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1. Introduction

Let X and Y be two Banach spaces. In this work we will discuss some results on
perturbation theory of 2 × 2 operator matrices on X×Y and we will investigate their
M -essential spectra. We consider operators in the following form

L0 =

(
A B
C D

)
where A,B,C and D are, in general, unbounded operators. The operator A acts on
the Banach space X and has the domain D(A), D is defined on D(D) and acts on the
Banach space Y and the intertwining operator B (resp. C) is defined on the domain
D(B) (resp. D(C)) and acts between these spaces. Note that, in general L0 is neither
a closed nor a closable operator, even if its entries are closed. In [1], F. V. Atkinson,
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H. Langer, R. Mennicken and A. A. Shkalikov give some sufficient conditions under
which L0 is closable and describe its closure, that we will denote by L.

In recent years, number of papers have been devoted to study the essential spectra
of block operator matrices acting in a product of Banach spaces, (see [1], [2], [4], [5],
[6], [14], [16], [23] and [26]). Most authors, there, have proposed methods for dealing
with spectral theory for operators in the form L0 − µM where M = I. We note that
the idea of studying the spectral characteristics of the 2 × 2 matrix operator goes
back to the classics of the spectral theory for the differential operator. Hence several
analysis focused on this issue may be found in the literature, see for example [10], [12],
[13], [17], [18], [19], [20] and [25]. Recently, C. Tretter gives in [21], [22] and [23] an
account research and presents a wide panorama of methods to investigate the spectral
theory of block operator matrices. In the paper [8], M. Faierman, R. Mennicken and
M. Möller propose a method for dealing with the spectral theory for pencils of the
form L0 − µM , where M is a bounded operator.

In this work, we generalize the results of [16] where M -essential spectra of some 2
× 2 operator matrices on X×X are discussed withM = I. For this, first we establish
some results on perturbation theory of 2 × 2 operator matrices, essentially we prove
the following result:

F :=

(
F11 F12

F21 F22

)
∈ Fb(X1 ×X2) if and only if Fij ∈ Fb(Xj , Xi), i, j = 1, 2,

where Fb(Xj , Xi) designs the set of Fredholm perturbations (see Definition 2.2). Then
we pursue the analysis started in [8] and we determine the M -essential spectra of a
2× 2 matrix operator where M is a bounded operator defined on the product of two
Banach spaces X × Y .

We organize the paper in the following way: In Section 2, some preliminary ab-
stract results about Fredholm operators are given. In Section 3, we establish some
results on perturbation theory of 2 × 2 operator matrices. The Section 4 is devoted
to the study of the M -essential spectra of a 2× 2 matrix operator. Finally, in Section
5 we apply the obtained results to investigate the M -essential spectra of a two-group
transport operator on Lp-spaces, 1 ≤ p <∞.

2. Preliminary results

Let X and Y be two Banach spaces. We denote by L(X,Y ) (resp. C(X,Y )) the
set of all bounded (resp. closed, densely defined) linear operators from X into Y
and we denote by K(X,Y ) the subspace of compact operators from X into Y . For
T ∈ C(X,Y ), we write D(T ) ⊂ X for the domain, N(T ) ⊂ X for the null space and
R(T ) ⊂ Y for the range of T . The nullity, α(T ), of T is defined as the dimension of
N(T ) and the deficiency, β(T ), of T is defined as the codimension of R(T ) in Y .

Let S be a bounded operator from X to Y . For T ∈ C(X,Y ), we define the
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S-resolvent set of T by:

ρS(T ) := {λ ∈ C : λS − T has a bounded inverse},

and the S-spectrum of T by:

σS(T ) = C \ ρS(T ).

Now, we introduce the following important operator classes:

The set of upper semi-Fredholm operators is defined by:

Φ+(X,Y ) = {T ∈ C(X,Y ) such that α(T ) <∞ and R(T ) is closed in Y },

and the set of lower semi-Fredholm operators is defined by:

Φ−(X,Y ) = {T ∈ C(X,Y ) such that β(T ) <∞}.

Φ(X,Y ) := Φ+(X,Y ) ∩ Φ−(X,Y ) denote the set of Fredholm operators from X into
Y and Φ±(X,Y ) := Φ+(X,Y ) ∪ Φ−(X,Y ) the set of semi-Fredholm operators from
X into Y . While the number i(T ) := α(T ) − β(T ) is called the index of T , for
T ∈ Φ(X,Y ). We say that the complex number λ is in Φ+T,S , Φ−T,S , Φ±T,S or ΦT,S

if λS − T is in Φ+(X,Y ), Φ−(X,Y ), Φ±(X,Y ) or Φ(X,Y ), respectively. If X = Y
then L(X,Y ), C(X,Y ), K(X,Y ), Φ(X,Y ), Φ+(X,Y ), Φ−(X,Y ), and Φ±(X,Y ) are
replaced by L(X), C(X), K(X), Φ(X), Φ+(X), Φ−(X), and Φ±(X), respectively.

In this paper we are concerned with the following S-essential spectra:

σe1,S(T ) := {λ ∈ C such that λS − T /∈ Φ+(X,Y )} := C \ Φ+T,S ,
σe2,S(T ) := {λ ∈ C such that λS − T /∈ Φ−(X,Y )} := C \ Φ−T,S ,
σe3,S(T ) := {λ ∈ C such that λS − T /∈ Φ±(X,Y )} := C \ Φ±T,S ,
σe4,S(T ) := {λ ∈ C such that λS − T /∈ Φ(X,Y )} := C \ ΦT,S ,
σe5,S(T ) := C \ ρ5,S(T ),
σe6,S(T ) := C \ ρ6,S(T ),

where ρ5,S(T ) := {λ ∈ ΦT,S such that i(λS − T ) = 0} and ρ6,S(T ) denote the set of
those λ ∈ ρ5,S(T ) such that all scalars near λ are in ρS(T ). They can be ordered as

σe3,S(T ) = σe1,S(T ) ∩ σe2,S(T ) ⊂ σe4,S(T ) ⊂ σe5,S(T ) ⊂ σe6,S(T ).

Note that if S = I, we recover the usual definition of the essential spectra of a closed
densely defined linear operator (see [16]).

Let us, now, introduce some notation and then continue with some lemmas and
propositions.

Proposition 2.1. [15] Let T ∈ C(X,Y ) and consider S a nonzero bounded linear
operator from X into Y . Then we have the following results:
(i) ΦT,S is open.
(ii) i(λS − T ) is constant on any component of ΦT,S.
(iii) α(λS − T ) and β(λS − T ) are constant on any component of ΦT,S except on a
discrete set of points on which they have larger values.
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Definition 2.1. Let X and Y be two Banach spaces and let F ∈ L(X,Y ). F is
called strictly singular, if for every infinite-dimensional closed subspace M of X, the
restriction of F to M is not bijective.

Let S(X,Y ) denote the set of strictly singular operators from X to Y .

Definition 2.2. Let X and Y be two Banach spaces and let F ∈ L(X,Y ).
(i) The operator F is called Fredholm perturbation if U + F ∈ Φ(X,Y ) whenever
U ∈ Φ(X,Y ).
(ii) F is called an upper (resp. lower) semi-Fredholm perturbation if U + F ∈
Φ+(X,Y ) (resp. U +F ∈ Φ−(X,Y )) whenever U ∈ Φ+(X,Y ) (resp. U ∈ Φ−(X,Y )).

We denote by F(X,Y ) the set of Fredholm perturbations and by F+(X,Y ) (resp.
F−(X,Y )) the set of upper semi-Fredholm (resp. lower semi-Fredholm) perturbations.

Remark 2.1. Let Φb(X,Y ), Φb
+(X,Y ) and Φb

−(X,Y ) denote the sets Φ(X,Y ) ∩
L(X,Y ), Φ+(X,Y )∩L(X,Y ) and Φ−(X,Y )∩L(X,Y ) respectively. If in Definition 2.2
we replace Φ(X,Y ), Φ+(X,Y ) and Φ−(X,Y ) by Φb(X,Y ), Φb

+(X,Y ) and Φb
−(X,Y )

we obtain the sets Fb(X,Y ), Fb
+(X,Y ) and Fb

−(X,Y ).

The sets of Fredholm perturbations and semi-Fredholm perturbations were introduced
in [9]. In particular it is shown that Fb(X,Y ), Fb

+(X,Y ) and Fb
−(X,Y ) are closed

subsets of L(X,Y ) and if X = Y , then Fb(X) := Fb(X,Y ), Fb
+(X) := Fb

+(X,Y ) and
Fb

−(X) := Fb
−(X,Y ) are closed two-sided ideals of L(X).

In general, we have the following inclusions:

K(X,Y ) ⊂ S(X,Y ) ⊂ Fb(X,Y ).

Note that, the set Fb(X,Y ) can strictly contains S(X,Y ). Indeed, in [27], the au-
thor gives some geometric conditions on the Banach spaces for which the equality
S(X,Y ) = Fb(X,Y ) does not hold.
Recall the following result established in [3].

Lemma 2.1. [3] Let X and Y be two Banach spaces, then
F(X,Y ) = Fb(X,Y ).

Proposition 2.2. [15] Let T1, T2 are two closed densely defined linear operators on
X and S an invertible operator on X.

(i) If for some λ ∈ ρS(T1)∩ρS(T2), the operator (λS−T1)−1− (λS−T2)−1 ∈ Fb(X),
then

σei,S(T1) = σei,S(T2), i = 4, 5.

(ii) If for some λ ∈ ρS(T1)∩ρS(T2), the operator (λS−T1)−1−(λS−T2)−1 ∈ Fb
+(X),

then
σe1,S(T1) = σe1,S(T2).

(iii) If for some λ ∈ ρS(T1)∩ρS(T2), the operator (λS−T1)−1−(λS−T2)−1 ∈ Fb
−(X),

then
σe2,S(T1) = σe2,S(T2).
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(iv) If for some λ ∈ ρS(T1) ∩ ρS(T2), the operator (λS − T1)
−1 − (λS − T2)

−1 ∈
Fb

+(X) ∩ Fb
−(X), then

σe3,S(T1) = σe3,S(T2).

Definition 2.3. Let X and Y be two Banach spaces. An operator T ∈ L(X,Y ) is
said to have a left Fredholm inverse if there exists an operator Tl ∈ L(Y,X) such
that TlT − I ∈ K(X). Similarly, T is said to have a right Fredholm inverse if there
exists Tr ∈ L(Y,X) such that TTr − I ∈ K(Y ). The operators Tl and Tr are called,
respectively, left and right Fredholm inverse of T .

We will denote by Φb
l (X,Y ) (resp. Φb

r(X,Y )) the set of bounded operators which
have left Fredholm inverse (resp. right Fredholm inverse).
It follows from [17, Theorems 14. and 15. p. 160] that

Φb
l (X,Y ) = {T ∈ Φb

+(X,Y ) such that R(T ) is complemented}

and

Φb
r(X,Y ) = {T ∈ Φb

−(X,Y ) such that ker(T ) is complemented},

where a subspace N ⊂ X is said to be complemented if there exists a closed subspace
M ⊂ X such that N ⊕M = X.
Note that we have the following inclusions:

Φb(X,Y ) ⊂ Φb
l (X,Y ) ⊂ Φb

+(X,Y )

and

Φb(X,Y ) ⊂ Φb
r(X,Y ) ⊂ Φb

−(X,Y ).

Definition 2.4. Let X and Y be two Banach spaces. We denote by

Fb
l (X,Y ) = {F ∈ L(X,Y ) such that T + F ∈ Φb

l (X,Y ) whenever T ∈ Φb
l (X,Y )}

and

Fb
r (X,Y ) = {F ∈ L(X,Y ) such that T + F ∈ Φb

r(X,Y ) whenever T ∈ Φb
r(X,Y )}.

The set Fb
l (X,X) (resp. Fb

r (X,X)) will be denoted by Fb
l (X) (resp. Fb

r (X)).

Proposition 2.3. Let X, Y and Z be three Banach spaces.
(i) If A ∈ Φb(Y,Z) and T ∈ Φb

l (X,Y ) (resp. T ∈ Φb
r(X,Y )), then AT ∈ Φb

l (X,Z)
(resp. AT ∈ Φb

r(X,Z)).

(ii) If A ∈ Φb(X,Y ) and T ∈ Φb
l (Y, Z) (resp. T ∈ Φb

r(Y,Z)), then TA ∈ Φb
l (X,Z)

(resp. TA ∈ Φb
r(X,Z)).
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Proof. (i) Let A ∈ Φb(Y,Z), then, by [24, Theorem 5.4.] there exist A0 ∈ L(Z, Y )
and K1 ∈ K(Y ) (resp. K2 ∈ K(Z)) such that A0A = IY −K1 (resp. AA0 = IZ −K2).
On the other hand, there exist Tl ∈ L(Y,X) (resp. Tr ∈ L(Y,X)) and K3 ∈ K(X)
(resp. K4 ∈ K(Y )) such that TlT = IX − K3 (resp. TTr = IY − K4) since T ∈
Φb

l (X,Y ) (resp. T ∈ Φb
r(X,Y )). So, TlA0AT = IX −K3 − TlK1T (resp. ATTrA0 =

IZ −K4 −AK2A0), which imply that AT ∈ Φb
l (X,Z) (resp. AT ∈ Φb

r(X,Z)).
(ii) The proof is analogous to the previous one.

Proposition 2.4. Let X, Y and Z be three Banach spaces.
(i) If the set Φb(Y, Z) is not empty, then

F1 ∈ Fb
l (X,Y ) and A ∈ Φb(Y,Z), imply AF1 ∈ Fb

l (X,Z),

F1 ∈ Fb
r (X,Y ) and A ∈ Φb(Y,Z), imply AF1 ∈ Fb

r (X,Z).

(ii) If the set Φb(X,Y ) is not empty, then

F2 ∈ Fb
l (Y, Z) and A ∈ Φb(X,Y ), imply F2A ∈ Fb

l (X,Z),

F2 ∈ Fb
r (Y, Z) and A ∈ Φb(X,Y ), imply F2A ∈ Fb

r (X,Z).

Proof. (i) Since A ∈ Φb(Y, Z), then there exist A0 ∈ L(Z, Y ) and K ∈ K(Z) such
that AA0 = IZ − K. By [24, Theorem 5.5. p. 105] we have A0 ∈ Φb(Z, Y ). Let
B ∈ Φb

l (X,Z) (resp. B ∈ Φb
r(X,Z)). Using the Propriety 2.3(i) we deduce that

A0B ∈ Φb
l (X,Y ) (resp. A0B ∈ Φb

r(X,Y )). Then A0B + F1 ∈ Φb
l (X,Y ) (resp.

A0B + F1 ∈ Φb
r(X,Y )). And so AF1 +B −KB ∈ Φb

l (X,Y ) (resp. AF1 +B −KB ∈
Φb

r(X,Y )). Therefore AF1 +B ∈ Φb
l (X,Y ) (resp. AF1 +B ∈ Φb

r(X,Y )).
(ii) The proof of (ii) is obtained as like as the proof of (i).

Theorem 2.1. Let X, Y and Z be Banach spaces.
(i) If the set Φb(Y, Z) is not empty, then

F1 ∈ Fb
l (X,Y ) and A ∈ L(Y, Z), imply AF1 ∈ Fb

l (X,Z),

F1 ∈ Fb
r (X,Y ) and A ∈ L(Y, Z), imply AF1 ∈ Fb

r (X,Z).

(ii) If the set Φb(X,Y ) is not empty, then

F2 ∈ Fb
l (Y,Z) and A ∈ L(X,Y ), imply F2A ∈ Fb

l (X,Z),

F2 ∈ Fb
r (Y,Z) and A ∈ L(X,Y ), imply F2A ∈ Fb

r (X,Z).

Remark 2.2. It follows from Definition 2.4 and the previous theorem that Fb
l (X)

and Fb
r (X) are two-sided ideals of L(X).
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Proof of Theorem 2.1. (i) Let C ∈ Φb(Y,Z) and λ ∈ C. We denote by A1 =
A − λC and A2 = λC. For sufficiently large λ, using [24, Theorem 5.11], we have
A1 ∈ Φb(Y,Z). It follows from Proposition 2.4(i) that A1F1 ∈ Fb

l (X,Z) (resp.
A1F1 ∈ Fb

r (X,Z)) and A2F1 ∈ Fb
l (X,Z) (resp. A2F1 ∈ Fb

r (X,Z)). This implies
A1F1 + A2F1 = AF1 ∈ Fb

l (X,Z) (resp. A1F1 + A2F1 = AF1 ∈ Fb
r (X,Z)). (ii) We

can check the other results in the same way us the previous one.

Proposition 2.5. Let X and Y be two Banach spaces. If the set Φb(Y,Z) is not
empty, then we have the inclusions:

K(X,Y ) ⊂ Fb
l (X,Y ) ⊂ Fb(X,Y ),

K(X,Y ) ⊂ Fb
r (X,Y ) ⊂ Fb(X,Y ).

Proof. We will prove the first result. The same reasoning remains valid for the
second one. It is obvious that K(X,Y ) ⊂ Fb

l (X,Y ). For the second inclusion, let
F ∈ Fb

l (X,Y ) and consider A ∈ Φb(X,Y ), then there exist A0 ∈ L(Y,X) and K ∈
K(X) such that A0A = IX − K . So, A0(A + F ) = IX − K + A0F . It follows
from Theorem 2.1 that A0F ∈ Fb

l (X), then A0(A+F ) ∈ Φb
l (X). Using the inclusion

Φb
l (X,Y ) ⊂ Φb

+(X,Y ), we obtain A + F ∈ Φb
+(X,Y ). On the other hand, consider

the mapping φ defined by: ∀λ ∈ C, φ(λ) = A + λF . Note that φ is continuous and
φ([0, 1]) ⊂ Φb

+(X,Y ), using Proposition 2.1, we can deduce that i(A+F ) = i(A) <∞.
Hence A+ F ∈ Φb(X,Y ).

3. Some results on perturbation theory of 2×2 matrix
operator

In this section we will establish some results on perturbation theory of 2 × 2 matrix
operator that acts on a product of Banach spaces X1 and X2. The following lemmas
are necessary.

Lemma 3.1. Let A ∈ L(X1), B ∈ L(X2) and consider the 2 × 2 matrix operator

MC :=

(
A C
0 B

)
where C ∈ L(X2, X1). Then

(i) If A ∈ Φb(X1) and B ∈ Φb(X2), thenMC ∈ Φb(X1×X2), for every C ∈ L(X2, X1).

(ii) If A ∈ Φb
+(X1) and B ∈ Φb

+(X2), then MC ∈ Φb
+(X1 × X2) for every C ∈

L(X2, X1).

(iii) If A ∈ Φb
−(X1) and B ∈ Φb

−(X2), then MC ∈ Φb
−(X1 × X2) for every C ∈

L(X2, X1).

Proof. (i) Write MC in the form

MC =

(
I 0
0 B

)(
I C
0 I

)(
A 0
0 I

)
. (3.1)
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Since A ∈ Φb(X1) and B ∈ Φb(X2), then

(
A 0
0 I

)
and

(
I 0
0 B

)
are both Fred-

holm operators. So, MC is a Fredholm operator, since

(
I C
0 I

)
is invertible for

every C ∈ L(X2, X1).

(ii) and (iii) can be checked in the same way as (i).

Remark 3.1. Using the same reasoning as the proof of the previous lemma we can
show that:

(i) If A ∈ Φb(X1) and B ∈ Φb(X2), then MD :=

(
A 0
D B

)
is a Fredholm operator

on X1 ×X2 for every D ∈ L(X1, X2).

(ii) If A ∈ Φb
+(X1) and B ∈ Φb

+(X2), then MD ∈ Φb
+(X1 × X2) for every D ∈

L(X1, X2).

(iii) If A ∈ Φb
−(X1) and B ∈ Φb

−(X2), then MD ∈ Φb
−(X1 × X2) for every D ∈

L(X1, X2).

Lemma 3.2. Let A ∈ L(X1), B ∈ L(X2) and consider the 2 × 2 matrix operator

MC :=

(
A C
0 B

)
where C ∈ L(X2, X1).

(i) If MC ∈ Φb
+(X1 ×X2), then A ∈ Φb

+(X1).

(ii) If MC ∈ Φb
−(X1 ×X2), then B ∈ Φb

−(X2).

Proof. The result follows immediately from Eq. (3.1).

Remark 3.2. (i) It follows immediately from the last Lemma that if MC ∈ Φb(X1×
X2), then A ∈ Φb

+(X1) and B ∈ Φb
−(X2).

(ii) Using the same reasoning as the proof of the previous lemma we can show that if

the operator

(
A 0
D B

)
is in Φb(X1×X2) for someD ∈ L(X1, X2), then A ∈ Φb

−(X1)

and B ∈ Φb
+(X2).

Theorem 3.1. Let F :=

(
F11 F12

F21 F22

)
where Fij ∈ L(Xj , Xi), i, j = 1, 2. Then

F ∈ Fb(X1 ×X2) if and only if Fij ∈ Fb(Xj , Xi), ∀i, j = 1, 2.

Remark 3.3. (i) It follows from Lemma 2.1 that Theorem 3.1 remains valid if we
replace Fb(X1 ×X2) by F(X1 ×X2) and Fb(Xj , Xi) by F(Xj , Xi), i, j = 1, 2.
(ii) It is sufficient to apply the definition of compact and strictly singular operators to
verify that the result of Theorem 3.1 is true for these classes of operators. Therefore,
in view of Remark 2.1 the previous theorem may be viewed as a generalization to a
more large class of operators.
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Proof. To prove the second implication, we consider the following decomposition,

F =

(
F11 0
0 0

)
+

(
0 F12

0 0

)
+

(
0 0
F21 0

)
+

(
0 0
0 F22

)
.

It is sufficient to prove that if Fij ∈ Fb(Xj , Xi), i, j = 1, 2 then, each operator in
the right hand side of the previous equality is a Fredholm perturbation on X1 ×X2.
We will prove the result for example for the first operator. The proof for the other

operators will be in the same way. Consider L =

(
A B
C D

)
∈ Φb(X1 × X2) and

denote F̃ :=

(
F11 0
0 0

)
. It follows from [17, Theorem 12 p.159] that there exist

L0 =

(
A0 B0

C0 D0

)
∈ L(X1 ×X2) and K =

(
K11 K12

K21 K22

)
∈ K(X1 ×X2) such that

LL0 = I −K on X1 ×X2.

Then,

(L+ F̃ )L0 = I −K + F̃L0 =

(
I −K11 + F11A0 −K12 + F11B0

−K21 I −K22

)
.

Since F11 ∈ Fb(X1) and using Theorem 2.1(ii), we will have I−K11+F11A0 ∈ Φb(X1).
This, with the fact that I −K22 ∈ Φb(X2), we can deduce from Lemma 3.1(i) that

(L + F̃ )L0 −
(

0 0
−K21 0

)
is a Fredholm operator on X1 × X2. The fact that

K21 is a compact operator and L0 ∈ Φb(X1 × X2) leads, by [24, Theorem 5.13], to

L+ F̃ ∈ Φb(X1 ×X2).

Conversely, assume that F ∈ Fb(X1 × X2). We will prove that F11 ∈ Fb(X1). Let

A ∈ Φb(X1) and define the operator L1 :=

(
A −F12

0 I

)
. It follows, from Lemma

3.1(i) that L1 ∈ Φb(X1×X2). Thus F +L1 =

(
A+ F11 0
F21 I + F22

)
∈ Φb(X1×X2).

The use of Remark 3.2(ii) leads to

A+ F11 ∈ Φb
−(X1). (3.2)

In the same way, we consider the Fredholm operator

(
A 0

−F21 I

)
and we use Re-

marks 3.1(i) and 3.2(i) to deduce that

A+ F11 ∈ Φb
+(X1). (3.3)

It follows from Eqs. (3.2) and (3.3) that

F11 ∈ Fb(X1).
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In the same way, we prove that F22 ∈ Fb(X2).

Now, we will prove that F12 ∈ Fb(X2, X1) and F21 ∈ Fb(X1, X2). For this, consider

A ∈ Φb(X2, X1) and B ∈ Φb(X1, X2). Then

(
0 A
B 0

)
∈ Φb(X1 ×X2). Using the

fact that F11 ∈ Fb(X1), F22 ∈ Fb(X2) and the result of the second implication, we

deduce that F+

(
−F11 0
0 −F22

)
∈ Fb(X1×X2). Hence,

(
0 A+ F12

B + F21 0

)
∈

Φb(X1 ×X2). So, A+ F12 ∈ Φb(X2, X1) and B + F21 ∈ Φb(X1, X2).

Theorem 3.2. Let F :=

(
F11 F12

F21 F22

)
where Fij ∈ L(Xj , Xi), i, j = 1, 2. Then

(i) F ∈ Fb
l (X1 ×X2) if and only if Fij ∈ Fb

l (Xj , Xi), ∀i, j = 1, 2.
(ii) F ∈ Fb

r (X1 ×X2) if and only if Fij ∈ Fb
r (Xj , Xi), ∀i, j = 1, 2.

Proof. (i) Using the same notations as in the proof of Theorem 3.1 we obtain:

L0(L+ F̃ ) = I −K + L0F̃ =

(
I −K11 +A0F11 −K12

−K21 + C0F11 I −K22

)
.

Since F11 ∈ Fb
l (X1) and using Theorem 2.1(i), we deduce that I − K11 + A0F11 ∈

Φb
l (X1). So, there exist an operator H ∈ L(X1 × X2) and K0 ∈ K(X1) such that

H(I −K11 +A0F11) = I −K0. Therefore,(
H 0
0 I

)
L0(L+ F̃ ) = I −

(
K0 HK12

K21 K22

)
+

(
0 0

C0F11 0

)
.

Using Theorem 2.1(i), Proposition 2.5(i) and Theorem 3.1 we obtain

(
0 0

C0F11 0

)
∈

Fb(X1 × X2), and so,

(
H 0
0 I

)
L0(L + F̃ ) ∈ Φb(X1 × X2), then there exist L1 ∈

L(X1×X2) and K̃ ∈ K(X1×X2) such that L1

(
H 0
0 I

)
L0(L+ F̃ ) = I− K̃, which

implies that F̃ ∈ F l
b(X1 ×X2).

(ii) We prove this assertion in the same way as in (i).

Remark 3.4. The following questions remain open:
(i) F ∈ Fb

+(X1 ×X2) if and only if Fij ∈ Fb
+(Xj , Xi), ∀i, j = 1, 2.

(ii) F ∈ Fb
−(X1 ×X2) if and only if Fij ∈ Fb

−(Xj , Xi), ∀i, j = 1, 2.

4. The M-essential spectra of 2× 2 matrix operator

The purpose of this section is to discuss the M -essential spectra of the 2× 2 matrix
operator L, closure of L0 that acts on the Banach space X×Y whereM is a bounded
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operator formally defined on the product space X × Y by a matrix

M =

(
M1 M2

M3 M4

)
and L0 is given by

L0 =

(
A B
C D

)
.

The operator A acts on X and has the domain D(A), D is defined on D(D) and acts
on the Banach space Y, and the intertwining operator B (resp. C) is defined on the
domain D(B) (resp. D(C)) and acts on X (resp. on Y ).

In what follows, we will assume that the following conditions hold:

(H1) A is a closed, densely defined linear operator on X with nonempty M1-resolvent
set ρM1(A).

(H2) The operator B is densely defined linear operator on X and for some (hence
for all) µ ∈ ρM1

(A), the operator (A − µM1)
−1B is closable. (In particular, if B is

closable then (A− µM1)
−1B is closable).

(H3) The operator C satisfies D(A) ⊂ D(C), and for some (hence for all) µ ∈ ρM1(A),
the operator C(A− µM1)

−1 is bounded.

(H4) The lineal D(B)∩D(D) is dense in Y , and for some (hence for all) µ ∈ ρM1
(A),

the operator D − C(A− µM1)
−1B is closable, we will denote by S(µ) the closure of

the operator D − (C − µM3)(A− µM1)
−1(B − µM2).

Remark 4.1. (i) It follows from the closed graph theorem that the operator G(µ) :=
(A− µM1)−1(B − µM2) is bounded on Y .

(ii) We emphasize that neither the domain of S(µ) nor the property of being closable
depend on µ. Indeed, consider λ, µ ∈ ρM1

(A), then we have:

S(λ)− S(µ) = (λ− µ) [M3G(µ) + F (λ)M2 + F (λ)M1G(µ)] , (4.1)

where F (λ) = (C − λM3)(A − λM1)
−1. Since the operators F (λ) and G(µ) are

bounded, then the difference S(λ)− S(µ) is bounded. Therefore neither the domain
of S(µ) nor the property of being closable depend on µ.

We recall the following result established in [8] which describes the closure of the
operator L0.

Theorem 4.1. [8] Let conditions (H1)−(H3) be satisfied and the lineal D(B)∩D(D)
be dense in X. Then the operator L0 is closable if and only if the operator D−C(A−
µM1)

−1B is closable in X, for some µ ∈ ϱM1
(A). Moreover, the closure L of L0 is

given by
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L = µM +

(
I 0

F (µ) I

)(
A− µM1 0

0 S(µ)− µM4

)(
I G(µ)
0 I

)
. (4.2)

Lemma 4.1. (i) If M3 ∈ Fb(X,Y ) and F (λ) ∈ Fb(X,Y ), for some λ ∈ ρM1
(A),

then F (λ) ∈ Fb(X,Y ) for all λ ∈ ρM1
(A).

(ii) If M2 ∈ Fb(Y,X) and if G(λ) ∈ Fb(Y,X), for some λ ∈ ρM1(A), then G(λ) ∈
Fb(Y,X) for all λ ∈ ρM1(A).

(iii) If F (λ), G(λ), M2 and M3 are Fredholm perturbations, for some λ ∈ ρM1
(A),

then σei,M4
(S(λ)) does not depend on λ ∈ ρM1

(A), for i = 1, ..., 6.

Proof. (i) The result follows from the identity

F (λ)− F (µ) = (λ− µ)
[
F (λ)M1 −M3

]
(A− µM1)

−1, for all λ and µ ∈ ρM1(A).

(ii) The result follows from the identity

G(λ)−G(µ) = (λ− µ)(A− λM1)
−1

[
M1G(µ)−M2

]
, for all λ and µ ∈ ρM1(A).

(iii) The result of this assertion follows from Eq. (4.1). In the sequel, we will

denote the complement of a subset Ω ⊂ C by CΩ.

Theorem 4.2. Let L0 be the 2×2 matrix operator satisfying conditions (H1)− (H4).
If M2 and M3 are Fredholm perturbations and if for some (hence for all) µ ∈ ρM1(A),
F (µ) and G(µ) are Fredholm perturbations, then

σe4,M (L) = σe4,M1
(A) ∪ σe4,M4

(S(µ)).

and
σe5,M (L) ⊆ σe5,M1

(A) ∪ σe5,M4
(S(µ)).

Moreover, if Cσe4,M1(A) is connected, then

σe5,M (L) = σe5,M1(A) ∪ σe5,M4(S(µ)).

If in addition, Cσe5,M (L) is connected, ρM (L) ̸= ∅, Cσe5,M4(S(µ)) is connected and
ρM4(S(µ)) ̸= ∅, then

σe6,M (L) = σe6,M1
(A) ∪ σe6,M4

(S(µ)).

Proof. Let µ ∈ ρM1
(A) be such that the operators F (µ) and G(µ) are Fredholm

perturbations and set λ ∈ C. While writing λM − L = µM − L + (λ − µ)M , using
the relation (4.2) we have

λM − L = UV (λ)W − (λ− µ)

(
0 M1G(µ)−M2

F (µ)M1 −M3 F (µ)M1G(µ)

)
(4.3)
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where U=

(
I 0

F (µ) I

)
,W =

(
I G(µ)
0 I

)
and V (λ)=

(
λM1 −A 0

0 λM4 − S(µ)

)
.

Since the operators F (µ), G(µ), M2 and M3 are Fredholm perturbations, then by
Theorem 3.1 the second operator in the right hand side of Eq.(4.3) is a Fredholm per-
turbation. So λM − L is a Fredholm operator if and only if UV (λ)W is a Fredholm
operator. Now, observe that the operators U and W are bounded and have bounded
inverse, hence the operator UV (λ)W is a Fredholm operator if and only if V (λ) has
this property if and only if λM1 −A (resp. λM4 − S(µ) ) is a Fredholm operator on
X (resp. on Y ) and

i(λM − L) = i(λM1 −A) + i(λM4 − S(µ)). (4.4)

Therefore,
σe4,M (L) = σe4,M1(A) ∪ σe4,M4(S(µ))

and
σe5,M (L) ⊆ σe5,M1

(A) ∪ σe5,M4
(S(µ)). (4.5)

Suppose now that Cσe4,M1
(A) is connected. By assumption (H1), ρM1

(A) is not
empty. Let α ∈ ρM1

(A), then, αM1 − A ∈ Φ(X) and i(αM1 − A) = 0. Since
ρM1(A) ⊆ ρ4,M1(A) and by Proposition 2.1, i(λM1−A) is constant on any component
of ΦM1,A, then i(λM1 − A) = 0 for all λ ∈ ρ4,M1(A). It follows, immediately, from
Eqs (4.4) and (4.5) that

σe5,M (L) = σe5,M1(A) ∪ σe5,M4(S(µ)). (4.6)

Assume further, that Cσe5,M1
(A) is connected. Then, by Lemma 2.1 in [15] and using

Eq. 4.6 we have
σe6,M (L) = σe6,M1(A) ∪ σe6,M4(S(µ)).

In the sequel we will denote, for µ ∈ ϱM1
(A), by M(µ) the following operator

M(µ) =

(
0 M1G(µ)−M2

F (µ)M1 −M3 F (µ)M1G(µ)

)
.

Theorem 4.3. (i) If the operator M(µ) ∈ F+(X × Y ) for some µ ∈ ρM1
(A), then

σe1,M (L) = σe1,M1
(A) ∪ σe1,M4

(S(µ)).

(ii) If the operator M(µ) ∈ F−(X × Y ) for some µ ∈ ρM1(A), then

σe2,M (L) = σe2,M1(A) ∪ σe2,M4(S(µ)).

(iii) If M(µ) ∈ F+(X × Y ) ∩ F−(X × Y ) for some µ ∈ ρM1
(A), then

σe3,M (L) = σe3,M1
(A) ∪ σe3,M4

(S(µ)) ∪ [σe2,M1
(A) ∪ σe1,M4

(S(µ))]

∪[σe1,M1
(A) ∪ σe2,M4

(S(µ))].

Proof. The assertions (i) and (ii) follow immediately from Eq. (4.3).
The assertion (iii) is an immediate consequence of (i) and (ii).

Remark 4.2. Theorems (4.2) and (4.3) generalize the Theorem (3.2) in [16].
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5. Application to two-group transport operators

The aim of this section is to apply the obtained results to study the M -essential
spectra of a class of linear two-group transport operators on Lp-spaces, 1 ≤ p < ∞,
with abstract boundary conditions.

Let
Xp := Lp((−a, a)× (−1, 1); dxdv), a > 0, 1 ≤ p <∞.

We consider the following two-group transport operators with abstract boundary
conditions:

AH = TH +K

where

THψ =

(
TH1 0
0 TH2

)(
ψ1

ψ2

)
and

K =

(
K11 K12

K21 K22

)
with Kij , i, j = 1, 2, are bounded linear operators defined on Xp by

Kij : Xp −→ Xp

u −→ Kiju(x, v) =

∫ 1

−1

κij(x, v, v
′)u(x, v′)dv′

(5.1)

and the kernels κij : (−a, a)× (−1, 1)× (−1, 1) −→ R are assumed to be measurable.
Each operator THj

, j = 1, 2, is defined by
THj

: D(THj
) ⊂ Xp −→ Xp,

φ −→ (THj
φ)(x, v) = −v ∂φ

∂x
(x, v)− σj(v)φ(x, v),

D(THj ) = {φ ∈W such that φi = Hjφ
o},

where W is the space defined by

W = {φ ∈ Xp such that v
∂φ

∂x
∈ Xp}

and σj(.) ∈ L∞(−1, 1). φo, φi represent the outgoing and the incoming fluxes related
by the boundary operator Hj (”o” for the outgoing and ”i” for the incoming) and
given by 

φi(v) = φ(−a, v), v ∈ (0, 1),
φi(v) = φ(a, v), v ∈ (−1, 0),
φo(v) = φ(−a, v), v ∈ (−1, 0),
φo(v) = φ(a, v), v ∈ (0, 1).

We denote by Xo
p and Xi

p the following boundary spaces:
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Xo
p := Lp [{−a} × (−1, 0); |v|dv]× Lp [{a} × (0, 1); |v|dv] := Xo

1,p ×Xo
2,p

equipped with the norm

∥uo, Xo
p∥ :=

(
∥uo1, Xo

1,p∥p + ∥uo2, Xo
2,p∥p

) 1
p

=

[ ∫ 0

−1

|u(−a, v)|p|v|dv +
∫ 1

0

|u(a, v)|p|v|dv
] 1

p

,

and
Xi

p := Lp [{−a} × (0, 1); |v|dv]× Lp [{a} × (−1, 0); |v|dv] := Xi
1,p ×Xi

2,p

equipped with the norm

∥ui, Xi
p∥ :=

(
∥ui1, Xi

1,p∥p + ∥ui2, Xi
2,p∥p

) 1
p

=

[ ∫ 1

0

|u(−a, v)|p|v|dv +
∫ 0

−1

|u(a, v)|p|v|dv
] 1

p

.

It is well known that any function u in W possesses traces on the spacial boundary
{−a} × (−1, 0) and {a} × (0, 1) which respectively belong to the spaces Xo

p and Xi
p

(see, for instance, [7] or [11]). they are denoted, respectively, by uo and ui.

It is clear that the operator AH is defined on D(TH1
) × D(TH2

). We will denote
the operator AH by

AH :=

(
A11 A12

A21 A22

)
,

where 
A11 = TH1

+K11,
A12 = K12,
A21 = K21,
A22 = TH2 +K22.

The object of this part is to determine the M -essential spectra of the operator AH

where M is the following operator

M =

(
M1 M2

M3 M4

)
with Mi, i = 1, 4 are defined by{

Mi : Xp −→ Xp

φ −→ (Miφ)(x, v) = ηi(v)φ(x, v)

where ηi(.) ∈ L∞(−1, 1) and M2,M3 are in F(Xp).

To verify the hypotheses of Theorem 4.2, we shall first determine the expression of the
M1-resolvent of the operator TH1 . Let φ ∈ Xp, λ ∈ C and consider the M1-resolvent
equation for TH1

(λM1 − TH1
)ψ1 = φ, (5.2)

where the unknown ψ1 must be in D(TH1
). Let

λ∗j = ess-inf σj(v), j = 1, 2;
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µ∗
j = ess-inf ηj(v), j = 1, 2;

we suppose that µ∗
j > 0, j = 1, 2 and let

λj0 :=


−λ∗j , if ∥Hj∥ ≤ 1

−
λ∗j
µ∗
j

+
1

2aµ∗
j

log(∥Hj∥), if ∥Hj∥ > 1.

Therefore, for λ ∈ C such that µ∗
1Reλ+ λ∗1 > 0, the solution of Eq. (5.2) is formally

given by

ψ1(x, v) =



ψ1(−a, v)e−
(λη1(v)+σ1(v))|a+x|

|v|

+
1

|v|

∫ x

−a

e−
(λη1(v)+σ1(v))|x−x′|

|v| φ(x′, v)dx′, 0 < v < 1,

ψ1(a, v)e
− (λη1(v)+σ1(v))|a−x|

|v|

+
1

|v|

∫ a

x

e−
(λη1(v)+σ1(v))|x−x′|

|v| φ(x′, v)dx′, −1 < v < 0.

(5.3)

Accordingly, ψ1(a, v) and ψ1(−a, v) are given by

ψ1(a, v) = ψ1(−a, v)e−2a
(λη1(v)+σ1(v))

|v|

+
1

|v|

∫ a

−a

e−
(λη1(v)+σ1(v))|a−x|

|v| φ(x, v)dx, 0 < v < 1, (5.4)

ψ1(−a, v) = ψ1(a, v)e
−2a

(λη1(v)+σ1(v))

|v| (5.5)

+
1

|v|

∫ a

−a

e−
(λη1(v)+σ1(v))|a+x|

|v| φ(x, v)dx, −1 < v < 0. (5.6)

For the clarity of our subsequent analysis, we introduce the following bounded
operators:

Mλ : Xi
p → Xo

p , Mλu := (M+
λ u,M

−
λ u) with

M+
λ u(−a, v) := u(−a, v)e−2a

(λη1(v)+σ1(v))

|v| , 0 < v < 1,

M−
λ u(a, v) := u(a, v)e−2a

(λη1(v)+σ1(v))

|v| , −1 < v < 0,


Bλ : Xi

p → Xp, Bλu := χ(−1, 0)(v)B−
λ u+ χ(0, 1)(v)B+

λ u) with

B+
λ u(x, v) := u(−a, v)e−

(λη1(v)+σ1(v))|a+x|
|v| , 0 < v < 1,

B−
λ u(x, v) := u(a, v)e−

(λη1(v)+σ1(v))|a−x|
|v| , −1 < v < 0,

Gλ : Xp → Xo
p , Gλφ := (G+

λφ,G
−
λ φ) with

G+
λφ(−a, v) :=

1
|v|

∫ a

−a
e−

(λη1(v)+σ1(v))|a−x|
|v| φ(x, v)dx, 0 < v < 1,

G−
λ φ(a, v) :=

1
|v|

∫ a

−a
e−

(λη1(v)+σ1(v))|a+x|
|v| φ(x, v)dx, −1 < v < 0,
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and finally, we consider


Cλ : Xp → Xp, Cλφ := χ(−1, 0)C−

λ φ+ χ(0, 1)C+
λ φ with

C+
λ φ(x, v) :=

1
|v|

∫ x

−a
e−

(λη1(v)+σ1(v))|x−x′|
|v| φ(x′, v)dx′, 0 < v < 1,

C−
λ φ(x, v) :=

1
|v|

∫ a

x
e−

(λη1(v)+σ1(v))|x−x′|
|v| φ(x′, v)dx′, −1 < v < 0,

where χ(0,1)(.) and χ(−1,0)(.) denote the characteristic functions of the intervals (−1, 0)
and (0, 1), , respectively. The operators Mλ, Bλ, Gλ and Cλ are bounded by :
e−2aµ∗Reλ, (pµ∗Reλ)−1/p, (µ∗Reλ)−1/q, respectively, where q denotes the conjugate
of p and (µ∗Reλ)−1.

Lemma 5.1. (i) If κij(x, v, v
′) defines a regular operator, then (λM1−TH1

)−1Kij is
compact on Xp, for 1 < p <∞ and weakly compact on X1, i, j = 1, 2.
(ii) If κij(x, v, v

′)/|v′| defines a regular operator, then Kij(λM1 − TH1
)−1 is weakly

compact on X1, i, j = 1, 2.

Proof. (i) This assertion was proved in [15].
(ii) The proof of this assertion is a straightforward adaption from Lemma 4.2 in
[16].

Theorem 5.1. If κ21(x, v, v
′) (resp. κ21(x, v, v

′)/|v′|) defines a regular operator, then
the operators F (λ) := (K21−λM3)(A11−λM1)

−1 and G(λ) := (A11−λM1)
−1(K12−

λM2) are Fredholm perturbations on Xp, 1 ≤ p <∞.

Proof. It follows from Remark 3.1.(ii) in [15] that there exists λ ∈ ρM1
(TH1

) such
that
rσ

(
(TH1 − λM1)

−1K11

)
< 1. For such λ, the equation

(K11 + TH1
− λM1)φ = ψ

may be transformed into(
(TH1

− λM1)
−1K11 − I

)
φ = (TH1

− λM1)
−1ψ.

Then, by the fact that rσ
(
(TH1

− λM1)
−1K11

)
< 1, we obtain

(A11 − λM1)
−1 =

∑
n≥0

[(TH1
− λM1)

−1K11]
n(TH1

− λM1)
−1.

So,

F (λ) = K21

∑
n≥0

[
(TH1

− λM1)
−1K11

]n
(TH1

− λM1)
−1 − λM3(A11 − λM1)

−1.
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Since M3 ∈ F(Xp) and the use of Lemma 5.1 allows us to conclude that F (λ) ∈
F(Xp).
The same reasoning allows us to prove that G(λ) ∈ F(Xp).

Now, we are ready to express the M -essential spectra of two-group transport
operators with general boundary conditions.

Theorem 5.2. If the operators Hj ∈ F(Xp), j = 1, 2, 1 ≤ p <∞ and the operators
K11, K22, K12 are regular and if in addition κ21(x, v, v

′) (resp. κ21(x, v, v
′)/|v′|)

defines a regular operator on Xp, for 1 < p <∞ (resp. on X1), then
σei,M (AH) = {λ ∈ C such that Reλ ≤ −min(λ∗1, λ∗2)}, for i = 1, ..., 6.

Proof. Let λ ∈ ρM1
(TH1

) such that rσ(λM1 − TH1
)K11 < 1, then

(λM1 −A11)
−1 − (λM1 − TH1

)−1 =
∑
n≥1

[(λM1 − TH1
)−1K11]

n(λM1 − TH1
)−1.

Since K11 is regular, then it follows from Lemma 5.1 that the operator (λM1 −
A11)

−1 − (λM1 − TH1
)−1 is compact on Xp, for 1 < p < ∞ and weakly compact on

X1, the use of [15, Theorem 3.3] leads to

σei,M1
(A11) = σei,M1

(TH1
) =

{
λ ∈ C such that Reλ ≤ −λ

∗
1

µ∗
1

}
, i = 1, ..., 6. (5.7)

Let µ ∈ ρM1(A11). The operator S(µ) is given by

S(µ) = A22 −K21G(µ).

By Lemma 5.1, The operator K21G(µ) is compact on Xp, for 1 < p < ∞, and
weakly compact on X1, then it follows from Proposition 2.2 that σei,M4

(S(µ)) =
σei,M4

(A22), i = 1, ..., 6. By the same reasoning, we have

σei,M4
(S(µ)) = σei,M1

(A22) =

{
λ ∈ C such that Reλ ≤ −λ

∗
2

µ∗
2

}
, i = 1, ..., 6. (5.8)

Applying Theorem 4.2 and using Eqs (5.7) and (5.8), we get

σei,M (AH) =

{
λ ∈ C such that Reλ ≤ −min

(
λ∗1
µ∗
1

,
λ∗2
µ∗
2

)}
, i = 1, ..., 6.
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