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1. Preliminaries

The multivariate calculus presents a natural extension of the concepts of the one-
dimensional calculus to real spaces of n dimensions. In itself the multi- variate cal-
culus is a particular expression of the most beautiful results of the analysis of several
variables that have their climax in surface integration and that flaunt elegant coher-
ence of the treatment of the theory of differential forms that summarize the simplicity
and power of its physical applications. That’s why from the point of view purely theo-
retical the multivariate calculus is the introduction to the analysis of several variables
from a context particular; from the application point of view, his appearances are
innumerable as a powerful tool resolutive in problems in applied sciences. Thus, the
calculus in several variables provides pure and applied researchers with the necessary
knowledge to operate and apply mathematical functions with real variables in the
approach and solution of practical situations. The partial derivative, is considered
a fundamental axis for the approach and development of concepts that allow us to
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understand and assimilate knowledge from almost all areas of applied science. Re-
garding the concept of multiple integration, reaches an interrelation with other areas
of knowledge, especially physics, to finally to address general research topics, whether
pure or applied. If we add to all the above the fact that the local fractional calculus
has a very short development (conformable since 2014, [6], and non-conformable since
last year, see [5] and [8]) we realize that a work where the fundamental foundations
of the local fractional calculus can be established of several variables is necessary.
Some results to the conformable case can be consulted in [3]. In this work we estab-
lish the first results to formalize the theoretical “corpus” necessary to develop this
new mathematical branch and we extend the Second Method of Lyapunov to the
non-conformable local fractional case of several variables.

2. Non-conformable partial derivative

Definition 1. Given a real valued function f : Rn → R and −→a = (a1, . . . , an) ∈ Rn a
point whose ith component is positive. Then the non conformable partial N -derivative
of f of order α in the point −→a = (a1, . . . , an) is defined by

Nα
xif(−→a ) = lim

ε→0

f(a1, .., ai + εea
−α
i , . . . , an)− f(a1, . . . , an))

ε
(1)

if it exists, is denoted Nα
xif(−→a ), and called the ith non-conformable partial derivative

of f of the order α ∈ (0, 1] at −→a .

Remark 2. If a real valued function f with n variables has all non-conformable
partial derivatives of the order α ∈ (0, 1] at −→a , each ai > 0, then the non-conformable
α-gradient of f of the order α ∈ (0, 1] at −→a is

∇αNf(−→a ) = (Nα
x1
f(−→a ), . . . , Nα

xnf(−→a )). (2)

3. Applications of the Non-conformable Mean Value
Theorem to the Multivariable Fractional Calculus

In this section, we will introduce the conformable version of two important properties
of the classical partial derivative of the functions of several variables, [2]. Using the
Non-conformable Mean Value Theorem, these results will be proven.

Theorem 3. (Function with a nonconformable partial zero derivative). Let α ∈ (0, 1],
f : X → R be a real valued function defined in an open and convex set X ⊂ Rn, such
that for all −→x = (x1, . . . , xn) ∈ X, each xi > 0. If the non-conformable partial

derivative of f with respect to xi, exist and is null on X, then f(−→x ) = f(
−→
x′ ) for any

points −→x = (x1, . . . , xi, . . . , xn),
−→
x′ = (x′1, . . . , x

′
i, . . . , x

′
n) ∈ X, i.e., the function f

does not depend on the variable xi.
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Proof. Since X is a convex set and

−→x = (x1, . . . , xi, . . . , xn),
−→
x′ = (x′1, . . . , x

′
i, . . . , x

′
n) ∈ X,

all points of the line segment [−→x ,
−→
x′ ] are also in X, so the function g is defined

in the interval of endpoints xi and x′i by g(t) = f(x1, . . . , xi−1, t, xi+1, . . . ., xn). This
function is N -differentiable on above interval and its derivative at a point t, is given
by Nα

3 g(t) = Nα
xif(x1, . . . , t, . . . , xn) Therefore, applying Theorem 2.7, [6], there is

a point ci between xi and x′i, such that g(x′i) − g(xi) =
(x′i−xi)

ec
−α
i

Nα
3 g(ci), since point

c = (x1, . . . , ci, . . . , xn) ∈ X and therefore Nα
xif(−→c ) = 0, the above equality leads to

f(
−→
x′ )− f(−→x ) =

(x′i−xi)

ec
−α
i

Nα
xif(−→c ) = 0 then f(−→x ) = f(

−→
x′ ), as we wanted to prove.

Now, we establish a first formula of finite increments for real valued functions of
several variables, involving non-conformable partial derivatives.

Theorem 4. Let −→a = (a1, a2, . . . , an),
−→
b = (b1, b2, . . . , bn) ∈ Rn, x0, x1, . . . , xn be

points −→xi = (b1, . . . , bi, ai+1, . . . ., an) (note that −→x0 = −→a and −→xn =
−→
b ) and line

segment Si = [−−→xi−1,−→xi ], for i = 1, 2, . . . , n. Let α ∈ (0, 1] and f : X → R be a real
valued function defined in an open set X ⊂ Rn containing line segments S1, S2, . . . , Sn,
such that for all −→x = (x1, . . . , xn) ∈ X, each xi > 0. If the non-conformable partial
derivative of f with respect to xi, exist on X, then there is a point ci between ai and
bi, for i = 1, 2, . . . , n, such that

f(b1, b2, . . . bn)− f(a1, a2, . . . , an) =
=
∑n
i=1 ((bi − ai) 1

ec
−α
i

)Nα
xif(b1, . . . , bi−1, ci, ai+1. . . , an).

}
(3)

Proof. First, we will express the difference f(
−→
b )− f(−→a ) as follows

f(
−→
b )− f(−→a ) = f(−→xn)− f(−−−→xn−1) =

n∑
i=1

[f(−→xi)− f(−−→xi−1)] (4)

Consider now, for i = 1, 2, . . . , n, the real function gi of the real variable t, defined
on the closed interval of endpoints ai and bi, by

g(t) = f(x1, . . . , xi−1, t, xi+1, . . . , xn).

Since the non-conformable partial derivative of f with respect to xi, exist on X and
Si ⊂ X, then gi is N -differentiable on above interval and its derivative at a point
t, is given by Nα

3 g(t) = Nα
xif(x1, . . . , t, . . . , xn). Therefore, applying Theorem 2.7,

[6], there is a point ci between ai and bi, such that gi(bi)− gi(ai) = (bi−ai)

ec
−α
i

Nα
3 gi(ci).

Then it is verified

f(−→xi)− f(−−→xi−1) =
(bi − ai)
ec
−α
i

Nα
xif(b1, . . . , bi−1, ci, ai+1, . . . ., an).

Taking the above expression to equation (4), our result is followed.
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4. The Chain Rule

In [5] a version non-conformable of the classical chain rules is introduced as follows.

Theorem 5. Let α ∈ (0, 1], g N -differentiable at t > 0 and f differentiable at g(t)
then

Nα
3 (f ◦ g)(t) = f ′(g(t))Nα

3 g(t). (5)

Remark 6. Using the fact that differentiability implies N -differentiability and as-

suming g(t) > 0, equation (5) can be written Nα
3 (f ◦ g)(t) =

Nα3 f(g(t))

eg(t)−α
Nα

3 g(t).

Remark 7. Let f be a real valued function with n variables defined on an open set
D, such that for all (x1, . . . , xn) ∈ D, each xi > 0. The function f is said to be
Cα(D,R) if all its non-conformable partial derivatives exist and are continuous on D.

We now show the chain rule for the functions of several variables, in two parti-
cular cases that are important in themselves. In the proof we will use the additional
hypothesis of the continuity of non-conformable partial derivatives.

Theorem 8. (Chain Rule). Let α ∈ (0, 1], t ∈ R and −→x = (x1, . . . , xn) ∈ Rn. If
−→
f (t) = (f1(t), . . . , fn(t)) is N -differentiable at a > 0 and a real valued function g
with n variables x1, . . . , xn, has all non-conformable partial derivatives of the order α

at
−→
f (a) ∈ Rn, each fi(a) > 0. Then the composition (g ◦ f) is N -differentiable at a

and

Nα
3 (g ◦ f)(t) =

n∑
i=1

Nα
xig(
−→
f (a))

efi(a)−α
Nα

3 fi(a). (6)

Proof. Assume g ∈ Cα(U(
−→
f (a)),R), where U(

−→
f (a)) is a neighborhood of the point

−→
f (a). Let h(t) = (g ◦

−→
f )(t) = g(

−→
f (t)). From Definition 2.1, [5], we have that

Nα
3 h(a) = lim

ε→0

(h(a+ εea
−α

)− h(a))

ε
= lim
ε→0

(g(f(a+ εea
−α

))− g(f(a)))

ε
. (7)

Without loss of generality we shall assume that U(
−→
f (a)) is an open ball,

B(
−→
f (a), r). Since

−→
f is a continuous function, then together with the points

(f1(a), . . . , fn(a)) and (f1(a + εea
−α

), . . . , fn(a + εea
−α

)), the points (f1(a), f2(a +

εea
−α

), . . . , fn(a+ εea
−α

), . . . , (f1(a), f2(a), . . . , fn(a+ εea
−α

)) and the lines connect-

ing them must also to the ball B(
−→
f (a), r). We shall use this fact, applying Theorem

2.7, [6]:
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(h(a+ εea
−α

)− h(a))

ε
=
g(
−→
f (a+ εea

−α
))− g(

−→
f (a))

ε
=

g(f1(a+ εea
−α

), .., fn(a+ εea
−α

))− g(f1(a), f2(a+ εea
−α

), .., fn(a+ εea
−α

))

ε
+

+ ...+
(g(f1(a), f2(a), .., fn(a+ εea

−α
))− g(f1(a), f2(a), .., fn(a+ εea

−α
))

ε
=

= Nα
x1
g(c1, f2(a+ εea

−α
). . . , fn(a+ εea

−α
))

1

ec
−α
1

f1(a+ εea
−α

)− f1(a)

ε
+ ...+

+Nα
xng(c1, c2. . . , fn(a+ εea

−α
))

1

ec
−α
n

fn(a+ εea
−α

)− fn(a)

ε

where ci is between fi(a) and fi(a+ εea
−α

) for all i = 1, 2, . . . , n. By taking limits as
ε → 0, using the continuity of non-conformable partial derivatives of g, and the fact
that ci → fi(a) for all i = 1, 2, . . . , n, formula (7) can be written

Nα
3 h(a) = lim

ε→0

(h(a+ εea
−α

)− h(a))

ε
= lim
ε→0

(g(
−→
f (a+ εea

−α
))− g(

−→
f (a)))

ε
=

= lim
ε→0

(Nα
x1
g(c1, f2(a+ εea

−α
), . . . , fn(a+ εea

−α
))
f1(a+ εea

−α
)− f1(a)

εec
−α
1

+

+Nα
x2
g(f1(a), c2, . . . , fn(a+ εea

−α
))
f2(a+ εea

−α
)− f2(a)

εec
−α
2

+ ...+

+Nα
xng(f1(a), f2(a), . . . , cn))

fn(a+ εea
−α

)− fn(a)

εec
−α
n

=

= Nα
x1
g(
−→
f (a))

1

ef1(a)−α
Nα

3 f1(a) +Nα
x2
g(
−→
f (a))

1

ef2(a)−α
Nα

3 f2(a) + ...+

+Nα
xng(
−→
f (a))

1

efn(a)−α
Nα

3 fn(a)

which completes the proof.

Remark 9. Also matrix form of equation (7) is given by the following

Nα
3 (g ◦

−→
f )(a) = (Nα

x1
g(
−→
f (a)), . . . , Nα

xng(
−→
f (a)))M(f, α)

Nα
3 f1(a)
...

Nα
3 fn(a)

 (8)

where M(f, α) =

 1

e(f1(a))−α ... 0

... ... ...
0 ... 1

e(fn(a))−α

 is the matrix corresponding to the

linear transformation from Rn to Rn defined by

Lαa (x1, . . . , xn) =

 1

e(f1(a))−α ... 0

... ... ...
0 ... 1

e(fn(a))−α


x1...
xn

 .
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Theorem 10. (Chain Rule). Let α ∈ (0, 1], −→x = (x1, . . . , xn) ∈ Rn and −→y =

(y1, . . . , ym) ∈ Rm. If
−→
f (x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)) is a vec-

tor valued function such that each fi has all non-conformable partial derivatives of
the order α at −→a = (a1, . . . , an) ∈ Rn, each ai > 0, and a real valued function g
with variables y1, . . . , ym has all non-conformable partial derivatives of the order α

at
−→
f (a) ∈ Rn, all fi(a) > 0. Then the composition g ◦

−→
f has all non-conformable

partial derivatives of the order α at −→a , which are given by

Nα
xi(g ◦

−→
f )(−→a ) =

m∑
j=1

Nα
yjg(
−→
f (−→a ))

1

e(fj(
−→
f ))−α

Nα
xifj(

−→a ) (9)

for all i = 1, 2, . . . , n.

Proof. From definition of non-conformable partial derivative and the Theorem above,
the result follows.

Remark 11. Also matrix form of equation (9) is given by the following

Nα
3 (g ◦

−→
f )(a) =

= (Nα
y1g(
−→
f (a)), . . . , Nα

ymg(
−→
f (a)))N(f, α)

Nα
3 f1(a) ... 0
... ... ...
0 ... Nα

3 fm(a)


 (10)

Nα
3 (g ◦

−→
f )(a) =

= (Nα
y1g(
−→
f (a)), . . . , Nα

ymg(
−→
f (a)))N(f, α)

Nα
3 f1(a) ... 0
... ... ...
0 ... Nα

3 fm(a)


 (11)

where N(f, α) =

 1

e(f1(a))−α ... 0

... ... ...
0 ... 1

e(fm(a))−α

 is the matrix corresponding to the

linear transformation from Rm to Rm defined by

Lαa (y1, . . . , ym) =

 1

e(f1(a))−α ... 0

... ... ...
0 ... 1

e(fm(a))−α


 y1

...
ym



and

Nα
3 f1(a) ... 0
... ... ...
0 ... Nα

3 fm(a)

 is the non-conformable Jacobian of
−→
f of order α

at −→a .
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5. Non-Conformable Implicit Function Theorem

In this section, a non-conformable version of classical Implicit Function Theorem
is obtained. The non-conformable implicit function result we prove concerns one
equation and several variables.

Theorem 12. Let α ∈ (0, 1], F : X → R be a real valued function defined in an open
set X ⊂ Rn+1, such that for all (x1, . . . , xn, y) ∈ X, each xi, y > 0, and the point
(a1, . . . , an, b) ∈ X. Suppose that

i) F (a1, . . . , an, b) = 0.

ii) F ∈ Cα(X,R).

iii) Nα
y F (a1, . . . , an, b) 6= 0.

Then there is a neighborhood, U ⊂ Rn, of (a1, . . . , an) such that there is a unique
function y = g(x1, . . . , xn) that satisfies

g(a1, . . . , an) = b, F (x1, . . . , xn, g(x1, . . . , xn)) = 0,∀(x1, . . . , xn) ∈ U.

Finally, y = g(x1, . . . , xn) is Cα in U, and for every i = 1, 2, . . . , n, we have

Nα
xig(x1, . . . , xn) = −

Nα
xiF (x1, . . . , xn, g(x1, . . . , xn))e(g(x1,. . . ,xn))

−α

Nα
y F (x1, . . . , xn, g(x1, . . . , xn))

. (12)

Proof. Without loss of generality we shall assume that X is an open ball,
B((a1, . . . , an, b), ε0). Let ρ ∈ (0, ε0). If we call δ =

√
(ε20 − ρ2) it is verified that

[‖(x1, . . . , xn)− (a1, . . . , an)‖ < δ and |y − b| < ρ] implies

(x1, . . . , xn, y)((a1, . . . , an, b), ε0).

Note that in particular if |y − b| < ρ then (a1, . . . , an, y) ∈ B((a1, . . . , an, b), ε0).
Since the function y = F (a1, . . . , an, y) is strictly monotone on (b − ε0, b + ε0) and
F (a1, . . . , an, b) = 0, it follows that F (a1, . . . , an, b−ρ) and F (a1, . . . , an, b+ρ) have a
different sign, [6] . Suppose that F (a1, . . . , an, b− ρ) < 0 and F (a1, . . . , an, b+ ρ) > 0
(the same would be reasoned in the opposite case). By the continuity of F at
(a1, . . . , an, b− ρ) and (a1, . . . , an, b+ ρ), there exists δ′ ∈ (0, δ) (that depends of ρ),
such that [‖(x1, . . . , xn)− (a1, . . . , an)‖ < δ′ implies [F (x1, . . . , xn, b − ρ) < 0 and
F (x1, . . . , xn, b + ρ) > 0]. Since, the function F (x1, . . . , xn, y) is continuous on the
interval [b − ρ, b + ρ], for all (x1, . . . , xn) ∈ B((a1, . . . , an), δ′), and using the clas-
sical Bolzano’s Theorem it follows that there exist some yx ∈ (b − ρ, b + ρ) such
that F (x1, . . . , xn, yx) = 0, for each x = (x1, . . . , xn). Furthermore, this value of
yx is unique, due to strict monotony of function F (x1, . . . , xn, y). In other words,
if we take U = B((a1, . . . , an), δ′), for each (x1, . . . , xn) ∈ U , there exists a unique
y = g(x1, . . . , xn) such that F (x1, . . . , xn, y) = 0. Now let’s prove that g we can write
y = g(x1, . . . , xn) is a continuous function on B((a1, . . . , an), δ′). The continuity of
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the function g at the point (a1, . . . , an) is obvious, since for each ρ > 0 there ex-
ists a value δ′ > 0 such that ‖(x1, . . . , xn)− (a1, . . . , an)‖ < δ′ implies |b− yx| < ρ
iff |b− g(x1, . . . , xn)| < ρ. To prove the continuity of the function g at any point
(x1, . . . , xn) ∈ B((a1, . . . , an), δ′), simply substitute B((a1, . . . , an), δ′) for an open
ball B((x1, . . . , x)) contained in B((a1, . . . , an), δ′). Finally, let’s show formula (11).
Applying Non-conformable Chain Rule, to the equation F (x1, . . . , xn, y) = 0, we have

Nα
xiF (−→x , g(−→x )) +Nα

y F (−→x , g(−→x ))
1

e(g(
−→x ))−α

)Nα
xig(−→x ) = 0 (13)

for all i = 1, 2, . . . , n, where −→x = (x1, . . . , xn). Solving from this equation Nα
xig(−→x ),

we obtain (11). Also the right side of formula (11) is continuous, the continuity of
the non-conformable partial derivatives Nα

xig(−→x ) for all i = 1, 2, . . . , n, follows.

We will now see how Theorem 5.1 can be used to compute the non-conformable
partial derivatives of implicit function of several variables.

Example 13. Consider the equation F (x, y, z) = x3+3y2+4xz2−3yz2−5 = 0 one so-
lution of this equation is (1, 1, 1). Clearly, F is Cα in an open ball, B((1, 1, 1), ε0), with

x, y, z > 0, for some α ∈ (0, 1]. Since Nα
z F (1, 1, 1) =

[
8xzez

−α − 6yzez
−α

)
]
(1,1,1)

=

2e 6= 0.
Tells us that there is a neighbourhood, U ⊂ R2, of (1, 1) such that there is a unique

function z = g(x, y) that satisfies g(1, 1) = 1 and F (x, y, g(x, y)) = 0,∀(x, y) ∈ U .
Moreover, z = g(x, y) is Cα in U and

Nα
x g(x, y) = − ((3x2 + 4z2)ex

−α
)

2(4x− 3y)z
, Nα

y g(x, y) = − (3(2y − z2)ey
−α

)

2(4x− 3y)z
.

Finally, we have Nα
x g(1, 1) = −7e/2 and Nα

y g(1, 1) = −3e/2.

6. An extension of the Second Method of Lyapunov

In the analysis of the stability of non-linear systems, the Second Method of Lyapunov
has demonstrated its strength for more than 125 years. The technique is also called
direct method because this method allows us to determine the stability and asymptotic
stability of a system without explicitly integrating the nonlinear differential equation
or system. Asymptotic stability is one of the stone areas of the qualitative theory
of dynamical systems and is of fundamental importance in many applications of the
theory in almost all fields where dynamical effects play a great role.
This method relies on the observation that asymptotic stability is very well linked
to the existence of some functions, called Lyapunov’s function, that is, a positive
definite function, vanishing only on an invariant region and decreasing along those
trajectories of the system not evolving in the invariant region. Lyapunov proved that
the existence of a Lyapunov’s function guarantees asymptotic stability and, for linear
time-invariant systems, also showed the converse statement that asymptotic stability
implies the existence of a Lyapunov’s function in the region of stability.
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In the case of non-linear autonomous systems, there are innumerable results and
refinements. If we consider non-autonomous systems, the results are more complex
and we must add additional conditions. It is therefore natural to ask whether the
Second Method of Lyapunov can be extended to the case of non-integer derivatives.
In the case of the global fractional derivatives (the classical ones) these extensions
are far from being obtained, additional conditions must be imposed since the non-
existence of a Chain Rule, makes it impossible to obtain the derivative of the Lyapunov
Function along the solutions of the system considered, reason why different variants
must be handled (in particular inequalities) that make possible the obtaining of similar
results (see [4] for example).
In [7] we studied the stability of the Fractional Liénard Equation with derivative
Caputo and, as we said, since the Chain Rule was not valid, the difficulties that we
had to overcome were several.
In [1] the results obtained with Caputo fractional derivatives and Caputo fractional
Dini derivatives of Lyapunov functions, are illustrated in examples. It is emphasized
that in some cases these techniques cannot be used. In this regard, it can also be
consulted [9].
We will show that if we consider local fractional derivatives, non-conformable in this
case, similar results to those obtained in the Second Method of Lyapunov can be
formulated in this framework. For this we consider the following equation:

Nα
3 (Nα

3 x) + a(t)g(x) = 0 (14)

a natural generalization of the known equation:

x′′ + a(t)g(x) = 0. (15)

The prototype of the above equation is the so-called Emden-Fowler equation,
which is used in mathematical physics, theoretical physics, and chemical physics.
This equation has interesting mathematical and physical properties, and it has been
investigated from various points of view, in particular, the solutions of this equation
represent the Newton-Poisson gravitational potential of stars, such as the Sun, con-
sidered as spheres filled with polytropic gas.
The coefficient a(t) is allowed to be negative for arbitrarily large values of t. Under
this premise, in general not every solution to the second order nonlinear differential
equation (14) is continuable throughout the entire half real axis. For this reason, and
being the prolongability a property of paramount importance, we show that under
natural conditions on the functions a(t) and g(x) of the equation (13), all the equa-
tions are continuables to the future.
Next to equation (13), we will consider the following equivalent system:

Nα
3 x(t) = y(t), Nα

3 y(t) = −a(t)g(x), (16)

with a ∈ C([0,+∞)), g ∈ C(R), xg(x) > 0 if x 6= 0 and G(x) =N3
Jα0 g(s).

Later the following functions will be used

b(t) = exp
{
−N3

Jα0

[
Nα3 a(s)+
a(s)

]
(t)
}
,

c(t) = exp
{
−N3

Jα0

[
Nα3 a(s)−
a(s)

]
(t)
}
.

 (17)
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So

a(t) = b(t)c(t), (18)

where b(t) is non-increasing and c(t) is non-decreasing function with Nα
3 a(t)+ =

max(Nα
3 a(t), 0) and Nα

3 a(t)− = max(−Nα
3 a(t), 0), so that Nα

3 a(t) = (Nα
3 a(t)+) −

(Nα
3 a(t)−). Thus we can enunciate our result.

Theorem 14. Under assumptions a ∈ C([0,+∞)), g ∈ C(R), xg(x) > 0 if x 6= 0,
let a a continuous and positive function on [0,+∞) satisfying

a(t)→∞, t→ +∞. (19)

Then all solutions of (15) can be defined fot all t ≥ t0 > 0.

Proof. We will develop an extension of Liapunov’s Second Method in this proof. For
this, we define the following functions.

W (t, x(t), y(t)) = b(t)V (t, x(t), y(t)) (20)

where b(t) is defined by (16) and V is given by

V (t, x(t), y(t)) =
y2

2a(t)
+G(x) (21)

where G is as before. Then along solutions of system (15), we have

Nα
3 W (t, x(t), y(t)) = V (t, x(t), y(t))Nα

3 b(t) + b(t)Nα
3 V (t, x(t), y(t))

and

Nα
3 V (t, x(t), y(t)) = −y

2

2

Nα
3 a(t)

a2(t)

Using (16), (17) and (18) we obtain

Nα
3 W (t, x(t), y(t)) ≤ 0 (22)

so W is non-increasing function. Suppose there is a non continuable solution of the
system (15), i.e., suppose there is a time T for some solution of system (15), satisfying
limt→T− |x(t)| = +∞. Now

b(T )

[
G(x) +

y2

2M

]
≤W (t, x(t), y(t)) ≤W (t0, x0, y0)

being M = maxt∈[t0,T ] a(t). From this we have |y(t)| is uniformly bounded, say
|y(t)| ≤ K for t0 ≤ t ≤ T . But Nα

3 x(t) = y(t) so |x(t)| ≤ x0 + K(T − t0). This
completes the proof.
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7. Epilogue

In this paper we have presented the first results related to the local non-conformable
Fractional Calculus of several variables, as a necessary tool to expand the applica-
tions of this new mathematical area. We want to highlight the importance of the
fundamentals presented here for the future development of this subject, both pure
and applied. In particular, the Rule of the Chain and the Implicit Function Theo-
rem, ensures that known results of the one-dimensional case can be extended in the
immediate future (Taylor series, analysis of differentiability and its relation to the
N -derivative, tangent plane, among others).
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DOI: 10.7862/rf.2020.6

Francisco Mart́ınez
email: f.martinez@upct.es

ORCID: 0000-0002-3733-1239
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