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1. Introduction

It is well known that functional integral equations of different types find numerous
applications in modeling real world problems which appear in physics, engineering,
biology, etc, see for example [1, 3, 6, 13, 14, 16, 17, 20]. Apart from that, integral
equations are often investigated in monographs and research papers (cf. [5, 11, 15,
17, 23, 24]) and the references cited therein.

In [5], the authors discussed the solvability of the Urysohn integral equation

x(t) = f(t) +

∫ ∞
0

u(t, s, x(s)) ds,
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while the authors in [3] studied the existence of integrable solutions of the following
integral equation

x(t) = f1

(
t,

∫ t

0

k(t, s)f2(s, x(s)) ds

)
.

In [2], the authors studied the solvability of the functional integral equation

x(t) = f

(
t, x(α(t)),

∫ β(t)

0

g(t, s, x(γ(s))) ds

)
, t ≥ 0

in the space BC(R+) (the space of all continuous and bounded functions on R+).
The authors in [4] studied the nonlinear integral equation

x(t) = p(t) +

∫ t

0

v(t, s, x(s)) ds, t ≥ 0

by using a combination of the technique of weak noncompactness and the classical
Schauder fixed point principle. Also, Banaś and Knap [7] discussed the solvability
of the equations considered in the space of Lebesgue integrable functions using the
technique of measures of weak noncompactness and the fixed point theorem due to
Emmanuel [19].

In addition in [22], the authors study the functional integral equation of convolu-
tion type

x(t) = f(t, x(t)) +

∫ ∞
0

k(t− s)Q(s)ds

using a new construction of a measure of noncompactness in Lp(R+).
Motivated by the work [22], in this paper, we will study the existence of solutions

to the following more general functional integral equation

x(t) = f1(t, x(t)) + f2

(
t,

∫ ∞
0

k(t− s)Q(x)(s)ds

)
, t ∈ R+. (1.1)

Throughout f1, f2 : R+ × R → R, k ∈ L1(R) and Q is an operator which acts
continuously from the space Lp(R+) onto itself.

2. Notation and Auxiliary Facts

We will collect in this section some definitions and basic results which will be used
further on throughout the paper.

First, we denote by Lp(R+) the space of Lebesgue integrable functions on R+

equipped with the standard norm ‖x‖pp =
∞∫
0

|x(t)|pdt.

Theorem 2.1. ([10, 21]) Let F be a bounded set in Lp(RN ) with 1 ≤ p <∞. Then,
F has a compact closure in Lp(RN ) if and only if lim

h→0
‖τhf − f‖p = 0 uniformly in

f ∈ F , where τhf(x) = f(x+ h) for all x ∈ RN .
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In addition, for ε > 0, there is a bounded and measurable subset Ω of RN such
that ‖f‖Lp(RN\Ω) < ε for all f ∈ F .

Corollary 2.2. Let F be a bounded set in Lp(R+) with 1 ≤ p <∞. The closure of F
in Lp(R+) is compact if and only if lim

h→0

(∫∞
0
|f(x)− f(x+ h)|pdx

) 1
p = 0 uniformly

in f ∈ F .

In addition, for ε > 0, there is a constant T > 0 such that
(∫∞
T
|f(x)|pdx

) 1
p < ε, for

all f ∈ F .

Next, we recall some basic facts concerning measures of noncompactness, [8, 9].
Let us assume that E is Banach space with norm ‖.‖ and zero element θ. Denote by
ME the family of all nonempty and bounded subsets of E and by NE its subfamilies
consisting of all relatively compact sets. For a subset X of R, the symbol X stands
for the closure of X and the symbol coX denotes the convex closed hull of X. By
B(x, r), we mean the ball centered at x and of radius r.

Definition 2.3. A mapping µ : ME → R+ is said to be a measure of noncompactness
in E if it satisfies the following conditions:

1) The family of kernel of µ defined by kerµ = {X ∈ME : µ(X) = 0} is nonempty
and kerµ ⊂ NE .

2) X ⊂ Y ⇒ µ(X) ≤ µ(Y ).

3) µ(X) = µ(coX) = µ(X).

4) µ(λX + (1− λ)Y ) ≤ λ µ(X) + (1− λ) µ(Y ) for 0 ≤ λ ≤ 1.

5) If Xn ∈ME , Xn = Xn, Xn+1 ⊂ Xn for n = 1, 2, 3, ... and if lim
n→∞

µ(Xn) = 0

then ∩∞n=1Xn 6= φ.

In the following, we fix ∅ 6= X ⊂ Lp(R+) bounded, ε > 0, and T > 0. For arbitrary
function x ∈ X, we let

w(x, ε) = sup

{(∫ ∞
0

|x(t+ h)− x(t)|pdt
) 1

p

: |h| < ε

}
,

w(X, ε) = sup {w(x, ε) : x ∈ X}

and
w0(X) = lim

ε→0
w(X, ε).

Also, let

dT (X) = sup

{(∫ ∞
T

|x(s)|pds
) 1

p

: x ∈ X

}
and

d(X) = lim
T→∞

dT (X).
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Then, the function µ :MLp(R+) → R given by µ(X) = w0(X) + d(X) is a measure of
noncompactness on Lp(R+), [22].

In the end of this section, we state Darbo’s fixed point theorem which play an
important role in carrying out the proof of our main result.

Theorem 2.4. [12] Let Ω be a nonempty, bounded, closed, and convex subset of a
Banach space E, and let F : Ω → Ω be a continuous mapping such that a constant
k ∈ [0, 1) exists with the property

µ(FX) ≤ kµ(X),

for any nonempty subset X of Ω. Then F has a fixed point in the set Ω.

3. Main Results

In this section, we study the existence of solutions to Eq.(1.1) in the space Lp(R+).
We consider equation (1.1) under the following assumptions:

(a0) fi(·, 0) ∈ Lp(R+), i = 1, 2.

(a1) The functions fi : R+ × R → R, i = 1, 2, satisfy Carathéodory conditions and
there exist constant λi ∈ [0, 1) and ai ∈ Lp(R+) such that

|fi(t, x)− fi(s, y)| ≤ |ai(t)− ai(s)|+ λi(|x− y|)

for almost all t, s ∈ R+ and x, y ∈ R.

(a2) k ∈ L1(R).

Notice that, under this hypothesis, the linear operator K : Lp(R+) → Lp(R+)

is given by (Kx)(t) =
∞∫
0

k(t − s)x(s) ds and it is a continuous operator and

‖Kx‖p ≤ ‖k‖L1(R)‖x‖p.

(a3) The operator Q maps continuously the space Lp(R+) onto itself and there ex-
ists a constant b ∈ R+ such that λ1 + λ2b‖k‖Lp(R) < 1 and ‖Qx‖Lp[T,∞) ≤
b‖x‖Lp[T,∞) for any x ∈ Lp(R+) and T ∈ R+.

Now, we are in a position to present our main result.

Theorem 3.1. Under the assumptions (a0)− (a3), Eq.(1.1) has at least one solution
x ∈ Lp(R+).

Proof: First of all, we define the operator F : Lp(R+)→ Lp(R+), by

F (x)(t) = f1(t, x(t)) + f2

(
t,

∫ ∞
0

k(t− s)Q(x)(s)ds

)
. (3.1)
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It is clear that Fx is measurable for any x ∈ Lp(R+), thanks to Carathéodory con-
ditions. Next, claim that Fx ∈ Lp(R+) for any x ∈ Lp(R+). To establish this claim,
we use the assumptions (a0)− (a3), for a.e. t ∈ R+, then, we have

|F (x)(t)| ≤ |f1(t, x)− f1(t, 0)|+ |f1(t, 0)|

+

∣∣∣∣f2

(
t,

∫ ∞
0

k(t− s)Q(x)(s)ds

)
− f2(t, 0)

∣∣∣∣+ |f2(t, 0)|

≤ λ1‖x‖p + ‖f1(·, 0)‖p + ‖f2(·, 0)‖p + λ2b‖k‖L1(R)‖x‖p,

where we have used Young’s inequality. Therefore, we obtain

‖Fx‖p ≤ λ1‖x‖p + ‖f1(·, 0)‖p + ‖f2(·, 0)‖p + λ2b‖k‖L1(R)‖x‖p. (3.2)

Hence, F (x) ∈ Lp(R+) and F is well defined. Moreover, from (3.2), we have

F (Br0) ⊂ Br0 , where r0 =
‖f1(·,0)‖p+‖f2(·,0)‖p
1−λ1−λ2b‖k‖L1(R)

. Also, F is continuous in Lp(R+) be-

cause f1(t, ·), f2(t, ·), K and Q are continuous for a.e. t ∈ R+.

Further, we will show that w0(FX) ≤ (λ1 + λ2b‖k‖L1(R)w0(X) for any set

∅ 6= X ⊂ Br0 . For, we fix an arbitrary ε > 0 and we choose x ∈ X and t, h ∈ R+

with |h| ≤ ε. Then, we have

|(Fx)(t)− (Fx)(t+ h)|
≤ |f1(t, x(t)− f1(t+ h, x(t))|+ |f1(t+ h, x(t)− f1(t+ h, x(t+ h))|

+

∣∣∣∣f2

(
t,

∫ ∞
0

k(t− s)Q(x)(s)ds

)
− f2

(
t+ h,

∫ ∞
0

k(t− s)Q(x)(s)ds

)∣∣∣∣
+

∣∣∣∣f2

(
t+ h,

∫ ∞
0

k(t− s)Q(x)(s)ds

)
− f2

(
t+ h,

∫ ∞
0

k(t+ h− s)Q(x)(s)ds

)∣∣∣∣
≤ |a1(t)− a1(t+ h)|+ λ1|x(t)− x(t+ h)|+ |a2(t)− a2(t+ h)|

+λ2

∣∣∣∣∫ ∞
0

(k(t− s)− k(t+ h− s))Q(x)(s)ds

∣∣∣∣ .
Therefore,

(∫ ∞
0

|(Fx)(t)− (Fx)(t+ h)|pdt
) 1

p

≤
(∫ ∞

0

|a1(t)− a1(t+ h)|pdt
) 1

p

+ λ1

(∫ ∞
0

|x(t)− x(t+ h)|pdt
) 1

p

+

(∫ ∞
0

|a2(t)− a2(t+ h)|pdt
) 1

p
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+λ2

(∫ ∞
0

|
∫ ∞

0

(k(t− s)− k(t+ h− s))Q(x)(s)ds|pdt
) 1

p

≤
(∫ ∞

0

|a1(t)− a1(t+ h)|pdt
) 1

p

+ λ1

(∫ ∞
0

|x(t)− x(t+ h)|pdt
) 1

p

+

(∫ ∞
0

|a2(t)− a2(t+ h)|p dt
) 1

p

+ λ2‖Qx‖p
∫
R

|k(t)− k(t+ h)|dt

≤ w(a1, ε) + λ1w(x, ε) + w(a2, ε) + λ2‖Qx‖p‖k − τhk‖L1(R).

From the above inequalities, we get

w(FX, ε) ≤ w(a1, ε) + λ1w(X, ε) + w(a2, ε) + λ2br0‖k − τhk‖L1(R).

Since {a1} and {a2} are compact sets in Lp(R+) and {k} is a compact set in L1(R),
we have w(a1, ε)→ 0, w(a2, ε)→ 0 and ‖k − τhk‖L1(R) → 0 as ε→ 0. Then, we get

w0(FX) ≤ λ1w0(X) ≤ (λ1 + λ2b‖k‖L1(R))w0(X). (3.3)

In the following, we fix an arbitrary number T > 0. Then, for an arbitrary function
x ∈ X, we obtain(∫ ∞

T

|F (x)(t)|pdt
) 1

p

≤
(∫ ∞

T

|f1(t, x)− f1(t, 0)|pdt
) 1

p

+

(∫ ∞
T

|f1(t, 0)|pdt
) 1

p

+

(∫ ∞
T

|f2(t,

∫ ∞
0

k(t− s)Q(x)(s)ds)− f2(t, 0)|pdt
) 1

p

+

(∫ ∞
T

|f2(t, 0)|pdt
) 1

p

≤ λ1

(∫ ∞
T

|x(t)|pdt
) 1

p

+

(∫ ∞
T

|f1(t, 0)|pdt
) 1

p

+λ2b‖k‖L1(R)

(∫ ∞
T

|x(t)|pdt
) 1

p

+

(∫ ∞
T

|f2(t, 0)|pdt
) 1

p

.

Since {f1(t, 0)} and {f2(t, 0)} are compact in Lp(R+), then, as T → 0, we obtain(∞∫
T

|f1(t, 0)|pdt
) 1

p

→ 0 and

(∞∫
T

|f2(t, 0)|pdt
) 1

p

→ 0. Therefore,

d(FX) ≤ (λ1 + λ2b‖k‖L1(R))d(X). (3.4)

From (3.3) and (3.4), we get

µ(FX) ≤ (λ1 + λ2b‖k‖L1(R))µ(X). (3.5)

By (3.5) and Theorem 2.4, we deduce that the operator F has a fixed point x in Br0
and consequently, Eq.(1.1) has at least one solution in Lp(R+).
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4. Example

Consider the functional integral equation

x(t) =
t

t3 + 1
+

1

4
ln(1 + x2) +

3

4

∫ ∞
0

(t− s)e−(t−s)|x(s)|ds. (4.1)

In our example, the functions f1(t, x) and f2(t, x) are given by

f1(t, x) =
t

t3 + 1
+

1

4
ln(1 + x2)

and

f2(t, x) =
3

4
x.

It is clear that for i = 1, 2, fi : R+ × R→ R satisfies assumption (a0). In fact we

have a1(t) =
t

t3 + 1
, λ1 = 1

4 , a2(t) = 0 and λ2 = 3
4 .

Indeed by using the Mean Value Theorem, we have

|f1(t, x)− f1(s, y)| ≤
∣∣∣∣ t

t3 + 1
− s

s3 + 1

∣∣∣∣+
1

4
|x− y|.

Furthermore we have

|f2(t, x)− f2(s, y)| ≤ 3

4
|x− y| .

It is easy to see that assumption (a1) is satisfied.

In our example, the function k(t) takes the form

k(t) = te−t.

In fact assumption (a2) is satisfied and by [3] ‖k‖L1(R+) ≤ 1√
e
.

In our example, the operator Q is defined by

(Qx)(t) = [|x(t)|].

Q satisfies assumption (a3) and we have if b = 1

λ1 + λ2b‖k‖L1(R+) ≤
1

4
+

3

4
√
e
≤ 1.

Now, by Theorem 3.1, our functional integral equation (4.1) has a solution belonging
to L1(R+).
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[9] J. Banaś, K. Goebel, Measures of Noncompactness in Banach Spaces, Lecture
Notes in Pure and Applied Mathematics 60, Marcel Dekker, New York, 1980.

[10] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,
Springer Science & Business Media, 2010.

[11] T.A. Burton, Volterra Integral and Differential Equations, Academic Press, New
York, 1983.

[12] G. Darbo, Punti uniti in trasformazioni a codominio non compatto, Rend. Sem.
Mat. Univ. Padova 24 (1995) 84-92.

[13] M.A. Darwish, On a perturbed functional integral equation of Urysohn type, Appl.
Math. Comput. 218 (2012) 8800–8805.

[14] M.A. Darwish, J. Henderson, Solvability of a functional integral equation under
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