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1. Introduction

In 2000, Ezeilo [5] proved two instability theorems for the fourth order nonlinear
differential equations without delay

x(4) + a1x
′′′ + g(x, x′, x′′, x′′′)x′′ + h(x)x′ + f(x, x′, x′′, x′′′) = 0 (1.1)

and
x(4) + p(x′′′, x′′) + q(x, x′, x′′, x′′′)x′′ + a3x

′ + a4x = 0. (1.2)

In this paper, instead of Eq. (1.1) and Eq. (1.2), we consider the fourth order
nonlinear differential equations with a variable deviating argument, τ(t) :

x(4)(t) + a1x
′′′(t) + g(x(t− τ(t)), ..., x′′′(t− τ(t)))x′′

+ h(x(t))x′(t) + f(x(t− τ(t)), ..., x′′′(t− τ(t)))x(t) = 0 (1.3)

and

x(4)(t) + p(x′′′(t), x′′(t)) + q(x(t− τ(t)), ..., x′′′(t− τ(t)))x′′

+ a3x
′(t) + a4x(t) = 0. (1.4)
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We write Eq. (1.3) and Eq. (1.4) in system form as

x′ = y,

y′ = z,

z′ = u,

u′ = −a1u− g(x(t− τ(t)), ..., u(t− τ(t)))z − h(x)y

−f(x(t− τ(t)), ..., u(t− τ(t)))x (1.5)

and

x′ = y,

y′ = z,

z′ = u,

u′ = −p(u, z)− q(x(t− τ(t)), ..., u(t− τ(t)))z

−a3y − a4x, (1.6)

respectively, where τ(t) is fixed delay, t−τ(t) is strictly increasing, lim
t→∞

(t−τ(t)) =∞,
t ∈ <+ = [0,∞); a1, a3 and a4 are constants; g, h, f, p and q are continuous functions
in their respective arguments on <4, <, <4, <2 and <4, respectively, with p(0, z) = 0
and satisfy a Lipschitz condition in their respective arguments; the derivative ∂p

∂z (u, z)
exists and is also continuous. Hence, the existence and uniqueness of the solutions of
Eq. (1.3) and Eq. (1.4) are guaranteed (see [[2], pp.14]). We assume in what follows
that x(t), y(t), z(t) and u(t) are abbreviated as x, y, z and u , respectively.

So far, the instability of solutions to certain fourth order nonlinear scalar and
vector differential equations without delay has been investigated by many authors
(see Dong and Zhang [1], Ezeilo ([3]-[5]), Li and Duan [8], Li and Yu [9], Lu and Liao
[10], Sadek [11], Skrapek [12], Sun and Hou [13], Tiryaki [14], Tunç ([15]-[18]), C. Tunç
and E. Tunç [20] and the references cited thereof). However, by now, the instability
of solutions to fourth order nonlinear differential equations with deviating arguments
has only been studied by Tunç [19]. This paper is the second attempt on the topic
in the literature. It is worth mentioning that throughout all of the papers, based on
Krasovskii’s properties (see Krasovskii [6]), the Lyapunov’s second (or direct) method
has been used as a basic tool to prove the results established therein. The motivation
for this paper comes from the above mentioned papers. Our aim is to carry out the
results established in Ezeilo [5] to nonlinear differential equations of fourth order, Eq.
(1.3) and Eq. (1.4), with a deviating argument for the instability of zero solution of
these equations.

Note that the instability criteria of Krasovskii [6] can be summarized as the fol-
lowing: According to these criteria, it is necessary to show here that there exists a
Lyapunov function V (.) ≡ V (x, y, z, u) which has Krasovskii properties, say (K1),
(K2) and (K3) :

(K1) In every neighborhood of (0, 0, 0, 0) , there exists a point (ξ, η, ζ, µ) such that
V (ξ, η, ζ, µ) > 0 ;



Instability to differential equations of ... 115

(K2) the time derivative V̇ = d
dtV (x, y, z, u) along solution paths of the system

(1.5) is positive semi-definite;
(K3) the only solution (x, y, z, u) = (x(t), y(t), z(t), u(t)) of the system (1.5) which

satisfies V̇ = 0, (t ≥ 0), is the trivial solution (0, 0, 0, 0).
Let r ≥ 0 be given, and let C = C([−r, 0], <n) with

‖φ‖ = max
−r≤s≤0

|φ(s)| , φ ∈ C.

For H > 0 define CH ⊂ C by

CH = {φ ∈ C : ‖φ‖ < H}.

If x : [−r, A) → <n is continuous, 0 < A ≤ ∞, then, for each t in [0, A), xt in C
is defined by

xt(s) = x(t+ s),−r ≤ s ≤ 0, t ≥ 0.

Let G be an open subset of C and consider the general autonomous delay differ-
ential system with finite delay

ẋ = F (xt), xt = x(t+ θ),−r ≤ θ ≤ 0, t ≥ 0,

where F (0) = 0 and F : G→ <n is continuous and maps closed and bounded sets into
bounded sets. It follows from these conditions on F that each initial value problem

ẋ = F (xt), x0 = φ ∈ G

has a unique solution defined on some interval [0, A), 0 < A ≤ ∞. This solution will
be denoted by x(φ)(.) so that x0(φ) = φ.

Definition 1.1. Let F (0) = 0. The zero solution, x = 0, of ẋ = F (xt) is stable if for
each ε > 0 there exists δ = δ(ε) > 0 such that ‖φ‖ < δ implies that |x(φ)(t)| < ε for
all t ≥ 0. The zero solution is said to be unstable if it is not stable.

Theorem 1.1. (Instability Theorem of Cetaev’s). Let Ω be a neighborhood of the
origin. Let there be given a function V (x) and region Ω1 in Ω with the following
properties:

(i) V (x) has continuous first partial derivatives in Ω1.
(ii) V (x) and V̇ (x) are positive in Ω1.
(iii) At the boundary points of Ω1 inside Ω, V (x) = 0.
(iv) The origin is a boundary point of Ω1.

Under these conditions the origin is unstable (see LaSalle and Lefschetz [7]).

2. Main results

The first main result is the following theorem.
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Theorem 2.1. Suppose that

f(x(t− τ(t)), ..., u(t− τ(t)))− 1

4
g2(x(t− τ(t)), ..., u(t− τ(t))) > 0

for arbitrary x(t−τ(t)), ..., u(t−τ(t)). Then the zero solution of Eq. (1.3) is unstable.

Proof. Consider the Lyapunov function V = V (x, y, z, u) defined by

V= yz +
1

2
a1y

2 − xu− a1xz −
x∫

0

h(s)sds, (where a1 is a constant),

so that

V (0, ε2, ε, 0) = ε3 +
1

2
a1ε

4 > 0

for sufficiently small ε. In fact, if ε is an arbitrary positive constant, then

V (0, ε2, ε, 0) > 0

for sufficiently small ε. Thus V satisfies the property (K1), (see [6]).

By an elementary differentiation the time derivative of V along the solutions of
(1.5) can be estimated as follows

V̇ = z2 + xzg(x(t− τ(t)), ..., u(t− τ(t))) + x2f(x(t− τ(t)), ..., u(t− τ(t)))

= [z + 2−1xg(x(t− τ(t)), ..., u(t− τ(t)))]2

+

[
f(x(t− τ(t)), ..., u(t− τ(t)))− 1

4
g2(x(t− τ(t)), ..., u(t− τ(t)))

]
x2

≥
[
f(x(t− τ(t)), ..., u(t− τ(t)))− 1

4
g2(x(t− τ(t)), ..., u(t− τ(t)))

]
x2 > 0.

Thus V satisfies the property (K2), (see [6]).

Further, it follows that V̇ = 0⇔ x = 0. In turn, this implies that

x = y = z = u = 0.

Thus V satisfies the property (K3), (see [6]). This completes the proof of Theorem
2.1.

Example 2.1. Consider nonlinear differential equation of fourth order with a variable
deviating argument, τ(t) = t/2 :

x(4) + x′′′ + {2 +
2

1 + x2(t/2) + ...+ x′′′2(t/2)
}x′′

+ 4xx′ + (9 + x2(t/2) + ....+ x′′′2(t/2))x = 0
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so that

x′ = y,

y′ = z,

z′ = u,

u′ = −u− {2 +
2

1 + x2(t/2) + ...+ u2(t/2)
}z − 4xy

−{9 + x2(t/2) + ...+ u2(t/2)}x(t) = 0.

We have the following estimates:

a1 = 1,

τ(t) = t/2,

g(x(t− τ(t)), ..., u(t− τ(t))) = 2 +
2

1 + x2(t/2) + ...+ u2(t/2)
,

h(x) = 4x

and
f(x(t− τ(t)), ..., u(t− τ(t))) = 9 + x2(t/2) + ...+ u2(t/2)

so that

f(.)− 1

4
g2(.) = 9 + x2(t/2) + ...+ u2(t/2)

−
[
1 +

1

1 + x2(t/2) + ...+ u2(t/2)

]2
> 0.

This shows that the zero solution of the above equation is unstable.

The second main result is the following theorem.

Theorem 2.2. Suppose that

p(0, z) = 0, a4 > 0 and a4 −
1

4
q2(x(t− τ(t)), ..., u(t− τ(t))) > 0

for arbitrary x(t− τ(t)), ..., u(t− τ(t)), and ∂p
∂z (u, z)sgnu ≤ 0 for arbitrary u, z.

Then the zero solution of Eq. (1.4) is unstable for arbitrary a3.

Proof. Consider the Lyapunov function V1 = V1(x, y, z, u) defined by

V1= −
u∫

0

p(s, z)ds− a3yu+
1

2
a3z

2 − a4xu+ a4yz

so that

V1(0, ε2, ε, 0) = a4ε
3 +

1

2
a3ε

4 > 0, (a4 > 0), (a3 ∈ <),
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for sufficiently small ε. Indeed, if ε is an arbitrary positive constant, then

V1(0, ε2, ε, 0) > 0

for sufficiently small ε. Thus V1 satisfies the property (K1), (see [6]).
The time derivativeof V1 along the solutions of (1.6) can be calculated as follows:

V̇1 = −u′ {p(u, z) + a3y + a4x}+ a4z
2 − u

u∫
0

∂p

∂z
(s, z)ds

= u′ {u′ + q(x(t− τ(t)), ..., u(t− τ(t)))z}

+a4z
2 − u

u∫
0

∂p

∂z
(s, z)ds.

The last estimate leads

V̇1 = {u′ + 2−1q(x(t− τ(t)), ..., u(t− τ(t)))z}2

+{a4 − 4−1q2(x(t− τ(t)), ..., u(t− τ(t)))}z2

−u
u∫

0

∂p

∂z
(s, z)ds

so that

V̇1 ≥ {u′ + 2−1q(x(t− τ(t)), ..., u(t− τ(t)))z}2

+{a4 − 4−1q2(x(t− τ(t)), ..., u(t− τ(t)))}z2 > 0.

Thus V1 satisfies the property (K2), (see [6]).
On the other hand, V̇1 = 0 ⇔ z = 0, this implies that z = u = 0. System (1.6)

and V̇1 = 0 leads that

a3y + a4x = 0⇒ a3x
′ + a4x = 0.

Because of x′′ = 0, it follows that x′ =constant so that a3x
′ + a4x = 0 ⇒

x =constant. However, this implies x′ = 0 since a4 6= 0. Hence a4 > 0 implies
x = 0. Thus V1 satisfies the property (K3), (see [6]). This completes the proof of
Theorem 2.2.

Example 2.2. Consider nonlinear differential equation of fourth order with a variable
deviating argument, τ(t) = t/2 :

x(4) − (arctgx′′)x′′′ + 2 cos(x(t/2) + ...+ x′′′(t/2))x′′ + 3x′ + 4x = 0.

so that

x′ = y,

y′ = z,

z′ = u,

u′ = (arctgz)u− 2 cos(x(t/2) + ...+ u(t/2))z − 3y − 4x.
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We have the following estimates:

τ(t) = t/2, a3 = 3, a4 = 4,

p(u, z) = − (arctgz)u,

∂p

∂z
(u, z)sgnu = − u

1 + z2
sgnu ≤ 0,

q(x(t− τ(t)), ..., u(t− τ(t))) = 2 cos(x(t/2) + ...+ u(t/2)),

so that

a4 −
1

4
q2(.) = 4− cos2(x(t/2) + ...+ u(t/2)) > 0.

This shows that the zero solution of the above equation is unstable.
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