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1. Introduction

In 2000, Ezeilo [5] proved two instability theorems for the fourth order nonlinear
differential equations without delay

e +ayr"” + gz, o 2" 2" + h(x)z' + fz, 2 2" 2") =0 (1.1)

and
@ 4 p(a” 2") + q(z, 2, 2", 2")2" + asa’ + agw = 0. (1.2)

In this paper, instead of Eq. (1.1) and Eq. (1.2), we consider the fourth order
nonlinear differential equations with a variable deviating argument, 7(¢) :

@)+ a2 () +gla(t —7(1)), ... 2" (t = 7(t))2"
+ h(@)2'(t) + fla(t = 7)), ... 2"t —7(0)z(t) =0 (1.3)

and

W)+ p(a” (1), 2" () + (et = 7(1), o (t = 7(t))2”
+ a32'(t) + asz(t) = 0. (1.4)
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We write Eq. (1.3) and Eq. (1.4) in system form as

~

x Y,
y = z
u —aju — g(x(t — 7)), ...,u(t — 7(t)))z — h(z)y
—flx(t — 7)), ...yult — (1) (1.5)
and
o=y,
y = z
v o= —plu,z) — qlx(t —7(t)), ..., u(t —7(t)))z
—a3y — 4%, (1.6)

respectively, where 7(¢) is fixed delay, t—7(t) is strictly increasing, tlirﬁlo(th(t)) = 00,
t € R4 =[0,00); a1, az and a4 are constants; g, h, f, p and ¢ are continuous functions
in their respective arguments on R4, ®, N4, N2 and R*, respectively, with p(0,2) =0
and satisfy a Lipschitz condition in their respective arguments; the derivative %(u, 2)
exists and is also continuous. Hence, the existence and uniqueness of the solutions of
Eq. (1.3) and Eq. (1.4) are guaranteed (see [[2], pp.14]). We assume in what follows
that x(t), y(t), z(t) and u(t) are abbreviated as x,y, z and u , respectively.

So far, the instability of solutions to certain fourth order nonlinear scalar and
vector differential equations without delay has been investigated by many authors
(see Dong and Zhang [1], Ezeilo ([3]-[5]), Li and Duan [8], Li and Yu [9], Lu and Liao
[10], Sadek [11], Skrapek [12], Sun and Hou [13], Tiryaki [14], Tung ([15]-[18]), C. Tung
and E. Tung [20] and the references cited thereof). However, by now, the instability
of solutions to fourth order nonlinear differential equations with deviating arguments
has only been studied by Tung [19]. This paper is the second attempt on the topic
in the literature. It is worth mentioning that throughout all of the papers, based on
Krasovskii’s properties (see Krasovskii [6]), the Lyapunov’s second (or direct) method
has been used as a basic tool to prove the results established therein. The motivation
for this paper comes from the above mentioned papers. Our aim is to carry out the
results established in Ezeilo [5] to nonlinear differential equations of fourth order, Eq.
(1.3) and Eq. (1.4), with a deviating argument for the instability of zero solution of
these equations.

Note that the instability criteria of Krasovskii [6] can be summarized as the fol-
lowing: According to these criteria, it is necessary to show here that there exists a
Lyapunov function V(.) = V(z,y, z,u) which has Krasovskii properties, say (K1),
(K3) and (K3) :

(K1) In every neighborhood of (0,0,0,0) , there exists a point (£, 7, ¢, 1) such that
V(fvnv Cvﬂ) >0 5
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(K5) the time derivative V = %V(w,y, z,u) along solution paths of the system
(1.5) is positive semi-definite;

(K3) the only solution (z,y, z,u) = (2(t), y(t), 2(t), u(t)) of the system (1.5) which
satisfies V = 0, (t > 0), is the trivial solution (0,0, 0,0).

Let r > 0 be given, and let C = C([-r,0], R™) with

o]l = max |¢(s)|, ¢ € C.

—r<s<0

For H > 0 define Cy C C by

Cu={peC:oll <H}.

If ¢ : [-r, A) = R" is continuous, 0 < A < oo, then, for each ¢ in [0, A), x4 in C
is defined by
ze(s) =x(t+s),—r <s<0,t>0.

Let G be an open subset of C' and consider the general autonomous delay differ-
ential system with finite delay

& =F(x),xs =2t +0),—r<60<0,t>0,

where F(0) = 0 and F' : G — R" is continuous and maps closed and bounded sets into
bounded sets. It follows from these conditions on F' that each initial value problem

&t =F(zy),z0=0¢0€G

has a unique solution defined on some interval [0, 4), 0 < A < oo. This solution will
be denoted by x(¢)(.) so that xq(¢) = ¢.

Definition 1.1. Let F'(0) = 0. The zero solution, = 0, of & = F(x,) is stable if for
each € > 0 there exists § = d(¢) > 0 such that ||¢|| < § implies that |z(¢)(t)| < e for
all ¢ > 0. The zero solution is said to be unstable if it is not stable.

Theorem 1.1. (Instability Theorem of Cetaev’s). Let  be a neighborhood of the
origin. Let there be given a function V(x) and region Q in Q with the following
properties:

(i) V(x) has continuous first partial derivatives in €.

(ii) V(z) and V(x) are positive in Q.

(iit) At the boundary points of Qy inside Q, V(x) = 0.

(iv) The origin is a boundary point of €1y.
Under these conditions the origin is unstable (see LaSalle and Lefschetz [7]).

2. Main results

The first main result is the following theorem.
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Theorem 2.1. Suppose that

flxt—7(),...,u(t —7())) — 17 (z(t—7(t),...,u(t —7(¢))) >0
for arbitrary x(t—7(t)), ..., u(t—7(t)). Then the zero solution of Eq. (1.3) is unstable.

Proof. Consider the Lyapunov function V' = V(z,y, z,u) defined by

1
V=yz+ §a1y2 — U — a2 — /h(s)sds, (where a; is a constant),
0

so that
1
V(0,62,¢,0) =% + §a164 >0
for sufficiently small €. In fact, if € is an arbitrary positive constant, then

V(0,6%,6,0) >0

for sufficiently small . Thus V satisfies the property (K1), (see [6]).
By an elementary differentiation the time derivative of V along the solutions of
(1.5) can be estimated as follows

vV = 224+ xzg(x(t — 7(t)), ..., u(t — 7(t))) + xzf(x(t —7(t),...,u(t — 7(t)))
= [z+27 2g(z(t —7(1)), ..., u(t — (1))

+ [f(x(t —7(t), oy u(t — 7(¢))) — ng(m(t —7(t), .y ul(t — T(t)))} z?
> [f(x(t —7(t), o, ult — 7(t))) — %gQ(x(t —7(t), .o, u(t — T(t))):| z? > 0.

Thus V satisfies the property (K>), (see [6]).
Further, it follows that V' = 0 < « = 0. In turn, this implies that

r=y=z=u=0.
Thus V satisfies the property (K3), (see [6]). This completes the proof of Theorem
2.1. O
Example 2.1. Consider nonlinear differential equation of fourth order with a variable
deviating argument, 7(¢) =¢/2 :

2 1
T vy STy A
+ Adxx’ 4+ (9 + 22 (t/2) + .. + 2" (t)2))z =0

x(4) + m///+{2+1
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so that

2
14 22(t/2) + ... +u2(t/2)
—{9+ 2%(t/2) + ... + u*(t/2)}z(t) = 0.

W o= —u—{2+ }z —dxy

We have the following estimates:

a; = ].,
T(t) =1t/2,
2
glelt =7(0), - ult =7(0) = 2+ S o w2y
h(z) = 4x
and
f@t—7),yult —7(t)) = 9+ 2%(t/2) + ... + u*(t/2)
so that
f(.)—ig2(.) — 04 22(t/2) + o+ d2(1)2)
1 2

> 0.

I 202 o 23)2)

This shows that the zero solution of the above equation is unstable.

The second main result is the following theorem.

Theorem 2.2. Suppose that
1
p(0,2) =0, a4 >0 anday — Zqz(x(t —7(t)), .., u(t — 7(t))) > 0

for arbitrary x(t — 7(t)), ..., u(t —7(t)), and %(u, z)sgnu < 0 for arbitrary u, z.
Then the zero solution of Eq. (1.4) is unstable for arbitrary as.
Proof. Consider the Lyapunov function V; = Vi (z,y, z,u) defined by
L s
Vi= — [ p(s,z)ds — agyu + 503%" — a4Tu + aqyz
0

so that

1
V1(0,€2,¢,0) = ase® + 5@354 >0, (aq > 0), (a3 € R),



118 C. Tung

for sufficiently small €. Indeed, if € is an arbitrary positive constant, then
V1(0,€%,6,0) > 0

for sufficiently small . Thus V; satisfies the property (K1), (see [6]).
The time derivativeof V; along the solutions of (1.6) can be calculated as follows:

u
. 0
Vi = —u {p(u,2) +azy + asz} + as2® —u a—lz)(s, 2)ds

= o' {u +q(xt—7(t)),....,ult —7(t))z}

+a42® — u/ ?(s,z)ds.
z
0

The last estimate leads
Vi = {W 427t —1@1),...,ult —7(t))z}>
+Hag — 47 P (2t — 7(1)), oy ult — 7(2)))}22

u op
—u/é(s,z)ds

0
so that
Vi > {427 gt — (1), ..., u(t — 7(1)))z}?
+Hag — 471 P (et — 7)), oy ult — 7(1))}22 > 0.
Thus Vi satisfies the property (K3), (see [6]).

On the other hand, V1 = 0 < z = 0, this implies that z = u = 0. System (1.6)
and V7 = 0 leads that

asy + asx = 0 = asx’ + agx = 0.

Because of z” = 0, it follows that 2’ =constant so that a3z’ + ayz = 0 =
x =constant. However, this implies ' = 0 since ag # 0. Hence a4 > 0 implies
x = 0. Thus V; satisfies the property (K3), (see [6]). This completes the proof of
Theorem 2.2. O

Example 2.2. Consider nonlinear differential equation of fourth order with a variable
deviating argument, 7(t) = t/2 :
@ — (arctgz’)a" + 2cos(z(t/2) + ... + 2" (t/2))x" + 32’ + 4z = 0.
so that

=Y

'~

9

~

z
= u7

= (arctgz)u —2cos(x(t/2) + ... + u(t/2))z — 3y — 4.

SRS
I

'~
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We have the following estimates:

T(t) =t/2, az = 3, ay =4,
plu, 2) = — (aretgz)u,

%(u, z)sgnu = — ] —:—LzQ sgnu <0,
q(z(t —7(t)), ..., u(t — 7(t))) = 2cos(x(t/2) + ... + u(t/2)),
so that 1
ag — ZqQ(.) =4 —cos?(z(t/2) + ... +u(t/2)) > 0.

This shows that the zero solution of the above equation is unstable.
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