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1. Introduction

The following trapezoid type inequality for mappings of bounded variation was
proved in [7] (see also [6]):

Theorem 1.1 Let f : [a, b]→ R, be a mapping of bounded variation on [a, b], Then∣∣∣∣∣
∫ b

a

f (t) dt− (b− a)
f (a) + f (b)

2

∣∣∣∣∣ ≤ 1

2
(b− a)

b∨
a

(f) . (1.1)

The constant 1
2 is the best possible.

A generalization (1.1) for mappings of bounded variation, was considered by
Cerone et al. in [6], as follows:∣∣∣∣∣(b− x) f (b) + (x− a) f (a)−

∫ b

a

f (t) dt

∣∣∣∣∣ ≤
[
b− a

2
+

∣∣∣∣x− a+ b

2

∣∣∣∣] · b∨
a

(f) (1.2)

for all x ∈ [a, b]. The constant 1
2 is the best possible.

In the same way, the following midpoint type inequality for mappings of bounded
variation was proved in [8]:
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Theorem 1.2 Let f : [a, b]→ R, be a mapping of bounded variation on [a, b], Then∣∣∣∣∣(b− a) f

(
a+ b

2

)
−
∫ b

a

f (t) dt

∣∣∣∣∣ ≤ 1

2
(b− a)

b∨
a

(f) . (1.3)

The constant 1
2 is the best possible.

A weighted generalization of trapezoid inequality for mappings of bounded vari-
ation, was considered by Tseng et. al. [12]. In order to combine the midpoint and
the trapezoid inequalities together Guessab and Schmeisser [13] have proved an inter-
esting a companion of Ostrowski type inequality for r-Hölder continuous mappings.
Motivated by [13], Dragomir in [14], has proved the Guessab–Schmeisser companion
of Ostrowski inequality for mappings of bounded variation. Recently, in [15, 16] the
authors proved a generalization of weighted Ostrowski type inequality for mappings
of bounded variation and thus they deduced several trapezoid type inequalities. For
recent new results regarding Ostrowski’s and generalized trapezoid type inequalities
see [1]–[5].

In this paper, we give a companion of (1.2) for mappings of bounded variation,
Lipschitzian type and monotonic nondecreasing. Applications to quadrature formulae
are given.

2. The Results

The following result holds:

Theorem 2.3 Let f : [a, b]→ R be a mapping of bounded of variation on [a, b]. Then
we have the inequality∣∣∣∣∣(x− a) (f (a) + f (b)) + (a+ b− 2x) f

(
a+ b

2

)
−
∫ b

a

f (t) dt

∣∣∣∣∣
≤
[
b− a

4
+

∣∣∣∣x− 3a+ b

4

∣∣∣∣] · b∨
a

(f) , (2.4)

for all x ∈
[
a, a+b

2

]
. Furthermore, the constant 1

4 is the best possible in the sense that
it cannot be replaced by a smaller one.

Proof. Integrating by parts∫ b

a

K (t, x) df (t) dt = (x− a) (f (a) + f (b)) + (a+ b− 2x) f

(
a+ b

2

)
−
∫ b

a

f (t) dt

where,

K (t, x) :=

 t− x, t ∈
[
a, a+b

2

]
t− (a+ b− x) , t ∈

[
a+b
2 , b

]
.
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Using the fact that, for a continuous mapping p : [a, b] → R and bounded variation
mapping ν : [a, b]→ R, then one has the inequality∣∣∣∣∣

∫ b

a

p (t) dν (t)

∣∣∣∣∣ ≤ sup
t∈[a,b]

|p (t)|
b∨
a

(ν) .

Applying the above inequality, for p(t) := K (t, x) and ν(t) := f(t), we get∣∣∣∣∣
∫ b

a

K (t, x) df (t) dt

∣∣∣∣∣ ≤ sup
t∈[a,b]

|K (t, x)| ·
b∨
a

(f) = max

{
x− a, a+ b

2
− x
}
·

b∨
a

(f)

=

[
b− a

4
+

∣∣∣∣x− 3a+ b

4

∣∣∣∣] · b∨
a

(f) ,

for all x ∈ [a, a+b
2 ], which proves (2.4). To prove the sharpness of (2.4), assume that

(2.4) holds with constant C > 0, i.e.,∣∣∣∣∣(x− a) (f (a) + f (b)) + (a+ b− 2x) f

(
a+ b

2

)
−
∫ b

a

f (t) dt

∣∣∣∣∣
≤
[
C (b− a) +

∣∣∣∣x− 3a+ b

4

∣∣∣∣] · b∨
a

(f) . (2.5)

Consider the mapping f : [a, b]→ R, given by

f (t) =

 0, t ∈ (a, b)

1
2 , t = a, b.

Therefore,
∫ b

a
f (t) dt = 0 and

∨b
a (f) = 1. Making of use (2.5) with x = 3a+b

4 , we get∣∣∣∣b− a2

[
1

2
+ 0

]
− 0

∣∣∣∣ ≤ C (b− a) · 1

which gives that, C ≥ 1
4 , and the theorem is completely proved.

Remark 2.1 In the inequality (2.4), choose

1. x = a, then we get∣∣∣∣∣(b− a) f

(
a+ b

2

)
−
∫ b

a

f (t) dt

∣∣∣∣∣ ≤ 1

2
(b− a) ·

b∨
a

(f) (2.6)

2. x = 3a+b
4 , then we get∣∣∣∣∣b− a2

[
f

(
a+ b

2

)
+
f (a) + f (b)

2

]
−
∫ b

a

f (t) dt

∣∣∣∣∣ ≤ 1

4
(b− a) ·

b∨
a

(f) (2.7)



8 M. W. Alomari

3. x = a+b
2 , then we get∣∣∣∣∣(b− a)

f (a) + f (b)

2
−
∫ b

a

f (t) dt

∣∣∣∣∣ ≤ 1

2
(b− a) ·

b∨
a

(f) (2.8)

Corollary 2.1 If f ∈ C(1)[a, b]. Then we have the inequality∣∣∣∣∣(x− a) (f (a) + f (b)) + (a+ b− 2x) f

(
a+ b

2

)
−
∫ b

a

f (t) dt

∣∣∣∣∣
≤
[
b− a

4
+

∣∣∣∣x− 3a+ b

4

∣∣∣∣] · ‖f ′‖1,[a,b] , (2.9)

where ‖·‖1 is the L1 norm, namely ‖f ′‖1,[a,b] :=
∫ b

a
|f ′ (t)| dt.

Corollary 2.2 If f is K-Lipschitzian on [a, b] with the constant K > 0. Then we
have the inequality∣∣∣∣∣(x− a) (f (a) + f (b)) + (a+ b− 2x) f

(
a+ b

2

)
−
∫ b

a

f (t) dt

∣∣∣∣∣
≤ K (b− a)

[
b− a

4
+

∣∣∣∣x− 3a+ b

4

∣∣∣∣] . (2.10)

Corollary 2.3 If f is monotonic on [a, b]. Then we have the inequality∣∣∣∣∣(x− a) (f (a) + f (b)) + (a+ b− 2x) f

(
a+ b

2

)
−
∫ b

a

f (t) dt

∣∣∣∣∣
≤
[
b− a

4
+

∣∣∣∣x− 3a+ b

4

∣∣∣∣] · |f (b)− f (a)| . (2.11)

A refinement of (2.10), may be stated as follows:

Theorem 2.4 Let f : [a, b] → R be an L–Lipschitzian mapping on [a, b]. Then we
have the inequality∣∣∣∣∣(x− a) (f (a) + f (b)) + (a+ b− 2x) f

(
a+ b

2

)
−
∫ b

a

f (t) dt

∣∣∣∣∣
≤ L

[
(b− a)

2

8
+ 2

(
x− 3a+ b

4

)2
]
, (2.12)

for all x ∈
[
a, a+b

2

]
. Furthermore, the constant 1

8 is the best possible in the sense that
it cannot be replaced by a smaller one.
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Proof. Using the fact that, for a Riemann integrable function p : [a, b] → R and
L–Lipschitzian function ν : [a, b]→ R, then one has the inequality∣∣∣∣∣

∫ b

a

p (t) dν (t)

∣∣∣∣∣ ≤ L
∫ b

a

|p (t)| dt.

Applying the above inequality, for p(t) := K (t, x) and ν(t) := f(t), we get∣∣∣∣∣
∫ b

a

K (t, x) df (t) dt

∣∣∣∣∣ ≤ L
∫ b

a

|K (t, x)| = L

[
(x− a)

2
+

(
a+ b

2
− x
)2
]

= L

[
(b− a)

2

8
+ 2

(
x− 3a+ b

4

)2
]
,

for all x ∈ [a, a+b
2 ], which proves (2.12). To prove the sharpness of (2.12), assume

that (2.12) holds with constant C > 0, i.e.,∣∣∣∣∣(x− a) (f (a) + f (b)) + (a+ b− 2x) f

(
a+ b

2

)
−
∫ b

a

f (t) dt

∣∣∣∣∣
≤
[
C (b− a) +

∣∣∣∣x− 3a+ b

4

∣∣∣∣] · b∨
a

(f) . (2.13)

Consider the mapping f : [a, b] → R, given by f (t) := t − 3a+b
4 . Therefore, f is

Lipschitzian with L = 1 and
∫ b

a
f (t) dt = (b−a)2

4 . Making of use (2.13) with x = 3a+b
4 ,

we get

(b− a)
2

8
≤ C (b− a)

2

which gives that, C ≥ 1
8 , and the theorem is completely proved.

Remark 2.2 In the inequality (2.12), choose

1. x = a, then we get∣∣∣∣∣(b− a) f

(
a+ b

2

)
−
∫ b

a

f (t) dt

∣∣∣∣∣ ≤ L (b− a)
2

4
(2.14)

2. x = 3a+b
4 , then we get∣∣∣∣∣b− a2

[
f

(
a+ b

2

)
+
f (a) + f (b)

2

]
−
∫ b

a

f (t) dt

∣∣∣∣∣ ≤ L (b− a)
2

8
(2.15)
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3. x = a+b
2 , then we get

∣∣∣∣∣(b− a)
f (a) + f (b)

2
−
∫ b

a

f (t) dt

∣∣∣∣∣ ≤ L (b− a)
2

4
(2.16)

A refinement of (2.11), may be stated as follows:

Theorem 2.5 Let f : [a, b] → R be a monotonic non-decreasing on [a, a+b
2 ] and on

[a+b
2 , b]. Then we have the inequality

∣∣∣∣∣(x− a) (f (a) + f (b)) + (a+ b− 2x) f

(
a+ b

2

)
−
∫ b

a

f (t) dt

∣∣∣∣∣
≤ (x− a) (f (b)− f (a)) + (2x− a− b) f

(
a+ b

2

)
+ 2

(
3a+ b

4
− x
)

(f (a+ b− x)− f (x)) (2.17)

for all x ∈
[
a, a+b

2

]
.

Proof. Using the fact that, for a monotonic non-decreasing function ν : [a, b] → R
and continuous function p : [a, b]→ R, then one has the inequality

∣∣∣∣∣
∫ b

a

p (t) dν (t)

∣∣∣∣∣ ≤
∫ b

a

|p (t)| dν (t).

Applying the above inequality, for p(t) := K (t, x) and ν(t) := f(t), we get

∣∣∣∣∣
∫ b

a

K (t, x) df (t) dt

∣∣∣∣∣ ≤
∫ b

a

|K (t, x)| df (t)
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By the integration by parts formula for the Stieltjes integral we have∫ b

a

|K (t, x)| df (t) =

∫ a+b
2

a

|t− x| df (t) +

∫ b

a+b
2

|t− (a+ b− x)| df (t)

=

∫ x

a

(x− t) df (t) +

∫ a+b
2

x

(t− x) df (t)

+

∫ a+b−x

a+b
2

(a+ b− x− t) df (t) +

∫ b

a+b−x
(t+ x− a− b) df (t)

= (x− t) f (t)|xa +

∫ x

a

f (t) dt+ (x− t) f (t)|
a+b
2

x −
∫ a+b

2

x

f (t) dt

+ (a+ b− x− t) f (t)|a+b−x
a+b
2

+

∫ a+b−x

a+b
2

f (t) dt

+ (t+ x− a− b) f (t)|ba+b−x −
∫ b

a+b−x
f (t) dt

= (x− a) (f (b)− f (a)) + (2x− a− b) f
(
a+ b

2

)

+

∫ x

a

f (t) dt−
∫ a+b

2

x

f (t) dt+

∫ a+b−x

a+b
2

f (t) dt−
∫ b

a+b−x
f (t) dt

Now, by the monotonicity property of f , we have∫ x

a

f (t) dt ≤ (x− a) f (x) ,

∫ a+b
2

x

f (t) dt ≥
(
a+ b

2
− x
)
f (x) ,

and ∫ a+b−x

a+b
2

f (t) dt ≤
(
a+ b

2
− x
)
f (a+ b− x) ,

∫ b

a+b−x
f (t) dt ≥ (x− a) f (a+ b− x)

giving that∫ b

a

|K (t, x)| df (t) ≤ (x− a) (f (b)− f (a)) + (2x− a− b) f
(
a+ b

2

)

+

∫ x

a

f (t) dt−
∫ a+b

2

x

f (t) dt+

∫ a+b−x

a+b
2

f (t) dt−
∫ b

a+b−x
f (t) dt

≤ (x− a) (f (b)− f (a)) + (2x− a− b) f
(
a+ b

2

)
+ 2

(
3a+ b

4
− x
)

(f (a+ b− x)− f (x)) ,
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which is required.

Remark 2.3 In the inequality (2.17), choose

1. x = a, then we get∣∣∣∣∣(b− a) f

(
a+ b

2

)
−
∫ b

a

f (t) dt

∣∣∣∣∣
≤ (b− a)

2

[
f (b)− 2f

(
a+ b

2

)
− f (a)

]
. (2.18)

2. x = 3a+b
4 , then we get∣∣∣∣∣b− a2

[
f

(
a+ b

2

)
+
f (a) + f (b)

2

]
−
∫ b

a

f (t) dt

∣∣∣∣∣
≤ (b− a)

4

[
f (b)− 2f

(
a+ b

2

)
− f (a)

]
. (2.19)

3. x = a+b
2 , then we get∣∣∣∣∣(b− a)

f (a) + f (b)

2
−
∫ b

a

f (t) dt

∣∣∣∣∣
≤ (b− a)

2

[
f (b)− 2f

(
a+ b

2

)
− f (a)

]
. (2.20)

3 3. Applications to Quadrature Formulae

Let In : a = x0 < x1 < · · · < xn = b be a division of the inter-
val [a, b], ξi ∈ [xi, xi+1], hi = xi+1 − xi, (i = 0, 1, 2, · · · , n − 1) and ν (h) :=
max {hi|i = 0, 1, 2, . . . , n− 1}.

Define the quadrature

Tn (f, In, ξ) =

n−1∑
i=0

[
(ξi − xi) (f (xi) + f (xi+1)) + (xi + xi+1 − 2ξi) f

(
xi + xi+1

2

)]
.

In the following, we establish some upper bounds for the error approximation of∫ b

a
f (t) dt by the quadrature T (f, In, ξ).

Theorem 4.1 Let f be as in Theorem 2.3. Then we have∫ b

a

f (t) dt = Tn (f, In, ξn) +Rn (f, In, ξn) (4.1)
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where, Rn (f, In, ξn) satisfies the estimation

|Rn (f, In, ξn)| ≤

[
1

4
ν (h) + sup

i=0,n−1

∣∣∣∣ξi − 3xi + xi+1

4

∣∣∣∣
]
·

b∨
a

(f) (4.2)

≤ 1

2
ν (h)

b∨
a

(f) .

Proof. Applying Theorem 2.3 on the intervals [xi, xi+1], i = 1, 2, · · ·n− 1, we get∣∣∣∣[(ξi − xi) (f (xi) + f (xi+1)) + (xi + xi+1 − 2ξi) f

(
xi + xi+1

2

)]
−
∫ xi+1

xi

f (t) dt

∣∣∣∣
≤
[

1

4
hi +

∣∣∣∣ξi − 3xi + xi+1

4

∣∣∣∣] · xi+1∨
xi

(f) .

Summing the above inequality over i from 0 to n−1 and using the generalized triangle
inequality, we deduce that∣∣∣∣∣T (f, ξn, In)−

∫ b

a

f (t) dt

∣∣∣∣∣ ≤
n−1∑
i=0

[
1

4
hi +

∣∣∣∣ξi − 3xi + xi+1

4

∣∣∣∣] · xi+1∨
xi

(f)

≤ sup
i=0,n−1

[
1

4
hi +

∣∣∣∣ξi − 3xi + xi+1

4

∣∣∣∣] · n−1∑
i=0

xi+1∨
xi

(f)

≤

[
1

4
ν (h) + sup

i=0,n−1

∣∣∣∣ξi − 3xi + xi+1

4

∣∣∣∣
]
·

b∨
a

(f)

which completely proves the first inequality in (4.2).
For the second inequality, we observe that∣∣∣∣ξi − 3xi + xi+1

4

∣∣∣∣ ≤ 1

4
hi

it follows that

sup
i=0,n−1

∣∣∣∣ξi − 3xi + xi+1

4

∣∣∣∣ ≤ 1

4
sup

i=0,n−1
hi =

1

4
ν (h)

which proves the second inequality in (4.2).

Theorem 4.2 Let f be as in Theorem 2.4. Then (4.1) holds where, Rn (f, In, ξn)
satisfies the estimation

|Rn (f, In, ξn)| ≤ L
n−1∑
i=0

[
1

8
h2i + 2

(
ξi −

3xi + xi+1

4

)2
]

(4.3)
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Proof. Applying Theorem 2.4 on the intervals [xi, xi+1], i = 1, 2, · · ·n− 1, we get∣∣∣∣[(ξi − xi) (f (xi) + f (xi+1)) + (xi + xi+1 − 2ξi) f

(
xi + xi+1

2

)]
−
∫ xi+1

xi

f (t) dt

∣∣∣∣
≤ L

[
1

8
h2i + 2

(
ξi −

3xi + xi+1

4

)2
]
.

Summing the above inequality over i from 0 to n−1 and using the generalized triangle
inequality, we deduce that∣∣∣∣∣T (f, ξn, In)−

∫ b

a

f (t) dt

∣∣∣∣∣ ≤ L
n−1∑
i=0

[
1

8
h2i + 2

(
ξi −

3xi + xi+1

4

)2
]
,

which completely proves the inequality in (4.3).

Remark 4.1 One may state another result for monotonic mappings by applying The-
orem 2.5. We shall left the details to the interested readers.
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