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ABSTRACT: For a polynomial p(z) of degree n with a zero at 3, of
order at least k(> 1), it is known that
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By considering polynomial p(z) of degree n in the form
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p(z) = (z2=01)(z—P2) ... (2—Bk)q(2), k > 1 and ¢(z), a polynomial of degree
n — k, with

S={ VY-Vt ViuVis - - - V1., 18 @ permutation of k objects
B1,B2,. .., P taken all at a time},

we have obtained
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a generalization of the known result.
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1. Introduction and statement of result

While thinking of polynomials vanishing at 8, Donaldson and Rahman [1] had
considered the problem:
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Theorem A. If p(z) is a polynomial of degree n such that p(8) = 0, where (8 is an
arbitrary non-negative number then
p(e”)
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In [2] Jain had considered the zero of polynomial p(z) at 8 to be of order at least
k(> 1), with 8 being an arbitrary complex number and had obtained the following
generalization of Theorem A.
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and they had obtained

df < (1 + 8% — 2B cos (nLH))_l /027T Ip(ei®)|2d6.

Theorem B. If p(z) is a polynomial of degree n such that p(z) has a zero at 3, of
order at least k(> 1), with 8 being an arbitrary complex number then
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In this paper we have obtained a generalization of Theorem B by considering
polynomial p(z) of degree n in the form

p(z) = (z = B1)(z = Ba) ... (z = Br)a(z), k > 1.

More precisely we have proved
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Theorem. Let p(z) be a polynomial of degree n such that
p(z)=(z—=01)(z=B2)...(z = Br)q(z),k > 1. (1.1)
Further let

S ={vuYs -V : Vu Vs - - - V1., 1S @ permutation of k objects
B1, B2, ..., Bk taken all at a time} .

Then
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2. Lemma

For the proof of Theorem we require the following lemma.

Lemma 1. If p(z) is a polynomial of degree n such that

where B is an arbitray complex number then

27
/0

This lemma is due to Jain [2].
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3. Proof of Theorem

Theorem is trivially true for £ = 1, by Lemma 1. Accordingly we assume that
k > 1. The polynomial

T1(2) = (2 = B1)q(2) (3.1)

is of degree n — k + 1 and therefore by Lemma 1 we have
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Further the polynomial

Tr(2) = (z = B2)T1(2), = (2 = B1) (2 = P2)a(2), (by(3.1)), (3.3)

is of degree n — k + 2 and by Lemma 1 we have
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On combining (3.2) and (3.4) we get
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We can now continue and obtain similarly
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(with

Ts(2) = (z = B3)T2(2), = (2 = 1) (2 = B2)(z — B3)a(2), (by (3.3))), (3.5)
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= (z=p1)(z—=B2)...(2 = Br)g(2), (similar to (3.3) and (3.5))). (3.7)
On using (1.1) and (3.7) in (3.6) we get
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and as the order of S, fs,..., Bk is immaterial, Theorem follows.
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