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Abstract: In this paper we intoduce a new integral operator as the
convolution of the Noor and Sălăgean integral operators. With this inte-
gral operator we define the class CNS(α), where α ∈ [0, 1) and we study
some properties of this class.
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1. Introduction

Let U = {z ∈ C : |z| < 1} be the unit disk in the complex plane C and H(U) denote
the set of holomorphic (analytic) functions in U . We denote by

A = {f ∈ H(U) : f(0) = f ′(0)− 1 = 0}

and
S = {f ∈ A : f is univalent in U}.

We say that f is starlike in U if f : U → C is univalent and f(U) is a starlike
domain in C with respect to origin. It is well-known that f ∈ A is starlike in U if and
only if

Re
(zf ′(z)
f(z)

)
> 0, for all z ∈ U.

The class of starlike functions with respect to origin is denoted by S∗.
Let T denote a subclass of A consisting of functions f of the form

f(z) = z −
∞∑
j=2

ajz
j , (1.1)
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where aj ≥ 0, j = 2, 3, ... and z ∈ U . A function f ∈ T is called a function with
negative coefficients. For the class T , the followings are equivalent [6]:

(i)
∞∑
j=2

jaj ≤ 1,

(ii) f ∈ T ∩ S,

(iii) f ∈ T ∗, where T ∗ = T ∩ S∗.

Let

f(z) = z −
∞∑
j=2

ajz
j , aj ≥ 0, j = 2, 3, ...

and

g(z) = z −
∞∑
j=2

bjz
j , bj ≥ 0, j = 2, 3, ...

then the convolution or the Hadamard product is defined by

(f ∗ g)(z) = z −
∞∑
j=2

ajbjz
j = (g ∗ f)(z), z ∈ U.

The study of operators plays an important role in geometric function theory. For
f ∈ H(U), f(0) = 0 and n ∈ N0 = N ∪ {0}, the InS Sălăgean integral operator is
defined as follows [7]:

(i) I0Sf(z) = f(z),

(ii) I1Sf(z) = If(z) =
z∫
0

f(t)t−1dt,

(iii) InSf(z) = IS(In−1S f(z)).

We remark that if f has the form (1.1), then

InSf(z) = z −
∞∑
j=2

aj
jn
zj , (1.2)

where n ∈ N0.
In [5] Noor defined an integral operator InN : A → A as follows

InNf(z) =
n+ 1

zn

z∫
0

tn−1InN (f(t))dt, (1.3)

where n ∈ N0.

Let fn(z) =
z

(1− z)n+1
and let f

(−1)
n (z) be defined such that



About a class of analytic functions defined by Noor-Sălăgean integral operator 61

f (−1)n (z) ∗ fn(z) =
z

1− z
.

We note that

InNf(z) = f (−1)n (z) ∗ f(z) =
[ z

(1− z)n+1

](−1)
∗ f(z).

We remark that if f has the form (1.1), then

InNf(z) = z −
∞∑
j=2

aj
C(n, j)

zj , (1.4)

where C(n, j) =
(n+ j − 1)!

n!(j − 1)!
.

2. Preliminaries

The following definitions and lemmas will be required in the sequel.

Definition 2.1. [2, 3] Let f and g be analytic functions in U . We say that the
function f is subordinate to the function g, if there exist a function w, which is
analytic in U and for which w(0) = 0, |w(z)| < 1 for z ∈ U , such that f(z) = g(w(z)),
for all z ∈ U . We denote by ≺ the subordination relation.

Definition 2.2. [3] Let Q be the class of analytic functions q in U which has the
property that are analytic and injective on U\E(q), where

E(q) = {ζ ∈ ∂U : lim
z−→ζ

q(z) =∞},

and are such that q′(ζ) 6= 0 for ζ ∈ ∂U\E(q).

Lemma 2.1. [2, 3] Let q ∈ Q, with q(0) = a, and let p(z) = a+anz
n+ . . . be analytic

in U with p(z) 6≡ a and n ≥ 1. If p 6≺ q, then there are two points z0 = r0e
iθ0 ∈ U,

and ζ0 ∈ ∂U\E(q) and a number m ≥ n ≥ 1 for which p(Ur0) ⊂ q(U),
(i) p(z0) = q(ζ0)
(ii) z0p

′(z0) = mζ0q
′(ζ0)

(iii) Re z0p
′′(z0)

p′(z0)
+ 1 ≥ mRe

(
ζ0q
′′(ζ0)

q′(ζ0)
+ 1
)
.

The following result is a particular case of Lemma 2.1.

Lemma 2.2. [2, 3] Let p(z) = 1 + anz
n + . . . be analytic in U with p(z) 6≡ 1 and

n ≥ 1. If Re p(z) 6> 0, z ∈ U, then there is a point z0 ∈ U, and there are two real
numbers x, y ∈ R such that
(i) p(z0) = ix

(ii) z0p
′(z0) = y ≤ −n(x

2+1)
2 ,

(iii) Re z20p
′′(z0) + z0p

′(z0) ≤ 0.
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If f(z) = z−
∞∑
j=2

ajz
j , using the Noor and Sălăgean integral operators we define a

new operator as follows:

InNSf(z) = InNf(z) ∗ InSf(z) = z −
∞∑
j=2

a2j
jnC(n, j)

zj , (2.1)

where C(n, j) =
(n+ j − 1)!

n!(j − 1)!
and n ∈ N0.

Remark 2.1. Differentiate the relation (2.1), we get

[InNSf(z)]′ = 1−
∞∑
j=2

a2j
jn−1C(n, j)

zj−1. (2.2)

Multiplicating the equality (2.2) with
z

n
we obtain

z

n
[InNSf(z)]′ =

z

n
−
∞∑
j=2

a2j
njn−1C(n, j)

zj ,

which is equivalent to

z

n
[InNSf(z)]′ +

z

n
(n− 1) = z −

∞∑
j=2

a2j
njn−1C(n, j)

zj . (2.3)

Now let g ∈ T and g(z) = z −
∞∑
j=2

(n + j − 1)zj . Then from (2.3), we obtain the

following relation between In−1NS f(z) and InNSf(z) operators:

In−1NS f(z) =
z

n
[InNSf(z)]′ ∗ g(z) +

n− 1

n
z ∗ g(z). (2.4)

Using the Noor-Sălăgean integral operator, we define the following class of analytic
functions:

Definition 2.3. A function f ∈ T belongs to the class CNS(α) if

Re
z[InNSf(z)]′

InNSf(z)
> α, (2.5)

where α ∈ [0, 1) and z ∈ U .

3. Main Results

Theorem 3.1. Let f(z) = z −
∞∑
j=2

ajz
j. Then f ∈ CNS(α) if and only if

∞∑
j=2

a2j
jn−1C(n, j)

[
1− α

j

]
< 1− α. (3.1)
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Proof. Let f ∈ CNS(α), then we have

Re
z[InNSf(z)]′

InNSf(z)
> α, z ∈ U.

If z ∈ [0, 1), we obtain

z −
∞∑
j=2

a2j
jn−1C(n, j)

zj

z −
∞∑
j=2

a2j
jnC(n, j)

zj
> α. (3.2)

Since the denominator of (3.2) is positive, the relation (3.2) is equivalent with

α− 1 <

∞∑
j=2

[ αa2j
jnC(n, j)

zj−1 −
a2j

jn−1C(n, j)
zj−1

]
,

and finally we get

α− 1 <

∞∑
j=2

a2j
jn−1C(n, j)

zj−1
[α
j
− 1
]
.

Considering z → 1− along to the real axis, we get:

α− 1 <

∞∑
j=2

a2j
jn−1C(n, j)

[α
j
− 1
]
.

To prove the reciproc implication we consider f with the form (1.1) and for which
the (3.1) inequality holds.

The condition Re
z[InNSf(z)]′

InNSf(z)
> α is equivalent to

α− Re
(z[InNSf(z)]′

InNSf(z)
− 1
)
< 1.

We have

α− Re
(z[InNSf(z)]′

InNSf(z)
− 1
)
≤ α+

∣∣∣z[InNSf(z)]′

InNSf(z)
− 1
∣∣∣

= α+

∣∣∣∣∣
∞∑
j=2

a2j
jnC(n,j)z

j −
∞∑
j=2

a2j
jn−1C(n,j)z

j

z −
∞∑
j=2

a2j
jnC(n,j)z

j

∣∣∣∣∣ = α+

∣∣∣∣∣
∞∑
j=2

a2j
jn−1C(n,j)z

j−1[ 1
j − 1

]
1−

∞∑
j=2

a2j
jnC(n,j)z

j−1

∣∣∣∣∣

≤ α+

∞∑
j=2

a2j
jn−1C(n,j) |z|

j−1
∣∣∣ 1j − 1

∣∣∣
1−

∞∑
j=2

a2j
jnC(n,j) |z|j−1

< α+

∞∑
j=2

a2j
jn−1C(n,j)

[
1− 1

j

]
1−

∞∑
j=2

a2j
jnC(n,j)
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=

α+
∞∑
j=2

a2j
jn−1C(n,j)

[
1− 1

j −
α
j

]
1−

∞∑
j=2

a2j
jnC(n,j)

.

To finish our proof, we need to show

α+
∞∑
j=2

a2j
jn−1C(n,j)

[
1− 1

j −
α
j

]
1−

∞∑
j=2

a2j
jnC(n,j)

< 1. (3.3)

The (3.3) inequality is equivalent to

∞∑
j=2

a2j
jn−1C(n, j)

[
1− α

j

]
< 1− α, (3.4)

which is the (3.1) condition.

Let ENS(α) be a subclass of CNS(α). The class is defined as follows:

ENS(α) =
{
f ∈ T :

∣∣∣z[InNSf(z)]′

InNSf(z)
− 1
∣∣∣ < 1− 2α and α ∈

(
0,

1

2

)}
. (3.5)

Theorem 3.2. Let f ∈ T of the form (1.1). If f ∈ ENS(α), then Re
InNSf(z)

z
> 0.

Proof. Suppose f ∈ ENS(α). Then∣∣∣z[InNSf(z)]′

InNSf(z)
− 1
∣∣∣ < 1− 2α. (3.6)

Let
InNSf(z) = zp(z). (3.7)

Differentiate (3.7), we obtain

[InNSf(z)]′ = zp′(z) + p(z). (3.8)

Then (3.6) is equivalent to ∣∣∣zp′(z)
p(z)

∣∣∣ < 1− 2α.

If the condition Re p(z) = Re
InNSf(z)

z
> 0 does not hold, then according to

Lemma 2.2, there is a point z0 ∈ U , and there are two real numbers x, y ∈ R such
that

p(z0) = ix
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and

z0p
′(z0) = y ≤ −1 + x2

2
.

These inequalities imply∣∣∣z0p′(z0)

p(z0)

∣∣∣ =
∣∣∣ y
ix

∣∣∣ ≥ ∣∣∣ 12 (1 + x2)

x

∣∣∣ =
∣∣∣1
2

(
x+

1

x

)∣∣∣ ≥ 1− 2α.

The above inequality contradicts (3.6) and consequently

Re p(z) = Re
InNSf(z)

z
> 0,

where z ∈ U .

Theorem 3.3. Let

F (z) = Icf(z) =
c+ 1

zc

z∫
0

f(t)tc−1dt, c ∈ N.

If f ∈ CNS(α), then F = Ic(f) ∈ CNS(β), where

β = β(α, 2) = 1− (1− α)(c+ 1)2

(c+ 2)2(2− α)− (c+ 1)2(1− α)
(3.9)

and β > α, α ∈ [0, 1).

Proof. Suppose f ∈ CNS(α). Then by Theorem 3.1 we have

∞∑
j=2

a2j (j − α)

jnC(n, j)(1− α)
< 1.

We know that if f has the form (1.1), then

F (z) =
c+ 1

zc

z∫
0

f(t)tc−1dt = z −
∞∑
j=2

c+ 1

c+ j
ajz

j ,

and to prove that F ∈ CNS(β) is sufficient to have

∞∑
j=2

j − β
jnC(n, j)(1− β)

(c+ 1

c+ j

)2
a2j < 1.

This last inequality is implied by

j − β
1− β

·
(c+ 1)2a2j

jnC(n, j)(c+ j)2
≤ j − α

1− α
·

a2j
jnC(n, j)

, (3.10)
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for all j ∈ N and j ≥ 2.
From (3.10) we deduce that

β ≤ 1− (1− α)(c+ 1)2(j − 1)

(c+ j)2(j − α)− (c+ 1)2(1− α)
= β(α, j),

j ∈ N, j ≥ 2. We will prove that

β(α, j) ≥ β(α, 2), j ∈ N, j ≥ 2.

Let consider the function ϕ : [2,∞)→ R,

ϕ(x) =
x− 1

(x+ c)2(x− α)− (c+ 1)2(1− α)
, x ∈ [2,∞).

Then

ϕ′(x) =
g(x)

[(x+ c)2(x− α)− (c+ 1)2(1− α)]2
,

where g(x) = −2x3 + (3− 2c− α)x2 + (4c− 2α)x− 2c− (1− α).
We have

g′(x) = −6x2 + 2(3− 2c− α)x+ 4c− 2α,

g′′(x) = −12x+ 6− 4c− 2α < 0,

x ∈ [2,∞). Then

g′(x) ≤ g′(2) = −12− 4c− 6α < 0, x ∈ [2,∞)

and

g(x) ≤ g(2) = −4− 8α− 2c− (1− α) < 0, x ∈ [2,∞).

We obtain ϕ′(x) < 0, x ∈ [2,∞) and from this

β(α, j) = 1− ϕ(j)(1− α)(c+ 1)2 ≥ 1− ϕ(2)(1− α)(c+ 1)2 = β(α, 2, )

where β(α, 2) is given by (3.9). Finally β > α is equivalent to

1− α > (1− α)(c+ 1)2

(c+ 2)2(2− α)− (c+ 1)2(1− α)
.
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