Preserving subordination and superordination results of generalized Srivastava-Attiya operator

M. K. Aouf, A. O. Mostafa, A. M. Shahin and S. M. Madian

Submitted by: Jan Stankiewicz

Abstract

In this paper, we obtain some subordination and superordina-tion-preserving results of the generalized Srivastava-Attyia operator. Sandwichtype result is also obtained.

AMS Subject Classification: 30C45
Keywords and Phrases: Analytic function, Hadamard product, differential subordination, superordination

1. Introduction

Let $H(U)$ be the class of functions analytic in $U=\{z \in \mathbb{C}:|z|<1\}$ and $H[a, n]$ be the subclass of $H(U)$ consisting of functions of the form $f(z)=a+a_{n} z^{n}+a_{n+1} z^{n+1}+\ldots$, with $H_{0}=H[0,1]$ and $H=H[1,1]$. Denote $A(p)$ by the class of all analytic functions of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{n=1}^{\infty} a_{p+n} z^{p+n} \quad(p \in \mathbb{N}=\{1,2,3, \ldots\} ; z \in U) \tag{1.1}
\end{equation*}
$$

and let $A(1)=A$. For $f, F \in H(U)$, the function $f(z)$ is said to be subordinate to $F(z)$, or $F(z)$ is superordinate to $f(z)$, if there exists a function $\omega(z)$ analytic in U with $\omega(0)=0$ and $|\omega(z)|<1(z \in U)$, such that $f(z)=F(\omega(z))$. In such a case we write $f(z) \prec$ $F(z)$. If F is univalent, then $f(z) \prec F(z)$ if and only if $f(0)=F(0)$ and $f(U) \subset F(U)$ (see [14] and [15]).

Let $\phi: \mathbb{C}^{2} \times U \rightarrow \mathbb{C}$ and $h(z)$ be univalent in U. If $p(z)$ is analytic in U and satisfies the first order differential subordination:

$$
\begin{equation*}
\phi\left(p(z), z p^{\prime}(z) ; z\right) \prec h(z) \tag{1.2}
\end{equation*}
$$

COPYRIGHT © by Publishing Department Rzeszów University of Technology P.O. Box 85, 35-959 Rzeszów, Poland
then $p(z)$ is a solution of the differential subordination (1.2). The univalent function $q(z)$ is called a dominant of the solutions of the differential subordination (1.2) if $p(z) \prec q(z)$ for all $p(z)$ satisfying (1.2). A univalent dominant \tilde{q} that satisfies $\tilde{q} \prec q$ for all dominants of (1.2) is called the best dominant. If $p(z)$ and $\phi\left(p(z), z p^{\prime}(z) ; z\right)$ are univalent in U and if $p(z)$ satisfies the first order differential superordination:

$$
\begin{equation*}
h(z) \prec \phi\left(p(z), z p^{\prime}(z) ; z\right), \tag{1.3}
\end{equation*}
$$

then $p(z)$ is a solution of the differential superordination (1.3). An analytic function $q(z)$ is called a subordinant of the solutions of the differential superordination (1.3) if $q(z) \prec p(z)$ for all $p(z)$ satisfying (1.3). A univalent subordinant \tilde{q} that satisfies $q \prec \tilde{q}$ for all subordinants of (1.3) is called the best subordinant (see [14] and [15]).
The general Hurwitz-Lerch Zeta function $\Phi(z, s, a)$ is defined by:

$$
\begin{equation*}
\Phi(z, s, a)=\sum_{n=0}^{\infty} \frac{z^{n}}{(n+a)^{s}} \tag{1.4}
\end{equation*}
$$

$$
\left(a \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-} ; \mathbb{Z}_{0}^{-}=\{0,-1,-2, \ldots\} ; s \in \mathbb{C} \text { when }|z|<1 ; R\{s\}>1 \text { when }|z|=1\right)
$$

For interesting properties and characteristics of the Hurwitz-Lerch Zeta function $\Phi(z, s, a)$ (see [3], [8], [9], [11] and [19]).

Recently, Srivastava and Attiya [18] introduced the linear operator $L_{s, b}: A \rightarrow A$, defined in terms of the Hadamard product by

$$
\begin{equation*}
L_{s, b}(f)(z)=G_{s, b}(z) * f(z)\left(z \in U ; b \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-} ; s \in \mathbb{C}\right) \tag{1.5}
\end{equation*}
$$

where for convenience,

$$
\begin{equation*}
G_{s, b}=(1+b)^{s}\left[\Phi(z, s, b)-b^{-s}\right](z \in U) \tag{1.6}
\end{equation*}
$$

The Srivastava-Attiya operator $L_{s, b}$ contains among its special cases, the integral operators introduced and investigated by Alexander [1], Libera [7] and Jung et al. [6].

Analogous to $L_{s, b}$, Liu [10] defined the operator $J_{p, s, b}: A(p) \rightarrow A(p)$ by

$$
\begin{equation*}
J_{p, s, b}(f)(z)=G_{p, s, b}(z) * f(z)\left(z \in U ; b \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-} ; s \in \mathbb{C} ; p \in \mathbb{N}\right) \tag{1.7}
\end{equation*}
$$

where

$$
G_{p, s, b}=(1+b)^{s}\left[\Phi_{p}(z, s, b)-b^{-s}\right]
$$

and

$$
\begin{equation*}
\Phi_{p}(z, s, b)=\frac{1}{b^{s}}+\sum_{n=0}^{\infty} \frac{z^{n+p}}{(n+1+b)^{s}} \tag{1.8}
\end{equation*}
$$

It is easy to observe from (1.7) and (1.8) that

$$
\begin{equation*}
J_{p, s, b}(f)(z)=z^{p}+\sum_{n=1}^{\infty}\left(\frac{1+b}{n+1+b}\right)^{s} a_{n+p} z^{n+p} \tag{1.9}
\end{equation*}
$$

We note that
(i) $J_{p, 0, b}(f)(z)=f(z)$;
(ii) $J_{1,1,0}(f)(z)=L f(z)=\int_{0}^{z} \frac{f(t)}{t} d t$, where the operator L was introduced by Alexander [1];
(iii) $J_{1, s, b}(f)(z)=L_{s, b} f(z)\left(s \in \mathbb{C}, b \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-}\right)$, where the operator $L_{s, b}$ was introduced by Srivastava and Attiya [18];
(iv) $J_{p, 1, \nu+p-1}(f)(z)=F_{\nu, p}(f(z))(\nu>-p, p \in \mathbb{N})$, where the operator $F_{\nu, p}$ was introduced by Choi et al. [4];
(v) $J_{p, \alpha, p}(f)(z)=I_{p}^{\alpha} f(z)(\alpha \geq 0, p \in \mathbb{N})$, where the operator I_{p}^{α} was introduced by Shams et al. [17];
(vi) $J_{p, m, p-1}(f)(z)=J_{p}^{m} f(z)\left(m \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}, p \in \mathbb{N}\right)$, where the operator J_{p}^{m} was introduced by El-Ashwah and Aouf [5];
(vii) $J_{p, m, p+l-1}(f)(z)=J_{p}^{m}(l) f(z)\left(m \in \mathbb{N}_{0}, p \in \mathbb{N}, l \geq 0\right)$, where the operator $J_{p}^{m}(l)$ was introduced by El-Ashwah and Aouf [5].

It follows from (1.9) that:

$$
\begin{equation*}
z\left(J_{p, s+1, b}(f)(z)\right)^{\prime}=(b+1) J_{p, s, b}(f)(z)-(b+1-p) J_{p, s+1, b}(f)(z) \tag{1.10}
\end{equation*}
$$

To prove our results, we need the following definitions and lemmas.
Definition 1 [14]. Denote by F the set of all functions $q(z)$ that are analytic and injective on $\bar{U} \backslash E(q)$ where

$$
E(q)=\left\{\zeta \in \partial U: \lim _{z \rightarrow \zeta} q(z)=\infty\right\}
$$

and are such that $q^{\prime}(\zeta) \neq 0$ for $\zeta \in \partial U \backslash E(q)$. Further let the subclass of F for which $q(0)=a$ be denoted by $F(a), F(0) \equiv F_{0}$ and $F(1) \equiv F_{1}$.
Definition 2 [15]. A function $L(z, t)(z \in U, t \geq 0)$ is said to be a subordination chain if $L(\cdot, t)$ is analytic and univalent in U for all $t \geq 0, L(z, \cdot)$ is continuously differentiable on $[0 ; 1)$ for all $z \in U$ and $L\left(z, t_{1}\right) \prec L\left(z, t_{2}\right)$ for all $0 \leq t_{1} \leq t_{2}$.
Lemma 1 [16]. The function $L(z, t): U \times[0 ; 1) \longrightarrow \mathbb{C}$ of the form

$$
L(z, t)=a_{1}(t) z+a_{2}(t) z^{2}+\ldots \quad\left(a_{1}(t) \neq 0 ; t \geq 0\right)
$$

and $\lim _{t \rightarrow \infty}\left|a_{1}(t)\right|=\infty$ is a subordination chain if and only if

$$
\operatorname{Re}\left\{\frac{z \partial L(z, t) / \partial z}{\partial L(z, t) / \partial t}\right\}>0 \quad(z \in U, t \geq 0)
$$

Lemma 2 [12]. Suppose that the function $\mathcal{H}: \mathbb{C}^{2} \rightarrow \mathbb{C}$ satisfies the condition

$$
\operatorname{Re}\{\mathcal{H}(i s ; t)\} \leq 0
$$

for all real s and for all $t \leq-n\left(1+s^{2}\right) / 2, n \in \mathbb{N}$. If the function $p(z)=1+p_{n} z^{n}+$ $p_{n+1} z^{n+1}+\ldots$ is analytic in U and

$$
\operatorname{Re}\left\{\mathcal{H}\left(p(z) ; z p^{\prime}(z)\right)\right\}>0 \quad(z \in U)
$$

then $\operatorname{Re}\{p(z)\}>0$ for $z \in U$.
Lemma 3 [13]. Let $\kappa, \gamma \in \mathbb{C}$ with $\kappa \neq 0$ and let $h \in H(U)$ with $h(0)=c$. If $\operatorname{Re}\{\kappa h(z)+\gamma\}>0(z \in U)$, then the solution of the following differential equation:

$$
q(z)+\frac{z q^{\prime}(z)}{\kappa q(z)+\gamma}=h(z) \quad(z \in U ; q(0)=c)
$$

is analytic in U and satisfies $\operatorname{Re}\{\kappa q(z)+\gamma\}>0$ for $z \in U$.
Lemma 4 [14]. Let $p \in F(a)$ and let $q(z)=a+a_{n} z^{n}+a_{n+1} z^{n+1}+\ldots$...be analytic in U with $q(z) \neq a$ and $n \geq 1$. If q is not subordinate to p, then there exists two points $z_{0}=r_{0} e^{i \theta} \in U$ and $\zeta_{0} \in \partial U \backslash E(q)$ such that

$$
q\left(U_{r_{0}}\right) \subset p(U) ; \quad q\left(z_{0}\right)=p\left(\zeta_{0}\right) \quad \text { and } \quad z_{0} p^{\prime}\left(z_{0}\right)=m \zeta_{0} p^{\prime}\left(\zeta_{0}\right) \quad(m \geq n)
$$

Lemma 5 [15]. Let $q \in H[a ; 1]$ and $\varphi: \mathbb{C}^{2} \rightarrow \mathbb{C}$. Also set $\varphi\left(q(z), z q^{\prime}(z)\right)=h(z)$. If $L(z, t)=\varphi\left(q(z), t z q^{\prime}(z)\right)$ is a subordination chain and $p \in H[a ; 1] \cap F(a)$, then

$$
h(z) \prec \varphi\left(p(z), z p ;^{\prime}(z)\right),
$$

implies that $q(z) \prec p(z)$. Furthermore, if $\varphi\left(q(z), z q^{\prime}(z)\right)=h(z)$ has a univalent solution $q \in F(a)$, then q is the best subordinant.

In the present paper, we aim to prove some subordination-preserving and superordinationpreserving properties associated with the integral operator $J_{p, s, b}$. Sandwich-type result involving this operator is also derived.

2. Main results

Unless otherwise mentioned, we assume throughout this section that $b \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-}, s \in$ $\mathbb{C}, \operatorname{Re}(b)>0, p \in \mathbb{N}$ and $z \in \mathbb{U}$.
Theorem 1. Let $f, g \in A(p)$ and

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z \phi^{\prime \prime}(z)}{\phi^{\prime}(z)}\right\}>-\delta \quad\left(\phi(z)=\frac{J_{p, s-1, b}(g)(z)}{z^{p}} ; z \in U\right) \tag{2.1}
\end{equation*}
$$

where δ is given by

$$
\begin{equation*}
\delta=\frac{1+|b+1|^{2}-\left|1-(b+1)^{2}\right|}{4[1+\operatorname{Re}(b)]} \quad(z \in U) \tag{2.2}
\end{equation*}
$$

Then the subordination condition

$$
\begin{equation*}
\frac{J_{p, s-1, b}(f)(z)}{z^{p}} \prec \frac{J_{p, s-1, b}(g)(z)}{z^{p}} \tag{2.3}
\end{equation*}
$$

implies that

$$
\begin{equation*}
\frac{J_{p, s, b}(f)(z)}{z^{p}} \prec \frac{J_{p, s, b}(g)(z)}{z^{p}} \tag{2.4}
\end{equation*}
$$

and the function $\frac{J_{p, s, b}(g)(z)}{z^{p}}$ is the best dominant.
Proof. Let us define the functions $F(z)$ and $G(z)$ in U by

$$
\begin{equation*}
F(z)=\frac{J_{p, s, b}(f)(z)}{z^{p}} \quad \text { and } \quad G(z)=\frac{J_{p, s, b}(g)(z)}{z^{p}} \quad(z \in U) \tag{2.5}
\end{equation*}
$$

and without loss of generality we assume that $G(z)$ is analytic, univalent on \bar{U} and

$$
G^{\prime}(\zeta) \neq 0 \quad(|\zeta|=1) .
$$

If not, then we replace $F(z)$ and $G(z)$ by $F(\rho z)$ and $G(\rho z)$, respectively, with $0<\rho<1$. These new functions have the desired properties on \bar{U}, so we can use them in the proof of our result and the results would follow by letting $\rho \rightarrow 1$.

We first show that, if

$$
\begin{equation*}
q(z)=1+\frac{z G^{\prime \prime}(z)}{G^{\prime}(z)} \quad(z \in U) \tag{2.6}
\end{equation*}
$$

then

$$
\operatorname{Re}\{q(z)\}>0 \quad(z \in U)
$$

From (1.10) and the definition of the functions G, ϕ, we obtain that

$$
\begin{equation*}
\phi(z)=G(z)+\frac{z G^{\prime}(z)}{b+1} \tag{2.7}
\end{equation*}
$$

Differentiating both sides of (2.7) with respect to z yields

$$
\begin{equation*}
\phi^{\prime}(z)=\left(1+\frac{1}{b+1}\right) G^{\prime}(z)+\frac{z G^{\prime \prime}(z)}{b+1} . \tag{2.8}
\end{equation*}
$$

Combining (2.6) and (2.8), we easily get

$$
\begin{equation*}
1+\frac{z \phi^{\prime \prime}(z)}{\phi^{\prime}(z)}=q(z)+\frac{z q^{\prime}(z)}{q(z)+b+1}=h(z) \quad(z \in U) . \tag{2.9}
\end{equation*}
$$

It follows from (2.1) and (2.9) that

$$
\begin{equation*}
\operatorname{Re}\{h(z)+b+1\}>0 \quad(z \in U) . \tag{2.10}
\end{equation*}
$$

Moreover, by using Lemma 3, we conclude that the differential equation (2.9) has a solution $q(z) \in H(U)$ with $h(0)=q(0)=1$. Let

$$
\mathcal{H}(u, v)=u+\frac{v}{u+b+1}+\delta,
$$

where δ is given by (2.2). From (2.9) and (2.10), we obtain $\operatorname{Re}\left\{\mathcal{H}\left(q(z) ; z q^{\prime}(z)\right)\right\}>$ $0(z \in U)$.

To verify the condition

$$
\begin{equation*}
\operatorname{Re}\{\mathcal{H}(i \vartheta ; t)\} \leq 0 \quad\left(\vartheta \in \mathbb{R} ; t \leq-\frac{1+\vartheta^{2}}{2}\right) \tag{2.11}
\end{equation*}
$$

we proceed as follows:

$$
\begin{aligned}
\operatorname{Re}\{\mathcal{H}(i \vartheta ; t)\} & =\operatorname{Re}\left\{i \vartheta+\frac{t}{b+1+i \vartheta}+\delta\right\}=\frac{t(1+\operatorname{Re}(b))}{|b+1+i \vartheta|^{2}}+\delta \\
& \leq-\frac{\Upsilon(b, \vartheta, \delta)}{2|b+1+i \vartheta|^{2}}
\end{aligned}
$$

where

$$
\begin{equation*}
\Upsilon(b, \vartheta, \delta)=[1+\operatorname{Re}(b)-2 \delta] \vartheta^{2}-4 \delta \operatorname{Im}(b) \vartheta-2 \delta|b+1|^{2}+1+\operatorname{Re}(b) . \tag{2.12}
\end{equation*}
$$

For δ given by (2.2), the coefficient of ϑ^{2} in the quadratic expression $\Upsilon(b, \vartheta, \delta)$ given by (2.12) is positive or equal to zero. To check this, put $b+1=c$, so that

$$
1+\operatorname{Re}(b)=c_{1} \quad \text { and } \quad \operatorname{Im}(b)=c_{2}
$$

We thus have to verify that

$$
c_{1}-2 \delta \geq 0
$$

or

$$
c_{1} \geq 2 \delta=\frac{1+|c|^{2}-\left|1-c^{2}\right|}{2 c_{1}}
$$

This inequality will hold true if

$$
2 c_{1}^{2}+\left|1-c^{2}\right| \geq 1+|c|^{2}=1+c_{1}^{2}+c_{2}^{2}
$$

that is, if

$$
\left|1-c^{2}\right| \geq 1-\operatorname{Re}\left(c^{2}\right)
$$

which is obviously true. Moreover, the quadratic expression $\Upsilon(b, \vartheta, \delta)$ by ϑ in (2.12) is a perfect square for the assumed value of δ given by (2.2). Hence we see that (2.11) holds. Thus, by using Lemma 2, we conclude that

$$
\operatorname{Re}\{q(z)\}>0 \quad(z \in U)
$$

that is, that G defined by (2.5) is convex (univalent) in U. Next, we prove that the subordination condition (2.3) implies that

$$
F(z) \prec G(z),
$$

for the functions F and G defined by (2.5). Consider the function $L(z, t)$ given by

$$
\begin{equation*}
L(z, t)=G(z)+\frac{(1+t) z G^{\prime}(z)}{b+1} \quad(0 \leq t<\infty ; z \in U) \tag{2.13}
\end{equation*}
$$

We note that

$$
\left.\frac{\partial L(z, t)}{\partial z}\right|_{z=0}=G^{\prime}(0)\left(1+\frac{1+t}{b+1}\right) \neq 0 \quad(0 \leq t<\infty ; z \in U ; \operatorname{Re}\{b+1\}>0)
$$

This show that the function

$$
L(z, t)=a_{1}(t) z+\ldots,
$$

satisfies the condition $a_{1}(t) \neq 0(0 \leq t<\infty)$. Further, we have

$$
\operatorname{Re}\left\{\frac{z \partial L(z, t) / \partial z}{\partial L(z, t) / \partial t}\right\}=\operatorname{Re}\{b+1+(1+t) q(z)\}>0 \quad(0 \leq t<\infty ; z \in U)
$$

Since $G(z)$ is convex and $\operatorname{Re}\{b+1\}>0$. Therefore, by using Lemma 1 , we deduce that $L(z, t)$ is a subordination chain. It follows from the definition of subordination chain that

$$
\phi(z)=G(z)+\frac{z G^{\prime}(z)}{b+1}=L(z, 0)
$$

and

$$
L(z, 0) \prec L(z, t) \quad(0 \leq t<\infty)
$$

which implies that

$$
\begin{equation*}
L(\zeta, t) \notin L(U, 0)=\phi(U) \quad(0 \leq t<\infty ; \zeta \in \partial U) \tag{2.14}
\end{equation*}
$$

If F is not subordinate to G, by using Lemma 4, we know that there exist two points $z_{0} \in U$ and $\zeta_{0} \in \partial U$ such that

$$
\begin{equation*}
F\left(z_{0}\right)=G\left(\zeta_{0}\right) \quad \text { and } \quad z_{0} F^{\prime}\left(z_{0}\right)=(1+t) \zeta_{0} G^{\prime}\left(\zeta_{0}\right) \quad(0 \leq t<\infty) \tag{2.15}
\end{equation*}
$$

Hence, by using (2.5), (2.13),(2.15) and (2.3), we have
$L\left(\zeta_{0}, t\right)=G\left(\zeta_{0}\right)+\frac{(1+t) \zeta_{0} G^{\prime}\left(\zeta_{0}\right)}{b+1}=F\left(z_{0}\right)+\frac{z_{0} F^{\prime}\left(z_{0}\right)}{b+1}=\frac{J_{p, s-1, b}(f)\left(z_{0}\right)}{z_{0}^{p}} \in \phi(U)$.
This contradicts (2.14). Thus, we deduce that $F \prec G$. Considering $F=G$, we see that the function G is the best dominant. This completes the proof of Theorem 1.

We now derive the following superordination result.
Theorem 2. Let $f, g \in A(p)$ and

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z \phi^{\prime \prime}(z)}{\phi^{\prime}(z)}\right\}>-\delta \quad\left(\phi(z)=\frac{J_{p, s-1, b}(g)(z)}{z^{p}} ; z \in U\right) \tag{2.16}
\end{equation*}
$$

where δ is given by (2.2). If the function $\frac{J_{p, s-1, b}(f)(z)}{z^{p}}$ is univalent in U and $\frac{J_{p, s, b}(f)(z)}{z^{p}} \in F$, then the superordination condition

$$
\begin{equation*}
\frac{J_{p, s-1, b}(g)(z)}{z^{p}} \prec \frac{J_{p, s-1, b}(f)(z)}{z^{p}} \tag{2.17}
\end{equation*}
$$

implies that

$$
\begin{equation*}
\frac{J_{p, s, b}(g)(z)}{z^{p}} \prec \frac{J_{p, s, b}(f)(z)}{z^{p}} \tag{2.18}
\end{equation*}
$$

and the function $\frac{J_{p, s, b}(g)(z)}{z^{p}}$ is the best subordinant.
Proof. Suppose that the functions F, G and q are defined by (2.5) and (2.6), respectively. By applying similar method as in the proof of Theorem 1, we get

$$
\operatorname{Re}\{q(z)\}>0 \quad(z \in U)
$$

Next, to arrive at our desired result, we show that $G \prec F$. For this, we suppose that the function $L(z, t)$ be defined by (2.13). Since G is convex, by applying a similar method as in Theorem 1, we deduce that $L(z, t)$ is subordination chain. Therefore, by using Lemma 5, we conclude that $G \prec F$. Moreover, since the differential equation

$$
\phi(z)=G(z)+\frac{z G^{\prime}(z)}{b+1}=\varphi\left(G(z), z G^{\prime}(z)\right)
$$

has a univalent solution G, it is the best subordinant. This completes the proof of Theorem 2.
Combining the above-mentioned subordination and superordination results involving the operator $J_{p, s, b}$, the following "sandwich-type result" is derived.
Theorem 3. Let $f, g_{j} \in A(p)(j=1,2)$ and

$$
\operatorname{Re}\left\{1+\frac{z \phi_{j}^{\prime \prime}(z)}{\phi_{j}^{\prime}(z)}\right\}>-\delta \quad\left(\phi_{j}(z)=\frac{J_{p, s-1, b}\left(g_{j}\right)(z)}{z^{p}}(j=1,2) ; z \in U\right)
$$

where δ is given by (2.2). If the function $\frac{J_{p, s-1, b}(f)(z)}{z^{p}}$ is univalent in U and $\frac{J_{p, s, b}(f)(z)}{z^{p}} \in F$, then the condition

$$
\begin{equation*}
\frac{J_{p, s-1, b}\left(g_{1}\right)(z)}{z^{p}} \prec \frac{J_{p, s-1, b}(f)(z)}{z^{p}} \prec \frac{J_{p, s-1, b}\left(g_{2}\right)(z)}{z^{p}} \tag{2.19}
\end{equation*}
$$

implies that

$$
\begin{equation*}
\frac{J_{p, s, b}\left(g_{1}\right)(z)}{z^{p}} \prec \frac{J_{p, s, b}(f)(z)}{z^{p}} \prec \frac{J_{p, s, b}\left(g_{2}\right)(z)}{z^{p}} \tag{2.20}
\end{equation*}
$$

and the functions $\frac{J_{p, s, b}\left(g_{1}\right)(z)}{z^{p}}$ and $\frac{J_{p, s, b}\left(g_{2}\right)(z)}{z^{p}}$ are, respectively, the best subordinant and the best dominant.
Remark. (i) Putting $b=p$ and $s=\alpha(\alpha \geq 0, p \in \mathbb{N})$ in our results of this paper, we obtain the results obtained by Aouf and Seoudy [2];
(ii) Specializing the parameters s and b in our results of this paper, we obtain the results for the corresponding operators $F_{\nu, p}, J_{p}^{m}$ and $J_{p}^{m}(l)$ which are defined in the introduction.

References

[1] J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. Math. Ser., 2, 17 (1915), 12-22.
[2] M. K. Aouf and T. M. Seoudy, Some preserving subordination and superordination results of certain integral operator, Int. J. Open Problems Comput. Math., (to appear).
[3] J. H. Choi and H. M. Srivastava, Certain families of series associated with the HurwitzLerch Zeta function, Appl. Math. Comput., 170 (2005), 399-409.
[4] J. H. Choi, M. Saigo and H.M. Srivastava, Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl., 276 (2002), 432-445.
[5] R. M. El-Ashwah and M. K. Aouf, Some properties of new integral operator, Acta Univ. Apulensis, 24 (2010), 51-61.
[6] T. B. Jung, Y. C. Kim and H. M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl., 176 (1993), 138-147.
[7] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc., 16 (1969), 755-758.
[8] S.-D. Lin and H. M. Srivastava, Some families of the Hurwitz-Lerch Zeta functions and associated fractional derivative and other integral representations, Appl. Math. Comput., 154 (2004), 725-733.
[9] S.-D. Lin, H. M. Srivastava and P.-Y. Wang, Some expansion formulas for a class of generalized Hurwitz-Lerch Zeta functions, Integral Transforms Spec. Funct., 17 (2006), 817-827.
[10] J.-L. Liu, Subordinations for certain multivalent analytic functions associated with the generalized Srivastava-Attiya operator, Integral Transforms Spec. Funct., 18 (2007), 207-216.
[11] Q.-M. Luo and H. M. Srivastava, Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials, J. Math. Anal. Appl., 308 (2005), 290-302.
[12] S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J., 28 (1981), no. 2, 157-172.
[13] S. S. Miller and P. T. Mocanu, Univalent solutions of Briot-Bouquet differential equations, J. Differential Equations, 56 (1985), no. 3, 297-309.
[14] S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker, New York and Basel, 2000.
[15] S. Miller and P. T. Mocanu, Subordinants of differential superordinations, Complex Variables. Theory Appl., 48 (2003), no. 10, 815-826.
[16] Ch. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht, Göttingen, 1975.
[17] S. Shams, S. R. Kulkarni, and J. M. Jahangiri, Subordination properties of p-valent functions defined by integral operators, Internat. J. Math. Math. Sci., Vol. 2006, Art. ID 94572, 1-3.
[18] H. M. Srivastava and A. A. Attiya, An integral operator associated with the HurwitzLerch Zeta function and differential subordination, Integral Transforms Spec. Funct., 18 (2007), 207-216.
[19] H. M. Srivastava and J. Choi, Series associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht, Boston, London, 2001.

DOI: 10.7862/rf.2013.2

M. K. Aouf

email: mkaouf127@yahoo.com,
A. O. Mostafa
email: aashamandy@hotmail.com,
A. M. Shahin
email: adelaeg254@yahoo.com
S. M. Madian - corresponding author
email: awagdyfos@yahoo.com
Department of Mathematics, Faculty of Science,
Mansoura University, Mansoura 35516, Egypt
Received 14.12.2011, Revisted 20.06.2013, Accepted 25.10.2013

