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ABSTRACT: In the present paper, we make generalization of the classes
in [7] of Salagean-Type multivalent harmonic functions. We introduce suf-
ficient coefficient condition for the class H;(n; A, 8,m) and this condition
be also necessary if certain restriction is imposed on the coefficients of
these harmonic functions. Also we have obtained a representation theo-
rem, inclusion relations and distortion bounds for these functions

AMS Subject Classification: 30C45
Key Words and Phrases: Multivalent harmonic functions, Salagean derivative opera-
tor, Inclusion relations, Distortion bounds, Representation theorem

1. Introduction

A continuous function f = u+iv is a complex valued harmonic function in a complex
domain C, if v and v are real harmonic. If 2 be any simply connected domain and
Q C C, then f = h+ g, where h and g are analytic in 2, h is analytic part and g is
co-analytic part of f - |¢g'(z)| < |W(2)] if and only if f is locally univalent and sense
preserving in §, see [3], [5]. Denote by

H={f:f=h+3, [ is harmonic univalent and sense-preserving in the open unit
disk U = {z: |z| < 1}}.
So f = h+g € H is normalized by f(0) = h(0) = f,(0) —1=0.

Ahuja and Jahangiri [1] defined the class H,(n) (p,n € IN = {1,2,3,---}) con-
sisting of all p-valent harmonic functions f = h + g that are sense-preserving U, and
h, g are of the form

h(z) =2+ Z akzkv Q(Z) = Z bkzk, |bn+p71| < 1. (1)
k=n+p k=n+p—1

COPYRIGHT (© by Publishing Department Rzeszéw University of Technology
P.O. Box 85, 35-959 Rzeszow, Poland



8 Waggas Galib Atshan, S. R. Kulkarni

Let f = h+ g given by (1), the modified Salagean operator of f is defined as:

le(z) = Dlh(z) + (_1>iDig(Z)7 p>i, 1€ Ny = {0, L2, '}a

. . &) . . 0 .
where Dih(z) = p'zP Y. Klapz® and Dig(z) = .  k'biz® (see [4], [6]).
) k=n+p k=n+p—1
Let H},(n) be a subclass consisting of harmonic functions f; = h +g;, so that h
and g; are of the form:

o0 oo
h(z) = 2P — Z arz®, gi(z) = (=1)° Z brz®, for ag,br >0, |bpyp_1| < 1.
k=n+p k=n+p—1

(2)

A function f in H,(n) is said to be in the class H;(n; A, B,m) if

D'f(z D' f(2) D'+ f(2) B
Re{u—A) TE) a1 -m 2D BB B
207 %" o120 ek p

where 0 < B <p,A>0,0<m<1,p>iand z=7re? €U.

As X changes from 0 to 1, the family H;(n; A, B,m) provides a passage from the
class of Salagean-type multivalent harmonic functions H}R(n;8) = H},(n;0,3,m)
consisting of functions f, where

l)i
Re{ 8f(z)} > frl
a7 2" p
and this class was studied in [7].

To the class of Salagean-type multivalent harmonic functions 'H;',S (n; B,m) =
H;(n; 1,8, m) consisting of functions f, where

Re {(1 _ 2 Dmf(z)} > b

141 42 i+17
SgFr AP Sz P

to the class of Salagean-type multivalent harmonic functions (if m = 0) H;T(n; 0)
H},(n;1,3,0) consisting of functions f satisfying

D™ f(z) B
Re{ 9it1 - }>pi+1’

por1 27

and this class was studied in [7].
If m = 0, then the class Hj(n; X, 3,m) reduces to the class H,U(n; \, 8) =
H;(n; A, 3,0) consisting of functions f such that

Dif(z Dt f(z Jé]
Re (1_)‘) ai<)+>\ 3i+1() > i+l
207" P07FT % p
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and this class was studied in [7].

Now, we define the subclass ﬁ;(n; A, B,m) = H;(n; A, B,m) ﬁH;(n). If m =0 and
i = 0, then the class H},(n; A, ,m) reduces to the class H,V (n; A, ) = H)(n; A, 3,0)
that was studied in [2].

2. Representation Theorem

In the following theorem, we find a coefficient bound for functions in H;(n; A B,m).

Theorem 1. Let f = h + 3 be given by (1). Then f € H},(n; A, 8,m) if

3 |p+<k—p><m7’“+1>xwki|ak|+ 3 |p+<k+p><m7’“—1

k=n+p k=n+p—1

IAE bk < =1, (4)

where 0 < S <p,A>0,0<m<1,p>iandz=reel.
Proof. By using the fact Re o > 0 if and only if |1 4+ a| > |1 — «f in U, it suffices to
show that

Pt — B+ pthw| > [p 4+ B — p ),

where

Dt Dl Dit2
w=(1-2MX) aif(Z) +A(1—m) 8i+1f(z) Am 8i+2f(z)
207 % it Pz 2"
Substituting for A and g in w we obtain
w = 14 i [1+(§—1)(m§+1))\]k—ia i
- k=n-+p p b Pt

+ 0y [1—(%—kl)(l—m;))\](—l)i—ibk;

k=n+p—1
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and then we have

P =B+ w = p T+ 8= p |

= mk 2P
20 =B+ Y I+ (k= p) (- + DAR
k=n+p p
mk iri, ZF
+ Z - (k+p)(1 7))\](*1)kbk27|

k=n+p—1
k

-8+ Z p+ (k- p)(—k+1)A}kiakz—p

k=n+p
mk o Zk
- Y b-n0- A1) b
k=n+p—1 p
, = mk - _
> 2 = > p+ (k= p)(— + DA axlz[FP
k=n+p p
- mk i k—p
— > IpF (k) (— — DA bx]l2]
k=n+p—1 p
mk i k—p
- Z lp+ (k — p)(f+1)>\|k |ax||z]
k=n-+p
> mk
— > p+ (k4 p)(— — DA b[z[*P
k=n+p—1 p
) © mk )
> 20 =B) = D Ip+ (k—p)(— + DA axl
k=n+p p
= mk i
= > I+ (E+p)(— — DA [b]] = 0
k=n+p—1 p

The proof is complete.
The coefficient bound (4) given in Theorem 1 is sharp for the function

oo

2) = 2P+ k k4 Ui K
Z P+ (k — p)("F + 1Ak 2 [P+ (k +p)(2F — 1Ak

k=n+p k=n+p—1
0 0 )
where Y |zk|+ Y |yk| =pttt - 5.
k=n-+p k=n+p—1

Theorem 2. Let f; = h+7; be given by (2). Then f; € ﬁ;(n; A, B, m) if and only if

o0

mk mk ) )
> Ipt (k- p><—+1)A|klak+ Z [p+ (k+p)(— — DAk, < p™t =B, (5)
k=n+p k=n+p—1 p
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Proof. From Theorem 1, we only want to prove the “only if” part of the theorem

since H. LA, B,m) C Hy(n; X, B,m). If f; € Hp(n, A, 3,m), then, for z = rel? in U
we get

ot §it1

Re{(l —A)Dif(z) Al m) 2 +/\mD;:22f(Z)}

67~ a1 2" agiFz 27
_ p 0N (D) + (0D
Pt i'zP
A1 —m) [ Dh(z) — (=1)*Ditlg;(2)
+ pi+1 ii+1zp
Am [ DF2h(z) + (=1)'Dit+2g,(2)
+pi+2 iH-QZp
1 > mk i k—p
> 1—— > |p+(k—p)(— + DAlKapr
i P
1 = k ,
S e bt > 2
P p p

This inequality must hold for all z € U. In particular, letting z = r — 1, it yields the
required condition (5).
As special cases of Theorem 2, we obtain the following corollaries :

Corollary 1. [7] fi=h+7, € ﬂ;R(n; B) = H},R(n; 8) N Hj,(n) if and only if

Pk ——ap + Pkt bkﬁl-
Z p2+1 5 Z z+1

k=n+p k=n+p— 1

Corollary 2. fi=h+7, € ﬁ;S(n;ﬂ,m) = H;,S(n;ﬂ, m) N H;(n) if and only if

= [p+ (k= p)(2E 4 1)K = p+ (k+p) (2 1)K
5 p+ ( Hz(pﬂ L S I+ ( Hz(pﬂ L.
k=n+p p k=n+p—1 p

Corollary 3. [7] fi=h+g; € ﬂ;T(n; B) = H.T(n;3) N H:(n) if and only if

o0 kl-i-l kz+1

Z ﬂak + Z z+1 k<L

k=n+p k=n+p— 1

Corollary 4. [7] fi=h+7, € ﬂ;U(n; A B) = HLU(n; A\, 3) N Hi(n) if and only if

= |\k Kt > M — (1= N)plk?
Z| + (1 — N)p| ar + Z | ( )p| by < 1.

pitt -4 pitt -4

k=n+p k=n+p—1
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In the following theorem, we determine a representation theorem for functions in
H,(ni A, B,m).
Theorem 3. f, =h+7, € ﬁ;(n; A, B,m) if and only if f; can be expressed as

[i(2) = Xphp(2) + Y Xihi(2)+ Y Yigr(2),

k=n+p k=n+p—1
i1
where hy(2) = 27, hr(2) = |p+(kjv)(mﬁ+1)x|m Fk=n+pntp+l-)gn(z) =
P

. i1 .
# (=) \p+(k+z;>(m75*’ﬁ—1)x\ki o (k=n+p—Ln+p ), Xp20Ynip1>0,X,+

) 00
Z X+ Z Y,=1,and X3 >0,Y, >0, fork=n+pn+p+1,---.
k=n+p k=n+p—1

Proof. For functions f; of the form (2), we have

fiz) = Xphp(2)+ D Xehi(2)+ D Yigr(2)

k=n-+p k=n+p—1
o0 i+l
- Lt
pomip [P+ (B = D) (% + DAk
& i+1
; p - B _k
+=DF Y — -Viz"
iy [P+ (E+p)(5F = DAK

Consequently, f; € ﬂ;(n; A, B,m), since by (5), we have

> mk j = mk ,
7 lp+ (k—p)(— + DAKar+ D> Ip+ (k+p)(— — DAK' b
k=n+p p k=n+p—1 p
- mk ) pi+1 -3
= Ip+ (k= p)(— + DAE" - - X
k§+p P P+ (k —p) (" + DAk
- mk ) pitl _ 3
+ p+ (k+p)(— — DAL - - na
k:nz—&-p—l p [p+ (k +p) (2 = DAK?
= =B Y X+ Y Wl =T -8 -X,) <pt -5
k=n+p k=n+p—1

Conversely, assume f; € ﬂ;(n;)\,ﬂ,m). Letting X, =1—- Y Xp— > Y,
k=n+p k=n+p—1

k—p)(mk 1 1))k k mk _1))\|k* .
where Xj, = K ;)fli; 2 ap and Yy, = P+ +§2+(1'iﬁ 2 b, we obtain the re-




On generalization of some classes of Salagean-type multivalent . .. 13

quired representation, since

filz) = 2P— Z apz® + (=1) Z bpz"
k=n-+p k=n+p—1
> i+l _ 3\ X
— P Z (p Tﬁ) k izk
pomip [P+ (B = D) (% + DAk
i = (PiH — B)Yk =
DT Y ) DA
iyt [P+ (E+P)(5F = DA
= = Y (P -h(2)Xe— > (2P = g (2)Y
k=n+p k=n+p—1
= 1-— Z Xk — Z Yk Zp+ Z hk(z)Xk—i— Z gki(z)Yk
k=n+p k=n+p—1 k=n+p k=n+p—1
= Xphp(z) + Z thk(z) + Z Ykglci (Z)
k=n+p k=n+p—1

3. Inclusion Relations

In the following theorem, we discuss the inclusion relations between the above men-
tioned classes. The inclusion relations between the classes for the different values of
A are not so obvious.

Theorem 4. For n € IN and 0 < 8 < p, we have:

(1) H, S(n; 8,m) C Hy(n; A, B,m),0 < A < 1
(2) T, (n5 A, B,m) € FL,S(n: ,m), A > 1
(3) H, (n; A, 8,m) C HyR(n; B),A > 0
(4) Hy(n; A, B,m) C H,U(n; A, ), A > 0
(5) H,S(n: 8,m) € H,R(n; 3).
Proof (1) For 0 < A < 1, we have

oo

S+ E-p)(— +DAFa+ > Ip+ (k+p)(— — DAk b
k=n+p p k=n+p—1 p
> mk - > mk .
< N bt E-p(— +DFa+ D Ip+(k+p)(— —1)[k'b
k=n-+p p k=n+p—1 p

< p'™t — 3. (by Corollary 2)
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Therefore (1) is obtained from Theorem 2.

(2) If A > 1, then by Theorem 2

= mk i = mk

Yo lp+(k—p)(— +DlKar+ > Ip+(k+p)(— -1
k=n+p p k=n+p—1 p

)|E by

= mk : = mk
STt k- DA e+ Y okt p) (1
k=n+p p k=n+p—1 p
pi—i-l _ ﬁ

Therefore, (2) is obtained from Corollary 2.

(3) If A > 0, then by Theorem 2,

IN

R

IN

oo

Z pkiak—i— Z pkibk

k=n+p k=n+p—1
< - DA Y et ("
k=n+p p k=n-+p—1 p
<ptt-B.
Thus, (3) is obtained from Corollary 1.
(4) If A > 0, then by Theorem 2,

— )M k'Dy,

oo

ST Nk + 1= NplEar+ > M= (1= \)plk'by
k=n+p k=n+p—1

= > P+ E-—pAEa+ > |(k+pA—plkib
k=n-+p k=n+p—1
> mk , > mk
< > lp+E-p(—+DAKa+ > Ip+k+p)(——1
k=n-+p p k=n+p—1 p
<ptt-p.

Thus, (4) is obtained from Corollary 4.

)A|kibg

(5) In view of Corollaries 1 and 2, since

o0

> pklar+ > pk'by

k=n+p k=n+p—1
> mk - > mk ,
< D> p+k-p)(—+DlKar+ > Ip+(k+p)(— — Dk b.
S p k=n+p—1 p

The result follows.
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4. Distortion Bounds

We introduce a distortion theorem for functions in ﬂ;(n; B, A, m).
Theorem 5. If f; € ﬁ;(n; A, B,m),A>1and |z| =r <1, then

Pt -
(p+n(= +m+ 1)A)(n +p)’

At 2p =11 = Sm(n+p— D)X= pl(n+p— 1) nip
(4 (% m+ D+ ) mr )t

|fZ(Z)| S (1 +bn+p_17"n71>7‘p + <

and

| B o - pz‘+1_5
[fi(2)] = (1 = bpgpar™ )P <(p+n(";fl+m+1)A)(n+p)i

[(n+2p - 1)1 = (m(n+p—1))A—pl(n+p— 1) e
- (p+n(7*+m+1A)(n+p) ntp—1 | T

Proof. We prove the left hand side inequality for |f;|. Let f; € ﬁ;(n; A, B,m), then
by Theorem 2, we obtain:

L] = |22+ (D) bagp 12"+ D (a2t 4 (—1)'5EY)
k=n-+p
i+1 _ /3
P — by TP P ; X
-1 (o n(Z2 +m+ N0+ p)

s (p—&-n(”;”—l—m—&—l)/\ p+n(t +m+1)A

v

b;c) (n + p)iTk

> - a .
1 i+1
— P =P Pt -3
i+1 */8
> P_bn _ n+p—1 _ p %
Z T +p—1T (p_t,_n(% +m+1))\)(n+p)z
i+l — k i1 _ k
[ P = P -3
i+1 _B
> (1 =bppp_ 17" HrP — p _
> tp1r™ e (p+n(%+m+l))\)(n+p)zx
ll (n+2p— DA - 0m(ntp - 1PA—pln+p-1* nt
_ A .
pitl — n+p—1
bl _
> (1= bpgpprr™ r? — ( P B

(p+n("* +m+1)A)(n+p)’

[(n+2p— 1)1 = L(m(n+p—1))A = pl(n+p — 1)’

_ i Bryty ntp.
(p+n(7* +m+ 1)A)(n +p)’ +p 1>T
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The proof for the right hand side inequality can be done using similar arguments and
this completes the proof of theorem.
The following result follows from the left hand side inequality in Theorem 5.

Corollary 5. Tf f; € i, (n; A, 8,m), A > 1, then the set

fw o ol <[ n(= = +m e DA+ p) = o+
~[(p+ (" m e+ DA+ )+ [0 +2p = (1= 2 (0 +p = D)A =7
49 = ) brpal [+ 075 m o+ DN+ ) )

is included in f;(U).

By using arguments similar to those given in the proof of Theorem 5, we get the
following corollaries.

Corollary 6. [7] If f; € ﬁ;R(n;B), then

i+1 _ -1 7
D ﬁ (TL +p ) bn—‘,—p—l) Tner’

HOIE Qbugpear e (s B

and

i+1 n4p—1)i
P ﬁ+( p—1)

: L byyp_1 | TP
pn+p) " (n+p) '”1>

1£:(2)] = (1 = bpyporr™ )P — (

Corollary 7. [7] If f; € ﬂ;T(n;ﬁ), then

i+1 i+1
. n—1y,.p p -8 _ (n +p— 1) n+
|fi(2)] < (Lt bpypar™ " )rP + ((n+p)i+l (n+ p)itt brtp—1 ) 7",

and

7+1 7+1
n— p - ﬂ (TL +p— 1) n
[fi(2)] = (1= bpypar™ )P — <(n +p)tl (n4p)itt boip1 ) TP

Corollary 8. [7] If f; € H;U(n;k,ﬂ), then

|fz(z)| < (1+bn+p717‘n_1)7’p

( i - [A(n+2p_1)_p](n+p—1)ib )rn+p
(An+p)(n+p)’ (n+p)(n+p) mpet )T
and

Ifi(z)] > (1- bn+p_17“n71)rp

< pt -5 A +2p—1) —pl(n+p— 1)
(

- — - b7z+p—1> rn+p.
An +p)(n + p)’ (An +p)(n + p)t
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Corollary 9. If f; € W;S(n;ﬁ,m), then

Pt - p
(p+n(%* +m+1)(n+p)

|fi(2)] < (1—|-bn+p_1r"1)rp+<

[(n+2p —1)(1 — ;(m(n+p—1))) —pl(n+p— 1)’

- mn i b” -1 TTH-;D,
(p+n("* +m+1))(n+p) P >

and
n—1y.p _ ptl — 3
(= brpar™ ((PJrn(n;,n +m+1))(n+p)
[(n+2p—1)(1 = L(m(n+p—1)) —pl(n+p—1) > .
n+p—1 | T .

(p+n("*+m+1))(n+p)

|fi(2)]

Y
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ABSTRACT: We present a review of ideas of a general theory of conver-
gence, developed independently of topology, with the stress on the duality
of convergence and topology. Results and problems concerning sufficient
and necessary conditions for a convergence to be topological, both in case
of the single- and multi-valued cases, are recalled. We reconstruct, filling
certain gaps, an example given in [7] to show that one of sufficient condi-
tions in the theorems proved in [1] and [9] for multi-valued convergences
to be topological is not necessary.
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1. Introduction

Convergence of sequences is often defined at first directly, without using any topology.
The corresponding topology, if it exists at all, is discussed usually later. This is
because the description of convergence via topology is more complicated or even
impossible at all (see e.g. [14]). Therefore it makes sense to develop, independently
of topology, a general theory of convergence and it was initiated already by Fréchet
and Urysohn. A convergence in an arbitrary set X can be defined, in general, by
indicating convergent sequences of elements of X and their limits in X. Fréchet [§]
and Urysohn [16] considered only single-valued convergences, i.e. convergences with
unique limits. The so-called L£*-Fréchet spaces satisfy three Fréchet’s conditions which
are fulfilled by every convergence defined by a topology. The study of single-valued
and then multi-valued convergences was continued by many authors (see e.g. [13], [5],

(15], [3], (1], 7], 91, [10], [12}).
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An important result concerning single-valued convergences is Kisynski’s theorem
[13] which says that Fréchet’s conditions are also sufficient for a single-valued conver-
gence to be topological. The situation in the multi-valued case is more complicated.
A characterization of topological multi-valued convergences given in [15] appeared to
be incorrect: a mistake in the proof was found during the international conference
on convergence held in Szczyrk in 1979. A respective counter-example was given by
the second author who later gave in [10] (see also [11], [12]) a full characterization of
topological multi-valued convergences by means of sequential closures.

Simpler sufficient conditions for a multi-valued convergence to be topological are
given in [1] and [9], but one of the conditions is not necessary as the first of the
two interesting examples sketched in [7] shows. However the examples are quite
complicated and contain ambiguities, so the ideas of the constructions may be not so
easy to follow for the reader.

The aim of this note is to reconstruct the first example shown in [7] with more
carefulness, filling gaps found in the original text. We will present this example in
section 3. The second example from [7], which brought the negative answer to the
problem of V. Koutnik (posed during the mentioned conference), but originally also
contained some gaps and inaccuracies, is reconstructed in [2]. In section 2, we recall
all necessary definitions and main properties of the notions under consideration, using
the formalism proposed in [3].

The present article is a result of discussions between the authors during the seminar
conducted by the second author at the University of Rzeszéw.

2. Basic definitions and statements

We will use the notation from [3] with certain modifications. By N we will denote
as usual the set of all positive integers and by X a fixed nonempty set. The symbol
kn /" oo with k; € N (i € N) means that the sequence {k;} = {k;}32, is strictly
increasing. In general, we use a shorter notation {&} instead of {&;}32, for the
sequence &1, &s, . .. of elements of an arbitrary set. Thus the symbol {£;} may denote
either the sequence &1, &s, ... or the one-element set consisting of &; for a fixed ¢ € N.
This will not lead, however, to misunderstanding because of a clear context.

By capital letters A, B, ... we denote subsets of X, i.e. elements of 2% by the
scribed letter F (with or without indices) - an arbitrary family of subsets A of X i.e.
F C 2%; by the Gothic letter § - the class 22" of all families F C 2% of subsets of
X. By Greek letters £, 7, ... (with or without indices) we denote elements of X; by
the corresponding Latin letters z,y, ... - sequences {&}, {n;},... of elements of X,
respectively, i.e. elements of X"; by the scribed letter G (with or without indices) -
an arbitrary mapping which assigns to each sequence z = {¢;} € X" a subset A4 € 2%X;
by the Gothic letter & - the class (QX)(XN) of all such mappings.

We write y < z, if y = {n;} is a subsequence of = {;}, i.e. if n; = &, for certain
k; € N (i € N) such that k; /oo. If z = {&} with §; = € € X for i € N, then we
denote the constant sequence x by f For a given x = {¢;} € XN and A C X we write
x T A if there exists an index iy € N such that & € A for ¢ € N, i > ig. For a given



On single-valued and multi-valued convergences 21

sequence z = {;}, & € X, we denote by (x) the set of all its elements, i.e.

(x):={&: i€ N}L (1)

In particular, if X = YV is the set of all sequences of elements of a certain set Y and
z={&}, & e X, with & ={ni;}, m,; €Y (4,5 € N), then by ((z)) we denote the
union of all the sets (£;) in the sense of (1) for & € YN(i € N), i.e.

((2)) = J(&) = {my: i, €N} (2)

ieN
Now we collect definitions we need further on.

Definition 1. By a topology in X we mean an arbitrary family F € § satisfying the
conditions:

(T1) 0eF and X € F;
(T2) A€ F and Be F, then ANB € F;
(T3) if A, € F(yeTl), then U’VEF A, € F for any nonempty set I' of indices.

Definition 2. By a convergence in X we mean an arbitrary mapping G: XN — 2%,
ie. G€B.

Remark 1. The interpretation of a convergence as a mapping G : XV — 2% is
very natural. For each sequence x = {£;} € XV, the set G(z) is a subset of X and
is interpreted as the set of all limits of the sequence x. If the set G(x) is empty, the
sequence z is divergent. If the set G(x) is nonempty, the sequence x is convergent to
all elements of G(x). If the set G(x) contains exactly one element, the limit of the
sequence x is unique.

The following conditions on convergences expressed in terms of Definition 2. corre-
spond to the three Fréchet’s conditions (L1), (L2), (L3) in the definition of £*-Fréchet
spaces:

S. For every £ € X, we have £ € G(£);
F. If y <z, i.e. y is a subsequence of a sequence x, then G(x) C G(y);

U. If€ ¢ G(z) (€ € X,z € XV), then there exists a y < x such that & ¢ G(z) for
each z < y.

We introduce in Definitions 3. and 4. below the two operators 7' and L such that
T:8 —>Fand L: § — &.

Definition 3. Let G € &. By TG € § we mean the family of all A C X satisfying
the implication: ANG(x) #0 = x = A. The family TG is called the topology induced
by the convergence G.
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Definition 4. Let F € §. By LF € & we mean the convergence such that, for
every sequence x € X, the set (LF)(x) consists of all points & € X satisfying the
implication: £ € A C F = x T A. The mapping LF is called the convergence
induced by the family F.

Remark 2. Notice that the convergence LF induced by F € § is defined in Definition
4. exactly as in case F is a topology, but we do not impose conditions (77)-(73) on F,
in general. Analogously, to define TG € § we do not need to impose on G conditions
S, F, U in Definition 3..

It is natural to define the inclusion between convergences as follows:

Definition 5. Let Gi, Go € &. We write G; C Ga, whenever Gy (x) C Ga(x) for every
re XN,

The notions of sequential topology and topological convergence considered in the
literature can be described in the following way:

Definition 6. A family F € § is called a sequential topology if F is induced by some
convergence, i.e. there is a G € & such that F = TG (see Statement 1.).

Definition 7. A convergence G € & is called topological if G is induced by some
family F € §, i.e. there is an F € § such that G = LF.

An important particular case of convergences are so-called single-valued conver-
gences described by the following Hausdorff condition.

Definition 8. If a convergence G € & satisfies the condition:
H. For each x € XV, if £, n € G(x), then & =1,

i.e. each sequence has at most one limit, we call G a single-valued convergence. If
G € & not necessarily satisfies H, we call G a multi-valued convergence.

It is easy to check the following properties of the operators T and L (see [3]):
Statement 1.
1° For every F € §, the convergence G = LF satisfies conditions S, F, U.
2° For every G € 6, the family F = TG of subsets of X is a topology in X.
Statement 2.
1° If F C Fo (F1,F2 €F), then LF, C LF;.
2° If G1 CGa (G1,G2 € B), then TGy C TG;.
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Statement 3.

1° For every F € §, we have F C TLF.

2° For every G € &, we have G C LTG.

Statement 4.

1° If F1 C Fo (F1,F2 €5F), then TLF, C TLF;.

2° If G1 C Gs (G1,G2 € &), then LTG, C LTGs.
Statement 5.

1° If F1, F2 € §, then L(F, UFe) = LFy N LFs.

2° If G1,Go € &, then T(Gy UG2) =TG NTGs.
Statement 6.

1° A family F is a sequential topology iff TLF = F.
2° A convergence G is topological iff LTG = G.
Statement 7.

1° If F1 and Fs are sequential topologies, then so is F1 N Fa.

2° If G1 and Go are topological convergences, then so is Gy N Gs.

Remark 3. As an immediate consequence of Statements 2 and 3 we may conclude
that the operators T and L define a Galois connection between the two complete
lattices § and & (see e.g. [4], p. 56).

The following beautiful result is a complete characterization of topological con-
vergences among all single-valued convergences:

Theorem 1. (Kisynski’s theorem; see [13]) A single-valued convergence G is topo-
logical iff G satisfies conditions S, F, U.

Various additional conditions are usually imposed on multi-valued convergences
(see e.g. [1], [9], [10], [7]). Before recalling some of them we introduce a definition.

Definition 9. A set A C X is called G-closed if (x) C A implies G(x) C A for every
re XN

Consider the following conditions:

D. Ifn, € G(ﬁln) forn € N, then G(&,) D G(n,);
C. For each x € XV, the set G(x) is G-closed,

C'. For each x € X" there exists a subsequence y of x such that the set U.<,9(2)
is G-closed,

H'. For every £ € X, if ni,m2 € G(&), then n1 = ns.

In [1], the following result was obtained:
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Theorem 2. (see [1]) If a convergence G satisfies conditions S, F, U, D, C and
C’, then G is topological.

The above theorem was strengthened in [9] in the following way:

Theorem 3. (see [9]) If convergence G satisfies conditions S, F, U, D and C', then
G is topological.

Remark 3. Every topological convergence satisfies conditions S, F, U, D, but not
condition C, in general (see [7]).

In the next section, we present an example of topological convergence which does
not fulfil condition C’ (cf. [7]). On the other hand, it can be shown that condition
C’ cannot be omitted in Theorem 3.. A respective example of a non-topological
convergence which does not fulfil condition C’, but satisfies conditions S, F, U, D, C
and, in addition, H', is shown in [7] and [2]. This answers negatively the question
posed by V. Koutnik.

3. Example of topological convergence

We will show that condition C’ may not hold for topological convergences.

Example. Let X = NUN; UNsy, where N is the set of all positive integers, N is
the set of all increasing sequences | = {k;} with k; € N (i € N), and Ny is the set of
all sequences m = {I;} with l; € Ny (i € N) such that, considering /; as sequences of
elements from N, we have

(L) N (ly) =10, whenever i, i’ € N, i#£i,
according to the notation in (1). Obviously, we have NNN; = NN Ny = Ny NNy = ().
Now, we construct the bases B() of neighbourhoods U (€) at each £ € X as follows:

1° if &€ = k € N, then we define the basis B({) at £ to consist of the single
neighbourhood U (k) := {k} of £ =k, i.e. B(&) :={U(k)};

2° if ¢ =1={k;} € Ny, then we define, for all p € N, the neighbourhoods U, ()
of £ =1 by
Up(l) :={l} U{k;: ieN,i>p}

and the basis B(§) at £ =1 by B(€) := {Up(l): p € N};

3° lff =m = {ll} € Ny, where [; = {ki,j} with ki’j e N (’L,] S N), then
we define, for every r € N and an arbitrary sequence {¢s} of positive integers, the
following neighbourhoods of £ = m:

Upggy(m):={m}pu{li: ieNi>ryU{ki;: jEN,j>¢q,i€Ni>r}
and the basis B(§) at £ = m by B() := {U, (4.1 (m): 7 € N, {¢,} € N}

We are going to show that the family B := {B(£): & € X}, where the bases B(€)
for £ € X are defined above, satisfies the conditions:
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(BP1)  Viex B(z) #0; Vyesw) = €Us;
(BP2)  Vaiex YueB(z) Yyevu veny) V CU;
(BP3) re X [Ul,UQ S B(a:) = ElUEB(:E) Ucupn UQ}

Condition (BP1) is obviously satisfied. To prove (BP2) we consider the following
three cases:

1°Let x =k € N. fU € B(z) = B(k) and y € U, then y = = k and
V:=U € B(y) = B(z) = {{k}}.

2°Let x=1={k;} e Ny. f U € B(z) and y € U, then y € U,(I) for some p € N.
There are two possibilities: (a) y =1 or (b) y = k; for some j € N, j > p. We put
V :=Up(l) in case (a) and V := {k;} in case (b). Clearly, V € B(y) and y € V. C U
in both cases (a) and (b).

3° Let v =m = {l;} € No. If U € B(x) = B(m) and y € U, then y € U, 4.;(m)
for some » € N, and {g;} € NY. There are three possibilities: (a) y = m or (b)
y=1, € Ny forsomei €N, i>r or(c)y==k;; € NforsomeieN,7>randjeN,
J > ¢q. Weput V :=U, (43(m) in case (a), V := Upy(l;) with arbitrarily fixed p > ¢
in case (b), and V := {k; ;} € B(y) in case (c). Obviously, V € B(y) andy € V C U
in all the cases (a), (b) and (c), so (BP2) is satisfied in all the above cases 1°,2° and
3°.

We will verify condition (BP3) only in case 3°, i.e. for + = m € Ny. If
Ui,Us € B(m), then Uy = U, 14.3(m) and Us = U,, 14.3(m) for some ry,r2 € N
and {¢s},{q:;} € NY. Let us define U := Uy (4,3(m), where 7 := max(ry,72),
Gs := max(qs,qs) for s € N. Obviously, U € B(z) and U C Uy N Us, as desired.
Analogously one can check that (BP3) is fulfilled in cases 1° and 2°. Thus the family
B satisfies conditions (BP1), (BP2) and (BP3).

Using well known topological arguments (see e.g. [6], p. 39, p. 58), we conclude
that B uniquely defines a topology F in X such that B is a neighourhood system
for F and F is a Ti-topology. Therefore the convergence LF satisfies condition H'.
Since LF is a topological convergence, it automatically satisfies conditions S, F, U
(see [3]).

We will show that LF fulfils also conditions D and C. Let 5, € LF(&,) for
n € N and let n € LF({n,}), i.e. n, € U for each U € F such that n € U and
for sufficiently large n, so &, € U for sufficiently large n, which means that n €
LF({&n}). Consequently, LF({n,}) C LF(&,}) and thus LF satisfies condition D.
Now, denoting z = {¢,} € XV, assume that (a) 1, € LF(z) for n € N and (b)
n € LF({n.}). By (b), for each U € F with € U there is an ny € N such that
nn € U for n > ng. Hence, by (a), we can select a sequence {k,} of positive integers
such that k, /" oo and &; € U for j > k, > n > ny. Consequently, n € LF({,}), so
LF(z) is an LF-closed set, i.e. LF satisfies condition C.

Before proving that LF does not satisfy condition C’, we will prove the following
implication:

l={kj} eNy = le LF({k;}) C Ny. (3)



26 L. Bacher, A. Kaminski, R. Nalepa

The relation [ € LF (1) in (3) is obvious, by definition of LF. To prove that LF(l) C
Ny, since the relation k ¢ LF(I) for every k € N is evident, it suffices to show that
m ¢ LF(I) for each m € Ny

Assume, on the contrary, that m = {l;} € Ny and m € LF(l), where [ = {k;}. Of
course, we have k; € ((m)), in the sense of the notation in (2), for sufficiently large
J. Notice that, for each i € N, only a finite number of elements of {k;} belongs to
(;). On the contrary, suppose that there exists an iy € N such that k; € (l;,) for
infinitely many 57 € N. Then there exists a sequence [ such that [ < [ and [ < liy-
Hence, by condition F, we have m € LF(I). On the other hand, since (1) C (I;,) and
(Li,) N (I;) = O for i # iy, we have [ Uig+1,{q.} for arbitrary {gs} € N¥, which is
impossible.

Let k; := max{k; : j € N, k; € (I;)} and let g; :== k; + 1 for i € N. Then for
each j € N we have k; ¢ Uy g,1(m) € B(m), which contradicts the assumption that
m € (LF)({k;}) and completes the proof of (3).

Now, let x be an arbitrary increasing sequence of positive integers and let y be
an arbitrary its subsequence. Of course, we can choose subsequences yi,¥o,... of
sequence y such that

(y)N(yy)=0  for i’ €N, i#7.

By (3), we have
vie | JLF(z)cNy  forieN.

z<y

On the other hand, we have m € LF({y;}), where m = {y;} € Na, so the set
U.~, LF(2) is not LF-closed.

Thus we have proved that convergence LF satisfies conditions S, F, U, D and C,
but it does not satisfy condition C'.
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1. Introduction and preliminaries
Let U,, 0 < r < 1, be the disc of center zero and radius r,
U-={z€C:z| <1},
and let U be the unit disc of the complex plane
U={zeC: |z <1}.

Also let ‘
U=U\{0}.
Let H (U) be the space of holomorphic functions in U.
For a € C and n € N* we let:
Hla,n] ={f e HU), f(z) =a+anz"+...,2€ U}
and
Ay ={feRU), f(z) =24 an1z" T +..., z€U}
with
A=A
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Let f and F be members of H (U). The function f is said to be subordinate to
F, or F is said to be superordinate to f, if there exists an analytic function w in U,
with w (0) = 0 and |w (2)| < 1, such that f (z) = F'(w(z)); in such a case we write

If F is univalent, then f (z) < F (z) if and only if f (0) = F (0) and f (U) C F (U).

Let © be any set in the complex plane C, let p be analytic in the unit disk U and
let (v, s,t;2) : C* x U — C.

In a series of articles of S.S. Miller, P.T. Mocanu and D.J. Hallenbeck, S. Ruscheweyh
have determined properties of functions p that satisfy the differential subordination

{W(p(2), 20 (2),2°p"(2);2)| z € U} C Q.

In this article we consider the dual problem of determining properties of functions
p that satisfy the differential superordination

Q C {w(p(2),2p (2),2%p"(2);2)| 2 € U}.
These results have been first presented in [3].

Definition 1.1. Let p : C2xU — C and let h be analytic in U. If p and p(p(2), 2p'(2); 2)
are univalent in U and satisfy the (first-order) differential superordination

h(z) < p(p(2), 20’ (2); 2) (1)

then p is called a solution of the differential superordination. An analytic function
q s called a subordinant of the solutions of the differential superordination, or more
simply a subordinant if ¢ < p for all p satisfying (1). A univalent subordinant q that
satisfies q¢ < q for all subordinants q of (1) is said to be the best subordinant.

Note that the best subordinant is unique up to a rotation of U.
For Q a set in C, with ¢ and p as given in Definition 1.1, suppose (1) is replaced
by
Q C {p(p(2),2p'(2); 2)| = € U}. (2)

Although this more general situation is a “differential containment”, the condition
in (2) will also be referred to as a differential superordination, and the definitions
of solution, subordinant and best dominant as given above can be extend to this
generalization.

Before obtaining some of the main results we need to introduce a class of univalent
functions defined on the unit disc that have some nice boundary properties.

Definition 1.2. [3] We denote by Q the set of functions f that are analytic and
injective on U \ E(f), where

B(f)={ceau: tm ) =)

and are such that f'(¢) #0 for ( € OU \ E(f).
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The subclass of @ for which f(0) = a is denoted by Q(a).

Definition 1.3. [3] Let Q be a set in C and q € H[a,n] with ¢'(z) # 0. The class of
admissible functions ®,[S2,q], consist of those functions ¢ : C* x U — C that satisfy
the admissibility condition

2q'(2).
o (4202 i) e 0
where z € U, ( € OU and m >n > 1.

In order to prove the new results we shall use the following lemmas:

Lemma 1.4. [3] Let h be convex in U, with h(0) = a, v # 0 and Rey > 0. If

/
pEH[a,1]NQ and p(z)+ zp’y(z) 18 univalent in U with
/
h(2) <p () + 20
~
then
q(z) <p(2)
where

- ’ y—1
q(z)fzv/o h()t" ™ dt, z € U.

The function q is convexr and is the best subordinant.

Lemma 1.5. [3] Let q be convez in U and let h be defined by

~y
, ) :
withRe vy > 0. Ifpe Hla,1]NQ, p(2) + s undvalent in U, and
Y
/ /
o) + (2) Spe)+ 2 (Z), LU

Y Y

then
q(z) < p(2),

where

a:) =21 /O TRt

The function q is the best subordinant.
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Definition 1.6. [6] For f € A and m > 0, m € N, the operator I"™ f is defined by
I°f(2) = f(2)

/f Yt tdt
I"f(z) =1[I"" f(2)], z€U.

Remark 1.7. If we denote by I (z) = —log (1 — z), then
If(z)=[(U*lx1---x1)* fl(2), f € H(U), f(0) = 0.

n—times

By ” +” we denote the Hadamard product or convolution (i.e. if f (z) = Z;io a;z’,
9(2) =272 bjzl then (f = g) (z) = Z;io ajbjzj).

Remark 1.8. I f (z) = [7 [ .. [72 tlt Cr Mt dty f €MD), £(0) =0,

Remark 1.9. D[ f (z2) = I"D™f(2) = f (z), feHU), f(0) =0, where D™
is the Sdaldgean differential operator (see [6]).

2. Main results

Definition 2.1. For 0 < a < 1 and m € N, let J,,(«) denote the class of functions
f € A which satisfy the inequality

Re [[™f(2)] > a.
Remark 2.2. Ifm = 0 then Jo(«) is the class of the functions which satisfy Ref’ (z) >
«, functions with bounded boundary rotation [see [4]].

Theorem 2.3. Let

a convex function in U, with h (0) = 1.
Let f € Jp(a), and suppose that [I™ f (2)] is univalent and

, zeU

(1™ ()] e H[1,1]N Q.

If
h(z) < [I"f(2)], z €U, (4)
then
q(z) < [ f(2)), 2 €U,
where

log(1+ 2)
~ .
The function q is convex and is the best subordinant.

q(z) =2a—-14+2(1 —a)
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Proof. Let f € J,,(«). By using the properties of the operator I"™ f(z) we have
I"f(2) = 2[I™ f(2)], 2 € U (6)
Differentiating (6), we obtain
I f () = 1™ ()] + 2 [ (2)]", z e U (7)
If we denote by p(z) = [I™T! f(z)]’ then (7) becomes
[I"f(2)] =p(2) + 2p'(2), z €U.

Then (4) becomes
h(z) < p(z) + 2p'(z), z € U.

By using Lemma 1.4 for v = 1, we have

q(z) < p(z) = [["Tf(2)], 2 €T,

where
1 1+ (2a—1)t
a(z) z /0 1+t
log(1 + z)

= 20-142(1-a)2

Moreover, the function ¢ is the best subordinant. m

Theorem 2.4. Let
1+ (2a—1)

h(z) 1+2

be convez in U, with h(0) = 1.
Let f € Jy(a), and suppose that [I"™ f ()] is univalent and

"I ypayng.

z
If
hiz)<[I"f(2)], z€U (8)
then .
q(z) < ! J;(Z), el
where
log(1 + 2)

q(z) =2a—-14+2(1 - a) z

The function q is convex and is the best subordinant.
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Proof. We let
_Imi()

and we obtain
™ f(2) = 2p(2), z€ U

By differentiating (9) we obtain

[I"f(2)] = p(2) + 2p'(2), z € U.

Then (8) becomes
h(z) < p(z) + 2p'(2), z € U.

By using Lemma 1.4 we have

a() < pl() =

where

1 14+ QRa—1)t
az) = 2 /0 1+t
log(1 + 2)

= 20-142(1-a)—"2
z

dt =

The function ¢ is convex and is the best subordinant. m

Theorem 2.5. Let q be convex in U and let h be defined by
h(z) = q(z) + 2¢'(z), z € U.

Let f € Jp(a) and suppose that [I™ f ()] is univalent in U

I () e HL,1NQ

and
h(z) < [I"f(2)], z € U.
Then
9(z) < IR, 2eU
where .
q(z) = %/0 h(t)dt, z € U.

The function q is the best subordinant.

C. M. Bildeti
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Proof. Let f € J,,(«). By using the properties of the operator I™ f(z), we have
I™f(2) = 2[I™T f(2)], z € U. (11)
Differentiating (11) we obtain
I f(2)) = [I"Ff (2)] +2 [I™Ff (2)]", z € U (12)
If we let p(z) = [I™FLf (z)}/ then (12) becomes
[ f(2)] =p(2) + 2p'(2), z € U.
By using Lemma 1.5 for v = 1 we have
q(z) < p(z) = " f(2)], z €U,

where

The function ¢ is the best subordinant. m
Theorem 2.6. Let q be convex in U and let h be defined by
h(z) = q(2) + 2¢'(z), z € U.
Let f € Jp(a) and suppose that [I™ f (2)]' is univalent in U,
I"f(2)

eEH[LINQ
z

and

h(z) < [I™f (z)]/, ze U (13)

Then .

q(z) < I sz(z)7 zeU,

where 1 e
a() =1 /O h(t)dt

The function q is the best subordinant.

Proof. We let

=18 Lcp
and we obtain
I f(z) = 2zp(2), z € U. (14)

By differentiating (14), we obtain

[ f(2)] =p(2) +2p'(2), z €T,
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Then (13) becomes
q(2) + 2¢'(2) < p(2) + 2p/ ().

By using Lemma 1.5 for v = 1 we have

o) <) = 71O, e
where 1 e
o) =1 /O h(t)dt

The function ¢ is the best subordinant. m

Remark 2.7. We remark that similar results to those in this paper, but for a differ-
ential operator were obtained by Gh. Oros and G. I. Oros in [5].
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1 Introduction and Preliminaries

Let A denote the class of functions of the form
f(z)=2+ Z anz" (11)
n=2

which are analytic in the open disc U = {z : |z| < 1}. For functions f € A given by
(1.1) and g € A given by

g(z) =z + anz", zeU,
n=2
we define the Hadamard product (or Convolution ) of f and g by

(f*xg)(z) =2+ ianbnz", zeU. (12)
n=2

COPYRIGHT (© by Publishing Department Rzeszéw University of Technology
P.O. Box 85, 35-959 Rzeszow, Poland
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For positive real parameters a1, A; ..., aq, Ajand 81, By ..., B, Bm (Lm e N =
1,2,3,...) such that

m l
1+) Bpn—Y A, >0, z€U, (13)
n=1 n=1

the Wright generalized hypergeometric function [32]

lqjm[(alv Al)a ceey (O‘la Al)§ (ﬁlzBl)a ceey (5mvBm); Z]
= l\Ilm[(anvAn)l,l;(ﬁnaBn)l,m;Z]

is defined by

Vo l(ow, A1y (Be, Be)iym: 2]

oo

l m n
= S {[Ir(e + tA ] (5 + tBt}*l%, zel.

n=0 t=0 t=0

fi<m+1, A, =1(n=1,..,1) and B, = 1(n = 1,...,m), we have the relationship:

qu/m[(anv1)1,l§(ﬂn71)1,m3z] = lFm(alanwal; 617”~7/8m;z)a zeU, (]-4)

where | Fp, (o, ..., 5 B, ..., Bm; 7) is the generalized hypergeometric function and

l -1 m
Q= <]___[ F(%)) <H F(ﬂt)) : (15)
t=0 t=0

In [5] Dziok and Raina introduced the linear operator by using Wright generalized
hypergeometric function. Let

l¢5m[(0lt,At)1,l; (5taBt)1,m;Z] =Qz l‘I’m[(OéuAt)l,z(ﬂt,Bt)l,m;Z], zeU,

and
H= H[(ana An)l,l; (ﬂann)l,m} tA— A

be a linear operator defined by
Hf(2) =z 10ml(ae, Ae)1i; (Bes Be)1,ms 2] * f(2)

We observe that, for f of the form (1.1), we have
Hf(z)zz—i—z:an anz",, zeU, (16)
n=2

where Q T(ar + Ar(n—1))...T(ap + Ay(n — 1))

(n—DIT(B1 + Bi(n—1))...T(B; + By(n — 1))’

Op =
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and Q is given by (1.5).

In view of the relationship (1.4) the linear operator (1.6) includes the Dziok-
Srivastava operator (see [7], [6] and [1]), so that it includes (as its special cases)
various other linear operators introduced and studied by Bernardi [2], Carlson and
Shaffer [4], Libera [13], Livingston [15], Ruscheweyh [23], Srivastava and Owa [29],
and others.

For 0 < v < 1 and k > 0, we define the class W! (v, k) of functions f of the form
(1.1) and satisfying the analytic criterion

(55

where H f(z) is given by (1.6).

Also we denote by 7, the class of analytic functions with varying arguments (in-
troduced by Silverman [26]) consisting of functions f of the form (1.1) for which there
exists a real number 7 such that

2(Hf(2)
Hf(z)

—1‘, zeU, (18)

0, + (n — 1)n = w(mod 27), where arg(a,) =0, forall n > 2. (19)

Moreover let us put
TW,, (1, k) == Wh (v, k)N T.

If, A, = 1(t = 1,...1), By = 1(t = 1,...m) and by suitably specializing the values
of I, m, a1, aq,...,a1, Bi,B2,---,Bm, v and k in the class W! (v, k), we obtain the
various subclasses, we present some examples.

Example 11. If Il =2 and m =1 with a; = as = 1 = 1, then we obtain the class
UST(77 k) = le('% k)
zf'(2)

2f'(2) } }
= € A: Re - >k , zeUy.
4 SRRy
of k—starlike functions of order v, 0 < v < 1, which was introduced in [3]. We observe
that S*(v) := UST(v,0) is well-known class of starlike functions of order ~.

-1

Example 12. Ifl=2 and m =1 witha; =0+ 1(6 > —1), ae = 1 = 1, then

Ry (1,) = W2(3, k) = {feA:Re {W—v}

Dif(z)
(D f(2))
“Difn) ) FEY }

where D° is called Ruscheweyh derivative of order § (§ > —1) defined by

k -1

V

DPf(z) = ﬁ « f(2) = HAS +1,1;1) f(z).
We observe that
K := R1(0,0)
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is the well known class of convex functions. Also let
TR5 (’77 k) = R5 (’Ya k) N T7
The class T Rs(y,0) was studied in [22].

Example 13. Ifl =2 and m =1 with oy = c+ 1(¢ > —1), as = 1, f1 = c+ 2, then

Whouk) = Bk = {feasre (2LEL )

Jef(2)
2(Jef(2)) }
> k|———==-1|, z€Uy,
Jef(2)
where J. is a Bernardi operator [2] defined by
ct+1 - c—1 — 12
Jof(2) == po T f)dt = Hi(c+ 1,1+ 2) f(2).
0

Note that the operator Jy was studied earlier by Libera [13] and Livingston [15]. Fur-
ther,
TB.(v,k) = B(v,k)NT.

Example 14. Ifl =2 and m =1 with a1 = a(a > 0), ag =1, f1 = c(c > 0), then

WHLE) = L2 R) = {feA e (eI )
> (( )((j))/—l,zeU}

where L(a,c) is a well-known Carlson-Shaffer linear operator [4] defined by

L(a. <Z§ ’““) « (2) = H2 0 L) F(2).

The class L (v, k) was introduced in [17] and also
TLe(y k) = Le(v, k)NT
was introduced and studied in [18, 19].

Remark 11. Moreover specializing the parameters of the class W' (v, k), we can
obtain classes introduced and studied by Goodman [9], Ma and Minda [16], Ronning
[20, 21], Kanas et.al., [10, 11, 12] and others (see for example [30]).

The object of the present paper is to investigate the coefficient estimates, extreme
points. Further, we obtain the subordination results and integral means inequalities
for the generalized class of k-starlike functions. Some interesting consequences of our
results are also pointed out.
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2 Coefflicient Estimates

We first mention a sufficient condition for function f of the form (1.1) to belong to
the class WY, (7, k).

Theorem 21. A function f of the form (1.1) belongs to the class W (v, k) if

oo

ST(kn+n—k 7)oy la,| <1-7, (21)

n=2

where oy, is given by (1.7).
Proof. By definition of the class W, (v, k), it suffices to show that

z(Hf(2) z(Hf(2))
R YETN 7“(2)—1’—}{6 { 7“(2)—1} <1l-—9.
Simply calculations give

k

k

(n = Donan|z["~

i

2(Hf(=)
= ey () 1‘ =ty 1= oulanlz1

Now the last expression is bounded above by (1 —~) if (3.4) holds. m
Our next theorem shows that the condition (2.1) is necessary as well for functions
of the form (1.1) with (1.9) to belong to the class 7W! (v, k).

Theorem 22. Let f be given by (1.1) with (1.9). The function f (z) belongs to the
class TW! (v, k) if and only if (2.1) holds.

Proof. In view of Theorem 2.1. we need only show that f €7 W, (v, k) satisfies the
coefficient inequality (3.4). If f €TW! (v, k), then by definition we have

oo oo
z24+ > nopapz" z24+ > nopapz™
k n=2 — 1| <Re n=2 -y,
z4+ > opapz® z4+ > opanz
n=2 n=2
or
o0 oo
> (n—1)ogaz"! (1=9)+ X (n—7y)onanz"""
k n=2 — S Re njj
1+ > opapzn! 14+ > opapznt

n=2 n=2
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In view of (1.9), we set z = 7" in the above inequality to obtain

2, k(n - Doplanr™™t (1=7) = X (n—y)onlan|r"™

< n=2
0 = 0
L= > onlap|rm—t L= 3 onlanfrm=t
n=2 n=2
Thus
oo
Z(kn+n— k_7)0n|an|’rn_1 S 1 -7 (22)
n=2

and letting r — 17 in (2.2) we obtain the desired inequality (2.1). m

3 Subordination Results

Before stating and proving our subordination theorem for the class 7W! (v, k), we
need the following definitions and lemmas.

Definition 31. For analytic functions g and h with g(0) = h(0), g is said to be
subordinate to h, denoted by g < h, if there exists an analytic function w such that
w(0) =0, lw(z)| <1 and g(z) = h(w(z)), for all z € U.

Definition 32. A sequence {b,}>2 | of complex numbers is said to be a subordinating
o]

n

sequence if, whenever f(z) = > anz™, a1 =1 is reqular, univalent and convex in U,
n=1

we have

i bpanz" < f(z), z€U. (31)
n=1

Lemma 31. [31]. The sequence {b,}52, is a subordinating sequence if and only if

Re {1+22bnz"} >0, zeU. (32)
n=1

Theorem 33. Let g(z) € K, f €TW! (v,k) and

l>m, am+121, ajZﬂj andAjZBj (]22,,771) (33)
Then 24k )
+ —7Y)02
=< 34
S (e g)2) < 02 (3)
and

l—v+(2+Fk—7)09]

CE——— , zeU. (35)

Re {f(2)} > —
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The constant factor
24+ k—7)og
21 =7+ (2+k—7)o9]
in (8.4) cannot be replaced by a larger number.

(36)

Proof. Let f €TW! (v,k) and suppose that

o0
z)=z+ chz”, zeU,
n=2

belongs to the class K. Then

(24+k—7)o2
2l — v+ (24 k —7)o2]

(24+k—17)o2
= z + CnQnZ .
21—+ 24+ k —7)o2] Z
Thus, by Definition 3.2., the subordination result holds true if

{ (24+k—17)o2 a }OO
2l — v+ 2+ k—7)as] "

n=1

(f*9)(2)

is a subordinating sequence, with a; = 1. In view of Lemma 3.1., this is equivalent
to the following inequality

{1+§:1_2+k 1)os )cmf}>0,z€U (37)

Y+ 2+k—7v)o
By (3.3) the sequence
dp:=(kn+n—k—v)o,, n=2,3,...
is increasing. In particular we obtain
2+k—yoe<(kn+n—k—7)on, n>2.

Thus, for |z| =r < 1, we have

2+k—7)o
1 n
Re{%U—w+@+k vaz§:a

24k —y)oga,z"
T i

+
1—v+2+k—7)o2 =7+ 2+k—7)o2

= Re {1+

S kn+n—k—~)op, la,|rm1
S 1 (2+k—7)os - nZ::Q( )7 [an| ,
- 1=v+@2+k—7)o: 1=7+@2+k—=7)o:
24+k— 1-—
> 24k —7)o2 gl r >0,

14+ 2tk—vos  1-7+2+k—7)0
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where we have also made use the assertion (2.1) of Theorem 2.2.. This evidently
proves the inequality (3.7) and hence the subordination result (3.4). The inequality
(3.5) follows from (3.4) by taking

oo
z
9(2) T Z+nz::22, z €
Next we consider the function
F(z) 22_1—7722’ z € K.
24k —")o,
Clearly, F € TW! (v,k). Thus by (3.4) we have
24+k—7)og z
F(z) < —
21—+ (2+k—7)o2] B =1

It is easily verified that

min {Re (2[1 —(jif2+2i27)az] F(z))} = f%, zel.

This shows that the constant (3.6) cannot be replaced by any larger one. m

We observe that, if A, = 1(t = 1,2,...,0) and B; = 1(¢t = 1,2,...,m) specializing
the parameters I, m, a1, s, ..., ap, and B1, B2, ..., Bq, v, and k in the above theorem
and in view of Examples 1 to 4 in Section 1, we state the following corollaries for the
subclasses defined in those examples.

Corollary 31. If f € TS*(v,k), g € K, then

24+ k-~
§E§Qj27:faj(f’kg)(2)'< 9(2), (38)
and
34+k—2y
The constant factor
24k —~
234+ k — 27]

in (3.8) cannot be replaced by a larger one.
Remark 31. Corollary 3.1., extend the result obtained by Singh [28] when v =k = 0.

Remark 32. Corollary 3.1. extend the results obtained by Frasin [8] for the special
values of v and k.
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Corollary 32. If f € TRs(,k), 6 >0, g € K, then
G+DH24+k—7)

o ey 9() <), (39)
and 1+ (6+1)2+k—n)
-7 -7
Re{f(2)} > - O D)C+k—) , z€U.
The constant factor
@+ D[2+Fk—19)]
2l —v+ (0 +1D2+k—9)]
in (3.9) cannot be replaced by a larger one.
Corollary 33. If f € TL%(v,k), g€ K, a>c> 0, then
a2+ k—r)
e (0 < 9(2), (310)
" e(1 =) +a(2+ k=)
c(l—7)+a —
Re{f(2)} > — pE—— , zeU.
The constant factor
a2+ k—7)

2T =) + a2+ =)

in (3.10) cannot be replaced by a larger one.

4 Integral Means Inequalities

Due Littlewood [14] we obtain integral means inequalities for the functions in the
family TW!, (v, k).

Lemma 41. [14]. If the functions f and g are analytic in U with g < f, then for
n>0,and 0 <r <1, we have

2 27
/ ’g(rew)r]dﬁ < / |f(rew)|nd9. (41)
0 0

Silverman [27] found that the function

falz) =2 — zeU,

is often extremal over the family of functions with negative coefficients. He applied
this function to resolve integral means inequality, conjectured in [24] and settled in
[25], that

2T

27
/|f(rei9)‘nd9S/‘fg(rei9)|nd0,
0

0
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for all functions f with negative coefficients, n > 0 and 0 < r < 1. In [25], he also
proved his conjecture for some subclasses of 7.
Applying Lemma 4.1. and Theorem 2.2., we prove the following result.

Theorem 41. Let f €TW! (v, k), n > 0 and f»(z) be defined by

-y 2
S St — U.
fa(z) =2 (2+k_7)02z, z €
Then for z =re'?, 0 < r < 1, we have
2m 2
[1s@ras < [ 151" as (12)
0 0
Proof. For function f (z) of the form (1.1) the inequality (4.2) is equivalent to the
following:
2 00 n 27
-7 |
1+ o I / 1-— do
0/ ;anz ) ‘ 2+k—7)o

By Lemma 4.1., it suffices to show that

o]
11—y
1 Ll T 43
+nz::2az =< (2+k_’y)02z (43)
Setting
0
l—~
n—1 __
1+Zan2 —1—mw(2), ZEU,

and using (2.1), we obtain

R S R R et oy
w(z)| = Z - "

1+k ’erk on

lan| < 2|, z€U.
n=2

Thus by definition od subordination we have (4.2) and this completes the proof. m

If A, =1(t=1,2,..,0) and By = 1(t = 1,2, ...,m) specializing the parameters [,
m, a1, 02,...,0p, and B, Bs,..., B, v, and k and in view of the Examples 1 to 4 in
Section 1 and Theorem 4.1., we can state the following corollaries:

Corollary 41. If f € TS(v, k) and n > 0, then the assertion (4.2) holds true with

falz) =2 — ﬁzz, zeU.
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Remark 41. Fizing k = 0, Corollary 4.1. extend the integral means inequality ob-
tained in [25].
Corollary 42. If f € TRs(v,k) and n > 0, then the assertion (4.2) holds true with

. (1-7) 2
f2(2) = 2 ESPET eU.

Corollary 43. If f € TB.(v,k) and n > 0, then the assertion (4.2) holds true with

¢ ) R NP
fa(2) = 2 CtrDR+k—n]"" eU.

Corollary 44. If f € TL%(v,k) and n > 0, then the assertion (4.2) holds true with

c1-7)
falz) =2 a[?—&—k—v]z , z€eU.

Concluding Remarks: Just as we pointed out the Wright generalized hyper-
geometric function contains the Hohlov operator, the Carlson-Shaffer operator, the
Ruscheweyh derivative operator, the generalized Bernardi-Libera-Livingston opera-
tor, the fractional derivative operator, etc. The results presented here can provide
interesting extensions and generalizations of those considered earlier for simpler ana-
lytic function classes. The details involved in the derivations of such specializations
are fairly straight forward.
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ABSTRACT: Let {X,,n > 1} be a sequence of independent random
variables such that EX2 < oo, 02 = Var(X,), n > 1. We set S,, =
Zk:l Xp,n > 1. Let N denotes the standard normal random variable. In
this paper we investigate the speed of convergence

(ﬁ Sy — ES), + a;

In D N
) — €, as n — oQ,
ag

k=1
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1. Introduction

Let {X,,,n > 1} be a sequence of independent random variables with mean EX,, =
and variance Var(X,,) = o,,n > 1, and let {a,,n > 1} be a sequence of positive real
numbers. In this paper we are interested in the limit behaviour of the products

HS - ES; Jraj (1)
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52 Tomasz Krajka, Zdzistaw Rychlik

as n — o0o. This study begin Arnold and Villasenor ([1]) in the case when {X,,,n >

1} is a sequence of independent and exponentially distributed random variables and

n = ESn,n > 1. This result was generalized by Rempata and Wesotowski. In the
paper [7] they omit the assumptions, that X,,, n > 1, are exponentially distributed.
Furthermore the mentioned above result was generalized by Qi ([6]) and Lu and Qi
([3]) to the case of stable limit law.

In all these results there are computed the limit in weak sense of (1.1). Al-
ways there is considered the normalizing sequence a,, = nu and always is considered
the sequence {X,,n > 1} of independent and identically distributed random vari-
ables (i.i.d.). In [2] there was obtained the first result for independent only sequence
{X,,n > 1} and for arbitrary normalizing sequence {a,,n > 1}. This result is in-
teresting even in i.i.d. case. If in the i.i.d. case we consider the sequence of reals
{an,n > 1} such that

X, - FX,4+a,—a,_1 >0, as. ,n>1,

n 2
E N O and (Zk:l k/a’%>

az ZZ=1 kAZH/ak

— 0, as n — o0,

then

n .
(H m)v" L 6N, as n— oo, (1.2)
j=1 4
where 72 = 30 (A7)?0?, A7 = 377 1/ak,n > 1. We consider this case separately
(Theorem 2).

In this paper we investigate the speed of convergence in the mentioned above
results. This problem is difficult due to a lot of results needed to establish the con-
vergence type (1.2). It is the central limit theorem as well as the weak law of large
numbers and the strong law of large numbers. In this paper we will give the estimation
of the term

TS5 —E
_sup|P H 5; +a]) <m]—P[eN<x]|.

This is the first paper concerning this problem. From now on C denotes the
generic constants different in different places, maybe. For arbitrary x,y € R we write
x Ay =min{z,y}, 2 Vy = max{z,y}.

2. Main results

We begin with the result for a sequence of nonidentically distributed random
variables {X,,,n > 1}.
Theorem 1. Let {X,, n > 1} be a sequence of independent random variables, such
that EX,, = pin, E(X, — pun)? = 02. Moreover, let {a,,n > 1} be a nondecreasing
and divergent to infinity sequence of positive real numbers (we put a, = 0) such that
il = O(1), as n — oo, and for every k > 1,6 > 0, denote

an
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¢k(§) = P[Xk —prtap —ap—1 < 5]

Furthermore, let {v,, n > 1} be a sequence of positive numbers such that
Yo dopeq (A)202 — 1, as n — oo, where A} = Y7, o I, for somer > 2, E|X,[" <
oo,n > 1, and

a’ s 1ﬂ)(|r-%s]+1 s"

Tots 2 L = 0(1), asn - o,

a -
n j=n+1 J

where
n n
_ v T 2 2
Ln*§ E|XJ‘ ) Sn*E 05,
=1 =1

then for every positive numbers €,0, and m € N, we have
L r 1 2L g? m B T_
An < C{EmEEm 0B (ST S 4 (9, SO (AP IR Frm e
am
m

+ Y ok(8) + o t

k=1
| max{on, 0,1} — 1| | 3j=1(47)
2me (ko1 (AR)?07)% 7
where On = ’)’nVW(ZZ=1 AZXk)vXn =X, - fon, T 2 1.

In the case of i.i.d. sequence with arbitrary normalizing sequence {a,,n > 1} we
have:

Theorem 2. Let {X,,n > 1} be a sequence of i.i.d. random wvariables, such that
EX, = p, E(X, — p)? = 0. Moreover, let {an,n > 1} (ap = 0) be a sequence of
divergent to infinity positive real numbers such that a"“ = O(1). Furthermore let v,
be a sequence of positive numbers such that

n

Z(A”) 0? —1,as n — o0.
k=1

(i) If, for some 2 <r < 3,E|X;|" < 00 and
nko—1

n
Fkoen Fey>0 SUP G < o, and T}LH;O — =0,
n  QGn ay,

then for every positive number 6 > 0, and m € N, we have

m 1N k1 -
An < o= 2 v 5 r/( r+1 1/ r+1) 2(,+1)
< OLE Al ) O AR
k=1 k=1
n m
N L (AT max{on, 0, } — 1
+ (76 )7‘+1+ j=1 J +| {Q o } |+§ (bk(é)}

(=1 (A7)2)/2 V2re pat
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(ii) If, for some T,c >0, 0 <& <2, 0 <m <mn, and every t € (0,T], Ee'™* <
6%t2027]~imn~>00 atsL’ =0, and v, maX{ZZTd(AZL)Qa m} — 0, as n — oo, then

1A(2—5")

A, < C{e’cl( 2)em + Yol In(yn ) |AT + %Zk/ak 1/2

n 1 n An 3 n) -
N mYn| In(y,)] n 27;] 1 ( ])3/2 n | max{o,, 0, '} +Z¢k
0 (225=1(A47)?) V2r
where
IQT, for 0<d <1
c(z) = - ANEL for & =1, (2.1)
Qw for 1< ¢ <2.

The last result deals with the sequence {X,,,n > 1} of i.i.d. with the normalizing
constants a, = nu,n > 1.

Theorem 3. Let {X,,n > 1} be a sequence of i.i.d. random variables, such that
EX, =pu>0, E(X, —u)? =02 Moreover, let v, = \7%’" > 1. Then

(i) If, for some 2 < r < 3, E|X|" < oo, then for every positive integer m < n and
0 > 0, we have

A, <C{m' "+ M +ntr/2 4 (@)ﬁ + (
n

T ;%F%+mm@»

(it) If for some ¢, T > 0 and every t € (0,T], EetXi < e3t*¢ , then for every positive

0<d<1:

n(n n(n))?
A, <C{ 14/% ) + (16(\/%) + In(n)éq1()}.

Collorary 1. Assume that there exists dg > 0 such that P[X; < do] = 0.

(i) Let the assumption of Theorem 3 (i) holds. Then

A, < Cal 1),

where =3 for € (2,1,],
Our) = § it Jor 7€ (ro 550),
i for € [255,3],
ﬁw:{ nn),  for r € [%5%,3]
1, otherwise,
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(i) Under the assumptions of Theorem 3 (ii), we have
A, < Cy/In(n)n"%.

Collorary 2. Assume that there exists §,, A > 0 such that for any §, > § > 0 we
have P[X; < 6] < Cd™.

(i) If the assumptions of Theorem 3 (i) holds, then
A, < Cag’r”\n_QQ(’\’T),

where 5 ( A )
r— r— r
Os(\,7) = mi -
2(A,7) = min{ 2 ’2(r2+)\r2+)\r—)\)’4}’

and
a”vrv)‘ — ln(n)7 Zf 62()\’ 71) = %7
2 71, otherwise.

(i) Under the assumptions of Theorem 3 (ii), we have

A, < Cag’ATL_@a(}‘),

e O3()) = 2()\11)7 for XA <1,
s %, for A >1,
o — (ln(n))%, for A <1,
3 v/In(n), for A>1.
3. Proofs

For the proof of our main result we need some auxiliary results.

Proposition 1. Let {X,, n > 1} be a sequence of independent random variables,
such that EX,, = i, E(X,, — pn)? = 02. Moreover let {a,, n > 1} be a nondecreas-
ing sequence of positive real numbers such that % =0(1) .

(i) If, for some r > 2, E|X,|" < co,n > 1, then for every positive e

Sh, Ly + s;,
P[|a—| > < O ——2, (3.1)

n aye”
where Cy = 4(1 + 2)7 + 21-7/2e7/2(r 4 2)'T(r/2 + 1).

(i5) If {Xn,n > 1} is a sequence of independent identically distributed random vari-
ables with E|X,|"” < co,n > 1, for some r > 2, then for every e > 0, we have

nr/?

S
P22 26 <€ (3.2)

rar’
[e5%5
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where Cy is such as in the point (i).

If, additionally, there exist kg € N, and c, such that

nko—1
sup —z—, < Co, (3-3)
n Qanp °
and
nleréo 5= 0, (3.4)
then g
n
P22 >e]l < Cg—m——— 3.5
Han|_€]_ QaZL(er/\e’%)’ (3:5)

where Cy = 4(1 + 2)"E| Xq|" + 22 ke koI (r + 2)2ko ko ghoc
If {X,,n > 1} is a sequence of independent and identically distributed random
variables with EetXn < e3t°* for some ¢ > 0 and every t € (0,T), then

PH%I >e] <27 GEND, (3.6)

n

(111) If {X,,n > 1} is a sequence of independent identically distributed random vari-

ables with E|X,|" < co,n > 1, for some 2 < r < 3, then for every ¢ > 0, we
have

PIZ 2 e < o (37)
where C3 = 4(1 4 2)"E|X1|" + 4(r + 2)%e* ofp .
If BetXn < e3t°¢ for some ¢ > 0 and every t € (0,T), then

P[|%| > ¢] < 2e7neETNE/EN /2, (3.8)

Proof of Proposition 1. From Fuk-Nagayev’s inequality, we have

2

TZ?:I E|X1|T 2
P[S,| > z] <2(1+ ;) B— + 2exp{—2(r+2)""e Z?:l ‘712' .

Let us put © = ane, then

S 2. L a’e?
P[] >e] <4(1+ ) —" +2 —2(r4+2)"%e "2
1512 ] 40+ )7 2+ 2ep{-2(r +2) e
As for anyt € R
I't+1
e—wgu’ (z > 0),

Tt
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putting t =1/2, we get (3.1) and (3.2). Putting t =k, from (3.3) and (3.4) we have

2
exp{—2"1(r + 2)_2€_TU;2%} < co(2(r+ 2)26T)k°ko!£w
so we get (3.5). Because in the case a, = n (3.3) and (3.4) holds with k, = 2, thus
(3.7) follows from (3.5)
On the other hand (3.6) and (3.8) follows from Petrov ([5] chapter 4 theorem 16
p.81). [ ]
From Petrov [5] and Po3oBcruit [8] we cite the following result:

Proposition 2. Let {ay,,n > 1} be an increasing sequence of positive numbers such
that i1 /an = O(1). Let u(z) be a positive function such that, for some v > 0, we
have u(x)z=" | 0 as x T oo and

L [Ful) = as T — 0o
e /x Ly = 00, . (3.9)

Then, for every € > 0, the following conditions are equivalent

P22 > o] = O(u(an),

n

and

Plsup| 2] > &) = Oufa).

Proposition 3. Let {X,,, n > 1} be a sequence of independent random variables,
such that EX,, = i, E(X,, —pn)? = 02. Moreover let {a,, n > 1} be a nondecreas-
ing sequence of positive real numbers such that % =0(1).

(i) Assume, for somer > 2, E|X,|" < co,n > 1. Furthermore, assume that L"aitsr‘ 1
0 and
a’ . E|X; — "+ st — st
n Z | J MJ| J+1 J _ O(l), as n — oo,
Ly +sh a”
Jj=n+1 J

then for every e > 0

s Lo+ 5"
Plsup | 25| > ] < 020,
k>n Ok ar,

(3.10)

(it) If {X,,n > 1} is a sequence of independent identically distributed random vari-
ables with E|X,|" < co,n > 1, for some r > 2, and the sequence {a,,n > 1} is
such that % =O0(1) and 5 — 0, as n — oo, and




o8

(iii)
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then, for every e > 0, we have

S r/2
P[Sup|—k|>5]<Cnr . (3.11)

k>n Ak n

If additionally there exist kg € N, and co such that

nk‘[)*l
Slip e < ¢p,
then S

n
Plsup |2E| > ¢] < C—. 3.12
[Z§2|ak‘—5]— o (3.12)

If BetXn < e%t2°2, for some ¢ > 0 and every t € (0,T), and for some § > 0, we

S5
have lim inf 2= > ¢,, then
n

S
Plsup |2%| > €] <
k>n Ak

where ¢y is defined in (2.1).

Ce=cron 0<d' <1
{ e , for 0 < ¢ <1, (3.13)

Ce=9n " for 1< 4 <2,

If {X,,n > 1} is a sequence of independent and identically distributed random
variables with E|X,|" < co,n > 1, for some r > 2, then for every ¢ > 0, we
have

Sk
P —| >l <C . 3.14
[gg\kl_f]_ | (3.14)
If EetXn < e3¢ for some ¢ > 0 and every t € (0,7), then
S :
P[sup |—k| >e] < Ce 4", (3.15)
k>n k

where ¢y is as in (2.1).

Proof of Proposition 3. Proposition 3 follows from Propositions 1 and 2. For
proof of (3.10), (3.11), (3.12), (3.13), (3.14) and (3.15) we consider

Ly + sp, + 7= (B X1 |" + 851 — 5%)

u(z) = Qht1 =k o , for x € (ag,ars1],

kr/2 + akm+:likak ((k. 4 1)7’/2 _ k.r/2)
u(w) = - . for @€ (@ ol

T—ag
u(z) = %, for x € (ak,aks1],
u(x) _ e_CI(Q—é)/\l’
1

u(r) = o
u(z) = e
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respectively. In all cases u(zx) is continuous monotonously tending to 0. When we
consider normalization by a, we have % = O(1) whereas for normalization by n

we have 1 = O(1). We must check only condition (3.9). In the first case we have,
forx e (a;€7 ak+1]:

o0 T a
1 u(y) apiq /J+ L; —|-s
—— dy <
wta) /x v VS Lovs Z {

=k+1 V%
(aj41 = a;)(E|Xja|" + 554, — 55)
+ arJrl }
J
o Bl
= Lk: + Sk it ]+1 a;
Gi1  ~ EXjnl" + 85, -5
s O7 Z v = o),

and similarly in the case of proof of (3.11). For (3.12), we have

j=k+1
g1, k o~ _
< v T
- kr (a}; Z a")
j=k+1
g1y, 1 Gy — j.z1
= () -+ o= Y ()i
ap T kr PR Ak
1 aj 1)2 |
< oyl G B DR g L
a T krap 4 1-%
ap+1.,1  k+1 2
( ag ) r kE r(2-r7) (1)

To prove (3.13) we consider two cases. If 2 —6 > 1, then

oo 00 ,—cCoY Col 0
[ty = cer [Ty < CO8 [T e 2 £ oy
xT y xr xT

otherwise

-6

1 /°°1 5/00 e—co¥’
— dy = Ce®" T ay<
@ ), g L Ty WS

060021275 o 1-6 —c y276 Ceco$276 > —cot
(2 0)z2—" / (2= 0)y e W= G /$ ¢ rdt=

Ce,

=5 =0
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The last two cases of function u(x) are obvious. |

Let us consider the sequence of random variables {X,, n > 1} defined on the
probability space (€2, .4, P).

Proof of Theorem 1. Let us denote

k
X, = Xy — Sk:Sk*ZMj, k>1,
j=1
L Sk + ay, N
A, = sup|P[(J] ) < x] — Pl < ]|,
x w=1 Ok
ZZ:1 AZXk

A(n) = sup |P[ < z] — O(z)|.

Var(3i—y AR Xk)
Then

Ay <sup Pl Y1+ ) < ] aa).
T 1 k

Let us note for arbitrary positive integer m and arbitrary positive ,¢’,&",

S 1
Aym,w)=A; = [sup 25| > -],
k>m Ok 2
" S
Ay(mn,w)=Ay = [y, Y. (522 >el,
k=m+1 ke
Aumnw) = ds = [l 32> )
b b n k=1 a,k b
< gk "
Ag(m,n,w)=Ay = [’yn|z:ln(a——|—1)|>€]7 w e .
k
k=1

Then, from the expansion of the logarithm function, we have for everyn € N

m n

Sk Sk

A, < 2k 2k

n < sgplp[vnzln(ak +1) 7 Y o

k=1 k=m+1

"5

oy Y (R <a, AL AY, Ay A - ()|
k=m-+1 @k

+  P[A1] + P[A] + P[A3] + P[A4],

where A’ = Q\A. Because, for arbitrary events A and B we have P[B] — P[4] <
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P[BN A’ < P[B], thus

Plyn Y % <z —e—¢c —¢e"] — P[A]] — P|As] — P|As] — P[A4]

k=1 "*
<P ) S P, S (P ag g a4
ar a ar ) 3 ) )
k=1 k=m+1 k=m-+1
< Py i% <z+e+e +£"]
Therefore from [5] (p.161 (3.3) and (3.4)) we have
4 n 5,
A, < QZP[Ai]+max{sup|P[’ynZa—k<x—a—£'—6”]—¢>(x)|,
i=1 ¢ k=1 "
- S’k ’ "
sup|P['ynZ— <xz+e+e +"—0(x)|}
x =1 ag
4 / " -1
ete’+e” | |max{on, 0, } — 1
< 2 PIA]+An)+ + n . 3.16
< 2P A+ L (3.10)

Now we sequentially evaluate all terms on the right hand side of (3.16). From
Proposition 8 we have

Ly, + st
I = 2P[A)] < C%. (3.17)
Furthermore, from Markov’s inequality we have
I = inf(2P[As] + ——) < inf{8 En: E(‘T:)QJFL}
2_€>O 2 /2 >0 Tn b1 15 V2T
< 2V2(2m) i znj Sk}
= ™ ’Yn az
k=m+1
Crd (3™ 3
< Oy Zaﬁ )2, (3.18)
k=1 k

By a similar transformations like those in the proof of Proposition 1 and because

Z EXk 2 < m1/271/r Z Am E|Xk %
k=1 k=1

(the function f(p) = (L Y71, [tx])P is nondecreasing for every fived sequence {ty,1 >
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k > m}) we achieve
€/
I = inf (2P[A —
3 61,1;0( [ 3] + \/%)
. e (AT BIX|" + (7L, (AP E|X )2 e
< inf. Cr;, = +
~ e’ >0 { v, E/T \/%}
< om0 (S (AP)TEIX|)Y D (3.19)
k=1
On the other hand, for x > —1 it is true that <In(x +1) <z, thus
x
E//
I, = inf (2P[A
1= inf (2P[A4] + \/ﬂ)
m Sk m Sk 5//
< inf {2P = >N+ 2P[y, _ Ak o g+
< (2P0 300> 2 Yt < el )
= == Qg
— Sk — Sk o
< f {2P[y — >l +2P —_— < =" X; >
BRI ST S s e
= = ]—
_ &
+2P[ min X, <]+
[<j<m J } \/ﬂ}
r/2 1 r v | mog
T Z ( ) E|Xk| Sk "
< —_—
nf { S + Pl Y |51 > €]
k=1
m 51/
+1-— 1—-0¢;00))+—1,
where X, X, + ap — an_1,n > 1. Since
m m k—1 m
~[[a -0 Z o) [T(1=0i(0) < :(6),
— j=1 k=1

j=1
m 2L (A B X

6//7"

therefore
(3.20)

I, <C inf {7"
e"”">0

Yo In(m) S0, B Xy i
Lt BN 570,00 4
k=1

+

Taking into account (3.17-3.20) and evaluation (cf. [5])
2 (AN EIX|
A(n)<C
S T
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we get the assertions. |

Proof of Theorem 2. Similarly as in the proof of Theorem 1 we evaluate terms
in (3.16). From Proposition 1, Markov’s inequality, Fuk’s-Nagaev inequality and the

evaluation ~ ~
S “ Sk e”d yrm”
Pl Y128 > 0 < Y PIE > S )<

k=1 k=1 Y gmror’
we get
L < o
A,
n
k.1
I, < C(’yn Z a—2)27
k=m+1 k
- o, M
Iy < Cytmaen (Y (Ap))
k=1
m
I, < C{ r/(r+1) 2(7‘+1) Z 1/(1‘+1)+ 'Yn T+1 JFZQbk
k=1

On the other hand, for the second part of Theorem 2 we use evaluations

1A(2—35)

11 < Ce @9m 5

n
1

k1
L < Clm) )%

=1 Yk
I3 < Cynlln(y,)|AT

my,| In(vy, -
Lo< Oy + P R0 S )
k=1

thus the proof of Theorem 2 is ended. |

Proof of Theorem 3. At first we consider the asymptotic behaviour of
D oh=1 (OSG=x 1/3)" for arbitrary r. We have

ZZj ~ [ e = [ yreay

k=1 j=k
on the other hand

1
r+1

1 n
:/ yedy < / y'e Vdy <T(r+1),
0 0

where T'(z) is the Euler’s function. Thus

Cin < Z ~)" < Cyn. (3.21)
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The term’s Iy and I we evaluate as in Theorem 2 whereas I3 and I follows from
(3.21) and Proposition’s 1 and 3:

—[1 S le—’r',
L < CVin(n)/Vn,
n
Ii £ C{ED™ +mei(d) + (5 =)}

From (3.21), we have
A(n) < Cnt/2,

and from the fact that 02 = 1— I;g , where H, = Y7 _, % is the n-th harmonic number,
we get

| max{on, 0, '} — 1 Hy 1/2
< )
2me dren(l — H,/(2n))
< C In(n)
n

what ends the proof of (i). Part (ii) follows similarly from Theorem 2 (ii).

4. Examples and applications

Example 1. Let {X,,,n > 1} be a sequence of independent and identically dis-
tributed random variables with geometric distribution, i.e., P[X| = k] = pg"~1, where
p=1—¢q. Then

EX, =p=1, Var(X) =o?= 2L,
p p
t
E@tXl S

I g < o0, for te€ (0,—In(q)].

From Theorem 17 ([4]) and the last inequality above for t < —1n(q), there exists such
g that

7 2
Ee!X < 9.

So, as P[X < 1] =0 from Collorary 1 (i), we have

sup | P(]] %)ﬁ <a] - PleN < 2]l < Cy/In(n)n" 5.

Example 2. Let {X,,n > 1} be a sequence of independent identically distributed
random variables with exponential distribution with parameter A > 0, i.e.

1—e?  for x€(0,00),

PlXy <a] = { 0, otherwise.
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Then 1
EXi=p=~, Var(X;) =0 = 2
Moreover N
EelX = ey < eﬁfi
A—t
thus ) .
EetX <2 ,
forT € (0,X), t € (0,T], and ¢ = )\(/\Q_T). As P[X1 < 6] =1 —e 2 <\, from
Collorary 2 (i), we have
2 Sj)\ _1 N 3 _1
sup|P[(H T)\/ﬁ <z]— Ple” <z]| < C(ln(n))2n~1.
T j=1

Example 3. Let {X,,.n > 1} be a sequence of independent and identically distributed
random variables with Pareto’s density function

»
f@) = B, forz>a>0,
0, otherwise.

Then, for 2 < p < 3, we have

pa®

pa 2
EX — = —, V(ITX =0 = .
1=p= gy VerlX) -2 1?

As P[X;1 < a] =0, for a >0, we have for p > 3+T\/5
sup \P[(H M)\/Mg;?) <z] - PleN < 2] < C’\/ln(n)n*%.
x 5 Jpa
j=1

The similar evaluation for another p may be obtained from Corollary 1, too.
Open problems.
(i) As it seen from our examples the "worst” evaluated term in our Theorems 1-3
and Corollaries 1-2 is I». Is it possible to get the better evaluation of the term
Sk
Pldyn Zle(;k)Q > el]?
(ii) From [8] and from our Proposition 2 we know only asymptotic behaviour of

Plsupy>,, |‘2—:| > ¢]. Is it possible to evaluate the constants C in Theorems 1-3
and Corollaries 1-27
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ABSTRACT: In the present paper we define a new operator using the
Salagean and Ruscheweyh operators. Denote by L' the operator given
by LT : A, — A, L7 f(2) = (1—a)R™ f(2) +aS™f(2), z € U, n,m € N,

where R™f(2) denote the
Ruscheweyh derivative, S™ f(z) is the Saldgean operator and A, = {f €
HWU), f(z) = 2+ ant12™™t + ..., 2 € U} is the class of normalized

analytic functions. A certain subclass, denoted by S,, (4, ), of analytic
functions in the open unit disc is introduced by means of the new operator.
By making use of the concept of differential subordination we will derive
various properties and characteristics of the class Sy, (4, ) . Also, several
differential subordinations are established regardind the operator L}

AMS Subject Classification: 30045, 80A20, 34A40
Key Words and Phrases: differential subordination, convexr function, best dominant,
differential operator

1. Introduction

Denote by U the unit disc of the complex plane, U = {z € C: |z| < 1} and H(U)
the space of holomorphic functions in U.

Let A, = {f € HU), f(2) = 2+ anp12"' +..., 2 € U} and Hla,n| = {f €
HWU), f(z) =a+anz" +apn12" +..., 2€ U} fora € C and n € N.

Denote by K = {f € A,, Re Z;:,/;S) +1>0, z € U} the class of normalized con-

vex functions in U.
If f and g are analytic functions in U, we say that f is subordinate to g, written
f =< g, if there is an analytic in U function w such that w(0) = 0, |w(z)] < 1 and

COPYRIGHT (© by Publishing Department Rzeszéw University of Technology
P.O. Box 85, 35-959 Rzeszoéw, Poland



68 Alina Alb Lupasg

f(z) = g(w(2)) for all z € U. If g is univalent, then f < g if and only if f(0) = g(0)
and f(U) C g(U).

Let ¢ : C3 x U — C and h univalent in U. If p is analytic in U and satisfies the
(second-order) differential subordination

U(p(2), 2p'(2), 22" (2); 2) < h(2), zeU, (1.1)

then p is called a solution of the differential subordination. The univalent function ¢
is called a dominant of the solutions of the differential subordination, or more simply
a dominant, if p < ¢ for all p satisfying (1.1).

A dominant ¢ that satisfies ¢ < ¢ for all dominants ¢ of (1.1) is said to be the best
dominant of (1.1). The best dominant is unique up to a rotation of U.

1.0. (Salagean [8]) For f € A,, m € N, the operator S™ is defined by S™ : A,, —
ATH

S°f(2) = f(2),
S'f(z) = 2f'(2),
S"Hf(z) = 2(S"f(2)), zeU
LO. If f € Ay, f(2) = 2+ 272, 14527, then S™f(2) = 2+ 372, j™a;2,
2eU

1.0. (Ruscheweyh [7]) For f € A,, m € N, the operator R™ is defined by R™ :
A, — Ay,

Rf(z) = f(2),
R'f(z) = 2f'(2),y
(m+1)R™f(2) = 2z(R™f(2)) +mR™f(2), z€U.

10. If f € A, f(z) = 24+ Y a;27, then R"f(2) = 2+ Y, Cmy, ja;27,
j=n+1 j=n+1
zeU.

Lemma 1.1. (Hallenbeck and Ruscheweyh [5]) Let h be a convexr function with
h(0) = a, and let v € C* be a complex number with Re v > 0. If p € Hla,n]
and

p(2) + %prz) <h(z), zel,

then
p(z) < g(2) <h(z2), zeUl,
where g(z) = —Z~ [ At/ 1dt, z € U.
Lemma 1.2. (Miller and Mocanu [6]) Let g be a convex function in U and let h(z) =

9(2) + nazg'(z), z € U, where a > 0 and n is a positive integer.
If p(z) = g(0) + pp2"™ + ppi12" + ..., 2 € U, is holomorphic in U and

p(z) + azp'(z) < h(z), z€U,
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then
p(2) < g(2)

and this result is sharp.

2. Main results
2.0. [1], [2] Let a > 0, m € N. Denote by L7 the operator given by L7 : A,, — A,,
L f(z)=(1—-a)R™f(z) +aS™f(z), zeU.

2.0. LY is a linear operator and if f € A,, f(2) = 2+ >)2, ., a;27, then
L f(z) =2+ Z;inﬂ (™ +(1~-a) Cipjo1) 42, z € U.

Theorem 2.1. Let g be a convex function, g(0) =1 and let h be the function h(z) =
g9(2) +24'(2), z€ U.
Ifa >0, meN, fe A, and verifies the differential subordination

(L’;f(z))/ < h(z), zeU, (2.1)

then

and this result is sharp.

Proof. Consider

p(z) = Lypf(z) _ 2+ 2jmnn (0™ + (1 —a) ;) a2
z z

ntly . zel.

14+ ppz" + pry12

We deduce that p € H[1,n].

We have L7 f(z) = zp(z), z € U. Differentiating, we obtain
(L2 f(2)) = p(2) + /(). 2 € U

Then (2.1) becomes

p(2) +2p'(2) < h(2) = g(2) +29'(2), z€U.
By using Lemma 1.2., we have

Ly f(2)

p(2) < g(2), z€U, e <g(z), zeUl.



70 Alina Alb Lupasg

Theorem 2.2. Let h € H(U) with h(0) = 1 which verifies the inequality

1!
Re<L+m(d>>—l zel.

n(z2) 2’
Ifa >0, meN, fe A, and verifies the differential subordination
(L™ f(2)) < h(z), z€U, (2.2)
then
Ly f(2)

where q(2) = =+ [ h(t)t=—1dt. The function q is convex and it is the best dominant.

Proof. Let

po) =B g S @) e

Jj=n-+1

oo
=1+ Z pjzj_l, z€eU,peH[l,n].
j=n+1

Differentiating, we obtain
(Lo f(2) =p(2) +20'(2), z€U

and (2.2) becomes
p(z) +2p'(z) < h(z), ze€U.

Using Lemma 1.1., we have

1 z 1
p(2) < q(z) = — / WOt ldt, s e U,
nzn» Jo
i.e. I , .
“f@)<ﬂd= l/iwn#*ﬁ,zeu
z nzn» Jo

and ¢ is the best dominant. [J

Theorem 2.3. Let g be a convez function such that g (0) = 1 and let h be the function
h(z)=g(2)+2¢ (2), z€U.
Ifa>0,meN, feA, and the differential subordination

Ly AN L
(uw@)><hm, cuU (2.3)

holds, then
Lm+lf (2)
=~ <g(z), z€eU
Lpfey ¥

and this result is sharp.
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Proof. Consider

CLmp) 2 (T (L= ) O ) a2

p(z) = = : .
Ly f (2) z+ Z;in_,_l (Oé]m +(1—-a) Cn"jJrjfl) a2l
m+1 o)) ™)) .
We have p’ (z) = % —p(z)- % and we obtain

2L (2 !
p(2)+2 0 () = ()

Relation (2.3) becomes
p(z) +2p'(2) < h(z) = g(2) + 29'(2), z€U.
By using Lemma 1.2., we have

p(z) <g(2), z€eU ie. m <g(z), zeUl.

O
Following the work done in [3] and [4], we introduce a new class of functions.
2.0. Let 6 € [0,1), @« > 0 and m € N. A function f € A, is said to be in the class
Sm (0, @) if it satisfies the inequality

Re (L™f (2))" >0, z€U. (2.4)
Theorem 2.4. The set Sy, (J,«) is conver.

Proof. Let the functions
o0
fi(z)=z+ Z a;p?’, k=12, zeU
Jj=n+1

be in the class Sy, (9, @). It is sufficient to show that the function

h(z) =n1f1(2) +m2fa(2)

is in the class S, (0, ), with ; and 7e nonnegative such that 7y + 7y = 1.
Since h(z) = 2+ 3272, .1 (maji +n2aj2) 27, 2 €U, then

L7h(z)=2z+ Z [ajm +(1-a) C’$H71] (maj1 + n2aj2) . zeU.  (25)
j=n+1

Differentiating (2.5) we obtain

m ’ 00 -m m . i
(Lth(2) =14+352 1 (@™ + (1= ) Oy ] (magi + 1pags) 5277,
zeU.

Hence
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Re (L7h(z)) =1+ Re (771 dint1d ™+ (1 —a)Cpy i ] ajlzj—l)

oo

+Re | m2 Z jlag™+ A —a)Cly ] aje2 ™). (2.6)
j=n-+1

Taking into account that fi, fo € Sy, (6, ), we deduce

Re (Wk Z jlajm+ 1 —a)Cny ;] ajkzj1> > (0—-1),k=1,2.  (2.7)

j=n+1
Using (2.7) we get from (2.6)
Re (LTh(2)) >14+m (0 —1)+n2 (6 —1), zeU,

that is
Re (L™h(z)) >4, ze€U,

which is equivalent that Sy, (J, @) is convex. O

Theorem 2.5. Let g be a convez function in U and let h(z) = g(2) + C_%ng’ (2),
z € U, where ¢ > 0.
If f € S (0,0) and F (2) = I (f) (z) = &% [5 t°f (t)dt, z €U, then

(LMf(2)) < h(z), ze€U (2.8)
implies

(LYF(2) <g(z), =2€U
and this result is sharp.
Proof. We have 2" F (z) = (c+2) [; t°f (t) dt. Differentiating, with respect to z,

we obtain

(c+1)F(2)+2F () = (c+2) f(2) (2.9)

and
(c+1)LTF (2)+ 2(LTF (2)) = (c+2) L7 f(2), z€U. (2.10)

Differentiating (2.10) we have

(La'F (=) + 2(LRF(2)" = (Lyf(2), =€l (2.11)

c+2
Using (2.11), the differential subordination (2.8) becomes

(L™F (2)) + zg' (2). (2.12)

52 (LIF () < g()+ -

If we denote
p(2) = (LI'F (2)) (2.13)
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then p € H[1,n].
Replacing (2.13) in (2.12) we obtain

/ 1 /
(z)%g(z)+7c+2zg (2), zeU.

p(2) + P

Using Lemma 1.2. we have
p(z) <g(2) de (LyF(2)) <g(2), =2€U
and ¢ is the best dominant. [

Theorem 2.6. Let h(z) = W, 5 €10,1) and c > 0.

If a >0, m € N and 1. is given by Theorem 2.5., then

1. [Sm (6,0)] C Sy, (6%, ), (2.14)

_(lgmtt?
—Jo t+1

where 6* =26 — 1+ Wﬂ (&2 —2) and B () dt.

Proof. The function h is convex and using the same steps as in the proof of Theorem
2.5. we get from the hypothesis of Theorem 2.6. that

p(z) + 2 (2) < h(z),

c+2

where p (z) is defined in (2.13).
Using Lemma 1.1. we deduce that

p(2) =g(2) <h(z),

that is
(LTF(2)) < g(2) < h(2),
where
c+2 (% ez 14+ (20—1)¢
= S v =
o) = L2 f =

_ z pot2 g
(20—1) 4 FDE 25)/ dt.
0

nz 1+t

Since g is convex and g (U) is symmetric with respect to the real axis, we deduce

Re (L™F (2)) > ‘Izl‘li:ane g(z)=Reg(l)=9"= (2.15)
2% — 1+ (C+2)(2_26)ﬁ<c;t2_2>-

n
From (2.15) we deduce inclusion (2.14). O
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Theorem 2.7. Let g be a convex function such that g(0) = 1, and let h be the function
h(z) =g(z) + 2¢'(2), z € U.
Ifa>0,meN, feA, and the differential subordination

1, (L= a)mz(R™f(2))"

(LT f(2) + — <h(z), zeU (2.16)

holds, then
[Laf(2)] < g(2), =z€l.

This result is sharp.
Proof. By using the properties of operator L', we obtain
LT f(2) = (1 — a)R™ M f(2) + aS™ T f(2), zeU. (2.17)
Then (2.16) becomes

(1 —a)mz (R f(2))"
m+1

(1= Q)R™ ! f(2) + aS™ ' f(2)) + < h(2),

with z € U.
After a short calculation, we obtain (1 — a) (R™f (2)) +a (S™f (2))’
+2z £(1 —a)(R"f(2))" +a(S™f (z))") <h(2),z€U.
et
p(z) = (1—a) (R"f(2)) +a(S"f(2)) = (Ly f(2)) = (2.18)

o0
1+ Z (af™ T+ (1= a)jCry 1) a2 Tt =14 pp2™ + pppr 2™+
Jj=n-+1
We deduce that p € H[1,n].
Using the notation in (2.18), the differential subordination becomes

p(2) + 2p'(2) < h(z) = g(2) + 24 (2).
By using Lemma 1.2., we have
p(2) <g(z), zeU, ie (L™f(2)) <g(z), ze€U
and this result is sharp. 0

Theorem 2.8. Let h(z) = %, a convex function in U, 0 < 5 < 1.

If a >0, meN, fe A, and verifies the differential subordination

(1 —a)mz (R™f(2))"
m-+1

Lot f(2)] + < h(z), z€U, (2.19)

then
(L3 f(2) <4q(2), zeU,

1
where q is given by q(z) =26 —1+ 2(171@ OZ tﬂ_;
nzn

dt, z € U. The function q is convex

and it is the best dominant.
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Proof. Following the same steps as in the proof of Theorem 2.7. and considering
p(z) = (L™ f (2))', the differential subordination (2.19) becomes

1+ (28-1)z
B 1+2
By using Lemma 1.1. for v = 1, we have p(z) < ¢(2), i.e.,

/ 1 i 1 1 a1+ (28-1)t
Lm = h(t)tn tdt = — Tl g
(L f(2)) < q(?) T /O (t)t=—"dt T /0 t t

p(2) + 2p'(2) < h(2) , zeU.

nzn nzn 1+t
W9 [ ti!
=26—-1+ dt, zeU.
g nzw  Jo 1+t

O
Theorem 2.9. Let h € H(U) with h(0) = 1, which verifies the inequality

zh"(z) 1
h’(z) :l >—§, ze U

Ifa >0, meN, feA, and satisfies the differential subordination

(1 —a)mz (R f(2)"
m+1

Re [14—

(LT () + <h(z), ze€U, (2.20)

then
(L7 f(2) <4q(2), zeU,

where q is given by q(z) = —¢ foz h(t)t%’ldt. The function q is convex and it is the
nzn

best dominant.
Proof. Using the properties of operator L and considering p (z) = (L7 f (2))’, we
obtain

(1 —a)mz(R™f(2))"
m+1

(Lo (=) + =p(x) + 2/ (2), z€U.
Then (2.20) becomes

p(z) 4+ 2p'(2) < h(z), z€U.
Since p € H|[1,n], using Lemma 1.1., we deduce

p(2) <q(2), z€U,

where
1

nz

o(2) = / W)ttt zeU,
0

1
n

i.e.

LAY <o) = 5 [ heta sev

nzw
and ¢ is the best dominant. [J
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ABSTRACT: In this paper, we find conditions on the coefficients {ay}
such that the corresponding analytic function f(z) and its partial sum
fn(z) are close-to-convex with respect to some starlike function in the unit
disc D. We also find conditions on these coefficients so that the analytic
function is starlike univalent in ). As an application, we find conditions
on the triplet (a,b,c) so that, the normalized Gaussian hypergeometric
function and its particular cases, are in one of these classes.
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1. Introduction

Let A be the class of analytic functions f in the unit disk D = {z : |2| < 1}, normalized
by the condition f(0) = 0 = f/(0) =1 and § = {f € A : fis univalent in D}. A
function f € S is said to be starlike and convex if

Re (foég)> >0 and Re <1 + Zﬁ;?) >0

respectively. The class of all starlike and convex functions are denoted as &* and C
respectively and C & §* & S. A function f € A is known as close-to-convex with
respect to a starlike function g if Re(zéc (/S)) > 0. The class of all such function is
denoted as K. Every close-to-convex functions is univalent. Let 7z be the subclass
of S, consist of all typically real functions, i.e, all f € S such that Im(f)Im(z) > 0.
For details regarding these classes, we refer to [3]. The following Lemma 1.1. gives

another criteria for starlikeness.

COPYRIGHT (© by Publishing Department Rzeszéw University of Technology
P.O. Box 85, 35-959 Rzeszoéw, Poland
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Lemma 1.1. [12] Let f € A be typically real in D and satisfies the condition that
Re f/(2) > 0,z € D. Then f is starlike univalent in D.

Lemma 1.2. [10] f € A has real coefficients and is convex in the direction of imag-
inary axis if, and only if, zf'(z) is typically real.

A function f € A is said to be convex in the direction of the imaginary axis if every
line parallel to the imaginary axis either intersects f(ID) in an interval or does not
intersect at all. The following result is well known.

Lemma 1.3. Let f € A has real coefficients, then f is convex in the direction of
imaginary axis if, and only if,

Re ((1-2%)f'(2)) >0 Vze D
In this work, we are interested in the following problems:

Problem 1.1. Find the condition on ay, such that the functions defined by the series

o0
flz)=z+ Z arz® and its partial sum f(z) =z + > y_, axz"® are starlike univalent.
k=2

Problem 1.2. Find the condition on ay, such that the functions defined by the series

o
z) = z+ arz® and its partial sum f(z) = z + S 7_. arz® are close-to-convex
p k=2
k=2
with respect to a particular starlike function.

Non-negativity of cosine series, sine series and their partial sums play an important
role in getting some partial answer of above problems. Many results regarding non-
negativity of trigonometric series and their application to find the geometric nature
such as starlikeness, convexity and univalency of various classes of analytic functions
and polynomials, are available in the literature. For details we refer [1, 2, 4, 8, 15].
The following result given in [2] is very useful for our work.

Lemma 1.4. [2] Let (cx)32,, be non-increasing sequence of nonnegative real numbers
such that cg > 0 and

2k
2k+1

cor < Cop—1, Jfor k=1,2,3,---. (1.1)

Then, for every positive integer N, M, we have

co + c1c080 4+ cocos20 + c3cos30 + - - - - - +cycosNO > 0,
c18inf + cosin20 + c3sin36 + -+ - - - + copr+18in(2M +1)8 > 0.

Following result is an immediate consequence of the Lemma 1.4., if we replace ¢
by r¥cp,Vr € [0,1) and rewrite the hypothesis given in Lemma 1.4..
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Lemma 1.5. If (c)52, satisfies the hypothesis of lemma(1.4.), then for r € [0,1)
and every positive integer N, M, we have

co + c1rcos O + cor? cos 20 + ¢33 cos30 4 - - - - +enrNcosNO >0
and
c1rsind + cor?sin20 + c3r3sin30 4 - + copqprr?MHL sin(2M +1)6 > 0.

For partial solution regarding the polynomial part of problems 1.1. and 1.2., we
consider the Cesaro means of f(z), which is defined as follows:

Let f(z) =2+ Z az", then the n-th Cesaro means of order 3 of f(z) is given as

k=2

O—g(za f) = Z n; akzka (12)

=1 An

for all n € N and 3 > —1, where AP = WAQ_1 and A = 1.
In particular,
A

ol(z) = Z —5 (1.3)

= An

Note that o2(z, f) = 02(z) * f(z), where * denotes the Hadamard product or

n

convolution, which is defined as (f * g)(z) = z + Zakbkzk if f(z) =2+ Zakzk
k=2 k=2

o0
and ¢g(z) = 2+ Z aiz". For details about the convolution and it’s properties, we
k=2

refer [3, 14].
There are many results available regarding the univalency of polynomials o2 (z),
cf.[5, 7, 11]. The following is the most general one due to Lewis.

Lemma 1.6. [7] For 3> 1 and n € N we have o(z) € K.

By convolution property of convex functions and close-to-convex functions [14],
we immediately have

Corollary 1.1. For 3>1,n € N and f € C we have 62(z, f) € K.

In [13], Ruscheweyh established the following result which gives the geometric prop-
erty of Cesaro means.

Lemma 1.7. [13] Let 8> a > 1, f € C3_qa)/2- Then for alln € N :

n +
Tﬁaﬁ(z,f) € C3—a)/2-

A corresponding result holds if C(3_q) /2 is replaced by either S*(3_q)/2, 01 K(3_a)/2-
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2. Main Results

In this section, we state our main result which addresses problems 1.1. and 1.2. par-
tially.

Theorem 2.1. Let (ax)32, be sequence of non-negative real number such that a; =1
and (k4 1)ag41 < kay. Then for all k > 1,

(a): (2k+1)2(2n + 2 — 2k)ask 1 < (2k)%(2n + 2 — 2k + B)ags
n+2+0 5 is cl ith both th
ﬁoznw(%f) is close-to-convex with respect to both the

starlike functions z and z/(1 — z).

which implies

2n +2
Further that, for the same condition % 2n+2( , f) is starlike univalent.
(b): (2k+1)(2n + 2 —2Kk)ag, < (2k —1)(2n + 2 — 2k + B)agk-1

n+1+8 4

2n+1
like function z/(1 — 22).

Proof. (a): Consider

which implies 2nJrl( . f) is close-to-convex with respect to the star-

2n+2 4B
2n+2+4+0 g4 2n+2+08 A2n+2 ko
gan+2(2) = 2n+2(z fl=z+ Z
2n +2 M2 o Ay,
and write
2n+1 2n+1
Regh,10(2) = co + Z cxrfeoskd and Tmgh, ,o(2) = Z crrtsinkd
k=1 k=1

where ¢y = 1,

_ 242+ 8 gy

(k+ Va1, 6 el0,7], rel0,1).

2n + 2 A5 s
Now we need to prove that, by hypothesis of this Theorem, ¢ satisfy the conditions
of Lemma 1.5.. By an easy compuation, for Kk =0,1,2,..., we have
2n+2+0
Cht1 —Ck = g [Agnfk(k + 2)ak+2 — AgnJrlik(k + 1)ak+1}

(2n + 2)A2n+2

(2n+2+p)A5, MmA1—k+0
P P L M S S |
(2n+2)AL {( BT e )ak“}

__@n+2+/ﬂA;_k[ ) .
= (2n+2)A2n+2 (k4 2)art2 — (k+ Dagsr) -

0.

(k + Dag
2n+1—-k

IN
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Similarly, for £k = 1,2,3, ..., by writing

_ (2n+2+ ﬁ) Int1—2k
(2n + 2)(2k + 1)A2n+2

we have

2% B , (2n +2 — 2k + )
ok 1ot = MGk ez = —5 ———p

Cok — (2k)2a2k
which is non-positive. Now ¢ satisfies the hypothesis of Lemma 1.5.. Hence by
using the minimum principle of harmonic functions, we have Re gy, ,,(2) > 0, and
Im g5, 5(2) > 0. Further, by reflection principle, Im g5, »(z) > 0 for Im (z) > 0,
implies Im g5,,, 5(2) < 0 for Im (2) < 0 and using cos k(2w — 0) = cos k6, we get that,
this result is also true for 6 € [r, 27].

Combining all these observations, we have

Re (1 = 2)g5,12(2) = Re (1 — 2)Re gy, 15(2) + Im (2)Im g5, 5(2) > 0.

Hence gay,42(2) is close-to-convex(univalent)
Lemma 1.1., we have that go,12(2) is starlike.
(b): Consider

2n41 48
2n+1+03 4 2n+140 A2n+1 by ok
Gon+1(2) = ———— 2n+1( f)=z+ Z
2n+1 2n+1 P 2n+1
2n+1
Then, we have, Im zg5,, (2 Z crr¥sinkf, where

k=1

2 1 Al

oL = n 108 Ao “kap, 0€[0,7], rel0,1).

2n +1 Aé’nﬂ

Now, as in the previous part, to prove the result under the hypothesis of the
Theorem, we need to verify the conditions given in Lemma 1.5.. Hence, for k£ =
1,2,3,..., we have

(2n+1+5)A§ —k 2n+1+p
— = n k41 e
Ckt1 — Ck nt 1)A2n+1 {( + 1Dags1 1 k k]
2n+ 1+ B)A°S
= ( ﬁ) In—k |:(k + l)ak+1 — kay, — kak} <0,
(2n + 1)A2n+1 n+1

(2n+1+ B)(2k)A§n+1 2%k
(2n +1)(2k + 1)A2n+1

(2n+2—2k+ )
2n+ 2 — 2k

and by writing N := > 0, we get

2k
2k +1

Cop — Cof_1 = N|:(2k + l)agk — (2]15 — 1)a2k_1]
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which is non-positive. Hence we have Im (zg5,,,,(2)) > 0 in
DN{z: Imz > 0}, using Lemma 1.5.. By reflection principle, we have Im (z¢'(z)) < 0
in DN{z:Imz <0}, i.e, 295, (%) is typically real. Hence using the fact that f(z)
has real coefficients and is convex in the direction of imaginary axis implies that f(z)
is close-to-convex w.r.t the starlike function %5 and Lemma 1.2., we get the required
result and the proof is complete. m

We observe that Theorem 2.1. is different from Lemma 1.7. by means of coefficient
conditions. But in sense of order of close-to-convexity Lemma 1.7. is stronger than
Theorem 2.1.. Now we will discuss some particular case of Theorem 2.1.. Since the
class of all close-to-convex functions with respect to same starlike function forms a
normal family, and for 8 = 0, %ﬁaf(z,f) = fu(2) = 2 + X1 _, arz"®, we have the
following result, partially supporting problem 1.1. and problem 1.2..

Theorem 2.2. Let (ax)32, be sequence of non-negative real number with aqx = 1 such
that, for all k > 1,

(k4 Dagr <kar  and (2k+1)%ag,1 < (2k)2azs. (2.1)

o0
Then, f(z) = lim fo,42(2) =2+ Zakzk is close-to-convex with respect to both the
n—oo
k=2
starlike functions z and z/(1—z). Further that, for the same condition, f(z) is starlike
univalent.

In [1], the results of [4] are improved and the following results are obtained, which
seems to be the best available conditions on ay, so far, such that f(z) = 2+ po, ap2”
are starlike univalent.

Lemma 2.1. [1] Let (ax)32, be the sequence of real numbers such that a; = 1, and
for that, k > 3, the quantities ay, Aay, Aay are all non-negative. If

1. 2(11 74&24’3&3 Z 0
2. 2a1 + as — 12a3 + 10aq4 > 0
3. 2a1 + 4as + 6az — 56a4 + 45a5 > 0

4. A’az + A%as + 2L A% > 0,

oo

then the function defined by f(z) = z + Z aiz®, are starlike univalent.
k=2

Lemma 2.2. [1] Let (ax)3>, be the sequence of real numbers such that a1 =1, and
for that, k > 3, the quantities ai, Aay, A’ay, are all non-negative. If

1. 2a1 —4as +3a3 >0

2. 2a1 4+ a2 — 12a3 + 10aq > 0
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3. 2a1 + 4as + 6az — 56a4 + 45a5 > 0

4. ézag +A2CL3 +A2a5 + %AQCLG > 0

5. A%ay + A%ay + %A%G >0

then the function defined by f(2) =z + > pes apz®, are starlike univalent.

Here by A we mean Aay, = kag — (k + 1)ags;, and A% = é(g).
Now we provide some examples to support our results.

Example 2.1. Consider the sequence (ax)32, such that a1 =1, ag = % and

(k,!)222k

(2k + 1>a2k+1 = (2k + 2)a2k+2 = m

Then by Theorem 2.2. the function

> 1 2 1 8 4 16
_ kE _ 12,43, 1.4 5 6 T
f(Z)—Z+kE:2akz Z+22 —i—gz +6z +75z +45z +245a+

1s starlike univalent. But Lemma 2.1. and Lemma 2.2. fails to include this function
as A%a3 = 3az — 8ay + Has = —1—25 2 0.

Hence Theorem 2.2. is better than the Lemma 2.1. and Lemma 2.2., in the sense that
it covers some more cases.
The functions
z z z q z
11 (1—2)2 R PO

and their rotations are the only nine functions which are starlike univalent and have
integer coefficients in D, (see [6, 9] for details). Theorem 2.2. handles the close-to-
convexity of f(z) with respect to z and z/(1 — z). The following result, which can
be obtained directly from Theorem 2.1., handles the close-to-convexity of f(z) with
respect to z/(1 — 22).

Theorem 2.3. Let (ax);2, be sequence of non-negative real number with a; =1 such
that, for allk > 1,

(k+ Dagy1 < kag and  (2k + Dagg < (2k — 1)agg—1. (2.2)
Then f(z) = lim fon41(2) =2 —|—Z ax2" is close-to-convez w.r.t .
k=2

Note that Theorem 2.1. refers to the starlike functions z, z/(1 — 2) and z/(1 — 2?)
upto partial sums. So far, we have no results for the remaining two cases of starlike
functions, namely z/(1 — 2)? and 2/(1 — z + 2?). Hence it will be interesting to see
if one can find similar results with respect to these starlike functions. In particular,
not many results related to the close-to-convexity of f(z) with respect to the starlike
function z/(1 — z + 22) are available in the literature.

Using Vietori’s lemma [15], some partial answer to the problem 1.2. is given in [1].
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Lemma 2.3. [1] Let (ax)72, be a sequence of nonnegative real numbers such that
a; =1 and if
(/ﬂ + 1)ak+1 < kayg, (2k)2a2k < (2k — 1)2a2k,1

n oo
Then the function defined by the series Zakzk, Zakzk are close-to-convex w.r.t
k=1 k=1

1—22-

Example 2.2. Consider the sequence (ax)32, such that ap =1 and

(k1)222F

(Zk)azk- = (2k —+ 1)agk+1 = m

Then by Theorem 2.3., the function

1 2 2
f(z):z+§22+§23+ﬁz4+7—85z5+~-

z

is close-to-conver w.r.t 1=, whereas Lemma 2.3. cannot be applied for this example.

3. Application to Hypergeometric Functions

Consider the operator Hg p..(f)(2), is defined as
Hape(f)(2) = 2F(a,byc; 2) * f(2) (3.1)

In particular, if a=1 in (3.1), the the operator Hip.(f)(2) is known as Carlson and
Shaffer operator and denoted as L .. Here by F(a,b;c;z) we mean the Gaussian
hypergeometric function F'(a,b;c;z), z € D, given by the series

= (a,n)(b,n)
F(a,b;c;2) = Z L (3.2)
— (¢,n)(1,n)
which is the solution of the homogenous hypergeometric differential equation

2(1—2)w"(2) + [c— (a+ b+ 1)2]w'(2) — abw(z) =0 (3.3)

Here a, b, ¢ are complex numbers such that ¢ # 0, —1,—-2,-3,--+, (a,0) = 1 for a # 0,
and for each positive integer n, (a,n) = a(a + 1,n — 1) is the Pochhammer symbol.
In this section, we find the condition on the triplet (a,b,c) and the coefficients {ay, }
such that He po(f) and Ly (f) are (i) starlike univalent and (ii) close-to-convex with
respect to a particular starlike function. These results are also expected to support
Problem 1.1. and Problem 1.2. partially.
The following theorem on H, 4 .(f) is obtained by using Theorem 2.2..

Theorem 3.1. Let apy1 < ak,Vk > 1, then Hopo(f) is starlike univalent if one of
the following conditions is satisfied.



Coefficient conditions for univalency and starlikeness of analytic functions 85

1. a < 0,b <0 be such that ¢ > max(0,2ab,a +b+ 1) and (a,k)(b, k) > 0,Vk > 1.
2. a>0,b>0 and ¢ > T(a,b) where

1
T(a,b) = max {O,Qab,a +b+1, 6(7(1 +7b+ ab +4),
1 1
ﬁ(l5a + 15b + 6ab + 4), §(9a +9b + 9ab)} .

Proof.
Hape(f)(2) = 2F(a,b;c; 2) =24 Z by, 2" (3.4)

(a,k—1)(b,k—1)
(e, k—1)(1,k—1)
the hypothesis of Theorem 2.2.. For this, we write

(a,k—1)(bk—1)

(bt Dby = kb = S22 et X (), (3.5)

where, by, = ay,Vk > 1. Now it is enough to check if {bs} satisfies

where,
Xk)=(a+k—1)0b+k—1)(k+Vagy —k*(c+k—1)ag. (3.6)

We need to show that X (k) < 0. An easy computation, using the hypotheses given
in the Theorem gives
X(k) < [la+k—1)0b+k—1)(k+1) -k (c+k—1)] app
< [~c+ 2ablagtq,

proves X (k) < 0, since ¢ > 2ab. The proof will be complete, if we prove the other
inequality given in Theorem 2.2.. This implies that we need to prove that

(a,2k — 1)(b, 2k — 1)

2 _ Zboy, =
(2k +1)%baj41 — (2K)%boy, (c, 2k)(1, 2k)

Y(k) <0,

where,
Y (k) = (a4 2k — 1)(b+ 2k — 1)(2k + 1)%aop 11 — (2k)(c + 2k — 1)ag.

Again an easy computation using the hypothesis of the Theorem leads to the fact that

Y (k) [(a+ 2k —1)(b+2k — 1)(2k + 1)* — (2k)*(c + 2k — 1)] azp41
[(28(a + b) — 24c + 4ab + 16)k* + (4ab — 26(a + b) + 24c — 24)k

+(7Ta+ 70+ ab+ 9 — 8¢)|azk+1

IA A

IN

(6(5a + 5b + 2ab — 4c) + 8)k —(21(a + b) + 3ab — 16¢ + 8) | agk+1

A

(9a + 9b + 9ab — 8¢) azk+1 < 0,
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and the proof is complete. m

Note that the convex function f(z) = z/(1 — z) satisfies the hypothesis given in
Theorem 3.1.. Hence taking ay, = 1,Vk, we get Hop.c(f)(2) = 2F(a,b;¢; 2)*z/(1—2) =
2F (a,b; ¢; z). This leaves us to have condition on triplet (a,b,c) such that zF(a, b; ¢; z)
is starlike univalent. Also the well-known Pdlya-Schoenberg Theorem[14] ascertains
that the convolution of close-to-convex(starlike) function with convex function is close-
to-convex(starlike). Applying this result, we have

Corollary 3.1. Let (a,b,c) satisfies the hypothesis of Theorem 3.1. with ar = 1.
Then, both zF'(a,b; c; z) and Ha p,c(g)(2) are starlike univalent for any convex function

g(z) € A.

The following results can be proved in a similar way Theorem 3.1. is proved and
hence we give only the statement of these results.

Theorem 3.2. Let the triplet (a,b, c) and {ay} satisfy one of the following conditions.
1. (k4 Dagyr < kag with

i. a <0, b<0 such that ¢ > ab and (a,k)(b,k) >0, Vk > 1, or

ii. a>0,b>0 and c > max{0,ab,a + b, ;(8a + 8b + 2ab — 2), 1 (3a + 3b +
3ab—1)}.

2. (k+1)2ap1 < Kk2ay, with
i. a <0, b<0 such that ¢ > %ab and (a,k)(b,k) > 0,Vk > 1, or
ii. @>0,b>0 and c > max{0, sab,(a+b—1),1(a+b+ab—1)}.
3. (k+ Dagyr < kay , (2k +1)2a2x11 < (2k)%agy, with
i. a<0,b<0 such that ¢ > ab and (a,k)(b,k) > 0,Vk > 1, or
ii. a>0,b>0 and ¢ > max{0,ab,a +b— 1}.
4. (k + 1)2ak+1 < k2ak s (2k + 1)3a2k+1 < (2k)3a2k, with
i. a<0,b<0 such that ¢ > %ab and (a,k)(b,k) > 0,Vk > 1, or
ii. a>0,b>0 and ¢ > max{0, %ab,a—l—b— 1,%(a+b—|—ab)}.
Then Hqp,c(f) is starlike univalent.

Remark: Since ar = 1 is not satisfied by any of the conditions given in Theorem
3.2., a result equivalent to Corollary 3.1. cannot be obtained for zF(a,b;c;z). But
when a = 1, then both results, namely Theorem 3.1. and Theorem 3.2. reduces to the
following result, except for the cases, where a < 0.

Corollary 3.2. If b > 0, then Ly .(f) is starlike univalent if one of the following
conditions is satisfied.

(i) ar+1 < ay,
¢ > max{0,2b,b+ 2, £(14b + 11), 5 (216 + 19), (9 + 18)}.
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(i) (k+ L)ags+1 < kag, ¢ > max{0,b+1,%(5b + 3), $(3b+ 1)}.
(iii) (k+ 1)%ag+1 < k?ax , ¢ > b.
(iv) (k+ Dagy1 < kag and (2k + 1)%asp41 < (2k)%ag, , ¢ > b.
(v) (k+1)2ar41 < k2ar, and (2k + 1)3a2r11 < (2k)3agy,

¢ > max{0,b, $(2b+ 1)}.

The following result is immediate.

Corollary 3.3. Ifb > 0 and ¢ > max{0,2b,b+2, £ (14b+11), 15(21b+19), £ (9b+18)},
then the incomplete beta function ¢(b, c; z) is starlike univalent. Further, the Carlson-
Shaffer operator Ly .(g) is univalent for any convex function g € A.

Instead of deducing the conditions for £ . from Theorems 3.1. and Theorem 3.2.,
we can apply Theorem 2.2., to get the following results for £y, .(f).

Theorem 3.3. Ly .(f) is starlike univalent if b > 0 and one of the following condi-
tions is satisfied

(i) ¢ > max{0,2b,b+2,3(6b+7),2(90+5)} and ap1 < ay,Vk > 1.
(i) ¢>1(3b+1) and (k + 1)ap1 < kag, Vk > 1.
(iii) ¢>b and (k+ 1)ags1 < kag, (2k + 1)%asp11 < (2k)%azy.
The following result is similar to Corollary 3.1..

Corollary 3.4. Let b > 0 and ¢ > max{0,2b,b + 2, %(Gb +7), %(91) +5)}. Then,
the incomplete beta function ¢(b,c; z) is starlike univalent. Further, for every convex
function g € A, Ly (g) univalent.

We observe that Theorem 3.3. and Corollary 3.4. are stronger than Corollary 3.2.
and Corollary 3.3.. But Corollary 3.2. and Corollary 3.3. covers more range for a, b, c
than Theorem 3.3. and Corollary 3.4..

Now applying Theorem 2.3., we get following results for close-to-convexity of
Ha,p,e(f) with respect to the starlike function ;%5

22"
Theorem 3.4. Let (a,b,c) and {ax} satisfy one of the following conditions.
1. ag41 < ag,Vk > 1, together with

(i) a <0,b<0 and ¢ > max{0,2ab, § (2a + 2b+ 2ab+ 3),a + b+ 1} such that
(a,k)(b, k) >0,YVE>1, or

(i) @>0,b >0, ¢ > max{0,2ab, 3(2a + 2b+ 2ab— 1),a + b+ 1, £ (6a + 6b +
ab — 2), £(2a + 2b + 2ab + 3)}.

2. (k+ Dags1 < kag, 2k + Dagkr1 < (2k — VDasgg—1,Vk > 1, together with
(i) a <0, b<0 and c > ab such that (a,k)(b, k) >0,Vk>1, or
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(ii) a > 0,b >0, ¢ > max{0,ab,a + b — 1}.

3. (k+1)2ap1 < Kk2ay , (2k +1)2a041 < (2k — 1)%a9,_1,Vk > 1, together with
(i) <0, b<0 and c> jab such that (a,k)(b,k) >0, Yk >1 or
(ii) @ > 0,b> 0, ¢ > max{0, sab,a + b — 2}.

4. (k+ 2)ags1 < kay,Vk > 1, together with

(i) a <0, b<0 and c > ab such that (a,k)(b, k) >0, VkE > 1, or
(i) a > 0,b> 0, ¢ > max{0,ab,a +b—1,3(2a + 2b+ ab — 3)}.

Then, Hap,c(f)(2) is close-to-convexr w.r.t =.

Proof. We prove the result for part 1 and the results for other cases can be obtained
similarly. For proving part 1, we need to check that by given in equation (3.5) satisfy
the requirements of Theorem 2.3.. Now writing

(a,k —1)(b, k — 1)

(k + 1)bjy1 — kbg = B E

X (k)

with X (k) as in (3.6), we get that

X(k) (a+k—1)(b+k—1)—k(c+k—1)] (k+ aps

<
< Jab—¢(k+1)ag+ <0,

using the hypothesis of the Theorem. This proves first inequality in (2.2). It remains
to prove the other inequality in (2.2). From equation (3.4), we have

(a,2k — 2)(b, 2k — 2)

(2k‘ + l)bgk — (Zk‘ — l)bgk_l = (07 o — 1)(1’ 2 1)

Z(k), (3.7)

Z(k) = (a+2k—2)(b+2k—2)(2k + Dag, — (2k — 1)*(c + 2k — 2)agk_1
< Mla+b+1—c)k* —2(a+b—ab—2c+5)k
+(6 —2(a +b) + ab — ¢)]azk

[2a 4+ 2b + 2ab — 6¢ + 3]ag, < 0,

IN

using the hypothesis of the Theorem and the proof is complete. m

The following result can be obtained by applying ar = 1, in first part of the
hypothesis of Theorem 3.4.. Note that ay = 1 can not be applied to the other case of
Theorem 3.4..

Corollary 3.5. Let (a,b,c) satisfies any one of the following conditions:

(i) a < 0,b <0 and ¢ > max{0,2ab, §(2a + 2b + 2ab + 3),a + b + 1} such that
(a,k)(b, k) >0, Vk > 1.
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(i) a>0,b>0,c> max{O,Qab,%(Qa—l—Qb—!—Qab—1),a—|—b—|—17%(6a—|—6b—|—ab—
2), ¢(2a + 2b+ 2ab + 3)}.

Then, zF(a,b;c; z) is close-to convex w.r.t +=5.

Corollary 3.6. Under the hypothesis of Corollary 3.5., Hap.c(f)(2) is univalent for
every convex function f.

Remark: In particular, taking a = 1 in Theorem 3.4., we have the close-to-convexity
of Lp(f) w.rt 175, except for the conditions given in the Theorem with a < 0. We

omit details of this result. But applying Theorem 2.3. on the coefficients of £y .(f),
with a = 1, we get the following result immediately.

b+ 2, if 0<b<1,
3b, if b>1.
Then, the incomplete beta function ¢(b,c; z) is univalent.

Corollary 3.7. Let ¢ >

References

[1] A. P. Acharya, Univalence criteria for analytic funtions and applications to
hypergeometric functions, Ph.D Thesis, University of Wiirzburg, 1997.

[2] G. Brown and E. Hewitt, A class of positive trigonometric sums, Math.Ann.
268 (1984), 91-122.

[3] P. L. Duren, Univalent functions (Grundlehren der mathematischen Wis-
senschaften 259), Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983.

[4] L. Fejér, Untersuchungen iiber Potenzreihen mit mehrfach monotoner Koef-
fizientenfolgfe, Trans. Amer. Math. Soc. 39 (1986), 89-115.

[5] L. Fejér, On new properties of arithmetical means of partial sums of Fourier
series, J. Math. Phy. 13 (1934), 1-17.

[6] B. Frideman, Two theorems on Schlicht functions, Duke Math. J. 13 (1946),
171-177.

[7] J. Lewis, Application of a Convolution Theorem to Jacobi Polynomials, STAM
J. Math. Anal. 19 (1979), 1110-1120.

[8] S. Koumandos and St. Ruscheweyh, Positive Gegenbauer Polynomial Sums and
Applications to Starlike Functions, Constr. Approx. 23 (2006), 197-201.

[9] M.O. Reade and H. Silverman, Univalent Taylor Series with Integral Coeffi-
cients, Ann. Univ. Mariae Curie Sklod. Sect. A 36/37 (1982/1983), 131-133.

[10] M. S. Robertson, On the theory of univalent functions, Ann. Math. 37(2) (1936),
374-408.



90 S. R. Mondal, A. Swaminathan

[11] M. S. Robertson, Power series with multiply monotonic coefficients, Michigan.
Math. J. 16 (1969), 27-31.

[12] St. Ruscheweyh, Coefficient condition for starlike Function, Glasgow Math. J.
29 (1987), 141-142.

[13] St. Ruscheweyh, Geometric properties of The Cesaro means, Results in Math-
ematics. 22 (1992), 739-748.

[14] St. Ruscheweyh and T. Sheil-Small, Hadamard product of schlicht functon and
the Pélya-Schoenberg conjecture, Comment. Math. Helv. 48 (1973), 119-135.

[15] L.Vietoris, Uber das Vorzeichengewisser trignometrishcher Summen, Sitzungs-
ber, Oest. Akad. Wiss. 167 (1958), 125-135.

Saiful R Mondal

email: sa786dma@iitr.ernet.in

Department of Mathematics,
Indian Institute of Technology,
Roorkee 247 667 Uttarkhand, India

A. Swaminathan
email: swamifma@iitr.ernet.in

Department of Mathematics,
Indian Institute of Technology,
Roorkee 247 667 Uttarkhand, India

Received 15.10.2008



Journal of

Mathematics
and Applications

No 31, pp 91-97 (2009)

Geometric result in the boundary
behaviour of Blaschke products

Chr. Mouratidis

Submitted by: Jan Stankiewicz

ABSTRACT: For a Blaschke product B with zeros in an angular domain
having vertex on the unit circle we give a necessary and sufficient condition
for the boundary behavior of B, in terms only of the distribution of the
zeros. Moreover, we show, with a counterexample, the non-equivalence of
two known results of Tanaka, concerning the specific boundary behavior
of Blaschke products.

AMS Subject Classification: 30C55
Key Words and Phrases: Blaschke products, boundary behaviour

1. Introduction

The boundary behavior of an analytic function in D = {z : |z| < 1} is one of the
fundamental subjects in the theory of analytic functions. One of the most important
results in this direction is the following, known as Fatou’s Theorem [3].

Theorem 1. Let f € H®. There exists a unique function f* € L*(0D), which is
defined almost everywhere as

F(e) = tim | f(re”) 1)
Additionally, if for 6y € OD the limit in (1) exists, then f(z) — f*(€¥) when z — €%
in a Stolz angle.

The limit in (1) is called radial limit of f in e and because of Fatou’s Theorem,
we call it also a not tangential limit. [4]
For a Blaschke product (see in [1])

Zn — 2

B(z) = B(z,{z}) = [ | ‘27:' zeD

1—-2z,2

COPYRIGHT (© by Publishing Department Rzeszéw University of Technology
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we know that |B(z)| < 1 for z € D and B(e'?) =1 a.e.

Since lim,_1 | B(re?)| < 1 a.e., the study of the boundary behavior of a Blaschke
product concerns the zero-measure set where the radial limit does not exist ([2]).

In general we have

0 <lim i{lf }B(rei0)| < limsup |B(rei9)| <1. (2)
r— r—1

Let us define

oo

Clw, {z}) Z (I—Jw)(1—[z]) (3)

—w)?+|w—z|*

Using the definition of C, Tanaka in [5] proved some results, to determine when
we have equalities or proper inequalities in the condition (2).
Let T' be a Jordan curve ending in 9D.

Theorem 2.
limy 1, wer B(w) =0 if and only if lim,—1, wer C(w,{z,}) = o0

Theorem 3. limsup,,_,; ,er C(w,{zn}) = 00 if and only if for every R >0 , there
is a sequence {wp} CT with w, — 1, such that lim,,_1 B(w) =0 when w belongs
to the set UnenT'n(R) , where

I'n(R) = I'n{zeD/p(z,w,) <R}, neN .

The above theorems are still valid if we substitute 1 with any point e € dD.
But in this case, without loose of generality we will assume that 6y = 0.

2. Main result

To formulate our results we need the notion of the asymptotically polynomial se-
quences. So, we give the following definition.

Definition. Let {a,} be a sequence with ay, > 0, o > apt1, n € N and lim o, =

n—oo

0. We call {a,} asymptotically polynomial if for every k € N there is an infinite
sequence {n,} C N depending on k and such that aa”ﬁ — 1 asp — oo.
’le

If this condition is not satisfied, we say that {ay,} is asymptotically exponential

In most cases it is relatively easy to see if a sequence {a, } is asymptotically polynomial
or not. In a plausible way we would say that {a,} is asymptotically polynomial if it
contains families of arbitrarily many asymptotically equal terms.

Our main theorem is

Theorem A. Let {z,} C D be a Blaschke sequence. We suppose also that all z,
lie in an angular domain in D with vertex on 0D, i.e. that there exist a € D and
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[{—2n|

1—|zn
angle). Let o, =1—|2,] né€ Z|V .l

The sequence {an} 1is asymptotically polynomial, if and only if, for every R >0
there exists a real number sequence {r,}, r, € (0,1), with lim, o r, = 1, such
that lim,_,1 B(r) =0 when r is inside the set U,enI'y(R), where

I'n(R) = {x€ R/ p(x,rn) <R} neN .

a positive constant M so that < M for all n (i.e. the zeros are inside a Stolz

Finally, we give a counterexample for which Theorem 2 is not valid. i.e. a spe-
cific Blaschke sequence for which we have limsup,, ; ,er C(w,{z,}) = 0o but not
limy—1, wer C(w,{zp}) = 0.

Proof.

We prove first an auxiliary lemma.

Lemma. Let {a,} be a sequence with oy, > 0,0, > Qpg1 and lim «,, = 0. Then
the sequences ¢, = o, E — and d, = — E ag, n € N , are both bounded if
(677 (7%
k=1 k=n-+1
and only if {a,} is asymptotically exponential .

Proof. ’=" : Let {ay,} be a positive and decreasing sequence and let

n

1
cn:anza—k<M<oo VneéeN. (4)
k=1

Suppose that {a, } is asymptotically polynomial and let k¥ > 2M . Then we can find
an infinite sequence {n,,} such that -~

m— — 1 as m — oco. It is very easy to see that

Ay +k

for k succesive terms o, , 0y, 41, - - -, Qn,, +k—1 We have % — 1 as m — oo for
every [ =0,1,...,k — 1. For brevity we write m instead of n,,.
By induction we calculate easily that
@ LN
m-+k—1 m+k—1
Cmppy = SRl 5 Qmbkol (5)
Qm — Oyt k—1—1
1=0
SO
=1
m—+k—1
Cmtk—1 > E (6)
i=1 Am4i
From lim,, o0 %ﬁ‘l =1foreveryi=1,2,....k — 1, it follows that

k—1

. Qntk—1
lim E ARl S oM,
m—o0 et Qi
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which implies, by (6), that ¢,1x—1 > 2M for sufficiently large m. This stays in
contradiction to (4).
The proof for the sequence {d, } is completely analogous , using instead of (5) the

recursive relation

o la

n n—i

dn—k = dn + E .
Ak o0 Ak

<’ : Assume that the sequence {«,, } is asymptotically exponential. By definition
this means that the families of asymptotically equal terms contain at most kg terms
, where ko € N . This implies that there exists infinite subsequence {n;} C N and
A>1lsuchthat Vie N a:% > A>1and n;y1 —n; < kg, otherwise it would exists
a family of more than kg asSfmptotically equal terms.

Now, let n € N. Then there exist ¢ € N such that n; <n <n;y; or ap, > a, >
On,+1 - We have

n n n;
1 1 ~ 1 1
=) —=an ) —tan) —=an ) —tan) Y =<
=1 'k k=n;+1 =1 'k k=n;+1 J=0 k=n 41 F
n i—1 Mgl 1 i—1
<« — —  =n— <
< ap Z an—f—amz Z i nl—i—amz n»(nﬁl n;)
k=n;+1 Jj=0k=n;+1 7 7=0 7
i—1 1 i—1 a i—1 1
_ n; _
k0+k0aniza7n._ko+kozan.Sko—i_kOZ)\i*j_
=0 j =0 j =0
[ [e%e}
1 1 koA
o OJZ::I/\J— "N T A

Again , the proof for the sequence {d,} is completely analogous , using instead of
the equality

n 1 n 1 1—1 mMj41 1
Cn—anE — = Qpn § 7+an§ E —
o « ° (673
k=1 k=n;+1 J=0k=n;+1
the equality
1 o) 1 niy1—1 0o Mk+1
dn=o Y ak=—" > akt— 3 Y o
" k=n+1 ™ k=n+1 " k=it+1j=ny

]

Proof of the Theorem

" =" Let {z,} be a Blaschke sequence inside a Stolz angle and let {ay,} be
asymptotically polynomial. According to the Theorem 3 it is enough to show that

limsup C(r,{z,}) = oo . (7)

r—1
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We can easily see
1—r < 1 =7z, < |1 = rz, (8)
and additionally

lzn—1] = |[Q=rz)+(rzm—r+2,—1)] <

IN

S l=rzp |+ (1 +7)(1—2)|
= |1—-rzp|4+2|Q—rzp)+2,(r=1) <5 |1=rz,| <5M (1—rl|z,]) (9)

[1—rz,|+2|1—2,| =

The last inequality holds from Theorem hypothesis, that all z,, lie on an angular
domain.
From (3), (8), (9) we have

r{z}) > ¢ Zﬂ

(1 =r|zn])?

so, from (9) it suffices to show that

For m € N we set now r,, = ——

hmsupz —'ZnD > hmsupz rm)(1 = |zn)) =

D iy cur P ol D Dy cpry o
— limsu Z aman (1 + am) (11)
N m—>oopn Oém + an
and since
oo oo m m
mn (1 + ayy) Oyn O, 1 1 1 1 Cm,
Sy oS, Y e >y Y — =
7;2::1 (Qm + ap)? 712::1 (am + an)? “ nz:l an (5= 4+1)2 1 ; a4
(10) follows immediately from (11) and our Lemma.
" <" From the Theorem 3 we get that
sup C(r, {z,}) = oo . (12)

re(0,1)

Let us define 6 = 1 — r. There exists a unique m € N such that a,, > 6 > amyr -
Then we have

. = (A==l S (== fm)
) = Yo TRy Y gy o o Py

n:l
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50571
252 252 _(5 + Z 024 (a, —08)2 o — 0)2

n=m+1
1 1 e a,
= a + T e, e =
- Z (67% + 2C¥m+1(L+1 - 1) Q41 1 1 + (% _ 1)2
< 2ay, Z ozin P Z an = 2¢m + dmy1 + 1, (13)

n=1 n=m-+1
where the sequences {c,} and {d,} are defined in Lemma. Inequality (13) and
condition (12), show that at least one of {c,} and {d,} are not bounded. From

our Lemma follows that {a,} is asymptotically polynomial.

Counterexample
In the proof of Theorem A we show that if {a,} = 1 — |z,| is an asymptotically
polynomial sequence where {z,} is lying inside a Stolz angle then
limsup C(r,{z,}) = o© (14)
r—1
Since Theorem 2 gives much better description for the specific boundary behavior,
it is natural to ask the question if (14) can be reduced, at least for the specific cases
of Theorem A, to
lim1 C(r,{zn}) =
T —
With the following counterexample we show that it is impossible.
1

Let p, = n €N, and a, =4 when py_1 <n < pg. The sequence of
zeros zp, = 1 — «,, is a Blashke sequence:

) ) pi 1 p pic1 oo 1
;O&n_z Z ; ZZ = :Z;m<00

i=1n=p;_1+1

n (n+1)
2

The number of succesive terms of the sequence {a,} taking the same value is
arbitrary large. Then we conclude that {«,} is asymptotically polynomial and from
Lemma we obtain that {c,} is not bounded. We have:

pn+1 Pn
Contl = Qpptl E - = E
Pn+ pnt ~ g n+1' Oék

1 1 -
= — = 1+ ili =
.Z > ,
n+1 i g O (n+1).i=1
1
= 2 - —— — 2 when n — o©
(n+1)!

Consequently, liminfe, < oo . And from (13) we get that

lim i{lf C(r,{z}) < o0
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from the paper gives sufficient conditions such that a function f € A to
be starlike, convex and a-convex.

AMS Subject Classification: 30C45, 30A10, 30C80

Key Words and Phrases: wunivalent functions, starlike functions, convexr functions,
differential subordination, differential superordination, Dziok-Srivastava linear opera-
tor

1. Introduction and preliminaries
Let U denote the unit disc of the complex plane:
U={z€C: |z|] <1}

and -
U={zeC: |z <1}

Let H denote the class of analytic functions defined on the open unit disk U.
Let H(U) denote the space of holomorphic functions in U and let

A ={f €eHU), f(2) =2+ an 12" +..., 2€ U}

Let

Hla,n] ={f € H(U), f(z) =a+anz" + an+1zn+1 +..., 2 €U},

S ={f € A; fisunivalent in U}.

COPYRIGHT (© by Publishing Department Rzeszéw University of Technology
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Let .
K:{feA, Re Zf, ) 1150, zeU},
f'(2)
denote the class of normalized convex function in U

2f'(z)
f(2)

denote the class of starlike functions in U, and

Ma:{feA: Re [(1—a)széi§)+a(2}f,/;(z§)+1>} >0}, el

denote the class of a-convex (Mocanu functions), with « real.

If f and g are analytic functions in U, then we say that f is subordinate to g,
written f < g, if there is a function w analytic in U, with w(0) = 0, |w(z)| < 1, for
all z € U such that f(z) = glw(z)], for z € U.

If ¢ is univalent, then f < g if and only if f(0) = ¢g(0) and f(U) C g(U).

The method of differential subordinations (also known as the admissible functions
method) was introduced by P.T. Mocanu and S.S. Miller in 1978 [2] and 1981 [3] and
developed in [4].

Let Q and A be any sets in C and let p be an analytic function in the unit disk with
p(0) = a and let 1 : C* x U — C. The heart of this theory deals with generalizations
of the following implication:

(1) {¥(p(2), 20/ (2), 2*p" (2); 2) | 2 € U} C Q implies p(U) C A.

Definition 1. [4, p.16] Let v : C3> x U — C and let h be univalent in U. If p is
analytic in U and satisfies the (second-order) differential subordination

(i) (p(2), 20/ (2), 22" (2); 2) = h(2), 2 € U,
then p is called a solution of the differential subordination. The univalent function ¢
is called a dominant of the solutions of the differential subordination, or more simply
a dominant, if p < ¢ for all p satisfying (ii). A dominant ¢ that satisfies ¢ < ¢ for
all dominants ¢ of (ii) is said to be the best dominant of (ii). (Note that the best
dominant is unique up to a rotation of U).

In [5] the authors introduce the dual problem of the differential subordination
which they call differential superordination.

Definition 2. [5] Let f,F € H(U) and let F be univalent in U. The function F is
said to be superordinate to f, or f is subordinate to F', written f < F', if f(0) = F(0)
and f(U) C F(U).

Let ©2 and A be any sets in C and let p be an analytic function in the unit disk and
function o(r, s,t; 2) : C> x U — C. The heart of this theory deals with generalizations
of the following implication:

(iii) Q C {¢(p(2), 2p'(2), 2%p"(2);2) | z € U} implies A C p(U).

Definition 3. [5] Let ¢ : C3 x U — C and let h be analytic in U. If p and
©0(p(2),2p'(2), 22p" (2); 2) are univalent in U and satisfy the (second-order) differential
superordination

S*{feA:Re >0,zeU}
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(iv) h(2) < p(p(2), 20/ (2), 2%p" (2); 2)
then p is called a solution of the differential superordination. An analytic function
q is called a subordinant of the solutions of the differential superordination, or more
simply a subordinant if ¢ < p for all p satisfying (iv). A univalent subordinant ¢ that
satisfies ¢ < ¢ for all subordinants ¢ of (iv) is said to be the best subordinant. (Note
that the best subordinant is unique up to a rotation of U).

Definition 4. [4, Definition 2.2b. p. 21] We denote by @Q the set of functions f that
are analytic and injective on U \ E(f), where

B() = {c € oUs i (2) = o0}

and are such that f/(¢) #0 for ¢ € OU \ E(f).
The subclass of @ for which f(0) = a is denoted by Q(a).
In order to prove the new results we shall use the following lemmas:

Lemma A. [4, Theorem 3.4h, pp. 132] Let q be univalent in U and let 8 and ¢ be
analytic in a domain D containing q(U), with ¢p(w) # 0, when w € q(U). Set

Q(2) == 2¢'(2)¢lq(2)],  h(2) :=0lq(2)] + Q(2)

and suppose that either
(5) h is convez, or

(7)) Q is starlike.
In addition, assume that
[9(2)] | 2Q'(2)

zh'(z) 0’
G Re oy =1 [g] T Qe
If p is analytic in U, with p(0) = ¢(0), p(U) C D and

O[p(2)] + 20" (2)p[p(2)] < Ola(2)] + 24 (2)plq(2)] = h(z)

> 0.

then p < q, and q is the best dominant.

Lemma B. [6, Th.3] Let g be univalent in U, with ¢(0) = a and 0 and ¢ be analytic
in a domain D containing q(U). Define

Q(2) = 2d'(2)ela(2)], h(z) = 0la(2)] + Q(2).

Suppose that:

, 0'la(2)]
(i) Re [tp[q(z)}} >0 and

(ii) Q is starlike univalent in U.
If p € Hla, 1] N Q, with p(U) C D, and 9[p(z)] + 20/ (2)p[p(2)] is univalent in U,
then

Ola(2)] + 24 (2)plg(2)] < O[p(2)] + 20’ (2) ¢lp(2)]
implies q(z) < p(z) and q(z) is the best subordinant.
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In the paper [1] was defined the Dziok-Srivastava operator:

H7ln<alaa2a"'7al;/617ﬁ27"'7ﬁm)f(z) (1)
— i (Oél)n—1(az)n—1 cee (al)n—l - 2"

n=2

For simplicity, we write
Hrln[al}f(z) = Hin(aha?a sy O ﬂlaﬂ?a cee ’6m)f(z)
For this operator we have the property

a1 Hylon +1]f(2) = 2{Hp[en] f(2)} + (a0 = D) Hy [ ] f(2) (2)

2. Main results

Theorem 1. Let 0 < A < 1,Im € Ng = {0,1,2,...}, |l <m+1, o € C,
1
i=1,2,...,l, 6, e C\{0,-1,-2,-3,...}, 7 =1,2,...,m, v € C*, wz’thRe;>O,

f € A and H! [01]f(2) the Dziok-Srivastava linear operator given by (1).
We let

a1 C[HLalf ) s \[HL o] f(2))

F(\Lmyy,a1;2) = (3)
ol Ll H el |y ([Hile )Y
_— ll o o T HL ) (an[almz))]
N PO WLV IC) ([%[%]f(z)]”)']

and
1=z 2vz

h(z) = 1+rz 7(1 T2

zeU. (4)

!
If fe A a; >0, M #0 in U, and the differential subordination
z

F()\,l,m,’}/,al,Z) %h(Z), (5)

holds, where F(\,l,m,~,a1;2) is given by (3), and h is given by (4), then

o Hhloa H1f(2) | [Hplea +1£(2)) PR
S 713 P R TN Ty A A ey
and g is the best dominant.
Proof. Let

Hi,[on]f(2) [Hylaa] f(2))
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Using (1) in (6), we obtain
p(z)=1+piz+p22+..., p0)=1, peH11].
Differentiating (6), we have

Hy oo + U7 ()N |y ([Hyloa + 1))
o) (o) - O

From (6) and (7) and using the property (2), we obtain

Ve (2) = A(1 — N)z (

p(2) +y2p' (2) = F(A\ L,m, v, aq5 2) (8)

where F' is given by (3).
Using (8), the differential subordination (5) becomes

p(z) +72p'(2) < h(z), z€U, 9)

where h is given by (4).
In order to prove the theorem, we use Lemma A. For that let

1—z

q0)=1, ¢qU)={weC: Rew >0}
Define the functions
0:D>qU)—C, Hw)=w,

and )
¢:D>DqU)—C, o¢(w)=yecC, RQ;ZO'

We calculate:

_ . _ —2vz
Q) = /() - 0la(2)] = 71 o
and we have Q') )
2Q'(z —z
= > ie. *.
Re Q0 Rel+z_0, zeU, ie. Qe S
Also,
1—=2 2vz

h(z) = 0lg(2)] + Q(2) = a(2) +72¢'(2) = 37— 0+

and we have W) ) Q')
zh'(z) _ Re L 4R 2Q’ (z
15 B TE)

Using Lemma A, we obtain

Re

>0, zel.

p(2) < q(2),
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i.e.

HL oo +1f(z) | [Hoon + 7)) 1=
Hiolf(:) " HhefG) 1te

and ¢ is the best dominant.

(1=2)

1
Remark 1. For 0< A <1,7v€C*, Re —>0,1=1,m=0, a; =1 we have
8l

H3[1]f(2) = f(2), Hg[2lf(2) = 2f'(2)
and Theorem 1 can be rewritten as the following

Corollary 1. If f € A, with M #0, z € U, and the differential subordination
z

ol 43))

f(2) fz)

"y Z2 f11( 2 f( 2 2
+)\{1+(1+7)Z}f,(i)) 7 f’(z() - (J{/(i))) }

11—z 2vz

14z (142)?

=< h(z)

holds, then

Re {(1 —)) Z]{;S) A (1 n z;,/é(zj))} >0, zel,

i.e. f € My (class of Mocanu functions).

1
Remark 2. ForI=1, m=0,a; =1, A\=0, v € C*, Re — > 0, from Theorem 1 we
v

get the following corollary:

Corollary 2. Let f € A, be so that @ #0, z € U and let the following differential
subordination
) A <Zf’(2)>2 -2 2y
14 + - <h(z) = —— — )
L O o) M T T
Then ,
Re LG o e e fes*
f(z)

1
Remark 3. Fori=1, m=0,a; =1, A\=1,v€ C*, Re — > 0, from Theorem 1 we
Y

get the following corollary:
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Corollary 3. Let f € A, be so that M #0, z € U and let the following differential
z
subordination
) 2 <Zf”(2)>2 -2 29
14+ (1+ + - < h(z) = — .
U e T\ e ) M ST T ey
Then .
Re <1+ zf, (Z)) >0, zeU, ie feK.
f'(2)

Theorem 2. Let 0 < A< 1,0<a<1,l,meNy={0,1,2,...}, I <m+1, o; €C,
i=1,23,...,0, 5, e C\{0,-1,-2,...}, s =1,2,...,m, v € C*, Re % >0, and
H! [o1]f(2) the Dziok-Srivastava linear operator given by (1).

e HalaliC)

univalent in U, then

#0, z € U, the function F(\,v,m,l,a1;2) given by (3) is

1+ (1-20)z2 N 2(1 — a)yz

implies
1 1—-2
o) = U202y e
1—2
where p is given by (6).
The function q is the best dominant.
Proof. Let (1 20)
+ (1 —2a)z
) ===
then

1+ (1—-2a)z . 2(1 — a)vyz

h(z) = a(2) + 724/ (2) = ——— TS

Using (8), (10) becomes
q(2) +72q'(2) < p(2) +72p'(2), 2z €T,

where p is given by (6), and p(0) =1, p € H[1,1] N Q.
Using Lemma B, we have

a(=) < p(2),
141 20) Lo + 10(2) | [HY oo + 7))
1 NG Y ey CS Y

and ¢ is the best dominant.
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Using the conditions from Theorem 1 and Theorem 2, we obtain the following
sandwich-type result:

Hl
Corollary 4. If f € A and M # 0, then
1+(1-2a)z 2(1—a)yz 1—2 2z
< F(\,vym,l,a1;2) < —— —
1—=2 - (1-2)? A ym, 1 e 2) 1+z (142)?
implies
1+ (1-2a)z 1—2 . 1
1 _ . - >
T <p(z)<1+z, z€U, ~eC* Re7_07

where F is given by (3) and p is given by (6).
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ABSTRACT: By using a certain operator D", we introduce a class of
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1. Introduction and preliminaries
Denote by U the unit disc of the complex plane :
U={z€C: |z| <1}

Let H(U) be the space of holomorphic functions in U.
Let
‘An: {fEH(U)7 f(Z) :Z+an+12n+1+---, z € U}
with 4; = A.
For a € C and n € N, let

Hla,n] = {f € HU), f(2) =a+anz" +an12"" + ..., z€ U}

Let
Zf”(Z)

f'(z)

COPYRIGHT (© by Publishing Department Rzeszéw University of Technology
P.O. Box 85, 35-959 Rzeszoéw, Poland

K{feA,Re +1>0,zeU},
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denote the class of convex functions in U.

A function f, analytic in U, is said to be convex if it is univalent and f(U) is
convex.

If f and g are analytic functions in U, then we say that f is subordinate to g,
written f < g, if there is a function w analytic in U, with w(0) = 0, |w(2)| < 1, for
all z € U such that f(z) = glw(2)] for z € U. If g is univalent, then f < g if and only
if £(0) = g(0) and f(U) € g(U).

Let ¢ : C> x U — C and let h be univalent in U. If p is analytic in U and satisfies
the (second-order) differential subordination

(4) Y(p(2), 2 (2), 2°p"(2);2) < h(2), z€U

then p is called a solution of the differential subordination.

The univalent function ¢ is called a dominant of the solution of the differential
subordination, or more simply a dominant, if p < ¢ for all p satisfying (i).

A dominant ¢ that satisfies ¢ < ¢ for all dominants ¢ of (i) is said to be the best
dominant of (i). (Note that the best dominant is unique up to a rotation of U).

In order to prove the original results we use the following lemmas:

Lemma A. [I, Lemma 14] Let q be conver function in U with
q(0) =1 and let Re ¢ > 0. Let

n
h(z) = a(2) + —24'(2).
If p(2) = 1+ pp2™ + ppr12™t + ... is analytic in U and
1
po)+ e/ (2) < (o),

then

p(z) < q(2)
and q is the best dominant.
Lemma B. [1, Lema 1.5] Let Re v > 0 and let

_ B4 P - R -
4kRe vy '

Let h be an analytic function in U with h(0) = 1 and suppose that

Re (Z:,;iz)) + 1> > —w.

If
p(z) =14 ppz® 4+ pepr 2+

is analytic in U and

p(z) + %p%z) < h(2),
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then p(z) < q(z), where q is solution of the differential equation

a(2) + gzq@ —h(z), q0)=1.

given by

" ? 21
q(z)szv/k/() t= = h(t)dt.

Moreover q is the best dominant.

Definition 1. (St. Ruscheweyh [3]) For f € A, n € N* U {0}, the operator D" is
defined by D" : A — A

D°f(z) = f(2)
D'f(z) = zf'(2)

(n+1)D"*1f(2) = 2[D"f(2)]' + nD" f(2), z €U,
this is Ruscheweyh differential operator.
Remark 1. 2] If f € A, f(2) =2+ Zajzj then

=2

D"f(z) =2+ ZCﬁﬂ_lajzj, zeU.

Jj=2

Definition 2. For h € K and n € N, we let M,,(h) denote the class of functions
f € A which satisfy the inequality:

Re [D"f(2)]' < h(z), ze€U.

2. Main results
Theorem 1. The set M, («) is conver , 0 < a < 1.
Proof. Let the functions

o0
fi(Z):Z‘f'ZamZk, i=1,2, zeU
k=2

be in the class M, («). It is sufficient to show that the function

h(z) = pfi(2) + pafa(z)

with 1 and po nonnegative and py + pe = 1, is in M, ().
Since

h(z)=z+ Z(ulakl + ppage)2®, 2z €U
k=2
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then

oo
(1) D"h(z) =z + Z CitF M (mag + poane)z®, 2z € U
k=2

Differentiating (1), we have

(2) [D"h(2)] =1+ i KCR Y (pnag + poare) ",
k=2
hence
Re [D"h(z)]' =Re |1+ i ECT TR (pyag, + M2ak2)zk_1‘| (3)
k=2
= Re [1+ i ECITR g agy 25 + i kCﬁM_lNzaksz_l} (4)
k=2 k=2
= 14 Re | i kCﬁJrk*laklzk*l + Re |p2 i kC’g+k1akgzk1] . (5

k=2 k=2

Since f1, fo € M, (a), we obtain

(4) Re

oo
i chyk_lakiz’“‘l} > pila—1), i=1,2
k=2

Using (4) in (3), we obtain
Re [D"h(2)]' > 1+ pi(a—1)+ pa(a—1), z€U,
and since py + pz = 1, we deduce
Re [D"h(2)] > «

i.e. M, (o) is convex.

Theorem 2. Let q be a convex function in U, with ¢(0) =1, and let

_ /
h(z) =q(z) + —52d'(2), z€U
where ¢ is a complex number, with Re ¢ > —2.
If f € Mp(h) and F = I.(f), where
c+2 (7,
(5) F) = L) = S5 / £ 7(t)df, Rec> -2,
0

(6) (D" f(2)] < h(2), z€U,
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implies

[D"F(2)] <q(z), z€U,
and this result is sharp.

Proof. From (5), we deduce
(7) 2T F(2) = (¢ + 2)/ t°f(t)dt, Rec>-2, zeU.
0

Differentiating (7), with respect to z, we obtain
(8) (c+DF(2)+2F'(2) = (c+2)f(z), ze€U.

We are studying the property of linearity of D™ operator.

Let

af(2) +Bg(2) = (a+ B)z + Y _(aa; +Bb)2", z€U,

Jj=2

applying D™ operator, we have

n!
DG —1)

D"af(2) + B9(2)] = (a+ B)z + Y (n+j—

=2

!(aaj + ﬁbj)zj,

and we obtain

D"af(z) —az+]§:2 CES R 1)!Oéa_]2j =aD"f(z),
D"Bg(z) = Bz + ;:2 eI 1)!ﬁbjzﬂ = BD"g(z),

hence
(9)  D"[af(2) + Bg(2)] = D"af(z) + D"Bg(2) = aD" f(2) + 8D"g(z), z€U.

‘We show that
D"(2F'(z)) = 2[D"F(2)]', zeU.

Let
F(z):z+A232—|—-~-:z+ZAjzj.
j=2

Differentiating with respect to z, we have

Fl(z) =14 jA;z" ",
Jj=2
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and
e .
2F'(2) =z + ZjAjzj.
=2

Applying D™ differential operator,we obtain

oo
(10) D"(zF'(2)) =2+ » CiH71jA;0, zeU.
j=2
Using Remark 1, we have
D"F(z) =2+ ZC;’H_lAjzj, zeU.
j=2

Differentiating with respect to z, we have

[D"F(2)] =1+ jCpt=1A4;2071,

j=2
and we obtain
(11) dDNF(2)) =24 jORHTT A, zeU.
j=2
From (10) and (11) , we obtain
(12) D"(zF'(2)) = z|[D"F(2)]', z€U.

Using D™ differential operator and properties (9),(10),(11),(12) in (8)we deduce
(13) (c+1)D"F(2) + 2[D"F(2)]' = (¢ +2)D" f(2), zeU.
Differentiating (13), we have
(14) D"FE)) + 5D FE) = [D" (), =zeU.

Using (14), the differential subordination (6) becomes

(15) [D"F(2)] + CiQZ[D”F(z)]” < h(z) =q(2) + CiQZq’(z)-
Let
(16) p(z) = [D"F(2)] = |2+ > _ Crt/ 2"

=2
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=1+piz+p2®+..., peH[LI1].
Using (16) in (15), we have

(17) p(z) + "(2) < h(z) = q(2) +

c+ 2,zp
Using Lemma A, we obtain p(z) < ¢(2), i.e.
[D"F(2)]) <q(2), ze€U,
and ¢ is the best dominant.

1
Example 1. If we let c =1+ and ¢(z) = T then
—z

34— 2(249)
h(z) = B+i)(1—2)2

and from Theorem 2,we deduce that if f € M, (h) and F is given by

(18) F(z) = ?;;:Z /O £ (1)t
then _ ,
(D" f(2)] < m zeU,
implies 1
[D"F(2)]" < T *€ U,

where F is given by (18).
Theorem 3. Let Re ¢ > —2 and let

1+ ]e+ 2P —|® +4e+ 3
N 4-Re (c+2)

(19)

Let h be an analytic function in U, with h(0) =1 and suppose that

LTI
If f € My(h) and F = I(f), where F is defined by (5), then

(20) [D"f(2)] < h(z), z€U,

implies

[D"F(2)]" < q(2), z€U,

where q is the solution of the differential equation

q(z) + 2¢'(2) = h(z), h(0) =1,

c+2

113
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given by

Moreover q is the best dominant.

Proof. In order to prove Theorem 3 we will use Lemma B. The value of w is given
by (19). From (17) we have

p(z) = [D"F(2)] =1+ p1z+p22®>+---, peH[L1] (z€U).

Using Lemma B, we deduce k& = 1. Using (15) and (17), the differential subordination
(16) becomes

1
C+2zq

(21) p(z) + '(2) < h(z2) = q(2) + "(2), zeU.

c+2Zp

From the subordination (21), by using Lemma B, we deduce r = ¢+ 2 and

p(2) <q(2), z€U,

where 5
_ c+ ? c+1
q(z) = s /0 T h(t)dt, zeU,
i.e.
2 z
(22) [D"F(2)]" < q(2) = 2:2 / tTh(t)dt, ze€U.
0

Moreover q is the best dominant.

Remark 2. If we put

1+ 2a—-1)z
h(z) = ————
(2) T2

in Theorem 3, we obtain the following interesting result:
Corollary 1. If0<a<1,n €N, Re ¢ > —2 and I. is defined by (5), then

I.[M,(a)] C M,(d),

where
§= Inlnfnl Re q(z) = d(c, o, 2)

and this results is sharp. Moreover
(23) d=0(c,a,2) =2a — 14 (c+2)(2 —2a)o(c, 2)

where

z tc+1
(24) o(e, z) :/0 1—|—tdt'
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Proof. If we let
1+ Q2a-1)z

h) =

then h is convex. By using Theorem 3,

[D"F(2)] < h(2)

implies
n c+2 (7, 14+ (2a—1)t
pe) = D) <qe) =S [ R e )
(c+2)(2-2a) /Z ett
= 2a-1 dt
@ * ZC+2 0 1+t

(c+2)(2 - 20)

= 2a—1+4 o ole, z)

where ¢ is given by (24).
If Re ¢ > —2, then from the convexity of ¢ and the fact that ¢(U) is symmetric
with respect to the real axis, we deduce
Re [D"F(z)] > lrr‘lin Re ¢(z) = Re q(1) = 6(c, a, 2)
z|=1
= 2a—14+(c+2)(2-2a)o(c, 1)

where o is given by (24).
From (25), we deduce I.[M,(h)] C M,(d), where ¢ is given by (23).
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