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ABSTRACT: Mursaleen introduced the concepts of statistical conver-
gence in random 2-normed spaces. Recently Mohiuddine and Aiyup de-
fined the notion of lacunary statistical convergence and lacunary statis-
tical Cauchy in random 2-normed spaces. In this paper, we define and
study the notion of lacunary statistical convergence and lacunary of sta-
tistical Cauchy sequences in random on x? over p— metric spaces defined
by Musielak and prove some theorems which generalizes Mohiuddine and
Aiyup results.
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1 Introduction

The concept of statistical convergence play a vital role not only in pure math-
ematics but also in other branches of science involving mathematics, especially in
information theory, computer science, biological science, dynamical systems, geo-
graphic information systems, population modeling, and motion planning in robotics.

The notion of statistical convergence was introduced by Fast and Schoenberg inde-
pendently. Over the years and under different names statistical convergence has been
discussed in the theory of fourier analysis, ergodic theory and number the- ory. Later
on it was further investigated by Fridy , Salat , Cakalli , Maio and Kocinac , Miller ,
Maddox , Leindler , Mursaleen and Alotaibi , Mursaleen and Edely , and many oth-
ers. In the recent years, generalizations of statistical convergence have appeared in
the study of strong integral summability and the structure of ideals of bounded con-
tinuous func- tions on Stone-Cech compactification of the natural numbers. Moreover
statistical convergence is closely related to the concept of convergence in probability.

Throughout w, x and A denote the classes of all, gai and analytic scalar valued
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single sequences, respectively.
We write w? for the set of all complex sequences (Z,,,), where m,n € N, the set of
positive integers. Then, w? is a linear space under the coordinate wise addition and
scalar multiplication.

Some initial works on double sequence spaces is found in Bromwich [2]. Later on,
they were investigated by Hardy [3], Moricz [6], Moricz and Rhoades [7], Basarir and
Solankan [1], Tripathy [8], Turkmenoglu [9], and many others.

We procure the following sets of double sequences:

Mu (t) = {(xmn) € U)2 L SUPm,neN |$mn|tmn < OO} ;
Cp (t) :== {(:C,,m) € w? :p—limy, oo |Tmn — l|tm” =1 forsomel € (C} ,
Cop (t) 1= {(xmn) € w? : p— iy osoo |Tmn ™" = 1} :

Lo (t) = {(xmn) cw?: Y 2 |xmn|tmn < OO} 3

Cop (1) 1= €p (£) 1 My (¢) and Copp (£) = Cop () 1M (¢);

where t = (t,,,) 1s the sequence of strictly positive reals t,,, for all m,n € N and
D — limmy n—oo denotes the limit in the Pringsheim’s sense. In the case tp,, = 1
for all m,n € N; M, (t),Cp (£), Cop (£) , Lu (), Cpp (t) and Copp (t) reduce to the sets
My, Cp, Cop, Lo, Cpp and Copp, respectively. Now, we may summarize the knowledge
given in some document related to the double sequence spaces. Gokhan and Colak
[11,12] have proved that M, (¢) and C, (¢), Cpp (t) are complete paranormed spaces
of double sequences and gave the a—, —,y— duals of the spaces M, (t) and Cy, (¢) .
Quite recently, in her PhD thesis, Zelter [13] has essentially studied both the theory of
topological double sequence spaces and the theory of summability of double sequences.
Mursaleen and Edely [14] have independently introduced the statistical convergence
and Cauchy for double sequences and given the relation between statistical convergent
and strongly Cesaro summable double sequences. Altay and Basar [15] have defined
the spaces BS, BS (t), C8,, C8pp, €S, and BV of double sequences consisting of all dou-
ble series whose sequence of partial sums are in the spaces My, My, (t) , Cp, Cpp, C and
L., respectively, and also examined some properties of those sequence spaces and de-
termined the a— duals of the spaces BS, BV, €8, and the 8 (¥) — duals of the spaces
C8pp and €8, of double series. Basar and Sever [16] have introduced the Banach space
L4 of double sequences corresponding to the well-known space ¢, of single sequences
and examined some properties of the space £,. Quite recently Subramanian and Misra
[17] have studied the space x3, (p, ¢, u) of double sequences and gave some inclusion
relations.

The class of sequences which are strongly Cesaro summable with respect to a
modulus was introduced by Maddox [5] as an extension of the definition of strongly
Cesaro summable sequences. Cannor [18] further extended this definition to a def-
inition of strong A— summability with respect to a modulus where A = (an ) is
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a nonnegative regular matrix and established some connections between strong A—
summability, strong A— summability with respect to a modulus, and A— statistical
convergence. In [19] the notion of convergence of double sequences was presented by
A. Pringsheim. Also, in [20]-[21], and [22] the four dimensional matrix transformation
(AZ) o = Doy Dopey A7 Tmn was studied extensively by Robison and Hamilton.
We need the following inequality in the sequel of the paper. For a,b,> 0 and
0 < p< 1, we have
(a+b)P <af +b° (1.1)

The double series > ° | &y, is called convergent if and only if the double sequence

(Smn) is convergent, where S, = Z;njzl xij(m,n € N).
A sequence © = (X,y,)is said to be double analytic if supp,, |:C,,m|l/m+" < 00. The

vector space of all double analytic sequences will be denoted by A%2. A sequence
@ = (Zmn) is called double gai sequence if ((m + n)! |Zpn )™ ™ = 0 as m,n — oco.
The double gai sequences will be denoted by x2. Let ¢ = {all finitesequences}.

Consider a double sequence = = (x;;). The (m,n)" section z[™" of the sequence
is defined by al™" = 33" (2,95 for all m,n € N; where Sy; denotes the double
sequence whose only non zero term is a ﬁ in the (i,j)th place for each i, j € N.

Let M and ® are mutually complementary modulus functions. Then, we have:
(i) For all u,y > 0,

uy < M (u) + @ (y), (Young'sinequality)[See[10]] (1.2)

(ii) For all u > 0,
wn (u) = M () + ® (n (w) (1.3)

(iii) For all w > 0, and 0 < A < 1,
M (Au) < AM (u) (1.4)

Lindenstrauss and Tzafriri [4] used the idea of Orlicz function to construct Orlicz
sequence space

Uy = {x cw:y o M (%) < 00, forsomep > O},

The space {3y with the norm
Jall = inf {p>0: 552, M (1) <1},

becomes a Banach space which is called an Orlicz sequence space. For M (t) =
t? (1 < p < 00), the spaces ¢5; coincide with the classical sequence space £,,.

A sequence f = (fmn) of modulus function is called a Musielak-modulus function.
A sequence g = (gmn) defined by
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gmn (V) = sup {|v|u — (frun) (u) :u >0}, mn=1,2---

is called the complementary function of a Musielak-modulus function f. For a given
Musielak modulus function f, the Musielak-modulus sequence space tf is defined as
follows

)l/m-i-n

tf:{waQ:If(|xmn| —>Oasm,n—>oo},

where I is a convex modular defined by

I (@) = 0 20 fon (@)™ o2 = (20n) € L

We consider t; equipped with the Luxemburg metric

d (xu y) = SUPmn {an (Eﬁ:l 220:1 fmn (W)) < 1}

If X is a sequence space, we give the following definitions:

(i)X'= the continuous dual of X;

(i) X = {a = (amn) : 2% et [amnTmn| < 00, foreachaz € X };
(iii) X8 = {a = (Gmn) 1 Y o n=10mnTmn 15 convegent, foreachx € X} :

(iv) X7 = {a = (@mn) : SUPmn > 1 ‘Z%i\;l AmnTmn

< o0, foreachz € X} ;

(v)let X beanF K — space D ¢; then X/ = {f(%mn) 1 fe X/} ;

Lmtn 00, foreachx € X} ;

(vi) X% = {a = (amn) : SUPmn |@mnTmn|
X X8 X7 are called a — (orKéthe — Toeplitz)dual of X, 3 — (or generalized —
Kothe — Toeplitz)dual of X, v — dualof X, 6 — dualof X respectively. X is defined
by Gupta and Kamptan [10]. It is clear that X* ¢ X% and X* ¢ X7, but X? c X7
does not hold, since the sequence of partial sums of a double convergent series need
not to be bounded.

The notion of difference sequence spaces (for single sequences) was introduced by
Kizmaz as follows

Z(A)={x = (z) € w: (Axg) € Z}

for Z = ¢, ¢y and £, where Az, = xp, — 2441 for all k € N.

Here ¢, ¢y and £, denote the classes of convergent,null and bounded sclar valued single
sequences respectively. The difference sequence space bv, of the classical space ¢, is
introduced and studied in the case 1 < p < oo by Bagar and Altay and in the case
0 < p < 1 by Altay and Bagar in [15]. The spaces ¢(A),co (A),los (A) and bv, are
Banach spaces normed by

%) 1
2l = 21| + supis1 [Azg] and [z, = (52, [zf?)”, (1< p < 00).
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Later on the notion was further investigated by many others. We now introduce the
following difference double sequence spaces defined by

Z(A) = {z = (Tmn) € W : (Azpn) € Z}

where Z = A27 X2 and A:I/'Wzn = (xmn - xmn—i—l) - (xm—i-ln - xm-}-ln—i—l) = Tmn —
Tmn+1 — Tmtin + Tmyint1 for all m,n € N. The generalized difference double notion
has the following representation: A™x,,, = A™ 1o, —A™ e, 0 — A o+
A™ 2 1ne1, and also this generalized difference double notion has the following
binomial representation:

A" = zm: zm: (-1)" (7) (7) Tntintj-

i=0 j=0

2 Definition and Preliminaries

Let n € N and X be a real vector space of dimension w, where n < w. A real val-
ued function dy(x1,...,2,) = ||(di(z1),...,dn(zn))|, on X satisfying the following
four conditions:

(1) I(di(z1),...,dn(zn))|lp = 0 if and and only if di(z1),...,dn(x,) are linearly de-
pendent,

(i) [[(d1(z1),- .., dn(xn))|lp is invariant under permutation,

(iti) [[(adi (1), s dn(@n))llp = || [(di(21), - - - dn(zn))[p, 0 € R

(iv) dp (21, 91), (22, 92) -+~ (T, Yn)) = (dx (21,22, 2)P + dy (y1, Y2, - ya)?) "7 for
1 <p < o0; (or)

(V) d((‘rlvyl)a (IQ, y2)7 e (Ina yn)) ‘= sup {dX(‘TlvaQ; co {En), dY(ylyyZa t yn)} )

for z1, 9, T, € X, y1,¥y2, - Yn € Y is called the p product metric of the Cartesian
product of n metric spaces is the p norm of the n-vector of the norms of the n sub-
spaces.

A trivial example of p product metric of n metric space is the p norm space is
X = R equipped with the following FEuclidean metric in the product space is the p
norm:

[(di(21), .- - dn(zn))| 2 = sup (|det(dmn (2mn))])

dii (z11)  diz(z12) ... din(@1n)
doi (x21) dao (z22) ... don (x1n)
= sup '
dnl (Inl) dn2 ($n2) dnn (-Inn)
where x; = (21, xin) € R™ for each i = 1,2, -n.

If every Cauchy sequence in X converges to some L € X, then X is said to be com-
plete with respect to the p— metric. Any complete p— metric space is said to be p—
Banach metric space.



138 N. Subramanian, R. Babu, P. Thirunavukkarasu

Let X be a linear metric space. A function w : X — R is called paranorm, if

(1) w(x) >0, for all z € X;

(2) w(—z)=w(x), for all z € X;

B)w(z+y) <w(z)+w(y), foral z,y € X;

(4) If (6mn) is a sequence of scalars with o,,, — 0 as m,n — oo and (zy) is a
sequence of vectors with w (2., — ) = 0 as m,n — oo, then w (TmnTmn — ox) — 0
as m,n — oo.

A paranorm w for which w (z) = 0 implies x = 0 is called total paranorm and the
pair (X, w) is called a total paranormed space. It is well known that the metric of
any linear metric space is given by some total paranorm (see [23], Theorem 10.4.2,
p.183).

By the convergence of a double sequence we mean the convergence on the Pring-
sheim sense that is, a double sequence x = () has Prinsheim limit L (denoted by
P —limxz = L) provided that given € > 0 there exists n € N such that |z, — L| < €.
We shall write more briefly as P— convergent.

The double sequence 6,5 = {(m,,ns)} is called double lacunary sequence if there
exist two increasing of integers such that

mo=0,¢0, =m, —m,_; = 00 asr — oo and
ng = 0,ps =Ng —Ns—1 —> 00 as § — 0.
Notations: my.s = myng, hrs = ©rQPs, 015 is determined by
Is ={(m,n) :my—1 <m <mpandns_1 <n <ns},

My - Ns

qr = mﬂ]s D and Qrs = Qr{s-

The notion of A— double gai and double analytic sequences as follows: Let A\ =
(Amn) e neo be a strictly increasing sequences of positive real numbers tending to
infinity, that is

0< Ao <A <--+ and Ay — 00asSm,n — 00

and said that a sequence = (x,,) € w? is A— convergent to 0, called a the A— limit
of , if pmn () = 0asm,n — oo, where

1 m— m—
Hmn (JJ) = Z Z (A 1)\m,n - A 1)\7n,n—i-l -
Prs me&l,.s n€l,g
A" At + A" Kt ) [
The sequence © = (T,) € w? is A— double analytic if supuy |fmn (z)| < oco. If

lim;y, Ty = 0 in the ordinary sense of convergence, then

hm ( ! Z Z (Amil)\m,n - Amil)\wz,n-i—l - A77171)\17%{-1,71 + Amil)\m—i—l,n-{-l)

mn
Prs mel.s n€lrs

((m -+ ) — OV <0,
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This implies that

Z Z Am 1)\mn _Am_ mn+l

(SDTS melrs n€lrs

_Amil/\anl,n + A77171)‘77%Jr1,7hL1) ((m 4+ n)! ||z — 0O]])

Hm |y () — 0] = hm

1/’”*”) —0.

which yields that limy, fmn (#) = 0 and hence x = (2,,,) € w? is A— convergent to

0.
Let I?— be an admissible ideal of 2Y¥*N g, be a double lacunary sequence,

f = (fmn) be a Musielak-modulus function and (X, [(d(z1),d(22), - ,d(@n-1)),

be a p—metric space, ¢ = (¢mn) be double analytic sequence of strictly positive real
numbers. By w? (p — X) we denote the space of all sequences defined over

(X, I(d(z1),d(x2), - ,d(zn-1))] ) . The following inequality will be used through-
out the paper. If 0 < ¢y < supgmn = H, K = max (1, 2H’1) then
|a/mn + bmn|Q7nn S K {|a/mn|an + |bmn|Q7nn} (2'1)

for all m,n and amn, bmn € C. Also |a|™™ < max (1, |a|H) for all @ € C.
In the present paper we define the following sequence spaces:

[l ) o) lE]L
T N (T ER T RIS REITRN TR b
e I’

12

(AR (@) d @) d@aea))E]
= o (0,060t )] K]
e I’

If we take fon () = x, we get

2

DL (@) dwa) - d @)

- {r,sefm:[(numn(x),(d<x1>,d<x2>,-- da-0)l,) | = €}
e I’

(420, 1 (@) d @) - d )]

- {nsefrs:[(numn<x>,<d<x1>,d<w2>,-- d@a)l,)]"" = 1}
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If we take ¢ = (¢mn) = 1, we get

I
[ I (1) dw2) - d (1) ]

Ors
= {rs e s [fun (lmn @), @@ d (@) -+ d @), )| 2 €}
e I?

p

M@ @) @), sd @] |

rs

= {rse L [fun (It @), (@@ d (@), d@a)l,)] 2 K}
e I

In the present paper we plan to study some topological properties and inclusion
relation between the above defined sequence spaces.

2

(32 I(d @) s d (w2) o d (n0))| ]

and
2

[A§1,||(d(x1),d(xz),--- d(zn-1))l ]

which we shall discuss in this paper.

3 Main Results

3.1 Theorem

Let f = (fmn) be a Musielak-modulus function, ¢ = (gm») be a double analytic
sequence of strictly positive real numbers, the sequence spaces

2

[x§1,||<d<x1>,d<x2>,--- awn- ],

and [A?i, [(d(z1),d(z2), - ,d(zn-1))l; are linear spaces.

Proof: It is routine ver1ﬁcat1on Therefore the proof is omitted.

3.2 Theorem

Let f = (fmn) be a Musielak-modulus function, ¢ = (gmn») be a double analytic
sequence of strictly positive real numbers, the sequence space

(X2 (@) d w2) o d ()| }
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is a paranormed space with respect to the paranorm defined by
g(z) =inf \
{[Fn (lrtmn (@), (@ @2) (2, d @), ) |7 <1}

Proof: Clearly g (z) > 0 for

2

2 = (onn) € [\ N o) (02 o+ d i) E]

Since [, (0) =0, we get g (0) = 0.
Conversely, suppose that g () = 0, then

inf { [ (lmn (@), (@ (1), d (2) -+ d @a-0)],)| " <1} =0,
Suppose that fim,y, (z) # 0 for each m,n € N. Then

||:umn (.I) ) (d (‘Il) ) d (IQ) y T ad(xnfl))nﬁ — 0.
It follows that

([fm" (||an (2),(d(z1),d(22), - d(@n1))| )}an)l/H%OO

which is a contradiction. Therefore piy,, () = 0. Let

([fmn (Hﬂmn (), (d(z1),d(22), - d(@a1))| )}qmn)l/H o
and

([fm" (Hﬂmn (y),(d(x1),d(z2), - ,d(xn-1))l )j|Q7nn)1/H -

Then by using Minkowski’s inequality, we have

([fmn (”/Lmn (x+y),(d (331) 7d(x2),,,_ (In 1))” )}qmn)l/H
= ([fm” (”“m" (), (d(x1),d (x2) - ,d(xn_1))| )]an)l/H
+ ([fmn (IIumn ), (d(z1),d(x2), - ,d(zn_1))] )}qmn)l/H'

So we have
gt y) = inf {[fmn (W (2 +0), (@), d (@), d i), )| <1}
< inf { [fmm (||umn<w>,<d<x1>7d<x2>,--- d@a-)l,)]"" <1}

+ inf { {fmn (H/Lmn (), (d(z1),d(x2) -, d(@n_1))| )}qmn - 1}
Therefore,
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glx+y) <g(x)+gy).

Finally, to prove that the scalar multiplication is continuous. Let A be any complex
number. By definition,

gO) = inf { [ frn (Ittmn 02) (@ (1), d (2) @), ) | <1}
Then
g Ova) =it LA [ fun (It (A1) (d (1) d (2) -+ d ) ) | <1}
where ¢ = 7. Since [A|""" < magz (1, A" | we have

g (Ax) < maz (L [A]™F""")

inf {20/ [ fn (1t (W2) (A (1) A (22) -+ d @ae)],) ] < 1]

This completes the proof.

3.3 Theorem
(i) If the Musielak modulus function (f,,) satisfies Ay— condition, then

1204

G bt (@) (d (21) . (22) - d a7

= [ s (@) (d(@1)  d () -+ d (@ mu}

(ii) If the Musielak modulus function (g,,) satisfies Ag— condition, then

2a

DG o (@) (d ) o (w2) - d )]

= [0t (@), (A1) d (22) -+ (@ mn}

Proof: Let the Musielak modulus function (f,,) satisfies Ay— condition, we get

{ngu, ltmn (), (d(21),d(22), - ,d (!En—l))Hﬂ ;S c (3.1)
[ b ), @ 1) 22 - n )]
To prove the inclusion
I2a

D b (@) (A (@1)  d (22) -+ d wam)F)

< [, It (2)  (d (21) d (2) .-+ d (2 1>>||} :
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let

I2a

a € {X?IZN H,umn (IE) ) (d (‘Tl) yd (IQ) yosd ($n71))||§:| Ors

Then for all {2, } with

2

(n) € [N i (), (@ 1) )+ s )]

we have
Z Z [T Gmn| < 00. (3.2)
m=1n=1

Since the Musielak modulus function (f,,) satisfies As— condition, then

2

(Ymn) € [X?‘,Z,Ilumn (@), (d(z1),d(22) - d (@)l |

we get

SO’I‘Symna/’rnn
A" N (Mm 4+ n)!

‘<oo.

by (3.2). Thus

(prstimn) € [0 lptnn (2) A (22) (22, ,d<xn_1>>||*1;5

= [ lttmn (2) (A (1) d (2) (o mn}

and hence

2

() € [N T () @ (1), d 22), - d )]

This gives that

[ b (), @ 1) 22+ d ) IE]
C [ M (), (@) A a2) A )]
we are granted with (3.1) and (3.3)
[0 lttmn (@), (d (1) d (@2) -+, d (@0-))| }”

= [ o @) @) A a2) A )]
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(i) Similarly, one can prove that

I2o<

G b (@) (d 1), d (@) - d a1 E]

< [ Mm@, (@A (1) d (22) -+ (@ 1>>H

if the Musielak modulus function (gp,,) satisfies Ao— condition.

3.4 Proposition

If 0 < gmn < Pmn < o0 for each m and m, then

2

(30 i &) @ (1), d 2), - )],

C AT Mt (2) (A (1) (2) -+ - mn}

Proof: The proof is standard, so we omit it.

3.5 Proposition

(i) If 0 < infqmn < Gmn < 1 then

(A3t (@), (@ (21) d (2) -+ (2m0))] }
12

< [A3 Mt (2) (A (1) d (@2) -+, d (- 1>>”“”Lm'

(i1) If 1 < Gumn < SUPGmn < 00, then

2

(43 T 2 @ (1), d 2), s )],

C (A2 i 0 (@ 2) d(02) - d 1>>H

Proof: The proof is standard, so we omit it.
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3.6 Proposition
Let f/ = ( f,/,m) and f// = ( f,l,lm) are sequences of Musielak functions, we have
12

(A2 Nt (@), (@ (1) d (2) -+ o d (@a1)IIE]

rs

OV [A2, Dt ) (@ 0) s 2) i )IE]

12
C MYl (@), (@ (@2) d(w2) - d @a)F ],
Proof: The proof is easy so we omit it.

3.7 Proposition

For any sequence of Musielak functions f = (fmn) and ¢ = (gmn) be double
analytic sequence of strictly positive real numbers. Then

2

[0 ltmn (@), (d (1) d (@2) -+ d (w0-))] }
C AT ttmn (@) (d (1) d (22) -+ d (e mn}

Proof: The proof is easy so we omit it.

3.8 Proposition

The sequence space [A?L, |t (), (d (21) ,d (22) -+ yd (xn_1))||¥ ] : is solid
Proof: Let © = () € {A?L, | tmn () 5 (d (21) ,d (22) -+, d (zn—1))| } , (ie)
s [A3 i (), (4 (21) ), D] < o0

Let (cmyn) be double sequence of scalars such that |am,,| < 1 for all m,n € N x N.
Then we get

2

sup | A%, ([ () (d (1) . 22) -+ ()| }
< sup (A lnn () (@ (@0) d (@) -+ o )| }

This completes the proof.
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3.9 Proposition

The sequence space A?‘L, [ttmm (), (d (1) ,d(x2), - ,d(Tn-1))| } is mono-

tone
Proof: The proof follows from Proposition 3.8.

3.10 Proposition
If f = (fmn) be any Musielak function. Then

{A?;IH ”/Lmn (:E) ) (d (fEl) s d (IQ) o ’d(xnfl))HfLM

2

wx 11
C At (@) (d (1) d (@2) - d @)

rs

if and only if sup, >, % < 0.

Proof: Let
2
€ (A% ltmn (@), (@ (1) d (22) -+ d @a-D)E ]
and .
N = SUPy s>1 *i < 0oQ.
Then we get

(A5 o (2) (@ (1) d (22) -+, d (- 1>>”“’:Z]Is

97‘
w117
= N [AFL o (@) (d (1) d (2) - d (@) [57] =0
e I?
Thus & € (A28, [t (2) , (d (21) d w2) -+ sd an-1 )]
Conversely, suppose that b
w11
|:A?L, H,umn (I)v(d ('rl) ad(x2)7" ’ ’d(Inil))Hkp :|N9
c [Aii“,|\umn (2),(d(21),d(z2), - ,d(@n-1))] ]
and
17
& [A20 i (2), (@) ) o D]
Then

[A?L’ ltmn (), (d(21),d(22), - ,d (xn_l))”;:*} <e
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for every ¢ > 0. Suppose that sup, ;> f:—Zi = 00, then there exists a sequence of

members (rs;;) such that lim; ;0 % = 00. Hence, we have
Jk

(420, o &) (o) d )+ d @) 5] = o

rs

Therefore

2

2 ¢ (38 o (@) (1) d o)+ d )]

which is a contradiction. This completes the proof.

3.11 Proposition
If f = (fmn) be any Musielak function. Then

|:A§‘(Z“ ”an (J:) ) (d (fI;l) ’ d ((EQ) )T ’d(xn_l))H?s*}@m

12

= [N @), @ ) ), d )]

if and only if
sup wii < 00, Sup Pra
rs>1 Prg r,s>1 (Prs

> 00.

Proof: It is easy to prove so we omit.

3.12 Proposition

The sequence space

2

[0 Lt (@) 01 2) )]
is not solid
Proof: The result follows from the following example.

Example: Consider

1
1
2

r=(tmn) = | € [\ Ntmn (@), (@ (1) (), (e nM

1
1
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Let
I S L
_1m+n _1m+n _1m+n
Amn — )
L L S L)
for all m,n € N. Then
2
2
Qonntmn # [\ D (), (@ 1), 2) -+ 0]
Hence .
[0 o (), @ 1) ) s )],
is not solid.
3.13 Proposition
The sequence space [x?‘,ﬂ,l\umn (@), (d(z1),d(z2), - ,d(zn1))| } is not

monotone
Proof: The proof follows from Proposition 3.12.
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