Journal of Mathematics
and Applications

vol. 42 (2019)

e-ISSN 2300-9926



Issued with the consent of the Rector

Editor—in—Chief
Publishing House of Rzeszéw University of Technology
Grzegorz OSTASZ

Open Access Journal of Mathematics and Applications (JMA) publishes
original research papers in the area of pure mathematics and its applications.

Two types of articles will be accepted for publication, namely research articles and review
articles. The authors are obligated to select the kind of their articles (research or review).
Manuscript, written in English and prepared using LaTeX, may be submitted
to the Editorial Office or one of the Editors or members of the Editorial Board.
Electronic submission of pdf file is required.

Detailed information for authors is given on the last page.

Editor-in—Chief
Journal of Mathematics and Applications
Jozef BANAS (Poland)

Editorial Committee (Subject editors)

Jarostaw GORNICKI (Poland)

(Functional Analysis and Fixed Point Theory)
Leszek OLSZOWY (Poland)
(Mathematical Analysis and Differential Equations Theory)
Dov Bronistaw WAJNRYB (Poland)

(Algebra and Topology)

Iwona WLOCH (Poland)

(Discrete Mathematics)

Statistical editor
Mariusz STARTEK (Poland)

Editorial assistant
Beata RZEPKA (Poland)

Members
Lucyna TROJNAR-SPELINA (Poland), Pawet WITOWICZ (Poland)
Matgorzata WOLOWIEC-MUSIAL (Poland)

Language editor
Johnny HENDERSON (USA)

Text prepared to print in LATEX
by Szymon Dudek and Rafal Nalepa

The printed version of JMA is an original version.

e-ISSN 2300-9926
p-ISSN 1733-6775

Publisher: Publishing House of Rzeszoéw University of Technology,
12 Powstancow Warszawy Ave., 35-959 Rzeszow (e-mail: oficyna@prz.edu.pl)
http://oficyna.prz.edu.pl/en/
Editorial Office: Rzeszow University of Technology, Faculty of Mathematics and Applied Physics, P.O. BOX 85
8 Powstancow Warszawy Ave., 35-959 Rzeszow (e-mail: jma@prz.edu.pl)
http://jma.prz.edu.pl/en/

Additional information and an imprint - p. 207



10.

11

Journal of Mathematics and Applications

vol. 42 (2019)

Table of contents

. A. Alahmari, M. Mabrouk, M.-A. Taoudi: Fized Point Theorems
for Monotone Mappings in Ordered Banach Spaces Under Weak Topology
Features ... ... 5

A. Auwalu, E. Hingal, L.N. Mishra: On Some Fized Point Theorems
for Ezxpansive Mappings in Dislocated Cone Metric Spaces with Banach
ALGEDTAS .o 21

B. Basti, Y. Arioua, N. Benhamidouche: FEzxistence and Uniqueness
of Solutions for Nonlinear Katugampola Fractional Differential Equations ..35

B. Belaidi: Fast Growing Solutions to Linear Differential Equations

with Entire Coefficients Having the Same py-order ........................ 63
S. Qakan, Y. Yilmaz: A Generalization of the Hahn-Banach Theorem

in Seminormed Quasilinear SPACES ......... ... 79
W.G. El-Sayed, A.A.H. Abd El-Mowla: Nonincreasing Solutions

for Quadratic Integral Equations of Convolution Type ..................... 95
V.K. Jain: On the Mazimum Modulus of a Polynomial .................. 109

0. Karakurt, O.F. Temizer: The Ezistence of Monotonic Solutions
of a Class of Quadratic Integral Equations of Volterra Type ............... 117

A. Mir, A. Ahmad, A.H. Malik: Number of Zeros of a Polynomial
in a Specific Region with Restricted Coefficients ....................... ... 135

V. Romanuke: A Minimazx Approach to Mapping Partial Interval
Uncertainties into Point EStimates ............connennna... 147

. S. Ugar, N.Y. ézgﬁr: Finite Blaschke Products and Decomposition ....187



Journal of

Mathematics
and Applications

JMA No 42, pp 5-19 (2019)

Fixed Point Theorems for Monotone
Mappings in Ordered Banach Spaces
Under Weak Topology Features

Abdullah Alahmari, Mohamed Mabrouk and
Mohamed-Aziz Taoudi

ABSTRACT: We present several fixed point theorems for monotone
nonlinear operators in ordered Banach spaces. The main assumptions of
our results are formulated in terms of the weak topology. As an applica-
tion, we study the existence of solutions to a class of first-order vector-
valued ordinary differential equations. Our conclusions generalize many
well-known results.

AMS Subject Classification: 45N05, 47TH10.
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1. Introduction

Fixed point theory furnishes an effective and important tool for proving theoretical
as well as constructive existence for a variety of nonlinear problems arising from the
mathematical modelling of real world phenomena. The usual topological fixed point
methods (Schauder, Darbo, Sadovskii,...) are generally only suited to nonlinear
problems with continuity and compactness. However, many problems in theory and
applications have no compactness. Some attempts have been made to overcome this
difficulty by using the weak topology, see [2, 3, 6, 7, 8, 9, 10, 11, 14, 34]. The interest
of the weak topology is mainly due to the vital role played by weak compactness in
the theory of infinite dimensional linear spaces. In particular, a Banach space X is
reflexive if and only if the closed unit ball is weakly compact. Equally, fixed point
theorems using the weak topology (Schauder-Tychonov, Arino-Gautier-Penot,. . .) are

COPYRIGHT (© by Publishing House of Rzeszéw University of Technology
P.O. Box 85, 35-959 Rzeszéw, Poland
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generally only suited to nonlinear problems with weak (sequential) continuity and
weak compactness. In several situations, the weak (sequential) continuity could rise
several difficulties. For example, in L'-spaces, which are the most natural functional
settings of many real world problems in physics and population dynamics (notably
when the unknown is a density), only linear superposition (Nemytskii) operators are
weakly (sequentially) continuous [4]. To our knowledge, the first paper where the
weak topology was successfully applied to fixed point theorems without requiring the
weak continuity of the involved operators, was [29]. In the quoted paper, the authors
used the concepts of ws-compactness and ww-compactness instead of the (sequen-
tial) weak continuity. Such concepts proved to be more effective in many practical
situations especially when we work in nonreflexive Banach spaces. This fact was il-
lustrated by proving the existence of an integrable solution for a stationary nonlinear
problem arising in transport theory and kinetic of gas and in many other situations
[12, 13, 16, 20, 21, 22, 29, 30).

In the present paper, we provide a new general treatment of fixed point theory
of monotone mappings in ordered vector spaces. Specifically, we will show how weak
topology is successfully used in conjunction with the order in fixed point problems.
As the functional setting of many nonlinear problems arising from the mathematical
modeling of real world phenomena is usually an ordered vector space, our approach
gives an extremely powerful and direct tool to investigate the solvability of a large
class of evolution equations with lack of compactness. To illustrate our results, we
investigate the solvability of a class of first-order vector-valued ordinary differential
equations. Before proceeding to the detailed discussion, we recall some related defi-
nitions and auxiliary results. Let X be a Banach space and let P be a subset of X.
The set P is called an order cone if and only if:

(i) P is closed, nonempty and P # {0},
(ii)) a,b € R,a,b > 0,2,y € P = ax + by € P,
(i) ze Pand —zr € P= 2 =0.
An order cone permits to define a partial order in X by
r<yiffy—z € P.

Conversely, let X be a real Banach space with a partial order compatible with the
algebraic operations in X, that is,

x> 0and A > 0 implies Az > 0

z1 < y1 and z < yo implies x1 + x2 < Y1 + y2.

The positive cone of X is defined by

Xt={zeX: 0<x}.
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Definition 1.1.

(i) A subset M C X is said order bounded if there exist u,v € X such that
u<z<w, forall ze M.

(ii) The order cone P is called normal if and only if there is a number ¢ > 0 such
that for all z,y € X we have

0<z<y=|z[ <clyll (1.1)

The least positive number ¢ (if it exists) satisfying (1.1) is called a normal
constant.

Remark 1.2. If the cone P is normal, then every order interval is norm bounded
(see e.g. [23, Theorem 2.1.1]).

Remark 1.3. Let K be a compact Hausdorff space and E be an ordered Banach space
with normal positive cone. We denote by C(K, E) the Banach space of all continuous
E -valued functions on K endowed with the usual maximum norm. Plainly C(K, F)
is an ordered Banach space with the natural ordering whose positive cone is given by

CT(K,E)={f€C(K,E): f(z)€ ET,Vx € K}.
Since ET is normal so is CT (K, F).
The following definitions are frequently used in the sequel.

Definition 1.4. Let M C X. The operator T: M — X is said to be an increasing
operator if z,y € M, x < y implies Tz < Ty. The operator T: M — X is said to be
a decreasing operator if z,y € M, x <y implies Ty < Tz.

Definition 1.5. Let M be a nonempty closed subset of X. The operator T: M — X
is said to be monotone-subcontinuous if for any monotone sequence (increasing or
decreasing) (z,) in M that converges strongly to = the sequence (T'z,) converges
weakly to Tx.

The following elementary result serves as the key tool in the proof of more sophis-
ticated results.

Lemma 1.6. [26] Let X be an ordered real Banach space with a normal order cone.
Suppose that {x,} is a monotone sequence which has a subsequence {x,, } converging
weakly to Too. Then {x,} converges strongly to ... Moreover, if {x,} is an increa-
sing sequence, then x, < roo(n =1,2,3,...); if {xn} is a decreasing sequence, then
Too <y (n=1,2,3,...).

By aposet F' = (F, <) we mean a nonempty set F' equipped with a partial ordering
relation <.

Lemma 1.7. [25, Lemma 1.1.5] Let {x,} be a sequence in a poset F.
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(a) If {xn} is totally ordered, then it has a monotone subsequence.

(b) If {z,} is nondecreasing (resp. nonincreasing), then it has the supremum (resp.
the infimum) x if and only if x is the supremum (resp. the infimum) of some
of its subsequences.

Combining Lemma 1.6 and Lemma 1.7 we obtain the following interesting result.

Lemma 1.8. Let X be an ordered real Banach space with a mormal order cone.
Suppose that {x,} is a totally ordered sequence which is contained in a relatively
weakly compact set. Then {x,} converges strongly in X.

In what follows, ¢ will always denote a measure of weak noncompactness (MWNC)
on the Banach space X. We refer the reader to [5] for the axiomatic definition of a
measure of weak noncompactness. One of the most frequently exploited measure of
weak noncompactness was defined by De Blasi [15] as follows:

w(M) =inf{r > 0: there exists W weakly compact such that M C W + B, },

for each bounded subset M of X; Here, B, stands for the closed ball of X centered
at origin with radius r.

The following results are crucial for our purposes. We first state a theorem of Am-
brosetti type (see [31] for a proof).

Theorem 1.9. Let E be a Banach space and let H C C([0,T], E) be bounded and
equicontinuous. Then the map t — w(H(t)) is continuous on [0,T] and

w(H) = sup w(H(t)) =w(HI[0,T)),
t€[0,T]

where H(t) = {h(t): h € H} and H[0,T] = U;co r{h(t): h € H}.
The following Lemma is well-known (see for example [32]).

Lemma 1.10. If H C C([0,T),E) is equicontinuous and xo € C([0,T], E), then
co(H U {xo}) is also equicontinuous in C([0,T], E).

2. Fixed point results

In this section, we prove some fixed point theorems for monotone mappings in ordered
Banach spaces. Our results combine the advantages of the strong topology (i.e. the
involved mappings will be continuous (or subcontinuous) with respect to the strong
topology) with the advantages of the weak topology (i.e. the maps will satisfy some
compactness conditions relative to the weak topology) to draw new conclusions about
fixed points for a given monotone map.

Theorem 2.1. Let X be an ordered Banach space with a normal cone P. Let ug, vy €
X with ug < vg and A: [ug,vo] = X be a monotone-subcontinuous increasing operator
satisfying the following:
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Uup S AUO, A?)o S V0. (21)
If, in addition, A verifies

(P(ng)): There exists an integer ng > 1 such that: for any monotone sequence
V ={z,} of [uog,vo] and any finite subset F' of [ug,vo] of cardinal ny, we have:

V =FUA™ (V) implies V is relatively weakly compact.

Then, A has a minimal fized point u. and a mazimal fized point u* in [ug, vo] and
u, = lim w, and u* = lim v,, (2.2)
n—oo n—oo

where u, = Au,_1 and v, = Av,_1, n=1,2,...
g <up <-rup KUt << < <o L. (2.3)
Proof. Let u, = Au,_1 and v, = Av,_q for n > 1. Since A is increasing, then

up Sy < o Sy < vy <y <, (2.4)

Let S = {ug,u1,...,Unp,...}. Clearly, for any integer k > 1 we have
Ak(s) U {U‘O»ul, e 7uk71} = S.

From our hypotheses we know that S is relatively weakly compact. Referring to
Lemma 1.8, we see that {u,} is convergent. Let u, be its limit. The monotone-
subcontinuity of A yields Au, = u,. Similarly, we can prove that {v,} converges to
some u* and Au* = u*. Finally, we prove that u* and u, are the maximal and minimal
fixed points of A in [ug, vg]. Let = € [ug,vo] and Az = x. Since A is increasing, it
follows from ug < x < vy that Aug < Ax < Avg, i.e. up < z < vy. Using the same
argument, we get us < x < vy and, in general, u, < z < wv, (n =1,2,3,...). Now,
letting n go to infinity we get u, < x < u*. O

As a convenient specialization of Theorem 2.1, we state the following.

Corollary 2.2. Let X be an ordered Banach space with a normal cone P. Let
uo, V9 € X with ug < vy and A: [ug,vg] = X be a monotone-subcontinuous increasing
operator satisfying the following:

Ug S AUO, A’UO S Vo- (25)
If, in addition, A verifies
(P(1)): if V. = {z,} is a monotone sequence of [ug,vo] and a € [ug,vo], then
V ={a} UA(V) implies V is relatively weakly compact.

Then A has a minimal fized point u. and a mazimal fized point u* in [ug, vo] satisfying
(2.2) and (2.3).
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Proof. Apply Theorem 2.1 with ng = 1. O

Another consequence of Theorem 2.1 is the following. Recall that a measure
of weak noncompactness 1 on a Banach space X is said to be nonsingular if
(M U {a}) = (M) for every a € X and every nonempty bounded subset
M of X.

Corollary 2.3. Let X be an ordered Banach space with a normal cone P and v be
a nonsingular measure of weak noncompactness on X. Let ug,vg € X with ug < vy
and A: [ug,vo] = X be a monotone-subcontinuous increasing operator satisfying the
following:

(270} < AUQ, AUO < (B (26)

In addition, if for any Q = {u,} C [uo,v] countable and monotone with () # 0
we have

(A" (Q)) < 9(Q),

for some integer ng > 1. Then, A has a minimal fized point u, and a mazimal fized
point u* in [ug,vo] satisfying (2.2) and (2.3).

Proof. By virtue of Theorem 2.1, it suffices to show that (P(ng)) holds true. To
do this, let V' = {z,} be a monotone sequence of [ug,vo] and F be a finite subset of
[uo, vg] of cardinal ng such that V.= FUA" (V). Since P is normal then, according to
Remark 1.2, the order interval [ug, vg] is bounded. This implies that V' and A™ (V)
are bounded and we have (V) = ¢(F U A™(V)) = (A" (V)). Consequently, it
follows from our hypotheses that (V) = 0, which means that V is relatively weakly
compact. This achieves the proof.

O

Remark 2.4. Corollary 2.3 extends [23, Theorem 3.1.1].

Corollary 2.5. Let ug,vg € X with ug < vy and A: [ug,ve] — X be a monotone-
subcontinuous increasing operator satisfying (2.6). If P is normal and A™ ([ug, vol) is
relatively weakly compact for some integer ng > 1, then A has a minimal fized point
us and a mazximal fized point u* in [ug,vg] satisfying (2.2) and (2.5).

For later use, we consider the following condition.

A: P — P satisfies A%20 > ¢ A0 where 0 < € < 1,and for any
) €Af <z < Af and € <t < 1, there exists n = n(x,t) > 0, such that
A(tz) < (H(141n))"" Az.

We will need the following lemmas from [23].

Lemma 2.6. [23, Lemma 3.2.1] Let A: P — P be a decreasing operator satisfying
the condition (C). If u,v € P with Au=v and Av = u, then u = v.

Lemma 2.7. [23, Lemma 3.2.2] Let A: P — P be a decreasing operator satisfying
the condition (C). If u,v € P with Au=u and Av = v, then u = v.
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Theorem 2.8. Let X be an ordered Banach space with a mormal cone P. Let
A: P — P be a monotone-subcontinuous decreasing operator satisfying the conditions
(C) and (P(ng)) for some integer ng > 1. Then A has a unique fived point u* in P
and

uw* = lim u,, (2.7)
n—oo

where u, = Aup_1, n=1,2,...

Proof. Keeping in mind that A: P — P is decreasing we easily deduce that

O0=uy<up < - Sugy <o < ugpyr <o Sug = A6 (2.8)

Let S = {ug, u1,...,Un,...}. From (2.8) and the normality of P we infer that S
is bounded. Clearly, for any integer k > 1 we have

Ak(s) U {u07u1, PN 7Uk71} = S.

From our hypotheses we know that S is relatively weakly compact. This implies that
the increasing sequence {us,} has a weakly convergent subsequence. Referring to
Lemma 1.6, we see that {ug,} is convergent. Let u, be its limit. Similarly we can
prove that the sequence {ua,+1} converges to some u*. Taking the limit at the both
sides of ugp+1 = Aug, and ugpio = Aug,41 and using the monotone-subcontinuity
of A we get u, < u*, u* = Au, and u* = Au,. Invoking Lemma 2.6 we infer that
u* = u, is a fixed point of A. The uniqueness follows from Lemma 2.7. O

As a convenient specialization of Theorem 2.8 we obtain the following result.

Corollary 2.9. Let X be an ordered Banach space with a normal cone P and 1 be a
nonsingular measure of weak noncompactness on X. Let A: P — P be a monotone-
subcontinuous decreasing operator satisfying the condition (C). In addition, if for any
Q = {u,} C P countable and monotone with () # 0 we have

(A" () < 9(Q),

for some integer ng > 1, then A has a unique fized point u* in P and

u* = lm wu,, (2.9)

n—oo

where Uy, = Aup_1, n=1,2,...

Proof. In view of Theorem 2.8, it suffices to show that A verifies (P(ng)). The
reasoning in Corollary 2.3 yields the result. O

Remark 2.10. Theorem 2.8 and Corollary 2.9 extend [23, Theorem 3.2.1].
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3. Application to differential equations

We shall use the results in previous sections to get an existence theorem for a non-
linear ODE in a Banach space. The nonlinear term satisfies an appropriate condition
expressed in terms of the De Blasi measure of weak noncompactness. Let E be an
ordered Banach space with a normal cone P. We consider the following initial value
problem

u = f(t,u) on I, u(0) = uy, (3.1)

where I = [0,1], w € CY(I,E), f € C(I x E,E). A vector-valued function u: I — E
is said to be a solution of (3.1) on I if u(t) is continuously differentiable and satisfies
(3.1) on I.

In [18], Du and Lakshmikantham proved that if the problem (3.1) has a lower solution
vop and an upper solution wy with vy < wg, and the nonlinear term satisfies the
monotonicity condition

fty) — f(t,x) > —M(y — x) whenever vo(t) <z <y < wp(t) (3.2)

for some M > 0, and the compactness measure condition

a(f(t,V)) < Ta(V) (3.3)

for any t € I and any bounded subset V' of E, where 7 is a positive constant and
a(.) denotes the Kuratowski measure of noncompactness in E, then the problem (3.1)
has a minimal and a maximal solution between vy and wg, which can be obtained
by a monotone iterative procedure starting from vy and wg respectively. When E is
weakly sequentially complete, Y. Du [17] improved the result of [18] and removed the
condition (3.3).

Our aim in this section is to improve and extend the aforementioned results. We will
replace the noncompactness measure condition (3.3) by a weaker condition expressed
in terms of the De Blasi measure of weak noncompactness. From now on, we assume
the following:

(i) There exist vg,wg € C1(I, E) with vg(t) < wo(t) on I such that:
vo(t) < f(t,vo(t)), vo(0) < uo
wo(t) = (£ wo(t)), wo(0) = uo.

(ii) For some M > 0,

fty) — f(t,2) =2 =M (y — x) whenever v(t) <z <y < wo(t).
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(iii) There is a constant 7 > 0 such that for any equicontinuous monotone sequence
V = {un} of [vg, wo] and for any a,b € [0,1] with a < b we have

w(f([a,b] x V)) < Tw(V]a, b)),
where f([a,b] x V) :={f(s,2(s)), a < s < b, x €V}

Remark 3.1. Let g(s,2) = f(s,2)+Mzx. Then, for any monotone sequence V' = {u,, }
of [vg, wo] and for any a,b € [0,1] with a < b we have

w(g(la,b] x V)) < paw(Vla, b)), (3.4)

where p =7+ M.
Now, let t € [0,1] be fixed and let h(s,z) = e" M=) g(s, x), for s € [0,#] and = € E.
It is readily verified that

h([0,t] x V') C co(g([0,¢] x V)U{0}). (3.5)
Combining (3.4) and (3.5) we arrive at
w(h([0,t] x V)) < pw(V]0,t]), (3.6)
where h([0,t] x V) :={h(s,2(s)), 0< s <t, x €V}
Now, we are in a position to state our main result.

Theorem 3.2. Let assumptions (1)—(iii) be satisfied. Then the problem (3.1) has
a mazimal and a minimal solution between vy and wqy, which can be obtained by a
monotone iterative procedure starting from vg and wq respectively.

Proof. We consider the equivalent modified problem
w4+ Mu= f(t,u) + Muon I, u(0) = uo, (3.7)
which is equivalent to the problem
(eMtu)l = eME(f(t,u) + Mu) on I, u(0) = ug. (3.8)

Let us write (3.8) as an integral equation

u(t) = e Mty —|—A e ME=3) (£(s,u(s)) + Mu(s)) ds. (3.9)

Define the operator A on C(I, E) by

(Au)(t) = e~ Mg + /O e~ MU=9) (f(s,u(s)) + Mu(s))ds, t € I. (3.10)
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It is easy to check that a fixed point of A is a solution of (3.1). We will demonstrate
that A satisfies all the hypotheses of Theorem 2.1. It is apparent that A is continuous.
From Hypothesis (ii) we know that A is increasing on [vg,wp]. To illustrate that
vo < Avg, let k(t) = vj(t) + Muvo(t). Clearly, k € C(I,E) and k(t) < f(t,vo(t)) +
Muy(t), t € I. Keeping in mind the fact that (6Mtvo(t))/ = eMt(t), we deduce that
for all t € I we have:

eMty = v teMS s)ds
o(t) 0(0)+/0 k(s)d

< u0+/0 M3 (f(s,v0(8)) + Mug(s))ds.

Accordingly, vg < Awvg. Similarly, we can prove that Awy < wy. We claim that for
any integer k > 1 and any V C [ug, vo] the set A¥(V) is equicontinuous. Indeed, let
t,to € I with t < tg and u € [vg, wg]. Then,

t
[Au(t) — Aulto)|| < (e_Mt—e_Mt”)lluOIH/ (e M=) —em M=) (s, u(s))||ds
0

+ / llg(s, u(s)) | ds.

For any u € [vg, wg], by Assumption (ii), we have
9(s,v0(s)) < g(s,u(s)) < g(s, wo(s)).
By the normality of the cone P, there exists Cy, > 0 such that
lg(t, u(®)|| < Cg, u € [vo, wo]-

Accordingly,

t
[Aut) = Au(t)] < (M= M) ug]| 4 C, [ (e - Moy
0

+Cg (t() — t).

Consequently,
|Au(t) — Au(to)|| = 0 ast — 1,

uniformly with respect to u. Similarly, we get
| Au(t) — Au(to)|| — 0 ast — g,

uniformly with respect to u. This proves that A(V) is equicontinuous. Therefore, for
any integer k > 1 the set A¥(V) is equicontinuous.

Now, let V' C [vg, wp] and F be a finite subset of [vg, wo] such that V = A*(V)UF,
for some integer k > 1. Since A¥(V) is equicontinuous, then by invoking Lemma 1.10
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we conclude that V' is equicontinuous. Let h be as described in Remark 3.1, then for

each t € I, we have
t
w ({G—Mtu() +/ h(s,u(s))ds: u € V})
0

w(teo{h(s,u(s)): u € V, s € [0,¢]})
tw(co{h(s,u(s)): u eV, se€0,t})
tw(h([0,t] x V)

tpw(V]0,t]).

w(A(V)(1))

IN A

Theorem 1.9 implies (since V' is equicontinuous) that
w(AWV)(1)) < tpn(V). (3.11)
Using (3.11) we get

wA(V)(t) = w ({e_Mtu0+/Ot h(s,u(s))ds: u € A(V)})

w ({/Ot h(s,u(s))ds: u € A(V)}) . (3.12)

Fix ¢t € [0,1]. We divide the interval [0,t] into m parts 0 =t < t; < -+ < t,, =t in
such a way that At; =t; —t;_1 = £, i=1,...,m. For each u € A(V) we have

/Oth(s,u(s))ds - ilitilh(s,u(s))ds

€ iAti@{h(s,u(s)): ue AV), s € [ti—1,ti]}

C iAtiE(h([tiA,ti] x A(V)).
i=1

Using again Theorem 1.9 we infer that for each ¢ = 2,...,m there is a s; € [t;—1, ]
such that
sup ]w(A(V)(S)) = w(A(V)[ti-1,ti]) = w(A(V)(s:)). (3.13)
se tj,f],tj,
Consequently
t m
w({/ h(s,z(s))ds: ue A(V)} < ZAtiw(@(h([ti_l,ti] x A(V)))
0 i=1
< pY Atw((AV)([tio1, i)
i=1
<

“Z Atiw(AV)((s:))-
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On the other hand, if m — oo then

3" Atiw(AV)((s:)) — /0 w(A(V)(s))ds. (3.14)
=1

As a result,
w2 ) 0) < U, (3.15)
By induction we get
w(AM(V)(1)) < (“Tf,)nw(V). (3.16)

Invoking Theorem 1.9 we obtain

w(A™(V)) < —w(V). (3.17)

0

Since lim,,_, o % = 0, we may choose ng as large as we please such that ‘T‘LT < 1.

Now, let V' C [vg, wo] and F' be a finite subset of [vg, wp] such that V' = A™ (V)UF.
Then, w(V) = w(A™(V)UF) = w(A™(V)) < %w(V) Thus, w(V) = 0 and there-
fore V is relatively weakly compact. By applying Theorem 2.1 we infer that A has a
maximal and a minimal fixed points between vg and wg, which can be obtained by a
monotone iterative procedure starting from vy and wq respectively. This completes

the proof.

Remark 3.3. If F is weakly sequentially complete (reflexive, in particular), then the
condition (iii) in Theorem 3.2 holds automatically. In fact, according to [17, Theorem
2.2] any monotone order-bounded sequence is relatively compact. Thus, Theorem 3.2
greatly improves [17, Theorem 4.1] and [18, Theorem 3.1].
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ABSTRACT: In this paper, we introduced the notion of generalized
expansive mappings in dislocated cone metric spaces with Banach alge-
bras. Furthermore, we prove some fixed point theorems for generalized
expansive mappings in dislocated cone metric spaces with Banach alge-
bras without the assumption of normality of cones. Moreover, we give an
example to elucidate our result. Our results are significant extension and
generalizations of many recent results in the literature.
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1. Introduction

The concept of cone metric space was introduced by Huang and Zhang [9]. They
supplanted the set of real numbers in metric space by a complete normed space and
proved some fixed point results for different contractive conditions in such a space.
Later on, Liu and Xu [13] introduced the notion of cone metric space over Banach
algebras by supplanting the complete normed space in cone metric space with Banach
algebras and proved that cone metric space over Banach algebras are not equivalent
to metric space in terms of existence of the fixed points of mappings. Subsequently,
many authors established interesting and significant results in a cone metric space over
Banach algebras (see [20], [7], [8]). In 2017, George et al. [6] introduced the notion of
dislocated cone metric space over Banach algebras as a generalization of cone metric
space over Banach algebras and proved some fixed point results for Banach, Kannan

COPYRIGHT (© by Publishing House of Rzeszéw University of Technology
P.O. Box 85, 35-959 Rzeszéw, Poland
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and Perov type contractive conditions in such a space. Very recently, Jiang et al.
[11] introduced the concept of expansive mapping defined on cone metric space over
Banach algebras and proved some fixed point results for such mapping. In this work,
we use the concept of expansive mapping defined on dislocated cone metric space over
Banach algebras and prove some fixed point theorems. Our results unify, complement
and/or generalized the recent results of [11, 2, 10, 1, 3, 19], and many others, that will
be useful in dynamic programming and integral equation, (see; [4] - [15] and references
therein).

2. Preliminaries

In this section, we recall some definitions and results needed in the sequel.

Definition 2.1. ([18]) A Banach algebra A is a real Banach space in which an ope-
ration of multiplication is defined subject to the following properties for all p, ¢, r € A,
AeR

L (pg)r = p(qr),
2. plg+r)=pg+pr and (p+q)r =pr+qr,
3. Apg) = (Ap)g = p(A9),
4. lpgll < lplllgll-
A subset K of a Banach algebra A is called a cone (see [13]) if

1. K is nonempty closed and {6,e} C K;

2. all + BK C K for all nonnegative real numbers «, 3;
3. K2 =KK C K;

4. KN (=K) = {6},

where 6 and e denote the zero and unit elements of the Banach algebra A, respectively.
For a given cone K C A, we write z < y if and only if y — z € K, where < is a partial
order relation defined on K. Also, z < y will stand for y — x € intK, where intkC
denotes the interior of K. If intkC # @ then K is called a solid cone.

Definition 2.2. ([6]) Let Z be a nonempty set. Suppose that p: Z x Z — A be a
mapping satisfying the following conditions:

(D7) 0 <5 p(z,y) forall z,y € Z and p(z,y) =0 = z =y;

(D2) p(2,y) = ply, 2) for all z,y € Z;

(Ds3) p(z,y) < p(z,2) + p(z,y) for all z,y,xz € Z.

Then p is called a dislocated cone metric on Z, and (Z, p) is called a dislocated cone
metric space over Banach algebra A.
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Remark 2.3. In a dislocated cone metric space (£, p), p(z, z) need not be zero for
z € Z. Hence every cone metric space over Banach algebras is a dislocated cone
metric space over Banach algebras, but the converse is not necessarily true. (see [6]).

Example 2.4. ([6]) Let A = {b = (bi,j)gxg : bi,j e R1 < 1,] < 3}, ||bH =
Di<ijeslbijl, K={b€A:b;; >0,1<4,j <3} beaconein A Let Z=R"U{0}.
Let a mapping p : Z x Z — A be define by

Z+y Z+Yy Z+y
plz,y) = 2242y 2242y 2z+2y|, forall z,y € Z.
3z4+3y 32z+3y 3z+3y

Then (Z, p) is a dislocated cone metric space over a Banach algebra .4 but not a cone
metric space over a Banach algebra A since

1 11
11
,0(2,2> = (2 2 2| #o.
3 3 3
Definition 2.5. ([6]) Let (Z,p) be a dislocated cone metric space over Banach

algebra A, z € Z and {2;} be a sequence in (Z, p). Then

1. {z;} converges to z whenever for each ¢ € A with § < ¢, there is a natural
number N such that p(z;,2) < ¢ for all i > N. We denote this by z; — z (i —
00).

2. {z;} is a Cauchy sequence whenever for each ¢ € A with § < ¢, there is a natural
number N such that p(z;,2;) < ¢ for all 7,5 > N.

3. (Z,p) is said to be complete if every Cauchy sequence in Z is convergent.

Definition 2.6. ([12]) Let K be a solid cone in a Banach algebra A. A sequence
{z;} C K is said to be a c-sequence if for each 6 < ¢, there exists N € N such that
z; < cforall i > N.

Lemma 2.7. ([18]) Let A be a Banach algebra with a unit e and T € A, then
lim, o0 ||7"]|™ exists and the spectral radius 6(7) satisfies

5(r) = Tim |l7"* =inf |l7"|* .

If 6(7) < 1, then (e — T) is invertible in A. Moreover,

(e—71)"' = ZTk,

k=0

and
1

1—6(1)
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Remark 2.8. ([20]). If §(7) < 1 then ||7%|| = 0 (i — o0).

Lemma 2.9. ([7]) If E is a real Banach space with a solid cone K and {z;} C K be
a sequence with ||z;|]] — 0 (i — 00), then for each § < ¢, there exists N € N such that
for any i > N, we have z; < c.

Lemma 2.10. ([6]) Let (Z, p) be a complete dislocated cone metric space over Banach
algebra A and K be the underlying solid cone. Let {z;} be a sequence in (Z,p). If
{z:} converges to z € Z, then

1. {p(z;,2)} is a c-sequence.
2. For any j € N, {p(2i, zi+)} is a c-sequence.

Lemma 2.11. ([12]) Let A be a real Banach algebra with a solid cone K and let
{an} and {8} be sequences in K. If {a,} and {B,} are c-sequences and ki, ke € K
then {kia, + kof3n} is also a c-sequence.

Lemma 2.12. ([12]) If E is a real Banach space with a solid cone K
1. If a,b,c € F and a X b <K ¢, then a < c.
2. Ifae K and 6 < a < ¢ for each 0 < ¢, then a = 0.

3. If a X Ta, where a,7 € K and 6(7) < 1, then a = 6.

3. Main results

First, we introduce the notion of expansive mapping in the setting of dislocated cone
metric space over Banach algebra A.

Definition 3.1. Let (Z,p) be a dislocated cone metric space over Banach algebra
A, K be the underlying solid cone. Then § : Z — Z is called an expansive mapping
if there exist 9,91 € K such that §(9~!) < 1 and

(82, Fy) = 9p(z,y), for all z,y € Z. (3.1)

Example 3.2. Let A = C1[0,1] and define a norm on A by ||z]| = [|2]|ec + [|2/[|0c for
z € A, where multiplication in A is defined in the usual way. Then A is a Banach
algebra with unit element e = 1 and the set K = {z € A : z(t) > 0,t € [0,1]} is a
cone in A. Let Z = [0,00). Consider a mapping p : Z x Z — A define by

p(z,y)(t) = (2 + y)et, for all 2,y € Z.

Then (Z, p) is a dislocated cone metric space over Banach algebra A. Define a map-
ping § : 2 — Z by §z = 2z, forall z € Z. Take ¥ = 2. Hence, § is expansive

mapping.
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Next, we prove the existence of fixed point for generalized expansive mapping in dislo-
cated cone metric space over Banach algebra A without the assumption of normality
of cone.

Theorem 3.3. Let (Z,p) be a complete dislocated cone metric space over Banach
algebra A with a unit e, K be the underlying solid cone. Let the mapping §: Z2 — Z
be a surjection and satisfy the generalized expansive condition:

p(Fz,8y) + 91lp(2,8Y) + p(y,52)] = V2p(2,y) + I3p(2,82) + Jap(y, Sy),  (3.2)

for all z,y € Z, where ¥; € K (j = 1,2,3,4) such that (92 + 95 — 391) 71, (I — 91 +
¥94)"t € K and spectral radius §[(92 + 93 — 391) (e + 91 — V4)] < 1. Then § has a
fized point z, in Z.

Proof. Let zyp € Z. Since § is surjective, there exists z; € Z such that Fz; = zo.
Again, we can choose zo € Z such that Fz; = z;. Continuing this process, we can
construct a sequence {z;} in (£, p) by

2zi = Fziy1, fori=0,1,2,.... (3.3)

Suppose z = zi4+1 for some k € N, then z, = z;, is a fixed point of § and the result
is proved. Hence, we assume that z;11 # z;, Vi € N. Using (3.2) and (3.3), we get

p(8ziv1,82) + D1lp(ziv1, §2i) + p(zi, Fziv1)] = V2p(2ig1, 20)
+930(2iv1, S2iv1) + Vap(2i, §2i)
= 192P(Zz+17Z7)+193P(Zz+1aZz)+194p(zuzv 1)
= (V2 +93)p(2ig1, 2i) + Vap(2i, 2i-1)
7 (U2 + 03 = 301)p(2it1, 2:)
(e + U1 — Va)p(ziy 2i—1)
Tp(zi-1, 2i), (3.4)

p(zis zi-1) + D1[p(zit1, zi-1) +p(zi, 2i)]
p(2i, zi-1) + D1[3p(zit1, 2i) + p(2is 2i-1)]
(e + 11 — Va)p(zis 2i-1)

(92 + 93 — 3% )p(zit1,2i) <

) <

(227 Zi41

where 7 = (2 + 93 — 391) (e + 91 — V).
Hence, from (3.4), we get

p(2is zit1) < Tp(2i-1, i)

< 72p(2i—2, 2i—1)

p(zi, zi41) < T'p(20, 21), for all i € N. (3.5)

Since §(7) < 1, it follows, by Lemma 2.7, that (e — 7) is invertible in .4. Moreover,

(e—1) ZTk (3.6)
k=0
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Also, by Remark 2.8, we get
17 = 0 (i = o). (3.7)
Hence, for 4, j € N with ¢ < j, using (3.5) and (3.6), we have

p(zi, 25) < p(2i, zig1) + p(2ig1, 25)
< p(2is zit1) + p(zig1, ziv2) + p(2iva, 2j)
P(Zu Zz—i—l) + p(zit1, Zix2) + p(2zit2, Zit3)
(

+ o+ p(zj-2,2-1) + p(z5-1, )

< 7p(20,21) + T p(20, 21) + T p(20, 21)
o+ 772 p(20, 21) + T (20, 21)
=7 e+TH+12 4+ T2 4L 77 p(20, 21)

A

(Yo

k=0
=7'(e —7)"'p(20,21)-

Therefore, using (3.7), we have that |[7°(e — 7)7'p(20,21)|| — 0 (i — o0), and it
follows, by Lemma 2.9, that for any ¢ € A with § < ¢, there exists N € N such that

p(zi,2;) < T (e — 7) " 'p(20,21) < ¢, for all j >i > N,

which implies, by Lemma 2.12 and Definition 2.5, that {z;} is a Cauchy sequence.
Since (Z, p) is complete, there exists z, € Z such that z; — z. (i = 00). Since § is a
surjection mapping, there exists a point y, in Z such that §y. = z.. Next, we show
that y. = z.. Using (3.2) and (3.3), we have that

p(zis z4) = p(S2it1, SYx)
= =01 [p(Zig1, 8Ys) + p(Ys, S2ig1)] + V2p(Zig1, Y )
30(Zi+1, 8%ir1) + Vap(Ys, Sy
—V1[p(zi41, 24) + (Y, 2i)] + V2p(zi41, Yx)
3p(2it1,2i) + Dap(Ys, 24)
P(zis 2iv1) + p(zig1, 26) = —010(2it1, 2) = V1Y, 2it1) — p(2i, Zit1)]
+ 92p(2i41, Ys) + I3p(2i41, 2)
+ Da[p(Y, zit1) — p(z4; 2i41)]
(P2 — 91+ Da)p(zit1, 4x) < (e + 01+ Da)p(2it1, 24) + (e — 91 — U3)p(zi; 2i41)
p(Zis1,Ye) < (V9 — 91 +94) (e + 91+ 9a)p(2is1, 24)
+ (e = 91 — Us)p(2i, zit1)].

This implies that

P(Zit1, i) < @1p(Zig1, 24) + @2p(2i, Zig1),
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where a; = (’192 — 1 + 7;94)71(6 + 91 + 7.94),0[2 = (’192 — 9+ 7;94)71(6 — 9 — 7.93) e K.
Now, by Lemma 2.10, Lemma 2.11; {p(z;11,2+)}, {p(2i, zit1)} and {a1p(zit1, 24) +
asp(zi,zi41)} are c-sequences. Hence, for any ¢ € A with 6 < ¢, there exists N € N
such that

P(Zit1,Yx) < Q1p(2ig1, 24) + a2p(2i, zip1) < ¢, for alli > N,

which implies that z;11 — y.. Since the limit of a convergent sequence in cone metric
space is unique, we have that y, = z,. Hence, z, is a fixed point of §. O

Remark 3.4. Note that § may have more than one fixed point (e.g. see [11, 1]).

Theorem 3.5. Let (Z,p) be a complete dislocated cone metric space over Banach
algebra A with a unit e, K be the underlying solid cone. Let the mapping §: Z2 — Z
be a surjection and satisfy the following condition:

p(§z,8y) = V1p(z,y) + D20(2,8y), for all z,y € Z, (3.8)

where 91,92 € K such that (91+92) "t € K and spectral radius 5[(91+392) ! (e+32)] < 1.
Then § has a fized point z, in Z.

Proof. Let zg be an arbitrary point in Z. Since § is surjective, there exists z; € Z
such that §z; = 2zp. Again, we can choose 25 € Z such that Fzs = z;. Continuing this
process, we can construct a sequence {z;} in (£, p) by

zi = §ziv1, fori=0,1,2,.... (3.9)

Suppose zj_1 = z; for some j € N, then 2z, = z; is a fixed point of § and the result
is proved. Hence, we assume that z; # z;_1 for all ¢ € N. Now, using (3.8) and (3.9),
we have

p(zi, zi—1) = p(Fziy1,S2)
= V1p(2i1, 2i) + V2p(2ig1, 2i1)
1 p(Zig1, 2i) + V2[p(zit1, 2i) — p(ziz1, 2i)]
(e +92)p(2is zi—1) = (V1 + V2)p(zit1, 2i)
p(ziy zig1) < (91 +D2) e + D2)p(2i-1, i)
p(zis zit1) < Tp(2io1, 2i),s (3.10)

e

where 7 = (91 + U2) 7! (e + V2).
Hence, from (3.10), we have

p(2is zit1) < Tp(2i-1, 2i)
2

< 7p(2im2, 2im1)

p(2i, ziv1) < T'p(20, 21), for all i € N. (3.11)
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Using the same argument to the proof in Theorem 3.3, we get that {z;} is a Cauchy
sequence. Since (Z,p) is complete, there exists z, € Z such that z; — z. (I — o0).
Since § is a surjection mapping, there exists a point z,, in Z such that §z.. = z.
Now, we show that z., = z.. Using (3.8) and (3.9), we have that

p(2s, 2i) = p(F s, §Zit1)
= V1P(Zas, Zit1) + V2p(2as, 2ig1)
= 010(Zsxs Zit1) + D2p(Zss, 2i)
P(24; Zig1) + p(zit1, 2i) 27 01P(Zex, Zig1) + D2[p(2ax, 2i1) — p(2i, 2ig1)]
(U1 +92)p(zit1, 24x) < p(2iv1, 24) + (e +D2)p(2i, 2it1)
P(Zig1, 2ex) < (V1 +92) 7 [p(2ig1, 22) + (€ 4 V2)p(23, 2i41)]-

This implies that

P(2it1, 2ex) < B1p(Zix1, 24) + Bap(2is 2ig1),

where 81 = (91 +92) 71, B2 = (91 +92) " L(e+92) € K. Now, by Lemma 2.10, Lemma

2.11; {p(zit1,24)}s {p(2i,ziv1)} and {B1p(2it1, 2x) + B2p(zi, zit1)} are c-sequences.
Hence, for any ¢ € A with § < ¢, there exists N € N such that

P(Zit1, 2ex) < B1P(Zit1, 24) + Bap(2is zip1) < ¢, for all i > N,

which implies that z;11 — z«. Since the limit of a convergent sequence in a cone
metric space is unique, we have that z,. = z.. Hence, z, is a fixed point of §. O

Corollary 3.6. Let (Z,p) be a complete dislocated cone metric space over Banach
algebra A with a unit e, K be the underlying solid cone. Let the mapping §: Z2 — Z
be a surjection and satisfy the following condition:

p(§z,8y) = Yip(z,y) + V2p(2,§2) + V3p(y, v), (3.12)

for all z,y € Z. where ), € K (k = 1,2,3) such that (91 +92)"1, (91 +93)" L € K
and spectral radius 5[(91 + 92) (e — ¥3)] < 1. Then § has a fived point z, in Z.

Proof. Putting ¥; = 6 in Theorem 3.3, the result follows. O

Corollary 3.7. Let (Z,p) be a complete dislocated cone metric space over Banach
algebra A with a unit e, K be the underlying solid cone. Let the mapping §: Z2 — Z
be a surjection and satisfy the following condition:

p(8z,8y) = Y1p(2,§2) + Y2p(y, §y), (3.13)

forall z,y € Z. where ¥y, € K (k =1,2) such that Y1957 € K and spectral radius
5[19171(6 —93)] < 1. Then § has a fizved point z, in Z.

Proof. Putting ¥, = 93 = 6 in Theorem 3.3, the result follows. O
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Theorem 3.8. Let (Z,p) be a complete dislocated cone metric space over Banach
algebra A with a unit e, K be the underlying solid cone. Let the mapping §: Z2 — 2
be a surjection and satisfy the following condition:

p(Fz,8y) = Ip(z,y), (3.14)

for all z,y € Z. where ¥,9~! € K such that spectral radius 5(9~1) < 1. Then § has
a unique fized point z, in Z.

Proof. Using Theorem 3.3, Theorem 3.5, we only need to show that the fixed point
is unique. Suppose that y. is another fixed point of §, then using (3.14), we have that

p(z*,y*) = ,D(SZ*,Sy*)
7 Ip(24, )
p(z*,y*) < ﬁ_lp(z*7y*) = Tp(z*,y*),

where 7 = ¥~
Hence, we have

P25 Yu) < TP(25 Ys)
< 720(2, )

0(2e, Yx) < T'p(24, ys), for all i € N.
Since 6(7) < 1, then, by Remark 2.8, it follows that
17 = 0 (i = o0).

Hence, we have that ||77p(z.,¥:)|| = 0 (i — 00) and by Lemma 2.9, it follows that
for any ¢ € A with 6 < ¢, there exists N € N such that

024, Ys) < T'p(2s,y:) < ¢, for alli > N,
which implies that p(zy,y.) = 0. Therefore z, = y.. This completes the proof. O

Corollary 3.9. Let (Z,p) be a complete dislocated cone metric space over Banach
algebra A with a unit e, K be the underlying solid cone. Let the mapping §: Z2 — Z
be a surjection and satisfy the following condition:

p(F"2,8"y) = Op(z,y), mel" (3.15)

for all z,y € Z. where 9,971 € K such that 5(9~1) < 1. Then § has a unique fized
point z, in Z.

Proof. Using Theorem 3.8, we get that " a has a fixed point z in Z. Since §"(§z) =
F(F™z) = §z, then Fz is also a fixed point of F”. Thus Fz = z, z is a fixed of §.
Since the fixed in Theorem 3.8 is unique, the result follows. O
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Theorem 3.10. Let (Z,p) be a complete dislocated cone metric space over Banach
algebra A with a unit e, K be the underlying solid cone. Let the mapping §: Z2 — 2
be a continuous, surjection and satisfy the following condition:

p(Fz,Fy) = 9{p(z,v), p(2,32), p(y, 3y) }, (3.16)

for all z,y € Z, where 9; € K (j = 1,2,3,4) such that 9,97 € K and spectral radius
(971 < 1. Then § has a fized point z, in Z.

Proof. Let zy be an arbitrary point in Z. Since § is surjective, there exists z; € Z
such that §z1 = z9. Again, we can choose z5 € Z such that §z3 = z;. Continuing this
process, we can construct a sequence {z;} in Z by

2zi = Fziy1, fori=0,1,2,.... (3.17)

Suppose z;_1 = z; for some j € N, then z, = z;_; is a fixed point of § and the result
is proved. Hence, we assume that z;_1 # z; for all ¢ € N. Now, using (3.16) and
(3.17), we have
p(zi-1,2i) = p(Fzi, §2iv1)
= 9 p(2i, zi41), p(2i, §2i)s p(Zig1, Szit1) }
=9 p(2i, zi41), p(2i, 2i-1) }- (3.18)
We consider the following two cases:
1. If p(2i_1,2) = 9p(2i, 2zi—1) then p(zi_1,2;) < 9 p(2i_1, 2;). Hence, by Lemma
2.12, p(z;—1, 2;) = 0, that is z;_1 = z;. This is a contradiction.
2. If p(2_1,2:) = 9p(2i, zix1) then p(zi, zit1) < 9 p(zii1, zi) = 7p(2i—1, 2i).

Hence, we have

p(2is zit1) < Tp(2i-1, 2i)
2

< 7°p(%i—2, Zi—1)

p(zi, zi41) < T'p(20, 21), for all i € N. (3.19)

Using the same argument to the proof in Theorem 3.3, we get that {z;} is a Cauchy
sequence. Since (Z, p) is complete, there exists z, € Z such that z; = z, (i = o). To
show that z, is a fixed point of §, since § is continuous, so §Fz; — Fz« (i — 00), which
implies that z;_1 — §z. (i = 00). Hence, §Fz. = z.. This completes the proof. O

Example 3.11. Let A = C}[0,1/5] and define a norm on A by [|z]| = ||z + ||2’]| 0
for z € A, where multiplication in A is defined in the usual way. Then A is a Banach
algebra with unit element e = 1 and the set X = {z € A: 2(¢t) > 0,t € [0,1/5]} is a
non normal cone in A. Let Z = [0,00). Consider a mapping p : Z x Z — A define by

p(z,y)(t) = (2 + y)et, for all 2,y € Z.
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Then (Z, p) is a dislocated cone metric space over Banach algebra A. Define a map-
ping §: Z — Z by §z = 2z, forall z € Z. Let ¥ € K be defined by 9(t) = ﬁ.
Simple calculations show that all the conditions of Theorem 3.8 are satisfied and
2y = 0 is the unique fixed point of §.

4. Conclusion

The aim of this paper is to introduce the notion of generalized expansive mappings
on dislocated cone metric space over Banach algebras and prove some fixed point
theorems for such mappings. Our results are actual generalization of the recent results
in [11, 2, 10, 1, 3, 19] and others in the literature. We hope the results will be useful in
fixed point theory and may be generalized in further spaces with efficient conditions.
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ABSTRACT: The present paper deals with the existence and uniqueness
of solutions for a boundary value problem of nonlinear fractional differen-
tial equations with Katugampola fractional derivative. The main results
are proved by means of Guo-Krasnoselskii and Banach fixed point theo-
rems. For applications purposes, some examples are provided to demon-
strate the usefulness of our main results.
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1. Introduction

The differential equations of fractional order are generalizations of classical differential
equations of integer order. They are increasingly used in a variety of fields such as fluid
flow, control theory of dynamical systems, signal and image processing, aerodynamics,
electromagnetics, probability and statistics, (Samko et al. 1993 [18], Podlubny 1999
[17], Kilbas et al. 2006 [9], Diethelm 2010 [3]) books can be checked as a reference.

Boundary value problem of fractional differential equations is recently approached
by various researchers ([1], [8], [19], [20]).

In [20], Bai and L used some fixed point theorems on cone to show the existence
and multiplicity of positive solutions for a Dirichlet-type problem of the nonlinear
fractional differential equation:

{ Dy (t)+ f(tu(t) =0, 0<t<1,
uw(0)=u(1) =0,

COPYRIGHT (© by Publishing House of Rzeszéw University of Technology
P.O. Box 85, 35-959 Rzeszéw, Poland
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where D8‘+u is the standard Riemann Liouville fractional derivative of order 1 < o« < 2
and f:[0,1] x [0,00) = [0, 00) is continuous function.

In a recent work [8], Katugampola studied the existence and uniqueness of solu-
tions for the following initial value problem:

'ng+U(t) = f(tvu (t))a a>0,
DFu(0) =u, k=1,2,..,m—1,

where m = [a] , D, is the Caputo-type generalized fractional derivative, of order a,
and f: G — R is a given continuous function with:

m—1 (k)
t g
U_Z kl
k=0

This paper focuses on the existence and uniqueness of solutions for a nonlinear frac-
tional differential equation involving Katugampola fractional derivative:

PDCu(t) + Bf (tu(t) =0, 0<t<T, (1.1)

G:{mwﬁeme

<K, K,h*>0}.

supplemented with the boundary conditions:
w(0)=0, u(T) =0, (1.2)
where 8 € R, and ?Df, for p > 0, presents Katugampola fractional derivative of

order 1 < aw < 2, f:[0,T] x [0,00) — [h,00) is a continuous function, with finite
positive constants h, T

2. Background materials and preliminaries

In this section, some necessary definitions from fractional calculus theory are pre-
sented. Let = [0,7] C R be a finite interval.

As in [9], let us denote by X?[0,7], (c€ R, 1 <p < o0) the space of those
complex-valued Lebesgue measurable functions y on [0,7] for which [|y|[x» < oo
is defined by 4

T P
. ds
lyllxr = (/ sy (s)[” ) < 00,
O s

for 1 <p< oo, c€eR,and

[yllxoe = ess sup [t°|y (¢)]], (c €R).
e 0<t<T

Definition 2.1 (Riemann-Liouville fractional integral [9]). The left-sided Riemann-
Liouville fractional integral of order a > 0 of a continuous function y : [0,7] — R is
given by:

« _ 1 ¢ a—1
RL o+y<t>r(a)/0 (t— )" y(s)ds, t€[0.7],

where T (a) = [T¥e

0 —95%~1ds, is the Euler gamma function.
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Definition 2.2 (Riemann-Liouville fractional derivative [9]). The left-sided Riemann
Liouville fractional derivative of order o > 0 of a continuous function y : [0,T] — R is
given by:

o o 1 d " ¢ n—a—1 _
D50 = e () [ € e ds te 0T, n=al 41

Definition 2.3 (Hadamard fractional integral [9]). The left-sided Hadamard frac-
tional integral of order o > 0 of a continuous function y : [0, 7] — R is given by:

t

HTo y(t) = F(la)/ot (log S)Q_ly(s) %, tel0,1].

Definition 2.4 (Hadamard fractional derivative [9]). The left-sided Hadamard frac-
tional derivative of order o > 0 of a continuous function y : [0,7] — R is given
by:

D) = i (1) [ (1og2)”1y<s> & e n=fa+1,

if the integral exist.

A recent generalization in 2011, introduced by Udita Katugampola [6], combines
the Riemann-Liouville fractional integral and the Hadamard fractional integral into
a single form (see [9]), the integral is now known as Katugampola fractional integral,
it is given in the following definition:

Definition 2.5 (Katugampola fractional integral [6]).
The left-sided Katugampola fractional integral of order a > 0 of a function y €
X?[0,T] is defined by:

(PTCy) () = 1@(‘:)/0 (;p: i;ia ds, p>0, tel0,T]. (2.1)

Similarly, we can define right-sided integrals [6]-[7], [9].

Definition 2.6 (Katugampola fractional derivatives [7]).
Let a, p € RT, and n = [a] 4+ 1. The Katugampola fractional derivative corresponding
to the Katugampola fractional integral (2.1) are defined for 0 < ¢ < T < oo by:

Dyt = (1) (0= S () [ s
(2.2)
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Theorem 2.7 ([7]). Let o, p € RT, then

. 1 K a—1
i CT3) () = M) = s [0 ) s
im (o) = ey = —— [ (ogl) g
psot 0T 0% I'(a) Jo s s ’
lim ("Dg.y) (1) = "EDgy(t) = —— - ”/t (t—5)"""""y(s)ds
p—1 o+ o+ I (n — a) dt 0 ’
1 d n t ¢ n—a—1 y(s)
li Dy = Hp — | t— log — ——=ds.
lim_ (*DGy) (0 50 ) == (131) [ (102f) )4
Remark. As an example, for «, p > 0, and p > —p, we have
P (14 2)
PG tH = —————tH 7P, (2.3)
- ©
r(1—a+t)

In particular
pDSﬂrt”(“*m) =0, foreachm=1,2,...,n.

For p > —p, we have

DY = LVH-l tl—Pi ”/tsp_H,,—l (tp_Sp)n_a_ldS
0 I'(n—a) dt 0

= 7[)@_” tl_pi ' tp(n—a)tu /1 e (1- T)n_a_l dr
I'(n—a) dt 0
pafn I 1— d " (n—a)+
— B _ 1 . t p__ tﬂ M
F(n—a) (” * +p)< m)

a—n (1 + %) ) (tlp:lit>n tp(n—a)tp

p
F<1+nfoz+%

Then
a—1 1]
p F(lJrf)
Doyttt = P n—oz—t—lq {n @ 1—|—M] {1— —|—M]t” P
r(1+n—a+t) P
(2.4)
As

F(l—i—n—a—l—'u): {n—a—i—'u] [n—a—l—i—u}-~-[1—a+u}F<1—a+u),
P P p p p

we get

a 11“(1_’_/1')
De tuf N Plyp—ap
(1—0[4—’;)
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In case m = a — %, it follows from (2.4), that

o a—m a— F(O&*m+1) —pm
PDOthP( ):p 1m(n—m)(n—m—l)(l—m)tp .
So, for m =1,2,...,n, we get

D™ = 0,

Similarly, for all a, p > 0, we have:

poT (1 + %)
TN P e s ), (2.5)

PO th =
r (1 +a+ %)

By C'[0,T], we denote the Banach space of all continuous functions from [0,77] into
R with the norm:

Il = mase Iy (6]

Remark. Let p>1,¢>0and T < (pc)ﬁ . Far all y € C'[0,T], note that

T v T 5
c ds o Te
Xg(/ |sy<s>|”s> S(IIyI” | 1d5> = — Iyl
0 0 (pc)®

[yl xoo = ess sup [ty (t)]] < T |lyll,
© 0<t<T

lyl

and

which imply that C[0,7] — XP?[0,7], and
1
[yl xr <yl for all T"< (pc)>e .

We express some properties of Katugampola fractional integral and derivative in
the following result.

Theorem 2.8 ([6]-[7]-[8]).

Let a,8,p,c € R, be such that a,8,p > 0. Then, for any y € X?[0,T], where
1 <p < oo, we have:

- Index property:

PIS, pIéiy(t) ”Ig‘fﬁy (t), foralla,B>0,
’Dg DLy (t) = DIy (), forall0<a,B <1

- Inverse property

PDS PTGy (t) =y (t), forallae(0,1).
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From Definitions 2.5 and 2.6, and Theorem 2.8, we deduce that

d K d
' () w0 = [t (s ) Tty as
0

t d 1
= [ Soege d
/0 ds o+ Y (S) S

t

i G SR L
= ISy (t) .
Consequently
(#—pi) ngjly(t) =PIy (t) , Ya>0. (2.6)

Definition 2.9 ([4]). Let E be a real Banach space, a nonempty closed convex set
P C FE is called a cone of E if it satisfies the following conditions:

(i) w € P, A >0, implies Au € P.

(ii) uw € P, —u € P, implies u = 0.

Definition 2.10 ([2]). Let E be a Banach space, P € C'(E) is called an equicontin-
uous part if and only if

Ve>0, 30 >0, Vu,v € E, VAEP, |[u—v|]|<d=||A(u)—AW)| <e.

Theorem 2.11 (Ascoli-Arzel [2]). Let E be a compact space. If A is an equicontin-
uous, bounded subset of C' (E), then A is relatively compact.

Definition 2.12 (Completely continuous [4]). We say A : E — E is completely
continuous if for any bounded subset P C FE, the set A (P) is relatively compact.

The following fixed-point theorems are fundamental in the proofs of our main
results.

Lemma 2.13 (Guo-Krasnosel’skii fixed point theorems [12]).

Let E be a Banach space, P C E a cone, and 1, Qo two bounded open balls of
E centered at the origin with Q; C Qo. Suppose that A : PN (Qg\Ql) — P isa
completely continuous operator such that either

i) | Az]| < ||z||, x € PNOQy and || Az| > ||z||, x € PN, or
(ii) ||Az|| > ||z]|, x € PNOQ and ||Az| < |z|, z € PN oQs,
holds. Then A has a fixed point in PN (Qz\Ql) .

Theorem 2.14 (Banach’s fixed point [5]). Let E be a Banach space, P C E a non-
empty closed subset. If A: P — P is a contraction mapping, then A has a unique
fixed point in P.
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3. Main results
In the sequel, T, p and c are real constants such that
p>1, ¢>0, andTS(pc)ﬁ.

Now, we present some important lemmas which play a key role in the proofs of the
main results.

Lemma 3.1. Let a,p € R*. Ifu e C[0,T], then:

(i) The fractional equation PDg, u (t) = 0, has a solution as follows:

u(t) = CytP O 4 CotP =2 o €t ™) where Cp, € R, withm =1,2,...,n.
(ii) If *Dg,u € C[0,T] and 1 < o < 2, then:

PTG PGy uw(t) = u(t) + C1tP ™) 4 0?22 for some Cy,Cs € R. (3.1)

Proof. (i) Let a, p € RT. From remark 2, we have:
p’DS‘J”(O‘_m) =0, foreachm=1,2,...,n.
Then, the fractional differential equation #Df, u () = 0, admits a solution as follows:
u(t) = CrtP@™D 4 ot 0= o Cptre™™ G € R, m=1,2,... 0.

(ii) Let #Dg,u € C'[0,T] be the fractional derivative (2.2) of order 1 < a < 2. If we
apply the operator PZ§, to #Dg, u (t) and use Definitions 2.5, 2.6, Theorem 2.8 and
property (2.6), we get

d

> PIOT PDGu(t)

P1'61+ P'D3+ u (t) dt

—

e T
e e >[( j>1 N (S)] dsl
et [ a[(d) s
1“(2;:1) ([(tp gy (slpi) ﬂzg:au(s)}:

¢
+ ap/o sPL (P — sP)* (81_’);9) PTeT “u(s) ds)} :

I I
/?/\/:\/-\/-\
—
|
)
S
N~ N
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From (2.6) , we have

_,d —a —a
(sl pds) pI§+ u(s) = pIé+ u(s) . (3.2)
On the other hand, from (2.2), we have
d d\', 1 1
(81_pds) T2 U (s) = <sl—ﬂd8> PNy (s) = PDg () - (3.3)
Then
a a — d plia K a—1 d —«
PTS PDSu(t) = p@ (F(a)/o (t’ — s”) I pI§+ u(s)ds
W
7pl_a pIé;aU (0) pla—1)
I () ’
where
B d pl—a 4 _ t
— l-pZ P el pr2-a
v t dtT («) ([(t **) 0t u(s)]o

t
+p (o — 1)/O sPTL (P — sP) 2 PT2 u(s) ds)

l—pd P ' p=1 (1p P\a—2 pr2—a
t % m o S (t _S) IO+ U(S)dS

—Q 2—«
pl pIO+ U(0+) tp(a—l))

I'(«)

11—« 2—a +
_ pd (ﬂzgﬁ gz () - e 4O )tp<a—1>>

dt I'(a)
_.d pre ”IQ_au(O*) _
_ 4l-p prl _ 0+ pla—1)
—Q 22—«
= (- e O

MNa-1)
Finally, for 1 < a < 2, we have:

pl—a pIé:au (0+) ety _ pz—a ngzau (0+)

trla=2)
I'(a) M'a-1)

Lo+ "Doru(t) = u(t) —

(3.4)
As
poT (1+2)
PTO M = - Pl gywtap, Vi > —p,
r (1 +a+ %)
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we use (3.2), (3.3), to prove that

—(1—a) pla—=1)
P Olr(lJr , )

_ pla—1)
P(1+(1-a)+22=0)

Pl e {Cztp(aﬂ)} =y PDT () = 0y PR (0D ) (3.6)

pIé;a {Clt’)(“_l)} =0, trla=1)+(1-a)p _ C1p'T(a),(3.5)

for some C1,C5 € R, and

p- @7 (1 " p(ap 1))

tPla—1)+(2-a)p _ =Cp™~ 2I‘( )t?
I (1+(2—a)+2=0)

ngia {Cltp(afl)} =C

p=(2=a)p (1 i M)
P p(a—2)+(2—a)p — Cgpa_QF (Oé _ 1) )

F(1+(2—a)+”(a 2))

12 [t D] = 6

Then, for u (t) = C1t7(@~1 4 CytP(*=2) | we have respectively:

PTu (0F) =PI [Cltp(a*”} (0F) + P70 [C2tf'<°‘*2>} (07) = C1p* T (),

(3.9)
P13 (07) = 1T (e ] (04) 4073 [t D] (07) = Copt T (a - 1),
(3.10)

From (3.4),(3.5), (3.6),(3.7), (3.8), (3.9) and (3.10) we get (3.1). O

In the following lemma, we define the integral solution of the boundary value
problem (1.1)-(1.2).

Lemma 3.2. Let a,p € RT, be such that 1 < a < 2. We give PDyu € C0,T],
and f (t,u) is a continuous function. Then the boundary value problem (1.1)-(1.2),
18 equivalent to the fractional integral equation

T
t):ﬁ/o G (ts) f (s,u(s))ds, t € [0,T],

where
pl— Pt [ (TP — sP) a-l Pt 0<s<t<T
G(ts)=4 I LT L l . oy OsssisT (3.11)
by L (T = "), 0<t<s<T,

is the Green’s function associated with the boundary value problem (1.1)-(1.2).

Proof. Let a,p € R, be such that 1 < a < 2. We apply Lemma 3.1 to reduce the
fractional equation (1.1) to an equivalent fractional integral equation. It is easy to
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prove the operator PZ{, has the linearity property for all a > 0 after direct integration.
Then by applying ?Z§, to equation (1.1), we get

PI5: PDgsu(t) + B PIg. f (t,u(t)) = 0.
From Lemma 3.1, we find for 1 < a < 2,
PTS, PDG u(t) = u(t) + Crtr @) 4 Oyt

for some C1,C2 € R. Then, the integral solution of the equation (1.1) is

0 — S

The conditions (1.2) imply that:

u(0)=0=0-0-lim CotP(@—2) = (=0,
0= i {CRTC ) a— _ 5P~ f(s,u(s))
u(T)=0=— F(a) f (TP—sP)T— ds— 177D = Oy = Tp(a l)r f (TP—sp)l—a ds.

The integral equation (3.12) is equivalent to:

ﬁpl—a t Sp—lf (87 u (S)) Btp(a—l)pl—a T Sp—lf (S, u (8))
I («) /0 (tr — SP)I*O‘ ds + Tr@=1T () /0 (T# — Sp)lfa

u(t) =— ds.

Therefore, the unique solution of problem (1.1)-(1.2) is

1 agp—1 (Tpfsp)]
ult) = B / o

1 agp— 1 (Tp_sp)} -1
18 / F( f (s.u(s)) ds

a)

a-1 (- sﬂ)afl}

f(s,u(s))ds

- 5[ Gt
0
The proof is complete. O

3.1. Application of Guo-Krasnosel’skii fixed point theorem

In this part, we assume that § > 0 and 0 < p < 1. We impose some conditions on
f, which allow us to obtain some results on existence of positive solutions for the
boundary value problem (1.1)-(1.2).

We note that u (¢) is a solution of (1.1)-(1.2) if and only if:

t)zﬁ/o Gts) f(s,u(s))ds, t € [0,T].

Now we prove some properties of the Green’s function G (¢, s) given by (3.11).
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Lemma 3.3. Let 1 < o <2 and 0 < p < 1, then the Green’s function G (t,s) given
by (3.11) satisfies:

(1) G(t,8) >0 fort,s € (0,T).

(2) OgltaSXTG (t,s) =G (s,s), for each s € [0,T].

(3) For anyt e [0,T],
T
G(t,s) > b(t)G(s,s), for any 3 <s<T and somebe C[0,T]. (3.13)

Proof. (1) Let 1 <a<2and 0 < p<1.In the case 0 <t < s < T, we have:

pl—asp—l |: tP

) |77 (T° — sp)} > 0.

Moreover, for 0 < s < t < T, we have % < 1, then %sﬁ < s” and t"f%sp > tP—sP,
thus
p tP p t* o p p p t* P p o p pya—1
t—ﬁs:ﬁ(T —s")>tP —s é[Tp(T 5)] — (tP — s) > 0,
which imply that G (t,s) > 0 for any ¢,s € (0,7T).
(2) To prove that

G G i Er s T 4
Joax (t,s) =G (s,5) = Tl [TP( —s )] , Vs €10,T7], (3.14)
we choose

l—a.p—1 P a—1

P S 2 a—1

(TP _ P (4P _ P
T e | T ] ,
l—ap—1 P a—1
_ P SN e

Indeed, we put OrgtszTG (t,s) = G(t*,s), where 0 < t* < T. Then, we get for some
0 <t <ty <T, that

g9 (t*v S) ) s € [O,tl] R
OI%ltaSXTG (t,s) = max*{gl (t*,8),92 (t*,8)}, s € [t1,ta],
g?(t7s)7 SE[tQ,T],

{ g1t s), se[0,r],

g2 (t*,8), s€rT],
where r € [t1,t2], is the unique solution of equation

g1 (t%,8) = g2 (t*,5) & t* = s,
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which shows the equality (3.14).

(3) In the following, we divide the proof into two-part, to show the existence
be C0,T], such that

G(t,s) >b(t)G(s,s), forany — <s<T.

oo |~

(i) Firstly, if 0 <t < s < T, we see that g((i‘:% is decreasing with respect to s.
Consequently

tP

G(ts) _ [g (=] (t)ﬂw—n

G(sis)  [2(Tr —s0)]" "

t p(a—l)
2<T) — by (1), VEE[0,4].

S

(ii) In the same way, if 0 < s < t < T, we have ;—i < o<1, (i)a_Q >1
Yo € (1,2], and

plfaspfl

Gts) = S5

[§Z<IWs%}alupsﬂ“1]

(a1 phaset [T

= T (@) - 7o 2dr
l—asp—l p\ @2 P
> (a — 11){0[) (r}p) (17 — Sp)‘l*2 (;p (TP — sP) — (t* — s”))
(a=1p sty s (TP )
> O

As 0 < p <1, we get

T T
TP—tr = p/ " Ydr > pTP~ (T —t), and TP —s = p/ P ldr < psP™H (T — s).
t s

Therefore
a—1)pt~*sP ! a—1 s?(T°P—t° _
G (t,s) y ( Uﬁ(a)i(Tp*Sp) 1% Cla-1) sP (TP — tP) Tr a-1
G(s,s) ~ ey s E T (Tr —s7) \ v
s(T —1t)
> (a—1) o2
z (@=D g
s(T—1)

Finally, for s € [%, t] , we have:

G (t,s) > (a—=1)(T—1t)

G (s,9) 8T = b2 (1)
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It is clear that by (¢) and by (t) are positive functions, it is enough to choose:

t\P(a—1)

t for t € [0,7]
b(t) = (T) ’ . 510
(t) {mlggt) for t € [, T, o

where ¢ € (0,7T) is the unique solution of the equation by (t) = b (t) . We see that
_ N (a1 (T -1
< = = —_— = —-— .
b(t) <b=0b(t) (T) 8T < 1forall t €[0,T]

Finally, we have Vs € [%, T],

G(t,s) > b(t)G(s,s), Vt€[0,T].
The proof is complete. 0
Lemma 3.4. Let 1l <a <2 and 0 < p <1, then there exists a positive constant

800 L (a + 1) [8°% — (87 — 1)°]
h(80 —1)" [87 (a+ 1) + 80D (o — 1) (8¢ — 1)]

A=1+ , for some h, L > 0,

such that

/ G (s,8) f(s,u(s))ds < )\/T G (s,8) f(s,u(s))ds. (3.16)
0 B

Proof. As f(t,u(t)) > h, for any ¢ € [0,T], we get

/TG(s,s)f(s,u(s))dszh/Tpchzzgl E; (T° — sp)rlds

T T
8

B h
apTre=1T (q)

r
8

T
/ sPla=1) [—pas”_l (Tp—s”)a_l} ds.
The integral by part gives:

h {Lj(ail) (Tp—%:)a—i—p(a—l) fg gPla—1)—1 (Tp—sp)ads}
8

8p(a—1)
/?;G(&s)f(s,u(s))dsz ATHE T (o 1 1)
4 gP(a—2) a
b (=) (0= 1) [ s (17— ds]
- O‘T/’F(a—f—l)
e (=B e I e (a0 (10— ds)
N O‘TPI‘(a 1)

RTP (87 — 1) [8° (v + 1) + 87~ (o — 1) (8 — 1)
p8r°T (v + 1) { 872 (o +1) } '
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Then

p*87°T (o + 1) 80% (o + 1)
hTee (80 —1)™ |8 (a+ 1) + 8°(c=1 (o — 1) (8¢ — 1)

] /;G(S’S)f(s’“(s))ds > 1.

(3.17)
On the other hand, if Jmax f(t,u) is bounded for u € [0,00), then there exists

Lo > 0, such that
|f (t,u ()| < Lo, Vt€[0,T7.

In the similar way, if Jmax f(t,u) is unbounded for uw € [0,00), then there exists

<t<T
My > 0, such that

sup - max_ |f (t,u(t))| < Ly, for some Ly > 0.
0<u<M, 0st<

In all cases, for L = max {Lg, L1}, we have:

% 5 LT 8P — (8° — 1)°]
| et rGueas <L [ 6as < I

From (3.17), we get

/OTG(S,s)f(s,u(s))ds = /Gss (s,u( ds+/ G (s,s) f(s,u(s))ds

LTPe [802 — (8P — 1)
pe8,oT (a+ 1)

IN

/ G (5,5) f (s, (s)) ds +

IN

/Gss (s,u(s))ds

LTP [8P> — (8P — 1)%] L P8T (a+1)
p8P°T (v + 1) hTre (87 — 1)

y { 8% (v + 1)
8 (a+ 1) + 81 (a—1) (8 — 1)

. G (s,8) f(s,u(s))ds

T
< /\/1 G (s,8) f (s,u(s))ds.

Let us define the cone P by:

P{ueC’[O,T] |u(t)z&;)||u\|, Vte[O,T}}. (3.18)
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Lemma 3.5. Let A: P — C[0,T] be an integral operator defined by:

T
0)=5 [ Gt (su()ds (319)
0
equipped with standard norm

Mull = max. | Au (t)].

Then A(P) C P.

Proof. For any u € P, we have from (3.13), (3.16) and (3.18), that
T T
Aut) = B [ Gl f(su(e)ds = ab(e) [ G lss) £ (s.u(e)ds
0 :

T
> w/ G (s,8) f(s,u(s))ds

b(t)
> o o / G (t,s) f(s,u(s))ds
b(t)
2 " [MAull, vt € [0,T].
Thus A (P) C P. The proof is complete. O

Lemma 3.6. A: P — P is a completely continuous operator.

Proof. In view of continuity of G (¢,s) and f (¢,u), the operator A : P — P is a
continuous.
Let © C P be a bounded. Then there exists a positive constant M > 0, such that:

lul| < M, Vu € Q.

By choice

L= sup max. |f (t,u)| + 1.
0<u<M 05t<

In this case, we get Vu € €,

T T
u ()] = 'ﬁ/ G () f (s,u(s)) ds sg/o G (t.5) f (s,u(s))] ds

T 5L r — a—1
5L/0 G(s’s)dsgp“—lf(a)/o sPTH(TP — sP)* ds

BLT
peT (a+1)

IN
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Consequently, |Au (t)] < %, Vu € Q. Hence, A (Q) is bounded.

Now, for 1 <a<2and 0 < p <1, we give:

T GG
§(e) = (prﬁ(z)g) , for some € > 0.

Then Yu € , and t1,t2 € [0,T], where ¢t < to, and to — 1 < 4, we find
|.A’U, (tg) — Au (t1)| < E.
Consequently, for 0 < s <t} <ty < T, we have:

l—agp—1 B B AN

[ - = -]

o p—1 . -1
< Pt pla=1) _ tp(afl)} 7 —s"\"
() L? ! Tr

l-a.p—1
p-_"s pla—1) ﬂ(afl)}
— |t -1 .
< r (a) L 2 1

In the same way, for 0 <t; < s <ty <Tor0<1t; <ty <s<T, we have:

lfozspfl
B pla=1) p(a—1)
G (t2:5) = G (11,9) < P [t2 4 ]
Then
T
|Au (ta) — Au(t1)] = ‘6/ (G (t2,8) = G (t1,5)] f (5,u(s))ds
0
T
< ﬁL/ |G (ta2,s) — G (t1,5)|ds
0
T 1—a p—1
p__"s pla=1) _ ,p(a—1)
< BL/O o [tQ 0 ]ds
BLPY™ T pia-1) _ pta-] [1,]"
< F(a) |:t2 tl i| ;S . .
Finally
_ BLT? [ pla=1) _ pla—1)
[Au(t2) = Au ()] < s [tQ 0 } (3.20)

In the following, we divide the proof into three cases.
(a) If 6 <ty <ty < T, we have:

§ <ty <ty 57D <0072 < 5p(a=2) and 7t < 7t < 5
Thus

th — 1 =ttt — P <ot — gt =t (b — 1) < 0P (ty — 1) < OF.
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In similar way

a—1 a—1 a—2 a—2 a—2 a—2 a—2

B 0D DD < D gD = g ()
< 5P (¢ Py
< grlo=D),

Then, the inequality (3.20) gives:

BLT? [tma D _ gl 1)} < PLT? sp(a-1)

|Au (t2) — Au(t)] < T (@) p°T (a)
1 pa—1)
BLT? | (p°T (o) \ 7D
T (@) (Tm ) ]
- (3.21)

(b) If t1 <6 < ta < 20, we have:

<6 < by et < gplam2) < yplem2)

and

< grla= 2)( —t*) < gela=1)

t;(a_l) _ ti’(a_l) _ tptﬂ(a—2) _ tPtP(G—Q) < tﬂé‘p(a72) _ t/f(sp(a*Q)

Also, we find the same result (3.21).
(c) If t1 < to < 0, we have:

BLT? [tma D _ gpla= 1)} PLT? a1

[Mu(ts) - Au(t)] < T oL (a) 2
BLT? pa-1)
<T@
< E&.

By the means of the Ascoli-Arzel Theorem 2.11, we have A : P — P is completely

continuous. O

We define some important constants

Fy = lim max f(t’u), Fo = lim max f(tw)
u—01 t€[0,T] u u—+00 ¢t€[0,T) u

= 1 £(t:) = f(t.u)
fo= [, tgfa%] o f u;rfmgggr;] :
fo (s,)ds, fo (s)ds

:Oiffw%oo,ﬁ—mlf}?o%(),wf 0if fo — oo, and

1 _ .
Y. = o0 if Fyo — 0.
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Theorem 3.7. If wsfoo > wiFy holds, then for each:

g e ((cuzfoo)*1 ; (wlFo)’l) : (3.22)
the boundary value problem (1.1)-(1.2) has at least one positive solution.
Proof. Let § satisfies (3.22) and ¢ > 0, be such that
((foo —E)w2) ' <B< (Fo+e)wi) t. (3.23)
From the definition of Fjy, we see that there exists 1 > 0, such that
ftu) <(Fo+e)u, Vt€[0,T], 0 <u<r. (3.24)

Consequently, for v € P with |Ju|| = r1, we have from (3.23),(3.24), that

lAu|| = max
0<t<T

T
ﬂA G (t.5) f (s,u(s)) ds

IN

ﬁ/o G (s,8) (Fo+e)u(s)ds

IN

T
5u%+awmA G (s, 5) ds

B (Fo +¢) [lull wr
flull -

IN N

Hence, if we choose Q1 = {u € C'[0,T]: |lu| <ri}, then
|Au|| < ||u||, for uw e PN IQ,. (3.25)
By definition of f.,, there exists r3 > 0, such that
ftuw) > (foo —€)u, VL€ [0,T], u>rs. (3.26)

Therefore, for u € P with |lu|]| = ro = max{2ry,7r3}, we have from (3.23), (3.26),
that

T B T
WMHZAMB=ﬁAG@@f@w@D%ZBLﬁ®G®ﬁM®wGD%

Bb
by

v

T E T
[ Gesstuenis= 5 [6e(re-aulds v,
0 0
By definition of P in (3.18), we have:

b(foo — T
lul = 2= [ s p(s)ds
8 (oo — )l

[l -

AVANLY]
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If we set Qo = {u € C[0,T]: |Ju|| <72}, then
| Au|| > ||u]|, for uw € PN INs. (3.27)

Now, from (3.25), (3.27), and Lemma 2.13, we guarantee that A has a fix point
u € PN (Q\Q) with r; < |jul| < 7. It is clear that u is a positive solution of
(1.1)-(1.2) . The proof is complete. O

Theorem 3.8. If wyfo > w1 F holds, then for each:

Be ((wafo) " @Fo) "), (3.28)

the boundary value problem (1.1)-(1.2) has at least one positive solution.

Proof. Let 3 satisfies (3.28) and ¢ > 0, be such that
(fo—€)wz) " < B < (Foo+e)n) (3-29)
From definition of fy, we see that there exists 1 > 0, such that
ftu)>(fo—e)u, Vi€ [0,T], 0 <u<ry.

Further, if w € P with ||u|| = r1, then similar to the proof’s second part of Theorem
3.7, we can get that || Aul| > ||ul| . Then, if we choose Q; = {u € C[0,T]: |lu| <ri},
thus

| Au|| > ||u||, for u € P NIQy. (3.30)

Next, and by definition of F.,, we may choose R; > 0, such that
ft,u) < (Foo +€)u, for u> Ry. (3.31)

We consider two cases:

1) If Orgtzszf (t,u) is bounded for u € [0,00). Then, there exists some L > 0, such

that
ft,u) <L, forallt € [0,T], u€e P.

Let us denote by r3 = max {2r1, 8Lw1}, if uw € P with ||u|| = r3, then

[Au|| = max
0<t<T

T T
[3/ G (t,s) f(s,u(s))ds| < BL/ G (s,8)ds = fLwy <13 =||lu].
0 0

Hence,
| Au|| < ||lul|, for uw € OP,, = {u € P :|ul <rs}. (3.32)

2) If Orgtifo(t,u) is unbounded for u € [0,00), then there exists some ry =

max {27‘_1, R1}, such that

< <
ftu) < OrgntanTf (t,rq), forall 0 <u <ry, t€0,7].



54 B. Basti, Y. Arioua and N. Benhamidouche

Let w € P with |Ju|| = r4. Then, from (3.29), (3.31), we have:

T T
lu = max ﬂ/o G (ts) f (5,0 (s)) ds gﬁ/o G (s5,5) (Foo + £) u () ds
T
< Bl [ G os)ds = (Pt )
< -

Thus, (3.32) is also true for u € OP,,.
In both cases 1 and 2, if we set Qo = {u € C[0,T]: |Ju| < ry =max{rs,r4}}, then

| Aul| < [lu]|, for u € PN oDy, (3.33)

Now, from (3.30), (3.33), and Lemma 2.13, we guarantee that A has a fix point
u € PN (Q\Q) with 11 < [Ju]| < ro. It is clear that u is a positive solution of
(1.1)-(1.2) . The proof is complete. O

Theorem 3.9. Suppose there exists ro > r1 > 0, such that

1
f
S BT () S gl and Il [ ()2 e

b(t), Vte[0,T]. (3.34)

Then, the boundary value problem (1.1)-(1.2) has a positive solution u € P, with
r1 < lul] < re.

Proof. Choose Q1 = {u e C[0,T]: |lu|]| <ri}. Then, for u € P NIN, we get

T _ T
JAu| > AM0=BA Gm$fww@»@zﬂ/;wacmafww@»m
86 [T
> 7/0 G(s,s)oéilfrlf(su ds>—/ SSB)\WQ b(s)ds
> = u.

On the other hand, choose Qs = {u € C'[0,T]: |lul]| < re}. Then, for v € PN 0y,

we get
3/0 Gt s) f (s,u(s)) ds

T

T2
< G (s,8) =——ds =19 = .
< ,3/0 (s,9) Boon s =ry = ||ul

T
gﬂ/ G (s,8) sup max. f(s,u(s))ds
0

| Aul| = max
0<u<ry 0StS

0<t<T

Now, from Lemma 2.13, we guarantee that 4 has a fix point u € PN (Qg\Ql) with
r1 < |lu]] < ro. Tt is clear that u is a positive solution of (1.1)-(1.2). The proof is
complete. 0O
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3.2. Application of Banach fixed point theorem

In this part, we assume that 8 € Rand p > 0, and f : [0,7T] x [0,00) — [0, 00) satisfies
the conditions:

(H1) f (t,u) is Lebesgue measurable function with respect to ¢ on [0,77,

(H2) f (t,u) is continuous function with respect to u on R.

Theorem 3.10. Assume (H1), (H2) hold, and there exists a constant o > 0, such
that

|f (t,u) — f(t,0)] < olu—wv], for almost every t € [0,T], and all u,v € C'[0,T].
(3.35)
If
p°T (a+1)
oTer

18] < (3.36)

Then, there exists a unique solution of the boundary value problem (1.1)-(1.2) on
[0,77].

Proof. Assume that |3] < %, and consider the operator A : C'[0,7] — C[0,T]
defined by (3.19) as follows

T
Au(t) :5/0 Gt 5) f (s,u(s)) ds.

We shall show that A is a contraction mapping. In fact, for any u,v € C[0,T], we
have

T
[Au(t) — Av (8)] = ’ﬁ/o G (t,8)[f (s,u(s)) = f(s,0(s))]ds

< m/OTG(t,s)f(s,u<s>>—f<s,v<s>>|ds
< mo/OTG(s,s)m(s)v(s)ms,
then
A — o] < monu—m/OTG(s,s)ds
[M =] (3.37)

This imply from (3.37) that A is a contraction operator. As a consequence of Theorem
2.14, by Banach’s contraction principle [5], we deduce that A has a unique fixed point
which is the unique solution of the problem (1.1)-(1.2) on [0,7]. O
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4. Examples

In this section, we present some examples to illustrate the usefulness of our main
results.
Example 1. Consider the following boundary value problem

{ 1D§+U(t)+5(1+t)u(t)ln(1+u(t)) =0, tel0,1]. (4.1)
u(0)=u(1)=0.

Set 8 > 0 any finite positive real number, and
ftu)=04+t)uln(l+wu).

In this case, the function f is jointly continuous for any ¢ € [0, 1], and any u > 0.
We get

Fp = lim max f(tu) =0%, fo= lim min Hiw) o,
u—0t te[0,7] ¢ u—+oo te[0,T]

On the other hand, we get

_ [ _ 1 [ T eas = LT VT
wlf/o G(s,s)dsr(g)/o s(lfs)ds—%ﬁ8f 1 (4.2)
and
b(t) = Vit fort €10,1], (4.3)
T 5 fortelt1]. '
Then

wg = )\2Fb<3) [/0 sv/(1—s)ds + %ﬂ Vs(1— s)% ds] ~ T (4.4)
2 7

T128M2°

Where £ ~ 0,003876. .. and b ~ 0,062258.. .. and the choice of A depends directly by
choice of 1,72 in (3.25), (3.27).
Because wy,ws > 0, two finite constants for any choice of 0 < 71 < ry < co. We
have always:
1
W2foo

Then, the condition (3.22) is satisfied for any 0 < 8 < oo.
It follows from Theorem 3.7 that the problem (4.1) has at least one solution.
Example 2. Consider

=0, and

= 0Q.
oJlF()

{ P 00 0o () Z0 el gy
uw(0)=u(1)=0.
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Set 8 > 0 any finite positive real number, and

Fltu) = (1+1) uexp (1 —u2> .

u

Clearly, for any ¢ € [0, 1] and any u > 0, the function f is jointly continuous.
Here, we have:

f(tw)

u

=00, Fo= lim max {&Y =+

fo= lim min
u—+00 t€[0,T]

u—0+ t€[0,T)

Also, we find the same function b(t) in (4.3), and same constant wy, wy respectively
in (4.2), (4.4).
The choice of A > 1 depends directly by choice of r1, 72 in (3.30), (3.33).
Because wi,ws > 0, two finite constants for any choice of 0 < r; < 19 < co. We
have always:

1
=0, and

= Q.
wzfo w1 Fg

Then, the condition (3.28) is satisfied for any 0 < 8 < oo.
It follows from Theorem 3.8 that the problem (4.5) has at least one solution.
Example 3. Consider the following boundary value problem

I

D5, () + LEDUEO) oy e [0,1]. (16)
u(0)=u(1)=0.

Setﬁzﬁ,and
ftu)=04+t)(1+u).

The function f is jointly continuous for any ¢ € [0,1] and any u > 0.
We find the same function b (¢) in (4.3), such that 0 <b(¢) < 1, and

1
w1 :/ G (s,8)ds = g
0

Choosing r| = ﬁ < ro = 2. Then, for all ¢ € [0,1], we have:
h=1<f(t,u) <6=L.

In this case

8P L (o + 1) [87% — (8P — 1)°]
h(80 — 1) [87 (a+ 1) + 80D (o — 1) (8¢ — 1)]

8%x6xgx(8%f7%)
7%x(8xg+\/§x%)
~ 3,517426. ..

A= 1+

= 1+
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Then

by/m _ 0,062258 x /T _ 3,9313/7
128X ~ 128 x 3,5174262 ~ 100

W X~
It remains to show that the conditions in (3.34), which is

sup maxf t,u —6<—~8
0<u<ry 0SEST (tw) Bw1 ’

and

f =1 >
0<17£1<r1 f3 (t u) +1 ﬂ)\&)Q

b(t) ~0,72317 x b(t), Vte[0,1].

Are satisfied. It follows from Theorem 3.9 that the problem (4.6) has at least one
solution.

Example 4. Let

2.3 cos(t) [2+]u(?)]] — kg
{ 3Dgru(t) + m(V2cos(t)+sin(t) ) [1+|u(t)]] 0, te [0’ 4] ’ (4.7)
w(0) =u (%) =0.
Set 8 = % and
cos (t) [2 + |ul] 7T
t,u) = , t€10,—|, u,v €R.
ftw) (V2cos (t) +sin (¢)) [1 + |ul] [ 4}

As sin (t), cos(t) are continuous positive functions V¢ € [0, %], the function f is
jointly continuous. For any w,v € R and t € [0, 4] we have i < cos(t) <1, and
0 <sin (t) < ¥2, then

W) — o) — cos (t) [2 + |ul] B cos (t) [2 + |v]]

St =l | (V2cos (t) +sin (t)) 1+ [uf]  (V2cos(t) +sin (t)) [1+ |v]]
’ cos (t) H2—|—|u2+|v
V2 cos (t) + sin ( 1+ ul 1+ v

<l = ol < Iu—vl-

Hence, the condition (3.35) is satisfied with ¢ = 1. It remains to show that the
condition (3.36)

e

p°T (a4 1) B %

xT(3)
g ~0,921317...

s
4

1
O<ﬂ:;:0,318309...<

is satisfied. It follows from Theorem 3.10 that the problem (4.7) has a unique solution.
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5. Conclusion

In this paper we have discussed the existence and the uniqueness of solutions for a
class of nonlinear fractional differential equations with a boundary value, by using
the properties of Guo-Krasnosel’skii and Banach fixed point theorems. The used
differential operator is developed by Katugampola, which generalizes the Riemann-
Liouville and the Hadamard fractional derivatives into a single form.
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Fast Growing Solutions to Linear
Differential Equations with Entire
Coefficients Having the Same p -order

Benharrat Belaidi

ABSTRACT: This paper deals with the growth of solutions of a class
of higher order linear differential equations

FB 4 A ) f*R D o A () f + Ay (2) f=0, k> 2

when most coefficients A4; (2) (j =0,...,k — 1) have the same p,-order
with each other. By using the concept of 7,-type, we obtain some results
which indicate growth estimate of every non-trivial entire solution of the
above equations by the growth estimate of the coefficient Ay (z). We im-
prove and generalize some recent results due to Chyzhykov-Semochko and
the author.

AMS Subject Classification: 34M10, 30D35.
Keywords and Phrases: Linear differential equations; Entire function; Meromorphic
function; p,-order; p,-order; T,-type.

1. Introduction and main results

Throughout this paper, the term ”meromorphic” will mean meromorphic in the com-
plex plane C. Also, we shall assume that readers are familiar with the fundamental
results and the standard notation of the Nevanlinna value distribution theory of mero-
morphic functions such as m(r, f), N(r, ), T(r, f) (see, [12,24]). For all r € R, we
define exp; r := €" and exp, ;T = exp (expp 7") , p € N. We also define for all r
sufficiently large log, r := logr and log,,,r := log (logp 7‘), p € N. Moreover, we
denote by exp, r := r, logyr :=r, log_; r := exp, r and exp_, r := log; r, see [17,18].

COPYRIGHT (© by Publishing House of Rzeszéw University of Technology
P.O. Box 85, 35-959 Rzeszéw, Poland
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Definition 1.1 ([17]). Let p > 1 be an integer. The iterated p-order of a meromorphic
function f is defined by

log, T'(r,
oo () = limsup 282 L)
r—+oo  logr

where T (r, f) is the Nevanlinna characteristic function of f. If f is entire, then the
iterated p-order of f is defined by

log, T'(r, 1 M(r,
oo () = imsup B2 L) o 108pet M J)

r—stoo  logr o0 logr ’

where M (r, f) = ‘m‘ax |f ()] is the maximum modulus function.

z|=r
Definition 1.2 ([17]). The finiteness degree of the order of a meromorphic function
f is defined by

0, for f rational,
min{j € N: p; (f) < oo}, for f transcendental for which
some j € N with p; (f) < oo exists,
+00, for f with p; (f) = 400, Vj € N.

i(f):=

Definition 1.3 Let f be a meromorphic function. Then the iterated p-type of f, with
iterated p-order 0 < p, (f) < oo is defined by

lo T(r,
7p (f) = lim supg]%:T((f)f) (p>1 is an integer).

r——+oo

If f is an entire function, then the iterated p-type of f, with iterated p-order
0 < pp (f) < o0 is defined by

log, M (r,
Tap (f) = lim s_:lpgprppgf)f) (p > 1 is an integer).
r—+o0

Remark 1.1 Note that for p = 1, we can have a1 (f) # 71 (f). For example if
1

f(z)=e* then a1 (f) =1 # 71 (f) = —. However, by Proposition 2.2.2 in [18], we
™

have 7arp, (f) = 7 (f) for p > 2.

Consider for k > 2 the linear differential equation
FO 4 Ay (2) R0 4+ Ay () f 4 Ao (2) £ =0, (1.1)

where Ao (z) £ 0,...,Ar_1(2) are entire functions. It is well-known that all solu-
tions of equation (1.1) are entire functions and if some of the coefficients of (1.1) are
transcendental, then (1.1) has at least one solution with order p(f) = 4+o00. As far as
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we known, Bernal [7] firstly introduced the idea of iterated order to express the fast
growth of solutions of complex linear differential equations. Since then, many authors
obtained further results on iterated order of solutions of (1.1), see e.g. [2,8,9,17].

In [17], Kinnunen have investigated the growth of solutions of equation (1.1) and
obtained the following theorem.

Theorem A ([17]). Let Ao (z2),..., Ax—1 (2) be entire functions such that i (Ag) = p
(0 <p<o0). If either max{i(A;): j = 1,2,....k — 1} < p or max{p, (4;): j =
1,2,..,k =1} < pp(Ao), then every solution f # 0 of (1.1) satisfies i(f) =p+1
and pp11 (f) = pp (Ao) -

Note that the result of Theorem A occur when there exists only one dominant
coefficient. In the case that there are more than one dominant coefficients, the author
[2] obtained the following result.

Theorem B ([2]). Let Ag(2),..., Ax—1(2) be entire functions, and let i(Ap) = p
(0 < p < o0). Assume that either

max{i(4;):7=1,2,...,k—1} <p

or
max{pp (4;) :j =1,2,....k =1} < pp (Ao) = p (0 < p < +00)

and
max{7ar,p (A;) 1 pp (A5) = pp (A0)} < Tarp (Ao) =7 (0 <7 < +00).

Then every solution f # 0 of (1.1) satisfies i (f) =p+1 and pp+1 (f) = pp (Ao) = p.

In [15, 16], Juneja, Kapoor and Bajpai have investigated some properties of entire
functions of [p, g]-order and obtained some results about their growth. In [20], in order
to maintain accordance with general definitions of the entire function f of iterated
p-order [17,18], Liu-Tu-Shi gave a minor modification of the original definition of the
[p, q]-order given in [15, 16]. With this new concept of [p, g]-order, Liu, Tu and Shi [20]
have considered equation (1.1) with entire coefficients and obtained different results
concerning the growth of their solutions. After that, several authors used this new
concept to investigate the growth of solutions in the complex plane and in the unit
disc [3,4,5,13,19,23,25]. For the unity of notations, we here introduce the concept
of [p, g]-order, where p, ¢ are positive integers satisfying p > ¢ > 1 (e.g. see, [19,20]).

Definition 1.4 ([19,20]). Let p > ¢ > 1 be integers. If f is a transcendental
meromorphic function, then the [p, g]-order of f is defined by

It is easy to see that 0 < pp, 4 (f)
and so ppp.q (f) = 0 for any p > ¢

oo. If f is rational, then T (r, f) = O (logr),
1. By Definition 1.4, we have that pp 17 (f) =
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p1(f) = p(f) usual order, pp1j(f) = p2(f) hyper-order and pp,1) (f) = pp(f)
iterated p—order.

Remark 1.2 Both definitions of iterated order and of [p, ¢]-order have the disadvan-
tage that they do not cover arbitrary growth, i.e., there exist entire or meromorphic
functions of infinite [p, gJ-order and p-th iterated order for arbitrary p € N, i.e., of
infinite degree, see Example 1.4 in [10].

Recently, Chyzhykov and Semochko [10] have given general definition of growth
for an entire function f in the complex plane, which does not have this disadvantage
(see [22]) as follows.

Asis [10], let @ be the class of positive unbounded increasing function on [1, +00)
such that ¢ (e?) is slowly growing, i.e.,

Ve>0: lim ple ):1.

t=oo ¢ (ef)

We give some properties of functions from the class ®.

Proposition 1.1 ([10]). If ¢ € D, then

—1 1 m
Vm >0, Vk>0: lim L‘,’fm) = +o0, (1.2)

r—+00 xv

-1
V6> 0: lm 08¢ ((A+9)7)
S oge 1 ()

= +o00. (1.3)

Remark 1.3 ([10]). If ¢ is non-decreasing, then (1.3) is equivalent to the definition
of the class ®.

Definition 1.5 ([10]). Let ¢ be an increasing unbounded function on [1, +00). Then,
the orders of the growth of an entire function f are defined by

M (r, . . log M (r,
) = SR, (1) sy ZE

If f is meromorphic, then the orders are defined by

T(r.f)
o (f>:hm511pg0(€ ), P (f):hmsupw.

r—s+too logT r—stoo logr
Remark 1.4 Now, if we suppose that ¢ (1) = loglogr, then it is clear that ¢y € ®. In

this case, the above definition of orders coincide with definitions of usual order and
hyper-order, i.e., if f is entire, then

- _ loglog M(r, f)
0 _ ) _
Proglog (f) = limsup=—=—7 "2 = (),
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logloglog M (r, f)

~1 1 _
Plog1og (f) = lim sup ogr =pr2(f)-
If f is meromorphic, then
log log (7)) log T (r, f)
0 . . ,
=1 R VA | o \»J)
Plogiog (f) = limsup—=— "= fimsup=—=1 p(f)
1 : e(T(r. f) _ .. loglog T'(r, f)
Ploglog (f) = llﬁsllog ogr llﬁs_ﬁlog og 1 =p2(f).

Proposition 1.2 ([10]). Let ¢ € ® and f be an entire function. Then
P () =p,(f), =01
Now, by Definition 1.5, we can introduce the concepts of u, lower order.

Definition 1.6 Let ¢ be an increasing unbounded function on [1,+00). Then, the
lower orders of the growth of an entire function f are defined by

i (f) = imint £ T oy 2y 2008 M0 )

r—s+oo logr ¥ r—s—+o0o logr
If f is meromorphic, then the orders are defined by
T(r,f)
0 1 : (p(e ) 1 T . @(T(Taf))
py (f) = liminf ogr Mo (f)= }ﬂinoiibgr :

Proposition 1.3 Let ¢ € ® and f be an entire function. Then

i, (f) =1, (f), 5=0,1

Proof. By using the same proof of Proposition 3.1 in [10] and replacing limsup by
liminf, we can easily obtain the Proposition 1.3.

Definition 1.7 Let ¢ be an increasing unbounded function on [1,4+00). Then, the
types of an entire function f with 0 < ﬁf;g (f) < 400 (i =0,1) are defined by

. ) exp{e (M (r, f - . exp {¢ (log M(r, f
1) = imsup {ng(fg Mo (1) = tmsup { (mm( Ny

If f is meromorphic, then the types of f with 0 < pfo (f) < 400 (i =0,1) are defined
by

exp {wp{)e(:i“f M () = s N
rPe

P ()

70 (f) = limsup

¢ r—>+00

Definition 1.8 Let ¢ be an increasing unbounded function on [1,400). Then, the
lower types of an entire function f with 0 < /lfp (f) < 400 (i =0,1) are defined by
~0

Tar., (f) = liminf exp {p (M (r, f))} Fir, (f) = liminf exp {¢ (log M(r, f))}

r—s o0 % () T M r—s+00 i ()
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If f is meromorphic, then the lower types of f with 0 < /Jfo (f) < 400 (i=0,1) are
defined by

im inf — et ) 1 .. €X T (r,
29 (1) = tming ST o2 (e )

r——+oco Tl‘g(f) ’ = r—s+o00 T/L}p(f)

Very recently, Bandura, Skaskiv and Filevych in [1, Theorem 7] proved that for
an arbitrary entire transcendental function f of infinite order, there exists a strictly
increasing positive unbounded and continuously differentiable function ¢ on [1, +00)
such that 5% (f) € (0,+00). On the other hand, Chyzhykov and Semochko [10],
Semochko [21], Belaidi [6] used the concepts of p,-orders in order to investigate the
growth of solutions of linear differential equations in the complex plane and in the
unit disc. Examples of such results are the following two theorems.

Theorem C ([10]). Let p € ® and let Ag(2),...,Ar—1(2) be entire functions sati-
sfying max{pg (A4;) :j=1,...,k—1} < pg (Ag). Then, every solution f % 0 of
equation (1.1) satisfies pl, (f) = p (Ao).

Theorem D ([6]). Let Ag (%), ..., Ag—1 (%) be entire functions, and let ¢ € ®. Assume
that max{p? (A;):j=1,...,k—1} < i (Ag) < p2 (Ao) < +00. Then every solution
1 %0 of (1'1) satisfies 2 (Ag) = il () < 7 () = 72 (Ao).

The main purpose of this paper is to consider the growth of solutions of equation
(1.1) with entire coefficients of finite p,-order in the complex plane by using the
concept of 7,-type. We obtain the following results which extend Theorems A-B-C-D.

Theorem 1.1 Let Ag(2),..., Ax—1 (%) be entire functions, and let ¢ € ®. Assume
that

max{p% (A;) 1 j=1,....k =1} < 5% (Ag) = p < +00 (0 < p < +00)
and

max{73r, (4;) : fy (A7) = 5 (Ao)} < Tipy (Ao) =7 (0 <7 < +00).
Then every solution f # 0 of (1.1) satisfies pj, (f) = p% (Ao) .

By using Proposition 1.2, combining Theorem C and Theorem 1.1, we obtain the
following result.

Corollary 1.1 Let Ay (z),..., Ax—1(2) be entire functions, and let ¢ € . Assume
that either

max{ﬁg(Aj) cj=1,...,k—1} <ﬁg(A0)

or
max{p), (A;):j=1,....,k—1} <5 (Ag) = p < +00 (0 < p < +00)
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and
max{f'](\)/[,w (Aj): ﬁg (A)) = ﬁg (Ao)} < 7:1(3/1750 (Ag) =7 (0 <7 < +00).
Then every solution f # 0 of (1.1) satisfies pl, (f) = p (Ao).

Theorem 1.2 Let Ay (2),..., Ax_1(z) be entire functions, and let ¢ € ®. Assume
that

max{p), (4;) 15 =1,....k =1} < i, (Ag) < p (Ag) = p < +00 (ji (Ag) > 0)
and
7 =max{7y; , (4;) : p% (4;) = i (A0)} < Fhpp (Ao) =7 (0 <7 < +00).
Then every solution f # 0 of (1.1) satisfies p, (f) = p2 (Ao) > i, (f) = i (Ao) -
By combining Theorem D and Theorem 1.2, we obtain the following result.

Corollary 1.2 Let Ag(z),..., Ax—1(2) be entire functions, and let ¢ € ®. Assume
that either

max{p) (A;) :j=1,....k — 1} < i (Ag) < 5% (Ag) < +00
or
max{p, (A;) : j = 1,...,k =1} < i (Ag) < p) (Ao) = p < +o00 (5, (Ag) > 0)
and
71 = max{7y; . (4;) : o (4;) = i (Ao)} < Ty (Ag) =7 (0 <7 < 400).

Then every solution f # 0 of (1.1) satisfies p, (f) = p2 (Ao) > i, (f) = fi, (Ao) -

2. Some preliminary lemmas

We recall the following definition. The logarithmic measure of a set F' C (1, +00) is

defined by Im (F) = 1+°° XFt(t) dt, where y g (t) is the characteristic function of a set
H. Our proofs depend mainly upon the following lemmas.

Lemma 2.1 ([11]). Let f be a transcendental meromorphic function, and let oo > 1 be
a given constant. Then there exist a set Ey C (1,00) with finite logarithmic measure
and a constant B > 0 that depends only on « and i,j (0 <i < j < k), such that for
all z satisfying |z| =r ¢ [0,1] U By, we have

f(j)(z)
fO(z)

<B {T<“f> (log® r) log T ar, f)}j_i .

r
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Lemma 2.2 Let ¢ € ® and f be an entire function with 0 < p~?p (f) =p < 40
and type 0 < %Z(\Jhp (f) < oo. Then for any given B < %1?4#; (f), there exists a set
E5 C [1,400) that has infinite logarithmic measure, such that for all r € Eo, we have

@ (M (r, f)) > log (Br”) .

Proof. By definitions of %1(\)/[1(10 (f) type, there exists an increasing sequence {r,},
rn — +oo satisfying (14 1) r, < r,4q and

Tnlirgooexp {QO (]T\é(’rnvf))} — ,7_1(\)47<p (f) .

Then, there exists a positive integer ng such that for all n > ny and for any given ¢
with 0 < e < 711?4,50 (Ap) — B, we have

exp { (M (rn, ))} > (Fir (f) =€) 71 (2.1)

For any given 8 < 7~'10v1, o (f), there exists a positive integer n; such that for all n > nq,

we have )
n B
(n+ 1) TR —e (22)

Taking n > ny = max {ng,n1}. By (2.1) and (2.2) for any r € [r,, (1 + ) r,], we
obtain

exp {g (M (r, f))} = exp {@ (M (rn, /))} > (Farp (f) =€) 71,

P
~0
> (TMW (f) — E) (n—|— 17") > Brf.
Set Fy = +Ljo [rn, (1 + %) rn} , then there holds
n=nsa
1),
400 (1+n)7ndt 400 1
Im (B) = > / <= > log<1+n> = 400.
n=ns Tn n=nsz

Lemma 2.3 ([6]). Let ¢ € ® and Ao (2),...,Ak_1(2) be entire functions. Then,
every solution f #0 of (1.1) satisfies

Py (f) <max{p) (4;): j=0,1,....k—1}.

Lemma 2.4 ([6]). Let ¢ € ® and f be a meromorphic function with p, (f) < +oo.
Then there exists a set E5 C (1,400) with infinite logarithmic measure such that for
r € B3 C (1,400), we have for any given £ > 0

T (r,f) <@ ' ((ny (f) +¢)logr).



Fast Growing Solutions to Linear Differential Equations with Entire Coefficients 71

Lemma 2.5 ([14]). Let f(z) = Y. anz™ be an entire function, u (r) be the mazimum
n=0

term, i.e.,
p(r) = max {|an| ™ :n =0,1,2,...},

v(r, f) = v¢(r) be the central index of f, t.e., v(r,f) = max{m: pu(r) = |a,|r"}.
Then
(i)

) = log ao| + [ vr) gy

t
0
here we assume that |ag| # 0.
(ii) For r < R
R
M —_— .
sy < fuste + |

Lemma 2.6 ([14,18]). Let f be a transcendental entire function. Then there exists
a set By C (1,4+00) with finite logarithmic measure such that for all z satisfying
|z| =7 ¢ Ey and |f(z)| = M(r, f), we have

F() _ (ve()
f(2) _< z

where vy (r) is the central index of f.

> (14+0(1)), (neN),

Lemma 2.7 [6]. Let ¢ € ® and [ be an entire function with j (f) < +oo. Then
there exists a set FEs C (1,400) with infinite logarithmic measure such that for
r € E5 C (1,400), we have for any given € > 0

M (r, f) < 7" (i () +¢) logr) .

3. Proof of Theorem 1.1

Suppose that f (£ 0) is a solution of equation (1.1). From (1.1), we can write

(k) (k—1) l
e >|<\ff Hac e E el E e
If max{pw (Aj) j = b —1} < p%(Ag) = p, then by Theorem C, we
obtaln oo (f) = (Ao). Suppose that max{p (4;) : j = 1,2,..,k -1} =

2 (40) = (0 < p % oc) and max(74y, (4) 2 (4, )= 7 (A)} < 7oy, (Ag) =
0<T< +oo) First, we prove that p; = pL (f) > p2 (Ao) = p. Suppoae the con-
trary p1 = p, (f) < P9 (Ag) = p. Then, there exists a set I C {1,2,...,k — 1} such
that pg, (4;) = ol (Ao) = p (j € 1) and 7, (A7) < Tip, (Ao) (J € I) Thus, we
choose a1, aq satisfying

maX{TMg,(A) el <a <a <7'M¢(A0) =T
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for sufficiently large r, we have
4, (2)] < o7t (log (aur?)) (j € J) (3.2)

and

|4 (2)] < ot (logrﬂl) < t(log(arr?)) (G €{1,...k—1}\J), (3.3)

where 0 < 81 < p. By Lemma 2.2, there exists a set Ey C [1,400) with infinite
logarithmic measure such that for all » € F5, we have

[ Ao ()| = M (r, Ag) > ¢ ™" (log (a2r”)) . (3.4)

By Lemma 2.1, there exists a constant B > 0 and a set E; C (1,+00) having finite
logarithmic measure such that for all z satisfying |z| = r ¢ Ey U [0, 1], we have

’f < B[T@r I (G=1,2,...,k).

(1) (z)
f(z)

Since [)i, (f) = p1, then by Proposition 1.2, for any given ¢ with 0 < ¢ < p — p; and
sufficiently large |z| = r ¢ E; U [0,1]

‘f(j)(z)
f(2)
Hence, by substituting (3.2), (3.3), (3.4) and (3.5) into (3.1), for any given ¢

(0 <e<min{225% p—p;}) and for sufficiently large |z| = r € E,\ (E; U[0,1]),
we have

<B[T@r )" <B [wl (log(2r)p1+s)r+1 (j=1,2,...k). (3.5)

o~ (log (azr?)) < kB~ (log (ay7*)) {wil <log (2T)p1+e)r+1
< ¢! (log (a1 +2¢) 7). (3.6)

The latter two estimates follow from the properties of (1.2) and (1.3). Since
E>\ (E1 U[0,1]) is a set of infinite logarithmic measure, then there exists a sequence
of points |z,| = r, € E2\ (E1 UJ0,1]) tending to +o0. It follows by (3.6) that

¢~ " (log (azrf)) < ¢~ " (log (a1 + 2¢) 15))

holds for all z, satisfying |z,| = r, € Ea2\ (E1 U[0,1]) as |z,| — +00. By arbitrariness
of ¢ > 0 and the monotonicity of the function ¢!, we obtain that a; > ay. This
contradiction proves the inequality p, (f) > 2 (Ag). On the other hand, by Lemma
2.3, we have

ﬁc,la(f)gmax{ﬁ&(AJ)]:Qlu7k_1}:ﬁg(A0)

Hence, every solution f # 0 of equation (1.1) satisfies 5, (f) = p2 (Ao) .
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4. Proof of Theorem 1.2

Suppose that f (£ 0) is a solution of equation (1.1). Then by Theorem 1.1, we obtain
Py (f) = p2% (Ao). Now, we prove that uy = fl (f) > fd (Ag) = p. Suppose the
contrary iy = il (f) < il (Ao) = p. We set b = max{p), (A4;) : p% (4;) < a2 (Ao)}.
If 5% (A;) < i (Ao) , then for any given & with 0 < 3¢ < min {y —b,7 — 71} and for
sufficiently large r, we have

145 (2)] < 7! (logr*e) <7t (IOgrﬁ?o(A”)‘zf) : (4.1)

If 52 (A7) = % (Ao), T, (A)) <71 < 3, (Ag) = 7, then for sufficiently large r,
we have

|4 (2)] <t (log (r1+¢) rf*fl(A@) (4.2)

and
~0
[0 (2)] = 7" (tog (r — &) s ) (4.3)

From (1.1), we can write

fE=1
f

By Lemma 2.1, there exists a constant B > 0 and a set E; C (1,+00) having finite
logarithmic measure such that for all z satisfying |z| = r ¢ E; U [0, 1], we have

’ f

f/

(k)
A0 (2)] < \ff Fe AL (4.4)

el

< B[T@r, ) (G=1,2,...k).

(4)(z)
f(z)

By Proposition 1.3 and Lemma 2.4, for any given € with 0 < € < p—puq and sufficiently
large |z| = r € E3\ (F1 U0,1])

‘ f

SBEwﬁW“<B%”O%®MﬁﬂH4Q:LZMM7(%)

(j)( 2)
f(2)
where FEj3 is a set of infinite logarithmic measure. Hence, by substituting (4.1) — (4.3)

and (4.5) into (4.4), for the above € with 0 < ¢ < min{“gb, Tg“,uf,ul}), we
obtain for sufficiently large |z| = r € E3\ (Ey U [0,1])

! (tog (7 = 2) 174 ) < Bl (log (71 + &) 1)) [T(2r, )]

< Bkyp™! (1og (11 +2) rﬂﬂ,(Ao)) [9071 (log (27,)”1%)}’“1

-0
<! (log (11 + 2¢) rﬁw(A°)> . (4.6)
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The latter two estimates follow from the properties of (1.2) and (1.3). Since
Es\ (E1 U[0,1]) is a set of infinite logarithmic measure, then there exists a sequence
of points |z,| = r, € E3\ (E1 U[0,1]) tending to +o0. It follows by (4.6) that

~0 ~0
ot (log (tr—¢) TZ“O(AO)) <t <log (11 4 2¢) rﬁ“’(A0)>

holds for all z, satisfying |z,| = r, € E3\ (E1 U [0, 1]) as |z,| — +o00. By arbitrariness
of ¢ > 0 and the monotonicity of the function cp_l, we obtain that 7y > 7. This
contradiction proves the inequality fi}, (f) > i (Ao).
Now, we prove il (f) < i), (Ao) . By (1.1), we have
‘ )
f

(k—1) 1
/ ; +--~+A1(z)|’J;

By Lemma 2.6, there exists a set £y C (1,+00) of finite logarithmic measure such
that the estimation

+ 4o (2)]- (4.7)

< 14 ()|

f(j)(z)_ Vf(T) J ) o
) —< p, ) (14+0(1) (G=1,k) (4.8)

holds for all z satisfying |z| = r ¢ E4, r — 400 and |f (z)] = M (r, f). By Lemma
2.7, for any given £ > 0, there exists a set E5 C (1,400) that has infinite logarithmic
measure, such that for |z| =r € Ej

4 ()] < o (logrte (Aot o)
Substituting (4.1), (4.2), (4.8) and (4.9) into (4.7), we obtain
v (r) <krf|140(1)] ¢! (bgragmom)

<! (1og rﬂii(AoHQE) (4.10)

for all z satisfying |z| = r € Es\E4, r — 400 and |f (2)] = M (r, f). By (4.10),
Lemma 2.5 and Proposition 1.1, we obtain for each € > 0

T(r,f) < logM(r,f) <logu(r,f)+log(v(2r, f)+2)
< 2v(r f)logr +log (2v (2r, f))
< 2071 (log rﬁga(AO)*Qs) log r + log (2(,0’1 (log (27,)&8,(140)%))
= 207! (log Tﬂg(AOH_QE) logr +log2 +logp! (log (Qr)ﬂ?"(AOHE)
< o (log rﬁg(Ao)+3e> .
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Hence,
~0
p (T(r, f)) _ logrfetdoltss
< = A 3e.
logr — logr 'u“’( 0) +32
It follows (T(r 1))
- L. T, -
i (f) = AL (f) = iminf 2D < a0 (4g) 4 3¢

r—+oo  logr

/i, (Ag) . Hence, every solution f # 0

Since ¢ > 0 is arbitrary, it follows that fi, (f)
< py () = 5y (Ao) -

<
of equation (1.1) satisfies i, (4o) = i}, (f) < 4
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Theorem in Seminormed Quasilinear

Spaces

Stimeyye Cakan and Yilmaz Yilmaz

ABSTRACT: The concept of normed quasilinear spaces which is a gen-
eralization of normed linear spaces gives us a new opportunity to study
with a similar approach to classical functional analysis. In this study, we
introduce the notion of seminormed quasilinear space as a generalization
of normed quasilinear spaces and give various auxiliary results and ex-
amples. We present an analog of Hahn-Banach theorem, in seminormed
quasilinear spaces.
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1. Introduction

Normed quasilinear spaces are introduced by Aseev, [2], in an effort to generalize
normed linear spaces. A partial order relation was used to define normed quasilinear
spaces. Motivated by [2], and using the framework and the tools given in [2], we
developed the analysis in these spaces in [5, 6, 7, 8, 9, 12].

In this paper, we introduce the concept of seminormed quasilinear spaces and
mention its some basic properties. Also we state and prove a version of Hahn-Banach
theorem, one of the fundamental tools for the application of functional analysis, for
seminormed quasilinear spaces.

COPYRIGHT (© by Publishing House of Rzeszéw University of Technology
P.O. Box 85, 35-959 Rzeszéw, Poland
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2. Preliminaries and some results on quasilinear

spaces and normed quasilinear spaces

In this section, we present some basic definitions and results that appeared in
[2] and [12] and which will be using in the sequel. Let us begin with Aseev’s main
definition.

Definition 2.1. [2] A set X is called quasilinear space (qls, for short), if a partial
order relation “=<”, an algebraic sum operation and an operation of multiplication by
real numbers are defined in it in such a way that the following conditions hold for any
elements z,y, z,v € X and any «, 8 € R:

x <, (2.1)

r=<zifx <yandy = z, (2.2)
r=yife Jyandy <z, (2.3)
r+y=y+uz, (2.4)
r+(y+z)=(x+y)+2z (2.5)
there exists an element 6 € X such that z + 0 = z, (2.6)
a-(B-z)=(ap) - x, (2.7)
a-(r+y) =a-z+a-y, (2.8)
l-z=u, (2.9)

0-x=0, (2.10)
(a+p)-z2a-z+p- =z, (2.11)
r+zy+vifz <yand z < v, (2.12)
a-r=a-yifz=<y. (2.13)

Generally, a gls X with the partial order relation “<” is denoted by (X, <). Here, we
prefer denote the zero vector of X by 6 for clarity.

Every linear space is a qls with the partial order relation “=".

The most favorite example of qls which is not a linear space is the set of all
nonempty, compact and convex subsets of real numbers with the inclusion relation
“C”, the algebraic sum operation

A+B={a+b:a€ A, be B}
and multiplication operation by a real number A defined by

AA={da:a€ A}.
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We denote this set by Q¢ (R).

Another one is © (R) which is the set of all nonempty compact subsets of real
numbers.

In general, Q (E) and Q¢ (F) stand for the space of all nonempty closed bounded
and nonempty convex and closed bounded subsets of any normed linear space F, re-
spectively. Both are nonlinear gls with the inclusion relation and a slight modification
of addition operation by

A+B={a+b:ac A, be B}

and multiplication operation by a A € R defined by A+ A = {\a: a € A}. Where the
closure is taken with respect to the standard topology in R.

Lemma 2.1. [2] In a ¢ls (X, X), the element 0 is minimal, i.e., x =0 if x < 0.

Let X beaqlsand Y C X. Then Y is called a subspace of X if Y is a gls with
the same partial order relation and the restriction of the operations on X to Y .

Theorem 2.1. [12] Y is a subspace of gls X if and only if a-x+ -y €Y for every
z,y €Y and o, B € R.

An element 2’ € X is called inverse of x € X if x + 2’ = 6. Further, if an inverse
element exists, then it is unique. An element x possessing inverse is called regular,
otherwise is called singular. X, and X stand for the sets of all regular and singular
elements in X, respectively, [12].

It will be assumed throughout the text that —z = (—1) - z.

Suppose that every element x in a qls X has inverse element 2’ € X . Then the
partial order in X is determined by equality, the distributivity condition in (2.11)
holds and consequently, X is a linear space, [2]. In a real linear space, “=" is only
way to define a partial order such that the conditions (2.1)-(2.13) hold.

On the other hand, an element = € X is said to be symmetric if —z = z, and Xy
denotes the set of all symmetric elements.

X, X4 and X U{0} are subspaces of X and called regular, symmetric and singular
subspaces of X, respectively, [12].

Definition 2.2. [2] Let (X, <) be a gls. A real function ||.||y : X — R is called a
norm if the following conditions hold:

lz]|x > 0if x # 6, (2.14)

o+ yllx < llolly + - (2.15)

ozl = lal 2l (2.16)

if 2 <y, then [y < llyllx (2.17)

if for any € > 0 there exists an element z. € X such that (2.18)

z=2y+a.and ||z |y <ethenz <y.

A gls X ,with a norm defined on it, is called normed quasilinear space (normed gls,
for short).
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Let (X, =) be a normed gls. Hausdorff metric or norm metric on X is defined by
the equality

hx(z,y)=inf{r >0:z<y+al,y 2x+ayand |a}| <r, i=1,2}.

Since z <y + (z —y) and y = x + (y — z) for any elements =,y € X, the quantity
hx (z,y) is well defined. Also, it is not hard to see that the function hx satisfies all of
the metric axioms and we should note that hx (z,y) may not equal to ||z — y|| y if X is
a nonlinear gls; however hx (x,y) < ||z — y|| y is always true for any elements z,y € X.
Therefore, we use the metric instead of the norm to discuss topological properties in
normed quasilinear spaces. For example, x,, — x if and only if hx (z,,z) — 0 for the
sequence (z,) in a normed qls. Although, always ||z, — x|y — 0 implies z,, — z in
normed quasilinear spaces, x, — « may not imply ||z, — x|y — 0.

Let E be a real normed linear space. Then (F) and Q¢(F) are normed quasi-
linear spaces with the norm defined by

[Allg = sup [l - (2.19)
acA

In this case, the Hausdorff metric is defined as usual:
ho(A,B)=inf{r >0: AC B+ S(0,r), BC A+ S(0,r)},
where S(0,7) is the closed ball of radius r about 6 € X, [2].

Lemma 2.2. [2] The operations of algebraic sum and multiplication by real num-
bers are continuous with respect to the Hausdorff metric. The norm is a continuous
function with respect to the Hausdorff metric.

Lemma 2.3. [2] Let X be a normed gls and n be a positive integer.
a) Suppose that T, — xo, Yn — Yo and T, = yn for any n. Then xo =< yo.
b) Let x, — xo and z, — xo. If v, Xy, X 2z, for any n, then y, — xg.
c) If z,, + yn — zo and y, — 0, then x,, — xo.

Definition 2.3. [2] Let (X, <) and (Y, <) be quasilinear spaces. A mapping T : X —
Y is called a quasilinear operator if it satisfies the following three conditions:

T(a-z)=a-T(x) for any o € R, (2.20)
T($1 —|—$2) < T($1) —|—T(.732), (221)
if 2y X g, then T (z1) X T (z2) . (2.22)

If X and Y are linear spaces, then the definition of a quasilinear operator coincides
with the usual definiton of linear operator. In this case, condition (2.22) is automat-
ically satisfied.
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Definition 2.4. [2] Let X and Y be normed linear spaces. Any mapping from X to
Q(Y) is called a multivalued mapping.

A quasilinear operator 7' : X — Q(Y) is called a multivalued quasilinear mapping.
In this case, conditions (2.20) and (2.21) take the form

T(a-z)=a-T(z) for any o € R,

T(l‘l +l‘2) C T(l‘l) +T(IQ)

Also, condition (2.22) is automatically satisfied.
On the other hand, any quasilinear operator from X to Q(R) is called a quasilinear
functional.

3. Seminormed quasilinear spaces

In this section, we propose a generalization of normed quasilinear spaces. Let us
start the following definition.

Definition 3.1. Let (X, <) be a gls. A real function p : X — R is called a seminorm
if the following conditions hold:

p(z) >0if z # 6, (3.1)
p(z +y) < plx) +pY), (3.2)
pla-z) = |alp(z), (3.3)
p(z) <ply) if z 2 y. (3.4)

A qls X with a seminorm defined on it, is called seminormed quasilinear space (briefly,
seminormed qls).
A seminorm p is called total seminorm (or norm) if the condition

“if for any € > 0 there exists an element z. € X such that
x =Xy+z. and p(z.) < € then x < y” (3.5)
holds.

Note that this definition is inspired from the definition of norm presented by Aseev
in [2] and every seminormed (normed) gls is a semimetric (metric) qls.

Proposition 3.1. Let (X,p) be a seminormed gls. Then the equality
hx(z,y) =inf{r >0:2 Jy+aj, y2x+aj, pla;) <r, i=1,2} (3.6)

defines a semimetric on X. If p is total, hx becomes a metric.
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Proof. First of all, we should note that the quantity hx is well defined since x =<
y+ (x—y) and y <Xz + (y — z) for any elements z,y € X.
Assume that x = y. Then x < y and y < x. According to this,

x=Xy+aj and y 2z + aj

for af = a = 6. That implies hx (z,y) = 0 since p(a]) = p(a}) = 0.
Clearly hy is symmetric. Further, remembering that

hX(x,z):inf{TEO:sz—l—a{, z X x+ ah andp(a?)gg, i:1,2}

and

hX(z,y):inf{rzo:yjz—l—b’{, z Xy + b5 and p(b]) < —, z'=1,2}7

we write x <X y + af + b5 for every elements a] and b5 such that z < z + a] and

z 2y + b
Similarly, we can say y < x + a4 + b} for every elements af and b] such that
y 2 z+0b] and z < x + aj. Since

play +b3) < p(ay) +p(b;) <
and
pla; +b1) < plag) + p(by) <
we get hx(z,y) < hx(z,2) + hx(z,y). Because
hx(z,y)=inf{r >0: 2 y+a]+b, y<z+al+0b],
p(ay +b5) <7 and p(a; + by) <7}
ginf{TZO:sz—i—a’{, z 2 x4+ ay, p(a?)gg, i:1,2}
+inf{r20:yjz+b§, z <Xy+by, pl) < g, i:I,Z}
= hx(z,2) + hx(z,9).

Hence the equality (3.6) defines a semimetric.
Now let us show that hx becomes a metric whenever that the seminorm p is total:
Let p be total and hx (x,y) = 0. Then for any € > 0 there exist elements z§,z§ € X
such that z <y +27, y R x+ 2§ and p(z§) <, i = 1,2. Hence the totality condition
implies that * <y and y < z, that is z = y. O

The function hy defined with the equality in (3.6) is called semimetric (metric)
derived from the seminorm (total seminorm) p.

Let hx be semimetric (metric) derived from the seminorm (total seminorm) p.
Then the inequality hx (z,y) < p(x — y) holds for every x,y € X.
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Proposition 3.2. Let (X,p) be a seminormed qls and hx be semimetric (metric)
derived from the seminorm (total seminorm) p. Then we have

i) hx (z+y,z+v) < hx (x,2) + hx (y,v),
i) hx (a-z,a-y) = |a|hx (z,y),
ii) p(z) = hx (z,0)
for each oo € R and every z,y,z,v € X.

Proof. Let us show that the inequality ¢) holds. Taking into account the definition
of hx and inf A + inf B > inf A + B, and using (2.12), we write

hx (z,z) 4+ hx (y,v)

=inf{r>0:x<z+a], z2z+aj, pla;) <r/2, i=1,2}
+inf{r>0:y <v+b], v=y+0b, pb)) <r/2, i=1,2}
>inf{ r>0:z<z+al, yv+bj, z 2z +ah, vy+b, }
- plai) <r/2, p(bj) <r/2, i=1,2

it r>0:x4+y<z+v+aj+0b, z2+vx+y+aj+ b5,
plal +0) <r, i=1,2

=hx (zx+y,z+0v).
The equalities i) and #ii) can be also easily obtained. O

Proposition 3.3. Let (X,p) be a seminormed gls, x,y € X and hx be semimetric
(metric) derived from the seminorm (total seminorm) p. Then

hx(x,0) < hx(y,0) if v < y. (3.7)

Further, quasilinear space operations are continuous with respect to the topology in-
duced by hx.

Proof. Primarily, we say that < y implies p(x) < p(y) since p is seminorm. Con-
sidering
p(z) = hx(z,0) and p(y) = hx(y,0),

it is obtained hx (z,0) < hx(y,0) whenever x < y.

Since the topology derived from the semimetric hx is first countable topology,
to say that addition and scalar multiplication operations are continuous, it will be
sufficient to show that these operations are sequentially continuous.

For continuity of addition, let (z,) and (y,) be two sequences in X such that
zn, —  and y, — y. Then for every € > 0 there exists N€N such that

Tp 2T+ aj,, T2 Ty +ay, andp(a;n) <—,i=1,2

€
27
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and

Yn SY+b5,, Y =Xyn+05, and p (b5,) < =, i=1,2

€
2 )
whenever n > N. Taking into account that p is seminorm and using (2.12), we can
write

$n+ynjx+y+ai,n+b§,nv
$+ijn+yn+a§,n+b§,n

and
p(a$, +b5,) <p(as,) +p(bi,) <
p(as, +b5,) <p(a5,) +p(b5,) <

These imply that z,, + y, = * + y.

Hence, it remains to show that multiplication operation is continuous. Let (z;,)
be a sequence in X such that z,, — x. Then for every € > 0 there exists V€N such
that c

Tn 2z +al,, v =, +ajy, and p(a;,) < ok ANERT, i=1,2
whenever n > N. Using (2.8), (2.12), (2.13) and the fact that p is seminorm, we can
say

AT, j)x-x—kx\-ain,
Az 2 Nxp+Aah,
and
P ()\ . ain) <|Ap (afm) <e 1=1,2.
This implies that A - z,, =& A - z. O

Also, we note that the semimetric (metric) hx induced by a seminorm (total
seminorm) on the gls X is not translation invariant. But this semimetric (metric)
satisfies the inequality

hx(z+a,y+a) <hx(z,y), a € X.

Indeed,
hx($+a, y+a) < hX(xay)+hX<aaa) :hX(x7y)

Now let us present an example of seminorm function which is not a norm.

Example 3.1. Consider the gls Q¢ (R?) and the function
p(A) = sup{las| : (21, 22) € A}

for any A € Qc(R?).
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It is easy to see that p holds seminorm axioms. On the other hand, p is not a
norm since p(A) = 0, for element A = {(,0) : =1 <t <1} € Qc(R?) # 0. Also the
condition (2.18) is also not satisfied:

Let A= {(¢,0):0<t<2}, B={(t0):0<¢<1} and € > 0 be arbitrary. Let
us define as

Ac={(t+¢€0):0<t<1}.
Then p(A) =0and AC B+ A, but A ¢ B.

Example 3.2. The function g(A4) = 151;:?,)4)

Example 3.1 is not a seminorm on Q¢ (R?), since

_op(A-4A) A4
1A =T D T T A

In the following, we give an example of a semimetric map that is not a metric.

Example 3.3. Let A4, B € Q¢ (R?) and

d(A, B) = sup {\/|a1 “by|: (a1,a2) € A, (by,by) € B}. (3.8)

Firstly let us show that this formula defines a function from Q¢ (R?) to R:
Consider the projection

formed by aid of the seminorm p in

# Aq(A).

p1: R =5 R, pi(ar,a2) = a

and remember that p; is continuous. p;(A) and p;(B) are compact subsets of R since
A and B are compact in R?. Hence there exist the numbers M;, My > 0 such that
|x| < M for every z € pi(A) and |z| < M, for every z € pi(B). Therefore, since

sup{\/|a1 —b1|: (a1,a2) € A, (b1,b2) € B}
= sup{\/|a1 —bi| a1 €p1(4), b Epl(B)}

and |z] < /My + M, for x € {\/\a1 —b1] a1 €p1(A), by € pl(B)}, the function d
is well defined.

It is easy to verify that d is a semimetric. But d is not a metric on Q¢ (R?). Indeed,
for elements A = {(2,3)} and B = {(2,4)} in Q¢(R?), d(A, B) =0, but A # B.

On the other hand, we can show that the semimetric d defined with (3.8) holds
the condition (3.7) and the algebraic operations on Q¢ (R?) are continuous according
to this semimetric.

For continuity of addition, let (A,) and (B,) be sequences in Q¢ (R?) such that
A, — A, B, — B and we take any x,, € A, + B,. Then there exist a,, € A, and
b, € B,, such that z,, = a,, +b,.We can write as a, = (a1,n,a2,) and b, = (b1, b2.)
since A,, B, € Qc(R?). Because of A,, — A, B, — B, we have

d(A,, A) = sup {\/al’n — a1 (@1n,a20) € Ay, (a1,a2) € A} —0
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d(Bn,B) = sup {\/ |b1,n — bl‘ : (bl,n,bgm) S Bn, (bl,bg) S B} — O,

whenever n — oo. Hence, we obtain that

and

d(A, + B,,A+ B)

= Sup {\/|a1,n + bl,n - (al + b1)| : (al,n + bl,n7 a2.n + bZ,n) € An + Bna
(a1 +b1,a2 +b2) € A+ B}

< sup{ la1,n — a1l : (a1n,020) € Ap, (a1,a2) € A}

+sup{ |b1,n — b1| . (bl’n,bg’n) S B»m (bl,bg) S B}
—04+0=0 (n— o).

This shows that the addition operation is continuous. Similarly it can be seen
that the real-scalar multiplication operation is continuous.

Lastly it remains to show that the condition (3.7) is satisfied. Assume that A C B.
Then

d(A,0) = sup{\/@: (a1,a9) € A}
< sup{\/@: (a1,a2) € B}
=d(B,0).

Remark 3.1. Every semimetric on a qls may not be obtained from a seminorm. In
Example 3.3, if the semimetric defined on Q¢ (IR?) is obtained from a seminorm, the
property i) in Proposition 3.2 should hold. However, we see that

d(\ A\ B) zsup{m: (A-ai,X-as) € A- A, (A-by,\-by) €A~B}
= |)\|sup{\/m: (a1,a2) € A, (b1,b2) € B}
= /|\d(4,B).
The following proposition is a comment of the condition (2.18).

Proposition 3.4. Let X be a normed qls, Ny is the family of all neighbourhoods of
0 and x,y € X. If for any V € Ny there exists some b € V such that x <y + b, then
z Xy.

Remark 3.2. In Proposition 3.4, the hypothesis “Let X be a normed qls” is indis-
pensable. Indeed, Let us recall from Example 3.1 that the function

p(A) = sup {|xo| : (z1,22) € A}, A€ Qc(R?)
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is seminorm on Q¢ (R?). We can construct a topology 7 on Q¢ (R?) by aid of p in
such a way that

Uere {A:p(A) <e} CU, for some € > 0.
We note that 7 is a semimetrizable topology with the semimetric
d(A,B)=inf{r >0: ACB+C], BCA+C], p(CI)<r i=1,2}.

Now, let A = {(t,0) e R2: 0<t <2}, B={(t,00 e R?:0<¢t <1}, ¢ >0be
arbitrary and

Be={(x1,20) ER*:0< 21 <1, 0 <29 < €}
Then there exists B. € V for every V € Ny such that A C B + B.. However A ¢ B.

Remark 3.3. In Lemma 2.3, the hypothesis “Let X be a normed qls” can not be
relaxed. Indeed, let us recall that every linear space is a qls with the partial order
relation “=” and consider the element = (z1,z2) and the seminorm

p(z) = p((z1,22)) = {[a1] : (21, 22) € R?}

on the gls (R2,=).

Let (zn) = ((3:0)) ., and () = ((3,0)),_,-

We see that x,, = y, for every n. On the other hand, the sequence ((%, O)):;l
converges to different two elements of R? according to this seminorm. For example,

(2n) = ((i,o))il —(0,1) ==z

= ((20))" >0
IR ORI (CE) R
T (G () e

while n — co. However x # y.

Now, let us denote by QF(R) the family of all n—tuples intervals which constitute
an important part of interval analysis.

QL(R) = {X = (X1, X2,..,X,) : X; € Qc(R) for 1 < i <n}.

We emphasize that Qf (R) is different from Q¢ (R™) which is the family of all nonempty
closed, bounded and convex subsets of R™.
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Q% (R) is a gls with the operations “@”, “©” and partial order relation “<” defined
by

@ : QE(R) x Q& (R) — Q¢ (R),
XoY=(X1+Y1,Xo0+Ys, .., X, +Y,)
and
©: R x Q&[R) = Q&(R),
a0X = (a Xj,a - Xo, ..., Xy,)

and
XY & X; CY, forevery i € {1,2,...,n}
for X = (X1, X2, .., X,), Y = (Y1, Y, .., Y,) € Q4(R) and a € R.
Q% (R) is a seminormed gls with equality defined by

X1

an® = [Xillaom)
for fixed i € {1,2,...,n}.
For example, on seminormed gls Q2 (R), the equality
||XHQg(R) = HX1||QC(]R)

defines a seminorm. It is not hard to see that seminorm axioms are hold. The function
defined by this way is not a norm since || X|| = 0 for element

X ={[0,0],[1,3],[-3,-2]} € Q& (R) # 6.

Example 3.4. Also the condition (2.18) is also not satisfied:
Let X = {[1,2],[3,5],[—4,-3]}, Y = {[1,2],[4,6],[3,5]} and € > 0 be arbitrary.
Let us define as
X =1[0,0],[-2,1],[-8,-T7]}.

Then || X[ =0and X <Y + X, but X A Y.

We note that T" will be called as a linear operator between quasilinear spaces, if
T satisfies the following conditions:

T(a-z)=ca- -T(x) for any a € R, (3.9)

Also, any linear operator from the quasilinear space X to R is called a linear functional
on quasilinear space X.

The Hahn-Banach theorem is an important tool in functional analysis and there
are several versions of it. Let us note that we are largely inspired by Theorem 2.2 in [4],
in stating the Hahn-Banach theorem for seminormed quasilinear spaces. The impact
of the Hahn-Banach theorem is the existence of linear functionals having specified
properties on a quasilinear space. The following is the main result of our work.
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Theorem 3.1. Let p be a seminorm on the quasilinear space X andY be a subspace
of X. Suppose that f is a linear functional fromY toR and f (y) < p(y) forally €Y.
Suppose also that ¢ is a quasilinear functional from X to Qc(R) and f (x) € ¢ ()
for every x € Y. Then there exists a linear functional g from X to R such that
g(x) = f(x) foranyx €Y and g (z) € ¢ () for any z € X.

Proof. Let Z be a subspace of X containing Y, g be a linear functional on Z that

extends f, and g (z) < p(z) for all z € Z. Also, let Z be the set of all pairs (Z,9).

First of all, since the pair (Y, f) is obviously an element of Z, the set Z is not empty.
Define a partial order relation “<” on Z as follows:

21CZ2

VA Z '
(Z1,91) < ( 2792)(:’{92(2):91(2), for all z € 7y

Using Zorn Lemma, Z posesses a maximal totally ordered subset {(Z4, gq)}. If it is
defined as Z = UZQ, clearly, Z is a subspace of X. Also, if z € Z, then z € Z,, for
some .

If z € Z, and z € Zg, then, without loss of generality, we may assume that
(Zasga) < (Zs,98). Therefore g, (2) = g (z), so that we may uniquely define
g (2) = go (2) whenever z € Z,,.

Now, let us show that the function g defined by this way is a linear functional on
Z. To do this, let z; and z; be elements of Z. Then z; € Z, and z; € Zg for some o
and J. Since the set {(Z,, g,)} is totally ordered, we may assume, again without loss
of generality, that Z, C Zg, hence both 2; and z; are in Z3. So

g(>\1 cz1+ Ao '2’2) =93 (/\1 c 21+ Ao - 2’2) = /\19[(3 (21)—|-)\295 (2’2) = /\19 (Zl)+)\gg (2’2) .

We note that if y € Y, then g(y) = f(y), so that g is an extension of f. So, g is a linear
functional on the subspace Z, that extends f, for which g (z) < p(z) and g (z) € ¢ (=)
for all z € Z, so that the proof will be complete if we show that Z = X.

Assume that Z # X, and v be an element in X which is not in Z. Also, Z’ denotes
the set of all elements in the form z + X -v for A € R and z € Z.

On the other hand, since

f=(1-1)-v=v—w

and
2472 2 z+2 forany 2,2 € Z,

we write 2+ 2’ < z+2' + v —wv from (2.12). Also p(z+2') < p(z+2 +v—v) by
the fact that p is a seminorm. Therefore, we observe

9(2) +9(2") = g(z + =)
<p(z+2)
<pz+2Z+v-—0)
<p(z+v)+p(z' —v)
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g(Z)—p(Z —v) <p(z+v) —g(2)

for any z,2' € Z.
Consider the sets

Wi={g(z) —p( —v): 2 € Z} CR,

Wo={p(z+v)—g(z):z€ Z} CR

and say
sup W7 = w; and inf Wy = ws.

It is clear that wy; < wy. Take wy to be any number for which w; < wg < ws and
define ¢’ on Z' by
g (z+X-v)=g(z) + X wp.

It is easy to see that ¢’ is linear and extends f.
If A > 0, then

>la > e >N
— —— ~—
+ o+
g &
V] o
N— ——

i
/
> w
+
S
N—
|
N
/N
>|
SN—
N—

> 4+
: <

This proves ¢’ (z+X-v) < p(z+X-v) for all z+ X-v € Z'. Hence (Z',¢') € Z
and (Z,g9) < (Z',¢’). But then the element (Z',¢') € Z will contradicts with the
maximality of (Z,g) by the fact that {(Z,,g.)} is a maximal totally ordered set.
This completes the proof. O
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ABSTRACT: We study a nonlinear quadratic integral equation of Con-
volution type in the Banach space of real functions defined and continuous
on a bounded and closed interval. By using a suitable measure of non-
compactness, we show that the integral equation has monotonic solutions.
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1. Introduction and preliminaries

There are many results in nonlinear functional analysis which contain conditions with
the measure of noncompactness. Integral equations are one of the most useful mathe-
matical tools in both pure and applied analysis. This is particulary true of problems in
mechanical vibrations and the related fields of engineering and mathematical physics.
The theory of integral equations is rapidly developing with the help of several tools of
functional analysis, topology and fixed point theory. For details, we refer to ([1]-[23])
and the references therein.

The goal of this paper is to study the solvability of the following nonlinear quadratic
integral equation

x(t) = g(t) + (Tx)(t)/0 k(t,s)f (s, 2(p(s))) ds, t € [0, M], (1.1)

in the Banach space of real functions being defined and continuous on a bounded and
closed interval. The main tool used to study the existence solutions of that equation
in the class of monotonic functions is a special measure of noncompactness.

COPYRIGHT (© by Publishing House of Rzeszéw University of Technology
P.O. Box 85, 35-959 Rzeszéw, Poland
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Now, we collect some facts, basic concepts and sketch some useful theorems which
will be needed further on. Let (E, | . ||) be an infinite dimensional Banach space with
zero element 6. Denote by B(x,r) the closed ball in FE centered at z with radius r.
The symbol B, stands for the ball B(6,r). If X is a nonempty subset of E, then
X and ConvX denote the closure and the convex closure of X, respectively. More-
over, the symbol mg denotes the family of all nonempty and bounded subsets of E
while ng stands for its subfamily consisting of all relatively compact sets.

We will accept the following definition of the concept of a measure of noncompactness
[4].

Definition 1. A mapping u : mg — [0, 00) is said to be a measure of noncompactness
in E if the following conditions are satisfied:

1. the family ker p = {X € mg : u(X) = 0} is nonempty and ker p C ng.
2. XCY = uX) < ).

3. w(X) = u(X) = p(ConvX).

4. p(AX + (1 =A)Y) < Apu(X) + (1= A)u(Y) for XA € [0,1].

5

. If (X,),n € N is sequence of closed sets from mg such that X,, 11 C X,, and
if lim,, 0 p4(X;,) = 0, then the set Xoo = (-, X, is nonempty.

The family ker(u) describe in 1 is referred to as the kernel of the measure of
noncompactness (.
A measure p is called sublinear if it satisfies the following two conditions:

6. pu(AX) = |\ uw(X), for \e R
7. (X +Y) < (X)) +p(Y).

Moreover, a measure g is called a measure with maximum property if

8. w(XUY) = max [ p(X), u(Y) ]

Other facts concerning measures of noncompactness and their properties may be
found in [4].

Definition 2. {Darbo condition} Let M be a nonempty subset of a Banach
space ' and the operator F' : M — F is continuous and transforms bounded sets
onto bounded ones, then F' satisfies the Darbo condition with constant & > 0 with
respect to a measure of noncompactness p if for any bounded subset X of M we have

w(FX) < kp(X).

If F' satisfies the Darbo condition with & < 1, then it is called a contraction with
respect to p. Next, we need the following fixed point theorem ([4], [16]).
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Theorem 1. Let Q be nonempty bounded closed convex subset of the space E and
let F: Q — Q be continuous and such that p(FX) < ku(X) for any nonempty
subset X of Q, where k is a constant, k € [0,1). Then F has a fized point in the

set Q.

Remark 1. Under the assumptions of the above theorem, it can be shown that the
set fizF of fixed points of F belonging to @ is a member of the family ker i [4]. This
fact permits us to characterize solutions of considered operator equations.

We will work in the classical Banach space C[0, M] consisting of all real func-
tions defined and continuous on the interval [0, M]. For convenience, we write
I =[0,M] and C(I) = C[0, M]. The space C([) is furnished by the standard norm

|| z ||= max{| z(t) |: ¢t € I}.

Now, we will display the definition of a measure of noncompactness in C'(I). That
measure was introduced and studied in [5].

To do this, let us fix a nonempty and bounded subset X of C(I). For z € X and € > 0
denoted by w(z, €), the modulus of continuity of the function z, i.e.,

w(z,e) =sup{| z(t) —z(s) |: t,s € I,| t — s |< €}

Further, let us put
w(X,€) = sup{w(z,¢) : x € X},

wo(X) = limw(X,€).
e—0
Now, let us define the following quantities:

d(xz) = sup{| z(s) —z(t) | —[z(s) —z(t)] : t,s € I,t < s},

i(x) = sup{| z(t) — z(s) | —[z(t) — x(s)] : t,s € I,t < s},
d(X) =sup{d(z) : x € X},

1(X) = sup{i(z) : z € X}.

Observe that d(X) = 0 if and only if all functions belonging to X are nondecreasing
on I. In a similar way, we can characterize the set X with (X) = 0.
Finally, we define the function p on the family me () by putting

H(X) = wo(X) + d(X). (1.2)

It can be shown [5] that the function g is a measure of noncompactness in
the space C(I). The kernel ker i of this measure contains nonempty and bounded
sets X such that functions from X are equicontinuous and nondecreasing on the in-
terval I.
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Remark 2. By properties of the kernel ker i1 of the measure of noncompactness p to-
gether with Remark 1 allow us to characterize solutions of the nonlinear integral
equation considered in the next section.

Remark 3. Observe that, in a similar way, we can define the measure of noncom-
pactness associated with the set quantity ¢(X) define above.

2. Main result

In this section, we will study the nonlinear quadratic integral equation of Volterra
type having the form

x(t) = g(t) + (Tiv)(t)/o k(t,s)f(s,2(¢(s))) ds, tel.

Assume that the following conditions are satisfied:
(i) g € C(I) is nonincreasing and nonnegative on the interval I;

(ii) f: I x Ry — Ry is continuous and there exists a nondecreasing function m :
R4 — R, such that the inequality

| f(s,z) |[<m(|z])
holds for all s € I and x € R;

(iii) The operator T': C(I) — C(I) is continuous and satisfies the Darbo condition
for the measure of noncompactness ;1 with a constant a > 0. Moreover, T is
a positive operator, i.e. Tx > 0 if z > 0;

(iv) There exists a nonnegative constant ¢ such that
| (Tz)(t) < qll |l
for each z € C(I) and t € I;

(v) k:IxI— Ry is integrable and nonincreasing in the first argument and
¢
K:sup{/ | k(t,s) | ds:t,s€1};
0

(vi) ¢ : I — I is increasing and continuous function;
(vii) There exists r, > 0 with || g || +Kgm(r,)r, < 1, and Km(rg)a < 1.
Now, we are ready to state the existence theorem.

Theorem 2. Let the assumptions (1)-(vii) be satisfied, then equation (1.1) has at least
one positive and nonincreasing solution x € C(I).
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Proof. Let us consider the operators V, G defined on the space C(I) in the following
way:

(Va)(t) = g(t) + (Ta?)(t)/o k(t,s)f (s, 2(p(s))) ds, t€[0,M]

and

(Ga)(t) = / K(t,5) (5, 2(0(s))) ds.

Firstly, we prove that if € C(I) then Vz € C(I). To do this it is sufficient to
show that if 2 € C(I) then Gx € C(I). Fix €>0,let x € C(I) and t,s € I such
that t < sand |t — s |<e. Then

(G)(s) - (Ga)(t) = / k(. 1) f(ra2(o(r))) dr — / k(b 7) f(r.2(p(r))) dr

= [ s niatetr) dr + [ K alelr) dr
0 t

- / K(t, ) f(r,2(p(r)) dr = / K(s,7)f (7, 2(p(r))) dr
0 0

- / k(1) f(r,2(p(r)) dr + / K(s,7)f (r,2(p(r))) dr

0

< / ks, 7)f(r,2(p(7))) dr — | k(s,7)f (7, 2(p(7))) dr
0 0

< k(.7 (. 2(p(r)) dr

Now

S

| (Gz)(s) = (Gz)(?) | | k(s m) (T 2(p(T))) | dr

IN

k(s (] 2(p(r)) ) dr

S

k(s m)m(|| = [|) dr

IA
— S —

IN

we obtain that

[ (Gz)(s) = (Ga)(t) [ < m(] = II)/tsk(&T) dr
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Now, in virtue of the Lebesgue dominated Theorem we have that fts k(s,7)dr =0
as € = 0. Thus Gz € C(I) and consequentially, V& € C(I). Moreover, for
each t € I we have

(VD1 < 1014101 | [ 06006 ds|
< allsalal [ ke smil et ) ds
< ol lmle D) [ K a
< ol +Eam(lz]) =]
Hence,

Vel < lgll+Egm(z|)]=]-

Thus, if || z ||< 7, we obtain from assumption (vii) that
[Vall < llgll+K gm(ro) ro < 1o

As a result the operator V transforms the ball B,, into itself.
In what follows, we will consider the operator V on the subset B of the ball B, de-
fined in the following way :

B} = {x € By, :x(t) > 0,for tel}.

Obviously, the set Bj.; is nonempty, bounded, closed and convex. Let z € Bj(‘) . Notice
that in view of our assumptions (i)-(iv) if x(¢) > 0 then (Vz)(t) > 0 for ¢ € I.
Thus V transforms the set Bjo into itself.

Now, we show that V is continuous on the set B;E . To do this, let us fix € > 0 and
take arbitrary z,y € B} such that ||  —y [|[< e. Then, for ¢ € I, we derive the
following estimates:

| (Va)(t) = (Vy) (@) |
= I(Tﬂf)(t)/0 k(t,s)f (s, x(p(s)))ds — (Ty)(t)/o k(t,s)f(s,9(p(s))) ds |

< I(Tx)(lf)/O k(t,s)f (s, 2(p(s))) ds — (Ty)(t) /Ot k(t,8)f(s,2(¢(s))) ds |
+ [(Ty)() /Otk(t, s)f(s,2(p(s))) ds — (Ty)(t) /Otk(t,S)f(s,y(w(S))) ds |
< [ (T2)(@t) = (Ty)() | /Otk(tvs)f(S»w(sD(S))) ds

+ [(Ty)(@) | /Otk(t,S) | F(s,2(p(s))) — f(s,9(p(s))) | ds
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IN

| Tz~ Ty | / k(t, s)ym(| 2(p(s)) |) ds

t
+ gyl / K(t, )6ro () ds

IN

| T~ Ty | / ktsym(l 2 ) ds + ¢ v 1l o (©) / K(t, s) ds

Km([z ) [ Te =Ty | + Kqllyll Brle),
Km(ro) [| Te =Ty || + KqroBr,(e),

IA A

where we denoted

Bro(e) = sup{| f(u,x(w)) = f(u,y(u)) [:we [,z,y € [0,70], | x —y [[< e}

Obviously, fr,(e) — 0 as € — 0 which is a simple consequence of the uniform conti-
nuity of the function f on I x [0, 7]
From the above estimate, we can write the following inequality:

| Ve —Vy || < Km(r,) || Tz — Ty || +KqroBr,(€),

which implies the continuity of the operator V' on the set B;‘(‘] .

In what follows, let us take a nonempty set X C Bﬁg . Further, fix arbitrary a
number € > 0 and choose z € X and t,s € I such that |t — s |< e and t < s. Then
by our assumptions we have

| (Vz)(s) = (Vz)(@) | < |g(s)—g(t) |
+ I(TJL‘)(S)/0 k(s,7)f (7, 2(¢(7))) dT—(Taf)(t)/O k(t,7)f (1, 2(p(7))) dr |

< 196 = 90|+ 1)) [ k)7 alptr) dr

— @00 [ K a(o(r) dr |

1@ [ K et ar - (o0 [ ke aten) dr |
b 1@ [ Ko dr - @0 [ K)o dr |
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(Tx)( |/ $,7) ) |) dr

+ (Tx)( |/ | k(s,7) — k(t,7) | m(| z(o(7)) |) dT

INA
§
+
=
5‘3

+ | (Tz)( |/kt,7‘m x(e(1)) |) dr
t

IA
o
£
_|_
3
-
8
=
—~
~
&
(e
~—
\%
=
CIJ
3
~—
QU
)

g ||x||m||x\|/ | k(s,7) — k(s,7) | dr

Lo ||x\|m<ux||>/t K(t,7) dr

IN

w(g,e) + Km(|| z [w(Tz,€) +q | = [ m(] = I)/:k(fﬁ) dr

IN

w(g,€) + Km(ro)w(Tx,¢) + gromi(ro) / K(t,7) dr.
t
Hence

wo(VX) < Km(r,) wo(TX) (2.1)

Now, fix arbitrarily x € X and ¢, s € I such that ¢ < s. Then we have the following
chain of estimates:

| (Va)(t) — (Va)(s) | = [(Vz)(t) — (Va)(s)]
= + (Tz)( /ktT 7, x( ) dr

~ (T2)( /km 7 2(o(r)) dr |

{9 + (Tw)(t) / K(t, ) (7, a(e(7) dr — g(s)

= @) [ K fralen) drl < (160 - o) | ~[o(0) - (5]

+ | (T2 / Kt (o (1)) dr — (Ta)(s) [ (s, rn((r) dr |

~ [T /ktr 7 2(p(r))) dr — (T)( /ksrf(rm(@(r)))dr]

IN

| (Tz)(1) k(t m)f (1, 2(p(7))) dr = (Tz)(s) tk(t 7)f (7, 2(p(7))) d7 |
0

+ (T /ktr 7 2(p(7))) dr — (Ta)( /ksrf(rx(go(r)))dr\
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_|_

(Ta)( /ksr 7 2(p(r))) dr — (Tz)(s /kSTf(m((T)))dr|

t

{[(T2)(t) / K(t,7)f(r,2(p(r)) dr — (Tx)(s) / K(t,7)f (7, 2((7)) dr]

0 0

(Ta)(s) / k(1) f (7, 2((7)) dr — (Tx)(s) / K(s,7)f(r, x(p(r))) d7]

S

(Ta)(s) / K(s,7)f(r,2(p())) dr — (Tx)(s) / K(s,7)f(r, 2(p(r))) dr])

0

— (Tx)(s) | / k(1) f (7, 2(0(7)) dr

(Tz)(s) / k(s,7) [ (7, 2(o(7)) dr.

Since f >0, k> 0 and t — k(t, s) is nonincreasing then we have

/0 (k(t.7) — K(s.7)f(r2(p(r)) dr > 0 (2.2)
and .
/ k(s,7)f(m,z(p(7))) dr — 0 as e — 0. (2.3)
Finally, (2.2)-(2.3) imply
(Va)(t) - (Va)s)| — [(Va)(t) - (Va)(s)]
< (| @T)(t) — (Tx)(s) | ~[(Tx)(t) — (Tx)(s)]} / Kt 1) f(r,2(p(r))) dr
< {(T)(t) — (Te)(s) | ~[(Tx)(t) — (Tx)( }/ (t, 7ym ) |) dr
< {(Ta)(t) — (Ta)s) | — [(Tx)(t) - (Ta)(s }/ bt rym(| « |l) dr
< mo){| (T2)(t) — (Tx)(s) | — (T2)(t) — (Tz)(s)]) / (t,7)

Km(ro) i(Tz).
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Hence, we get
i(Vz) < Km(rg) i(Tx),

and consequently,
1(VX) < Km(rg) i«(TX). (2.4)

Finally, by the equations (2.1)-(2.4) we obtain
w(VX) < Km(ro) p(TX) < Km(ro)a p(X).
Now, since Km(rp)a < 1 and applying Theorem 1, we complete the proof. O

Remark 4. By Remarks 1 and 2, we have that solutions of the integral equation
(1.1) belonging to the set B,f; are positive, nonincreasing and continuous on the
interval I = [0, M].

Now, we provide an example illustrating the applicability of Theorem 2.
For example, taking in the assumption (iv) ¢ = 1 and putting Tz = z for x € C(I) we
obtain the Volterra integral equation of the form

z(t) =g(t) + a:(t)/o k(t,s)f(s,z(p(s))) ds, tel.

Obviously that equation is a particular of equation (1.1).

2.1. Convolution type

Consider the quadratic integral equation of convolution type of the form

t
x(t) = g(t) + (Tz)(t)/ k(t — s)f (s, z(p(s))) ds, t € [0, M]. (2.5)
0
Now, the following Corollary deals with the integral equation of convolution type
(2.5) .

Corollary 1. Let k: I — R4 be nonincreasing function and let the assumptions of
Theorem 2 be satisfied, then equation (2.5) has at least one positive and nonincreasing
solution x € C(I).

2.2. Fractional order equation

Now, taking k(t — s) = “}‘2:{1 , then we have the following Corollary.

Corollary 2. Let M*m(r,)a < T'(a+ 1). Then under the assumptions (i)-(iv) and
(vi) of Theorem 2, the nonlinear quadratic functional integral equation of fractional
order

_ S)(x—l

£(t) = gt) + (Tx)(t) / (trw)

has at least one positive and nonincreasing solution x € C(I).

f(s,z(¢(s))) ds, t €[0,M], 0 < < 1.
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Corollary 3. Let (Tz)(t) = p(t,z(¥(t))) and I =[0,1] in Corollary 2, we obtain the
same result as was proved in [17].

Corollary 4. Under the same assumptions (i), (ii) and (vi) of Theorem 2 (with ¢ = 1
and (Tz)(t) = x(t)), then the fractional-order integral equation

t— S)afl

o) = o0)+at0) [ LT (ol s 1€ 0.1, 0<a <

has at least one positive and nonincreasing solution x € C(I) if M*m(r,) < I'(a+1).
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On the Maximum Modulus of a Polynomial

V.K. Jain

ABSTRACT: For a polynomial p(z) of degree n, having no zeros in
|z| <1 Ankeny and Rivlin had shown that for R > 1

R™ + 1
max [p(z)| < max p(2)]|.
max [p(z)] < —5— max|p(z)|
Using Govil, Rahman and Schmeisser’s refinement of the generalization of
Schwarz’s lemma we have obtained a refinement of Ankeny and Rivlin’s
result. Our refinement is also a refinement of Dewan and Pukhta’s refine-
ment of Ankeny and Rivlin’s result.

AMS Subject Classification: 30C10, 30A10.
Keywords and Phrases:Maximum modulus; Polynomial; Refinement; Refinement of
the generalization of Schwarz’s lemma; No zeros in |z| < 1.

1. Introduction and statement of results

For an arbitrary polynomial f(z) let M(f,r) = max|,—,|f(z)|. Further let p(z
> i—0@;j2’ be a polynomial of degree n. Concerning the estimate of [p(z)| on |z
we have the following well known result (see [7, Problem III 269, p. 158]).

)
<r

Theorem 1.1. If p(z) is a polynomial of degree n then
M(p,R) < R"M(p,1),R > 1,
with equality only for p(z) = Az".

For polynomial not vanishing in |z| < 1 Ankeny and Rivlin [1] proved

COPYRIGHT (© by Publishing House of Rzeszéw University of Technology
P.O. Box 85, 35-959 Rzeszéw, Poland
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Theorem 1.2. Let p(z) be a polynomial of degree n, having no zeros in |z| < 1. Then

R"+1

M(p, R) < 5

M(p,1),R > 1.

The result is the best possible with equality only for the polynomial p(z) = A+uz", |\ =
-

Dewan and Pukhta [2] used the generalization of Schwarz’s lemma [8, p. 212] to
obtain the following refinement of Theorem 1.2.

Theorem 1.3. Let p(z) = a,, [[;—, (= — z:) be a polynomial of degree n and let |z;| >
Ki>1,1<t<n. Then for R>1

B ) - L ey,

n {(1 — BP(M(p, 1)) 4|an|2}  [(R=D0 B

2 (1—B)M(p,1) (1_B)M(p71)+2|an|
(R-1)(1 - B)M(p,1)

{1 T A BMp.1) T 2| H’

M(p,R) <

|
—_
=]

where
1

B = .
2N 1
T+53005 K. —1
In this paper we have used Govil, Rahman and Schmeisser’s refinement of the

generalization of Schwarz’s lemma [4, Lemmal to obtain a new refinement of Theorem
1.2. Our refinement is a refinement of Theorem 1.3 also. More precisely we prove

Theorem 1.4. Let
n . n
NOED NI | RPN
be a polynomial of degree n such that

Further let

1
g 1-— — M(p,1), K;#1forallt (1.1)
M= 1+ % > Ktl—l
=1
gM(p, 1), K, =1forcertaint (1 <t<n) (1.2)
a = na, (1.3)
b (n—1Da,—1 (1.4)

R > 1 (1.5)
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and
1b]
1 R+ (M —Tal)
P S —Tal)
lal ]2 la| b2
M ~ I(M—Ta])? M ~ I(M—la])?
L+ gt o b2
P (M —Ta lal B
lal _ [b]2 M 4(M — |a|)?
M~ IM-Ta?
B BE__ _ [a]
1 n R+ sar—map i—Ja)? ~ M|
— b|2 a b| b2 al
D 2 4(M—]al])? - % R+ Q(Nl‘f\a\) + 4(A4‘J\a\)2 - lﬁ
L B2 o]
N a2 v Vi oo N R 4 GRR
o] b2 el | M AM —]a])? "
Yt smrany t Vi — w0
|b] )* ( |b] )”
—(R+— ) 41+ —t )
( 2(M — |a]) 2(M — a|)
la] — p]? 0
M 4(M—la)?
Then
M(p,R) <
R +1 R"—1 1
M(pvl)_ n M(pal)
2 ()
bl . (M —|a|)MR? + M|b|R + |a|(M — |a])

- (M —|a)(R-1)+ 3111

(M? — |af?) + M|b|

2(M — Jaf) (M? ~ Jaf?) — M]?
D,M d K;#1forallt
+ MM — [a]) , M > |a| an + # 1 for all ¢,

M (1) — (M~ Jal) (R~ 1)
Lol (M = Ja)MB® + MIBIR + |a| (M — |a])
2 M? — |a|?* + MId|
2(M — |a])(M? —|af?) = M]b|* )
2M(M — |af) ’
M > |a| and K; =1 for certain t (1 <t <mn),
R 2+ Yy - & . 1 (1+3211L—1 Ktl_l)M(p,lL
M = |a| and K, # 1¥t,
R"+1
2

_|_

M(p,1), M = |a|] and K; =1 for certain ¢, (1 <t < n).

111

(1.6)

(1.8)

(1.9)

(1.10)

(1.11)

(1.12)
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The result is the best possible if K; = 1 for certain ¢,(1 <t < n) and the equality
holds for the polynomial p(z) = A + pz™, |A| = |ul.

Remark 1.5. That Theorem 1.4 is a refinement of Theorem 1.3 can be seen from
the fact that a refinement of the generalization of Schwarz’s lemma is used to obtain
Theorem 1.4.

Further by taking K; = K, (K > 1), Vt, in Theorem 1.4 we get

Corollary 1.6. Let p(z) = Z?:o ajz’ be a polynomial of degree n, having no zeros
in|z| < K, (K >1). Further let

n
M = —2 _Mp1
T K (p, 1),
a = nap,,
b = (n—1a,_1,
R > 1
and
. U 1o
( R 10 ot MY Rl 6. o 1) )
lal _ D2 lal __ DbE__ Tl b2
M ~ A(M—Ja])? M — A(M_Ja))? M 4(M 1M —Ta])2
|al |b]?
L L I
M aM—|a)z " "
b DT
e 1 ( R sor—ap —Vawr—ap? ~— & |
= BE___ lal ] BE |
2\ q@r—anr ~ ™ R+ sr—ray + \ str—ep? ~ ™
B B2 lal
| 20T VA ~ W ) la P>,
[b] b[2 ol | |"M  4(M — |a])? ’
L+ searamay +  ateraye — o (M= lal)
4 -1 d )_1 |al b
- R+7) +(1+7 i R Y
( 2(M — lal) 2(M — lal) M 4M —|a])?
Then
R+ K
M(p,1) — (M — |a|)(R — 1
T K (p, 1) = ( la|)( )
L bl (O~ la) MB? + MIBIR + lal(M ~ |a])
M(p, R) < 2 (M? — |a|?) + M|
P L 20—l (022 o) - M "’
2M (M — |a]) ’ @b
R+ K
M(p,1 M = |al.
1+K (p7 )7 |CL|
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The result is the best possible if K = 1 and the equality holds for the polynomial
p(z) = A+ p2", [Al = |pl.

Remark 1.7. Corollary 1.6 is a refinement of Dewan and Pukhta’s result [2, Corol-
lary].

2. Lemmas

For the proof of Theorem 1.4 we require the following lemmas.

Lemma 2.1. If p(z) is a polynomial of degree n, having no zeros in |z| < 1 then

M(p',1) < =M(p,1).

|3

This lemma is due to Lax [5].

Lemma 2.2. Let p(z) = an, [[}—, (2 — 2t), be a polynomial of degree n. If || > K; >
1,1 <t < n, then

M@',1) < ”((Z; Ktl— 1)/<Z:=1 ?; i_ 1))M<p’ D).

The result is the best possible with the equality for the polynomial p(z) = (2 + k)™,
kE>1.

This lemma is due to Govil and Labelle [3].

Lemma 2.3. If f(z) is analytic and |f(z)] <1 in |z| <1 then

(2 < 1),

(L~ DIz + ¥ 2]+ /)1~ o)
TN faTa = e + P+ (= @)

where o/ = f(0), ¥ = f/(0). The example

Fz) = (a/+ 1—?—/(1’2722)/(1 B 1—6(1’27&/22)

shows that the estimate is sharp.
This lemma is due to Govil et al. [4].

Remark 2.4. By using the result [6, p. 172, exercise # 9] one can show that Lemma
2.3 is a refinement of the generalization of Schwarz’s lemma.

Lemma 2.5. If g(2) is analytic in |z| < 1, with
l9(2)

\
g(O) = ag,
g'(0) by

< M17|Z|§1,
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then
M, My (M, — |ay|)|z|* + M |by||z] + |a1| (M — |as|)

lg(2)] < |ax|(My — lax|)|z[? + Mu[b|z] + My (My — [as])
My, M;=|a]and |z| <1.

, My > |ay| and |z| <1,

Proof. It follows easily by applying Lemma 2.3 to the function g(z)/M;. O

3. Proof of Theorem 1.4
For the polynomial
T(2) = (1) (3.1)
we have
IT(2) = p'(2)] |2l = 1,
which by Lemma 2.1, Lemma 2.2, (1.1) and (1.2) implies that

()] < M|z < 1.
Therefore on applying Lemma 2.5 to T'(z) we get for |z] <1
M(M — |a])|z* + MIbl|2| + |al(M — |al)

IT(2)] < |al(M = |a[)[2[? + M]b||z| + M (M — |a)
M, M = |a|, (by (1.3)),

, M > |al, (by (1.3) and (1.4)),

which on using (3.1) and
1 .
zzﬁew 0 <0 <2m,

implies for 0 < 0 < 27

vt g (M = Ja)2(R? — 1)

P/ (Rei®)| < M {1 la|(M — |a|) + M[b|R + M (M — |a|) R? } ’
P =\ M > |a], (by (1.5)) (3.2)
MR", M =lal, (by (15)). (3.3)

Now we consider the case M > |a|. For 0 < § < 27 we have
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9 R ri(r? —1)
= MO0 [ a0 62)

R"—1 R r2—1
< M — M(M - |a|)2/ i
n 1 la[(M —al)

T+ Mblr + MM = Ja])r®
n_ 1 R
_ MR —(M—|a|)/ dr

n ~la]) / M|b|r + M? — |a]?
M(M — |a[)r? + M|br + |a|(M — |a])

dr

Rn

= M —( Ial)(R—l)

Ibl/ — |a])r + M|b|
+ d

M(M |a| r2+M|b|r+|a|< —
2(M? — M|b|2
N / ja?)(M —|af) = MJp]*
M —lal)r?2 + M|b|r + |a|(M — |al|)

= (M —la|)(R—1)
el M@ la|)R? + M|b|R + |a|(M — |a|)

2 (M2 —|a]?) + M]|b|

_ 2 _ 2\ 2 R
* o |a2|)1\(4j\(41\4 |(Illl)) = / lb] 21 \ \ ar
—|a 1 b |i _ b|2
{T+2<M7|a|>} T M T IM—Ta])?
R —1

- M — (M —|a])(R—1) +

bl (M — |a)MR® + M|b|R + |a| (M — |a]) N

2 (M2 — |a]?) + M]b|

2(M — |a|)(M? — |a|?) — M|b|?

QM3 [a]) D (by (1.6),(1.7) and (1.8)),

which implies
R -1
M(p,R) < M(p,1)+M — (M —a[)(R—-1) +
bl | (M —a) MR? + M[bR +|al(M — Ja]
2 (M2 — [af?) + M]b|
2(M — |a|)(M? — |a[?) — M]bJ>
2M (M — |al)

+

D
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and inequalities (1.9) and (1.10) follow respectively by using relations (1.1) and (1.2).
Further we consider the possibility M = |a|. The proof of inequalities (1.11) and
(1.12) is similar to the proof of inequalities (1.9) and (1.10), with one change:

inequality (3.3) instead of inequality (3.2)

and so we omit the details. This completes the proof of Theorem 1.4.

References

[1] N.C. Ankeny, T.J. Rivlin, On a theorem of S. Bernstein, Pac. J. Math. 5 (1955)
849-852.

[2] K.K. Dewan, M.S. Pukhta, On the mazimum modulus of polynomials, BHKMS 2
(1999) 279-286.

[3] N.K. Govil, G. Labelle, On Bernstein’s inequality, J. Math. Anal. Appl. 126 (1987)
494-500.

[4] N.K. Govil, Q.I. Rahman, G. Schmeisser, On the derivative of a polynomial, TIL.
J. Maths. 23 (1979) 319-329.

[5] P.D. Lax, Proof of a conjecture of P. Erdés on the derivative of a polynomial, Bull.
Amer. Math. Soc. 50 (1944) 509-513.

[6] Z. Nehari, Conformal Mapping, 1% ed., McGraw-Hill, New York, 1952.

[7] G. Polya, G. Szegd, Problems and Theorems in Analysis, Vol. 1, Springer-Verlag,
Berlin-Heidelberg, 1972.

[8] E.C. Titchmarsh, The Theory of Functions, The English Language Book Society
and Oxford University Press, London, 1962.

DOI: 10.7862/rf.2019.7

Vinay Kumar Jain

email: vinayjain.kgp@gmail.com
ORCID: 0000-0003-2382-2499
Mathematics Department

LLT.

Kharagpur - 721302

INDIA

Received 18.09.2018 Accepted 10.01.2019



Journal of

Mathematics
and Applications

JMA No 42, pp 117-133 (2019)

The Existence of Monotonic Solutions
of a Class of Quadratic Integral Equations
of Volterra Type

Osman Karakurt and Omer Faruk Temizer*
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1. Introduction

The theory of integral operators and integral equations is an important part of non-
linear analysis. This theory is frequently applicable in other branches of mathematics
and mathematical physics, engineering, economics, biology as well in describing prob-
lems connected with real world [1, 2, 7,9, 10, 11].

The aim of this paper is to investigate the existence of nondecreasing solutions of
a class of a quadratic integral equations of Volterra type. We will look for solutions
of those equations in the Banach space of real functions being defined and continuous
on a bounded and closed interval. The main tool used in our investigation is the
technique of measure of noncompactness which is frequently used in several branches
of nonlinear analysis [4, 7, 5, 9].

We will apply the measure of noncompactness defined in [6] to proving the solva-
bility of the considered equations in the class of monotonic functions.

The results of this paper generalize the results obtained earlier in the paper [3].

COPYRIGHT (© by Publishing House of Rzeszéw University of Technology
P.O. Box 85, 35-959 Rzeszéw, Poland
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2. Notation and auxiliary facts

Now, we are going to recall the basic results which are needed further on.

Assume that F is a real Banach space with the norm ||.|| and the zero element 0.
Denote by B(x,r) the closed ball centered at x and with radius r and by B, the ball
B(0,7). If X is a nonempty subset of E we denote by X, ConvX the closure and the
convex closure of X, respectively.

With the symbols AX and X + Y we denote the algebraic operations on the sets.
Finally, let us denote by 9 g the family of all nonempty and bounded subsets of E
and by g its subfamily consisting of all relatively compact sets.

Definition 2.1 (See [4]). A function p : Mg — [0,00) is said to be a measure of
noncompactness in the space E if it is satisfies the following conditions

1) The family kerp = {X € Mg : u(X) = 0} # @ and kerp C Ng,

2) X CY = u(X) < u(Y),

(

(

(3) u(X) = p(ConvX) = p(X),

4) pAX + (1 =N)Y) < pu(X)+ (1= M)u(Y), ford € [0,1],

(5) If {X, }n is a sequence of closed sets from Mg such that X, 1 C X, for
n=1,2,...and if lim,_,o p(X,) = 0, then the set Xo = (.2, X,, is nonempty.

The family kerp described above is called the kernel of the measure of noncompact-
ness p. Further facts concerning measures of noncompactness and their properties
may be found in [4].

Now, let us suppose that Q is a nonempty subset of the Banach space E and the
operator F': Q — FE is continuous and transforms bounded sets onto bounded ones.
We say that F satisfies the Darbo condition (with a constant k& > 0) with respect
to a measure of noncompactness p if for any bounded subset X of Q the following
inequality holds:

w(FX) < kp(X).

If F satisfies the Darbo condition with k£ < 1 then it is said to be a contraction with
respect to u, [8]. For our further purposes we will only need the following fixed point
theorem.

Theorem 2.1. Let Q be a nonempty, bounded, closed and convex subset of the Banach
space E and p be a measure of noncompactness in E. Let F : Q — Q be a continuous
transformation such that u(FX) < ku(X) for any nonempty subset X of Q, where
k €1[0,1) is a constant. Then, F has a fized point in the set Q, [3].

Remark 1. Under assumptions of the above theorem it can be shown that, the set
FizF of fixed points of F belonging to Q is a member of kery. This observation
allows us to characterize solutions of considered equations, [3].
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In what follows, we will work in the classical Banach space C[0, M] consisting of
all real functions defined and continuous on the interval [0,M]. For convenience, we
write I = [0, M] and C(I) = C[0, M]. The space C(I) is furnished by the standard
norm ||z|| = max{|z(t)| : t € I}.

Now, we recall the definition of a measure of noncompactness in C(I) which will
be used in the sequel. That measure was introduced and studied in the paper [6].

To do this let us fix a nonempty and bounded subset X of C(I). For € > 0 and
x € X denote by w(z,e) the modulus of continuity of = defined by

w(z,e) = sup{|z(t) — z(s)| : t,s € I, |t — s| < e}.
Further, let us put
w(X,e) =sup{w(x,e) : x € X},

wo(X) = lim w(X,¢e).

e—0

Next, let us define the following quantities

i) = sup{le(s) — 2(t)| - [e(s) —a(t)] : ;s € I, t < s},

i(X) =sup{i(x) : z € X}.

Observe that, i(X) = 0 if and only if all functions belonging to X are nondecreasing
on I. Finally, let us put

H(X) = wo(X) +i(X).

It can be shown that, the function u is a measure of noncompactness in the space
C(I) (see [6]). Moreover, the kernel kery consist of all sets X belonging to My
such that all functions from X are equicontinuous and nondecreasing on the interval
1.

3. Main result

In this section, we apply the above defined measure of noncompactness p to the study
of monotonic solutions of our integral equation.
We consider the following nonlinear integral equation of Volterra type

~(t)
z(t) = a(a(t)) + (Tx)(ﬁ(t))/o v(t, 7, z(n(r)))dr, t€l=1][0,M]. (3.1)

The functions a(«(t)), v(t, 7,2(n(7))) and (T'z)(5(t)) appearing in this equation are
given while x = z(¢) is an unknown function. This equation will be examined under
the following assumptions:
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(1) a,B,7,m: I — I are continuous functions and «, 3, are nondecreasing on I.
(#4) The function a € C(I) is nondecreasing and nonnegative on the interval I.

(#7) v: I xIxR — Ris a continuous function such that v : I x I xR — R and for
arbitrarily fixed 7 € I and « € Ry the function ¢ — v(¢, 7, 2) is nondecreasing
on I.

(iv) There exists a nondecreasing function f : Ry — R, such that the inequality
[v(t, 7, 2)| < f(Jz|) holds for t,7 € I and x € R.

(v) The operator T' : C(I) — C(I) is continuous and T is a positive operator, i.e.
Tx>0if2>0.

(vi) There exist nonnegative constants ¢, d and p > 0 such that [(Tx)(t)| < c+d||z||?
for each z € C(I) and all ¢t € I.

(vii) The inequality a(||la|]) + (¢ + dr?)M f(r) < r has a positive solution ry.

(viti) The operator T in B} = {x € B, : (t) > 0, t € I} satisfies the inequality
w(TX) < 0u(X) for the measure of noncompactness p with a constant 6 such
that M f(ro)f < 1, where 6 € [0,1).

Then, we have the following theorem:

Theorem 3.1. Under the assumptions (i)-(viii) the equation (3.1) has at least one

solution x = x(t) which belongs to the space C(I) and is nondecreasing on the inter-
val 1.

Proof. Let us consider the operator V' defined on the space C(I) in the following
way:

~(t)
(Va)(t) = ala(t)) + (T2)(B(1)) / olt, 7, 2(n(r)))dr.

The proof will now proceed in two steps: firstly V' is continuous and secondly V is
contraction transformation on B;f C C(I).

Step 1. In view of the assumptions (i), (i4), (¢4) and (v) it follows that, the
function Vz is continuous on I for any function x € C(I), i.e., V transforms the space
C(I) into itself. Moreover, keeping in mind the assumptions (iv) and (vi) we get

(1)
|(Va)(t)] < |a(04(t))|+|(T$)(5(t))|/0 o(t, 7, 2(n(7)))dr

IN
=

~(t)
a(llall) + (c + dljz|) / F(le(n(r) )dr

IN

v(t)
a(lled]) + (¢ + d\lffllp)/0 fl=]))dr
a(lledl]) + (e + dl|[|”) M f([|]])-

IA
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Hence, we obtain the inequality
V|| < alllel) + (e + dll<][”) M f([|])-

For rg > ||z|| such that provide assumption (vii), we get ||Vz|| < ro. This shows that
V transforms the ball B, into itself i.e., V : B, = B,,.

Let us consider the operator V on the subset B} of the ball B, defined by
Bl ={x € By, :x(t) >0, tel}.

Since the function x defined as x(t) = ro for all t € I is a member of the set B}, the
set B;E is nonempty. Since B,, is bounded, B;'[) is bounded. The inequalities

Az(t) + (1 — Ny(t) >0

and

Az 4+ (1= Nyl < Azl + (1= Myl < Aro + (1 = A)ro = 7o

hold for all x,y € B;’B, t € I and A such that 0 < A < 1. So, B;E is convex.

Let us take a convergent sequence (x,) C B;E C B,, so that lim, oz, = x.
Since

Jn — ] = max | (t) — 2(5)] = 0 (1~ o),

we get limy, o0 2n(t) = x(t). Hence, we have x(t) > 0 for all t € I. Thus, z € B}
and Bjf is closed.

In view of these facts and assumptions (i), (éi), (¢47) and (v) it follows that V
transforms the set B; into itself.

Now, we show that V is continuous on the set B,,J.g . To do this let us fix € > 0 and
take arbitrarily z,y € B} such that ||z —y|| < e. Then, for ¢ € I we get the following
inequalities:

(Va)(t) — (Vi) (o)
(1) ~(t)

= |@o)sw) / olt, 7, 2(n(r)))dr — (Ty)(B(2)) / olt, 7, y(n(r))dr
0 0

IN

~(t) ~(t)
(T2)((1)) / olt, 7 2(n(r)))dr — (Ty) (B(1)) / oft, 7 2(n(r)))dr

~(t) ~(t)
+ @) B / olt, 7,2 (n(r)))dr — (Ty)(B(1)) / o(t, 7, y(n(r)))dr
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IN

v(t)
[(T)(B(t)) — (Ty)(ﬁ(l‘))\/O lu(t, 7, z(n(7)))|dr

v(t)
+ \(Ty)(ﬁ(t))\/o l(t, 7, 2(n(7))) —v(t, 7, y(n(7)))| dr

IN

v(t)
[(Tz)(B(t)) — (Ty)(ﬁ(t))\/o f(lz(n(r)))dr

v(t)
+ \(Ty)(ﬁ(t))\/o l(t, 7, 2(n(7))) — v(t, 7,y(n(7)))| dr

IN

v(t)
[(Tz)(B(t)) — (Ty)(ﬁ(t))\/o flzl)dr

~(t)
T EO)) / [o(t, 7, £(9(7))) = v(t, 7, y(n(r))) | dr

IN

v(t)
[(Tz)(B(t)) — (Ty)(ﬂ(t))\/o f(ro)dr

y(t)
+ \(Ty)(ﬁ(t))\/o l(t, 7, 2(n(7))) — v(t, 7,y(n(7)))| dr

IN

~(t)
(T — Ty)(B®))] / F(ro)dr

v(t)
+ (chdHyll”)/0 lw(t, 7, z(n(7))) —v(t, 7, y(n(r)))| dr

(1)

(1)
ITz — Ty / fro)dr+ (c+dt)y [ B (e)dr
0 0

[Tz = Tyl M f(ro) + (c + drg) Br, (€)M,

IN

A

where G, () is defined as
Bro () = sup{|v(t, 7,z) —v(t,7,y)|: t,7 €1, x,y € [0,79], |x —y| < e}
From the above estimate we obtain the following inequality:
Ve = Vy|| < |Tx — Tyl Mf(ro) + (c+ drf) MpBy, (¢)-

From the uniform cotinuity of the function v on the set I x I x [0, 7] we have that
Bro(e) = 0 as e — 0 and from the continuity of T', we have that | Ta — Ty|| — 0 as
€ — 0. The last inequality implies continuity of the operator V' on the set B;B .

Step 2. In what follows let us take a nonempty set X C Bra' . Further, fix
arbitrarily a number € > 0 and choose € X and ¢, s € [0, M] such that |t — s| <e.
Without loss of generality we may assume that t < s. Then, in view of our assump-
tions we obtain
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IA
S
—~
Q
—~
V)
~
~
|
S
—
Q
—~
~+
n N =

(1)

(Tx) (8(s)) / o(s, 7, 2(n(r)))dr — (Tz) (B(1)) / olt, 2 (n(r)))dr

0

IN

w(a, w(a, €)) +

v(s)
[(Tz)(B(s)) — (Tw)(ﬂ(t))]/o v(s, 7, x(n(7)))dr

~(s) ~(s)
(T) (B(1)) / o(s, 7, 2(n(r)))dr — (Tz) (B(1)) / olt, 2 (n(r)))dr

~(s) ~(t)
(T) (B(1)) / oft, 7,2 (n(r)))dr — (Tz) (B(1)) / olt, 7, 2(5(r)))dr

v(s)
< w(avw(aﬁ))ﬂ(Tx)(B(S))*(Tw)(ﬁ(t))\/o lu(s, 7, 2(n(7)))|dr
v(s)
+ I(Tx)(ﬁ(t))l/0 (s, 7 2(n(7))) — v(t, 7, 2(n(7)))|dr
v(s)

+ [(Tz)(B)]

/ v(t, T, z(n(T)))dr
(1)

(

9
& (e)dr

IN

v(s)
w(a,w(a,e))er(T:E,w(B,s))/O f(To)dT+(C+dTg)/

0
(c+drg)f(ro)|y(s) — ()]
w(a, w(a,e)) + w(Tz, w(B,e))Mf(ro) + (c + drf) M&,, (¢)
+  (e+drg) f(ro)lv(s) = ()],

where &, (¢) is defined as

IN +

& (€) = sup{|v(s, 7, 2)) —v(t,m, )| : t,s,7 €1, |[s—t] <e, xe€[0,r0]}.

Notice, that in view of the uniform continuity of the function v on the set I x I x [0, 7]
and from the uniform continuity of the function v on the interval I, we have &, (¢) — 0
as € — 0 and (y(s) —~(¢)) — 0. Thus, we have the inequality

|(Va)(s) — (V) (1)
< w(a,w(a,e)) +w(Tz,w(B,e))Mf(ro) + (¢ + drh) ME&,, ()
+ (e+drg)f(ro)ly(s) — ()]
If we take the supremum at this inequality over the t’s and s’s, we have the inequality
w(Va,e) < w(a,w(a,e)) +w(Tz,w(B,e))Mf(ro) + (c+ drf) M&,, ()
+ (c+drg) f(ro)w(v,e).
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If we take the supremum at this inequality over x’s, we have the following estimation

w(VX,e) w(a, w(ev,e)) + w(TX, w(B,e))Mf(ro) + (¢ + drg) My, ()

<

+ (e+drf)f(ro)w(y,e).

For € — 0, we have

wo(VX) < M f(ro)we(TX). (3.2)

On the other hand, let us fix arbitrarily x € X and ¢,s € I such that ¢ < s. Then,
we have the following estimate:

|(Va)(s) — (Va)(t)| = [(Vz)(s) — (V) ()]
v(s)

a(a(s)) + (Tx)(ﬂ(S))/ v(s, 7, x(n(7)))dr

0

v(t)
- a(a(t))*(TfU)(ﬂ(t))/O o(t, 7, z(n(7)))dr

v(s)
- {a(a(S))vL(va)(ﬁ(S))/O v(s, 7, x(n(7)))dr

~(t)
~ a(alt)) - (T2)(B(®)) / v(t,r,xm(r)))czf]
< fala(s) — a(a(®)| - (a(a(s)) — a(a(t))]
~(s) ~(t)
4 ‘(Tﬂc)(ﬁ(S)) / o(s, 7, 2(n(r)))dr — (Tx)(B()) / olt, 7, 2(n(r)))dr

0

~(s) ~(t)
- [(Txm(s)) [ s matutenar - e | v(t,r,xm(r)))dr]

v(s) v(s)
< ](Txxms» [ ssmstutmyar - o) [ s matu(rir

~(s) ~(t)
+ ’(Tw)(ﬁ(t)) / ofs, 7, 2(n(7)))dr — (Tz) (B(1)) / olt, 2 (n(r)))dr

v(s) v(s)
- [(Txxﬁ(s)) [ s matutrnar - e [ v(smw(n(f)))dT}

~(s) ~(t)
(T) (B(1)) / o(s, 7, 2(n(r)))dr — (Tx)((1)) / v(t,T,w(n(T)))dT]

IN

v(s)
[[(Tz)(B(s)) — (Tz)(B1))| — [(Tz)(B(s)) — (Tff)(ﬁ(t))]]/O v(s, 7, x(n(7)))dr
< [(Tz)(B(s)) — (Tz)(B(1)| = [(T2)(B(s)) — (Tx)(BE)]]M f(ro).-

If we take supremum on both sides of this inequality over the ¢,s € I = [0, M], we
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have the inequality

i(Va) < Mf(ro)sup[|(Tx)(B(s)) — (Tx)(B(t))| — [(Tx)(B(s)) — (Tx)(B())]]
< Mf(ro)i(Tx),

since the function § is nondecreasing. If we take supremum over the x’s, we get the
inequality

(VX)) < Mf(ro)i(TX). (3.3)
Finally, from the inequalities (3.2) and (3.3), we obtain
WV X) < Mf(ro)(TX) < M f(ro)0u(X),
From the assumption (viii) which is
Mf(rg)d <1

and by applying Theorem 2.1, V' has a fixed point in the set Bjo.

Let us remember that from Remark 1, the set FixV of fixed points of V' belonging
to C(I) is a member of kerp. i.e. p(FixV) = 0 and this implies ¢(FixV') = 0. Therefore
the solutions are nondecreasing on I. Thus the proof is completed. O

Corollary 3.1. We assume that the function a is positive, the function f is contin-
uous and the assumptions (i)-(vi) and (viii) are provided in the Theorem 3.1. Let us
take the inequality

a(llel)) + (c+d)Mf(1) <1
instead of (vii). So, the function h defined as
h:[0,1] = R, h(r) = a(||al]) + (c+ dr?)M f(r) —r
is continuous and
h(0) = a(l|all) + M f(0) > 0
and
(1) = a(||el)) + (c+ d)Mf(1) — 1 < 0.

Thus, there exists at least one a number ry € (0,1) such that h(ro) = 0. Consequently,
all of the assumptions of the Theorem 3.1 hold and the equation (3.1) has at least one
solution x = x(t) € B} .

Example 3.1. Let us consider the equation

)
dr, tel=][0,1], (3.4)

t? N 1+ 2%(¢) /t2 sint + e*(”
5 2 0 8+
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where a(t) = 12, B(t) = t, y(t) = 2, n(7) = 72, a(s) = £, a(a(t)) = % and the

function a is nondecreasing and positive and [a| = 1, a([|a|)) = 2.
sint + e*
t7 ) = 5 . _
vlt,72) 8+
and 21
14+ 22(t
(Tz)(t) = —
We have the following estimate
sint + e” 1+e® 14l
4 = < =
ol 7y)| = [T2EE) < T2 < 1T o)

for all t,7 € I and x € R. From the above equation we see that f(x) = %. Let
us see that the operator T' is continuous. Let xy be arbitrarily element chosen from
C(I). For ||z — zo|| < 0, we have the following estimate:

2 2
Tz — Tay| = max 1+a2%()  1+a5(b)
tel 2 2
_ 1 20\ _ 2
= 5 max|2*(t) — 5(t)]
1
= 5 maxla(t) — zo(0)[2(1) + wo(1)]
and
lz(t)] = [x(t) —zo(t) + 2o ()] < |2(t) — 2o(t)] + |zo ()] < [lz — 2ol + [[z0]l
such that,

[z(t)] < 6+ [zol|- (3.5)
From the inequality (3.5), we obtain
|[2(t) + 2o ()] < [2(t)] + [[zol] < &+ 2|zol|-

Thus, we obtain

L max [[2(t) — 2o(8)||2(t) + 2o(8)]

Te—T
17w = Txol 2 tel

IN

1
5 (6 -+ 2z max () — 2o 1)
1
= 50+ 2flzolDlz — ol
Taking

1
50+ 2a0])d =
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we get

8242zl =26 =0 = (3+ |zol)? - [lzo]> — 2 =0
= (6+ llzol)? = llzoll® + 2¢

= d+ |lzoll = V/lzol* + 2e.
If § is chosen as
§ = /|lzo||* + 2 — [|xo]| > 0,

it is seen that the operator T is continuous at the point zy. Since x( is an arbitrarily
element chosen from C(I), T is continuous on C(I). On the other hand, for each
x € C(I) and each t € I the inequality

(Tx) ()] < e+d|z]]”, (p>0)

is provided. Namely,

L0 L 0l = 4 P <+ gl =30 d= 3, p=2
There exists ry positive solution that provides the inequality

a([[el) + (e +dr?)M f(r) <,
where ||a|| =1, a(||a||) = £, M = 1. Any number ry which provides the inequality

0,375018 < 1y < 1,65394
is a solution of the following inequality:
1 1 1 1
Sho(4en)(=+=2) <
5+8( +e)(2+2r>_r

For example rg = 1 is a solution of this inequality.
Let X #0, X CBf, z ¢ B;‘; and tq,ty € I. We have the following estimate:

T0?

L+a%(ty)  1+2°(h)

(Ta(t2)) — (Tx(ty))| = ‘

2 2
< glelta) + a(t)x(ts) — ()
< G Ua(ea) + o)) — ot
< Ul + lelatts) — ()
< ro)lats) — x(t)
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i.e.
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S [(Tz)(t2)) — (T)(t))] < S |(t2) — 2(t1)]

w(Tz,e) < w(z,e).

Thus, we have the following inequalities:

sup w(Tx,e) < sup w(x,e),
reX zeX

w(TX,e) <w(X,e),

lim w(TX,e) < limw(X,¢),
e—0 e—0

Let X #0, X C B, =z € B, t; <ty andt,ty € I. In this case we have the
following estimate:

Hence,

(T)(t2) — (Tz)(t1)] = [(T2)(t2) — (Tx)(t1)]
1+.’E2(t2)—1—$2(t1) 1+£L’2(t2)—1—$2(t1)
2 B [ 2

|z (t2) — 2(t2)[2(t2) + x(t1)] - %[(x(tz) — x(tr))(x(t2) + z(t1))]
(le(t2)| + [x(t)]) [Je(t2) — x(t)] = (2(t2) — x(t1))]
(]l + [z ll2(t2) — w(t)] = (2(t2) — 2(t1))]

[[z(t2) — x(t1)] — (z(t2) — z(t1))]
[2(t2) — x(t1)] — [2(t2) — x(t1)].

NP N~ DN RN~
[N}
3
o

sup [[(Tz)(t2) — (Tz)(t1)| = [(T)(t2) — (Tz)(t1)]]

ti,ta€l

< ts;ué][Im(tz) —x(t1)] — [x(t2) — 2(t1)]],

i(Tx) < i(x)

in view of the inequalities,

sup ¢(Tx) < sup i(x)
reX zeX
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and so, we obtain

(TX) <i(X). (3.7)
From the inequalities (3.6) and (3.7), we get

WTX) < p(X),

where 6 can be taken as 6 = 1. In this case the inequality M f(r9)f < 1 holds.
Because, for 0 =1, 1o =1, M =1 and f(1) = %7 the inequality

1+e
T8

holds. Since all of our assumptions are satisfied, this equation has a nondecreasing
solution on Bjf.

<1

MF(1)0

Remark 2. In the Example 3.1, since
1
(T2)(®)] < 5 + S ll=]”

v)
[(Tz)(®)] < ¢ +dz|

N | =

for all z € C(I) and t € I, the condition

—~

in [3] does not hold. Hence, the result given in [3] is not applicable to the integral
equation (3.4) in the Example 3.1.

Example 3.2. Let us consider the equation

dr, teI1=100,1,  (3.8)

3 s t? x(r?
ot sm(t—1—|—2)+1+x3(t)/ tant + e*(7)
0

5 7 2471

2. the function a(t) = w is

where a(t) = t, B(t) = t, v(t) = 3, n(r) = 7

1 We have the following estimate:
+e
2

nondecreasing and positive and a(||a]) = £

_ V3

tant + e*
2471

C o V3 + el”!

N ()

|U(t7 7, SU)| =

for all t,7 € I and € R. From the above equation, we see that f(x) = % and

(Tz)(t) = L:(t) It is obvious that T : C(I) — C(I). Let us see that the operator T
is continuous. Let zy be an arbitrarily element chosen from C(I). When ||z — x| < §

we have the following estimate:

L+ad(t)  1+a3(t)

Te -T
T~ T d .

max
tel
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|22 (t) + x(t)ao(t) + x5 (t)] |((t) = 2o (t))* + 3a(t)zo(t))]
[((t) = 2o(£))|? + 3|z (t)zo (1)
6% + 3Ja(t) — wo(t) + zo(t)]|z0(t)]

8% + 38| wol| + 3|0l

IN A CIA

From the above inequalities, we obtain

T2~ Taoll = 2 maxlla(t) — wo(0)[#2(6) + o(0)ro(t) + (1)

1

< 26+ 38 ol + 38lwol)
1

= §((5 + llzoll)® = llzoll?)

= 26+ lloll? — 2ol =

= LG mol)® = & + 2ol
= x =c+ |z
7 0 70

1
= 6+ [lwoll = (Te + [lo]*)?
= 8= (Te + [lzo]®)¥ — flzol| > 0.
If § is chosen as & = (7e + ||xq||®)3 — ||lzo|| > 0, it is seen that the operator T is

continuous at the point z. Since xq is an arbitrarily element chosen from C(I), T is
continuous on C(I). Since

1+ 23(t) 1 1 4 1 1 3 1 1, 4
Tz)(t)| = | ———2| < =+ =z°(t)| = =+ =|z(®)]" < = + =
|(Tz) ) \ | <zl 0= 2 2O < =+ e,
1 1
& 7) 77p )

the inequality
(Tz)(t)] < c+dz]]”, (p>0)
holds. There exists positive solution rg that provides the inequality
a(llall) + (¢ + dr?)M f(r) <,

where |laf| =1, a(|laf]) = £, M = 1.
Any number 7y providing the inequality

0,386812 < rg <1,32116

is a solution of the following inequality:

(;(\/g-‘r er)) (; - ;r?’) + % <
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For example rg = 1 is a solution of this inequality.
For any t1,ts € [0,1] such that [t — ;] <&, 0 # X C Bt = Bf and z € X, we
obtain

x3 e
[(Tz)(t2) — (Tx)(t1)] = 1+ 2%(ta) 14 2°(t)

T 7

— 2la) - (0
%|$(t2) — x(ty) |2 (t2) + w(t2)z(t1) + 2% (t)]

%Ifc(b) = a(t)](|o* (t2)] + |2 (t2)x(t)] + |2°(t1)])

IN

IN

1
< ;lfﬂ(b)—3?(t1)|3||$||2

3
< Zlalts) —a(t)]

If we take the supremum on both sides of inequality over t1,t; € [ such that
[ta —t1] <eand z € X, we get

w(Tz,e) < %w(m,a).
If we take the supremum at this inequality over x € X, we get
w(TX,e) < %w(X, £),
where, for ¢ — 0, we obtain
wo(TX) < Jun(X). (39)
For any t1,t3 € [0,1] such that t; < t5, ) # X C B} = Bf and = € X, we get

|(Tx)(t2) = (Tx)(tl)l— (Tz)(ts ( )( V)]

_ 1—|—1:3(t2) 1+az 1—|—3: 1—|—1:( 1)
o 7 7
= - |2%(t) — 2% (ta |** (t2) — 2°(t1)]

|(w(t2) = 2(t1) (2*(t2) + 2(t2)z(tr) + 2% (t1))]

(2(t2) = x(t1))(2* (t2) + 2(t2)a(tr) + 2° (1))

(2%(t2) + a(t2)x(tr) + 22 (1)) [|2(t2) — o (t2)| = (a(t2) — 2(t1))]
][l (t2) = 2(t)] = (2(t2) — 2 (t2))]

[z (t2) — 2(t1)] — (x(t2) — 2(t1))]-

IN
R TR [N TN TN T

IN
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If we take the supremum at this inequality over ¢y, ¢y € [0, 1] such that ¢; < to, we get
. 3.
i(Tz) < ?z(z)

If we take the supremum at this inequality over z € X, we get
3
i(TX) < Zi(X). (3.10)
From the inequalities (3.9) and (3.10) we get

p(TX) < 2u(X).

Then, 6 can be taken as 6 = % Forr=1,0= % and M =1, we get

Thus, all of our assumptions provide and hence this equation has a nondecreasing
solution on Bjf.

Remark 3. In the Example 3.2, since

| =

(T2)0)] < 5 + 2P

v)
[(Tz)(®)] < ¢ +dz|

—~

for all z € C(I) and t € I, the condition

in [3] does not hold. Hence, the result given in [3] is not applicable to the integral
equation (3.8) presented in the Example 3.2.

Acknowledgments

The authors would like to thanks the referees for their suggestions and corrections.

References

[1] R.P. Agarwal, D. O’'Regan, P.J.Y. Wong, Positive Solutions of Differential and
Integral Equations, Kluwer Academic Publishers, Dordrecht, 1999.

[2] LK. Argyros, Quadratic equations applications to Chandrasekhar’s and related
equations, Bull. Austral. Math. Soc. 32 (1985) 275-292.

[3] J. Banas, J. Caballero, J. Rocha, K. Sadarangani, Monotonic solutions of a class
of quadratic integral equations of Volterra type, Comput. Math. Applic. 49 (2005)
943-952.



Existence of Monotonic Solutions of a Class of Quadratic Integral Equations 133

[4]

[5]

J. Banas, K. Goebel, Measures of Noncompactness in Banach Spaces, Marcel
Dekker, New York, 1980.

J. Banas, A. Martinon, On monotonic solutions of a quadratic integral equation
of Volterra type, Comput. Math. Applic. 47 (2004) 271-279.

J. Banas, L. Olszowy, Measure of noncompactness related to monotoncity, Com-
ment. Math. 41 (2001) 13-23.

J. Banas, K. Sadarangani, Solvabolity of Volterra-Stieltjes operator-integral equa-
tions and their applications, Comput. Math. Applic. 41 (12) (2001) 1535-1544.

G. Darbo, Punti uniti in trasformazioni a codominio non compatto, Rend. Sem.
Mat. Univ. Padova 24 (1955) 84-92.

K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.

S. Hu, M. Khavanin, W. Zhuang, Integral equations arising in the kinetic theory
of gases, Appl. Analysis 34 (1989) 261-266.

D. O'Regan, M.M. Meehan, Ezxistence Theory for Nonlinear Integral and Inte-
grodifferential Equations, Kluwer Academic Publishers, Dordrecht, 1998.

DOI: 10.7862/rf.2019.8

Osman Karakurt

email: osman-44Q@yandex.com

ORCID: 0000-0002-4669-8470

Yesilyurt G. N. Mesleki ve Teknik Anadolu Lisesi
Malatya

TURKEY

Omer Faruk Temizer*

email: omer.temizer@inonu.edu.tr
ORCID: 0000-0002-3843-5945
Egitim Fakiiltesi, A-Blok

Inénii Universitesi

44280-Malatya

TURKEY

*Corresponding author

Received 10.04.2019 Accepted 12.06.2019



Journal of

Mathematics
and Applications

JMA 