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1. Introduction
Let H(U) be the class of functions analytic in U = {z ∈ C : |z| < 1} and H[a, n] be the
subclass of H(U) consisting of functions of the form f(z) = a + anz

n+ an+1z
n+1 + ...,

with H0 = H[0, 1] and H = H[1, 1]. Denote A (p) by the class of all analytic functions of
the form

f(z) = zp +

∞∑
n=1

ap+nz
p+n (p ∈ N = {1, 2, 3, ...} ; z ∈ U) (1.1)

and let A (1) = A. For f ,F ∈ H(U), the function f(z) is said to be subordinate to F (z),
or F (z) is superordinate to f(z), if there exists a function ω(z) analytic in U with ω(0) = 0
and |ω(z)| < 1(z ∈ U), such that f(z) = F (ω(z)). In such a case we write f(z) ≺
F (z). If F is univalent, then f(z) ≺ F (z) if and only if f(0) = F (0) and f(U) ⊂ F (U)
(see [14] and [15]).

Let φ : C2×U → C and h (z) be univalent in U. If p (z) is analytic in U and satisfies the
first order differential subordination:

φ
(
p (z) , zp

′
(z) ; z

)
≺ h (z) , (1.2)
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then p (z) is a solution of the differential subordination (1.2). The univalent function q (z)
is called a dominant of the solutions of the differential subordination (1.2) if p (z) ≺ q (z)
for all p (z) satisfying (1.2). A univalent dominant q̃ that satisfies q̃ ≺ q for all dominants of
(1.2) is called the best dominant. If p (z) and φ

(
p (z) , zp

′
(z) ; z

)
are univalent in U and if

p(z) satisfies the first order differential superordination:

h (z) ≺ φ
(
p (z) , zp

′
(z) ; z

)
, (1.3)

then p (z) is a solution of the differential superordination (1.3). An analytic function q (z) is
called a subordinant of the solutions of the differential superordination (1.3) if q (z) ≺ p (z)
for all p (z) satisfying (1.3). A univalent subordinant q̃ that satisfies q ≺ q̃ for all subordinants
of (1.3) is called the best subordinant (see [14] and [15]).
The general Hurwitz-Lerch Zeta function Φ(z, s, a) is defined by:

Φ(z, s, a) =

∞∑
n=0

zn

(n+ a)s
, (1.4)

(a ∈ C\Z−0 ; Z−0 = {0,−1,−2, ...}; s ∈ C when |z| < 1;R{s} > 1 when |z| = 1).

For interesting properties and characteristics of the Hurwitz-Lerch Zeta function
Φ(z, s, a) (see [3], [8], [9], [11] and [19]).

Recently, Srivastava and Attiya [18] introduced the linear operator Ls,b : A→ A, defined
in terms of the Hadamard product by

Ls,b(f)(z) = Gs,b(z) ∗ f(z) (z ∈ U ; b ∈ C\Z−0 ; s ∈ C), (1.5)

where for convenience,

Gs,b = (1 + b)s[Φ(z, s, b)− b−s] (z ∈ U). (1.6)

The Srivastava-Attiya operator Ls,b contains among its special cases, the integral opera-
tors introduced and investigated by Alexander [1], Libera [7] and Jung et al. [6].

Analogous to Ls,b, Liu [10] defined the operator Jp,s,b : A(p)→ A(p) by

Jp,s,b(f)(z) = Gp,s,b(z) ∗ f(z) (z ∈ U ; b ∈ C\Z−0 ; s ∈ C; p ∈ N), (1.7)

where
Gp,s,b = (1 + b)s[Φp(z, s, b)− b−s]

and

Φp(z, s, b) =
1

bs
+

∞∑
n=0

zn+p

(n+ 1 + b)s
. (1.8)

It is easy to observe from (1.7) and (1.8) that

Jp,s,b(f)(z) = zp +

∞∑
n=1

(
1 + b

n+ 1 + b

)s
an+pz

n+p. (1.9)
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We note that
(i) Jp,0,b(f)(z) = f(z);

(ii) J1,1,0 (f)(z) = Lf(z) =
z∫
0

f(t)
t dt, where the operator L was introduced by Alexander

[1];
(iii) J1,s,b(f)(z) = Ls,bf(z)

(
s ∈ C, b ∈ C\Z−0

)
, where the operator Ls,b was introduced

by Srivastava and Attiya [18];
(iv) Jp,1,ν+p−1(f)(z) = Fν,p(f(z)) (ν > −p, p ∈ N), where the operator Fν,p was intro-
duced by Choi et al. [4];
(v) Jp,α,p(f)(z) = Iαp f(z) (α ≥ 0, p ∈ N) ,where the operator Iαp was introduced by Shams
et al. [17];
(vi) Jp,m,p−1(f)(z) = Jmp f(z) (m ∈ N0 = N ∪ {0} , p ∈ N) , where the operator Jmp was
introduced by El-Ashwah and Aouf [5];
(vii) Jp,m,p+l−1(f)(z) = Jmp (l) f(z) (m ∈ N0, p ∈ N, l ≥ 0) , where the operator Jmp (l)
was introduced by El-Ashwah and Aouf [5].

It follows from (1.9) that:

z (Jp,s+1,b(f)(z))
′

= (b+ 1)Jp,s,b(f)(z)− (b+ 1− p)Jp,s+1,b(f)(z). (1.10)

To prove our results, we need the following definitions and lemmas.
Definition 1 [14] . Denote by F the set of all functions q(z) that are analytic and injective on
Ū\E(q) where

E(q) =

{
ζ ∈ ∂U : lim

z→ζ
q(z) =∞

}
and are such that q

′
(ζ) 6= 0 for ζ ∈ ∂U\E(q). Further let the subclass of F for which

q(0) = a be denoted by F (a), F (0) ≡ F0 and F (1) ≡ F1.
Definition 2 [15]. A function L (z, t) (z ∈ U, t ≥ 0) is said to be a subordination chain if
L (·, t) is analytic and univalent in U for all t ≥ 0, L (z, ·) is continuously differentiable on
[0; 1) for all z ∈ U and L (z, t1) ≺ L (z, t2) for all 0 ≤ t1 ≤ t2.
Lemma 1 [16]. The function L (z, t) : U× [0; 1) −→ C of the form

L (z, t) = a1 (t) z + a2 (t) z2 + ... (a1 (t) 6= 0; t ≥ 0)

and lim
t→∞

|a1 (t)| =∞ is a subordination chain if and only if

Re

{
z∂L (z, t) /∂z

∂L (z, t) /∂t

}
> 0 (z ∈ U, t ≥ 0) .

Lemma 2 [12]. Suppose that the functionH : C2 → C satisfies the condition

Re {H (is; t)} ≤ 0

for all real s and for all t ≤ −n
(
1 + s2

)
/2, n ∈ N. If the function p(z) = 1 + pnz

n +
pn+1z

n+1 + ... is analytic in U and

Re
{
H
(
p(z); zp

′
(z)
)}

> 0 (z ∈ U) ,
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then Re {p(z)} > 0 for z ∈ U.
Lemma 3 [13]. Let κ, γ ∈ C with κ 6= 0 and let h ∈ H(U) with h(0) = c. If
Re {κh(z) + γ} > 0 (z ∈ U) , then the solution of the following differential equation:

q (z) +
zq
′
(z)

κq(z) + γ
= h (z) (z ∈ U ; q(0) = c)

is analytic in U and satisfies Re {κq(z) + γ} > 0 for z ∈ U .
Lemma 4 [14]. Let p ∈ F (a) and let q(z) = a+anz

n+an+1z
n+1 + ...be analytic in U with

q (z) 6= a and n ≥ 1. If q is not subordinate to p, then there exists two points z0 = r0e
iθ ∈ U

and ζ0 ∈ ∂U\E(q) such that

q(Ur0) ⊂ p(U); q(z
0
) = p(ζ0) and z0p

′
(z0) = mζ0p

′(ζ0) (m ≥ n) .

Lemma 5 [15]. Let q ∈ H[a; 1] and ϕ : C2 → C. Also set ϕ
(
q (z) , zq

′
(z)
)

= h (z) . If

L (z, t) = ϕ
(
q (z) , tzq

′
(z)
)

is a subordination chain and p ∈ H[a; 1] ∩ F (a), then

h (z) ≺ ϕ
(
p (z) , zp;

′
(z)
)
,

implies that q (z) ≺ p (z). Furthermore, if ϕ
(
q (z) , zq

′
(z)
)

= h (z) has a univalent

solution q ∈ F (a), then q is the best subordinant.
In the present paper, we aim to prove some subordination-preserving and superordination-

preserving properties associated with the integral operator Jp,s,b. Sandwich-type result in-
volving this operator is also derived.

2. Main results
Unless otherwise mentioned, we assume throughout this section that b ∈ C\Z−0 , s ∈
C, Re (b) > 0, p ∈ N and z ∈ U.
Theorem 1. Let f, g ∈ A (p) and

Re

{
1 +

zφ
′′

(z)

φ
′
(z)

}
> −δ

(
φ (z) =

Jp,s−1,b(g)(z)

zp
; z ∈ U

)
, (2.1)

where δ is given by

δ =
1 + |b+ 1|2 −

∣∣∣1− (b+ 1)
2
∣∣∣

4 [1 + Re (b)]
(z ∈ U) . (2.2)

Then the subordination condition

Jp,s−1,b(f)(z)

zp
≺ Jp,s−1,b(g)(z)

zp
(2.3)
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implies that
Jp,s,b(f)(z)

zp
≺ Jp,s,b(g)(z)

zp
(2.4)

and the function Jp,s,b(g)(z)
zp is the best dominant.

Proof. Let us define the functions F (z) and G(z) in U by

F (z) =
Jp,s,b(f)(z)

zp
and G(z) =

Jp,s,b(g)(z)

zp
(z ∈ U) (2.5)

and without loss of generality we assume that G(z) is analytic, univalent on Ū and

G
′
(ζ) 6= 0 (|ζ| = 1) .

If not, then we replace F (z) and G(z) by F (ρz) and G(ρz), respectively, with 0 < ρ < 1.
These new functions have the desired properties on Ū , so we can use them in the proof of our
result and the results would follow by letting ρ→ 1.

We first show that, if

q (z) = 1 +
zG
′′

(z)

G′ (z)
(z ∈ U) , (2.6)

then
Re {q (z)} > 0 (z ∈ U) .

From (1.10) and the definition of the functions G,φ, we obtain that

φ (z) = G (z) +
zG
′
(z)

b+ 1
. (2.7)

Differentiating both sides of (2.7) with respect to z yields

φ
′
(z) =

(
1 +

1

b+ 1

)
G
′
(z) +

zG
′′

(z)

b+ 1
. (2.8)

Combining (2.6) and (2.8), we easily get

1 +
zφ
′′

(z)

φ
′
(z)

= q (z) +
zq
′
(z)

q (z) + b+ 1
= h(z) (z ∈ U) . (2.9)

It follows from (2.1) and (2.9) that

Re {h (z) + b+ 1} > 0 (z ∈ U) . (2.10)

Moreover, by using Lemma 3, we conclude that the differential equation (2.9) has a solution
q (z) ∈ H (U) with h (0) = q (0) = 1. Let

H (u, v) = u+
v

u+ b+ 1
+ δ,
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where δ is given by (2.2). From (2.9) and (2.10), we obtain Re
{
H
(
q(z); zq

′
(z)
)}

>

0 (z ∈ U) .

To verify the condition

Re {H (iϑ; t)} ≤ 0

(
ϑ ∈ R; t ≤ −1 + ϑ2

2

)
, (2.11)

we proceed as follows:

Re {H (iϑ; t)} = Re

{
iϑ+

t

b+ 1 + iϑ
+ δ

}
=
t (1 + Re (b))

|b+ 1 + iϑ|2
+ δ

≤ − Υ (b, ϑ, δ)

2 |b+ 1 + iϑ|2
,

where

Υ (b, ϑ, δ) = [1 + Re (b)− 2δ]ϑ2 − 4δ Im (b)ϑ− 2δ |b+ 1|2 + 1 + Re (b) . (2.12)

For δ given by (2.2), the coefficient of ϑ2 in the quadratic expression Υ (b, ϑ, δ) given by
(2.12) is positive or equal to zero. To check this, put b+ 1 = c, so that

1 + Re (b) = c1 and Im (b) = c2.

We thus have to verify that
c1 − 2δ ≥ 0,

or

c1 ≥ 2δ =
1 + |c|2 −

∣∣1− c2∣∣
2c1

.

This inequality will hold true if

2c21 +
∣∣1− c2∣∣ ≥ 1 + |c|2 = 1 + c21 + c22,

that is, if ∣∣1− c2∣∣ ≥ 1− Re
(
c2
)
,

which is obviously true. Moreover, the quadratic expression Υ (b, ϑ, δ) by ϑ in (2.12) is a
perfect square for the assumed value of δ given by (2.2). Hence we see that (2.11) holds.
Thus, by using Lemma 2, we conclude that

Re {q (z)} > 0 (z ∈ U) ,

that is, that G defined by (2.5) is convex (univalent) in U . Next, we prove that the subordina-
tion condition (2.3) implies that

F (z) ≺ G (z) ,
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for the functions F and G defined by (2.5). Consider the function L (z, t) given by

L (z, t) = G (z) +
(1 + t) zG

′
(z)

b+ 1
(0 ≤ t <∞; z ∈ U) . (2.13)

We note that

∂L (z, t)

∂z

∣∣∣∣
z=0

= G
′
(0)

(
1 +

1 + t

b+ 1

)
6= 0 (0 ≤ t <∞; z ∈ U ; Re {b+ 1} > 0) .

This show that the function

L (z, t) = a1 (t) z + ... ,

satisfies the condition a1 (t) 6= 0 (0 ≤ t <∞) . Further, we have

Re

{
z∂L (z, t) /∂z

∂L (z, t) /∂t

}
= Re {b+ 1 + (1 + t) q (z)} > 0 (0 ≤ t <∞; z ∈ U) .

Since G (z) is convex and Re {b+ 1} > 0. Therefore, by using Lemma 1, we deduce that
L (z, t) is a subordination chain. It follows from the definition of subordination chain that

φ (z) = G (z) +
zG
′
(z)

b+ 1
= L (z, 0)

and
L (z, 0) ≺ L (z, t) (0 ≤ t <∞) ,

which implies that

L (ζ, t) /∈ L (U, 0) = φ (U) (0 ≤ t <∞; ζ ∈ ∂U) . (2.14)

If F is not subordinate to G, by using Lemma 4, we know that there exist two points z0 ∈ U
and ζ0 ∈ ∂U such that

F (z0) = G (ζ0) and z0F
′
(z0) = (1 + t) ζ0G

′
(ζ0) (0 ≤ t <∞) . (2.15)

Hence, by using (2.5), (2.13),(2.15) and (2.3), we have

L (ζ0, t) = G (ζ0) +
(1 + t) ζ0G

′
(ζ0)

b+ 1
= F (z0) +

z0F
′
(z0)

b+ 1
=
Jp,s−1,b(f)(z0)

zp0
∈ φ (U) .

This contradicts (2.14). Thus, we deduce that F ≺ G. Considering F = G, we see that the
function G is the best dominant. This completes the proof of Theorem 1.

We now derive the following superordination result.
Theorem 2. Let f, g ∈ A (p) and

Re

{
1 +

zφ
′′

(z)

φ
′
(z)

}
> −δ

(
φ (z) =

Jp,s−1,b(g)(z)

zp
; z ∈ U

)
, (2.16)
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where δ is given by (2.2) . If the function Jp,s−1,b(f)(z)
zp is univalent in U and Jp,s,b(f)(z)

zp ∈ F,
then the superordination condition

Jp,s−1,b(g)(z)

zp
≺ Jp,s−1,b(f)(z)

zp
(2.17)

implies that
Jp,s,b(g)(z)

zp
≺ Jp,s,b(f)(z)

zp
(2.18)

and the function Jp,s,b(g)(z)
zp is the best subordinant.

Proof. Suppose that the functions F,G and q are defined by (2.5) and (2.6), respectively. By
applying similar method as in the proof of Theorem 1, we get

Re {q (z)} > 0 (z ∈ U) .

Next, to arrive at our desired result, we show that G ≺ F . For this, we suppose that the
function L (z, t) be defined by (2.13). Since G is convex, by applying a similar method as
in Theorem 1, we deduce that L (z, t) is subordination chain. Therefore, by using Lemma 5,
we conclude that G ≺ F . Moreover, since the differential equation

φ (z) = G (z) +
zG
′
(z)

b+ 1
= ϕ

(
G (z) , zG

′
(z)
)

has a univalent solution G, it is the best subordinant. This completes the proof of Theorem 2.
Combining the above-mentioned subordination and superordination results involving the

operator Jp,s,b, the following ”sandwich-type result” is derived.
Theorem 3. Let f, gj ∈ A (p) (j = 1, 2) and

Re

{
1 +

zφ
′′

j (z)

φ
′

j (z)

}
> −δ

(
φj (z) =

Jp,s−1,b(gj)(z)

zp
(j = 1, 2) ; z ∈ U

)
,

where δ is given by (2.2) . If the function Jp,s−1,b(f)(z)
zp is univalent in U and Jp,s,b(f)(z)

zp ∈ F,
then the condition

Jp,s−1,b(g1)(z)

zp
≺ Jp,s−1,b(f)(z)

zp
≺ Jp,s−1,b(g2)(z)

zp
(2.19)

implies that
Jp,s,b(g1)(z)

zp
≺ Jp,s,b(f)(z)

zp
≺ Jp,s,b(g2)(z)

zp
(2.20)

and the functions Jp,s,b(g1)(z)
zp and Jp,s,b(g2)(z)

zp are, respectively, the best subordinant and the
best dominant.
Remark. (i) Putting b = p and s = α (α ≥ 0, p ∈ N) in our results of this paper, we obtain
the results obtained by Aouf and Seoudy [2];
(ii) Specializing the parameters s and b in our results of this paper, we obtain the results for
the corresponding operators Fν,p, Jmp and Jmp (l) which are defined in the introduction.
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