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ABSTRACT: Let f,g : C* — C be holomorphic functions. Define
u(z,w) = Jw — F(2)[E+ o — g(2)[*, v(zw) = fw — F(2)2 + [w — g(=)2,
for (z,w) € C™ x C. A comparison between the convexity of u and v is
obtained under suitable conditions.

Now consider four holomorphic functions ¢1,ps : C™ — C and g1, 9> :
C™ — C. We prove that F' = |p1 — g1]® + |2 — g2|? is strictly convex on
C" x C™ if and only if n = m =1 and 1, @2, g1, g2 are affine functions
with (¢1g5 — ¥591) # 0.

Finally, it is shown that the product of four absolute values of plurihar-
monic functions is plurisubharmonic if and only if the functions satisfy
special conditions as well.
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1. Introduction

Convex functions recently are studied in complex analysis because they appear in the
theory of holomorphic functions, plurisubharmonic (psh) functions, currents, Lelong
numbers, extension problems, holomorphic representation theory (see [2], [5], [6], [7],
[8], [10], [11], [13], [14], [15], [16], [17] and [19]).

It is worth mentioning that an interesting relation between convex and plurisubhar-
monic functions has been obtained in [2].

Several papers appeared recently to this topic, let us mention [2], [3], [5], [6], [15], [19]
and the monographs [11], [14], [19] and more recently [5].
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Let n > 1. We can construct a C'°° strictly psh function F' defined on C™ x C,
such that F is not convex (and not concave) on each Euclidean not empty open ball
subset in C™ x C. For instance,

F(z,w) = |w— e * + ... 4+ |w—e* |2, for z = (21, ..., 2,) € C", w € C.

Moreover, for the case of one complex variable, let \(z) = 222 — 2, z = (z +1y) € C,
x = Re(z). Then A is a C* strictly sh function on C, while A is not convex (respec-
tively not concave) at each point of C.
This proves that the new class of functions, consisting of convex and strictly psh func-
tions, is well defined because we can not compare the two families (convex functions)
and (convex and strictly psh functions).
Now thanks to [2], we know the holomorphic representation of each holomorphic
function f : C™ — C under the suitable condition of the convexity of its modulus.
Let ¢ € [1, +o0]. We have the following observation.
Put K (z,w) = |w— f(2)|° and H(z,w) = |w— f(2)|, for (z,w) € C?, where f : C — C
is holomorphic. Assume that K is convex on C? and § > 1. Then H is convex on
C? and we have H® is convex on C2, for each s € [1,+oo[ independently of § and
conversely.
Now let fi,fs : C — C be two holomorphic functions and s € N\{0}. Define
Kos(z,w) = |w — f1(2)]?* + |w — f2(2)|?, for (z,w) € C2. By theorem 10, we have
that Ky is convex on C? implies that K is convex on C2. But the converse is not
true. For instance, let fi(2) = 2%, fo(2) = —2*, 2z € C. Then K is convex on C2. But
K4 is not convex on C2. This remark leads to the following problem.
Let N € N\{0,1} and F7, ..., Fy : C* — C be holomorphic functions. Define

Ys(z,w) = |w— Fy(2)]° + ... +|w — Fn(2)]°, for (z,w) € C" x C.

Suppose that s is convex on C” x C.

Firstly, for the study of the convexity of 15, we observe that we study separately

the following two cases.

Case 1. d € [1, +oo[\{2}.

Case 2. 6 = 2.

Is it true that 6 € [1,+oo[\{2}, implies that F}, ..., Fiy are affine functions?

Recall that for § = 2, there exists several cases where 15 is convex on C" x C, but
Fy, ..., Fy are not affine functions.

Moreover, for N = 2, by a limiting argument and a specific holomorphic differential
equation, we prove that v is convex on C" x C if and only if F} and F» are affine
functions. Indeed, ¥ is convex on C™ x C if and only if F} and F5 are affine functions,
for k& € N\{0, 1}.

The paper is organized as follows. In section 2, we shall use an elementary holo-
morphic differential equation in the proofs of the following two technical questions.
Let Ay, Ay € C and n,m € N\{0}. Characterize exactly all the 3 holomorphic func-
tions ¢ : C™ — C and g1, g2 : C"* — C such that u is convex (respectively convex and
strictly plurisubharmonic) on C™ x C™, where

u(z,w) = |Arp(w) — g1(2)|* + [A2pp(w) — g2(2)[?, for (z,w) € C" x C™.
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In this case find the expressions of ¢, g; and ga.
Moreover, find all the three holomorphic functions ¢ : C"™ — C and fy, fo : C* - C
such that v is convex and strictly psh on C" x C™, where

v(z,w) = [Arp(w) = fi(2)? + [Azp(w) = f2(2)?, (2,w) € C" x C™.

We prove that we have a great differences between the 2 classes of functions defined
similar as v and v.

Now let ki,ks : G — C! be two holomorphic functions. Then the functions
| k1 + ke ||? and (|| k1 + A ||? + || k2 + 6 ||?) have the same hermitian Levi form on G,
where G is a domain of C*, \,§ € C! and s,t € N\{0}.

For the applications, we can see the proof of theorem 4, corollary 1, theorem 5 and
others.

In section 3, we consider the following problems.

Problem 1. Let n,m > 1. Find all the 4 holomorphic functions ¢, ps : C™ — C and
g1, 92 : C* — C such that ) = |1 — g1]® + |2 — g2/|? is strictly convex on C" x C™.
Problem 2. Characterize all the holomorphic functions ¢1, ¢y : C™ — C and g1, 92 :
C™ — C such that v = |p1 — g1]* + |p2 — g2|? is convex and strictly psh (respectively
convex) on C" x C™.

Before stating it, we can study the analysis question. Find all the holomorphic
functions 1, @2, ¥1,1%2 : C™ — C and f1, f2,91,92 : C* — C, such that u; and
ug are convex and u = (uj + ug) is strictly psh on C* x C™. Where u;(z,w) =
1) — ()P + oo (w) — a(2) 2, ua(z,w) = [ (w) — g1 (=) + [s () — ga(2) 2,
for (z,w) € C" x C™.

In section 4, we use an algebraic method to mainly focus on properties of the
new structure (convex and strictly psh) and their relations with the holomorphic
representation theory.

In section 5 we study the product of several absolute values of pluriharmonic (prh)
functions and some auxiliary results are proved.

Let U be a domain of R, (d > 2). Put sh(U) the set of all subharmonic functions on U.
For f : U — C be a function, |f] is the modulus of f. For N > 1 and h = (hq, ..., hn),
where hy,....,hy : U = C, || h||= (|h]? + ... + |hn[?)2.

Let g : D — C be an analytic function, D is a domain of C. We denote g::f the
holomorphic derivative of g of order m, for all m € N\{0}.

If € = (&1,.,&) €C™ and z = (21, .., 2, € C" we write < 2/€ >= 21&1 + ... + 2,.&n
and B(&,r) = {C e C"/ || (=& ||< r} for r > 0, where \/< /&> =] £ | is th
Euclidean norm of &. The Lebesgue measure on C" is denoted by ma,, and C*¥(U) =
{p:U — C / pis a function of class C* on U}, k € NU {o0}\{0}.

Let D be a domain of C™, (n > 1). An usual psh(D) and prh(D) are respectively the
classes of plurisubharmonic and pluriharmonic functions on D. For all a € C, |a| is
the modulus of a, Re(a) is the real part of @ and D(a,r) = {2z € C / |z —a| < r} for
r > 0.

For the study of properties and extension problems of analytic and plurisubhar-
monic functions we cite the references [1], [6], [7], [8], [9], [10], [12], [13], [15], [16] and
[17]. For the study of convex functions in complex convex domains, we cite [5], [11],
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[14], [2] and [19].
For the theory of n— subharmonic functions we cite [18].

2. A family of analytic functions and the holomorphic
representation theory

We have

Lemma 1. Let g = (g91,..,98),f = (f1,- fn) : D — CVN be two holomorphic
functions, N > 1, D is a domain of C*, n > 1 and a,b € CN. Then

| f+g1*>and (|| f+al*+ || g+0b]|?*) have the same hermitian Levi form on D.
On the other hand, let w : D — R be a function of class C?. Define u; = (u+
| F+712), ua =t || f+a 2+ g+b ).

Then uy and uy are functions of class C? on D and we have the assertion.

The function uy is strictly psh on D if and only if us is strictly psh on D.

(Observe that if N < n, then || g ||* is not strictly psh at each point of D).

Proof. We have || f+7 ||?= |fi + 311> +... + |fx +an5 12 = |1l + g1l + ... + | fv]? +
N N

NP+ (g5t + G 5) =l g P+ 1 £ 1P+ _(9: 15 +T5.5)-

Jj=1 Jj=1

N
Since (g; f; +3;f;) is prh on D, then Z(gjfj +9;f;) is prh on D.
j=1
Consequently, || f+g[|? and (|| f +a |> + || g+ b ||*) have the same hermitian Levi
form on D.

By [4], we have

Theorem 1. Let ¢ : C™ — C be a holomorphic nonconstant function, m > 1. Given
Ay, Ay € C\{0} andn > 1.

The following conditions are equivalent

(I) There exists 2 holomorphic functions g1,g2 : C* — C such that u is convex on
" x ™, u(z,w) = [A1p(w) — g1(2)[ + [Asip(w) — ga(2)2, (2,w) € C* x C™

(II) There exists ¢ € C such that |p + c|? is convex on C™.

Now in all of this section, (A;,As) € C2 Let ¢ : C™ — C be a holomor-
phic nonconstant function, m > 1. Let ¢1,g2 : C* — C be 2 holomorphic func-
tions, n > 1. Define u(z,w) = |A1p(w) — g1(2)|* + |A2p(w) — g2(2)|?, ui(z,w) =
|A1p(w) — g1(2)]? + |Asp(w) — 2(2)|?, uz = u + uy, for (z,w) € C* x C™. v(z,w) =
[A1B(w) = g1(2) P+ A2B(w) = g2(2)[?, v1 (2, w) = | A1 B(w) = g1 (2)]* +]A28(w) — G2 (2)
and ve = v 4 v1, (2,w) € C* x C™. We have

Theorem 2. Assume that (A, Az) € C2\{0}. The following conditions are equivalent
(I) w is conver on C™ x C™;

(II) ¢ is an affine function on C™, or ¢ is not affine and there exists ¢ € C such that

|o + c|? is convez on C™ and we have the following cases.
Case 1. The function ¢ is affine on C™.
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Then we have the representation

{ 91(2) = Ai(< z/M > +pn) + Az (2)
g2(2) = Aa(< 2/ A1 > +u1) — A1p1(2)
for each z € C", where A\ € C", py € C, o1 : C* — C is analytic, |p1]? is convex on
cn.
Case 2. ¢ is not affine on C™.
In this case there exists ¢ € C such that |¢ + ¢|? is convex on C™. Then we have the
representation

{ g1(2) = Arc+ Azp1(2)

g2(2) = Aac — A191(2)

for every z € C™, where oy : C* — C is analytic, |p1|? is convex on C".

We can discuss the cases (A1, A2 € C\{0}), or (4; € C\{0}, A2 = 0), or (41 =0,
A € C\{0}).

This theorem motivates the following questions. Find all the holomorphic represen-
tation of the analytic functions fi, fo, f3 : C* — C, such that ¥ is convex on C™ x C.
Y(z,w) = |Byw — f1(2)|? +|Baw — fa(2)|* + | Bsw — f3(2)|?, for (2,w) € C* x C, where
(Bl, Bs, B3) € (C3\{0}

Indeed, for instance, in harmonic analysis and convex analysis, actually the following
question appeared naturally.

Find all the representation of the harmonic functions Fy, Fs, F5 : C — C, such that ¢
is convex and strictly 2—sh on C2. Where 11 (2, w) = |w—Fy(2)|? +|w— Fa(2)|* + |w —
F3(2)|?, (2,w) € C2. (We study here functions on harmonic representation theory).
Define ¢ (2, w) = |w— F1(2) > + |w — Fy(2)|?, for (z,w) € C2. If we choose F} is affine
on C and 1) is convex and strictly 2— sh on C?, then we have a family of harmonic
functions which satisfy the above condition.

The proof of this theorem is obvious and analogous to the proof of the following.

Theorem 3. The following conditions are equivalent

(1) u is convex and strictly psh on C" x C™;

(II) (A1, Ay) € C?\{0}, n = m = 1, there exists c € C such that |p + c|? is conver on
C and we have the following cases.

Case 1. A1As #0. Then

{ 91(2) + Arc = Ay (az +b) + Ag9(2)
92(2) + Azc = Ag(az +b) — A19(2)

for each z € C, where a,b € C, ¢ : C — C is holomorphic, || is convex with |3)'| > 0
and |¢'| >0 on C.
Case 2. A1 #0 and Ay = 0.

If ¢ is affine and nonconstant on C. Then we have the representation

{ 91(2) = AL (A2 + p)
92(2) = —A1p2(2)
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for each z € C, where A € C\{0}, u € C, ¢2 : C — C is analytic, |p2|* is convex and
strictly subharmonic (sh) on C.
If ¢ is not affine on C. Then we have the representation

{ 91(z) = —Aic

92(2) = —A1p3(2)

for every z € C, where 3 : C — C is analytic, |p3|? is convex and strictly subharmonic
on C. In this situation we have p(w) = (@ +%) — ¢ for each w € C, with a € C\{0}
and b € C.

Case 3. Ay =0 and As # 0. (Obviously analogous to case 2).

Proof. (I) implies (II). We choose the following proof which have technical ap-
plications in the case when we study the convexity of the function F, F(z,w) =
|w — 1 (2)|2Y + Jw — o (2)[2N, N €N, N > 2, (2,w) € C" x C, 11,109 : C* — C be
two holomorphic functions. In this situation we prove that ¢y and 15 have analytic
representations using the holomorphic differential equation k”(k + ) = v(k’)?, where
k : C — C is a holomorphic function and A, € C.

If (A1, A2) = (0,0), then w is independent of w. Thus u is not strictly psh on C™ x C™.
A contradiction.

The case where A; # 0 and Ay = 0.

Since u(0, .) is strictly psh on C™. Then the function |A;¢ — g1(0)|? is strictly psh on

C™. Thus by lemma 1, m = 1. Since u(.,0) is convex on C, then | — ‘”A—(IWP is convex

and strictly sh on C. Put ¢ = 7%(10). Now |¢ + ¢|? is convex and strictly sh on C,
therefore, by Abidi [2], we have

p(w) = aw + b, for all w € C, where a € C\{0} and b € C, or

p(w) = el@w+b) ¢ for all w € C, with a; € C\{0} and b, € C.

If p(w) = aw + b, Yw € C.

Then for each fixed wg € C, the function (., wp) is convex on C™.

Therefore,

0 0
_|Z T (2 + |Z P (2)ayl?,

for each z € C", wy € C and a = (g, ..., ) € C™.
Since the right hand side of the above inequality is independent of wg € C, it follows
that for every fixed z € C™,

n 82
Z 91 (2)ajoy =0, for all @ = (ay,...,ap) € C™.

Therefore g7 is affine on C”.
Put g1(z) = A1(< z/v > 49), for z € C", where v € C" and ¢ € C.
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Let T:C"xC—->C"xC, T(z,w) = (z,w+ 51141752) — %), for (z,w) € C™ x C.

Note that T is a C linear bijective transformation on C™ x C.

Since u is convex and strictly psh on C™ x C, then v is convex and strictly psh
on C" x C, where ¥(z,w) = uoT(z,w) = |Ai(aw + b — §)|* + |g2(2)|?, for every
(z,w) e C" x C.

But 1 is convex and strictly psh on C" x C, then |go
C™. Thus n = 1.

Put ga(2) = —Aypa(2), for z € C (2 is analytic on C). Thus |pa|? is convex and
strictly sh on C.

(IT) implies (I). Obvious.

Question. Let By, By € C\{0}. For fi,fs : C* — C, define ¥(z,w) = |Bjw —
f1(2)]2 + |Baw — f2(2)|?, (z,w) € C™ x C. Find all the pluriharmonic (respectively
n — harmonic) functions f1, fo : C* — C, such that 1 is convex (respectively convex
and strictly n — subharmonic) on C* x C.

|2 is convex and strictly psh on

Theorem 4. The following conditions are equivalent

(1) uy is convex and strictly psh on C™ x C™;

(I) m = 1, n € {1,2}, (A1, A2) € C*\{0}, there exists c € C such that | + c|? is
convezr on C and we have the following cases.

Case 1. For allw € C, p(w) = aw + b, where a € C\{0} and b € C.

We have the representation

{ 91(2) = A1 (< 2/M > +u1) + Asipr (2)
g2(2) = Aa(< 2/ M1 > +u1) — Arpa(2)

for each z € C", where A\ € C", py € C, @1 : C* — C is analytic, |p1|? is convex on
C™, such that

(n=1,A\ #£0), or

(n=1,A\ =0, aa‘le (z) £ 0, for each z € C), or

n =2, (A, (gfll (2), gf; (2))) is a basis of the complex vector space C2,

for each z = (21, z) € C2.

Case 2. For every w € C, p(w) = @+ — ¢ where a € C\{0} and b € C.

Then n =1 and we have the representation

{ q1(z) = —EE + Astp1(2)
gg(z) = —Asc— A1y (Z)

for each z € C, where 1y : C — C is analytic, [¢1|? is convex and strictly sh on C.

The proof follows from the above 3 theorems and lemma 1.
We have

Corollary 1. The following conditions are equivalent

(1) u is convex on C™ x C™ and us is strictly psh on C™ x C™;

(II) w is conver on C™ x C™ and w; is strictly psh on C™ x C™;

(IIT) (A1, Ay) € C2\{0}, m = 1, n € {1,2}, there exists c € C such that | + c|* is
convez and strictly sh on C and we have the following 2 cases.
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Case 1. For allw € C p(w) = aw + b, (a € C\{0},b € C).
Then we have the holomorphic representation

{ 91(2) = A (< 2/M > +) + Az (2)
92(2) = Az(< 2/ A1 > +p1) — A1 (2)

for each z € C", where A\ € C", py € C, o1 : C* — C is analytic, |p1]? is convezx on
C™, such that

(n=1,A#0), or (n=1,A\ =0, 85’;1 () # 0, for each z € C), or

(n=2and (A, (%11(2), gf; (2))) is a basis of the complex vector space C?,

for every z = (21, 22) € C?).

Case 2. For allw € C, p(w) = (T — ¢ where a € C\{0} and b € C.

Then n =1 and we have the holomorphic representation

{ g1(2) = *A16+§¢1(2’)
92(z) = —Asc — A1y (2)

for every z € C, where ¢y : C — C is analytic, |{1|? is convexr and strictly sh on C.

Proof. (I) implies (IIT). Note that u, u; and ug are functions of class C* on C"* x C™.
We have

ug is strictly psh on C™ x C™ if and only if u; is strictly psh on C* x C™.

Assume that (A, As) = (0,0). Then w; is independent of w € C™ and w4 is strictly
psh on C™ x C™. A contradiction.

Consequently, (A1, Ay) € C*\{0}.

Define uz(z,w) = (|A1]* + |A2*)[o(w)[* + 191 (2)|* + 1g2(2) [, (2,w) € C* x C™.
Then us is a function of class C*° on C™ x C™. But w; is strictly psh on C* x C™ if
and only if ugz is strictly psh on C"* x C™.

By lemma 1, we have m =1 and n < 2.

Now u(0, .) is convex on C and u3(0, .) is strictly sh on C. In fact (|A1¢ —g1(0)|* +
| A2 — g2(0)|?) is convex on C and ((|A1|* 4 |A42]?)|¢]? + |91 (0)|*> +]g2(0)|?) is strictly
sh on C. Then there exists ¢ € C such that | + ¢|? is convex on C and |p|? is strictly
sh on C. Which yields | + ¢|? is convex and strictly sh on C.

By Abidi [2], using the holomorphic differential equation k" (k +¢) = y(k')? (k: C —
C be a holomorphic function ,~, ¢ € C), we have

p(w) = aw + b, for all w € C, where a € C\{0} and b € C, or

p(w) = el@w+b) ¢ for all w € C, with a; € C\{0} and b, € C.

The rest of the proof is now obvious.

Theorem 5. The following conditions are equivalent

(1) v is convex and strictly psh on C™ x C™;

(II) m =1, n € {1,2}, (A1, A2) € C*\{0}, there exists c € C such that | + c|? is
convez and strictly sh on C and we have the following 2 cases.

Case 1. For allw € C, p(w) = aw + b, (a € C\{0},b € C).

Then we have the representation

{ 91(2) = A1(< 2/A > +p) + Az (2)
g2(2) = A2 (< 2/A > +p) — Arpi(2)
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for each z € C", where A\ € C", u € C, o1 : C"* — C is analytic, |p1]? is convex on
C™, such that
(n=1,A#0), or (n=1,A
(n=2,and (A (52(2), 32
for any z = (21, 20) € C?).
Case 2. For each w € C, p(w) = e+ — ¢ (a € C\{0} and b € C).
Then n =1 and we have the representation

{ gl(Z) = —EE-F Agwl(z)
gg(Z) = 7A26 — Aﬂ/}l (Z)

0, 85’;1 () # 0, for every z € C), or
)

(2))) is a basis of the complex vector space C2,

2

for every z € C, where ¢ : C — C is analytic, |[11|? is convexr and strictly sh on C.

Moreover, we can consider the function vy for a study. According to lemma 1, we
obtain several holomorphic representations of g; and g» from the assumptions v and
vy are convex on C"” x C™ and vg = (v + v1) is strictly psh on C” x C™.

3. Some study in the theory of convex and strictly
psh functions

3.1. The analysis of strictly convex functions

Put u(z,w) = |p1(w) —g1(2) > +|p2(w) —g2(2)[?, 1,2 : C™ — Cand g1,92 : C" = C
be four holomorphic functions, (z,w) € C"* x C™.

Recall that, for two holomorphic functions ¢ : C"™ — C and g : C* — C, if we denote
P(z,w) = |p(w) — g(2)|?, for (z,w) € C™ x C™. 4 is not strictly convex at each point
of C™ x C™ (this is the case of one absolute value of a holomorphic function). But,
if we consider the sum of two absolute values of holomorphic functions, there exists
several cases where 1, is strictly convex on C2. For example

P1(z,w) = |fr(w) — k1 (2)]* + [ f2(w) — ka(2)[?

for (z,w) € C? and fi(w) = w, fo(w) = 2w + 1, k1 (2) = 22, ka(2) = 0.

Before the two above technical remarks, we pose the following question.

Question. Characterize all the holomorphic functions @1, @2, g1, 92 such that w is
strictly convex on C™ x C™ (we prove that n = m = 1).

Remark 1. Let Fy(2) = 22, Fa(z) = =22, F3(2) = 2z, K1 (w) = K2(w) = K3(w) = w,
(z,w) € C2. F\, Fy, F3, Ky, Ko, K3 are holomorphic functions on C. Put u(z,w) =
|K1(w) — F1(2)]? + |K2(w) — Fa(2)|? + |K3(w) — F3(2)|?. Observe that u is strictly
convex on C2, but F} and F, are not affine functions.

We begin by

Lemma 2. Let f1,fs : CV — C be two holomorphic functions, N > 1. Put v =

|f11? + | f2]?. We have
If v is strictly psh on CV, then N < 2.



30 J. Abidi

Using the holomorphic differential equation k”(k + ¢) = v(k')?, for k : C — C be a
holomorphic function and (7, c) € C2, we have

Lemma 3. Let g1,92 : C* — C and w2 : C™ — C be three holomorphic functions
and a € C.

Put u(z,w) = |g1(2) — a|® + |p2(w) — g2(2)|?, for (z,w) € C* x C™.

Then w is strictly convex on C" x C™ if and only if n =m =1, g1 is affine noncon-
stant, go s affine and s is affine nonconstant on C.

Proof. Assume that w is strictly convex on C"” x C™. By lemma 2, it follows that

n=m = 1. We have
1

|05 (w) (B2 (w) — F2(2))| < lh(w)[?

for each w € C and for every fixed z € C.

Put 92(w) = |pa(w) — g2(2)|?, for w € C. By Abidi [2], for each fixed z € C, the
function v is strictly convex in C. Then 5 is affine nonconstant on C, (see [2], [3]).
Now we have the inequality

195 (2)(92(2) — P2(w)) + g1 (2)71(2)] < |91(2)|* + |92 (2)?
for each (z,w) € C2. Therefore the function F(w) = g (2)@2(w) is holomorphic and
bounded on C, for every fixed z € C. Therefore F' is constant on C, for each fixed
ze€C.
Since (9 is affine nonconstant, it follows that g5 = 0 on C. Then g- is affine on C.
Now write wo(w) = Agw + Ba, g2(2) = agz + by, Ay € C\{0}, Ba,as,by € C. Let
T(z,w) = (z,w+ F2z+ %22)
Thus 7 is an affine holomorphic transformation and bijective on C2. Then u; = uoT
is strictly convex on C? and uoT'(z,w) = |g1(2) — al® + |p2(w)|* = uy (2, w).
Consequently, g; is affine nonconstant on C.
The converse is obvious and the proof is complete.

Now let ¥1,9, f1, fo,k : C — C be holomorphic functions and v,c € C. Using the
holomorphic differential equation k”(k 4 ¢) = y(k")? and the two partial differential
equations ¥} (w) f](z) + ¥4 (w) f3(z) = 0, f{(2)¢](w) + f3(2)h(w) = 0 on C?, we
prove

Theorem 6. Let p1,p0 : C™ — C and g1,92 : C* — C be four holomorphic
functions. Put u(z,w) = |p1(w) — g1(2)|? + |p2(w) — g2(2)|?, (2,w) € C* x C™.

The following assertions are equivalent

(I) u is strictly convex on C™ x C™;

(II) n =m =1, g1, 92, ¢1,p2 are affine functions on C and satisfying the condition
(192 — g21) # 0.

Proof. We have n = m = 1, because u is strictly psh on C™ x C™. Since w is strictly
convex on C"™ x C™ then the function u(z,.) is strictly convex on C, for each z € C.
Therefore,

|0 (w) (@1 (w) — F1(2)) + 5 (W) (@2 (w) — F2(2))] < [ (w)[* + [ (w)[*
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for each w € C™ and for every fixed z € C". Thus, for every fixed w € C, the

holomorphic function on the variable z, defined by F(z) = (g1(2)¢} (w)+ g2(2) ¢} (w))
is bounded on C.

By Liouville theorem, F is constant on C. Thus (g} ()¢ (w) + g5(2)¢4(w)) = 0,
for every z,w € C.
We discuss the cases ¢} # 0 or ¢4 # 0 on C. (Also we have (¢} (w)g}(z) +
Ph(w)gl(2)) = 0 on C2).
Assume that ¢ # 0 and ¢} # 0. Therefore

" T

z

pa(w) g

—_—
—

Thus, ¢f(w) = Refy(w) and g(z) = —Rgj(z), for each z,w € C. It follows that
p1(w) = Rpz(w) + aw + b and g2(2) = —Rgi(2) + A, a,b, A € C.
The function F is strictly convex on C?, where

Fi(z,w) = |Rpa(w) + aw +b — g1(2)[* + [02(w) + Rg1 (2) = A%
This proves |g; + &;]? is strictly convex on C, where ¢; € C.

By the holomorphic differential equation &”(k + ¢) = v(k")?, (k : C — C be a holo-
morphic function and ¢,y € C), we have g7 is affine nonconstant on C. Therefore,
lg1 — p1|? + |[Rg1 — (A — p2)|? is strictly convex on C2.

By theorem 2, ¢; and 9 are affine functions. A contradiction.

Consequently, ¢ =0, or ¢4 =0 on C.

Assume that ¢} # 0 and ¢ = 0 on C. Therefore ¢}g; = 0 on C. Thus g} = 0 on C
and then g; is constant on C. We have |1 — g1(0)[? + |2 — ga|? is strictly convex
on C2. By lemma 3, we have ¢; and go are affine nonconstant, ¢, is affine on C.
Therefore ¢, is affine nonconstant on C. A contradiction.

Consequently, ¢ and @5 are affine functions on C.

Now since the function u(.,w) is strictly convex on C (for each fixed w € C), then
g1, 92,1 and s satisfy the partial differential equation g7'¢} + gi¢h = 0 in C2.
Using the last above partial differential equation, we prove that ¢g; and g, are affine
functions on C. Note that if ¢; and g; are constant functions, then |go — @2 |? is strictly
convex on C2. This is impossible.

Therefore, we have

(¢1 or g1 is non constant) and (¢2 or go is non constant).

Analogously,

(g1 or g2 is non constant) and (¢1 or s is non constant).

Since now w is strictly convex on C?, then

|01 (w)B = gi(2)al® + |¢h(w)B — gy(2)af* > 0

for each (z,w) € C? and (a, B) € C*\{0}. Therefore, (¢}¢h — gh}) # 0.
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3.2. The analysis of convex and strictly psh functions

Let 91,42, f1, f2,k : C — C be holomorphic functions and v,c € C. In the sequel,
using the holomorphic differential equation k”(k + ¢) = W(k; )? and the two partial
differential equations v (w) f{(2) + ¢35 (w) f3(2) = 0, f1'(2)d1 (w) + 3 (2)¥5(w) = 0 on

C?, we have

Theorem 7. Let g1,92 : C* — C and p1,02 : C™ — C be four holomorphic
functions. Put u(z,w) = |p1(w) — g1(2)|? + |p2(w) — g2(2)|?, for (z,w) € C* x C™.
The following conditions are equivalent

(1) u is convex and strictly psh on C"* x C™;

(I) n=m =1, pgi + sgh = 0 and g{'p} + g5 05 = 0 on C?,

(¢1 or s is nonconstant) and (g1 or g is nonconstant) and we have the following
cases.

Case 1. The functions 1 and ¢, satisfies ¢ # 0 and ¢§ # 0.

Assume that g7 # 0.

If ¢ =0, then g4 = 0 on C (therefore g; and g, are affine functions with g; or go
is non constant. In this case, by theorem 2 or theorem 3, we can find 7 and @9 by
their holomorphic expressions).

If gy # 0. Thus g4 # 0. Since u(z,.) is convex on C (for z fixed), then s = cpy + &o,
c,& € C.

u=lp1 = g1f* +lepr + & — g2|?, on C*.

Assume that g} # 0.

We have an analogous situation to the above case.

Case 2. The function ¢, is not affine and the function s is affine on C.

Then g; is constant on C, |p1 — ¢1(0)|* and |ga — 2(0)|? are convex functions and
|¥195] > 0 on C?, or

g2 is affine nonconstant and |gplgz\ > 0 on C?.

We can study also the case ¢} =0 and ¢j # 0.

Case 3. The functions 1 and 9 are affine on C.

The discussion is similar to cases 1, 2 and theorem 3.

Proof. (I) implies (II). By lemma 2, we have 2 < n+m < 2. Then n = m = 1. Since
w is convex and of class C? on C2, we have the inequality

0%u
|6’LU2 +72 ﬂ|

on C2. It follows that

|B|2+ |2+2Re( Pu @p)
= a ow 9z a* 9z0w

Y (B1—91)+¢5 (P2—72)) 8 +9! (G1—21)+ 95 (T2—92) || < |} B—gial*+]phB—ghal®

for each (o, 3) € C2. If « = 0 and § # 0, then

o} (@1 — 91) + 5 (@2 — 52)| < |0 ]> + b

on C%. Now let ¥(2) = g1(2)¢ (w) + g2(2) 25 (w) — @1 (w)¢ (w) — pa(w)es (w), for
2 € C, (wis fixed on C). 9 is holomorphic on C and ¥ (2)| < |} (w)|? + ¢4 (w)|?, for
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every z € C, (w fixed). Thus v is constant on C. Consequently, ¢’(z) = 0, for each
z € C. Therefore o o

91(2)¢7 (w) + g3(2)¢5 (w) = 0
for each z,w € C. o o
Now if a # 0 and 8 = 0. We obtain ¢} (w)gy(z) + @5(w)gy(z) = 0, for every (z,w) €
C2.
For the rest of the proof we use theorem 1, theorem2, theorem 3 and the proof of
theorem 7.

Remark 2. Using the above technical methods, the following three partial differen-
tial equations

k' (k4 c) = y(K)?,
(w) f1(2) + 5 (w) f5(2) = 0 on C?,
T ()W (w) + £ (2)dh(w) = 0 on C2,
where (1,2, f1, f2, k : C — C are holomorphic functions and ~, ¢ € C), we can solve
the analogous problem when u is convex on C" x C™ and u = |1 — g1|% + |¢2 — 92|%;

p1,02 : C" — C and g1,92 : C* — C are four holomorphic functions with the
conditions (¢1 or ¢ is nonconstant) and (g; or gs is nonconstant).

3.3. Essential properties in function theory

In the sequel, we give technical tools for the study of the following families of functions
consisting of: convex and not strictly psh functions on any not empty Euclidean open
ball subset of C™ x C; convex and strictly sh functions but not strictly psh on each
Euclidean open ball; convex and n— strictly sh functions but not strictly psh on every
open ball,... . We have

Theorem 8. Let u: D — R be a function of class C%, D is a domain of C*,n > 1.
The following conditions are equivalent

(I) u is not strictly psh on each not empty Euclidean open ball subset of D;

(II) w is not strictly psh at each point of D.

Example. Let v(z,w) = [w" — g1(2)]? + [wY — g2(2)|?>, n,N € N, n, N > 2, g1, 92 :
C™ — C be two holomorphic functions. v is convex and not strictly psh at each point
of C" x C, if for example g2(2) = —g1(2), for each z € C* and |g;|? is convex on C".
Remark 3. (R1). Let uy(z,w) = |w — 2|, ua(z,w) = |w — 22|, (2,w) € C%

w1 and ug are C* and not strictly psh functions at each point of C2. But u = (u1+uz)
is strictly psh on C2.

(R2). Put v(z) =| z |*, 2 = (21,...,2n) € C™ v is psh on C" and strictly psh on
C™\{0}. Therefore v is strictly psh almost everywhere on C™. But v is not strictly
psh on C™.

Example. Let u = (u1 + u2), v = (v1 + v2), where

ur(z,w) = |w = f1(2)]* + [w = f2(2)],
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° 2)%,

2)I%,

us(z,w) = |lw—g1(2)|° + |w — g2

v1(z,w) = [w — fi(2)]> + |w — fa
va(z,w) = [w —g1(2)[* + lw — g2(2)]?,
f1(2) = —fa(2) = (2 = 22), g1(2) = —ga(2) = (2 + 2?), for (z,w) € C°.

f1, f2, 91, g2 are holomorphic functions on C. We have u and v are strictly convex
functions on C2. But uq, ug, v1, vy are not convex functions on C2.
b ) b

Example. Let N € NN N > 2 and A € Ry, A > 2 such that v is convex on
C, Y(z) = Alz|? + |2V — 12, for z € C. Put u = (u; + ug), where u;(z,w) =
w = g1 ()] + [ — ga(2) 2, uz(z,w) = | — F7(2)? + | — 72(2) .

g1(2) = Az + (2N = 1), ga(2) = Az — (2N — 1), for (z,w) € C%

Note that g; and g2 are holomorphic functions on C. We have u; is not strictly psh
and not convex on C2. uy is strictly psh and not convex on C2. But v is convex and
strictly psh on C2.

We have

(
(

Proposition 1. Let g1,g92 : C — C be two holomorphic functions. Put u(z,w) =
w—g1(2)]* + o — 22|, 0(zw) = [w—Gr()|! + [w— g3 ()", for (z,w) € C2. We
have w is not strictly psh on C2, for each tuple of holomorphic functions g, and gs.
But there exists several cases where v is strictly psh on C2.

Proof. u and v are functions of class C>° on C2. The hermitian Levi form of u
is L(u)(z,w)(0, 8) = 4w — gu()218 — gh(z)af + 4w — ga(=) I8 — gh(=)al?, for
(z,w) € C?, (o, B) € C2,

Let 29 € C. Put wg = g1(20). Let 8 = g4(20), for a € C\{0}.

Then L(u)(z20, wo) (e, g5(z0)a) = 0 and « # 0.

The hermitian Levi form of v is

L)z, w)(e, B) = (219} (2) Pl —Fi(2)[? +21gb(2) 2hw — Ga(2)P) a2 + (2w —i(2) P +
2lw —32(2)|*)|B1% + 2|91 (2) (w — Gr(2))a — (@ — 91(2)) BI* +21g5(2) (w — T2 (2) ) — (W —
g2(2))B|?, for (z,w), (o, B) € C2. Now choose |g;| > 0, |gh| > 0 and |g1 —ga| > 0 on C.
Let (2,w) € C%. We discuss the following three cases (a # 0,8 = 0), (o = 0,3 # 0))
and (a # 0, 8 # 0), we obtain L(v)(z,w)(a, 8) > 0 if (o, B) € C*\{0}.

Then v is strictly psh on C2.

Let (2, w) = [ — 1 (2)|? + [ — ()] + [ — (),

(2,0) = [w— G5 (2) P+ [ — T3 (2) P+ [ — T (), for (2,) € C2, where . s, s -
C — C are three holomorphic functions. Recall that if v is strictly psh on C?, then
¢ is strictly psh on C2. But we have

Proposition 2. There exists three holomorphic functions g1,92,g93 : C = C such
that if we define u(z,w) = |w — g1(2)|[* + |w — g2(2)[* + |w — g3(2)|* and v(z,w) =
|w—g1(2)[* + |w —g2(2)|* + |w — g3(2)|*, for (z,w) € C2. We have u is convex on C?
and strictly psh on a neighborhood of (0,4). But v is not strictly psh at (0,1), while v
is conver on C2.

Example. Let g1(z) = z — 4, g2(2) = 2z — 4, g3(z) =32z — 4, 2 € C. g1, g2 and g3 are
holomorphic functions on C.
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20 = 0,wp = i. Put u(z,w) = |w — g1(2)|* + |w — g2(2)|* + |w — g3(2) |4,

v(z,w) = |w—gi(2)|[* + |w = G (2)[* + [w — Gz (2)|*, for (z,w) € C*.

Then v and v are functions of class C* and convex on C2.

Let ¢(z,w) = |w — g1(2)[4, (z,w) € C%. ¢ is a C°° function on C? and the hermitian
Levi form of ¢ is

L) (z,w) (o, B) = 4Jw = g1(2)’|B = g1 (2)af*, (@, B) € C*.

Denote by L(u)(z,w)(e, 3) the hermitian Levi form of u at (z,w) and («, 8). Then
L(u)(z0,wo)(c, B) = 16|8—|?>+16|3—2a|* +16|8 —3|?> = 0 implies that o = 8 = 0.
Thus L(u)(z0, wo)(a, B) > 0, for each (o, 3) € C?\{0}.

Let S = {(a,8) € C? / |a|* +|B|*> = 1}. Thus {(20,w)} x S = K is a compact on
C? x C2.

The function F, defined by

0%u 9 0%u 9 0%u _

F(zw)(a, 8) e

is continuous on C% x C2.

Since F' > 0 on K, then F' > 0 on B((z9,wp),r) x S, where > 0. Therefore v is
strictly psh on a neighborhood of (0,7) and convex on C2.

The hermitian Levi form of the C* function § on C? is

LO)(z,w)(e, B) = 2[g)(2)(w —Fi(2))a — (W — g1(2))B° + 2|91 (2) (@ — g1(2))|
+ 2lw—71(2)?I8%

for (z,w), (o, B) € C?, where 0(z,w) = |w — g1(2)|*.
Observe that we have wy — g1(20) = wo — g2(20) = wo — g3(20) = 0. Therefore
L(v)(z0,wp)(c, B) = 0, for each (a, 3) € C2.

We have the following technical remark.

Remark 4. Let fi,...,fy : C* — C be holomorphic functions, n, N,k € N\{0},

k> 2. Put
2k

u(z,w) = [w = fi(2)*F 4+ o = [ (2)]

v(z,w) = [w = fi(2)|* + o fw = v (2)PF,

ui(z,w) = Jw — fi(2)]* + o+ Jw — fn(2) %,

vi(z,w) = lw— fi(2)* + ..+ [w = fn(2)
¢ =(u+wv)and p1 = (ug + v1).

If w is strictly psh on C™ x C, we can not deduce that v is strictly psh on C™ x C.

If ¢ is strictly psh on C™ x C, we can not conclude that u (or v) is strictly psh on

C" x C.

But we have the technical properties.

(I) If w is strictly psh on C™ x C, then w; is strictly psh on C" x C.

(IT) v is strictly psh on C™ x C implies that v, is strictly psh on C" x C.



36 J. Abidi

(III) If ¢4 is strictly psh on C™ x C, then v; is strictly psh on C™ x C.

(IV) If ¢ is strictly psh on C™ x C, then ¢ is strictly psh on C™ x C.

(V) (u+ wuy) is strictly psh on C™ x C, implies that w; is strictly psh on C" x C.
For example for the proof of the above property (I), since

u(z,w) = [(w— f1(2))*]2 + ... + |(w — fn(2))¥|?, then u is a function of class C*° on
C™ x C. Therefore the hermitian Levi form of u is

L)z w)f) = fw— A28 - §f1<>aj|2+

T N L D= LT
j=1""

for z = (21,...,2n) €C", w € C, a = (aq,...,a,) € C", g € C.
Now u; is a function of class C* on C™ x C. The hermitian Levi form of u; is

8f1 2 _ YJN 12
5y (Il et 19 = 35 0l

(el = 18- 35
Let (z,w),(a,8) € C™ x C. Observe that L(u)(z, w)(a B) > 0 implies that
8f5

L(u1)(z,w)(a, B) > 0, because the absolute value |3 — Z
j= 1

z)a;|* > 0, for each

se{l,..,N}.

The technical properties (IT), (IIT), (IV) and (V) can be be proved similarly.
Observe that for ¢ : C* — R, if 92 is convex on C", then ¢* is convex on C". The
converse, for instance, is in general not true. But in the sequel, using the holomorphic
differential equation, k" (k+¢) = v(k')? (k : C — C be holomorphic and ¢,y € C), we
have

Theorem 9. Let g1,92 : C* — C be two holomorphic functions. Put u(z,w) =
= g1 () + [w — ga(2) 2, 0z, w) = [w— gy ()[4 + |w — ga(2)|*, for (z,w) € C" x C.
We have

(I) Assume that v is convex on C" x C, then u is convex on C" x C.

(II) Suppose that u is convex on C" x C, we can not conclude that v is conver on
Cr x C.

Proof. (I). Note that u and v are functions of class C*° on C" x C.
Assume that n = 1. We have

0? H? 0%v
|5 (2 w)a® + 556 4+ 25— aB| < L(v) (=, w)(a, B)
for each (z,w), (o, B) € C?, where
o ) a 0



A Contribution on Real and Complex Convexity in Several Complex Variables 37

We obtain the inequality

(E): [[—297 (2)w + 2g1(2) g (2) + 2(91(2))*|(@* — 271 ()@ + 77°(2))a®+

(=295 (2)w + 2g2(2) g5 (2) + 2(g5(2))*] (@ — 202(2)W + 72°(2))o® + 2(W — F1(2)) B>+
2(w — 72(2))? B — 201 (2)(@ — 71(2))*aB — 295(2) (W — G2(2))*a| <

203 —2B91(2)—2wg} (2)a+29] (2)91(2)al*+|2wB—2Bg2(2) —2wgs (2) a+2g5(2) g2 (2)al?,
for each (z,w), (o, 8) € C2.

If 3 =0 and w € R, the coefficient of w3 is equal to 0. Therefore (g7 (2) + g5 (2)) = 0,
for every z € C.

Now we divide the left hand side of the inequality (E) by [w|> > 0 (for w € C\{0})
and the right hand side of (E) by |w|? (observe that [w|* = |w|?), and letting |w| go
to (+00), we obtain

(497 (2)g1(2) + 495 (2)72(2) + 2(91(2))* + 2(g5(2))*)0® + 45 — 4(g(2) + g5(2))af|
<128 —2g1(2)al? + 128 — 2g5(2)al’.
Put 5 = g{(z)a. Then

497 (2)71(2) + 495 (2)72(2) + 2(91(2) — 95(2))?| < 4191 (2) — g5(2) .

Thus
197 (2)(g1(2) = 92(2))? < 6lg1(2) — g2(2)|?

for each z € C. Now also we prove that

195 (2) (71(2) — 32(2))| < 6lg1(2) — g (=)

for every z € C. Using the triangle inequality, we have then

197 (2)(g1(2) — g2(2)) — g5 (2)(91(2) — g2(2))| < 12|g1(2) — g5 (2)[?

for each z € C.
Therefore the function (g1 — g2) satisfies

(97 (2) = 95 (2))(91(2) — g2(2))| < 12|g}(2) — g5(2)[?

for every z € C. Therefore the function |g; — g2|? is convex on C, by Abidi [2],
(we can see [3]).

Since (g1 + g2) is affine on C, thus ¢1(2) = (az + b) + ¢(2), g2(2) = (az +b) — p(z),
for each z € C, where ¢ : C — C is a holomorphic function such that |¢| is convex on
C. Therefore u is convex on C2.

In the sequel, we can prove that g; and go are affine functions on C (see proposition 3).
Assume that n > 2. Actually by the above case, it is easy to prove that g; and go
are affine functions on every complex line L C C™. Therefore, g; and g, are affine
functions on C™.

(IT). Assume that n = 1. Put g;(2) = 22, g2(2) = —22, for 2 € C. Then

u(z,w) = |[w— g1 () + [w — g2(2)* = 2w]* + 2/, (2,w) € C*.
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Thus u is convex on C2. But v is not convex on C2, because v(z,1) = |1 — 22|*+
+[1 + 22|* = 2¢(2), for each 2z € C. Observe that ¢ is not convex in a neighborhood
of %

Proposition 3. Let u(z,w) = |w+ < z/a > +b+p(2)|* + |[w+ < z/a > +b— p(2)[4,
a€C™ beC, p:C"— C be holomorphic not affine, |p| is convex on C".

Then the function u is not convexr on C" x C.

Proof. Define v(z,w) = |w + ¢(2)|* + |w — p(2)|*, (z,w) € C"® x C. Observe that v
is convex on C™ x C if and only if u is convex on C" x C.
Suppose that n = 1. Since ¢ is not affine and || is convex on C, then by Abidi [3],
we have the holomorphic representations
©(2) = (a1z + by)¥, for each z € C, where a; € C\{0}, b, € C, k€N, k> 2 or
@(z) = el®2#+b2)for every z € C, with ay € C\{0} and b, € C.
Now for the study of the convexity of the function v, by an affine change of variable,
we can assume that ¢(z) = z¥, for any 2 € C, or ¢(z) = €, for each z € C.
(I) Assume that ¢(z) = 2F, k € N, k > 2.
If k = 2. We can see the above proof and we have the function F' = wv(.,1) is not
convex on C.
Now suppose that k > 3.
Define ¢ (z) = v(z,1), for z € C. Then v is a function of class C* on C.
If 4 is convex on C, then , ,
% 9%
w(z)‘ < 92057

for each z € C.
0%

=) = (2222572 4 2k (k — 1)2F72(1 + 2F)](1 + 2F)?
z
+ [2K%2%F 2 42k (k — 1)2F 2 (2R - 1))(EF - 1)2
2
882(;2(2) e P L L T P R P

For 2 = 1, 2%(1) = 4(6k2 — 4k) > 0 and 254 (1) = 16k2. Then 2-%(1) = |2%(1)| <
g:g%(l). Therefore 6k? — 4k < 4k? and k > 3. This is a contradiction.
(IT) Assume that ¢(z) = e*, for z € C.

Let ¥(z) = v(z,2), z € C. ¢ is a function of class C* on C.

9?1

@(z) = 2(2e7 +2e%*)(2 + €)% + 2(2e% — 2¢7)(e* — 2)2.
32¢ (242) (2 z (242) (2 z
5205 (2) = de (e +2)(e® +2) +4e (e —2)(e* —2).

?;;f (0) = 72 and %(0) = 40. Therefore |g?§
on C. Consequently, v is not convex on C2.

Comparing the preceding theorem and proposition 3, we observe that the exponent 2 is

0)| > gng(O). Then 1) is not convex



A Contribution on Real and Complex Convexity in Several Complex Variables 39

special in our considerations. For instance, let uy(z,w) = |w— f1(2)|?* +|w— f2(2)|?*,
k € N\{0}, f1, f2 : C* — C be two holomorphic functions and (z,w) € C" x C. We
can prove that uy is convex on C™ x C implies that u; is convex on C™* x C if (k > 2),
but the converse is not true.

Let vs(z,w) = [Ajw — f1(2)|° + |Aaw — f2(2)]°, § € [1,4+00[ and (A3, A5) € C?\{0}.
Observe that the study of the convexity of the function vs is based on two additional
cases.

Moreover, observe that by the above technical proof, we have

Theorem 10. Let f1, fo : C* — C be two holomorphic functions. Define u(z,w) =
|w — f1(2)|* + |w — f2(2)|%, for (z,w) € C" x C. We have u is convex on C" x C if
and only if f1 and fo are affine functions on C™.

Proof. We can see the proof of theorem 9 and proposition 3. O

Remark 5. Let fi(2) = 2V, fa(2) = =2V, f3(2) = iz" and fy(2) = —izV, N ¢
N\{0, 1}, for z € C.

Put u(z ) = [w — () 4w — fa(+ Jw— fo(2) + [w— Fa(2)], (2,w) € C.

u is convex on C2, because u(z, w) = c(jw|? + |2V|?)2, where ¢ € R, ¢ > 0. But f1, fa,
f3 and f4 are not affine functions.

We have the following.

Question 1. Let Fy, Fy, F3 : C* — C be holomorphic functions. Put 11(z) =
(RN + [Fa(2)[), va(2) = (P () + a2 + [Fy()]9), 2 € C°.

(I) Is it true that ¢ is convex on C" implies that F; and F are affine functions on
cm?

(IT) Assume that 15 is convex on C™. Is it true that Fy, F and F3 are affine functions
on C™?

The number of holomorphic functions is it fundamental in the above two situations?

We have

Proposition 4. Let k € N\{0,1} and ¢ : C"* — C be holomorphic. Define v(z,w) =
lw+ < z/a > +b+o(2) |2 +|w+ < z/a > +b—¢(2)[**,a € C", b € C, (2,w) € C"xC.
Assume that ¢ is not affine and || is convex on C™. Then v is not conver on C" x C.
Proof. Obviously follows from the proof of proposition 3. Observe that, using the
holomorphic differential equation cited above, we have the additional result. O

Theorem 11. Let g1,g2 : C" — C be two holomorphic functions and k € N\{0, 1}.
Put u(z,w) = [w— g1 (2)* + [ — g2(2)2* and v(z,w) = Jw— gu ()2 + Jw — ga(2)]%,
(z,w) e C™ x C.

(1) Assume that u is convex on C"™ x C. Then v is convex on C™ x C.

(II) Suppose that v is conver on C™ x C. We can not conclude that u is convex on
C" x C. But we have

(II1) w is conver on C™ x C if and only if g1 and g2 are affine functions.

Extension of the results. Let ¢5 = |w — fi(2)]° + |[w — f2(2)[°, § € [1,+o],
f1,f2 : C* — C be two holomorphic functions and (z,w) € C™ x C. We observe
without any assumption on § € [1, 400, for instance , for the study of the convexity
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of the function v, the proof is organized in two separately cases.

Case 1. § = 2. (In this case, we obtain several solutions not affine functions).

Case 2. § € [1,+oo[\{2}.

In general we have the following two remarks (R1) and (R2).

(R1). Let f: C — C be a function. Put ¢s(z,w) = |w — f(2)|°, § € [1, +oo] and
(z,w) € C2. We have s is convex on C? if and only if f is affine (and in particular
f is a function of class C* on C).

(Let N € N\{0}, 2N > ¢ and put G(z,w) = |w — f(2)|*V, (z,w) € C% Suppose
that ¢s is convex on C2. Consequently, G is psh on C2. By Abidi [1], it follows that
f is harmonic on C. Now let T : C — C be an R— linear bijective transformation.
Consider M (z,w) = (T(z),w), for (z,w) € C?. Note that M is R— linear and a
bijective transformation on C2. Therefore G o M is convex on C? and consequently,
G oM is psh on C2. Since Go M (z,w) = |w — foT(z)|, for (z,w) € C2. Then foT
is harmonic on C, for any R— linear transformation 7. Then f is affine on C).

But if we define Fs(z,w) = |w — f1(2)|° + |w — g1(2)|°, where

1if Re(z) > 0
hilz) = { “1if Re(z) < 0

and

—1if Re(z) >0
() = { 1if Re(i) <0

for (z,w) € C2. Then we have

Fs(z,w) = |w — 1|° 4+ |w + 1]° and consequently, the function Fjs is convex on C2, for
each § > 1. But f; and g; are noncontinuous functions at any point of C. Moreover,
we have

(R2). There exists two continuous functions f,g : C — C, with K;(z,w) = |w —
f(2)]° + |w — g(2)]°, (z,w) € C?, Ks is convex on C? (for each § > 1), but f and g
are not functions of class C* on C.

Example. Let f(z) = |z|, g(2) = —|z|, 2 = (z +iy) € C, x = Re(2).

Question 2. Let ¢1,...,9%n : C* — C be analytic functions, N,k € N, k > 2. Define
(zw) = o — Pu (D + e+ o — G ()|, (z,w) € C" x C.

Assume that N < 2k —1 and 1 is convex on C" x C. Characterize 91, ..., ¥ by their
analytic expressions.

Question 3. Let @1, @2, 3,04 : C™ — C and g1, 92,93,94 : C* — C be 8 holomor-
phic functions. Put u = (u1 +uz), where u; (2, w) = |1 (w)—g1(2)|*+|p2(w) —g2(2) |4,
uz(z,w) = |ps(w) — g3(2)|* + |pa(w) — ga(2)[*, (z,w) € C* x C.

Characterize @1, 2, 3, @4, 91, g2, g3, g4 by their expressions such that u; and us are
convex functions on C™ x C and w is strictly psh on C™ x C.

In the sequel, for instance, observe that there exists a great differences between the
exponent 2 and the exponent 4 (or 2k, k € N\{0,1}) in real convexity.

We have
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Lemma 4. (I) There exists 11,19 : C* — C two holomorphic functions such that
[1|% and |12|? are not convex functions, while u = (|11]? + [1b2]?) is convex on C",
but v = (|11 |*+[1h2|*) is not convex on C™ (respectively (|11|?* 4 [1b2|?*) is not convex
on C™ for each k € N\{0,1}).

(II) There ezists @1, pa : C* — C holomorphic functions, with |¢1]?
lpa|? is not convex on C™, (|¢1]? + |p2|?) is convex on C™, but (|¢1|?*
convex on C", for each k € N\{0,1}.

(Example. ¢1(2) = 2z, pa(2) =22 -1, 2 € C).

is convexr and

+ |p2|?F) is not

We introduce this lemma because it yields the following questions.

Question 4. Let f1,f : C* — C be analytic functions and § € [1,+oo[. Put
u = (|f1]® + | f2]°). Suppose that u is convex on C" and & # 2. Is it true that | f;| and
| f2| are convex functions on C™?

Question 5. Let n,m € N\{0}. Find all the holomorphic functions f1, fo : C* — C,
©1,2 : C™ — C, such that ¢ is convex on C" x C™, where ¥(z,w) = |¢1(w) —
F@)P +[p2(w) = fo(2)]°, for (2,w) € C* x C™.

4. Some study of a particular case and algebraic
method

Theorem 12. Let Ay, Ay, As, Ay, A5 € C\{0}. Consider g1, 92,93, 94,95 : C* — C be
five holomorphic functions. Define ui(z,w) = |Ajw — g1(2)|* +

[Asw — g2(2) %, v1(z,w) = [Agw — g3(2)* + [Aaw — a(2)?, u(z,w) = wi(z,w) +
v1(z,w) + |[Asw — g5(2)]?, (z,w) € C" x C.

The following conditions are equivalent

(I) w1 and vy are convex functions on C™ x C and w is (convex and strictly psh) on
C" x C;

(II) n € {1,2,3,4} and we have

{ 91(2) = A1(< z/a > +Db) +§QD(Z)
92(2) = A2(< z/a > +b) — A1p(2)

9a(2) = Au(< z/c > +d) — Azi)(2)

and gs(z) = (< z/\ > +u), (for all z € C*, where a,c,\ € C", b,d,u € C, ¢, :
C™ — C are 2 holomorphic functions, |p| and || are convex functions on C™) with
the following 4 cases.

(1) n=4. We have (a — c,a — X\, (92(2), 22(2), 22 (2), 22.(2)),

éﬁi(z%%(z),gi(z), %(Z))) is a basis of the complex vector space C*, for all z €
(2) n = 3. Then we have for all z € C3, z = (21, 22, 23), o

(a—ca— A (22(2), 22(2), 22(2))), or (a — c;a — A (L(2), 22(2), 22(2))), or

{ 93(2) = A3(< z/c > +d) + Ag1)(z)
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(a—c, (22(2), 22 (2), 22(2)). (B2 (2), 22 (2), 22(2))), or

(a=2A, (ng (2), g—z‘i(z), g—fs(z)), (8—2(2), %(2)’ g—i(z))) is a basis of the complex vector
space C3.

(3) n = 2. Then for each z = (z1,2z2) € C