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1. Introduction

We present here some well–known classical inequalities.
If n ∈ N, xk ≥ 0 and yk > 0 for k ∈ {1, 2, . . . , n} and β ≥ 2, then

n2−β

(
n∑
k=1

xk

)β
n∑
k=1

yk

≤
n∑
k=1

xβk
yk
. (1.1)

Inequality (1.1) is called Radon’s inequality as given in [21, 22, 23, 24].
The weighted power mean inequality given in [9, pp. 111-112, Theorem 10.5], [11,

pp. 12-15] and [15] is defined as follows:
Let x1, x2, . . . , xn be nonnegative real numbers and p1, p2, . . . , pn be positive real

numbers. If η2 > η1 > 0, then(
p1x

η1
1 + p2x

η1
2 + . . .+ pnx

η1
n

p1 + p2 + . . .+ pn

) 1
η1

≤
(
p1x

η2
1 + p2x

η2
2 + . . .+ pnx

η2
n

p1 + p2 + . . .+ pn

) 1
η2

. (1.2)
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If xk and yk for k ∈ {1, 2, . . . , n} are sequences of real numbers, then Cauchy–
Schwarz’s inequality is given by:

n∑
k=1

xkyk ≤

(
n∑
k=1

x2
k

) 1
2
(

n∑
k=1

y2
k

) 1
2

, (1.3)

as given in [9].
We will prove these results on time scales. The calculus of time scales was initiated

by Stefan Hilger as given in [12]. A time scale is an arbitrary nonempty closed subset
of the real numbers. The theory of time scales is applied to combine results in one
comprehensive form. The three most popular examples of calculus on time scales
are differential calculus, difference calculus, and quantum calculus, i.e., when T = R,
T = N and T = qN0 = {qt : t ∈ N0} where q > 1. The time scales calculus is studied
as delta calculus, nabla calculus and diamond–α calculus. This hybrid theory is also
widely applied on dynamic inequalities. The basic work on dynamic inequalities is
done by Ravi Agarwal, George Anastassiou, Martin Bohner, Allan Peterson, Donal
O’Regan, Samir Saker and many other authors.

In this paper, it is assumed that all considerable integrals exist and are finite and
T is a time scale, a, b ∈ T with a < b and an interval [a, b]T means the intersection of
a real interval with the given time scale.

2. Preliminaries

We need here basic concepts of delta calculus. The results of delta calculus are
adopted from monographs [6, 7].

For t ∈ T, the forward jump operator σ : T→ T is defined by

σ(t) := inf{s ∈ T : s > t}.

The mapping µ : T → R+
0 = [0,+∞) such that µ(t) := σ(t) − t is called the forward

graininess function. The backward jump operator ρ : T→ T is defined by

ρ(t) := sup{s ∈ T : s < t}.

The mapping ν : T→ R+
0 = [0,+∞) such that ν(t) := t− ρ(t) is called the backward

graininess function. If σ(t) > t, we say that t is right–scattered, while if ρ(t) < t, we
say that t is left–scattered. Also, if t < supT and σ(t) = t, then t is called right–dense,
and if t > inf T and ρ(t) = t, then t is called left–dense. If T has a left–scattered
maximum M , then Tk = T− {M}, otherwise Tk = T.

For a function f : T→ R, the delta derivative f∆ is defined as follows:
Let t ∈ Tk. If there exists f∆(t) ∈ R such that for all ε > 0, there is a neighborhood

U of t, such that

|f(σ(t))− f(s)− f∆(t)(σ(t)− s)| ≤ ε|σ(t)− s|,
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for all s ∈ U , then f is said to be delta differentiable at t, and f∆(t) is called the delta
derivative of f at t.

A function f : T→ R is said to be right–dense continuous (rd–continuous), if it is
continuous at each right–dense point and there exists a finite left–sided limit at every
left–dense point. The set of all rd–continuous functions is denoted by Crd(T,R).

The next definition is given in [6, 7].

Definition 2.1. A function F : T→ R is called a delta antiderivative of f : T→ R,
provided that F∆(t) = f(t) holds for all t ∈ Tk. Then the delta integral of f is defined
by ∫ b

a

f(t)∆t = F (b)− F (a).

The following results of nabla calculus are taken from [2, 6, 7].

If T has a right–scattered minimum m, then Tk = T − {m}, otherwise Tk = T.
A function f : Tk → R is called nabla differentiable at t ∈ Tk, with nabla derivative
f∇(t), if there exists f∇(t) ∈ R such that given any ε > 0, there is a neighborhood V
of t, such that

|f(ρ(t))− f(s)− f∇(t)(ρ(t)− s)| ≤ ε|ρ(t)− s|,

for all s ∈ V .

A function f : T→ R is said to be left–dense continuous (ld–continuous), provided
it is continuous at all left–dense points in T and its right–sided limits exist (finite)
at all right–dense points in T. The set of all ld–continuous functions is denoted by
Cld(T,R).

The next definition is given in [2, 6, 7].

Definition 2.2. A function G : T→ R is called a nabla antiderivative of g : T→ R,
provided that G∇(t) = g(t) holds for all t ∈ Tk. Then the nabla integral of g is
defined by ∫ b

a

g(t)∇t = G(b)−G(a).

Now we present short introduction of diamond–α derivative as given in [1, 19].

Let T be a time scale and f(t) be differentiable on T in the ∆ and ∇ senses. For
t ∈ Tkk, where Tkk = Tk ∩ Tk, the diamond–α dynamic derivative f�α(t) is defined by

f�α(t) = αf∆(t) + (1− α)f∇(t), 0 ≤ α ≤ 1.

Thus f is diamond–α differentiable if and only if f is ∆ and ∇ differentiable.

The diamond–α derivative reduces to the standard ∆–derivative for α = 1, or the
standard ∇–derivative for α = 0. It represents a weighted dynamic derivative for
α ∈ (0, 1).

Theorem 2.3 ([19]). Let f, g : T → R be diamond–α differentiable at t ∈ T and we
write fσ(t) = f(σ(t)), gσ(t) = g(σ(t)), fρ(t) = f(ρ(t)) and gρ(t) = g(ρ(t)). Then
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(i) f ± g : T→ R is diamond–α differentiable at t ∈ T, with

(f ± g)�α(t) = f�α(t)± g�α(t).

(ii) fg : T→ R is diamond–α differentiable at t ∈ T, with

(fg)�α(t) = f�α(t)g(t) + αfσ(t)g∆(t) + (1− α)fρ(t)g∇(t).

(iii) For g(t)gσ(t)gρ(t) 6= 0, f
g : T→ R is diamond–α differentiable at t ∈ T, with(

f

g

)�α
(t) =

f�α(t)gσ(t)gρ(t)− αfσ(t)gρ(t)g∆(t)− (1− α)fρ(t)gσ(t)g∇(t)

g(t)gσ(t)gρ(t)
.

Definition 2.4 ([19]). Let a, t ∈ T and h : T → R. Then the diamond–α integral
from a to t of h is defined by∫ t

a

h(s) �α s = α

∫ t

a

h(s)∆s+ (1− α)

∫ t

a

h(s)∇s, 0 ≤ α ≤ 1,

provided that there exist delta and nabla integrals of h on T.

Theorem 2.5 ([19]). Let a, b, t ∈ T, c ∈ R. Assume that f(s) and g(s) are �α–
integrable functions on [a, b]T. Then

(i)
∫ t
a
[f(s)± g(s)] �α s =

∫ t
a
f(s) �α s±

∫ t
a
g(s) �α s.

(ii)
∫ t
a
cf(s) �α s = c

∫ t
a
f(s) �α s.

(iii)
∫ t
a
f(s) �α s = −

∫ a
t
f(s) �α s.

(iv)
∫ t
a
f(s) �α s =

∫ b
a
f(s) �α s+

∫ t
b
f(s) �α s.

(v)
∫ a
a
f(s) �α s = 0.

We need the following results.

Definition 2.6 ([10]). A function f : T→ R is called convex on IT = I ∩T, where I
is an interval of R (open or closed), if

f(χt+ (1− χ)s) ≤ χf(t) + (1− χ)f(s), (2.1)

for all t, s ∈ IT and all χ ∈ [0, 1] such that χt+ (1− χ)s ∈ IT.
The function f is strictly convex on IT if the inequality (2.1) is strict for distinct

t, s ∈ IT and χ ∈ (0, 1).
The function f is concave (respectively, strictly concave) on IT, if −f is convex

(respectively, strictly convex).
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Theorem 2.7 ([1]). Let a, b ∈ T and c, d ∈ R. Suppose that g ∈ C([a, b]T, (c, d)) and

h ∈ C([a, b]T,R) with
∫ b
a
|h(s)| �α s > 0. If Φ ∈ C((c, d),R) is convex, then generalized

Jensen’s inequality is

Φ

(∫ b
a
|h(s)|g(s) �α s∫ b
a
|h(s)| �α s

)
≤
∫ b
a
|h(s)|Φ (g(s)) �α s∫ b
a
|h(s)| �α s

. (2.2)

If Φ is strictly convex, then the inequality ≤ can be replaced by <.

Theorem 2.8 ([16]). Let w, f, g ∈ C([a, b]T,R) be �α–integrable functions, where w,
g 6= 0. If ξ ≥ 0, then(∫ b

a
|w(x)||f(x)| �α x

)ξ+1

(∫ b
a
|w(x)||g(x)| �α x

)ξ ≤
∫ b

a

|w(x)||f(x)|ξ+1

|g(x)|ξ
�α x. (2.3)

Inequality (2.3) is called Radon’s inequality on time scales and is reversed for
−1 < ξ < 0.

3. Main Results

In order to present our main results, first we present a simple proof for an extension
of Radon’s inequality on time scales.

Theorem 3.1. Let w, f, g ∈ C([a, b]T,R) be �α–integrable functions with
∫ b
a
|w(x)| �α

x > 0 and g 6= 0. If β ≥ 2, then

(∫ b

a

|w(x)| �α x

)2−β
(∫ b

a
|w(x)||f(x)| �α x

)β
∫ b
a
|w(x)||g(x)| �α x

≤
∫ b

a

|w(x)||f(x)|β

|g(x)|
�α x. (3.1)

Proof. The right–hand side of (3.1) takes the form∫ b

a

|w(x)||f(x)|β

|g(x)|
�α x =

∫ b

a

|w(x)||f(x)|β(
|g(x)|

1
β−1

)β−1
�α x. (3.2)

Applying Radon’s inequality (2.3), the inequality (3.2) becomes

∫ b

a

|w(x)||f(x)|β

|g(x)|
�α x ≥

(∫ b
a
|w(x)||f(x)| �α x

)β
(∫ b

a
|w(x)||g(x)|

1
β−1 �α x

)β−1
. (3.3)

Note that ∫ b

a

|w(x)||g(x)|
1

β−1 �α x =

∫ b

a

|w(x)||g(x)|
1

β−1

1
1

β−1−1
�α x. (3.4)
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Applying reverse Radon’s inequality on right–hand side of (3.4), we get

∫ b

a

|w(x)||g(x)|
1

β−1

1
1

β−1−1
�α x ≤

(∫ b
a
|w(x)||g(x)| �α x

) 1
β−1

(∫ b
a
|w(x)| �α x

) 2−β
β−1

. (3.5)

From (3.3) and (3.5), we get the proof of the desired result.

Remark 3.2. Let α = 1, T = Z, a = 1, b = n+ 1, w ≡ 1, f(k) = xk ∈ [0,+∞) and
g(k) = yk ∈ (0,+∞) for k ∈ {1, 2, . . . , n}. Then (3.1) reduces to (1.1).

Remark 3.3. Let α = 1, T = Z, a = 1, b = n + 1, w ≡ 1, f(k) = xk ∈ R and
g(k) = yk ∈ (0,+∞) for k ∈ {1, 2, . . . , n}. If β = 2, then (3.1) reduces to(

n∑
k=1

xk

)2

n∑
k=1

yk

≤
n∑
k=1

x2
k

yk
, (3.6)

which is called Bergström’s inequality or Titu Andreescu’s inequality, or Engel’s in-
equality in literature as given in [4, 5, 8, 14] with equality if and only if x1

y1
= x2

y2
=

. . . = xn
yn

.

The following inequality is called the dynamic weighted power mean inequality on
time scales.

Corollary 3.4. Let w, f ∈ C([a, b]T,R) be �α–integrable functions with
∫ b
a
|w(x)| �α

x > 0. If η ≥ η1 > 0 and η2 = 2η, then(∫ b
a
|w(x)||f(x)|η1 �α x∫ b
a
|w(x)| �α x

) 1
η1

≤

(∫ b
a
|w(x)||f(x)|η2 �α x∫ b
a
|w(x)| �α x

) 1
η2

. (3.7)

Proof. Set β = 2
(
η
η1

)
= η2

η1
≥ 2 and g ≡ 1. The inequality (3.1) reduces to

(∫ b

a

|w(x)| �α x

)2− η2η1
(∫ b

a
|w(x)||f(x)| �α x

) η2
η1∫ b

a
|w(x)| �α x

≤
∫ b

a

|w(x)||f(x)|
η2
η1 �α x. (3.8)

Replacing |f(x)| by |f(x)|η1 and taking power 1
η2

on both sides of (3.8), we get(∫ b

a

|w(x)| �α x

) 1
η2
− 1
η1
(∫ b

a

|w(x)||f(x)|η1 �α x

) 1
η1

≤

(∫ b

a

|w(x)||f(x)|η2 �α x

) 1
η2

. (3.9)

This completes the desired result.
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Remark 3.5. If we set α = 1, T = Z, a = 1, b = n + 1, w(k) = pk ∈ (0,+∞) and
f(k) = xk ∈ [0,+∞) for k ∈ {1, 2, . . . , n}, then (3.7) reduces to (1.2). Further, if
n∑
k=1

pk = 1 and η1 = η, then (1.2) reduces to

(
n∑
k=1

pkx
η1
k

) 1
η1

≤

(
n∑
k=1

pkx
2η1
k

) 1
2η1

,

as given in [11].

Now we present Cauchy–Schwarz’s inequality on time scales.

Corollary 3.6. Let w, f, g ∈ C([a, b]T,R) be �α–integrable functions. We have:(∫ b

a

|w(x)||f(x)g(x)| �α x

)2

≤

(∫ b

a

|w(x)||f(x)|2 �α x

)(∫ b

a

|w(x)||g(x)|2 �α x

)
. (3.10)

Proof. Setting β = 2 and replacing |w(x)| by |w(x)g(x)| in (3.1), the inequality
(3.10) follows.

Remark 3.7. If we set α = 1, T = Z, a = 1, b = n + 1, w ≡ 1, f(k) = xk ∈ R and
g(k) = yk ∈ R for k ∈ {1, 2, . . . , n}, then (3.10) reduces to (1.3).

Corollary 3.8. Let w, f ∈ C([a, b]T,R − {0}) be �α–integrable functions. If β ≥ 2,
then(∫ b

a

|w(x)||f(x)| �α x

)β
≤

(∫ b

a

|w(x)|β �α x

)(∫ b

a

|f(x)|
β
β−1 �α x

)β−1

. (3.11)

Proof. Let W,F,G ∈ C([a, b]T,R) be �α–integrable functions, neither W ≡ 0 nor
G ≡ 0. If β ≥ 2, then (3.1) takes the form

(∫ b

a

|W (x)| �α x

)2−β
(∫ b

a
|W (x)||F (x)| �α x

)β
∫ b
a
|W (x)||G(x)| �α x

≤
∫ b

a

|W (x)||F (x)|β

|G(x)|
�α x.

Putting G ≡ 1 and replacing |W (x)| by |f(x)|
β
β−1 and |F (x)| by |w(x)||f(x)|

−1
β−1 , we

get (3.11).
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Remark 3.9. Let α = 1, T = Z, a = 1, b = n + 1, w(k) = pk ∈ (0,+∞) and
f(k) = xk ∈ (0,+∞) for k ∈ {1, 2, . . . , n}. If β ≥ 2, then (3.11) reduces to(

n∑
k=1

pkxk

)β
≤

(
n∑
k=1

pβk

)(
n∑
k=1

x
β
β−1

k

)β−1

, (3.12)

which is symmetric form of Hölder’s inequality, as given in [13].

The following result is a generalization of Nesbitt’s inequality on time scales.

Theorem 3.10. Let w, f ∈ C([a, b]T,R− {0}) be �α– integrable functions. If γ ≥ 1,

η ≥ η1 > 0, η2 = 2η, Ω =
∫ b
a
|w(x)||f(x)|η1 �α x and Ω > sup

x∈[a,b]T

|f(x)|η1 , then

 ∫ b
a
|w(x)| �α x(∫ b

a
|w(x)| �α x− 1

)γ
( Ω∫ b

a
|w(x)| �α x

)γ( η2η1−1
)

≤
∫ b

a

|w(x)|
(
|f(x)|η2

Ω− |f(x)|η1

)γ
�α x. (3.13)

Proof. Applying Jensen’s inequality for γ > 1, we get(∫ b

a

|w(x)|
(
|f(x)|η2

Ω− |f(x)|η1

)
�α x

)γ

≤

(∫ b

a

|w(x)| �α x

)γ−1 ∫ b

a

|w(x)|
(
|f(x)|η2

Ω− |f(x)|η1

)γ
�α x. (3.14)

Now applying Radon’s inequality (3.1), we get∫ b

a

|w(x)|
(
|f(x)|η2

Ω− |f(x)|η1

)
�α x

=

∫ b

a

|w(x)|

(
(|f(x)|η1)

η2
η1

Ω− |f(x)|η1

)
�α x

≥

(∫ b

a

|w(x)| �α x

)2− η2η1
(∫ b

a
|w(x)||f(x)|η1 �α x

) η2
η1∫ b

a
|w(x)| (Ω− |f(x)|η1) �α x

=

(∫ b
a
|w(x)| �α x

)
(∫ b

a
|w(x)| �α x− 1

) ( Ω∫ b
a
|w(x)| �α x

) η2
η1
−1

.

Thus(∫ b

a

|w(x)|
(
|f(x)|η2

Ω− |f(x)|η1

)
�α x

)γ
≥

(∫ b
a
|w(x)| �α x

)γ
(∫ b

a
|w(x)| �α x− 1

)γ
(

Ω∫ b
a
|w(x)| �α x

)γ( η2η1−1
)
.

(3.15)
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Combining (3.14) and (3.15), we get the desired claim.

Remark 3.11. If we set α = 1, T = Z, a = 1, b = n+1, w ≡ 1, f(k) = xk ∈ (0,+∞)

for k ∈ {1, 2, . . . , n} and
n∑
k=1

xη1k > max
1≤k≤n

xη1k , then (3.13) reduces to

(
n

(n− 1)γ

)
n∑
k=1

xη1k

n


γ
(
η2
η1
−1
)

≤
n∑
k=1

 xη2k
n∑
k=1

xη1k − x
η1
k


γ

, (3.16)

as given in [20].

Further, if we take η1 = 1, γ = 1, n = 3, x1 = x, x2 = y and x3 = z, then (3.16)
takes the form

3

2

(
x+ y + z

3

)η2−1

≤ xη2

y + z
+

yη2

z + x
+

zη2

x+ y
. (3.17)

Inequality (3.17) is called the generalized Nesbitt’s inequality as given in [20].

The following result is another consequence of Radon’s inequality on time scales.

Theorem 3.12. Let w, f ∈ C([a, b]T,R − {0}) be �α–integrable functions. If c1 ∈
[0,+∞), c2, c3, c4 ∈ (0,+∞), γ, ζ, κ, λ ∈ [1,+∞) and c3

(∫ b
a
|w(x)||f(x)| �α x

)γ
>

c4 sup
x∈[a,b]T

|f(x)|γ , then

(
c1

(∫ b
a
|w(x)| �α x

)κ
+ c2

)λ
(
c3

(∫ b
a
|w(x)| �α x

)γ
− c4

)ζ
(∫ b

a

|w(x)| �α x

)γζ−κλ+1

(∫ b

a

|w(x)||f(x)| �α x

)κλ−γζ
≤

(
1∫ b

a
|w(x)| �α x

)

∫ b

a

|w(x)|

(
c1

(∫ b

a

|w(x)||f(x)| �α x

)κ
+ c2|f(x)|κ

)λ
�α x


×
∫ b

a

|w(x)|

 1(
c3

(∫ b
a
|w(x)||f(x)| �α x

)γ
− c4|f(x)|γ

)ζ
 �α x. (3.18)

Proof. We obtain the following result by applying Radon’s inequality given in (2.3),
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as (∫ b
a
|w(x)| �α x

)ζ+1

{∫ b
a
|w(x)|

(
c3

(∫ b
a
|w(x)||f(x)| �α x

)γ
− c4|f(x)|γ

)
�α x

}ζ
≤
∫ b

a

|w(x)|

 1ζ+1(
c3

(∫ b
a
|w(x)||f(x)| �α x

)γ
− c4|f(x)|γ

)ζ
 �α x. (3.19)

Applying (2.2) and (3.19), the right–hand side of (3.18) takes the form(
1∫ b

a
|w(x)| �α x

)
∫ b

a

|w(x)|

(
c1

(∫ b

a

|w(x)||f(x)| �α x

)κ
+ c2|f(x)|κ

)λ
�α x


×
∫ b

a

|w(x)|

 1(
c3

(∫ b
a
|w(x)||f(x)| �α x

)γ
− c4|f(x)|γ

)ζ
 �α x

≥

(∫ b

a

|w(x)| �α x

)ζ+1−λ

×

{
c1

(∫ b
a
|w(x)| �α x

)(∫ b
a
|w(x)||f(x)| �α x

)κ
+ c2

∫ b
a
|w(x)||f(x)|κ �α x

}λ
{
c3

(∫ b
a
|w(x)| �α x

)(∫ b
a
|w(x)||f(x)| �α x

)γ
− c4

∫ b
a
|w(x)||f(x)|γ �α x

}ζ
≥

(∫ b

a

|w(x)| �α x

)ζ+1−λ

×

{
c1

(∫ b
a
|w(x)| �α x

)(∫ b
a
|w(x)||f(x)| �α x

)κ
+ c2

(
∫ b
a
|w(x)||f(x)|�αx)

κ

(
∫ b
a
|w(x)|�αx)

κ−1

}λ
{
c3

(∫ b
a
|w(x)| �α x

)(∫ b
a
|w(x)||f(x)| �α x

)γ
− c4

(
∫ b
a
|w(x)||f(x)|�αx)

γ

(
∫ b
a
|w(x)|�αx)

γ−1

}ζ .
Therefore, the inequality (3.18) follows.

Remark 3.13. If we set α = 1, T = Z, a = 1, b = n+1, w ≡ 1, f(k) = xk ∈ (0,+∞)

for k ∈ {1, 2, . . . , n}, Xn =
n∑
k=1

xk and c3

(
n∑
k=1

xk

)γ
> c4 max

1≤k≤n
xγk , then (3.18)

reduces to

(c1n
κ + c2)λ

(c3nγ − c4)ζ
nγζ−κλ+1Xκλ−γζ

n

≤ 1

n

(
n∑
k=1

(c1X
κ
n + c2x

κ
k)λ

)
n∑
k=1

1

(c3X
γ
n − c4xγk)

ζ
, (3.20)
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as given in [3].

Corollary 3.14. Let w, f ∈ C([a, b]T,R − {0}) be �α–integrable functions. If

c1 ∈ [0,+∞), c2, c3, c4 ∈ (0,+∞), β ∈ [2,+∞) and c3
∫ b
a
|w(x)||f(x)| �α x >

c4 sup
x∈[a,b]T

|f(x)|, then

(
c1
∫ b
a
|w(x)| �α x+ c2

)β
c3
∫ b
a
|w(x)| �α x− c4

(∫ b

a

|w(x)| �α x

)2−β (∫ b

a

|w(x)||f(x)| �α x

)β−1

≤
∫ b

a

|w(x)|


(
c1
∫ b
a
|w(x)||f(x)| �α x+ c2|f(x)|

)β
c3
∫ b
a
|w(x)||f(x)| �α x− c4|f(x)|

 �α x. (3.21)

Proof. By applying (3.1), the right–hand side of (3.21) becomes

∫ b

a

|w(x)|


(
c1
∫ b
a
|w(x)||f(x)| �α x+ c2|f(x)|

)β
c3
∫ b
a
|w(x)||f(x)| �α x− c4|f(x)|

 �α x

≥

(∫ b

a

|w(x)| �α x

)2−β
{∫ b

a
|w(x)|

(
c1
∫ b
a
|w(x)||f(x)| �α x+ c2|f(x)|

)
�α x

}β
∫ b
a
|w(x)|

(
c3
∫ b
a
|w(x)||f(x)| �α x− c4|f(x)|

)
�α x

.

(3.22)

Thus inequality (3.21) follows.

Remark 3.15. If we set α = 1, T = Z, a = 1, b = n+1, w ≡ 1, f(k) = xk ∈ (0,+∞)

for k ∈ {1, 2, . . . , n}, Xn =
n∑
k=1

xk and c3

(
n∑
k=1

xk

)
> c4 max

1≤k≤n
xk, then (3.21) reduces

to
(c1n+ c2)β

c3n− c4
n2−βXβ−1

n ≤
n∑
k=1

(c1Xn + c2xk)
β

c3Xn − c4xk
, (3.23)

which is similar to an inequality given in [3].

Corollary 3.16. Let w, f ∈ C([a, b]T,R−{0}) be �α–integrable functions. If c3, c4 ∈
(0,+∞), β ∈ [2,+∞) and c3

∫ b
a
|w(x)||f(x)| �α x > c4 sup

x∈[a,b]T

|f(x)|, then

(∫ b
a
|w(x)| �α x

)1−β

c3
∫ b
a
|w(x)| �α x− c4

(∫ b

a

|w(x)||f(x)| �α x

)β

≤
∫ b

a

|w(x)|

{
|f(x)|β+1

c3
∫ b
a
|w(x)||f(x)| �α x− c4|f(x)|

}
�α x. (3.24)
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Proof. Putting c1 = 0, c2 = 1 and replacing β by β + 1 in (3.21), the inequality
(3.24) follows.

Remark 3.17. If we set α = 1, then we get delta versions and if we set α = 0, then
we get nabla versions of diamond–α integral operator inequalities presented in this
article.

Also, if we set T = Z, then we get discrete versions and if we set T = R, then we
get continuous versions of diamond–α integral operator inequalities presented in this
article.

4. Conclusion and Future Work

There have been recent developments of the theory and applications of dynamic in-
equalities on time scales. In this research article, we have presented some dynamic
inequalities on diamond–α calculus, which is the linear combination of the delta
and nabla integrals. Some generalizations and applications of Radon’s inequality,
Bergström’s inequality, Nesbitt’s inequality and other dynamic inequalities on time
scales are also given in [17, 18].

In the future research, we can generalize the well–known inequalities using func-
tional generalization, n–tuple diamond–α integral, fractional Riemann–Liouville inte-
gral, quantum calculus and α,β–symmetric quantum calculus.
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