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1. Introduction

LetH (U) be the class of analytic functions in the open unit disk U = {z ∈ C : |z| < 1}
and let H [a, k] be the subclass of H (U) consisting of functions of the form:

f(z) = a+ akz
k + ak+1z

k+1... (a ∈ C). (1.1)

For simplicity H [a] = H [a, 1]. Also, let A be the subclass of H (U) consisting of
functions of the form:

f(z) = z +

∞
∑

k=2

akz
k. (1.2)

If f , g ∈ H (U), we say that f is subordinate to g or f is superordinate to
g, written f(z) ≺ g(z) if there exists a Schwarz function ω, which (by definition)
is analytic in U with ω(0) = 0 and |ω(z)| < 1 for all z ∈ U, such that f(z) =
g(ω(z)), z ∈ U. Furthermore, if the function g is univalent in U, then we have the
following equivalence, (cf., e.g.,[6], [16] and [17]):

f(z) ≺ g(z) ⇔ f(0) = g(0) and f(U) ⊂ g(U).
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Let φ : C2 × U → C and h (z) be univalent in U. If p (z) is analytic in U and
satisfies the first order differential subordination:

φ
(

p (z) , zp
′

(z) ; z
)

≺ h (z) , (1.3)

then p (z) is a solution of the differential subordination (1.3). The univalent function
q (z) is called a dominant of the solutions of the differential subordination (1.3) if
p (z) ≺ q (z) for all p (z) satisfying (1.3). A univalent dominant q̃ that satisfies q̃ ≺ q

for all dominants of (1.3) is called the best dominant. If p (z) and φ
(

p (z) , zp
′

(z) ; z
)

are univalent in U and if p(z) satisfies first order differential superordination:

h (z) ≺ φ
(

p (z) , zp
′

(z) ; z
)

, (1.4)

then p (z) is a solution of the differential superordination (1.4). An analytic function
q (z) is called a subordinant of the solutions of the differential superordination (1.4) if
q (z) ≺ p (z) for all p (z) satisfying (1.4). A univalent subordinant q̃ that satisfies q ≺ q̃

for all subordinants of (1.4) is called the best subordinant. Using the results of Miller
and Mocanu [17], Bulboaca [5] considered certain classes of first order differential
superordinations as well as superordination-preserving integral operators [6]. Ali et al.
[1], have used the results of Bulboaca [5] to obtain sufficient conditions for normalized
analytic functions to satisfy:

q1(z) ≺
zf ′(z)

f(z)
≺ q2(z),

where q1 and q2 are given univalent functions in U with q1(0) = q2(0) = 1. Also,
Tuneski [25] obtained a sufficient condition for starlikeness of f in terms of the quantity
f ′′(z)f(z)

(f ′(z))2
. Recently, Shanmugam et al. [24] obtained sufficient conditions for the

normalized analytic function f to satisfy

q1(z) ≺
f(z)

zf ′(z)
≺ q2(z)

and

q1(z) ≺
z2f ′(z)

{f(z)}2
≺ q2(z).

They [24] also obtained results for functions defined by using Carlson-Shaffer op-
erator [7], Ruscheweyh derivative [20] and Sălăgean operator [22].

For functions f given by (1.1) and g ∈ A given by

g(z) = z +

∞
∑

k=2

bkz
k, (1.5)

the Hadamard product (or convolution) of f and g is defined by

(f ∗ g)(z) = z +

∞
∑

k=2

akbkz
k = (g ∗ f)(z).
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For functions f, g ∈ A, we define the linear operator Dn
λ : A → A (λ ≥ 0, l ≥

0;n ∈ N0 = N ∪ {0},N = {1, 2, ...}) by:

D0
λ,l(f ∗ g)(z) = (f ∗ g)(z) ,

D1
λ,l(f ∗ g)(z) = Dλ,l(f ∗ g)(z) = (1− λ )( f ∗ g)(z) +

λ

(l + 1) zl−1
(zl ( f ∗ g)(z))′ ,

= z +

∞
∑

k=2

[

l + 1 + λ(k − 1)

l + 1

]

akbkz
k (λ ≥ 0; l ≥ 0) , (1.6)

and ( in general )

Dn
λ,l(f ∗ g)(z) = Dλ,l(D

n−1
λ,l (f ∗ g)(z))

= z +

∞
∑

k=2

[

l+ 1 + λ(k − 1)

l + 1

]n

akbkz
k (1.7)

(λ ≥ 0; l ≥ 0;n ∈ N0) .

From (1.7), we can easily deduce that

λz
(

Dn
λ,l(f ∗ g)(z)

)

′

= (l+ 1)Dn+1
λ (f ∗ g)(z)− (l + 1− λ)Dn

λ,l(f ∗ g)(z) (1.8)

(λ > 0; l ≥ 0;n ∈ N0).

We observe that the linear operator Dn
λ,l(f ∗ g)(z) reduces to several interesting

many other linear operators considered earlier for different choices of n, λ, l and the
function g :

(i) Dn
λ,0(f ∗ g)(z) = Dn

λ(f ∗ g)(z), where Dn
λ(f ∗ g)(z) is linear operator which was

defined by Aouf and Mostafa [3] ;
(ii) For g (z) = z

1−z
, we have Dn

λ,l(f ∗ g)(z) = I(n, λ, l)f(z), where I(n, λ, l) is the
generalized multiplier transformation which was introduced and studied by Cătaş et
al. [8] ;

(iii) For λ = 1 and g (z) = z
1−z

, we see that Dn
1,l(f ∗ g)(z) = I(n, l)f (z), where

I(n, l)f (z) is the multiplier transformation (see [9]);
(iv) For l = 0 and g (z) = z

1−z
, we see that Dn

λ,0(f ∗ g)(z) = Dn
λf(z) where Dn

λ is
the generalized Sălăgean operator ( or Al-Oboudi operator [2] ) which yield Sălăgean
operator Dn for λ = 1 introduced and studied by Sălăgean [22];

(v) For l = 0 and

g(z) = z +

∞
∑

k=2

Γk [a1; b1] z
k, (1.9)

Γk [a1; b1] =
(a1)k−1...(aq)k−1

(b1)k−1...(bs)k−1(1)k−1
(1.10)

(

ai ∈ C; i = 1, ..., q; bj ∈ C\Z−

0 = {0,−1,−2, ...} ; j = 1, ..., s; q ≤ s+ 1; q, s ∈ N0

)

,
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where

(x)k =

{

1 (k = 0;x ∈ C∗ = C\{0})
x(x + 1)...(x+ k − 1) (k ∈ N;x ∈ C),

we have Dn
λ,0(f ∗ g)(z) = Dn

λ(a1, b1)f(z), where Dn
λ(a1, b1) is the linear operator

which was introduced and studied by Selvaraj and Karthikeyan [23]. The operator
Dn

λ(a1, b1)f(z), contains in turn many interesting operators such as, Dziok-Srivastava
operator [10] ( see also [11]), Hohlov linear operator (see [13]), the Carlson-Shaffer
linear operator (see [7] and [21] ), the Ruscheweyh derivative operator (see [20]),
the Bernardi-Libera-Livingston operator ( see [4], [14] and [15]) and Owa-Srivastava
fractional derivative operator (see [19]);

(iv) For g(z) of the form (1.9), we obtain

Dn
λ,l(f ∗ g)(z) = I

n,l
q,s,λ(a1, b1)f(z) = z+

∞
∑

k=2

[

l + 1 + λ(k − 1)

l + 1

]n

Γk [a1; b1] z
k, (1.11)

where the operator I
n,l
q,s,λ(a1, b1)f(z) is introduced and studied by El-Ashwah and

Aouf [12].

In this paper, we will derive several subordination results, superordination results
and sandwich results involving the operatorDn

λ,l(f ∗g) and some of its special chooses
of n, l, λ and the function g(z).

2. Definitions and Preliminaries

In order to prove our subordinations and superordinations, we need the following
definition and lemmas.

Definition 1 [17]. Denote by Q, the set of all functions f that are analytic and
injective on U\E(f), where

E(f) =

{

ζ ∈ ∂U : lim
z→ζ

f (z) = ∞

}

,

and are such that f
′

(ζ) 6= 0 for ζ ∈ ∂U\E (f).

Lemma 1 [24]. Let q (z) be univalent in U with q(0) = 1. Let α ∈ C; γ ∈ C
∗,

further assume that

ℜ

{

1 +
zq

′′

(z)

q
′ (z)

}

> max

{

0,−ℜ

(

α

γ

)}

. (2.1)

If p (z) is analytic in U , and

αp (z) + γzp
′

(z) ≺ αq (z) + γzq
′

(z) ,

then p (z) ≺ q (z) and q (z) is the best dominant.
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Lemma 2 [24]. Let q (z) be convex univalent in U, q(0) = 1. Let α ∈ C; γ ∈ C∗

and ℜ
(

α
γ

)

> 0. If p(z) ∈ H [q(0), 1] ∩Q, αp (z) + γzp
′

(z) is univalent in U and

αq (z) + γzq
′

(z) ≺ αp (z) + γzp
′

(z) ,

then q (z) ≺ p (z) and q (z) is the best subordinant.

3. Sandwich Results

Unless otherwise mentioned, we assume throughout this paper that l ≥ 0, λ > 0, n ∈
N0 and g (z) is given by (1.5) .

Theorem 1. Let q (z) be univalent in U with q(0) = 1, and γ ∈ C∗. Further,
assume that

ℜ

{

1 +
zq

′′

(z)

q
′ (z)

}

> max

{

0,−ℜ

(

1

γ

)}

. (3.1)

If f, g ∈ A satisfy the following subordination condition:

Dn
λ,l(f ∗ g)(z)

Dn+1
λ,l (f ∗ g)(z)

+
γ (l + 1)

λ











1−
Dn

λ,l(f ∗ g)(z)Dn+2
λ,l (f ∗ g)(z)

[

Dn+1
λ,l (f ∗ g)(z)

]2











≺ q (z) + γzq
′

(z) , (3.2)

then
Dn

λ,l(f ∗ g)(z)

Dn+1
λ,l (f ∗ g)(z)

≺ q (z)

and q (z) is the best dominant.
Proof. Define a function p (z) by

p (z) =
Dn

λ,l(f ∗ g)(z)

Dn+1
λ,l (f ∗ g)(z)

(z ∈ U) . (3.3)

Then the function p (z) is analytic in U and p(0) = 1. Therefore, differentiating (3.3)
logarithmically with respect to z and using the identity (1.8) in the resulting equation,
we have

Dn
λ,l(f ∗ g)(z)

Dn+1
λ,l (f ∗ g)(z)

+
γ (l + 1)

λ











1−
Dn

λ,l(f ∗ g)(z)Dn+2
λ,l (f ∗ g)(z)

[

Dn+1
λ,l (f ∗ g)(z)

]2











= p (z) + γzp
′

(z) ,

that is,
p (z) + γzp

′

(z) ≺ q (z) + γzq
′

(z) .
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Therefore, Theorem 1 now follows by applying Lemma 1.
Putting q(z) = 1+Az

1+Bz
(−1 ≤ B < A ≤ 1) in Theorem 1, we obtain the following

corollary.
Corollary 1. Let γ ∈ C∗ and

ℜ

{

1−Bz

1 +Bz

}

> max

{

0,−ℜ

(

1

γ

)}

.

If f, g ∈ A satisfy the following subordination condition:

Dn
λ,l(f ∗ g)(z)

Dn+1
λ,l (f ∗ g)(z)

+
γ (l + 1)

λ











1−
Dn

λ,l(f ∗ g)(z)Dn+2
λ,l (f ∗ g)(z)

[

Dn+1
λ,l (f ∗ g)(z)

]2











≺
1 +Az

1 +Bz
+ γ

(A−B) z

(1 +Bz)2
,

then
Dn

λ,l(f ∗ g)(z)

Dn+1
λ,l (f ∗ g)(z)

≺
1 +Az

1 +Bz

and the function 1+Az
1+Bz

is the best dominant.
Taking g (z) = z

1−z
in Theorem 1,we obtain the following subordination result for

the generalized multiplier transformation I(n, λ, l).
Corollary 2. Let q (z) be univalent in U with q(0) = 1, and γ ∈ C∗. Further

assume that (3.1) holds. If f ∈ A satisfies the following subordination condition:

I(n, λ, l)f(z)

I(n+ 1, λ, l)f(z)
+

γ (l + 1)

λ

{

1−
I(n, λ, l)f(z)I(n+ 2, λ, l)f(z)

[I(n+ 1, λ, l)f(z)]
2

}

≺ q (z) + γzq
′

(z) ,

then
I(n, λ, l)f(z)

I(n+ 1, λ, l)f(z)
≺ q (z)

and q (z) is the best dominant.
Taking g (z) of the form (1.9) in Theorem 1, we obtain the following subordination

result for the operator In,lq,s,λ(a1; b1).
Corollary 3. Let q (z) be univalent in U with q(0) = 1, and γ ∈ C∗. Further

assume that (3.1) holds. If f ∈ A satisfies the following subordination condition:

I
n,l
q,s,λ(a1, b1)f(z)

I
n+1,l
q,s,λ (a1, b1)f(z)

+
γ (l + 1)

λ











1−
I
n,l
q,s,λ(a1, b1)f(z)I

n+2,l
q,s,λ (a1, b1)f(z)

[

I
n+1,l
q,s,λ (a1, b1)f(z)

]2











≺ q (z) + γzq
′

(z) ,



On differential sandwich theorems of analytic functions defined by ... 103

then
I
n,l
q,s,λ(a1, b1)f(z)

I
n+1,l
q,s,λ (a1, b1)f(z)

≺ q (z)

and q (z) is the best dominant.

Taking l = 0, λ = 1 and g(z) =
z

1− z
in Theorem 1, we obtain the following

subordination result for Sălăgean operator which improves the result of Shanmugam
et al. [24, Theorem 5.1] and obtained by Nechita [18].

Corollary 4 [18, Corollary 7]. Let q (z) be univalent in U with q(0) = 1, and
γ ∈ C

∗. Further assume that (3.1) holds. If f ∈ A satisfies the following subordination
condition:

Dnf(z)

Dn+1f(z)
+ γ

{

1−
Dnf(z)Dn+2f(z)

[Dn+1f(z)]2

}

≺ q (z) + γzq
′

(z) ,

then
Dnf(z)

Dn+1f(z)
≺ q (z)

and q (z) is the best dominant.
Now, by appealing to Lemma 2 it can be easily prove the following theorem.
Theorem 2. Let q (z) be convex univalent in U with q (0) = 1. Let γ ∈ C with

ℜ (γ̄) > 0. If f, g ∈ A such that
Dn

λ,l(f∗g)(z)

D
n+1

λ,l
(f∗g)(z)

∈ H [q (0) , 1] ∩Q,

Dn
λ,l(f ∗ g)(z)

Dn+1
λ,l (f ∗ g)(z)

+
γ (l + 1)

λ











1−
Dn

λ,l(f ∗ g)(z).Dn+2
λ,l (f ∗ g)(z)

[

Dn+1
λ,l (f ∗ g)(z)

]2











is univalent in U , and the following superordination condition

q (z) + γzq
′

(z) ≺
Dn

λ,l(f ∗ g)(z)

Dn+1
λ,l (f ∗ g)(z)

+
γ (l + 1)

λ











1−
Dn

λ,l(f ∗ g)(z).Dn+2
λ,l (f ∗ g)(z)

[

Dn+1
λ,l (f ∗ g)(z)

]2











holds, then

q (z) ≺
Dn

λ,l(f ∗ g)(z)

Dn+1
λ,l (f ∗ g)(z)

and q (z) is the best subordinant.
Taking q(z) = 1+Az

1+Bz
(−1 ≤ B < A ≤ 1) in Theorem 2, we obtain the following

corollary.

Corollary 5. Let γ ∈ C with ℜ (γ̄) > 0. If f, g ∈ A such that
Dn

λ,l(f∗g)(z)

D
n+1

λ,l
(f∗g)(z)

∈

H [q (0) , 1] ∩Q,

Dn
λ,l(f ∗ g)(z)

Dn+1
λ,l (f ∗ g)(z)

+
γ (l + 1)

λ











1−
Dn

λ,l(f ∗ g)(z)Dn+2
λ,l (f ∗ g)(z)

[

Dn+1
λ,l (f ∗ g)(z)

]2
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is univalent in U , and the following superordination condition

1 +Az

1 +Bz
+ γ

(A−B) z

(1 +Bz)
2 ≺

Dn
λ,l(f ∗ g)(z)

Dn+1
λ,l (f ∗ g)(z)

+
γ (l + 1)

λ











1−
Dn

λ,l(f ∗ g)(z)Dn+2
λ,l (f ∗ g)(z)

[

Dn+1
λ,l (f ∗ g)(z)

]2











holds, then

1 +Az

1 +Bz
≺

Dn
λ,l(f ∗ g)(z)

Dn+1
λ,l (f ∗ g)(z)

and q (z) is the best subordinant.

Taking g (z) = z
1−z

in Theorem 2, we obtain the following superordination result
for the generalized multiplier transformation I(n, λ, l).

Corollary 6. Let q (z) be convex univalent in U with q (0) = 1. Let γ ∈ C with

ℜ (γ̄) > 0. If f, g ∈ A such that I(n,λ,l)f(z)
I(n+1,λ,l)f(z) ∈ H [q (0) , 1] ∩Q,

I(n, λ, l)f(z)

I(n+ 1, λ, l)f(z)
+

γ (l + 1)

λ

{

1−
I(n, λ, l)f(z).I(n+ 2, λ, l)f(z)

[I(n+ 1, λ, l)f(z)]2

}

is univalent in U , and the following superordination condition

q (z)+ γzq
′

(z) ≺
I(n, λ, l)f(z)

I(n+ 1, λ, l)f(z)
+

γ (l + 1)

λ

{

1−
I(n, λ, l)f(z).I(n+ 2, λ, l)f(z)

[I(n+ 1, λ, l)f(z)]
2

}

holds, then

q (z) ≺
I(n, λ, l)f(z)

I(n+ 1, λ, l)f(z)

and q (z) is the best subordinant.

Taking g (z) of the form (1.9) in Theorem 2, we obtain the following superordina-

tion result for the operator In,lq,s,λ(a1; b1).

Corollary 7. Let q (z) be convex univalent in U with q (0) = 1. Let γ ∈ C with

ℜ (γ̄) > 0. If f, g ∈ A such that
I
n,l

q,s,λ
(a1,b1)f(z)

I
n+1,l

q,s,λ
(a1,b1)f(z)

∈ H [q (0) , 1] ∩Q,

I
n,l
q,s,λ(a1, b1)f(z)

I
n+1,l
q,s,λ (a1, b1)f(z)

+
γ (l + 1)

λ











1−
I
n,l
q,s,λ(a1, b1)f(z)I

n+2,l
q,s,λ (a1, b1)f(z)

[

I
n+1,l
q,s,λ (a1, b1)f(z)

]2
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is univalent in U , and the following superordination condition

q (z) + γzq
′

(z) ≺
I
n,l
q,s,λ(a1, b1)f(z)

I
n+1,l
q,s,λ (a1, b1)f(z)

+
γ (l + 1)

λ











1−
I
n,l
q,s,λ(a1, b1)f(z)I

n+2,l
q,s,λ (a1, b1)f(z)

[

I
n+1,l
q,s,λ (a1, b1)f(z)

]2











holds, then

q (z) ≺
I
n,l
q,s,λ(a1, b1)f(z)

I
n+1,l
q,s,λ (a1, b1)f(z)

and q (z) is the best subordinant.

Taking l = 0, λ = 1 and g(z) =
z

1− z
in Theorem 2, we obtain the following

superordination result for Sălăgean operator which improves the result of Shanmugam
et al. [24, Theorem 5.2] and obtained by Nechita [18]..

Corollary 8 [18, Corollary 12]. Let q (z) be convex univalent in U with q (0) = 1.

Let γ ∈ C with ℜ (γ̄) > 0. If f ∈ A such that Dnf(z)
Dn+1f(z) ∈ H [q (0) , 1] ∩Q,

Dnf(z)

Dn+1f(z)
+ γ

{

1−
Dnf(z).Dn+2f(z)

[Dn+1f(z)]2

}

is univalent in U , and the following superordination condition

q (z) + γzq
′

(z) ≺
Dnf(z)

Dn+1f(z)
+ γ

{

1−
Dnf(z).Dn+2f(z)

[Dn+1f(z)]
2

}

holds, then

q (z) ≺
Dnf(z)

Dn+1f(z)

and q (z) is the best subordinant.

Combining Theorem 1 and Theorem 2, we get the following sandwich theorem for
the linear operator Dn

λ,l(f ∗ g) .

Theorem 3. Let q1 (z) be convex univalent in U with q1 (0) = 1, γ ∈ C with
ℜ (γ̄) > 0, q2 (z) be univalent in U with q2 (0) = 1, and satisfies (3.1) . If f, g ∈ A such

that
Dn

λ,l(f∗g)(z)

D
n+1

λ,l
(f∗g)(z)

∈ H [q2 (0) , 1] ∩Q,

Dn
λ,l(f ∗ g)(z)

Dn+1
λ,l (f ∗ g)(z)

+
γ (l + 1)

λ











1−
Dn

λ,l(f ∗ g)(z).Dn+2
λ,l (f ∗ g)(z)

[

Dn+1
λ,l (f ∗ g)(z)

]2
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is univalent in U , and

q1 (z) + γzq
′

1 (z) ≺
Dn

λ,l(f ∗ g)(z)

Dn+1
λ,l (f ∗ g)(z)

+
γ (l + 1)

λ











1−
Dn

λ,l(f ∗ g)(z).Dn+2
λ,l (f ∗ g)(z)

[

Dn+1
λ,l (f ∗ g)(z)

]2











≺ q2 (z) + γzq
′

2 (z)

holds, then

q1 (z) ≺
Dn

λ,l(f ∗ g)(z)

Dn+1
λ,l (f ∗ g)(z)

≺ q2 (z)

and q1 (z) and q2 (z) are, respectively, the best subordinant and the best dominant.

Taking qi(z) =
1+Aiz
1+Biz

(i = 1, 2;−1 ≤ B2 ≤ B1 < A1 ≤ A2 ≤ 1) in Theorem 3, we
obtain the following corollary.

Corollary 9. Let γ ∈ C with ℜ (γ̄) > 0. If f, g ∈ A such that
Dn

λ,l(f∗g)(z)

D
n+1

λ,l
(f∗g)(z)

∈

H [q (0) , 1] ∩Q,

Dn
λ,l(f ∗ g)(z)

Dn+1
λ,l (f ∗ g)(z)

+
γ (l + 1)

λ











1−
Dn

λ,l(f ∗ g)(z).Dn+2
λ,l (f ∗ g)(z)

[

Dn+1
λ,l (f ∗ g)(z)

]2











is univalent in U , and

1 +A1z

1 +B1z
+ γ

(A1 −B1) z

(1 +B1z)
2 ≺

Dn
λ,l(f ∗ g)(z)

Dn+1
λ,l (f ∗ g)(z)

+
γ (l + 1)

λ











1−
Dn

λ,l(f ∗ g)(z).Dn+2
λ,l (f ∗ g)(z)

[

Dn+1
λ,l (f ∗ g)(z)

]2











≺
1 +A2z

1 + B2z
+ γ

(A2 −B2) z

(1 +B2z)
2

holds, then

1 +A1z

1 +B1z
≺

Dn
λ,l(f ∗ g)(z)

Dn+1
λ,l (f ∗ g)(z)

≺
1 +A2z

1 +B2z

and 1+A1z
1+B1z

and 1+A2z
1+B2z

are, respectively, the best subordinant and the best dominant.

Taking l = 0, λ = 1 and g(z) =
z

1− z
in Theorem 3, we obtain the following

sandwich result for Sălăgean operator which improves the result of Shanmugam et al.
[24, Theorem 5.3].

Corollary 10. Let q1 (z) be convex univalent in U with q1 (0) = 1, γ ∈ C with
ℜ (γ̄) > 0, q2 (z) be univalent in U with q2 (0) = 1, and satisfies (3.1) . If f ∈ A such



On differential sandwich theorems of analytic functions defined by ... 107

that Dnf(z)
Dn+1f(z) ∈ H [q2 (0) , 1] ∩Q,

Dnf(z)

Dn+1f(z)
+ γ

{

1−
Dnf(z).Dn+2f(z)

[Dn+1f(z)]2

}

is univalent in U , and

q1 (z) + γzq
′

1 (z) ≺
Dnf(z)

Dn+1f(z)
+ γ

{

1−
Dnf(z).Dn+2f(z)

[Dn+1f(z)]2

}

≺ q2 (z) + γzq
′

2 (z)

holds, then

q1 (z) ≺
Dnf(z)

Dn+1f(z)
≺ q2 (z)

and q1 (z) and q2 (z) are, respectively, the best subordinant and the best dominant.
Remarks (i) Combining Corollary 2 and Corollary 6, we obtain similar sandwich

theorem for the generalized multiplier transformation I(n, λ, l);
(ii) Combining Corollary 3 and Corollary 7, we obtain similar sandwich theorems

for the operator In,lq,s,λ(a1, b1);

(iii) Taking l = 0 and g(z) =
z

1− z
in Theorems 1, 2 and 3, respectively, we obtain

the results obtained by Nechita [18, Theorems 5, 10 and Corollary 13, respectively];

(iv) Taking n = l = 0, λ = 1 and g(z) =
z

1− z
in Theorems 1, 2 and 3, respectively,

we obtain the results obtained by Shanmugam et al. [24, Theorems 3.1, 3.2 and
Corollary 3.3, respectively].
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[22] G. S. Sălăgean, Subclasses of univalent functions, Lecture Notes in Math.
(Springer-Verlag) 1013 , (1983), 362 - 372 .



On differential sandwich theorems of analytic functions defined by ... 109

[23] C. Selvaraj and K. R. Karthikeyan, Differential subordination and superordina-
tion for certain subclasses of analytic functions, Far East J. Math. Sci. (FJMS),
29 (2008), no. 2, 419-430.

[24] T. N. Shanmugam, V. Ravichandran and S. Sivasubramanian, Differantial sand-
wich theorems for some subclasses of analytic functions, J. Austr.Math. Anal.
Appl., 3 (2006), no. 1, Art. 8, 1-11.

[25] N. Tuneski, On certain sufficient conditions for starlikeness, Internat. J. Math.
Math. Sci., 23 (2000), no. 8, 521-527.

DOI: 10.7862/rf.2014.9

T. M. Seoudy - corresponding author M. K. Aouf
email: tms00@fayoum.edu.eg email: mkaouf127@yahoo.com

Department of Mathematics, Department of Mathematics,
Faculty of Science, Faculty of Science
Fayoum University, Fayoum 63514, Egypt Mansoura 35516

Received 01.08.2013, Accepted 22.01.2014


