ1, ξ2, . . . or the one-element set consisting of ξi for a fixed i ∈ N.
This will not lead, however, to misunderstanding because of a clear context.

By capital letters A, B, . . . we denote subsets of X, i.e. elements of 2X ; by the
scribed letter F (with or without indices) - an arbitrary family of subsets A of X, i.e.
F ⊂ 2X ; by the Gothic letter F - the class 22X

of all families F ⊂ 2X of subsets of
X. By Greek letters ξ, η, . . . (with or without indices) we denote elements of X; by
the corresponding Latin letters x, y, . . . - sequences {ξi}, {ηi}, . . . of elements of X,
respectively, i.e. elements of XN; by the scribed letter G (with or without indices) -
an arbitrary mapping which assigns to each sequence x = {ξi} ∈ XN a subset A ∈ 2X ;
by the Gothic letter G - the class (2X)(X

N) of all such mappings.
We write y ≺ x, if y = {ηi} is a subsequence of x = {ξi}, i.e. if ηi = ξki for certain

ki ∈ N (i ∈ N) such that ki ↗∞. If x = {ξi} with ξi = ξ ∈ X for i ∈ N, then we
denote the constant sequence x by ξ̇. For a given x = {ξi} ∈ XN and A ⊂ X we write
x < A if there exists an index i0 ∈ N such that ξi ∈ A for i ∈ N, i > i0. For a given
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sequence x = {ξi}, ξi ∈ X, we denote by (x) the set of all its elements, i.e.

(x) := {ξi : i ∈ N}. (1)

In particular, if X = Y N is the set of all sequences of elements of a certain set Y and
x = {ξi}, ξi ∈ X, with ξi = {ηi,j}, ηi,j ∈ Y (i, j ∈ N), then by ((x)) we denote the
union of all the sets (ξi) in the sense of (1) for ξi ∈ Y N(i ∈ N), i.e.

((x)) :=
⋃
i∈N

(ξi) = {ηi,j : i, j ∈ N}. (2)

Now we collect definitions we need further on.

Definition 1. By a topology in X we mean an arbitrary family F ∈ F satisfying the
conditions:

(T1) ∅ ∈ F and X ∈ F ;

(T2) if A ∈ F and B ∈ F , then A ∩B ∈ F ;

(T3) if Aγ ∈ F (γ ∈ Γ), then
⋃

γ∈Γ Aγ ∈ F for any nonempty set Γ of indices.

Definition 2. By a convergence in X we mean an arbitrary mapping G : XN → 2X ,
i.e. G ∈ G.

Remark 1. The interpretation of a convergence as a mapping G : XN → 2X is
very natural. For each sequence x = {ξi} ∈ XN, the set G(x) is a subset of X and
is interpreted as the set of all limits of the sequence x. If the set G(x) is empty, the
sequence x is divergent. If the set G(x) is nonempty, the sequence x is convergent to
all elements of G(x). If the set G(x) contains exactly one element, the limit of the
sequence x is unique.

The following conditions on convergences expressed in terms of Definition 2. corre-
spond to the three Fréchet’s conditions (L1), (L2), (L3) in the definition of L∗-Fréchet
spaces:

S. For every ξ ∈ X, we have ξ ∈ G(ξ̇);

F. If y ≺ x, i.e. y is a subsequence of a sequence x, then G(x) ⊂ G(y);

U. If ξ /∈ G(x) (ξ ∈ X, x ∈ XN), then there exists a y ≺ x such that ξ /∈ G(z) for
each z ≺ y.

We introduce in Definitions 3. and 4. below the two operators T and L such that
T : G → F and L : F → G.

Definition 3. Let G ∈ G. By TG ∈ F we mean the family of all A ⊂ X satisfying
the implication: A∩G(x) 6= ∅ ⇒ x < A. The family TG is called the topology induced
by the convergence G.
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Definition 4. Let F ∈ F. By LF ∈ G we mean the convergence such that, for
every sequence x ∈ XN, the set (LF)(x) consists of all points ξ ∈ X satisfying the
implication: ξ ∈ A ⊂ F ⇒ x < A. The mapping LF is called the convergence
induced by the family F .

Remark 2. Notice that the convergence LF induced by F ∈ F is defined in Definition
4. exactly as in case F is a topology, but we do not impose conditions (T1)-(T3) on F ,
in general. Analogously, to define TG ∈ F we do not need to impose on G conditions
S, F, U in Definition 3..

It is natural to define the inclusion between convergences as follows:

Definition 5. Let G1, G2 ∈ G. We write G1 ⊂ G2, whenever G1(x) ⊂ G2(x) for every
x ∈ XN.

The notions of sequential topology and topological convergence considered in the
literature can be described in the following way:

Definition 6. A family F ∈ F is called a sequential topology if F is induced by some
convergence, i.e. there is a G ∈ G such that F = TG (see Statement 1.).

Definition 7. A convergence G ∈ G is called topological if G is induced by some
family F ∈ F, i.e. there is an F ∈ F such that G = LF .

An important particular case of convergences are so-called single-valued conver-
gences described by the following Hausdorff condition.

Definition 8. If a convergence G ∈ G satisfies the condition:

H. For each x ∈ XN, if ξ, η ∈ G(x), then ξ = η,

i.e. each sequence has at most one limit, we call G a single-valued convergence. If
G ∈ G not necessarily satisfies H, we call G a multi-valued convergence.

It is easy to check the following properties of the operators T and L (see [3]):

Statement 1.

1◦ For every F ∈ F, the convergence G = LF satisfies conditions S, F, U.

2◦ For every G ∈ G, the family F = TG of subsets of X is a topology in X.

Statement 2.

1◦ If F1 ⊂ F2 (F1,F2 ∈ F), then LF2 ⊂ LF1.

2◦ If G1 ⊂ G2 (G1,G2 ∈ G), then TG2 ⊂ TG1.



On single-valued and multi-valued convergences 23

Statement 3.

1◦ For every F ∈ F, we have F ⊂ TLF .

2◦ For every G ∈ G, we have G ⊂ LTG.

Statement 4.

1◦ If F1 ⊂ F2 (F1,F2 ∈ F), then TLF1 ⊂ TLF2.

2◦ If G1 ⊂ G2 (G1,G2 ∈ G), then LTG1 ⊂ LTG2.

Statement 5.

1◦ If F1,F2 ∈ F, then L(F1 ∪ F2) = LF1 ∩ LF2.

2◦ If G1,G2 ∈ G, then T (G1 ∪G2) = TG1 ∩ TG2.

Statement 6.

1◦ A family F is a sequential topology iff TLF = F .

2◦ A convergence G is topological iff LTG = G.

Statement 7.

1◦ If F1 and F2 are sequential topologies, then so is F1 ∩ F2.

2◦ If G1 and G2 are topological convergences, then so is G1 ∩ G2.

Remark 3. As an immediate consequence of Statements 2 and 3 we may conclude
that the operators T and L define a Galois connection between the two complete
lattices F and G (see e.g. [4], p. 56).

The following beautiful result is a complete characterization of topological con-
vergences among all single-valued convergences:

Theorem 1. (Kisyński’s theorem; see [13]) A single-valued convergence G is topo-
logical iff G satisfies conditions S, F, U.

Various additional conditions are usually imposed on multi-valued convergences
(see e.g. [1], [9], [10], [7]). Before recalling some of them we introduce a definition.

Definition 9. A set A ⊂ X is called G-closed if (x) ⊂ A implies G(x) ⊂ A for every
x ∈ XN.

Consider the following conditions:

D. If ηn ∈ G(ξ̇n) for n ∈ N, then G(ξn) ⊃ G(ηn);
C. For each x ∈ XN, the set G(x) is G-closed;
C′. For each x ∈ XN there exists a subsequence y of x such that the set

⋃
z≺y G(z)

is G-closed;
H′. For every ξ ∈ X, if η1, η2 ∈ G(ξ̇), then η1 = η2.

In [1], the following result was obtained:
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Theorem 2. (see [1]) If a convergence G satisfies conditions S, F, U, D, C and
C′, then G is topological.

The above theorem was strengthened in [9] in the following way:

Theorem 3. (see [9]) If convergence G satisfies conditions S, F, U, D and C′, then
G is topological.

Remark 3. Every topological convergence satisfies conditions S, F, U, D, but not
condition C, in general (see [7]).

In the next section, we present an example of topological convergence which does
not fulfil condition C′ (cf. [7]). On the other hand, it can be shown that condition
C′ cannot be omitted in Theorem 3.. A respective example of a non-topological
convergence which does not fulfil condition C′, but satisfies conditions S, F, U, D, C
and, in addition, H′, is shown in [7] and [2]. This answers negatively the question
posed by V. Koutnik.

3. Example of topological convergence

We will show that condition C′ may not hold for topological convergences.

Example. Let X = N ∪N1 ∪N2, where N is the set of all positive integers, N1 is
the set of all increasing sequences l = {ki} with ki ∈ N (i ∈ N), and N2 is the set of
all sequences m = {li} with li ∈ N1 (i ∈ N) such that, considering li as sequences of
elements from N, we have

(li) ∩ (li′) = ∅, whenever i, i′ ∈ N, i 6= i′,

according to the notation in (1). Obviously, we have N∩N1 = N∩N2 = N1 ∩N2 = ∅.
Now, we construct the bases B(ξ) of neighbourhoods U(ξ) at each ξ ∈ X as follows:

1◦ if ξ = k ∈ N, then we define the basis B(ξ) at ξ to consist of the single
neighbourhood U(k) := {k} of ξ = k, i.e. B(ξ) := {U(k)};

2◦ if ξ = l = {ki} ∈ N1, then we define, for all p ∈ N, the neighbourhoods Up(ξ)
of ξ = l by

Up(l) := {l} ∪ {ki : i ∈ N, i ≥ p}
and the basis B(ξ) at ξ = l by B(ξ) := {Up(l) : p ∈ N};

3◦ if ξ = m = {li} ∈ N2, where li = {ki,j} with ki,j ∈ N (i, j ∈ N), then
we define, for every r ∈ N and an arbitrary sequence {qs} of positive integers, the
following neighbourhoods of ξ = m:

Ur,{qs}(m) := {m} ∪ {li : i ∈ N, i ≥ r} ∪ {ki,j : j ∈ N, j ≥ qi, i ∈ N, i ≥ r}

and the basis B(ξ) at ξ = m by B(ξ) := {Ur,{qs}(m) : r ∈ N, {qs} ∈ NN}.

We are going to show that the family B := {B(ξ) : ξ ∈ X}, where the bases B(ξ)
for ξ ∈ X are defined above, satisfies the conditions:
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(BP1) ∀x∈X B(x) 6= ∅; ∀U∈B(x) x ∈ U ;

(BP2) ∀x∈X ∀U∈B(x) ∀y∈U ∃V ∈B(y) V ⊂ U ;

(BP3) x ∈ X
[
U1, U2 ∈ B(x) ⇒ ∃U∈B(x) U ⊂ U1 ∩ U2

]
.

Condition (BP1) is obviously satisfied. To prove (BP2) we consider the following
three cases:

1◦ Let x = k ∈ N. If U ∈ B(x) = B(k) and y ∈ U , then y = x = k and
V := U ∈ B(y) = B(x) = {{k}}.

2◦ Let x = l = {kj} ∈ N1. If U ∈ B(x) and y ∈ U , then y ∈ Up(l) for some p ∈ N.
There are two possibilities: (a) y = l or (b) y = kj for some j ∈ N, j ≥ p. We put
V := Up(l) in case (a) and V := {kj} in case (b). Clearly, V ∈ B(y) and y ∈ V ⊂ U
in both cases (a) and (b).

3◦ Let x = m = {li} ∈ N2. If U ∈ B(x) = B(m) and y ∈ U , then y ∈ Ur,{qs}(m)
for some r ∈ N, and {qs} ∈ NN. There are three possibilities: (a) y = m or (b)
y = li ∈ N1 for some i ∈ N, i ≥ r, or (c) y = ki,j ∈ N for some i ∈ N, i ≥ r and j ∈ N,
j ≥ qi. We put V := Ur,{qs}(m) in case (a), V := Up(li) with arbitrarily fixed p ≥ qi

in case (b), and V := {ki,j} ∈ B(y) in case (c). Obviously, V ∈ B(y) and y ∈ V ⊂ U
in all the cases (a), (b) and (c), so (BP2) is satisfied in all the above cases 1◦, 2◦ and
3◦.

We will verify condition (BP3) only in case 3◦, i.e. for x = m ∈ N2. If
U1, U2 ∈ B(m), then U1 = Ur1,{qs}(m) and U2 = Ur2,{q̄s}(m) for some r1, r2 ∈ N
and {qs}, {q̄s} ∈ NN. Let us define U := Uñ,{q̃s}(m), where ñ := max(r1, r2),
q̃s := max(qs, q̄s) for s ∈ N. Obviously, U ∈ B(x) and U ⊂ U1 ∩ U2, as desired.
Analogously one can check that (BP3) is fulfilled in cases 1◦ and 2◦. Thus the family
B satisfies conditions (BP1), (BP2) and (BP3).

Using well known topological arguments (see e.g. [6], p. 39, p. 58), we conclude
that B uniquely defines a topology F in X such that B is a neighourhood system
for F and F is a T1-topology. Therefore the convergence LF satisfies condition H′.
Since LF is a topological convergence, it automatically satisfies conditions S, F, U
(see [3]).

We will show that LF fulfils also conditions D and C. Let ηn ∈ LF(ξ̇n) for
n ∈ N and let η ∈ LF({ηn}), i.e. ηn ∈ U for each U ∈ F such that η ∈ U and
for sufficiently large n, so ξn ∈ U for sufficiently large n, which means that η ∈
LF({ξn}). Consequently, LF({ηn}) ⊂ LF(ξn}) and thus LF satisfies condition D.
Now, denoting x = {ξn} ∈ XN, assume that (a) ηn ∈ LF(x) for n ∈ N and (b)
η ∈ LF({ηn}). By (b), for each U ∈ F with η ∈ U there is an n0 ∈ N such that
ηn ∈ U for n ≥ n0. Hence, by (a), we can select a sequence {kn} of positive integers
such that kn ↗∞ and ξj ∈ U for j ≥ kn ≥ n ≥ n0. Consequently, η ∈ LF({ξn}), so
LF(x) is an LF-closed set, i.e. LF satisfies condition C.

Before proving that LF does not satisfy condition C′, we will prove the following
implication:

l = {kj} ∈ N1 ⇒ l ∈ LF({kj}) ⊂ N1. (3)
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The relation l ∈ LF(l) in (3) is obvious, by definition of LF . To prove that LF(l) ⊂
N1, since the relation k /∈ LF(l) for every k ∈ N is evident, it suffices to show that
m /∈ LF(l) for each m ∈ N2

Assume, on the contrary, that m = {li} ∈ N2 and m ∈ LF(l), where l = {kj}. Of
course, we have kj ∈ ((m)), in the sense of the notation in (2), for sufficiently large
j. Notice that, for each i ∈ N, only a finite number of elements of {kj} belongs to
(li). On the contrary, suppose that there exists an i0 ∈ N such that kj ∈ (li0) for
infinitely many j ∈ N. Then there exists a sequence l̃ such that l̃ ≺ l and l̃ ≺ li0 .
Hence, by condition F, we have m ∈ LF (l̃). On the other hand, since (l̃) ⊂ (li0) and
(li0) ∩ (li) = ∅ for i 6= i0, we have l̃ 6< Ui0+1,{qs} for arbitrary {qs} ∈ NN, which is
impossible.

Let k̄i := max{kj : j ∈ N, kj ∈ (li)} and let q̄i := k̄i + 1 for i ∈ N. Then for
each j ∈ N we have kj /∈ U1,{q̄i}(m) ∈ B(m), which contradicts the assumption that
m ∈ (LF )({kj}) and completes the proof of (3).

Now, let x be an arbitrary increasing sequence of positive integers and let y be
an arbitrary its subsequence. Of course, we can choose subsequences y1, y2, . . . of
sequence y such that

(yi) ∩ (yi′) = ∅ for i, i′ ∈ N, i 6= i′.

By (3), we have

yi ∈
⋃
z≺y

LF(z) ⊂ N1 for i ∈ N.

On the other hand, we have m ∈ LF({yi}), where m = {yi} ∈ N2, so the set⋃
z≺y LF(z) is not LF-closed.

Thus we have proved that convergence LF satisfies conditions S, F, U, D and C,
but it does not satisfy condition C′.
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1. Introduction and preliminaries

Let Ur, 0 < r ≤ 1, be the disc of center zero and radius r,

Ur = {z ∈ C : |z| < r} ,

and let U be the unit disc of the complex plane

U = {z ∈ C : |z| < 1} .

Also let
·
U = U \ {0} .

Let H (U) be the space of holomorphic functions in U.
For a ∈ C and n ∈ N∗ we let:

H[a, n] = {f ∈ H(U), f(z) = a+ anz
n + . . . , z ∈ U}

and
An =

{
f ∈ H(U), f(z) = z + an+1z

n+1 + . . . , z ∈ U
}

with
A = A1.
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Let f and F be members of H (U) . The function f is said to be subordinate to
F , or F is said to be superordinate to f , if there exists an analytic function w in U ,
with w (0) = 0 and |w (z)| < 1, such that f (z) = F (w (z)); in such a case we write
f (z) ≺ F (z) .

If F is univalent, then f (z) ≺ F (z) if and only if f (0) = F (0) and f (U) ⊂ F (U).
Let Ω be any set in the complex plane C, let p be analytic in the unit disk U and

let ψ(γ, s, t; z) : C3 × U → C.
In a series of articles of S.S. Miller, P.T. Mocanu and D.J. Hallenbeck, S. Ruscheweyh

have determined properties of functions p that satisfy the differential subordination

{ψ(p(z), zp′ (z) , z2p′′(z); z)| z ∈ U} ⊂ Ω.

In this article we consider the dual problem of determining properties of functions
p that satisfy the differential superordination

Ω ⊂ {ψ(p(z), zp′ (z) , z2p′′(z); z)| z ∈ U}.

These results have been first presented in [3].

Definition 1.1. Let ϕ : C2×U → C and let h be analytic in U . If p and ϕ(p(z), zp′(z); z)
are univalent in U and satisfy the (first-order) differential superordination

h(z) ≺ ϕ(p(z), zp′(z); z) (1)

then p is called a solution of the differential superordination. An analytic function
q is called a subordinant of the solutions of the differential superordination, or more
simply a subordinant if q ≺ p for all p satisfying (1). A univalent subordinant q̃ that
satisfies q ≺ q̃ for all subordinants q of (1) is said to be the best subordinant.

Note that the best subordinant is unique up to a rotation of U .
For Ω a set in C, with ϕ and p as given in Definition 1.1, suppose (1) is replaced

by
Ω ⊂ {ϕ(p(z), zp′(z); z)| z ∈ U}. (2)

Although this more general situation is a “differential containment”, the condition
in (2) will also be referred to as a differential superordination, and the definitions
of solution, subordinant and best dominant as given above can be extend to this
generalization.

Before obtaining some of the main results we need to introduce a class of univalent
functions defined on the unit disc that have some nice boundary properties.

Definition 1.2. [3] We denote by Q the set of functions f that are analytic and
injective on U \ E(f), where

E (f) =
{
ζ ∈ ∂U : lim

z→ζ
f(z) = ∞

}
and are such that f ′(ζ) 6= 0 for ζ ∈ ∂U \ E(f).
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The subclass of Q for which f(0) = a is denoted by Q(a).

Definition 1.3. [3] Let Ω be a set in C and q ∈ H[a, n] with q′(z) 6= 0. The class of
admissible functions Φn[Ω, q], consist of those functions ϕ : C2 × U → C that satisfy
the admissibility condition

ϕ

(
q(z),

zq′(z)
m

; ζ
)
∈ Ω (3)

where z ∈ U , ζ ∈ ∂U and m ≥ n ≥ 1.

In order to prove the new results we shall use the following lemmas:

Lemma 1.4. [3] Let h be convex in U, with h (0) = a, γ 6= 0 and Reγ ≥ 0. If

p ∈ H [a, 1] ∩Q and p (z) +
zp′ (z)
γ

is univalent in U with

h (z) ≺ p (z) +
zp′ (z)
γ

then
q (z) ≺ p (z)

where

q (z) =
γ

zγ

∫ z

0

h (t) tγ−1dt, z ∈ U.

The function q is convex and is the best subordinant.

Lemma 1.5. [3] Let q be convex in U and let h be defined by

h(z) = q(z) +
zq′(z)
γ

, z ∈ U,

with Re γ ≥ 0. If p ∈ H [a, 1] ∩Q, p (z) +
zp′ (z)
γ

is univalent in U, and

q(z) +
zq′(z)
γ

≺ p(z) +
zp′(z)
γ

, z ∈ U

then
q(z) ≺ p(z),

where

q(z) =
γ

zγ

∫ z

0

h(t)tγ−1dt.

The function q is the best subordinant.
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Definition 1.6. [6] For f ∈ A and m ≥ 0, m ∈ N, the operator Imf is defined by

I0f(z) = f(z)

I1f (z) =
∫ z

0

f (t) t−1dt

Imf(z) = I
[
Im−1f(z)

]
, z ∈ U.

Remark 1.7. If we denote by l (z) = − log (1− z), then

Imf(z) = [(l ∗ l ∗ l · · · ∗ l︸ ︷︷ ︸
n−times

) ∗ f ](z), f ∈ H(U), f(0) = 0.

By ”∗” we denote the Hadamard product or convolution (i.e. if f (z) =
∑∞

j=0 ajz
j ,

g (z) =
∑∞

j=0 bjz
j then (f ∗ g) (z) =

∑∞
j=0 ajbjz

j).

Remark 1.8. Imf (z) =
∫ z

0

∫ tm

0
...

∫ t2
0

f (t1)
t1t2...tm

dt1dt2...dtm , f ∈ H (U) , f (0) = 0.

Remark 1.9. DmImf (z) = ImDmf (z) = f (z) , f ∈ H (U) , f (0) = 0 , where Dm

is the Sălăgean differential operator (see [6]).

2. Main results

Definition 2.1. For 0 ≤ α < 1 and m ∈ N, let Jm(α) denote the class of functions
f ∈ A which satisfy the inequality

Re [Imf(z)]′ > α.

Remark 2.2. If m = 0 then J0(α) is the class of the functions which satisfy Ref ′ (z) >
α, functions with bounded boundary rotation [see [4]].

Theorem 2.3. Let

h(z) =
1 + (2α− 1)z

1 + z
, z ∈ U

a convex function in U , with h (0) = 1.
Let f ∈ Jm(α), and suppose that [Imf (z)]′ is univalent and[

Im+1f (z)
]′ ∈ H [1, 1] ∩Q.

If
h(z) ≺ [Imf(z)]′, z ∈ U, (4)

then
q(z) ≺ [Im+1f(z)]′, z ∈ U,

where

q(z) = 2α− 1 + 2(1− α)
log(1 + z)

z
. (5)

The function q is convex and is the best subordinant.
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Proof. Let f ∈ Jm(α). By using the properties of the operator Imf(z) we have

Imf(z) = z[Im+1f(z)]′, z ∈ U. (6)

Differentiating (6), we obtain

[Imf (z)]′ =
[
Im+1f (z)

]′
+ z

[
Im+1f (z)

]′′
, z ∈ U. (7)

If we denote by p(z) = [Im+1f(z)]′ then (7) becomes

[Imf(z)]′ = p(z) + zp′(z), z ∈ U.

Then (4) becomes
h(z) ≺ p(z) + zp′(z), z ∈ U.

By using Lemma 1.4 for γ = 1, we have

q(z) ≺ p(z) = [Im+1f(z)]′, z ∈ U,

where

q(z) =
1
z

∫ z

0

1 + (2α− 1)t
1 + t

dt =

= 2α− 1 + 2(1− α)
log(1 + z)

z
.

Moreover, the function q is the best subordinant.

Theorem 2.4. Let

h (z) =
1 + (2α− 1)

1 + z

be convex in U , with h (0) = 1.
Let f ∈ Jm(α), and suppose that [Imf (z)]′ is univalent and

Imf (z)
z

∈ H [1, 1] ∩Q.

If
h (z) ≺ [Imf (z)]′ , z ∈ U (8)

then

q (z) ≺ Imf (z)
z

, z ∈
·
U

where

q(z) = 2α− 1 + 2(1− α)
log(1 + z)

z
.

The function q is convex and is the best subordinant.
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Proof. We let

p(z) =
Imf(z)

z
, z ∈

·
U

and we obtain
Imf(z) = zp(z), z ∈ U (9)

By differentiating (9) we obtain

[Imf(z)]′ = p(z) + zp′(z), z ∈ U.

Then (8) becomes
h(z) ≺ p(z) + zp′(z), z ∈ U.

By using Lemma 1.4 we have

q(z) ≺ p(z) =
Imf(z)

z
, z ∈

·
U

where

q(z) =
1
z

∫ z

0

1 + (2α− 1)t
1 + t

dt =

= 2α− 1 + 2(1− α)
log(1 + z)

z
.

The function q is convex and is the best subordinant.

Theorem 2.5. Let q be convex in U and let h be defined by

h(z) = q(z) + zq′(z), z ∈ U.

Let f ∈ Jm(α) and suppose that [Imf (z)]′ is univalent in U

[Im+1f(z)]′ ∈ H [1, 1] ∩Q

and
h(z) ≺ [Imf (z)]′ , z ∈ U. (10)

Then
q(z) ≺ [Im+1f(z)]′, z ∈ U

where

q(z) =
1
z

∫ z

0

h(t)dt, z ∈ U.

The function q is the best subordinant.
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Proof. Let f ∈ Jm(α). By using the properties of the operator Imf(z), we have

Imf(z) = z[Im+1f(z)]′, z ∈ U. (11)

Differentiating (11) we obtain

[Imf(z)]′ =
[
Im+1f (z)

]′
+ z

[
Im+1f (z)

]′′
, z ∈ U. (12)

If we let p (z) =
[
Im+1f (z)

]′ then (12) becomes

[Imf(z)]′ = p(z) + zp′(z), z ∈ U.

By using Lemma 1.5 for γ = 1 we have

q(z) ≺ p(z) = [Im+1f(z)]′, z ∈ U,

where
q(z) =

1
z

∫ z

0

h(t)dt.

The function q is the best subordinant.

Theorem 2.6. Let q be convex in U and let h be defined by

h(z) = q(z) + zq′(z), z ∈ U.

Let f ∈ Jm(α) and suppose that [Imf (z)]′ is univalent in U ,

Imf (z)
z

∈ H [1, 1] ∩Q

and
h(z) ≺ [Imf (z)]′ , z ∈ U. (13)

Then

q(z) ≺ Imf(z)
z

, z ∈
·
U,

where
q(z) =

1
z

∫ z

0

h(t)dt.

The function q is the best subordinant.

Proof. We let

p(z) =
Imf(z)

z
, z ∈

·
U

and we obtain
Imf(z) = zp(z), z ∈ U. (14)

By differentiating (14), we obtain

[Imf(z)]′ = p(z) + zp′(z), z ∈ U,
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Then (13) becomes
q(z) + zq′(z) ≺ p(z) + zp′(z).

By using Lemma 1.5 for γ = 1 we have

q(z) ≺ p(z) =
Imf(z)

z
, z ∈

·
U

where
q(z) =

1
z

∫ z

0

h(t)dt.

The function q is the best subordinant.

Remark 2.7. We remark that similar results to those in this paper, but for a differ-
ential operator were obtained by Gh. Oros and G. I. Oros in [5].
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1 Introduction and Preliminaries

Let A denote the class of functions of the form

f(z) = z +
∞∑
n=2

anz
n (11)

which are analytic in the open disc U = {z : |z| < 1}. For functions f ∈ A given by
(1.1) and g ∈ A given by

g(z) = z +
∞∑
n=2

bnz
n, z ∈ U,

we define the Hadamard product (or Convolution ) of f and g by

(f ∗ g)(z) = z +
∞∑
n=2

anbnz
n, z ∈ U. (12)
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For positive real parameters α1, A1 . . . , αl, Al and β1, B1 . . . , βm, Bm (l,m ∈ N =
1, 2, 3, ...) such that

1 +
m∑
n=1

Bm −
l∑

n=1

An ≥ 0, z ∈ U, (13)

the Wright generalized hypergeometric function [32]

lΨm[(α1, A1), . . . , (αl, Al); (β1, B1), . . . , (βm, Bm); z]
= lΨm[(αn, An)1,l; (βn, Bn)1,m; z]

is defined by

lΨm[(αt, At)1,l; (βt, Bt)1,m; z]

=
∞∑
n=0

{
l∏
t=0

Γ(αt + tAt}{
m∏
t=0

Γ(βt + tBt}−1 z
n

n!
, z ∈ U.

If l ≤ m+ 1, An = 1(n = 1, ..., l) and Bn = 1(n = 1, ...,m), we have the relationship:

Ω lΨm[(αn, 1)1,l; (βn, 1)1,m; z] = lFm(α1, ..., αl; β1, ..., βm; z), z ∈ U, (14)

where lFm(α1, ..., αl; β1, ..., βm; z) is the generalized hypergeometric function and

Ω =

(
l∏
t=0

Γ(αt)

)−1( m∏
t=0

Γ(βt)

)
. (15)

In [5] Dziok and Raina introduced the linear operator by using Wright generalized
hypergeometric function. Let

lφm[(αt, At)1,l; (βt, Bt)1,m; z] = Ωz lΨm[(αt, At)1,l(βt, Bt)1,m; z], z ∈ U,

and
H = H[(αn, An)1,l; (βn, Bn)1,m] : A→ A

be a linear operator defined by

Hf(z) = z lφm[(αt, At)1,l; (βt, Bt)1,m; z] ∗ f(z).

We observe that, for f of the form (1.1), we have

Hf(z) = z +
∞∑
n=2

σn anz
n, , z ∈ U, (16)

where

σn =
Ω Γ(α1 +A1(n− 1)) . . .Γ(αp +Ap(n− 1))

(n− 1)!Γ(β1 +B1(n− 1)) . . .Γ(βq +Bq(n− 1))
, (17)
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and Ω is given by (1.5).
In view of the relationship (1.4) the linear operator (1.6) includes the Dziok-

Srivastava operator (see [7], [6] and [1]), so that it includes (as its special cases)
various other linear operators introduced and studied by Bernardi [2], Carlson and
Shaffer [4], Libera [13], Livingston [15], Ruscheweyh [23], Srivastava and Owa [29],
and others.

For 0 ≤ γ < 1 and k ≥ 0, we define the class W l
m(γ, k) of functions f of the form

(1.1) and satisfying the analytic criterion

Re
{
z(Hf(z))′

Hf(z)
− γ
}
> k

∣∣∣∣z(Hf(z))′

Hf(z)
− 1
∣∣∣∣ , z ∈ U, (18)

where Hf(z) is given by (1.6).
Also we denote by T , the class of analytic functions with varying arguments (in-

troduced by Silverman [26]) consisting of functions f of the form (1.1) for which there
exists a real number η such that

θn + (n− 1)η = π(mod 2π), where arg(an) = θn for all n ≥ 2. (19)

Moreover let us put
T W l

m(γ, k) :=W l
m(γ, k) ∩ T .

If, At = 1(t = 1, ...l), Bt = 1(t = 1, ...m) and by suitably specializing the values
of l, m, α1, α2, . . . , αl, β1, β2, . . . , βm, γ and k in the class W l

m(γ, k), we obtain the
various subclasses, we present some examples.

Example 11. If l = 2 and m = 1 with α1 = α2 = β1 = 1, then we obtain the class

UST (γ, k) :=W2
1 (γ, k)

=
{
f ∈ A : Re

{
zf ′(z)
f(z)

− γ
}
> k

∣∣∣∣zf ′(z)f(z)
− 1
∣∣∣∣ , z ∈ U} .

of k−starlike functions of order γ, 0 ≤ γ < 1, which was introduced in [3]. We observe
that S∗(γ) := UST (γ, 0) is well-known class of starlike functions of order γ.

Example 12. If l = 2 and m = 1 with α1 = δ + 1 (δ > −1), α2 = β1 = 1, then

Rδ (γ, k) =W2
1 (γ, k) =

{
f ∈ A : Re

{
z(Dδf(z))′

Dδf(z)
− γ
}

> k

∣∣∣∣z(Dδf(z))′

Dδf(z)
− 1
∣∣∣∣ , z ∈ U} ,

where Dδ is called Ruscheweyh derivative of order δ (δ > −1) defined by

Dδf(z) :=
z

(1− z)δ+1
∗ f(z) ≡ H2

1(δ + 1, 1; 1)f(z).

We observe that
K := R1(0, 0)
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is the well known class of convex functions. Also let

T Rδ(γ, k) := Rδ(γ, k) ∩ T ,

The class T Rδ(γ, 0) was studied in [22].

Example 13. If l = 2 and m = 1 with α1 = c+ 1(c > −1), α2 = 1, β1 = c+ 2, then

W2
1 (γ, k) = Bc(γ, k) =

{
f ∈ A : Re

(
z(Jcf(z))′

Jcf(z)
− γ
)

> k

∣∣∣∣z(Jcf(z))′

Jcf(z)
− 1
∣∣∣∣ , z ∈ U} ,

where Jc is a Bernardi operator [2] defined by

Jcf(z) :=
c+ 1
zc

∫ z

0

tc−1f(t)dt ≡ H2
1(c+ 1, 1; c+ 2)f(z).

Note that the operator J1 was studied earlier by Libera [13] and Livingston [15]. Fur-
ther,

T Bc(γ, k) = Bc(γ, k) ∩ T .

Example 14. If l = 2 and m = 1 with α1 = a (a > 0), α2 = 1, β1 = c (c > 0), then

W2
1 (γ, k) ≡ Lac (γ, k) =

{
f ∈ A : Re

(
z(L(a, c)f(z))′

L(a, c)f(z)
− γ
)

> k

∣∣∣∣z(L(a, c)f(z))′

L(a, c)f(z)
− 1
∣∣∣∣ , z ∈ U} ,

where L(a, c) is a well-known Carlson-Shaffer linear operator [4] defined by

L(a, c)f(z) :=

( ∞∑
k=0

(a)k
(c)k

zk+1

)
∗ f(z) ≡ H2

1(a, 1; c)f(z).

The class Lac (γ, k) was introduced in [17] and also

T Lac (γ, k) = Lac (γ, k) ∩ T

was introduced and studied in [18, 19].

Remark 11. Moreover specializing the parameters of the class W l
m(γ, k), we can

obtain classes introduced and studied by Goodman [9], Ma and Minda [16], Rønning
[20, 21], Kanas et.al., [10, 11, 12] and others (see for example [30]).

The object of the present paper is to investigate the coefficient estimates, extreme
points. Further, we obtain the subordination results and integral means inequalities
for the generalized class of k-starlike functions. Some interesting consequences of our
results are also pointed out.
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2 Coefficient Estimates

We first mention a sufficient condition for function f of the form (1.1) to belong to
the class W l

m(γ, k).

Theorem 21. A function f of the form (1.1) belongs to the class W l
m(γ, k) if

∞∑
n=2

(kn+ n− k − γ)σn |an| ≤ 1− γ, (21)

where σn is given by (1.7).

Proof. By definition of the class W l
m(γ, k), it suffices to show that

k

∣∣∣∣z(Hf(z))′

Hf(z)
− 1
∣∣∣∣− Re

{
z(Hf(z))′

Hf(z)
− 1
}
≤ 1− γ.

Simply calculations give

k

∣∣∣∣z(Hf(z))′

Hf(z)
− 1
∣∣∣∣− Re

{
z(Hf(z))′

Hf(z)
− γ
}

≤ (k + 1)
∣∣∣∣z(Hf(z))′

Hf(z)
− 1
∣∣∣∣ ≤ (k + 1)

∞∑
n=2

(n− 1)σn|an||z|n−1

1−
∞∑
n=2

σn|an||z|n−1

.

Now the last expression is bounded above by (1− γ) if (3.4) holds.
Our next theorem shows that the condition (2.1) is necessary as well for functions

of the form (1.1) with (1.9) to belong to the class T W l
m(γ, k).

Theorem 22. Let f be given by (1.1) with (1.9). The function f (z) belongs to the
class T W l

m(γ, k) if and only if (2.1) holds.

Proof. In view of Theorem 2.1. we need only show that f ∈T W l
m(γ, k) satisfies the

coefficient inequality (3.4). If f ∈T W l
m(γ, k), then by definition we have

k

∣∣∣∣∣∣∣∣
z +

∞∑
n=2

nσnanz
n

z +
∞∑
n=2

σnanzn
− 1

∣∣∣∣∣∣∣∣ ≤ Re


z +

∞∑
n=2

nσnanz
n

z +
∞∑
n=2

σnanzn
− γ

 ,

or

k

∣∣∣∣∣∣∣∣
∞∑
n=2

(n− 1)σnanzn−1

1 +
∞∑
n=2

σnanzn−1

∣∣∣∣∣∣∣∣ ≤ Re


(1− γ) +

∞∑
n=2

(n− γ)σnanzn−1

1 +
∞∑
n=2

σnanzn−1

 .
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In view of (1.9), we set z = riη in the above inequality to obtain

∞∑
n=2

k(n− 1)σn|an|rn−1

1−
∞∑
n=2

σn|an|rn−1

≤
(1− γ)−

∞∑
n=2

(n− γ)σn|an|rn−1

1−
∞∑
n=2

σn|an|rn−1

.

Thus
∞∑
n=2

(kn+ n− k − γ)σn|an|rn−1 ≤ 1− γ, (22)

and letting r → 1− in (2.2) we obtain the desired inequality (2.1).

3 Subordination Results

Before stating and proving our subordination theorem for the class T W l
m(γ, k), we

need the following definitions and lemmas.

Definition 31. For analytic functions g and h with g(0) = h(0), g is said to be
subordinate to h, denoted by g ≺ h, if there exists an analytic function w such that
w(0) = 0, |w(z)| < 1 and g(z) = h(w(z)), for all z ∈ U.

Definition 32. A sequence {bn}∞n=1 of complex numbers is said to be a subordinating

sequence if, whenever f(z) =
∞∑
n=1

anz
n, a1 = 1 is regular, univalent and convex in U,

we have
∞∑
n=1

bnanz
n ≺ f(z), z ∈ U. (31)

Lemma 31. [31]. The sequence {bn}∞n=1 is a subordinating sequence if and only if

Re

{
1 + 2

∞∑
n=1

bnz
n

}
> 0, z ∈ U. (32)

Theorem 33. Let g(z) ∈ K, f ∈T W l
m(γ, k) and

l > m, αm+1 ≥ 1, αj ≥ βj and Aj ≥ Bj ( j = 2, . . . ,m). (33)

Then
(2 + k − γ)σ2

2 [1− γ + (2 + k − γ)σ2]
(f ∗ g)(z) ≺ g(z) (34)

and

Re {f(z)} > − [1− γ + (2 + k − γ)σ2]
(2 + k − γ)σ2

, z ∈ U. (35)
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The constant factor
(2 + k − γ)σ2

2 [1− γ + (2 + k − γ)σ2]
(36)

in (3.4) cannot be replaced by a larger number.

Proof. Let f ∈T W l
m(γ, k) and suppose that

g(z) = z +
∞∑
n=2

cnz
n, z ∈ U,

belongs to the class K. Then

(2 + k − γ)σ2

2[1− γ + (2 + k − γ)σ2]
(f ∗ g)(z)

=
(2 + k − γ)σ2

2[1− γ + (2 + k − γ)σ2]

(
z +

∞∑
n=2

cnanz
n

)
.

Thus, by Definition 3.2., the subordination result holds true if{
(2 + k − γ)σ2

2[1− γ + (2 + k − γ)σ2]
an

}∞
n=1

is a subordinating sequence, with a1 = 1. In view of Lemma 3.1., this is equivalent
to the following inequality

Re

{
1 +

∞∑
n=1

(2 + k − γ)σ2

1− γ + (2 + k − γ)σ2
anz

n

}
> 0, z ∈ U. (37)

By (3.3) the sequence

dn := (kn+ n− k − γ)σn, n = 2, 3, . . .

is increasing. In particular we obtain

(2 + k − γ)σ2 ≤ (kn+ n− k − γ)σn, n ≥ 2.

Thus, for |z| = r < 1, we have

Re

{
1 +

(2 + k − γ)σ2

[1− γ + (2 + k − γ)σ2]

∞∑
n=1

anz
n

}

= Re

1 +
(2 + k − γ)σ2

1− γ + (2 + k − γ)σ2
z +

∞∑
n=2

(2 + k − γ)σ2anz
n

1− γ + (2 + k − γ)σ2


≥ 1− (2 + k − γ)σ2

1− γ + (2 + k − γ)σ2
r −

∞∑
n=2

(kn+ n− k − γ)σn |an| rn−1

1− γ + (2 + k − γ)σ2
r

≥ 1− (2 + k − γ)σ2

1− γ + (2 + k − γ)σ2
r − 1− γ

1− γ + (2 + k − γ)σ2
r > 0,
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where we have also made use the assertion (2.1) of Theorem 2.2.. This evidently
proves the inequality (3.7) and hence the subordination result (3.4). The inequality
(3.5) follows from (3.4) by taking

g(z) =
z

1− z
= z +

∞∑
n=2

zn, z ∈ K.

Next we consider the function

F (z) = z − 1− γ
(2 + k − γ)σ2

z2, z ∈ K.

Clearly, F ∈ T W l
m(γ, k). Thus by (3.4) we have

(2 + k − γ)σ2

2[1− γ + (2 + k − γ)σ2]
F (z) ≺ z

1− z
.

It is easily verified that

min
{

Re
(

(2 + k − γ)σ2

2[1− γ + (2 + k − γ)σ2]
F (z)

)}
= −1

2
, z ∈ U.

This shows that the constant (3.6) cannot be replaced by any larger one.
We observe that, if At = 1(t = 1, 2, ..., l) and Bt = 1(t = 1, 2, ...,m) specializing

the parameters l, m, α1, α2, . . . , αp, and β1, β2, . . . , βq, γ, and k in the above theorem
and in view of Examples 1 to 4 in Section 1, we state the following corollaries for the
subclasses defined in those examples.

Corollary 31. If f ∈ T S∗(γ, k), g ∈ K, then

2 + k − γ
2[3 + k − γ]

(f ∗ g)(z) ≺ g(z), (38)

and

Re{f(z)} > −3 + k − 2γ
2 + k − γ

, z ∈ U.

The constant factor
2 + k − γ

2[3 + k − 2γ]

in (3.8) cannot be replaced by a larger one.

Remark 31. Corollary 3.1., extend the result obtained by Singh [28] when γ = k = 0.

Remark 32. Corollary 3.1. extend the results obtained by Frasin [8] for the special
values of γ and k.
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Corollary 32. If f ∈ T Rδ(γ, k), δ > 0, g ∈ K, then

(δ + 1)(2 + k − γ)
2[1− γ + (δ + 1)(2 + k − γ)]

(f ∗ g)(z) ≺ g(z), (39)

and

Re{f(z)} > −1− γ + (δ + 1)(2 + k − γ)
(δ + 1)(2 + k − γ)

, z ∈ U.

The constant factor
(δ + 1)[(2 + k − γ)]

2[1− γ + (δ + 1)(2 + k − γ)]
in (3.9) cannot be replaced by a larger one.

Corollary 33. If f ∈ T Lac (γ, k), g ∈ K, a ≥ c > 0, then

a(2 + k − γ)
2[c(1− γ) + a(2 + k − γ)]

(f ∗ g)(z) ≺ g(z), (310)

and

Re{f(z)} > − [c(1− γ) + a(2 + k − γ)]
a(2 + k − γ)

, z ∈ U.

The constant factor
a(2 + k − γ)

2[c(1− γ) + a(2 + k − γ)]
in (3.10) cannot be replaced by a larger one.

4 Integral Means Inequalities

Due Littlewood [14] we obtain integral means inequalities for the functions in the
family T W l

m(γ, k).

Lemma 41. [14]. If the functions f and g are analytic in U with g ≺ f, then for
η > 0, and 0 < r < 1, we have

2π∫
0

∣∣g(reiθ)
∣∣η dθ ≤ 2π∫

0

∣∣f(reiθ)
∣∣η dθ. (41)

Silverman [27] found that the function

f2(z) = z − z2

2
, z ∈ U,

is often extremal over the family of functions with negative coefficients. He applied
this function to resolve integral means inequality, conjectured in [24] and settled in
[25], that

2π∫
0

∣∣f(reiθ)
∣∣η dθ ≤ 2π∫

0

∣∣f2(reiθ)
∣∣η dθ,
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for all functions f with negative coefficients, η > 0 and 0 < r < 1. In [25], he also
proved his conjecture for some subclasses of T .

Applying Lemma 4.1. and Theorem 2.2., we prove the following result.

Theorem 41. Let f ∈T W l
m(γ, k), η > 0 and f2(z) be defined by

f2(z) = z − 1− γ
(2 + k − γ)σ2

z2, z ∈ U.

Then for z = reiθ, 0 < r < 1, we have

2π∫
0

|f(z)|η dθ ≤
2π∫
0

|f2(z)|η dθ. (42)

Proof. For function f (z) of the form (1.1) the inequality (4.2) is equivalent to the
following:

2π∫
0

∣∣∣∣∣1 +
∞∑
n=2

anz
n−1

∣∣∣∣∣
η

dθ ≤
2π∫
0

∣∣∣∣1− (1− γ)
(2 + k − γ)σ2

z

∣∣∣∣η dθ.
By Lemma 4.1., it suffices to show that

1 +
∞∑
n=2

anz
n−1 ≺ 1− 1− γ

(2 + k − γ)σ2
z. (43)

Setting

1 +
∞∑
n=2

anz
n−1 = 1− 1− γ

(2 + k − γ)σ2
w(z), z ∈ U,

and using (2.1), we obtain

|w(z)| =

∣∣∣∣∣
∞∑
n=2

[n(1 + k)− (γ + k)]σn
1− γ

an z
n−1

∣∣∣∣∣
≤ |z|

∞∑
n=2

[n(1 + k)− (γ + k)]σn
1− γ

|an| ≤ |z|, z ∈ U.

Thus by definition od subordination we have (4.2) and this completes the proof.
If At = 1(t = 1, 2, ..., l) and Bt = 1(t = 1, 2, ...,m) specializing the parameters l,

m, α1, α2, . . . , αp, and β1, β2, . . . , βq, γ, and k and in view of the Examples 1 to 4 in
Section 1 and Theorem 4.1., we can state the following corollaries:

Corollary 41. If f ∈ T S(γ, k) and η > 0, then the assertion (4.2) holds true with

f2(z) = z − 1− γ
[2 + k − γ)]

z2, z ∈ U.
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Remark 41. Fixing k = 0, Corollary 4.1. extend the integral means inequality ob-
tained in [25].

Corollary 42. If f ∈ T Rδ(γ, k) and η > 0, then the assertion (4.2) holds true with

f2(z) = z − (1− γ)
(δ + 1)[2 + k − γ]

z2, z ∈ U.

Corollary 43. If f ∈ T Bc(γ, k) and η > 0, then the assertion (4.2) holds true with

f2(z) = z − (1− γ)(c+ 2)
(c+ 1)[2 + k − γ]

z2, z ∈ U.

Corollary 44. If f ∈ T Lac (γ, k) and η > 0, then the assertion (4.2) holds true with

f2(z) = z − c(1− γ)
a[2 + k − γ]

z2, z ∈ U.

Concluding Remarks: Just as we pointed out the Wright generalized hyper-
geometric function contains the Hohlov operator, the Carlson-Shaffer operator, the
Ruscheweyh derivative operator, the generalized Bernardi-Libera-Livingston opera-
tor, the fractional derivative operator, etc. The results presented here can provide
interesting extensions and generalizations of those considered earlier for simpler ana-
lytic function classes. The details involved in the derivations of such specializations
are fairly straight forward.

References

[1] M. K. Aouf and G.Murugusundaramoorthy, On a subclass of uniformly convex
functions defined by the Dziok-Srivastava Operator, Austral. J.Math.Anal.and
Appl., 3 (2007), (to appear).

[2] S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math.
Soc., 135 (1969), 429–446.

[3] R. Bharati, R. Parvatham and A. Swaminathan, On subclasses of uniformly con-
vex functions and corresponding class of starlike functions, Tamkang J. Math.,
26 (1) (1997), 17–32.

[4] B. C. Carlson and S. B. Shaffer, Starlike and prestarlike hypergeometric func-
tions, SIAM J. Math. Anal., 15 (2002), 737–745.

[5] J.Dziok and Raina, Families of analytic functions associated with the Wright
generalized hypergeometric function, Demonstratio Math., 37 (2004), No.3,533–
542.

[6] J. Dziok and H. M. Srivastava, Certain subclasses of analytic functions asso-
ciated with the generalized hypergeometric function, Intergral Transform Spec.
Funct., 14 (2003), 7–18.



48 J. Dziok, G. Murugusundaramoorthy, W. Wísniowska

[7] J. Dziok ans H.M. Srivastava, Classes of analytic functions associated with the
generalized hypergeometric function, Appl. Math. Comput. 103 (1999), 1-13

[8] B. A. Frasin, Subordination results for a class of analytic functions defined by a
linear operator, J. Ineq. Pure and Appl. Math., Vol.7, 4 (134) (2006), 1–7.

[9] A. W. Goodman, On uniformly convex functions, Ann. polon. Math., 56 (1991),
87–92.

[10] S. Kanas and H. M. Srivastava, Linear operators associated with k−uniformly
convex functions, Intergral Transform Spec. Funct., 9 (2000), 121–132.

[11] S. Kanas and A. Wisniowska, Conic regions and k−uniformly convexity, J. Com-
put. Appl. Math., 105 (1999), 327–336.

[12] S. Kanas and A. Wisniowska, Conic regions and k−uniformly starlike functions,
Rev. Roumaine Math. Pures. Appl., 45(4) (2000), 647–657.

[13] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math.
Soc., 16 (1965), 755–758.

[14] J. E. Littlewood, On inequalities in theory of functions, Proc. London Math.
Soc., 23 (1925), 481–519.

[15] A. E. Livingston, On the radius of univalence of certain analytic functions, Proc.
Amer. Math. Soc., 17 (1966), 352–357.

[16] W. C. Ma and D. Minda, Uniformly convex functions, Annal. Polon.
Math., 57(2) (1992), 165–175.

[17] G. Murugusundaramoorthy and N. Magesh, A new subclass of uniformly convex
functions and a corresponding subclass of starlike functions with fixed second
coefficient, J. Ineq. Pure and Appl. Math., Vol.5, 4 (85) (2004), 1–10.

[18] G. Murugusundaramoorthy and N. Magesh, Linear operators associated with a
subclass of uniformly convex functions, Inter. J. Pure and Appl. Math., 3 (1)
(2006), 123–135.

[19] G. Murugusundaramoorthy and N. Magesh, Integral means for univalent func-
tions with negative coefficients, Inter. J. Computing Math. Appl., 1(1) (2007),
41–48.

[20] F. Rønning, Uniformly convex functions and a corresponding class of starlike
functions, Proc. Amer. Math. Soc., 118 (1993), 189–196.

[21] F. Rønning, On starlike functions associated with parabolic regions, Ann. Univ.
Mariae Curie - Sklodowska Sect. A, 45 (1991), 117–122.

[22] T. Rosy, K. G. Subramanian and G. Murugusundaramoorthy, Neighbourhoods
and partial sums of starlike functions based on Ruscheweyh derivatives, J. Ineq.
Pure and Appl. Math., Vol.4, 4 (64) (2003), 1–8.



Subordination results and integral means inequalities . . . 49

[23] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math.
Soc., 49 (1975), 109–115.

[24] H. Silverman, A survey with open problems on univalent functions whose coeffi-
cients are negative, Rocky Mt. J. Math., 21 (1991), 1099–1125.

[25] H. Silverman, Integral means for univalent functions with negative coefficients,
Houston J. Math., 23 (1997), 169–174.

[26] H. Silverman, Univalent functions with varying arguments,
Proc.Amer.Math.Soc., 49 (1975), 109 - 115.

[27] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math.
Soc., 51 (1975), 109–116.

[28] S. Singh, A subordination theorem for spirallike functions, Internat. J. Math.
and Math. Sci., 24 (7) (2000), 433–435.

[29] H. M. Srivastava and S. Owa, Some characterization and distortion theorems in-
volving fractional calculus, generalized hypergeometric functions, Hadamard prod-
ucts, linear operators and certain subclasses of analytic functions, Nagoya Math.
J., 106 (1987), 1–28.

[30] K.G. Subramanian, G. Murugusundaramoorthy, P. Balasubrahmanyam and H.
Silverman, Subclasses of uniformly convex and uniformly starlike functions,
Math. Japon. 42 (1995), no. 3, 517–522.

[31] H. S. Wilf, Subordinating factor sequence for convex maps of the unit circle, Proc.
Amer. Math. Soc., 12 (1961), 689–693.

[32] E.M.Wright, The asymptotic expansion of the generalized hypergeometric func-
tion, Proc. London. Math. Soc., 46 (1946), 389–408.

J. Dziok
email: jdziok@univ.rzeszow.pl

Institute of Mathematics, University of Rzeszow
ul. Rejtana 16A, PL-35-310 Rzeszow, Poland

G. Murugusundaramoorthy
email: gmsmoorthy@yahoo.com

School of Science and Humanities, VIT, University,
Vellore - 632014, India

A. Wísniowska
email: awis@prz.rzeszow.pl

Department of Mathematics, Rzeszów University of Technology
ul. W. Pola 2, PL-35-59 Rzeszow, Poland

Received 20.01.2009



J o u r n a l of
Mathematics
and Applications

No 31, pp 51-66 (2009)

COPYRIGHT c© by Publishing Department Rzeszów University of Technology
P.O. Box 85, 35-959 Rzeszów, Poland

The speed of convergence of random

products of sums of independent
random variables

Tomasz Krajka, Zdzis law Rychlik1 2

Submitted by: Jan Stankiewicz

Abstract: Let {Xn, n ≥ 1} be a sequence of independent random
variables such that EX2

n < ∞, σ2
n = V ar(Xn), n ≥ 1. We set Sn =∑n

k=1 Xk, n ≥ 1. Let N denotes the standard normal random variable. In
this paper we investigate the speed of convergence

( n∏
k=1

Sk − ESk + ak

ak

)γn D−→ eN , as n →∞,

in the Kolmogorov’s metric for some sequences of positive reals {an, n ≥ 1} and
{γn, n ≥ 1}.
AMS Subject Classification: Primary: 60F05; Secondary 60G50
Key Words and Phrases: Lognormal distribution, Product of sums, Central Limit
Theorem, U - statitics, Law of Large Numbers, Speed of convergence

1. Introduction

Let {Xn, n ≥ 1} be a sequence of independent random variables with mean EXn = µn

and variance V ar(Xn) = σn, n ≥ 1, and let {an, n ≥ 1} be a sequence of positive real
numbers. In this paper we are interested in the limit behaviour of the products

n∏
j=1

Sj − ESj + aj

aj
, (1.1)

1Corresponding author
2Research supported by the Deutsche Forschungsgemeinschaft through the German-Polish project

436 POL 125/0-1 and by TODEQ MTKD-CT-2005-030042.
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as n →∞. This study begin Arnold and Villaseñor ([1]) in the case when {Xn, n ≥
1} is a sequence of independent and exponentially distributed random variables and
an = ESn, n ≥ 1. This result was generalized by Rempa la and Weso lowski. In the
paper [7] they omit the assumptions, that Xn, n ≥ 1, are exponentially distributed.
Furthermore the mentioned above result was generalized by Qi ([6]) and Lu and Qi
([3]) to the case of stable limit law.

In all these results there are computed the limit in weak sense of (1.1). Al-
ways there is considered the normalizing sequence an = nµ and always is considered
the sequence {Xn, n ≥ 1} of independent and identically distributed random vari-
ables (i.i.d.). In [2] there was obtained the first result for independent only sequence
{Xn, n ≥ 1} and for arbitrary normalizing sequence {an, n ≥ 1}. This result is in-
teresting even in i.i.d. case. If in the i.i.d. case we consider the sequence of reals
{an, n ≥ 1} such that

Xn − EXn + an − an−1 > 0, a.s. , n ≥ 1,

n

a2
n

→ 0, and

(∑n
k=1 k/a2

k

)2∑n
k=1 kAn

k+1/ak
−→ 0, as n →∞,

then ( n∏
j=1

Sj − jµ + aj

aj

)γn D−→ eN , as n →∞, (1.2)

where γ2
n =

∑n
k=1(An

k )2σ2, An
k =

∑n
k=1 1/ak, n ≥ 1. We consider this case separately

(Theorem 2).
In this paper we investigate the speed of convergence in the mentioned above

results. This problem is difficult due to a lot of results needed to establish the con-
vergence type (1.2). It is the central limit theorem as well as the weak law of large
numbers and the strong law of large numbers. In this paper we will give the estimation
of the term

∆n = sup
x
|P [(

n∏
j=1

Sj − ESj + aj

aj
)γn < x]− P [eN < x]|.

This is the first paper concerning this problem. From now on C denotes the
generic constants different in different places, maybe. For arbitrary x, y ∈ < we write
x ∧ y = min{x, y}, x ∨ y = max{x, y}.

2. Main results

We begin with the result for a sequence of nonidentically distributed random
variables {Xn, n ≥ 1}.
Theorem 1. Let {Xn, n ≥ 1} be a sequence of independent random variables, such
that EXn = µn, E(Xn − µn)2 = σ2

n. Moreover, let {an, n ≥ 1} be a nondecreasing
and divergent to infinity sequence of positive real numbers (we put ao = 0) such that
an+1
an

= O(1), as n →∞, and for every k ≥ 1, δ > 0, denote
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φk(δ) = P [Xk − µk + ak − ak−1 < δ].

Furthermore, let {γn, n ≥ 1} be a sequence of positive numbers such that
γn

∑n
k=1(An

k )2σ2
k −→ 1, as n →∞, where An

k =
∑n

i=k
1
ai

. If, for some r > 2, E|Xn|r <
∞, n ≥ 1, and

ar
n

Ln + sr
n

∞∑
j=n+1

E|X̄j |r + sr
j+1 − sr

j

ar
j

= O(1), as n →∞,

where

Ln =
n∑

j=1

E|X̄j |r, s2
n =

n∑
j=1

σ2
j , n ≥ 1,

then for every positive numbers ε, δ, and m ∈ N, we have

∆n ≤ C{Lm + sr
m

ar
m

+ γ
1
2
n (

n∑
k=1

s2
k

a2
k

)
1
2 + (γn

m∑
k=1

(Am
k )rE|X̄k|r)

1
r+1 m

r−2
2(r+1)

+
m∑

k=1

φk(δ) +
γn ln(m)

∑m
k=1 E|X̄k|

εδ
+

ε√
2π

+
|max{%n, %−1

n } − 1|√
2πe

+

∑n
j=1(An

j )rE|X̄j |r

(
∑n

k=1(An
k )2σ2

k)
r
2
},

where %n = γnV ar(
∑n

k=1 An
kXk), X̄n = Xn − µn, n ≥ 1.

In the case of i.i.d. sequence with arbitrary normalizing sequence {an, n ≥ 1} we
have:
Theorem 2. Let {Xn, n ≥ 1} be a sequence of i.i.d. random variables, such that
EXn = µ, E(Xn − µ)2 = σ2. Moreover, let {an, n ≥ 1} (a0 = 0) be a sequence of
divergent to infinity positive real numbers such that an+1

an
= O(1). Furthermore let γn

be a sequence of positive numbers such that

γn

n∑
k=1

(An
k )2σ2 −→ 1, as n →∞.

(i) If, for some 2 < r ≤ 3, E|X1|r < ∞ and

∃ko∈N ∃co>0 sup
n

nko−1

a2ko−r
n

≤ co, and lim
n→∞

n

a2
n

= 0,

then for every positive number δ > 0, and m ∈ N, we have

∆n ≤ C{ m

ar
m

+ γ
1
2
n (

n∑
k=1

k

a2
k

)
1
2 + γr/(r+1)

n (
m∑

k=1

(Am
k )r)1/(r+1)m

r−2
2(r+1)

+
(γnm

δ

) r
r+1 +

∑n
j=1(An

j )r

(
∑n

j=1(An
j )2)r/2

+
|max{%n, %−1

n } − 1|√
2πe

+
m∑

k=1

φk(δ)}.
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(ii) If, for some T, c > 0, 0 < δ′ < 2, 0 < m < n, and every t ∈ (0, T ], EetX̄1 ≤
e

1
2 t2c2

, limn→∞
n

aδ′
n

= 0, and γn max{
∑m

k=1(Am
k )2,m} → 0, as n →∞, then

∆n ≤ C{e−c1(
1
2 )a1∧(2−δ′)

m + γn| ln(γn)|Am
1 + (γn

n∑
k=1

k/a2
k)1/2

+
mγn| ln(γn)|

δ
+

∑n
j=1(An

j )3

(
∑n

j=1(An
j )2)3/2

+
|max{%n, %−1

n } − 1|√
2πe

+
m∑

k=1

φk(δ)},

where

c1(x) =


xT
2 , for 0 < δ′ < 1

cox2

2c2 ∧ xT
2 , for δ′ = 1,

cox2

2c2 , for 1 < δ′ < 2.

(2.1)

The last result deals with the sequence {Xn, n ≥ 1} of i.i.d. with the normalizing
constants an = nµ, n ≥ 1.

Theorem 3. Let {Xn, n ≥ 1} be a sequence of i.i.d. random variables, such that
EXn = µ > 0, E(Xn − µ)2 = σ2. Moreover, let γn = µ

σ
√

2n
, n ≥ 1. Then

(i) If, for some 2 < r ≤ 3, E|X̄1|r < ∞, then for every positive integer m < n and
δ > 0, we have

∆n ≤ C{m1−r +

√
ln(n)
4
√

n
+ n1−r/2 + (

m

n
)

r
2(r+1) + (

m√
nδ

)
r

r+1 + mφ1(δ)}.

(ii) If for some c, T > 0 and every t ∈ (0, T ], EetX̄1 ≤ e
1
2 t2c2

, then for every positive
0 < δ < 1 :

∆n ≤ C{
√

ln(n)
4
√

n
+

(ln(n))2

δ
√

n
+ ln(n)φ1(δ)}.

Collorary 1. Assume that there exists δ0 > 0 such that P [X1 < δ0] = 0.

(i) Let the assumption of Theorem 3 (i) holds. Then

∆n ≤ Cαn,r
1 n−Θ1(r),

where

Θ1(r) =


r−2
2 , for r ∈ (2, ro],
r(r−1)

2(r2+r−1) , for r ∈ (ro,
3+
√

5
2 ),

1
4 , for r ∈ [ 3+

√
5

2 , 3],

αn,r
1 =

{ √
ln(n), for r ∈ [ 3+

√
5

2 , 3],
1, otherwise,

ro =
2
3

(
√

10 cos(
π

3
− 1

3
arccos(

1
10
√

10
)) + 1) ≈ 2, 48.
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(ii) Under the assumptions of Theorem 3 (ii), we have

∆n ≤ C
√

ln(n)n−
1
4 .

Collorary 2. Assume that there exists δo, λ > 0 such that for any δo > δ > 0 we
have P [X1 < δ] ≤ Cδλ.

(i) If the assumptions of Theorem 3 (i) holds, then

∆n ≤ Cαn,r,λ
2 n−Θ2(λ,r),

where

Θ2(λ, r) = min{r − 2
2

,
(r − 1)λr

2(r2 + λr2 + λr − λ)
,

1
4
},

and

αn,r,λ
2 =

{ √
ln(n), if Θ2(λ, r) = 1

4 ,
1, otherwise.

(ii) Under the assumptions of Theorem 3 (ii), we have

∆n ≤ Cαn,λ
3 n−Θ3(λ),

where

Θ3(λ) =
{ λ

2(λ+1) , for λ ≤ 1,
1
4 , for λ > 1,

αn,λ
3 =

{
(ln(n))

2λ+1
λ+1 , for λ ≤ 1,√

ln(n), for λ > 1.

3. Proofs

For the proof of our main result we need some auxiliary results.
Proposition 1. Let {Xn, n ≥ 1} be a sequence of independent random variables,
such that EXn = µn, E(Xn−µn)2 = σ2

n. Moreover let {an, n ≥ 1} be a nondecreas-
ing sequence of positive real numbers such that an+1

an
= O(1) .

(i) If, for some r > 2, E|Xn|r < ∞, n ≥ 1, then for every positive ε

P [|Sn

an
| > ε] < C1

Ln + sr
n

ar
nεr

, (3.1)

where C1 = 4(1 + 2
r )r + 21−r/2er2/2(r + 2)rΓ(r/2 + 1).

(ii) If {Xn, n ≥ 1} is a sequence of independent identically distributed random vari-
ables with E|Xn|r < ∞, n ≥ 1, for some r > 2, then for every ε > 0, we have

P [|Sn

an
| ≥ ε] ≤ C1

nr/2

ar
nεr

, (3.2)
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where C1 is such as in the point (i).

If, additionally, there exist k0 ∈ N , and co such that

sup
n

nko−1

a2ko−r
n

≤ co, (3.3)

and
lim

n→∞

n

a2
n

= 0, (3.4)

then

P [|Sn

an
| ≥ ε] ≤ C2

n

ar
n(εr ∧ εko)

, (3.5)

where C2 = 4(1 + 2
r )rE|X1|r + 22−koko!(r + 2)2koerkoσko

1 co.

If {Xn, n ≥ 1} is a sequence of independent and identically distributed random
variables with EetXn ≤ e

1
2 t2c2

, for some c > 0 and every t ∈ (0, T ), then

P [|Sn

an
| ≥ ε] ≤ 2e−

εan
2 ( εan

nc2
∧T ). (3.6)

(iii) If {Xn, n ≥ 1} is a sequence of independent identically distributed random vari-
ables with E|Xn|r < ∞, n ≥ 1, for some 2 < r ≤ 3, then for every ε > 0, we
have

P [|Sn

n
| ≥ ε] ≤ C3

1
nr−1(εr ∧ ε2)

, (3.7)

where C3 = 4(1 + 2
r )rE|X1|r + 4(r + 2)4e2rσ2

1µ4−r.

If EetXn ≤ e
1
2 t2c2

, for some c > 0 and every t ∈ (0, T ), then

P [|Sn

n
| ≥ ε] ≤ 2e−nε(T∧(ε/c2))/2. (3.8)

Proof of Proposition 1. From Fuk-Nagayev’s inequality, we have

P [|Sn| ≥ x] ≤ 2(1 +
2
r

)r

∑n
i=1 E|Xi|r

xr
+ 2 exp{−2(r + 2)−2e−r x2∑n

j=1 σ2
j

}.

Let us put x = anε, then

P [|Sn

an
| ≥ ε] ≤ 4(1 +

2
r

)r Ln

εrar
n

+ 2 exp{−2(r + 2)−2e−r a2
nε2

s2
n

}.

As for any t ∈ R

e−x ≤ Γ(t + 1)
xt

, (x > 0),
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putting t = r/2, we get (3.1) and (3.2). Putting t = ko from (3.3) and (3.4) we have

exp{−2−1(r + 2)−2e−rσ−2
1

a2
n

n
} ≤ co(2(r + 2)2er)koko!

n

ar
n

,

so we get (3.5). Because in the case an = n (3.3) and (3.4) holds with ko = 2, thus
(3.7) follows from (3.5)

On the other hand (3.6) and (3.8) follows from Petrov ([5] chapter 4 theorem 16
p.81). �

From Petrov [5] and Rozovskiǐ [8] we cite the following result:
Proposition 2. Let {αn, n ≥ 1} be an increasing sequence of positive numbers such
that αn+1/αn = O(1). Let u(x) be a positive function such that, for some γ > 0, we
have u(x)x−γ ↓ 0 as x ↑ ∞ and

1
u(x)

∫ ∞

x

u(y)
y

dy = O(1), as x →∞. (3.9)

Then, for every ε > 0, the following conditions are equivalent

P [|Sn

αn
| > ε] = O(u(αn)),

and
P [sup

k≥n
|Sk

αk
| > ε] = O(u(αn)).

Proposition 3. Let {Xn, n ≥ 1} be a sequence of independent random variables,
such that EXn = µn, E(Xn−µn)2 = σ2

n. Moreover let {an, n ≥ 1} be a nondecreas-
ing sequence of positive real numbers such that an+1

an
= O(1).

(i) Assume, for some r > 2, E|Xn|r < ∞, n ≥ 1. Furthermore, assume that Ln+sr
n

ar
n

↓
0 and

ar
n

Ln + sr
n

∞∑
j=n+1

E|Xj − µj |r + sr
j+1 − sr

j

ar
j

= O(1), as n →∞,

then for every ε > 0

P [sup
k≥n

|Sk

ak
| > ε] < C

Ln + sr
n

ar
n

. (3.10)

(ii) If {Xn, n ≥ 1} is a sequence of independent identically distributed random vari-
ables with E|Xn|r < ∞, n ≥ 1, for some r > 2, and the sequence {an, n ≥ 1} is
such that an+1

an
= O(1) and n

a2
n
→ 0, as n →∞, and

ar
n+1

nr/2

∞∑
j=n+1

( j

a2
j

)r/2 1
j

= O(1), as n →∞,
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then, for every ε > 0, we have

P [sup
k≥n

|Sk

ak
| > ε] < C

nr/2

ar
n

. (3.11)

If additionally there exist k0 ∈ N , and c0 such that

sup
n

nk0−1

a2k0−r
n

≤ c0,

then
P [sup

k≥n
|Sk

ak
| ≥ ε] ≤ C

n

ar
n

. (3.12)

If EetXn ≤ e
1
2 t2c2

, for some c > 0 and every t ∈ (0, T ), and for some δ > 0, we

have lim inf aδ′
n

n ≥ co, then

P [sup
k≥n

|Sk

ak
| ≥ ε] ≤

{
Ce−c1an , for 0 < δ′ ≤ 1,

Ce−c1a2−δ
n , for 1 < δ′ < 2,

(3.13)

where c1 is defined in (2.1).

(iii) If {Xn, n ≥ 1} is a sequence of independent and identically distributed random
variables with E|Xn|r < ∞, n ≥ 1, for some r > 2, then for every ε > 0, we
have

P [sup
k≥n

|Sk

k
| ≥ ε] ≤ C

1
nr−1

. (3.14)

If EetXn ≤ e
1
2 t2c2

, for some c > 0 and every t ∈ (0, T ), then

P [sup
k≥n

|Sk

k
| ≥ ε] ≤ Ce−c1n, (3.15)

where c1 is as in (2.1).

Proof of Proposition 3. Proposition 3 follows from Propositions 1 and 2. For
proof of (3.10), (3.11), (3.12), (3.13), (3.14) and (3.15) we consider

u(x) =
Lk + sr

k + x−ak

ak+1−ak
(E|Xk+1|r + sr

k+1 − sr
k)

xr
, for x ∈ (ak, ak+1],

u(x) =
kr/2 + x−ak

ak+1−ak
((k + 1)r/2 − kr/2)

xr
, for x ∈ (ak, ak+1],

u(x) =
k + x−ak

ak+1−ak

xr
, for x ∈ (ak, ak+1],

u(x) = e−cx(2−δ)∧1
,

u(x) =
1

xr−1
,

u(x) = e−cx,
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respectively. In all cases u(x) is continuous monotonously tending to 0. When we
consider normalization by an we have an+1

an
= O(1) whereas for normalization by n

we have n+1
n = O(1). We must check only condition (3.9). In the first case we have,

for x ∈ (ak, ak+1]:

1
u(x)

∫ ∞

x

u(y)
y

dy <
ar

k+1

Lk + sr
k

∞∑
j=k+1

{
∫ aj+1

aj

Lj + sr
j

yr+1
dy

+
(aj+1 − aj)(E|Xj+1|r + sr

j+1 − sr
j)

ar+1
j

}

≤
ar

k+1

Lk + sr
k

∞∑
j=k+1

{
Lj + sr

j

r
(a−r

j − a−r
j+1) + C

E|Xj+1|r + sr
j+1 − sr

j

ar
j

}

≤ C
ar

k+1

Lk + sr
k

∞∑
j=k+1

E|Xj+1|r + sr
j+1 − sr

j

ar
j

= O(1),

and similarly in the case of proof of (3.11). For (3.12), we have

1
u(x)

∫ ∞

x

u(y)
y

dy =
xr

k
(
∫ ak+1

x

k

yr+1
dy +

∞∑
j=k+1

{
∫ aj+1

aj

j

yr+1
dy +

C

ar
j

})

≤ C
ar

k+1

kr
(

k

ar
k

+
∞∑

j=k+1

a−r
j )

= (
ak+1

ak
)r 1

r
+

ar
k+1

kr

∞∑
j=k+1

(
j

a2
j

)
r
2

1
j

r
2

≤ C(
ak+1

ak
)r 1

r
+

ar
k+1

kr

(k + 1)
r
2

ar
k+1

(k + 1)1−
r
2

1
1− r

2

= C(
ak+1

ak
)r 1

r
+

k + 1
k

2
r(2− r)

= O(1).

To prove (3.13) we consider two cases. If 2− δ > 1, then

1
u(x)

∫ ∞

x

1
y
u(y)dy = Cecox

∫ ∞

x

e−coy

y
dy ≤ Cecox

x

∫ ∞

x

e−coy =
Cco

x
= O(1)

otherwise

1
u(x)

∫ ∞

x

1
y
u(y)dy = Cecox2−δ

∫ ∞

x

e−coy2−δ

y
dy ≤

Cecox2−δ

(2− δ)x2−δ

∫ ∞

x

(2− δ)y1−δe−coy2−δ

dy =
Cecox2−δ

(2− δ)x2−δ

∫ ∞

x2−δ

e−cotdt =

Cco

(2− δ)x2−δ
= O(1).
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The last two cases of function u(x) are obvious. �

Let us consider the sequence of random variables {Xn, n ≥ 1} defined on the
probability space (Ω,A, P ).

Proof of Theorem 1. Let us denote

X̄k = Xk − µk, S̄k = Sk −
k∑

j=1

µj , k ≥ 1,

∆n = sup
x
|P [(

n∏
k=1

S̄k + ak

ak
)γn < x]− P [eN < x]|,

∆(n) = sup
x
|P [

∑n
k=1 An

kX̄k

V ar(
∑n

k=1 An
kX̄k)

< x]− Φ(x)|.

Then

∆n ≤ sup
x
|P [γn

n∑
k=1

ln(1 +
S̄k

ak
) < x]− Φ(x)|.

Let us note for arbitrary positive integer m and arbitrary positive ε, ε′, ε′′,

A1(m,ω) = A1 = [sup
k>m

| S̄k

ak
| > 1

2
],

A2(m,n, ω) = A2 = [4γn

n∑
k=m+1

(
S̄k

ak
)2 > ε],

A3(m,n, ω) = A3 = [γn|
m∑

k=1

S̄k

ak
| > ε′],

A4(m,n, ω) = A4 = [γn|
m∑

k=1

ln(
S̄k

ak
+ 1)| > ε′′], ω ∈ Ω.

Then, from the expansion of the logarithm function, we have for every n ∈ N

∆n ≤ sup
x
|P [γn

m∑
k=1

ln(
S̄k

ak
+ 1) + γn

n∑
k=m+1

S̄k

ak

+ 4γn

n∑
k=m+1

(
S̄k

ak
)2 < x,A′1, A

′
2, A

′
3, A

′
4]− Φ(x)|

+ P [A1] + P [A2] + P [A3] + P [A4],

where A′ = Ω\A. Because, for arbitrary events A and B we have P [B] − P [A] ≤
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P [B ∩A′] ≤ P [B], thus

P [γn

n∑
k=1

S̄k

ak
< x− ε− ε′ − ε′′]− P [A1]− P [A2]− P [A3]− P [A4]

≤ P [γn

m∑
k=1

ln(
S̄k

ak
+ 1) + γn

n∑
k=m+1

S̄k

ak
+ 4γn

n∑
k=m+1

(
S̄k

ak
)2 < x,A′1, A

′
2, A

′
3, A

′
4]

≤ P [γn

n∑
k=1

S̄k

ak
< x + ε + ε′ + ε′′].

Therefore from [5] (p.161 (3.3) and (3.4)) we have

∆n ≤ 2
4∑

i=1

P [Ai] + max{sup
x
|P [γn

n∑
k=1

S̄k

ak
< x− ε− ε′ − ε′′]− Φ(x)|,

sup
x
|P [γn

n∑
k=1

S̄k

ak
< x + ε + ε′ + ε′′]− Φ(x)|}

≤ 2
4∑

i=1

P [Ai] + ∆(n) +
ε + ε′ + ε′′√

2π
+
|max{%n, %−1

n } − 1|√
2πe

. (3.16)

Now we sequentially evaluate all terms on the right hand side of (3.16). From
Proposition 3 we have

I1 = 2P [A1] ≤ C
Lm + sr

m

ar
m

. (3.17)

Furthermore, from Markov’s inequality we have

I2 = inf
ε>0

(2P [A2] +
ε√
2π

) ≤ inf
ε>0

{8γn

n∑
k=m+1

E( S̄k

ak
)2

ε
+

ε√
2π
}

≤ 2
√

2(2π)−
1
4 γ

1
2
n (

n∑
k=m+1

s2
k

a2
k

)
1
2

≤ Cγ
1
2
n (

n∑
k=1

s2
k

a2
k

)
1
2 . (3.18)

By a similar transformations like those in the proof of Proposition 1 and because

(
m∑

k=1

(Am
k )2EX̄k

2)
1
2 ≤ m1/2−1/r(

m∑
k=1

(Am
k )rE|X̄k|r)

1
r

(the function f(p) = ( 1
m

∑m
k=1 |tk|)p is nondecreasing for every fixed sequence {tk, 1 ≥
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k ≥ m}) we achieve

I3 = inf
ε′>0

(2P [A3] +
ε′√
2π

)

≤ infε′>0 {Cγr
n

∑m
k=1(Am

k )rE|X̄|r + (
∑m

k=1(Am
k )2E|X̄|2)r/2

ε′r
+

ε′√
2π
}

≤ Cm
r−2

2(r+1) (
m∑

k=1

(Am
k )rE|X̄|r)1/(r+1)γ

r
r+1
n . (3.19)

On the other hand, for x > −1 it is true that
x

x + 1
< ln(x + 1) < x, thus

I4 = inf
ε′′>0

(2P [A4] +
ε′′√
2π

)

≤ inf
ε′′>0

{2P [γn

m∑
k=1

S̄k

ak
> ε′′] + 2P [γn

m∑
k=1

S̄k

ak

S̄k

ak
+ 1

< −ε] +
ε′′√
2π
}

≤ inf
ε′′>0

{2P [γn

m∑
k=1

S̄k

ak
> ε′′] + 2P [γn

m∑
k=1

S̄k∑k
j=1 X̃j

< −ε′′, min
1≤j≤m

X̃j ≥ δ]

+2P [ min
1≤j≤m

X̃j < δ] +
ε′′√
2π
}

≤ inf
ε′′>0

{
γr

nmr/2−1
∑m

k=1(Am
k )rE|X̄k|r

ε′′r
+ P [γn

m∑
k=1

| S̄k

k
| > ε′′δ]

+1−
m∏

j=1

(1− φj(δ)) +
ε′′√
2π
},

where X̃n = X̄n + an − an−1, n ≥ 1. Since

1−
m∏

j=1

(1− φj(δ)) ≤
m∑

k=1

φk(δ)
k−1∏
j=1

(1− φj(δ)) ≤
m∑

k=1

φj(δ),

therefore

I4 ≤ C inf
ε′′>0

{
γr

nmr/2−1(
∑m

k=1(Am
k )rE|X̄|r

ε′′r

+
γn ln(m)

∑m
k=1 E|X̄k|

ε′′δ
+

m∑
k=1

φk(δ) +
ε′′√
2π
}. (3.20)

Taking into account (3.17-3.20) and evaluation (cf. [5])

∆(n) ≤ C

∑n
j=1(An

j )rE|Xj |r

(
∑n

k=1(An
k )2σ2

k)
r
2
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we get the assertions. �

Proof of Theorem 2. Similarly as in the proof of Theorem 1 we evaluate terms
in (3.16). From Proposition 1, Markov’s inequality, Fuk’s-Nagaev inequality and the
evaluation

P [γn

m∑
k=1

| S̄k

k
| > ε′′δ] ≤

m∑
k=1

P [| S̄k

k
| > ε′′δ

γnm
] ≤ C

γr
nmr

ε′′rδr
,

we get

I1 ≤ C
m

ar
m

,

I2 ≤ C
(
γn

n∑
k=m+1

k

a2
k

) 1
2 ,

I3 ≤ Cγ
r

r+1
n m

r−2
2(r+1) (

m∑
k=1

(Am
k )r)

1
r+1

I4 ≤ C{γr/(r+1)
n m

r−2
2(r+1) (

m∑
k=1

(Am
k )r)1/(r+1) +

(γnm

δ

) r
r+1 +

m∑
k=1

φk(δ).

On the other hand, for the second part of Theorem 2 we use evaluations

I1 ≤ Ce−c1a1∧(2−δ)
m ,

I2 ≤ C
(
γn

n∑
k=1

k

a2
k

) 1
2 ,

I3 ≤ Cγn| ln(γn)|Am
1

I4 ≤ C{γn| ln(γn)|Am
1 +

mγn| ln(γn)|
δ

+
m∑

k=1

φk(δ),

thus the proof of Theorem 2 is ended. �

Proof of Theorem 3. At first we consider the asymptotic behaviour of∑n
k=1(

∑n
j=k 1/j)r for arbitrary r. We have

n∑
k=1

(
n∑

j=k

1
j

)r ∼
∫ n

1

lnr(
n

x
)dx = n

∫ n

0

yre−ydy,

on the other hand

1
r + 1

=
∫ 1

0

yre−ydy ≤
∫ n

0

yre−ydy ≤ Γ(r + 1),

where Γ(x) is the Euler’s function. Thus

C1n ≤
n∑

k=1

(
n∑

j=k

1
j

)r ≤ C2n. (3.21)
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The term’s I1 and I2 we evaluate as in Theorem 2 whereas I3 and I4 follows from
(3.21) and Proposition’s 1 and 3:

I1 ≤ Cm1−r,

I2 ≤ C
√

ln(n)/ 4
√

n,

I3 ≤ C(
m

n
)

r
2(r+1) ,

I4 ≤ C{(m

n
)

r
2(r+1) + mφ1(δ) + (

m

δ
√

n
)

r
r+1 }.

From (3.21), we have
∆(n) ≤ Cn1−r/2,

and from the fact that %2
n = 1−Hn

2n , where Hn =
∑n

k=1
1
k is the n-th harmonic number,

we get

|max{%n, %−1
n } − 1|√

2πe
≤ (

Hn

4πen(1−Hn/(2n))
)1/2

≤ C

√
ln(n)

n

what ends the proof of (i). Part (ii) follows similarly from Theorem 2 (ii).

4. Examples and applications

Example 1. Let {Xn, n ≥ 1} be a sequence of independent and identically dis-
tributed random variables with geometric distribution, i.e., P [X1 = k] = pqk−1, where
p = 1− q. Then

EX1 = µ =
1
p
, V ar(X1) = σ2 =

q

p2
,

EetX1 ≤
pet

1− qet
≤ ∞, for t ∈ (0,− ln(q)].

From Theorem 17 ([4]) and the last inequality above for t < − ln(q), there exists such
g that

EetX̄ ≤ egt2 .

So, as P [X < 1] = 0 from Collorary 1 (ii), we have

sup
x
|P [(

n∏
j=1

pSj

j
)

1√
2qn < x]− P [eN < x]| ≤ C

√
ln(n)n−

1
4 .

Example 2. Let {Xn, n ≥ 1} be a sequence of independent identically distributed
random variables with exponential distribution with parameter λ > 0, i.e.

P [X1 < x] =
{

1− e−λx, for x ∈ (0,∞),
0, otherwise.
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Then
EX1 = µ =

1
λ

, V ar(X1) = σ2 =
1
λ2

.

Moreover
EetX̄ =

λ

λ− t
e−

t
λ < e

t
λ−t−

t
λ ,

thus
EetX̄ < e

c2t2
2 ,

for T ∈ (0, λ), t ∈ (0, T ], and c =
√

2
λ(λ−T ) . As P [X1 < δ] = 1 − e−λδ ≤ λδ, from

Collorary 2 (ii), we have

sup
x
|P [(

n∏
j=1

Sjλ

j
)

1√
2n < x]− P [eN < x]| ≤ C(ln(n))

3
2 n−

1
4 .

Example 3. Let {Xn.n ≥ 1} be a sequence of independent and identically distributed
random variables with Pareto’s density function

f(x) =
{

pap

xp+1 , for x > a > 0,
0, otherwise.

Then, for 2 < p ≤ 3, we have

EX1 = µ =
pa

p− 1
, V ar(X1) = σ2 =

pa2

(p− 2)(p− 1)2
.

As P [X1 < a] = 0, for a > 0, we have for p > 3+
√

5
2

sup
x
|P [(

n∏
j=1

Sj(p− 1)
jpa

)
√

p(p−2)
2n < x]− P [eN < x]| ≤ C

√
ln(n)n−

1
4 .

The similar evaluation for another p may be obtained from Corollary 1, too.
Open problems.

(i) As it seen from our examples the ”worst” evaluated term in our Theorems 1-3
and Corollaries 1-2 is I2. Is it possible to get the better evaluation of the term

P [4γn

∑n
k=1(

S̄k

ak
)2 > ε]?

(ii) From [8] and from our Proposition 2 we know only asymptotic behaviour of
P [supk≥n | S̄k

ak
| > ε]. Is it possible to evaluate the constants C in Theorems 1-3

and Corollaries 1-2?
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and Ruscheweyh operators
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Abstract: In the present paper we define a new operator using the
Sălăgean and Ruscheweyh operators. Denote by Lm

α the operator given
by Lm

α : An → An, L
m
α f(z) = (1−α)Rmf(z)+αSmf(z), z ∈ U, n,m ∈ N,

where Rmf(z) denote the
Ruscheweyh derivative, Smf(z) is the Sălăgean operator and An = {f ∈
H(U), f(z) = z + an+1z

n+1 + . . . , z ∈ U} is the class of normalized
analytic functions. A certain subclass, denoted by Sm (δ, α) , of analytic
functions in the open unit disc is introduced by means of the new operator.
By making use of the concept of differential subordination we will derive
various properties and characteristics of the class Sm (δ, α) . Also, several
differential subordinations are established regardind the operator Lm

α

AMS Subject Classification: 30C45, 30A20, 34A40
Key Words and Phrases: differential subordination, convex function, best dominant,
differential operator

1. Introduction

Denote by U the unit disc of the complex plane, U = {z ∈ C : |z| < 1} and H(U)
the space of holomorphic functions in U .

Let An = {f ∈ H(U), f(z) = z + an+1z
n+1 + . . . , z ∈ U} and H[a, n] = {f ∈

H(U), f(z) = a+ anz
n + an+1z

n+1 + . . . , z ∈ U} for a ∈ C and n ∈ N.
Denote by K =

{
f ∈ An, Re zf ′′(z)

f ′(z) + 1 > 0, z ∈ U
}

the class of normalized con-
vex functions in U .

If f and g are analytic functions in U , we say that f is subordinate to g, written
f ≺ g, if there is an analytic in U function w such that w(0) = 0, |w(z)| < 1 and
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f(z) = g(w(z)) for all z ∈ U . If g is univalent, then f ≺ g if and only if f(0) = g(0)
and f(U) ⊆ g(U).

Let ψ : C3 × U → C and h univalent in U . If p is analytic in U and satisfies the
(second-order) differential subordination

ψ(p(z), zp′(z), z2p′′(z); z) ≺ h(z), z ∈ U, (1.1)

then p is called a solution of the differential subordination. The univalent function q
is called a dominant of the solutions of the differential subordination, or more simply
a dominant, if p ≺ q for all p satisfying (1.1).

A dominant q̃ that satisfies q̃ ≺ q for all dominants q of (1.1) is said to be the best
dominant of (1.1). The best dominant is unique up to a rotation of U .

1.0. (Sălăgean [8]) For f ∈ An, m ∈ N, the operator Sm is defined by Sm : An →
An,

S0f (z) = f (z) ,
S1f (z) = zf ′(z), ...,

Sm+1f(z) = z (Smf (z))′ , z ∈ U.

1.0. If f ∈ An, f(z) = z +
∑∞

j=n+1 ajz
j , then Smf (z) = z +

∑∞
j=n+1 j

majz
j ,

z ∈ U .
1.0. (Ruscheweyh [7]) For f ∈ An, m ∈ N, the operator Rm is defined by Rm :

An → An,

R0f (z) = f (z) ,
R1f (z) = zf ′ (z) , ...,

(m+ 1)Rm+1f (z) = z (Rmf (z))′ +mRmf (z) , z ∈ U.

1.0. If f ∈ An, f(z) = z +
∞∑

j=n+1

ajz
j , then Rmf (z) = z +

∞∑
j=n+1

Cm
m+j−1ajz

j ,

z ∈ U .

Lemma 1.1. (Hallenbeck and Ruscheweyh [5]) Let h be a convex function with
h(0) = a, and let γ ∈ C∗ be a complex number with Re γ ≥ 0. If p ∈ H[a, n]
and

p(z) +
1
γ
zp′(z) ≺ h(z), z ∈ U,

then
p(z) ≺ g(z) ≺ h(z), z ∈ U,

where g(z) = γ
nzγ/n

∫ z

0
h(t)tγ/n−1dt, z ∈ U.

Lemma 1.2. (Miller and Mocanu [6]) Let g be a convex function in U and let h(z) =
g(z) + nαzg′(z), z ∈ U, where α > 0 and n is a positive integer.

If p(z) = g(0) + pnz
n + pn+1z

n+1 + . . . , z ∈ U , is holomorphic in U and

p(z) + αzp′(z) ≺ h(z), z ∈ U,
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then
p(z) ≺ g(z)

and this result is sharp.

2. Main results

2.0. [1], [2] Let α ≥ 0, m ∈ N. Denote by Lm
α the operator given by Lm

α : An → An,

Lm
α f(z) = (1− α)Rmf(z) + αSmf(z), z ∈ U.

2.0. Lm
α is a linear operator and if f ∈ An, f(z) = z +

∑∞
j=n+1 ajz

j , then
Lm

α f(z) = z +
∑∞

j=n+1

(
αjm + (1− α)Cm

m+j−1

)
ajz

j , z ∈ U.

Theorem 2.1. Let g be a convex function, g(0) = 1 and let h be the function h(z) =
g(z) + zg′(z), z ∈ U.

If α ≥ 0, m ∈ N, f ∈ An and verifies the differential subordination

(Lm
α f(z))′ ≺ h(z), z ∈ U, (2.1)

then
Lm

α f(z)
z

≺ g(z), z ∈ U

and this result is sharp.

Proof. Consider

p(z) =
Lm

α f(z)
z

=
z +

∑∞
j=n+1

(
αjm + (1− α)Cm

m+j−1

)
ajz

j

z

= 1 + pnz
n + pn+1z

n+1 + ..., z ∈ U.

We deduce that p ∈ H[1, n].
We have Lm

α f(z) = zp(z), z ∈ U. Differentiating, we obtain
(Lm

α f(z))′ = p(z) + zp′(z), z ∈ U.
Then (2.1) becomes

p(z) + zp′(z) ≺ h(z) = g(z) + zg′(z), z ∈ U.

By using Lemma 1.2., we have

p(z) ≺ g(z), z ∈ U, i.e.
Lm

α f(z)
z

≺ g(z), z ∈ U.

�
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Theorem 2.2. Let h ∈ H(U) with h(0) = 1 which verifies the inequality

Re
(

1 +
zh′′(z)
h′(z)

)
> −1

2
, z ∈ U.

If α ≥ 0, m ∈ N, f ∈ An and verifies the differential subordination

(Lm
α f(z))′ ≺ h(z), z ∈ U, (2.2)

then
Lm

α f(z)
z

≺ q(z), z ∈ U,

where q(z) = 1

nz
1
n

∫ z

0
h(t)t

1
n−1dt. The function q is convex and it is the best dominant.

Proof. Let

p(z) =
Lm

α f(z)
z

= 1 +
∞∑

j=n+1

(
αjm + (1− α)Cm

m+j−1

)
ajz

j−1

= 1 +
∞∑

j=n+1

pjz
j−1, z ∈ U, p ∈ H[1, n].

Differentiating, we obtain

(Lm
α f(z))′ = p(z) + zp′(z), z ∈ U

and (2.2) becomes
p(z) + zp′(z) ≺ h(z), z ∈ U.

Using Lemma 1.1., we have

p(z) ≺ q(z) =
1

nz
1
n

∫ z

0

h(t)t
1
n−1dt, z ∈ U,

i.e.
Lm

α f(z)
z

≺ q(z) =
1

nz
1
n

∫ z

0

h(t)t
1
n−1dt, z ∈ U

and q is the best dominant. �

Theorem 2.3. Let g be a convex function such that g (0) = 1 and let h be the function
h (z) = g (z) + zg′ (z), z ∈ U .

If α ≥ 0, m ∈ N, f ∈ An and the differential subordination(
zLm+1

α f (z)
Lm

α f (z)

)′

≺ h (z) , z ∈ U (2.3)

holds, then
Lm+1

α f (z)
Lm

α f (z)
≺ g (z) , z ∈ U

and this result is sharp.
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Proof. Consider

p(z) =
Lm+1

α f(z)
Lm

α f (z)
=
z +

∑∞
j=n+1

(
αjm+1 + (1− α)Cm+1

m+j

)
ajz

j

z +
∑∞

j=n+1

(
αjm + (1− α)Cm

m+j−1

)
ajzj

.

We have p′ (z) = (Lm+1
α f(z))′
Lm

α f(z) − p (z) · (Lm
α f(z))′

Lm
α f(z) and we obtain

p (z) + z · p′ (z) =
(

zLm+1
α f(z)

Lm
α f(z)

)′
.

Relation (2.3) becomes

p(z) + zp′(z) ≺ h(z) = g(z) + zg′(z), z ∈ U.

By using Lemma 1.2., we have

p(z) ≺ g(z), z ∈ U, i.e.
Lm+1

α f(z)
Lm

α f (z)
≺ g(z), z ∈ U.

�
Following the work done in [3] and [4], we introduce a new class of functions.
2.0. Let δ ∈ [0, 1), α ≥ 0 and m ∈ N. A function f ∈ An is said to be in the class

Sm (δ, α) if it satisfies the inequality

Re (Lm
α f (z))′ > δ, z ∈ U. (2.4)

Theorem 2.4. The set Sm (δ, α) is convex.

Proof. Let the functions

fj (z) = z +
∞∑

j=n+1

ajkz
j , k = 1, 2, z ∈ U

be in the class Sm (δ, α). It is sufficient to show that the function

h (z) = η1f1 (z) + η2f2 (z)

is in the class Sm (δ, α), with η1 and η2 nonnegative such that η1 + η2 = 1.
Since h (z) = z +

∑∞
j=n+1 (η1aj1 + η2aj2) zj , z ∈ U, then

Lm
α h (z) = z +

∞∑
j=n+1

[
αjm + (1− α)Cm

m+j−1

]
(η1aj1 + η2aj2) zj , z ∈ U. (2.5)

Differentiating (2.5) we obtain
(Lm

α h (z))′ = 1 +
∑∞

j=n+1

[
αjm + (1− α)Cm

m+j−1

]
(η1aj1 + η2aj2) jzj−1,

z ∈ U.
Hence
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Re (Lm
α h (z))′ = 1 + Re

(
η1

∑∞
j=n+1 j

[
αjm + (1− α)Cm

m+j−1

]
aj1z

j−1
)

+Re

η2 ∞∑
j=n+1

j
[
αjm + (1− α)Cm

m+j−1

]
aj2z

j−1

 . (2.6)

Taking into account that f1, f2 ∈ Sm (δ, α), we deduce

Re

ηk

∞∑
j=n+1

j
[
αjm + (1− α)Cm

m+j−1

]
ajkz

j−1

 > ηk (δ − 1) , k = 1, 2. (2.7)

Using (2.7) we get from (2.6)

Re (Lm
a h (z))′ > 1 + η1 (δ − 1) + η2 (δ − 1) , z ∈ U,

that is
Re (Lm

a h (z))′ > δ, z ∈ U,

which is equivalent that Sm (δ, α) is convex. �

Theorem 2.5. Let g be a convex function in U and let h (z) = g (z) + 1
c+2zg

′ (z) ,
z ∈ U, where c > 0.

If f ∈ Sm (δ, α) and F (z) = Ic (f) (z) = c+2
zc+1

∫ z

0
tcf (t) dt, z ∈ U, then

(Lm
α f (z))′ ≺ h (z) , z ∈ U (2.8)

implies
(Lm

α F (z))′ ≺ g (z) , z ∈ U

and this result is sharp.

Proof. We have zc+1F (z) = (c+ 2)
∫ z

0
tcf (t) dt. Differentiating, with respect to z,

we obtain
(c+ 1)F (z) + zF ′ (z) = (c+ 2) f (z) (2.9)

and
(c+ 1)Lm

α F (z) + z (Lm
α F (z))′ = (c+ 2)Lm

α f (z) , z ∈ U. (2.10)

Differentiating (2.10) we have

(Lm
α F (z))′ +

1
c+ 2

z (Lm
α F (z))′′ = (Lm

α f (z))′ , z ∈ U. (2.11)

Using (2.11), the differential subordination (2.8) becomes

(Lm
α F (z))′ +

1
c+ 2

z (Lm
α F (z))′′ ≺ g (z) +

1
c+ 2

zg′ (z) . (2.12)

If we denote
p (z) = (Lm

α F (z))′ (2.13)
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then p ∈ H [1, n] .
Replacing (2.13) in (2.12) we obtain

p (z) +
1

c+ 2
zp′ (z) ≺ g (z) +

1
c+ 2

zg′ (z) , z ∈ U.

Using Lemma 1.2. we have

p (z) ≺ g (z) i.e. (Lm
α F (z))′ ≺ g (z) , z ∈ U

and g is the best dominant. �

Theorem 2.6. Let h (z) = 1+(2δ−1)z
1+z , δ ∈ [0, 1) and c > 0.

If α ≥ 0, m ∈ N and Ic is given by Theorem 2.5., then

Ic [Sm (δ, α)] ⊂ Sm (δ∗, α) , (2.14)

where δ∗ = 2δ − 1 + (c+2)(2−2δ)
n β

(
c+2
n − 2

)
and β (x) =

∫ 1

0
tx+1

t+1 dt.

Proof. The function h is convex and using the same steps as in the proof of Theorem
2.5. we get from the hypothesis of Theorem 2.6. that

p (z) +
1

c+ 2
zp′ (z) ≺ h (z) ,

where p (z) is defined in (2.13).
Using Lemma 1.1. we deduce that

p (z) ≺ g (z) ≺ h (z) ,

that is
(Lm

α F (z))′ ≺ g (z) ≺ h (z) ,

where

g (z) =
c+ 2

nz
c+2

n

∫ z

0

t
c+2

n −1 1 + (2δ − 1) t
1 + t

dt =

(2δ − 1) +
(c+ 2) (2− 2δ)

nz
c+2

n

∫ z

0

t
c+2

n −1

1 + t
dt.

Since g is convex and g (U) is symmetric with respect to the real axis, we deduce

Re (Lm
α F (z))′ ≥ min

|z|=1
Re g (z) = Re g (1) = δ∗ = (2.15)

2δ − 1 +
(c+ 2) (2− 2δ)

n
β

(
c+ 2
n

− 2
)
.

From (2.15) we deduce inclusion (2.14). �
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Theorem 2.7. Let g be a convex function such that g(0) = 1, and let h be the function
h(z) = g(z) + zg′(z), z ∈ U.

If α ≥ 0, m ∈ N, f ∈ An and the differential subordination(
Lm+1

α f(z)
)′

+
(1− α)mz(Rmf(z))′′

m+ 1
≺ h(z), z ∈ U (2.16)

holds, then
[Lm

α f(z)]′ ≺ g(z), z ∈ U.
This result is sharp.

Proof. By using the properties of operator Lm
α , we obtain

Lm+1
α f(z) = (1− α)Rm+1f(z) + αSm+1f(z), z ∈ U. (2.17)

Then (2.16) becomes

(
(1− α)Rm+1f(z) + αSm+1f(z)

)′
+

(1− α)mz (Rmf(z))′′

m+ 1
≺ h(z),

with z ∈ U.
After a short calculation, we obtain (1− α) (Rmf (z))′ + α (Smf (z))′

+z
(
(1− α) (Rmf (z))′′ + α (Smf (z))′′

)
≺ h (z) , z ∈ U.

Let
p(z) = (1− α) (Rmf(z))′ + α (Smf(z))′ = (Lm

α f(z))′ = (2.18)

1 +
∞∑

j=n+1

(
αjm+1 + (1− α) jCm

m+j−1

)
ajz

j−1 = 1 + pnz
n + pn+1z

n+1 + ...

We deduce that p ∈ H[1, n].
Using the notation in (2.18), the differential subordination becomes

p(z) + zp′(z) ≺ h(z) = g(z) + zg′(z).

By using Lemma 1.2., we have

p(z) ≺ g(z), z ∈ U, i.e. (Lm
α f(z))′ ≺ g(z), z ∈ U

and this result is sharp. �

Theorem 2.8. Let h(z) = 1+(2β−1)z
1+z , a convex function in U , 0 ≤ β < 1.

If α ≥ 0, m ∈ N, f ∈ An and verifies the differential subordination

[Lm+1
α f(z)]′ +

(1− α)mz (Rmf(z))′′

m+ 1
≺ h(z), z ∈ U, (2.19)

then
(Lm

α f(z))′ ≺ q(z), z ∈ U,

where q is given by q(z) = 2β− 1+ 2(1−β)

nz
1
n

∫ z

0
t

1
n
−1

1+t dt, z ∈ U. The function q is convex
and it is the best dominant.
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Proof. Following the same steps as in the proof of Theorem 2.7. and considering
p(z) = (Lm

α f (z))′, the differential subordination (2.19) becomes

p(z) + zp′(z) ≺ h(z) =
1 + (2β − 1)z

1 + z
, z ∈ U.

By using Lemma 1.1. for γ = 1, we have p(z) ≺ q(z), i.e.,

(Lm
α f(z))′ ≺ q (z) =

1
nz

1
n

∫ z

0

h (t) t
1
n−1dt =

1
nz

1
n

∫ z

0

t
1
n−1 1 + (2β − 1) t

1 + t
dt

= 2β − 1 +
2(1− β)
nz

1
n

∫ z

0

t
1
n−1

1 + t
dt, z ∈ U.

�

Theorem 2.9. Let h ∈ H(U) with h(0) = 1, which verifies the inequality

Re
[
1 +

zh′′(z)
h′(z)

]
> −1

2
, z ∈ U.

If α ≥ 0, m ∈ N, f ∈ An and satisfies the differential subordination(
Lm+1

α f(z)
)′

+
(1− α)mz (Rmf(z))′′

m+ 1
≺ h(z), z ∈ U, (2.20)

then
(Lm

α f(z))′ ≺ q(z), z ∈ U,

where q is given by q(z) = 1

nz
1
n

∫ z

0
h(t)t

1
n−1dt. The function q is convex and it is the

best dominant.

Proof. Using the properties of operator Lm
α and considering p (z) = (Lm

α f (z))′, we
obtain (

Lm+1
α f(z)

)′
+

(1− α)mz (Rmf(z))′′

m+ 1
= p(z) + zp′(z), z ∈ U.

Then (2.20) becomes

p(z) + zp′(z) ≺ h(z), z ∈ U.

Since p ∈ H[1, n], using Lemma 1.1., we deduce

p(z) ≺ q(z), z ∈ U,

where
q(z) =

1
nz

1
n

∫ z

0

h(t)t
1
n−1dt, z ∈ U,

i.e.
(Lm

α f(z))′ ≺ q(z) =
1

nz
1
n

∫ z

0

h(t)t
1
n−1dt, z ∈ U

and q is the best dominant. �
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Abstract: In this paper, we find conditions on the coefficients {ak}
such that the corresponding analytic function f(z) and its partial sum
fn(z) are close-to-convex with respect to some starlike function in the unit
disc D. We also find conditions on these coefficients so that the analytic
function is starlike univalent in D. As an application, we find conditions
on the triplet (a, b, c) so that, the normalized Gaussian hypergeometric
function and its particular cases, are in one of these classes.
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1. Introduction

LetA be the class of analytic functions f in the unit disk D = {z : |z| < 1}, normalized
by the condition f(0) = 0 = f ′(0) − 1 and S = {f ∈ A : f is univalent in D}. A
function f ∈ S is said to be starlike and convex if

Re
(

zf ′(z)
f(z)

)
> 0 and Re

(
1 +

zf ′′(z)
f ′(z)

)
> 0

respectively. The class of all starlike and convex functions are denoted as S∗ and C
respectively and C  S∗  S. A function f ∈ A is known as close-to-convex with
respect to a starlike function g if Re( zf ′(z)

g(z) ) > 0. The class of all such function is
denoted as K. Every close-to-convex functions is univalent. Let TR be the subclass
of S, consist of all typically real functions, i.e, all f ∈ S such that Im(f)Im(z) > 0.
For details regarding these classes, we refer to [3]. The following Lemma 1.1. gives
another criteria for starlikeness.
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Lemma 1.1. [12] Let f ∈ A be typically real in D and satisfies the condition that
Re f ′(z) > 0, z ∈ D. Then f is starlike univalent in D.

Lemma 1.2. [10] f ∈ A has real coefficients and is convex in the direction of imag-
inary axis if, and only if, zf ′(z) is typically real.

A function f ∈ A is said to be convex in the direction of the imaginary axis if every
line parallel to the imaginary axis either intersects f(D) in an interval or does not
intersect at all. The following result is well known.

Lemma 1.3. Let f ∈ A has real coefficients, then f is convex in the direction of
imaginary axis if, and only if,

Re
(
(1− z2)f ′(z)

)
> 0 ∀z ∈ D

In this work, we are interested in the following problems:

Problem 1.1. Find the condition on ak, such that the functions defined by the series

f(z) = z +
∞∑

k=2

akzk and its partial sum f(z) = z +
∑n

k=2 akzk are starlike univalent.

Problem 1.2. Find the condition on ak, such that the functions defined by the series

f(z) = z +
∞∑

k=2

akzk and its partial sum f(z) = z +
∑n

k=2 akzk are close-to-convex

with respect to a particular starlike function.

Non-negativity of cosine series, sine series and their partial sums play an important
role in getting some partial answer of above problems. Many results regarding non-
negativity of trigonometric series and their application to find the geometric nature
such as starlikeness, convexity and univalency of various classes of analytic functions
and polynomials, are available in the literature. For details we refer [1, 2, 4, 8, 15].
The following result given in [2] is very useful for our work.

Lemma 1.4. [2] Let (ck)∞k=0 be non-increasing sequence of nonnegative real numbers
such that c0 > 0 and

c2k ≤
2k

2k + 1
c2k−1, for k = 1, 2, 3, · · · . (1.1)

Then, for every positive integer N,M , we have

c0 + c1 cos θ + c2 cos 2θ + c3 cos 3θ + · · · · · ·+ cN cos Nθ > 0,

c1 sin θ + c2 sin 2θ + c3 sin 3θ + · · · · · ·+ c2M+1 sin(2M + 1)θ > 0.

Following result is an immediate consequence of the Lemma 1.4., if we replace ck

by rkck,∀r ∈ [0, 1) and rewrite the hypothesis given in Lemma 1.4..
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Lemma 1.5. If (ck)∞k=0 satisfies the hypothesis of lemma(1.4.), then for r ∈ [0, 1)
and every positive integer N,M , we have

c0 + c1r cos θ + c2r
2 cos 2θ + c3r

3 cos 3θ + · · · · · ·+ cNrN cos Nθ > 0

and

c1r sin θ + c2r
2 sin 2θ + c3r

3 sin 3θ + · · · · · ·+ c2M+1r
2M+1 sin(2M + 1)θ > 0.

For partial solution regarding the polynomial part of problems 1.1. and 1.2., we
consider the Cesàro means of f(z), which is defined as follows:

Let f(z) = z +
∞∑

k=2

akzk, then the n-th Cesàro means of order β of f(z) is given as

σβ
n(z, f) =

n∑
k=1

Aβ
n−k

Aβ
n

akzk, (1.2)

for all n ∈ N and β > −1, where Aβ
n =

(n + β)
n

Aβ
n−1 and Aβ

0 = 1.
In particular,

σβ
n(z) =

n∑
k=1

Aβ
n−k

Aβ
n

zk (1.3)

Note that σβ
n(z, f) = σβ

n(z) ∗ f(z), where ∗ denotes the Hadamard product or

convolution, which is defined as (f ∗ g)(z) = z +
∞∑

k=2

akbkzk if f(z) = z +
∞∑

k=2

akzk

and g(z) = z +
∞∑

k=2

akzk. For details about the convolution and it’s properties, we

refer [3, 14].
There are many results available regarding the univalency of polynomials σβ

n(z),
cf.[5, 7, 11]. The following is the most general one due to Lewis.

Lemma 1.6. [7] For β ≥ 1 and n ∈ N we have σβ
n(z) ∈ K.

By convolution property of convex functions and close-to-convex functions [14],
we immediately have

Corollary 1.1. For β ≥ 1 , n ∈ N and f ∈ C we have σβ
n(z, f) ∈ K.

In [13], Ruscheweyh established the following result which gives the geometric prop-
erty of Cesàro means.

Lemma 1.7. [13] Let β ≥ α > 1, f ∈ C(3−α)/2. Then for all n ∈ N :

n + β

n
σβ

n(z, f) ∈ C(3−α)/2.

A corresponding result holds if C(3−α)/2 is replaced by either S∗(3−α)/2, or K(3−α)/2.
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2. Main Results

In this section, we state our main result which addresses problems 1.1. and 1.2. par-
tially.

Theorem 2.1. Let (ak)∞k=1 be sequence of non-negative real number such that a1 = 1
and (k + 1)ak+1 ≤ kak. Then for all k ≥ 1,

(a): (2k + 1)2(2n + 2− 2k)a2k+1 ≤ (2k)2(2n + 2− 2k + β)a2k

which implies
2n + 2 + β

2n + 2
σβ

2n+2(z, f) is close-to-convex with respect to both the

starlike functions z and z/(1− z).

Further that, for the same condition
2n + 2 + β

2n + 2
σβ

2n+2(z, f) is starlike univalent.

(b): (2k + 1)(2n + 2− 2k)a2k ≤ (2k − 1)(2n + 2− 2k + β)a2k−1

which implies
2n + 1 + β

2n + 1
σβ

2n+1(z, f) is close-to-convex with respect to the star-

like function z/(1− z2).

Proof. (a): Consider

g2n+2(z) :=
2n + 2 + β

2n + 2
σβ

2n+2(z, f) = z +
2n + 2 + β

2n + 2

2n+2∑
k=2

Aβ
2n+2−k

Aβ
2n+2

akzk

and write

Re g′2n+2(z) = c0 +
2n+1∑
k=1

ckrkcoskθ and Im g′2n+2(z) =
2n+1∑
k=1

ckrksinkθ

where c0 = 1,

ck =
2n + 2 + β

2n + 2
.
Aβ

2n+1−k

Aβ
2n+2

(k + 1)ak+1, θ ∈ [0, π], r ∈ [0, 1).

Now we need to prove that, by hypothesis of this Theorem, ck satisfy the conditions
of Lemma 1.5.. By an easy compuation, for k = 0, 1, 2, . . ., we have

ck+1 − ck =
(2n + 2 + β)

(2n + 2)Aβ
2n+2

[
Aβ

2n−k(k + 2)ak+2 −Aβ
2n+1−k(k + 1)ak+1

]
=

(2n + 2 + β)Aβ
2n−k

(2n + 2)Aβ
2n+2

[
(k + 2)ak+2 −

2n + 1− k + β

2n + 1− k
(k + 1)ak+1

]

=
(2n + 2 + β)Aβ

2n−k

(2n + 2)Aβ
2n+2

[(
(k + 2)ak+2 − (k + 1)ak+1

)
−β

(k + 1)ak+1

2n + 1− k

]
≤ 0.
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Similarly, for k = 1, 2, 3, . . ., by writing

M :=
(2n + 2 + β)Aβ

2n+1−2k

(2n + 2)(2k + 1)Aβ
2n+2

> 0,

we have

c2k −
2k

2k + 1
c2k−1 = M

[
(2k + 1)2a2k+1 −

(2n + 2− 2k + β)
2n + 2− 2k

(2k)2a2k

]
which is non-positive. Now ck satisfies the hypothesis of Lemma 1.5.. Hence by
using the minimum principle of harmonic functions, we have Re g′2n+2(z) > 0, and
Im g′2n+2(z) > 0. Further, by reflection principle, Im g′2n+2(z) > 0 for Im (z) > 0,
implies Im g′2n+2(z) < 0 for Im (z) < 0 and using cos k(2π − θ) = cos kθ, we get that,
this result is also true for θ ∈ [π, 2π].

Combining all these observations, we have

Re (1− z)g′2n+2(z) = Re (1− z)Re g′2n+2(z) + Im (z)Im g′2n+2(z) > 0.

Hence g2n+2(z) is close-to-convex(univalent) with respect to z and z
1−z . Further using

Lemma 1.1., we have that g2n+2(z) is starlike.
(b): Consider

g2n+1(z) :=
2n + 1 + β

2n + 1
σβ

2n+1(z, f) = z +
2n + 1 + β

2n + 1

2n+1∑
k=2

Aβ
2n+1−k

Aβ
2n+1

akzk

Then, we have, Im zg′2n+1(z) =
2n+1∑
k=1

ckrksinkθ, where

ck =
2n + 1 + β

2n + 1
.
Aβ

2n+1−k

Aβ
2n+1

kak, θ ∈ [0, π], r ∈ [0, 1).

Now, as in the previous part, to prove the result under the hypothesis of the
Theorem, we need to verify the conditions given in Lemma 1.5.. Hence, for k =
1, 2, 3, . . ., we have

ck+1 − ck =
(2n + 1 + β)Aβ

2n−k

(2n + 1)Aβ
2n+1

[
(k + 1)ak+1 −

2n + 1 + β

2n + 1
kak

]

=
(2n + 1 + β)Aβ

2n−k

(2n + 1)Aβ
2n+1

[
(k + 1)ak+1 − kak −

β

2n + 1
kak

]
≤ 0,

and by writing N :=
(2n + 1 + β)(2k)Aβ

2n+1−2k

(2n + 1)(2k + 1)Aβ
2n+1

> 0, we get

c2k −
2k

2k + 1
c2k−1 = N

[
(2k + 1)a2k −

(2n + 2− 2k + β)
2n + 2− 2k

(2k − 1)a2k−1

]
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which is non-positive. Hence we have Im (zg′2n+1(z)) > 0 in
D∩{z : Im z > 0}, using Lemma 1.5.. By reflection principle, we have Im (zg′(z)) < 0
in D ∩ {z : Im z < 0}, i.e, zg′2n+1(z) is typically real. Hence using the fact that f(z)
has real coefficients and is convex in the direction of imaginary axis implies that f(z)
is close-to-convex w.r.t the starlike function z

1−z2 and Lemma 1.2., we get the required
result and the proof is complete.

We observe that Theorem 2.1. is different from Lemma 1.7. by means of coefficient
conditions. But in sense of order of close-to-convexity Lemma 1.7. is stronger than
Theorem 2.1.. Now we will discuss some particular case of Theorem 2.1.. Since the
class of all close-to-convex functions with respect to same starlike function forms a
normal family, and for β = 0, n+β

n σβ
n(z, f) = fn(z) = z +

∑n
k=2 akzk, we have the

following result, partially supporting problem 1.1. and problem 1.2..

Theorem 2.2. Let (ak)∞k=1 be sequence of non-negative real number with a1 = 1 such
that, for all k ≥ 1,

(k + 1)ak+1 ≤ kak and (2k + 1)2a2k+1 ≤ (2k)2a2k. (2.1)

Then, f(z) = lim
n→∞

f2n+2(z) = z +
∞∑

k=2

akzk is close-to-convex with respect to both the

starlike functions z and z/(1−z). Further that, for the same condition, f(z) is starlike
univalent.

In [1], the results of [4] are improved and the following results are obtained, which
seems to be the best available conditions on ak so far, such that f(z) = z+

∑∞
k=2 akzk

are starlike univalent.

Lemma 2.1. [1] Let (ak)∞k=1 be the sequence of real numbers such that a1 = 1, and
for that, k ≥ 3, the quantities ak, ∆ak, ∆2ak are all non-negative. If

1. 2a1 − 4a2 + 3a3 ≥ 0

2. 2a1 + a2 − 12a3 + 10a4 ≥ 0

3. 2a1 + 4a2 + 6a3 − 56a4 + 45a5 ≥ 0

4. ∆2a2 + ∆2a4 + 21
16∆2a6 ≥ 0,

then the function defined by f(z) = z +
∞∑

k=2

akzk, are starlike univalent.

Lemma 2.2. [1] Let (ak)∞k=1 be the sequence of real numbers such that a1 = 1, and
for that, k ≥ 3, the quantities ak, ∆ak, ∆2ak are all non-negative. If

1. 2a1 − 4a2 + 3a3 ≥ 0

2. 2a1 + a2 − 12a3 + 10a4 ≥ 0
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3. 2a1 + 4a2 + 6a3 − 56a4 + 45a5 ≥ 0

4. ∆2a2 + ∆2a3 + ∆2a5 + 21
16∆2a6 ≥ 0

5. ∆2a2 + ∆2a4 + 21
16∆2a6 ≥ 0

then the function defined by f(z) = z +
∑∞

k=2 akzk, are starlike univalent.

Here by ∆ we mean ∆ak = k ak − (k + 1)ak+1 and ∆2 ≡ ∆
(
∆

)
.

Now we provide some examples to support our results.

Example 2.1. Consider the sequence (ak)∞k=1 such that a1 = 1, a2 = 1
2 and

(2k + 1)a2k+1 = (2k + 2)a2k+2 =
(k!)222k

(2k + 1)!

Then by Theorem 2.2. the function

f(z) = z +
∞∑

k=2

akzk = z +
1
2
z2 +

2
9
z3 +

1
6
z4 +

8
75

z5 +
4
45

z6 +
16
245

a7 + · · ·

is starlike univalent. But Lemma 2.1. and Lemma 2.2. fails to include this function
as ∆2a3 = 3a3 − 8a4 + 5a5 = − 2

15 6≥ 0.

Hence Theorem 2.2. is better than the Lemma 2.1. and Lemma 2.2., in the sense that
it covers some more cases.

The functions

z,
z

1− z
,

z

1− z2
,

z

(1− z)2
and

z

1− z + z2

and their rotations are the only nine functions which are starlike univalent and have
integer coefficients in D, (see [6, 9] for details). Theorem 2.2. handles the close-to-
convexity of f(z) with respect to z and z/(1 − z). The following result, which can
be obtained directly from Theorem 2.1., handles the close-to-convexity of f(z) with
respect to z/(1− z2).

Theorem 2.3. Let (ak)∞k=1 be sequence of non-negative real number with a1 = 1 such
that, for all k ≥ 1,

(k + 1)ak+1 ≤ kak and (2k + 1)a2k ≤ (2k − 1)a2k−1. (2.2)

Then f(z) = lim
n→∞

f2n+1(z) = z +
∞∑

k=2

akzk is close-to-convex w.r.t z
1−z2 .

Note that Theorem 2.1. refers to the starlike functions z, z/(1 − z) and z/(1 − z2)
upto partial sums. So far, we have no results for the remaining two cases of starlike
functions, namely z/(1 − z)2 and z/(1 − z + z2). Hence it will be interesting to see
if one can find similar results with respect to these starlike functions. In particular,
not many results related to the close-to-convexity of f(z) with respect to the starlike
function z/(1− z + z2) are available in the literature.

Using Vietori’s lemma [15], some partial answer to the problem 1.2. is given in [1].
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Lemma 2.3. [1] Let (ak)∞k=1 be a sequence of nonnegative real numbers such that
a1 = 1 and if

(k + 1)ak+1 ≤ kak, (2k)2a2k ≤ (2k − 1)2a2k−1

Then the function defined by the series
n∑

k=1

akzk,
∞∑

k=1

akzk are close-to-convex w.r.t

z
1−z2 .

Example 2.2. Consider the sequence (ak)∞k=1 such that a1 = 1 and

(2k)a2k = (2k + 1)a2k+1 =
(k!)222k

(2k + 1)!

Then by Theorem 2.3., the function

f(z) = z +
1
3
z2 +

2
9
z3 +

2
15

z4 +
8
75

z5 + · · ·

is close-to-convex w.r.t z
1−z2 , whereas Lemma 2.3. cannot be applied for this example.

3. Application to Hypergeometric Functions

Consider the operator Ha,b,c(f)(z), is defined as

Ha,b,c(f)(z) = zF (a, b; c; z) ∗ f(z) (3.1)

In particular, if a=1 in (3.1), the the operator H1,b,c(f)(z) is known as Carlson and
Shaffer operator and denoted as Lb,c. Here by F (a, b; c; z) we mean the Gaussian
hypergeometric function F (a, b; c; z), z ∈ D , given by the series

F (a, b; c; z) =
∞∑

n=0

(a, n)(b, n)
(c, n)(1, n)

zn (3.2)

which is the solution of the homogenous hypergeometric differential equation

z(1− z)w′′(z) + [c− (a + b + 1)z]w′(z)− abw(z) = 0 (3.3)

Here a, b, c are complex numbers such that c 6= 0,−1,−2,−3, · · · , (a, 0) = 1 for a 6= 0,
and for each positive integer n, (a, n) = a(a + 1, n− 1) is the Pochhammer symbol.

In this section, we find the condition on the triplet (a,b,c) and the coefficients {ak}
such that Ha,b,c(f) and Lb,c(f) are (i) starlike univalent and (ii) close-to-convex with
respect to a particular starlike function. These results are also expected to support
Problem 1.1. and Problem 1.2. partially.

The following theorem on Ha,b,c(f) is obtained by using Theorem 2.2..

Theorem 3.1. Let ak+1 ≤ ak,∀k ≥ 1, then Ha,b,c(f) is starlike univalent if one of
the following conditions is satisfied.
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1. a < 0, b < 0 be such that c ≥ max(0, 2ab, a + b + 1) and (a, k)(b, k) ≥ 0,∀ k ≥ 1.

2. a > 0, b > 0 and c ≥ T (a, b) where

T (a, b) = max
{

0, 2ab, a + b + 1,
1
6
(7a + 7b + ab + 4),

1
12

(15a + 15b + 6ab + 4),
1
8
(9a + 9b + 9ab)

}
.

Proof.

Ha,b,c(f)(z) = zF (a, b; c; z) ∗ f(z) = z +
∞∑

k=2

bkzk (3.4)

where, bk =
(a, k − 1)(b, k − 1)
(c, k − 1)(1, k − 1)

ak,∀k ≥ 1. Now it is enough to check if {bk} satisfies

the hypothesis of Theorem 2.2.. For this, we write

(k + 1)bk+1 − kbk =
(a, k − 1)(b, k − 1)

(c, k)(1, k)
X(k), (3.5)

where,
X(k) = (a + k − 1)(b + k − 1)(k + 1)ak+1 − k2(c + k − 1)ak. (3.6)

We need to show that X(k) ≤ 0. An easy computation, using the hypotheses given
in the Theorem gives

X(k) ≤
[
(a + k − 1)(b + k − 1)(k + 1)− k2(c + k − 1)

]
ak+1

≤ [−c + 2ab]ak+1,

proves X(k) ≤ 0, since c ≥ 2ab. The proof will be complete, if we prove the other
inequality given in Theorem 2.2.. This implies that we need to prove that

(2k + 1)2b2k+1 − (2k)2b2k =
(a, 2k − 1)(b, 2k − 1)

(c, 2k)(1, 2k)
Y (k) ≤ 0,

where,

Y (k) = (a + 2k − 1)(b + 2k − 1)(2k + 1)2a2k+1 − (2k)3(c + 2k − 1)a2k.

Again an easy computation using the hypothesis of the Theorem leads to the fact that

Y (k) ≤
[
(a + 2k − 1)(b + 2k − 1)(2k + 1)2 − (2k)3(c + 2k − 1)

]
a2k+1

≤ [(28(a + b)− 24c + 4ab + 16)k2 + (4ab− 26(a + b) + 24c− 24)k
+(7a + 7b + ab + 9− 8c)]a2k+1

≤
[
(6(5a + 5b + 2ab− 4c) + 8)k −(21(a + b) + 3ab− 16c + 8)

]
a2k+1

≤ (9a + 9b + 9ab− 8c) a2k+1 ≤ 0,
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and the proof is complete.
Note that the convex function f(z) = z/(1 − z) satisfies the hypothesis given in

Theorem 3.1.. Hence taking ak = 1,∀k, we getHa,b,c(f)(z) = zF (a, b; c; z)∗z/(1−z) =
zF (a, b; c; z). This leaves us to have condition on triplet (a,b,c) such that zF (a, b; c; z)
is starlike univalent. Also the well-known Pólya-Schoenberg Theorem[14] ascertains
that the convolution of close-to-convex(starlike) function with convex function is close-
to-convex(starlike). Applying this result, we have

Corollary 3.1. Let (a, b, c) satisfies the hypothesis of Theorem 3.1. with ak = 1.
Then, both zF (a, b; c; z) and Ha,b,c(g)(z) are starlike univalent for any convex function
g(z) ∈ A.

The following results can be proved in a similar way Theorem 3.1. is proved and
hence we give only the statement of these results.

Theorem 3.2. Let the triplet (a, b, c) and {ak} satisfy one of the following conditions.

1. (k + 1)ak+1 ≤ kak with

i. a < 0, b < 0 such that c ≥ ab and (a, k)(b, k) ≥ 0, ∀ k ≥ 1, or

ii. a > 0, b > 0 and c ≥ max{0, ab, a + b, 1
8 (8a + 8b + 2ab − 2), 1

4 (3a + 3b +
3ab− 1)}.

2. (k + 1)2ak+1 ≤ k2ak with

i. a < 0, b < 0 such that c ≥ 1
2ab and (a, k)(b, k) ≥ 0,∀k ≥ 1, or

ii. a > 0, b > 0 and c ≥ max{0, 1
2ab, (a + b− 1), 1

2 (a + b + ab− 1)}.

3. (k + 1)ak+1 ≤ kak , (2k + 1)2a2k+1 ≤ (2k)2a2k, with

i. a < 0, b < 0 such that c ≥ ab and (a, k)(b, k) ≥ 0,∀k ≥ 1, or

ii. a > 0, b > 0 and c ≥ max{0, ab, a + b− 1}.

4. (k + 1)2ak+1 ≤ k2ak , (2k + 1)3a2k+1 ≤ (2k)3a2k, with

i. a < 0, b < 0 such that c ≥ 1
2ab and (a, k)(b, k) ≥ 0,∀k ≥ 1, or

ii. a > 0, b > 0 and c ≥ max{0, 1
2ab, a + b− 1, 1

3 (a + b + ab)}.

Then Ha,b,c(f) is starlike univalent.

Remark: Since ak = 1 is not satisfied by any of the conditions given in Theorem
3.2., a result equivalent to Corollary 3.1. cannot be obtained for zF (a, b; c; z). But
when a = 1, then both results, namely Theorem 3.1. and Theorem 3.2. reduces to the
following result, except for the cases, where a < 0.

Corollary 3.2. If b > 0, then Lb,c(f) is starlike univalent if one of the following
conditions is satisfied.

(i) ak+1 ≤ ak,
c ≥ max{0, 2b, b + 2, 1

6 (14b + 11), 1
12 (21b + 19), 1

8 (9b + 18)}.
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(ii) (k + 1)ak+1 ≤ kak, c ≥ max{0, b + 1, 1
4 (5b + 3), 1

2 (3b + 1)}.

(iii) (k + 1)2ak+1 ≤ k2ak , c ≥ b.

(iv) (k + 1)ak+1 ≤ kak and (2k + 1)2a2k+1 ≤ (2k)2a2k , c ≥ b.

(v) (k + 1)2ak+1 ≤ k2ak and (2k + 1)3a2k+1 ≤ (2k)3a2k,
c ≥ max{0, b, 1

3 (2b + 1)}.

The following result is immediate.

Corollary 3.3. If b > 0 and c ≥ max{0, 2b, b+2, 1
6 (14b+11), 1

12 (21b+19), 1
8 (9b+18)},

then the incomplete beta function φ(b, c; z) is starlike univalent. Further, the Carlson-
Shaffer operator Lb,c(g) is univalent for any convex function g ∈ A.

Instead of deducing the conditions for Lb,c from Theorems 3.1. and Theorem 3.2.,
we can apply Theorem 2.2., to get the following results for Lb,c(f).

Theorem 3.3. Lb,c(f) is starlike univalent if b > 0 and one of the following condi-
tions is satisfied

(i) c ≥ max{0, 2b, b + 2, 1
4 (6b + 7), 1

4 (9b + 5)} and ak+1 ≤ ak,∀k ≥ 1.

(ii) c ≥ 1
2 (3b + 1) and (k + 1)ak+1 ≤ kak,∀k ≥ 1.

(iii) c ≥ b and (k + 1)ak+1 ≤ kak, (2k + 1)2a2k+1 ≤ (2k)2a2k.

The following result is similar to Corollary 3.1..

Corollary 3.4. Let b > 0 and c ≥ max{0, 2b, b + 2, 1
4 (6b + 7), 1

4 (9b + 5)}. Then,
the incomplete beta function φ(b, c; z) is starlike univalent. Further, for every convex
function g ∈ A, Lb,c(g) univalent.

We observe that Theorem 3.3. and Corollary 3.4. are stronger than Corollary 3.2.
and Corollary 3.3.. But Corollary 3.2. and Corollary 3.3. covers more range for a, b, c
than Theorem 3.3. and Corollary 3.4..

Now applying Theorem 2.3., we get following results for close-to-convexity of
Ha,b,c(f) with respect to the starlike function z

1−z2 .

Theorem 3.4. Let (a, b, c) and {ak} satisfy one of the following conditions.

1. ak+1 ≤ ak,∀k ≥ 1, together with

(i) a < 0, b < 0 and c ≥ max{0, 2ab, 1
6 (2a + 2b + 2ab + 3), a + b + 1} such that

(a, k)(b, k) ≥ 0, ∀ k ≥ 1, or

(ii) a > 0, b > 0 , c ≥ max{0, 2ab, 1
2 (2a + 2b + 2ab− 1), a + b + 1, 1

6 (6a + 6b +
ab− 2), 1

6 (2a + 2b + 2ab + 3)}.

2. (k + 1)ak+1 ≤ kak, (2k + 1)a2k+1 ≤ (2k − 1)a2k−1,∀k ≥ 1, together with

(i) a < 0, b < 0 and c ≥ ab such that (a, k)(b, k) ≥ 0, ∀ k ≥ 1, or
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(ii) a > 0, b > 0, c ≥ max{0, ab, a + b− 1}.

3. (k + 1)2ak+1 ≤ k2ak , (2k + 1)2a2k+1 ≤ (2k − 1)2a2k−1,∀k ≥ 1, together with

(i) a < 0, b < 0 and c ≥ 1
2ab such that (a, k)(b, k) ≥ 0, ∀k ≥ 1 or

(ii) a > 0, b > 0, c ≥ max{0, 1
2ab, a + b− 2}.

4. (k + 2)ak+1 ≤ kak,∀k ≥ 1, together with

(i) a < 0, b < 0 and c ≥ ab such that (a, k)(b, k) ≥ 0, ∀k ≥ 1, or

(ii) a > 0, b > 0, c ≥ max{0, ab, a + b− 1, 1
2 (2a + 2b + ab− 3)}.

Then, Ha,b,c(f)(z) is close-to-convex w.r.t z
1−z2 .

Proof. We prove the result for part 1 and the results for other cases can be obtained
similarly. For proving part 1, we need to check that bk given in equation (3.5) satisfy
the requirements of Theorem 2.3.. Now writing

(k + 1)bk+1 − kbk =
(a, k − 1)(b, k − 1)

(c, k)(1, k)
X(k)

with X(k) as in (3.6), we get that

X(k) ≤ [(a + k − 1)(b + k − 1)− k(c + k − 1)] (k + 1)ak+1

≤ [ab− c](k + 1)ak+1 ≤ 0,

using the hypothesis of the Theorem. This proves first inequality in (2.2). It remains
to prove the other inequality in (2.2). From equation (3.4), we have

(2k + 1)b2k − (2k − 1)b2k−1 =
(a, 2k − 2)(b, 2k − 2)
(c, 2k − 1)(1, 2k − 1)

Z(k), (3.7)

where,

Z(k) = (a + 2k − 2)(b + 2k − 2)(2k + 1)a2k − (2k − 1)2(c + 2k − 2)a2k−1

≤ [4(a + b + 1− c)k2 − 2(a + b− ab− 2c + 5)k
+(6− 2(a + b) + ab− c)]a2k

≤ [2a + 2b + 2ab− 6c + 3]a2k ≤ 0,

using the hypothesis of the Theorem and the proof is complete.
The following result can be obtained by applying ak = 1, in first part of the

hypothesis of Theorem 3.4.. Note that ak = 1 can not be applied to the other case of
Theorem 3.4..

Corollary 3.5. Let (a, b, c) satisfies any one of the following conditions:

(i) a < 0, b < 0 and c ≥ max{0, 2ab, 1
6 (2a + 2b + 2ab + 3), a + b + 1} such that

(a, k)(b, k) ≥ 0, ∀k ≥ 1.
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(ii) a > 0, b > 0 , c ≥ max{0, 2ab, 1
2 (2a + 2b + 2ab− 1), a + b + 1, 1

6 (6a + 6b + ab−
2), 1

6 (2a + 2b + 2ab + 3)}.

Then, zF (a, b; c; z) is close-to convex w.r.t z
1−z2 .

Corollary 3.6. Under the hypothesis of Corollary 3.5., Ha,b,c(f)(z) is univalent for
every convex function f .

Remark: In particular, taking a = 1 in Theorem 3.4., we have the close-to-convexity
of Lb,c(f) w.r.t z

1−z2 , except for the conditions given in the Theorem with a < 0. We
omit details of this result. But applying Theorem 2.3. on the coefficients of Lb,c(f),
with ak = 1, we get the following result immediately.

Corollary 3.7. Let c ≥
{

b + 2, if 0 < b ≤ 1,
3b, if b ≥ 1.

Then, the incomplete beta function φ(b, c; z) is univalent.
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1. Introduction

The boundary behavior of an analytic function in D = {z : |z| < 1} is one of the
fundamental subjects in the theory of analytic functions. One of the most important
results in this direction is the following, known as Fatou’s Theorem [3].

Theorem 1. Let f ∈ H∞. There exists a unique function f∗ ∈ L∞(∂D), which is
defined almost everywhere as

f∗(eiθ) = lim
r→1

∣∣f(reiθ)
∣∣ (1)

Additionally, if for θ0 ∈ ∂D the limit in (1) exists, then f(z) → f∗(eiθ0) when z → eiθ0

in a Stolz angle.

The limit in (1) is called radial limit of f in eiθ and because of Fatou’s Theorem,
we call it also a not tangential limit. [4]

For a Blaschke product (see in [1])

B(z) = B(z, {zn}) =
∞∏

n=1

|zn|
zn

zn − z

1− znz
, z ∈ D
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we know that |B(z)| < 1 for z ∈ D and B(eiθ) = 1 a.e.
Since limr→1

∣∣B(reiθ)
∣∣ < 1 a.e., the study of the boundary behavior of a Blaschke

product concerns the zero-measure set where the radial limit does not exist ([2]).
In general we have

0 ≤ lim inf
r→1

∣∣B(reiθ)
∣∣ ≤ lim sup

r→1

∣∣B(reiθ)
∣∣ ≤ 1. (2)

Let us define

C(w , {zn}) =
∞∑

n=1

(1− |w |)(1− | zn |)
(1− |w |)2 + |w − zn | 2

. (3)

Using the definition of C, Tanaka in [5] proved some results, to determine when
we have equalities or proper inequalities in the condition (2).

Let Γ be a Jordan curve ending in ∂D.

Theorem 2.
limw→1, w∈Γ B(w) = 0 if and only if limw→1, w∈Γ C(w, {zn}) = ∞ .

Theorem 3. lim supw→1, w∈Γ C(w, {zn}) = ∞ if and only if for every R > 0 , there
is a sequence {wn} ⊂ Γ with wn → 1 , such that limw→1 B(w) = 0 when w belongs
to the set ∪n∈NΓn(R) , where

Γn(R) = Γ ∩ {z ∈ D / ρ(z, wn) ≤ R} , n ∈ N .

The above theorems are still valid if we substitute 1 with any point eiθ0 ∈ ∂D.
But in this case, without loose of generality we will assume that θ0 = 0.

2. Main result

To formulate our results we need the notion of the asymptotically polynomial se-
quences. So, we give the following definition.

Definition. Let {αn} be a sequence with αn > 0, αn ≥ αn+1, n ∈ N and lim
n→∞

αn =

0 . We call {αn} asymptotically polynomial if for every k ∈ N there is an infinite
sequence {np} ⊂ N depending on k and such that anp

anp+k
→ 1 as p →∞.

If this condition is not satisfied, we say that {αn} is asymptotically exponential
.

In most cases it is relatively easy to see if a sequence {αn} is asymptotically polynomial
or not. In a plausible way we would say that {αn} is asymptotically polynomial if it
contains families of arbitrarily many asymptotically equal terms.

Our main theorem is

Theorem A. Let {zn} ⊂ D be a Blaschke sequence. We suppose also that all zn

lie in an angular domain in D with vertex on ∂D, i.e. that there exist a ζ ∈ ∂D and
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a positive constant M so that |ζ−zn|
1−|zn| < M for all n (i.e. the zeros are inside a Stolz

angle). Let αn = 1− | zn | n ∈ N .
The sequence {αn} is asymptotically polynomial, if and only if, for every R > 0

there exists a real number sequence {rn}, rn ∈ (0, 1), with limn→∞ rn = 1, such
that limr→1 B(r) = 0 when r is inside the set ∪n∈NΓn(R), where

Γn(R) = {x ∈ R / ρ(x, rn) ≤ R} n ∈ N .

Finally, we give a counterexample for which Theorem 2 is not valid. i.e. a spe-
cific Blaschke sequence for which we have lim supw→1, w∈Γ C(w, {zn}) = ∞ but not
limw→1, w∈Γ C(w, {zn}) = ∞ .

Proof.

We prove first an auxiliary lemma.

Lemma. Let {αn} be a sequence with αn > 0, αn ≥ αn+1 and lim
n→∞

αn = 0. Then

the sequences cn = αn

n∑
k=1

1
αk

and dn =
1

αn

∞∑
k=n+1

αk, n ∈ N , are both bounded if

and only if {αn} is asymptotically exponential .

Proof. ’⇒’ : Let {αn} be a positive and decreasing sequence and let

cn = αn

n∑
k=1

1
αk

< M < ∞ ∀ n ∈ N. (4)

Suppose that {αn} is asymptotically polynomial and let k > 2M . Then we can find
an infinite sequence {nm} such that αnm

αnm+k
→ 1 as m →∞. It is very easy to see that

for k succesive terms αnm , αnm+1, . . . , αnm+k−1 we have αnm+l

αnm+l+1
→ 1 as m →∞ for

every l = 0, 1, . . . , k − 1. For brevity we write m instead of nm.
By induction we calculate easily that

cm+k−1 =
αm+k−1

αm
cm +

k−2∑
i=0

αm+k−1

αm+k−1−i
, (5)

so

cm+k−1 >
k−1∑
i=1

αm+k−1

αm+i
. (6)

From limm→∞
αm+k−1

αm+i
= 1 for every i = 1, 2, ..., k − 1 , it follows that

lim
m→∞

k−1∑
i=1

αm+k−1

αm+i
> 2M,
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which implies, by (6), that cm+k−1 > 2M for sufficiently large m. This stays in
contradiction to (4).

The proof for the sequence {dn} is completely analogous , using instead of (5) the
recursive relation

dn−k =
αn

αn−k
dn +

k−1∑
i=0

αn−i

αn−k
.

’⇐’ : Assume that the sequence {αn} is asymptotically exponential. By definition
this means that the families of asymptotically equal terms contain at most k0 terms
, where k0 ∈ N . This implies that there exists infinite subsequence {ni} ⊂ N and
λ > 1 such that ∀ i ∈ N

ani

ani+1
≥ λ > 1 and ni+1−ni ≤ k0, otherwise it would exists

a family of more than k0 asymptotically equal terms.
Now, let n ∈ N . Then there exist i ∈ N such that ni ≤ n < ni+1 or ani ≥ αn >

αni+1 . We have

cn = αn

n∑
k=1

1
αk

= αn

n∑
k=ni+1

1
αk

+ αn

ni∑
k=1

1
αk

= αn

n∑
k=ni+1

1
αk

+ αn

i−1∑
j=0

nj+1∑
k=nj+1

1
αk

≤

≤ αn

n∑
k=ni+1

1
αn

+ αni

i−1∑
j=0

nj+1∑
k=nj+1

1
αnj

= n− ni + αni

i−1∑
j=0

1
αnj

(nj+1 − nj) ≤

k0 + k0αni

i−1∑
j=0

1
αnj

= k0 + k0

i−1∑
j=0

αni

αnj

≤ k0 + k0

i−1∑
j=0

1
λi−j

=

= k0 + k0

i∑
j=1

1
λj
≤ k0

∞∑
j=0

1
λj

=
k0λ

λ− 1
< ∞.

Again , the proof for the sequence {dn} is completely analogous , using instead of
the equality

cn = αn

n∑
k=1

1
αk

= αn

n∑
k=ni+1

1
αk

+ αn

i−1∑
j=0

nj+1∑
k=nj+1

1
αk

,

the equality

dn =
1

αn

∞∑
k=n+1

αk =
1

αn

ni+1−1∑
k=n+1

αk +
1

αn

∞∑
k=i+1

nk+1∑
j=nk

αj .

Proof of the Theorem
′′ ⇒′′ Let {zn} be a Blaschke sequence inside a Stolz angle and let {αn} be
asymptotically polynomial. According to the Theorem 3 it is enough to show that

lim sup
r→1

C(r, {zn}) = ∞ . (7)



Geometric result in the boundary behaviour of Blaschke products 95

We can easily see

1 − r ≤ 1 − r | zn | ≤ | 1 − rzn | (8)

and additionally

| zn − r | = | (1− r zn) + (r zn − r + zn − 1) | ≤

≤ | 1− r zn |+ | (1 + r) (1− zn) | ≤ | 1− r zn |+ 2 | 1− zn | =

= | 1− r zn |+ 2 | (1− r zn) + zn(r − 1) | ≤ 5 | 1− r zn | ≤ 5M ( 1− r |zn|) (9)

The last inequality holds from Theorem hypothesis, that all zn lie on an angular
domain.

From (3), (8), (9) we have

C(r, {zn}) ≥ c
∞∑

n=1

(1− r)(1− |zn|)
(1− r |zn|)2

so, from (9) it suffices to show that

lim sup
r→1

∞∑
n=1

(1− r)(1− |zn|)
(1− r |zn|)2

= ∞. (10)

For m ∈ N we set now rm = 1
1+am

. It gives us

lim sup
r→1

∞∑
n=1

(1− r)(1− |zn|)
(1− r |zn|)2

≥ lim sup
m→∞

∞∑
n=1

(1− rm)(1− |zn|)
(1− rm |zn|)2

=

= lim sup
m→∞

∞∑
n=1

αmαn(1 + αm)
(αm + αn)2

(11)

and since
∞∑

n=1

αmαn(1 + αm)
(αm + αn)2

>
∞∑

n=1

αmαn

(αm + αn)2
> αm

m∑
n=1

1
αn

1
(αm

αn
+ 1)2

>
1
4
αm

m∑
k=1

1
αk

=
cm

4
.

(10) follows immediately from (11) and our Lemma.
′′ ⇐′′ From the Theorem 3 we get that

sup
r∈(0,1)

C( r , {zn} ) = ∞ . (12)

Let us define δ = 1− r. There exists a unique m ∈ N such that αm ≥ δ > αm+1 .
Then we have

C(r, {zn}) =
∞∑

n=1

(1− r)(1− |zn|)
(1− r)2 + |r − zn|2

≤
∞∑

n=1

(1− r)(1− |zn|)
(1− r)2 + (r − |zn|)2

=
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=
∞∑

n=1

δαn

δ2 + (αn − δ)2
=

m∑
n=1

δαn

δ2 + (αn − δ)2
+

∞∑
n=m+1

δαn

δ2 + (αn − δ)2
≤

≤ αm

m∑
n=1

1
αn + 2αm+1(

αm+1
αn

− 1)
+

1
αm+1

∞∑
n=m+1

αn

1 + (αn

δ − 1)2
≤

≤ 2αm

m∑
n=1

1
αn

+
1

αm+1

∞∑
n=m+1

αn = 2cm + dm+1 + 1 , (13)

where the sequences {cn} and {dn} are defined in Lemma. Inequality (13) and
condition (12), show that at least one of {cn} and {dn} are not bounded. From
our Lemma follows that {αn} is asymptotically polynomial.

Counterexample

In the proof of Theorem A we show that if {αn} = 1 − |zn| is an asymptotically
polynomial sequence where {zn} is lying inside a Stolz angle then

lim sup
r→1

C(r, {zn}) = ∞ (14)

Since Theorem 2 gives much better description for the specific boundary behavior,
it is natural to ask the question if (14) can be reduced, at least for the specific cases
of Theorem A, to

lim
r→1

C(r, {zn}) = ∞

With the following counterexample we show that it is impossible.

Let ρn = n (n+1)
2 n ∈ N , and αn = 1

k! when ρk−1 < n ≤ ρk. The sequence of
zeros zn = 1− αn is a Blashke sequence:

∞∑
n=1

αn =
∞∑

i=1

ρi∑
n=ρi−1+1

1
i!

=
∞∑

i=1

ρi − ρi−1

i!
=

∞∑
i=1

1
(i− 1)!

< ∞ .

The number of succesive terms of the sequence {αn} taking the same value is
arbitrary large. Then we conclude that {αn} is asymptotically polynomial and from
Lemma we obtain that {cn} is not bounded. We have:

cρn+1 = αρn+1

ρn+1∑
k=1

1
αk

= 1 +
1

(n + 1)!

ρn∑
ρ0+1

1
αk

=

= 1 +
1

(n + 1)!

n∑
i=1

ρi∑
k=ρi−1+1

1
αk

= 1 +
1

(n + 1)!

n∑
i=1

i! i =

= 2 − 1
(n + 1)!

→ 2 when n → ∞

Consequently, lim inf
n→∞

cn < ∞ . And from (13) we get that

lim inf
r→1

C(r, {zn}) < ∞
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1. Introduction and preliminaries

Let U denote the unit disc of the complex plane:

U = {z ∈ C : |z| < 1}

and
U = {z ∈ C : |z| ≤ 1}.

Let H denote the class of analytic functions defined on the open unit disk U .
Let H(U) denote the space of holomorphic functions in U and let

An = {f ∈ H(U), f(z) = z + an+1z
n+1 + . . . , z ∈ U}

with A1 = A.
Let

H[a, n] = {f ∈ H(U), f(z) = a+ anz
n + an+1z

n+1 + . . . , z ∈ U},

S = {f ∈ A; f is univalent in U}.



100 Georgia Irina Oros, Gheorghe Oros

Let

K =
{
f ∈ A, Re

zf ′′(z)
f ′(z)

+ 1 > 0, z ∈ U
}
,

denote the class of normalized convex function in U

S∗ =
{
f ∈ A : Re

zf ′(z)
f(z)

> 0, z ∈ U
}

denote the class of starlike functions in U , and

Mα =
{
f ∈ A : Re

[
(1− α)

zf ′(z)
f(z)

+ α

(
zf ′′(z)
f ′(z)

+ 1
)]

> 0
}
, z ∈ U

denote the class of α-convex (Mocanu functions), with α real.
If f and g are analytic functions in U , then we say that f is subordinate to g,

written f ≺ g, if there is a function w analytic in U , with w(0) = 0, |w(z)| < 1, for
all z ∈ U such that f(z) = g[w(z)], for z ∈ U .

If g is univalent, then f ≺ g if and only if f(0) = g(0) and f(U) ⊂ g(U).
The method of differential subordinations (also known as the admissible functions

method) was introduced by P.T. Mocanu and S.S. Miller in 1978 [2] and 1981 [3] and
developed in [4].

Let Ω and ∆ be any sets in C and let p be an analytic function in the unit disk with
p(0) = a and let ψ : C3 ×U → C. The heart of this theory deals with generalizations
of the following implication:

(i) {ψ(p(z), zp′(z), z2p′′(z); z) | z ∈ U} ⊂ Ω implies p(U) ⊂ ∆.

Definition 1. [4, p.16] Let ψ : C3 × U → C and let h be univalent in U . If p is
analytic in U and satisfies the (second-order) differential subordination

(ii) ψ(p(z), zp′(z), z2p′′(z); z) ≺ h(z), z ∈ U ,
then p is called a solution of the differential subordination. The univalent function q
is called a dominant of the solutions of the differential subordination, or more simply
a dominant, if p ≺ q for all p satisfying (ii). A dominant q̃ that satisfies q̃ ≺ q for
all dominants q of (ii) is said to be the best dominant of (ii). (Note that the best
dominant is unique up to a rotation of U).

In [5] the authors introduce the dual problem of the differential subordination
which they call differential superordination.

Definition 2. [5] Let f, F ∈ H(U) and let F be univalent in U . The function F is
said to be superordinate to f , or f is subordinate to F , written f ≺ F , if f(0) = F (0)
and f(U) ⊂ F (U).

Let Ω and ∆ be any sets in C and let p be an analytic function in the unit disk and
function ϕ(r, s, t; z) : C3×U → C. The heart of this theory deals with generalizations
of the following implication:

(iii) Ω ⊂ {ϕ(p(z), zp′(z), z2p′′(z); z) | z ∈ U} implies ∆ ⊂ p(U).

Definition 3. [5] Let ϕ : C3 × U → C and let h be analytic in U . If p and
ϕ(p(z), zp′(z), z2p′′(z); z) are univalent in U and satisfy the (second-order) differential
superordination
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(iv) h(z) ≺ ϕ(p(z), zp′(z), z2p′′(z); z)
then p is called a solution of the differential superordination. An analytic function
q is called a subordinant of the solutions of the differential superordination, or more
simply a subordinant if q ≺ p for all p satisfying (iv). A univalent subordinant q̃ that
satisfies q ≺ q̃ for all subordinants q of (iv) is said to be the best subordinant. (Note
that the best subordinant is unique up to a rotation of U).

Definition 4. [4, Definition 2.2b. p. 21] We denote by Q the set of functions f that
are analytic and injective on U \ E(f), where

E(f) =
{
ζ ∈ ∂U ; lim

z→ζ
f(z) = ∞

}
and are such that f ′(ζ) 6= 0 for ζ ∈ ∂U \ E(f).

The subclass of Q for which f(0) = a is denoted by Q(a).
In order to prove the new results we shall use the following lemmas:

Lemma A. [4, Theorem 3.4h, pp. 132] Let q be univalent in U and let θ and φ be
analytic in a domain D containing q(U), with φ(w) 6= 0, when w ∈ q(U). Set

Q(z) := zq′(z)φ[q(z)], h(z) := θ[q(z)] +Q(z)

and suppose that either
(j) h is convex, or
(jj) Q is starlike.
In addition, assume that

(jjj) Re
zh′(z)
Q(z)

= Re
[
θ′[q(z)]
φ[q(z)]

+
zQ′(z)
Q(z)

]
> 0.

If p is analytic in U , with p(0) = q(0), p(U) ⊂ D and

θ[p(z)] + zp′(z)φ[p(z)] ≺ θ[q(z)] + zq′(z)φ[q(z)] = h(z)

then p ≺ q, and q is the best dominant.

Lemma B. [6, Th.3] Let q be univalent in U , with q(0) = a and θ and ϕ be analytic
in a domain D containing q(U). Define

Q(z) = zq′(z)ϕ[q(z)], h(z) = θ[q(z)] +Q(z).

Suppose that:

(i) Re
[
θ′[q(z)]
ϕ[q(z)]

]
> 0 and

(ii) Q is starlike univalent in U .
If p ∈ H[a, 1] ∩ Q, with p(U) ⊂ D, and θ[p(z)] + zp′(z)ϕ[p(z)] is univalent in U ,

then
θ[q(z)] + zq′(z)ϕ[q(z)] ≺ θ[p(z)] + zp′(z)ϕ[p(z)]

implies q(z) ≺ p(z) and q(z) is the best subordinant.
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In the paper [1] was defined the Dziok-Srivastava operator:

H l
m(α1, α2, . . . , αl;β1, β2, . . . , βm)f(z) (1)

= z +
∞∑

n=2

(α1)n−1(α2)n−1 . . . (αl)n−1

(β1)n−1(β2)n−1 . . . (βl)n−1
· an ·

zn

(n− 1)!

For simplicity, we write

H l
m[α1]f(z) = H l

m(α1, α2, . . . , αl;β1, β2, . . . , βm)f(z).

For this operator we have the property

α1H
l
m[α1 + 1]f(z) = z{H l

m[α1]f(z)}′ + (α1 − 1)H l
m[α1]f(z) (2)

2. Main results

Theorem 1. Let 0 ≤ λ ≤ 1, l,m ∈ N0 = {0, 1, 2, . . . }, l ≤ m + 1, αi ∈ C,

i = 1, 2, . . . , l, βj ∈ C \ {0,−1,−2,−3, . . . }, j = 1, 2, . . . ,m, γ ∈ C∗, with Re
1
γ
> 0,

f ∈ A and H l
m[α1]f(z) the Dziok-Srivastava linear operator given by (1).

We let
F (λ, l,m, γ, α1; z) = (3)

(1− λ)

[
1− 1

α1
+
γ + 1
α1

z
[H l

m[α1]f(z)]′

H l
m[α1]f(z)

+
γ

α1
z2

(
[H l

m[α1]f(z)]′

H l
m[α1]f(z)

)′]

+λ

[
1 +

γ + 1
α1

z
[H l

m[α1]f(z)]′′

[H l
m[α1]f(z)]′

+
γ

α1
z2

(
[H l

m[α1]f(z)]′′

[H l
m[α1]f(z)]′

)′]
and

h(z) =
1− z

1 + z
− 2γz

(1 + z)2
, z ∈ U. (4)

If f ∈ A, α1 > 0,
H l

m[α1]f(z)
z

6= 0 in U , and the differential subordination

F (λ, l,m, γ, α1; z) ≺ h(z), (5)

holds, where F (λ, l,m, γ, α1; z) is given by (3), and h is given by (4), then

(1− λ)
H l

m[α1 + 1]f(z)
H l

m[α1]f(z)
+ λ

[H l
m[α1 + 1]f(z)]′

[H l
m[α1]f(z)]′

≺ q(z) =
1− z

1 + z
,

and g is the best dominant.

Proof. Let

p(z) = (1− λ)
H l

m[α1 + 1]f(z)
H l

m[α1]f(z)
+ λ

[H l
m[α1 + 1]f(z)]′

[H l
m[α1]f(z)]′

, z ∈ U. (6)
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Using (1) in (6), we obtain

p(z) = 1 + p1z + p2z
2 + . . . , p(0) = 1, p ∈ H[1, 1].

Differentiating (6), we have

γzp′(z) = γ(1− λ)z
(
H l

m[α1 + 1]f(z)
H l

m[α1]f(z)

)′
+ γλz

(
[H l

m[α1 + 1]f(z)]′

[H l
m[α1]f(z)]′

)′
. (7)

From (6) and (7) and using the property (2), we obtain

p(z) + γzp′(z) = F (λ, l,m, γ, α1; z) (8)

where F is given by (3).
Using (8), the differential subordination (5) becomes

p(z) + γzp′(z) ≺ h(z), z ∈ U, (9)

where h is given by (4).
In order to prove the theorem, we use Lemma A. For that let

q(z) =
1− z

1 + z
, q(0) = 1, q(U) = {w ∈ C : Re w ≥ 0}.

Define the functions

θ : D ⊃ q(U) → C, θ(w) = w,

and
φ : D ⊃ q(U) → C, φ(w) = γ ∈ C∗, Re

1
γ
≥ 0.

We calculate:
Q(z) = zq′(z) · φ[q(z)] =

−2γz
(1 + z)2

,

and we have

Re
zQ′(z)
Q(z)

= Re
1− z

1 + z
≥ 0, z ∈ U, i.e. Q ∈ S∗.

Also,

h(z) = θ[q(z)] +Q(z) = q(z) + γzq′(z) =
1− z

1 + z
− 2γz

(1 + z)2
,

and we have

Re
zh′(z)
Q(z)

= Re
1
γ

+ Re
zQ′(z)
Q(z)

> 0, z ∈ U.

Using Lemma A, we obtain
p(z) ≺ q(z),
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i.e.

(1− λ)
H l

m[α1 + 1]f(z)
H l

m[α1]f(z)
+ λ

[H l
m[α1 + 1]f(z)]′

[H l
m[α1]f(z)]′

≺ 1− z

1 + z
= q(z), z ∈ U,

and q is the best dominant.

Remark 1. For 0 ≤ λ ≤ 1, γ ∈ C∗, Re
1
γ
≥ 0, l = 1, m = 0, α1 = 1 we have

H1
0 [1]f(z) = f(z), H1

0 [2]f(z) = zf ′(z)

and Theorem 1 can be rewritten as the following

Corollary 1. If f ∈ A, with
f(z)
z

6= 0, z ∈ U , and the differential subordination

(1− λ)

{
(1 + γ)

zf ′(z)
f(z)

+ γ
z2f ′′(z)
f(z)

− γ

(
zf ′(z)
f(z)

)2
}

+λ

{
1 + (1 + γ)

zf ′′(z)
f ′(z)

+ γ
z2f ′′′(z)
f ′(z)

− γ

(
zf ′′(z)
f ′(z)

)2
}

≺ h(z) =
1− z

1 + z
− 2γz

(1 + z)2
,

holds, then

Re
{

(1− λ)
zf ′(z)
f(z)

+ λ

(
1 +

zf ′′(z)
f ′(z)

)}
> 0, z ∈ U,

i.e. f ∈Mλ (class of Mocanu functions).

Remark 2. For l = 1, m = 0, α1 = 1, λ = 0, γ ∈ C∗, Re
1
γ
> 0, from Theorem 1 we

get the following corollary:

Corollary 2. Let f ∈ A, be so that
f(z)
z

6= 0, z ∈ U and let the following differential
subordination

(1 + γ)
zf ′(z)
f(z)

+ γ
z2f ′′(z)
f(z)

− γ

(
zf ′(z)
f(z)

)2

≺ h(z) =
1− z

1 + z
− 2γz

(1 + z)2
.

Then

Re
zf ′(z)
f(z)

> 0, z ∈ U, i.e. f ∈ S∗.

Remark 3. For l = 1, m = 0, α1 = 1, λ = 1, γ ∈ C∗, Re
1
γ
≥ 0, from Theorem 1 we

get the following corollary:
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Corollary 3. Let f ∈ A, be so that
f(z)
z

6= 0, z ∈ U and let the following differential
subordination

1 + (1 + γ)
zf ′′(z)
f ′(z)

+ γ
z2f ′′′(z)
f ′(z)

− γ

(
zf ′′(z)
f ′(z)

)2

≺ h(z) =
1− z

1 + z
− 2γz

(1 + z)2
.

Then

Re
(

1 +
zf ′′(z)
f ′(z)

)
≥ 0, z ∈ U, i.e. f ∈ K.

Theorem 2. Let 0 ≤ λ ≤ 1, 0 ≤ α < 1, l,m ∈ N0 = {0, 1, 2, . . . }, l ≤ m+ 1, αi ∈ C,

i = 1, 2, 3, . . . , l, βj ∈ C \ {0,−1,−2, . . . }, j = 1, 2, . . . ,m, γ ∈ C∗, Re
1
γ
≥ 0, and

H l
m[α1]f(z) the Dziok-Srivastava linear operator given by (1).

If f ∈ A,
H l

m[α1]f(z)
z

6= 0, z ∈ U , the function F (λ, γ,m, l, α1; z) given by (3) is
univalent in U , then

h(z) =
1 + (1− 2α)z

1− z
+

2(1− α)γz
(1− z)2

≺ F (λ, γ,m, l, α1; z) (10)

implies

q(z) =
1 + (1− 2α)z

1− z
≺ p(z), z ∈ U,

where p is given by (6).
The function q is the best dominant.

Proof. Let

q(z) =
1 + (1− 2α)z

1− z
,

then

h(z) = q(z) + γzq′(z) =
1 + (1− 2α)z

1− z
+

2(1− α)γz
(1− z)2

, z ∈ U.

Using (8), (10) becomes

q(z) + γzq′(z) ≺ p(z) + γzp′(z), z ∈ U,

where p is given by (6), and p(0) = 1, p ∈ H[1, 1] ∩Q.
Using Lemma B, we have

q(z) ≺ p(z),

i.e.

1 + (1− 2α)2

1− z
≺ (1− λ)

H l
m[α1 + 1]f(z)
H l

m[α1]f(z)
+ λ

[H l
m[α1 + 1]f(z)]′

[H l
m[α1]f(z)]′

, z ∈ U,

and q is the best dominant.
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Using the conditions from Theorem 1 and Theorem 2, we obtain the following
sandwich-type result:

Corollary 4. If f ∈ A and
H l

m[α1]f(z)
z

6= 0, then

1 + (1− 2α)z
1− z

+
2(1− α)γz
(1− z)2

≺ F (λ, γ,m, l, α1; z) ≺
1− z

1 + z
− 2γz

(1 + z)2

implies

1 + (1− 2α)z
1− z

≺ p(z) ≺ 1− z

1 + z
, z ∈ U, γ ∈ C∗, Re

1
γ
≥ 0,

where F is given by (3) and p is given by (6).
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1. Introduction and preliminaries

Denote by U the unit disc of the complex plane :

U = {z ∈ C : |z| < 1}.

Let H(U) be the space of holomorphic functions in U .
Let

An = {f ∈ H(U), f(z) = z + an+1z
n+1 + . . . , z ∈ U}

with A1 = A.
For a ∈ C and n ∈ N, let

H[a, n] = {f ∈ H(U), f(z) = a+ anz
n + an+1z

n+1 + . . . , z ∈ U}.

Let

K =
{
f ∈ A, Re

zf ′′(z)
f ′(z)

+ 1 > 0, z ∈ U
}
,
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denote the class of convex functions in U .
A function f , analytic in U , is said to be convex if it is univalent and f(U) is

convex.
If f and g are analytic functions in U , then we say that f is subordinate to g,

written f ≺ g, if there is a function w analytic in U , with ω(0) = 0, |ω(z)| < 1, for
all z ∈ U such that f(z) = g[ω(z)] for z ∈ U . If g is univalent, then f ≺ g if and only
if f(0) = g(0) and f(U) ⊆ g(U).

Let ψ : C3×U → C and let h be univalent in U . If p is analytic in U and satisfies
the (second-order) differential subordination

(i) ψ(p(z), zp′(z), z2p′′(z); z) ≺ h(z), z ∈ U

then p is called a solution of the differential subordination.
The univalent function q is called a dominant of the solution of the differential

subordination, or more simply a dominant, if p ≺ q for all p satisfying (i).
A dominant q̃ that satisfies q̃ ≺ q for all dominants q of (i) is said to be the best

dominant of (i). (Note that the best dominant is unique up to a rotation of U).
In order to prove the original results we use the following lemmas:

Lemma A. [1, Lemma 1.4] Let q be convex function in U with
q(0) = 1 and let Re c > 0. Let

h(z) = q(z) +
n

c
zq′(z).

If p(z) = 1 + pnz
n + pn+1z

n+1 + . . . is analytic in U and

p(z) +
1
c
zp′(z) ≺ h(z),

then
p(z) ≺ q(z)

and q is the best dominant.
Lemma B. [1, Lema 1.5] Let Re γ > 0 and let

ω =
k2 + |γ|2 − |k2 − γ2|

4kRe γ
.

Let h be an analytic function in U with h(0) = 1 and suppose that

Re
(
zh′′(z)
h′(z)

+ 1
)
> −ω.

If
p(z) = 1 + pkz

k + pk+1z
k+1 + . . .

is analytic in U and

p(z) +
1
γ
zp′(z) ≺ h(z),
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then p(z) ≺ q(z), where q is solution of the differential equation

q(z) +
k

γ
zq′(z) = h(z), q(0) = 1,

given by

q(z) =
γ

kzγ/k

∫ z

0

t
γ
k−1h(t)dt.

Moreover q is the best dominant.
Definition 1. (St. Ruscheweyh [3]) For f ∈ A, n ∈ N∗ ∪ {0}, the operator Dn is
defined by Dn : A → A

D0f(z) = f(z)
D1f(z) = zf ′(z)
. . .
(n+ 1)Dn+1f(z) = z[Dnf(z)]′ + nDnf(z), z ∈ U,

this is Ruscheweyh differential operator.

Remark 1. [2] If f ∈ A, f(z) = z +
∞∑

j=2

ajz
j then

Dnf(z) = z +
∞∑

j=2

Cn+j−1
n ajz

j , z ∈ U.

Definition 2. For h ∈ K and n ∈ N, we let Mn(h) denote the class of functions
f ∈ A which satisfy the inequality:

Re [Dnf(z)]′ ≺ h(z), z ∈ U.

2. Main results

Theorem 1. The set Mn(α) is convex , 0 ≤ α < 1.
Proof. Let the functions

fi(z) = z +
∞∑

k=2

akiz
k, i = 1, 2, z ∈ U

be in the class Mn(α). It is sufficient to show that the function

h(z) = µ1f1(z) + µ2f2(z)

with µ1 and µ2 nonnegative and µ1 + µ2 = 1, is in Mn(α).
Since

h(z) = z +
∞∑

k=2

(µ1ak1 + µ2ak2)zk, z ∈ U



110 Adela Olimpia Tăut

then

(1) Dnh(z) = z +
∞∑

k=2

Cn+k−1
n (µ1ak1 + µ2ak2)zk, z ∈ U.

Differentiating (1), we have

(2) [Dnh(z)]′ = 1 +
∞∑

k=2

kCn+k−1
n (µ1ak1 + µ2ak2)zk−1,

hence

Re [Dnh(z)]′ = Re

[
1 +

∞∑
k=2

kCn+k−1
n (µ1ak1 + µ2ak2)zk−1

]
(3)

= Re

[
1 +

∞∑
k=2

kCn+k−1
n µ1ak1z

k−1 +
∞∑

k=2

kCn+k−1
n µ2ak2z

k−1

]
(4)

= 1 + Re

[
µ1

∞∑
k=2

kCn+k−1
n ak1z

k−1

]
+ Re

[
µ2

∞∑
k=2

kCn+k−1
n ak2z

k−1

]
. (5)

Since f1, f2 ∈Mn(α), we obtain

(4) Re

[
µi

∞∑
k=2

kCn+k−1
n akiz

k−1

]
> µi(α− 1), i = 1, 2.

Using (4) in (3), we obtain

Re [Dnh(z)]′ > 1 + µ1(α− 1) + µ2(α− 1), z ∈ U,

and since µ1 + µ2 = 1, we deduce

Re [Dnh(z)]′ > α

i.e. Mn(α) is convex.
Theorem 2. Let q be a convex function in U , with q(0) = 1, and let

h(z) = q(z) +
1

c+ 2
zq′(z), z ∈ U

where c is a complex number, with Re c > −2.
If f ∈Mn(h) and F = Ic(f), where

(5) F (z) = Ic(f)(z) =
c+ 2
zc+1

∫ z

0

tcf(t)dt, Re c > −2,

then

(6) [Dnf(z)]′ ≺ h(z), z ∈ U,
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implies
[DnF (z)]′ ≺ q(z), z ∈ U,

and this result is sharp.

Proof. From (5), we deduce

(7) zc+1F (z) = (c+ 2)
∫ z

0

tcf(t)dt, Re c > −2, z ∈ U.

Differentiating (7), with respect to z, we obtain

(8) (c+ 1)F (z) + zF ′(z) = (c+ 2)f(z), z ∈ U.

We are studying the property of linearity of Dn operator.
Let

αf(z) + βg(z) = (α+ β)z +
∞∑

j=2

(αaj + βbj)zj , z ∈ U,

applying Dn operator, we have

Dn[αf(z) + βg(z)] = (α+ β)z +
∞∑

j=2

n!
(n+ j − 1)!(j − 1)!

(αaj + βbj)zj ,

and we obtain

Dnαf(z) = αz +
∞∑

j=2

n!
(n+ j − 1)!(j − 1)!

αajz
j = αDnf(z),

Dnβg(z) = βz +
∞∑

j=2

n!
(n+ j − 1)!(j − 1)!

βbjz
j = βDng(z),

hence

(9) Dn[αf(z) + βg(z)] = Dnαf(z) +Dnβg(z) = αDnf(z) + βDng(z), z ∈ U.

We show that
Dn(zF ′(z)) = z[DnF (z)]′, z ∈ U.

Let

F (z) = z +A2z
2 + · · · = z +

∞∑
j=2

Ajz
j .

Differentiating with respect to z, we have

F ′(z) = 1 +
∞∑

j=2

jAjz
j−1,
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and

zF ′(z) = z +
∞∑

j=2

jAjz
j .

Applying Dn differential operator,we obtain

(10) Dn(zF ′(z)) = z +
∞∑

j=2

Cn+j−1
n jAjz

j , z ∈ U.

Using Remark 1, we have

DnF (z) = z +
∞∑

j=2

Cn+j−1
n Ajz

j , z ∈ U.

Differentiating with respect to z, we have

[DnF (z)]′ = 1 +
∞∑

j=2

jCn+j−1
n Ajz

j−1,

and we obtain

(11) z[DnF (z)]′ = z +
∞∑

j=2

jCn+j−1
n Ajz

j , z ∈ U.

From (10) and (11) , we obtain

(12) Dn(zF ′(z)) = z[DnF (z)]′, z ∈ U.

Using Dn differential operator and properties (9),(10),(11),(12) in (8)we deduce

(13) (c+ 1)DnF (z) + z[DnF (z)]′ = (c+ 2)Dnf(z), z ∈ U.

Differentiating (13), we have

(14) [DnF (z)]′ +
z

c+ 2
[DnF (z)]′′ = [Dnf(z)]′, z ∈ U.

Using (14), the differential subordination (6) becomes

(15) [DnF (z)]′ +
1

c+ 2
z[DnF (z)]′′ ≺ h(z) = q(z) +

1
c+ 2

zq′(z).

Let

(16) p(z) = [DnF (z)]′ =

z +
∞∑

j=2

Cn+j−1
n bkz

k

′
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= 1 + p1z + p2z
2 + . . . , p ∈ H[1, 1].

Using (16) in (15), we have

(17) p(z) +
1

c+ 2
zp′(z) ≺ h(z) = q(z) +

1
c+ 2

zq′(z), z ∈ U.

Using Lemma A, we obtain p(z) ≺ q(z), i.e.

[DnF (z)]′ ≺ q(z), z ∈ U,

and q is the best dominant.

Example 1. If we let c = 1 + i and q(z) =
1

1− z
, then

h(z) =
3 + i− z(2 + i)
(3 + i)(1− z)2

and from Theorem 2,we deduce that if f ∈Mn(h) and F is given by

(18) F (z) =
3 + i

z2+i

∫ z

0

t1+if(t)dt

then

[Dnf(z)]′ ≺ 3 + i− z(2 + i)
(3 + i)(1− z)2

, z ∈ U,

implies

[DnF (z)]′ ≺ 1
1− z

, z ∈ U,

where F is given by (18).
Theorem 3. Let Re c > −2 and let

(19) ω =
1 + |c+ 2|2 − |c2 + 4c+ 3|

4 · Re (c+ 2)

Let h be an analytic function in U , with h(0) = 1 and suppose that

Re
zh′′(z)
h′(z)

+ 1 > −ω.

If f ∈Mn(h) and F = Ic(f), where F is defined by (5), then

(20) [Dnf(z)]′ ≺ h(z), z ∈ U,

implies
[DnF (z)]′ ≺ q(z), z ∈ U,

where q is the solution of the differential equation

q(z) +
1

c+ 2
zq′(z) = h(z), h(0) = 1,
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given by

q(z) =
c+ 2
zc+2

∫ z

0

tc+1h(t)dt, z ∈ U.

Moreover q is the best dominant.
Proof. In order to prove Theorem 3 we will use Lemma B. The value of ω is given
by (19). From (17) we have

p(z) = [DnF (z)]′ = 1 + p1z + p2z
2 + · · · , p ∈ H[1, 1] (z ∈ U).

Using Lemma B, we deduce k = 1. Using (15) and (17), the differential subordination
(16) becomes

(21) p(z) +
1

c+ 2
zp′(z) ≺ h(z) = q(z) +

1
c+ 2

zq′(z), z ∈ U.

From the subordination (21), by using Lemma B, we deduce r = c+ 2 and

p(z) ≺ q(z), z ∈ U,

where
q(z) =

c+ 2
zc+2

∫ z

0

tc+1h(t)dt, z ∈ U,

i.e.

(22) [DnF (z)]′ ≺ q(z) =
c+ 2
zc+2

∫ z

0

tc+1h(t)dt, z ∈ U.

Moreover q is the best dominant.
Remark 2. If we put

h(z) =
1 + (2α− 1)z

1 + z

in Theorem 3, we obtain the following interesting result:
Corollary 1. If 0 ≤ α < 1, n ∈ N, Re c > −2 and Ic is defined by (5), then

Ic[Mn(α)] ⊂Mn(δ),

where
δ = min

|z|=1
Re q(z) = δ(c, α, z)

and this results is sharp. Moreover

(23) δ = δ(c, α, z) = 2α− 1 + (c+ 2)(2− 2α)σ(c, z)

where

(24) σ(c, z) =
∫ z

0

tc+1

1 + t
dt.
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Proof. If we let

h(z) =
1 + (2α− 1)z

1 + z
,

then h is convex. By using Theorem 3,

[DnF (z)]′ ≺ h(z)

implies

p(z) = [DnF (z)]′ ≺ q(z) =
c+ 2
zc+2

∫ z

0

tc+1 · 1 + (2α− 1)t
1 + t

dt (25)

= 2α− 1 +
(c+ 2)(2− 2α)

zc+2

∫ z

0

tc+1

1 + t
dt

= 2α− 1 +
(c+ 2)(2− 2α)

zc+2
σ(c, z)

where σ is given by (24).
If Re c > −2, then from the convexity of q and the fact that q(U) is symmetric

with respect to the real axis, we deduce

Re [DnF (z)]′ ≥ min
|z|=1

Re q(z) = Re q(1) = δ(c, α, z)

= 2α− 1 + (c+ 2)(2− 2α)σ(c, 1)

where σ is given by (24).
From (25), we deduce Ic[Mn(h)] ⊂Mn(δ), where δ is given by (23).
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