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1. Introduction

The fractional calculus deals with extensions of derivatives and integrals to nonin-
teger orders. The field of fractional differential equations has been subjected to an
intensive development of the theory and the applications in mathematical physics, fi-
nance, hydrology, biophysics, thermodynamics, control theory, statistical mechanics,
astrophysics, cosmology and bioengineering [22, 36, 42]. There has been a significant
development in ordinary and partial fractional differential equations in recent years;
see the monographs of Abbas et al. [4, 5], Kilbas et al. [29], and Zhou [51], the papers
of Abbas et al. [1, 2, 3, 6, 7, 8], Baleanu et al. [11], Darwish et al. [16, 17, 18], Vityuk
et al. [44, 45, 46], and the references therein.

On the other hand, due to a combination of uncertainties and complexities, deter-
ministic equations can hardly describe a real system precisely. In order to take random
factors into account, many stochastic models were proposed and various achievements
were obtained; see for instance the book by Soon [41], and the references therein.
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The initial value problems of ordinary random differential equations have been
studied in the literature on bounded as well as unbounded intervals of the real line
for different aspects of the solution. See for example, Burton and Furumochi [14] and
the references therein.

The stability of functional equations was originally raised by Ulam in 1940 in a
talk given at Wisconsin University. The problem posed by Ulam was the following:
Under what conditions does there exist an additive mapping near an approximately
additive mapping? (for more details see [43]). The first answer to Ulam’s question
was given by Hyers in 1941 in the case of Banach spaces [23]. Thereafter, this type of
stability is called the Ulam-Hyers stability. In 1978, Rassias [38] provided a remarkable
generalization of the Ulam-Hyers stability of mappings by considering variables. The
concept of stability for a functional equation arises when we replace the functional
equation by an inequality which acts as a perturbation of the equation. Thus, the
stability question of functional equations is how do the solutions of the inequality
differ from those of the given functional equation? Considerable attention has been
given to the study of the Ulam-Hyers and Ulam-Hyers-Rassias stability of all kinds of
functional equations; see the monographs [24, 26]. Bota-Boriceanu and Petrusel [13],
Petru et al. [34, 35], and Rus [39, 40] discussed the Ulam-Hyers stability for operatorial
equations and inclusions. Castro and Ramos [15], and Jung [28] considered the Hyers-
Ulam-Rassias stability for a class of Volterra integral equations. Ulam stability for
fractional differential equations with Caputo derivative are proposed by Wang et al.
[47, 48]. Some stability results for fractional integral equation are obtained by Wei et
al. [49]. More details from historical point of view, and recent developments of such
stabilities are reported in [27, 39, 49].

In this paper, we discuss the existence of random solutions and Ulam stabilities
for the following fractional partial random differential equations

cDr
θu(x, y, w) = f(x, y, u(x, y, w), w); for a.a. (x, y) ∈ J := [0, a]× [0, b], w ∈ Ω, (1)

with the initial conditions
u(x, 0, w) = ϕ(x,w); x ∈ [0, a],

u(0, y, w) = ψ(y, w); y ∈ [0, b],

ϕ(0, w) = ψ(0, w),

w ∈ Ω, (2)

where a, b > 0, θ = (0, 0), cDr
θ is the fractional Caputo derivative of order r =

(r1, r2) ∈ (0, 1] × (0, 1], (Ω,A) is a measurable space, f : J × E × Ω → E is a
given continuous function, (E, ‖ · ‖E) is a real Banach space, ϕ : [0, a] × Ω → E,
ψ : [0, b] × Ω → E are given functions such that ϕ(·, w) and ψ(·, w) are absolutely
continuous functions for all w ∈ Ω, and ϕ(x, ·) and ψ(y, ·) are measurable for all
x ∈ [0, a] and y ∈ [0, b] respectively, and C is the Banach space of all continuous
functions from J into E with the supremum (uniform) norm ‖·‖∞. This paper initiates
the existence and Ulam stabilities of random solutions via fixed point techniques.
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2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are
used throughout this paper. Denote L1(J) the space of Bochner-integrable functions
u : J → E with the norm

‖u‖L1 =

∫ a

0

∫ b

0

‖u(x, y)‖Edydx.

L∞(J) the Banach space of functions u : J → R which are essentially bounded.
As usual, by AC(J) we denote the space of absolutely continuous functions from J
into E.

Let βE be the σ-algebra of Borel subsets of E. A mapping v : Ω → E is said to
be measurable if for any B ∈ βE , one has

v−1(B) = {w ∈ Ω : v(w) ∈ B} ⊂ A.

To define integrals of sample paths of random process, it is necessary to define a
jointly measurable map.

Definition 2.1. A mapping T : Ω × E → E is called jointly measurable if for any
B ∈ βE , one has

T−1(B) = {(w, v) ∈ Ω× E : T (w, v) ∈ B} ⊂ A× βE ,

where A × βE is the direct product of the σ-algebras A and βE those defined in Ω
and E respectively.

Lemma 2.2. [19] Let T : Ω × E → E be a mapping such that T (·, v) is measurable
for all v ∈ E, and T (w, ·) is continuous for all w ∈ Ω. Then the map (w, v) 7→ T (w, v)
is jointly measurable.

Definition 2.3. [21] A function f : J × E × Ω→ E is called random Carathéodory
if the following conditions are satisfied:

(i) The map (x, y, w)→ f(x, y, u, w) is jointly measurable for all u ∈ E, and

(ii) The map u→ f(x, y, u, w) is continuous for almost all (x, y) ∈ J and w ∈ Ω.

Let T : Ω×E → E be a mapping. Then T is called a random operator if T (w, u)
is measurable in w for all u ∈ E and it is expressed as T (w)u = T (w, u). In this case
we also say that T (w) is a random operator on E. A random operator T (w) on E
is called continuous (resp. compact, totally bounded and completely continuous) if
T (w, u) is continuous (resp. compact, totally bounded and completely continuous) in
u for all w ∈ Ω. The details of completely continuous random operators in Banach
spaces and their properties appear in Itoh [25].
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Definition 2.4. [20] Let P(Y ) be the family of all nonempty subsets of Y and C
be a mapping from Ω into P(Y ). A mapping T : {(w, y) : w ∈ Ω, y ∈ C(w)} → Y
is called random operator with stochastic domain C if C is measurable (i.e., for all
closed A ⊂ Y, {w ∈ Ω, C(w) ∩A 6= ∅} is measurable) and for all open D ⊂ Y and all
y ∈ Y, {w ∈ Ω : y ∈ C(w), T (w, y) ∈ D} is measurable. T will be called continuous if
every T (w) is continuous. For a random operator T, a mapping y : Ω → Y is called
random (stochastic) fixed point of T if for P−almost all w ∈ Ω, y(w) ∈ C(w) and
T (w)y(w) = y(w) and for all open D ⊂ Y, {w ∈ Ω : y(w) ∈ D} is measurable.

Let MX denote the class of all bounded subsets of a metric space X.

Definition 2.5. Let X be a complete metric space. A map α : MX → [0,∞) is
called a measure of noncompactness on X if it satisfies the following properties for all
B,B1, B2 ∈MX .

(MNC.1) α(B) = 0 if and only if B is precompact (Regularity),

(MNC.2) α(B) = α(B) (Invariance under closure),

(MNC.3) α(B1 ∪B2) = α(B1) + α(B2) (Semi-additivity).

For more details on measure of noncompactness and its properties see [9].

Example 2.6. In every metric space X, the map φ :MX → [0,∞) with φ(B) = 0 if
B is relatively compact and φ(B) = 1 otherwise is a measure of noncompactness, the
so-called discrete measure of noncompactness [[10], Example1, p. 19].

Let θ = (0, 0), r1, r2 > 0 and r = (r1, r2). For f ∈ L1(J), the expression

(Irθf)(x, y) =
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1f(s, t)dtds,

is called the left-sided mixed Riemann-Liouville integral of order r, where Γ(·) is the
(Euler’s) Gamma function defined by Γ(ξ) =

∫∞
0
tξ−1e−tdt; ξ > 0.

In particular,

(Iθθu)(x, y) = u(x, y), (Iσθ u)(x, y) =

∫ x

0

∫ y

0

u(s, t)dtds; for almost all (x, y) ∈ J,

where σ = (1, 1).
For instance, Irθu exists for all r1, r2 ∈ (0,∞), when u ∈ L1(J). Note also that when
u ∈ C, then (Irθu) ∈ C, moreover

(Irθu)(x, 0) = (Irθu)(0, y) = 0; x ∈ [0, a], y ∈ [0, b].

By 1 − r we mean (1 − r1, 1 − r2) ∈ [0, 1) × [0, 1). Denote by D2
xy := ∂2

∂x∂y , the
mixed second order partial derivative.
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Definition 2.7. [4, 46] Let r ∈ (0, 1]× (0, 1] and u ∈ L1(J). The Caputo fractional-
order derivative of order r of u is defined by the expression

cDr
θu(x, y) = (I1−r

θ D2
xyu)(x, y).

The case σ = (1, 1) is included and we have

(cDσ
θ u)(x, y) = (D2

xyu)(x, y); for almost all (x, y) ∈ J.

Definition 2.8. By a random solution of the random problem (1)-(2) we mean a
measurable function u : Ω→ AC(J) that satisfies the equation (1) a.a. on J ×Ω and
the initial conditions (2) are satisfied.

Let h ∈ L1(J,Rn). We need the following lemma:

Lemma 2.9. [1, 4] A function u ∈ AC(J,Rn) is a solution of problem
cDr

θu(x, y) = h(x, y); for a.a. (x, y) ∈ J := [0, a]× [0, b],

u(x, 0) = ϕ(x); x ∈ [0, a],

u(0, y) = ψ(y); y ∈ [0, b],

ϕ(0) = ψ(0).

if and only if u satisfies

u(x, y) = µ(x, y) + Irθh(x, y); for a.a. (x, y) ∈ J,

where
µ(x, y) = ϕ(x) + ψ(y)− ϕ(0).

Let us assume that the function f is random Carathéodory on J × E × Ω. From
the above lemma, we have the following Lemma.

Lemma 2.10. Let 0 < r1, r2 ≤ 1. A function u ∈ Ω×AC is a solution of the random
fractional integral equation

u(x, y, w) = µ(x, y, w)+
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x−s)r1−1(y−t)r2−1f(s, t, u(s, t, w), w)dtds,

(3)
where

µ(x, y, w) = ϕ(x,w) + ψ(y, w)− ϕ(0, w),

if and only if u is a solution of the random problem (1)-(2).

Now, we consider the Ulam stability of fractional random differential equation (1).
Let ε be a positive real number and Φ : J×Ω→ [0,∞) be a measurable and bounded
function. We consider the following inequalities

‖cDr
θu(x, y, w)− f(x, y, u(x, y, w), w)‖E ≤ ε; for a.a. (x, y) ∈ J, w ∈ Ω. (4)

‖cDr
θu(x, y, w)−f(x, y, u(x, y, w), w)‖E ≤ Φ(x, y, w); for a.a. (x, y) ∈ J, w ∈ Ω. (5)

‖cDr
θu(x, y, w)−f(x, y, u(x, y, w), w)‖E ≤ εΦ(x, y, w); for a.a. (x, y) ∈ J, w ∈ Ω. (6)
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Definition 2.11. The random equation (1) is Ulam-Hyers stable if there exists a real
number cf > 0 such that for each ε > 0 and for each random solution u : Ω→ AC(J)
of the inequality (4), there exists a random solution v : Ω → AC(J) of problem (1)
with

‖u(x, y, w)− v(x, y, w)‖E ≤ εcf ; (x, y) ∈ J, w ∈ Ω.

Definition 2.12. The random equation (1) is generalized Ulam-Hyers stable if there
exists θf ∈ C([0,∞), [0,∞)), θf (0) = 0 such that for each ε > 0 and for each ran-
dom solution u : Ω → AC(J) of the inequality (4), there exists a random solution
v : Ω→ AC(J) of problem (1) with

‖u(x, y, w)− v(x, y, w)‖E ≤ θf (ε); (x, y) ∈ J, w ∈ Ω.

Definition 2.13. The random equation (1) is Ulam-Hyers-Rassias stable with respect
to Φ if there exists a real number cf,Φ > 0 such that for each ε > 0 and for each
random solution u : Ω→ AC(J) of the inequality (6), there exists a random solution
v : Ω→ AC(J) of problem (1) with

‖u(x, y, w)− v(x, y, w)‖E ≤ εcf,ΦΦ(x, y, w); (x, y) ∈ J, w ∈ Ω.

Definition 2.14. The random equation (1) is generalized Ulam-Hyers-Rassias stable
with respect to Φ if there exists a real number cf,Φ > 0 such that for each ran-
dom solution u : Ω → AC(J) of the inequality (5), there exists a random solution
v : Ω→ AC(J) of problem (1) with

‖u(x, y, w)− v(x, y, w)‖E ≤ cf,ΦΦ(x, y, w); (x, y) ∈ J, w ∈ Ω.

Remark 2.15. It is clear that

(i) Definition 2.11 ⇒ Definition 2.12,

(ii) Definition 2.13 ⇒ Definition 2.14,

(iii) Definition 2.13 for Φ(x, y) = 1 ⇒ Definition 2.11.

Remark 2.16. A function u : Ω → AC(J) is a solution of the inequality (4) if and
only if there exists a function g : Ω→ C(J) (which depends on u) such that

(i) ‖g(x, y, w)‖E ≤ ε,

(ii) cDr
θu(x, y, w) = f(x, y, u(x, y, w), w) + g(x, y, w); a.a. (x, y) ∈ J, w ∈ Ω.

One can have similar remarks for the inequalities (5) and (6). So, the Ulam
stabilities of the fractional random differential equations are some special types of
data dependence of the solutions of fractional differential equations.

Lemma 2.17. [12] If Y is a bounded subset of Banach space X, then for each ε > 0,
there is a sequence {yk}∞k=1 ⊂ Y such that

α(Y ) ≤ 2α({yk}∞k=1) + ε.
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Lemma 2.18. [31, 50] If {uk}∞k=1 ⊂ L1(J) is uniformly integrable, then α({uk}∞k=1)
is measurable and for each (x, y) ∈ J,

α

({∫ x

0

∫ y

0

uk(s, t)dtds

}∞
k=1

)
≤ 2

∫ x

0

∫ y

0

α({uk(s, t)}∞k=1)dtds.

Lemma 2.19. [30] Let F be a closed and convex subset of a real Banach space, let
G : F → F be a continuous operator and G(F ) be bounded. If there exist a constant
k ∈ [0, 1) such that for each bounded subset B ⊂ F,

α(G(B)) ≤ kα(B),

then G has a fixed point in F.

In the sequel we will make use of the following generalization of Gronwall’s lemma.

Lemma 2.20. (Gronwall lemma) [32, 33] Let υ : J × Ω→ [0,∞) be a real function
and ω(x, y, w) be a measurable, nonnegative and locally integrable function on J ×Ω.
If there are constants c > 0 and 0 < r1, r2 < 1 such that

υ(x, y, w) ≤ ω(x, y, w) + c

∫ x

0

∫ y

0

υ(s, t, w)

(x− s)r1(y − t)r2
dtds,

then there exists a constant δ = δ(r1, r2) such that

υ(x, y, w) ≤ ω(x, y, w) + δc

∫ x

0

∫ y

0

ω(s, t, w)

(x− s)r1(y − t)r2
dtds,

for every (x, y) ∈ J and w ∈ Ω.

3. Existence and stability Results

In this section, we discuss the existence of random solutions and we present conditions
for the Ulam stability for the problem (1)-(2).

Lemma 3.1. If u : Ω→ AC(J) is a solution of the inequality (4) then u is a solution
of the following integral inequality∥∥∥∥u(x, y, w)− µ(x, y, w)−

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
f(s, t, u(s, t, w), w)dtds

∥∥∥∥
E

≤ εar1br2

Γ(1 + r1)Γ(1 + r2)
; if (x, y) ∈ J, w ∈ Ω. (7)

Proof. By Remark 2.16, for (x, y) ∈ J and w ∈ Ω there exists g : Ω→ C(J) such
that

cDr
θu(x, y, w) = f(x, y, u(x, y, w), w) + g(x, y, w).
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Then, for each (x, y) ∈ J and w ∈ Ω, we get

u(x, y, w) = µ(x, y, w)

+

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
[g(s, t, w) + f(s, t, u(s, t, w), w)]dtds.

Thus, for each (x, y) ∈ J and w ∈ Ω, we obtain∥∥∥∥u(x, y, w)− µ(x, y, w)−
∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
f(s, t, u(s, t, w), w)dtds

∥∥∥∥
E

=

∥∥∥∥ 1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1g(s, t, w)dtds

∥∥∥∥
E

≤ εar1br2

Γ(1 + r1)Γ(1 + r2)
.

Hence, we obtain (7).

Remark 3.2. One can obtain similar results for the solutions of the inequalities (5)
and (6).

The following hypotheses will be used in the sequel.

(H1) The functions w 7→ ϕ(x, 0, w) and w 7→ ψ(0, y, w) are measurable and bounded
for a.e. x ∈ [0, a] and y ∈ [0, b] respectively,

(H2) The function f is random Carathéodory on J × E × Ω,

(H3) There exist functions p1, p2 : J × Ω → [0,∞) with pi(·, w) ∈ L∞(J, [0,∞));
i = 1, 2 such that for each w ∈ Ω,

‖f(x, y, u, w)‖E ≤ p1(x, y, w) + p2(x, y, w)‖u‖E ,

for all u ∈ E and a.e. (x, y) ∈ J,

(H4) There exists a function q : J ×Ω→ [0,∞) with q(·, w) ∈ L∞(J, [0,∞)) for each
w ∈ Ω such that for any bounded B ⊂ E,

α(f(x, y,B,w)) ≤ q(x, y, w)α(B), for a.e. (x, y) ∈ J,

(H5) There exists a random function R : Ω→ (0,∞) such that

µ∗(w) +
(p∗1(w) + p∗2(w)R(w))ar1br2

Γ(1 + r1)Γ(1 + r2)
≤ R(w),

where

µ∗(w) = sup
(x,y)∈J

‖µ(x, y, w)‖E , p∗i (w) = sup ess
(x,y)∈J

pi(x, y, w); i = 1, 2,
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(H6) The function f satisfies

‖f(x, y, u, w)− f(x, y, u, w)‖E ≤ q(x, y, w)‖u− u‖E ,

for each (x, y) ∈ J, w ∈ Ω and u, u ∈ E,

(H7) Φ(w) ∈ L1(J, [0,∞)) for all w ∈ Ω, and there exists λΦ > 0 such that, for each
(x, y) ∈ J we have

(IrθΦ)(x, y, w) ≤ λΦΦ(x, y, w).

Remark 3.3.

1. Hypothesis (H6) implies hypothesis (H3), with

p1(x, y, w) = ‖f(x, y, 0, w)‖, and p2(x, y, w) = q(x, y, w).

2. Hypotheses (H4) and (H6) are equivalent ([9]).

Set
q∗ = sup ess

(x,y,w)∈J×Ω

q(x, y, w).

Theorem 3.4. Assume that hypotheses (H1)− (H5) hold. If

` :=
4q∗ar1br2

Γ(1 + r1)Γ(1 + r2)
< 1,

then the problem (1)-(2) has a random solution defined on J.

Proof. From hypotheses (H2), (H3), for each w ∈ Ω and almost all (x, y) ∈ J, we
have that f(x, y, u(x, y, w), w) is in L1. By using Lemma 2.10, the problem (1)-(2) is
equivalent to the integral equation

u(x, y, w) = µ(x, y, w) +

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
f(s, t, u(s, t, w), w)dtds;

for each w ∈ Ω and a.e. (x, y) ∈ J.

Define the operator N : Ω× C → C by

(N(w)u)(x, y) = µ(x, y, w) +

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
f(s, t, u(s, t, w), w)dtds.

Since the functions ϕ,ψ and f are absolutely continuous, then the function µ and the
indefinite integral are absolutely continuous for all w ∈ Ω and almost all (x, y) ∈ J.
Again, as the map µ is continuous for all w ∈ Ω and the indefinite integral is continuous
on J, then N(w) defines a mapping N : Ω × C → C. Hence u is a solution for the
problem (1)-(2) if and only if u = (N(w))u. We shall show that the operator N
satisfies all conditions of Lemma 2.19. The proof will be given in several steps.
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Step 1: N(w) is a random operator with stochastic domain on C.
Since f(x, y, u, w) is random Carathéodory, the map w → f(x, y, u, w) is measurable in
view of Definition 2.1. Similarly, the product (x−s)r1−1(y− t)r2−1f(s, t, u(s, t, w), w)
of a continuous and a measurable function is again measurable. Further, the integral
is a limit of a finite sum of measurable functions, therefore, the map

w 7→ µ(x, y, w) +
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1f(s, t, u(s, t, w), w)dtds,

is measurable. As a result, N is a random operator on Ω× C into C.

Let W : Ω→ P(C) be defined by

W (w) = {u ∈ C : ‖u‖∞ ≤ R(w)},

with W (w) bounded, closed, convex and solid for all w ∈ Ω. Then W is measurable
by Lemma [[20], Lemma 17]. Let w ∈ Ω be fixed, then from (H3) and (H5) for any
u ∈W (w), we get

‖(N(w)u)(x, y)‖E

≤ ‖µ(x, y, w)‖E +

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
‖f(s, t, u(s, t, w), w)‖Edtds

≤ ‖µ(x, y, w)‖E +
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1p1(s, t, w)dtds

+
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1p2(s, t, w)‖u(s, t, w)‖Edtds

≤ µ∗(w) +
p∗1(w)

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1dtds

+
p∗2(w)R(w)

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1dtds

≤ µ∗(w) +
(p∗1(w) + p∗2(w)R(w))ar1br2

Γ(1 + r1)Γ(1 + r2)

≤ R(w).

Therefore, N is a random operator with stochastic domain W and N(w) : W (w) →
W (w). Furthermore, N(w) maps bounded sets into bounded sets in C.

Step 2: N(w) is continuous.
Let {un} be a sequence such that un → u in C. Then, for each (x, y) ∈ J and w ∈ Ω,
we have

‖(N(w)un)(x, y)− (N(w)u)(x, y)‖E ≤
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

×‖f(s, t, un(s, t, w), w)− f(s, t, u(s, t, w), w)‖Edtds.

Using the Lebesgue Dominated Convergence Theorem, we get

‖N(w)un −N(w)u‖∞ → 0 as n→∞.
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As a consequence of Steps 1 and 2, we can conclude that N(w) : W (w)→ W (w)
is a continuous random operator with stochastic domain W, and N(w)(W (w)) is
bounded.

Step 3: For each bounded subset B of W (w) we have

α(N(w)B) ≤ `α(B).

Let w ∈ Ω be fixed. From Lemmas 2.17 and 2.18, for any B ⊂ W and any ε > 0,
there exists a sequence {un}∞n=1 ⊂ B, such that for all (x, y) ∈ J, we have

α((N(w)B)(x, y))

= α

({
µ(x, y, w)+

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
f(s, t, u(s, t, w), w)dtds; u ∈ B

})
≤ 2α

({∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
f(s, t, un(s, t, w), w)dtds

}∞
n=1

)
+ ε

≤ 4

∫ x

0

∫ y

0

α

({
(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
f(s, t, un(s, t, w), w)

}∞
n=1

)
dtds+ ε

≤ 4

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
α ({f(s, t, un(s, t, w), w)}∞n=1) dtds+ ε

≤ 4

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
q(s, t, w)α ({un(s, t, w)}∞n=1) dtds+ ε

≤
(

4

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
q(s, t, w)dsdt

)
α ({un}∞n=1) + ε

≤
(

4

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
q(s, t, w)dtds

)
α(B) + ε

≤ 4q∗ar1br2

Γ(1 + r1)Γ(1 + r2)
α(B) + ε

= `α(B) + ε.

Since ε > 0 is arbitrary, then

α(N(B)) ≤ `α(B).

It follows from Lemma 2.19 that for each w ∈ Ω, N has at least one fixed point
in W. Since

⋂
w∈Ω intW (w) 6= ∅ the hypothesis that a measurable selector of intW

exists holds. By Lemma 2.19, N has a stochastic fixed point, i.e., the problem (1)-(2)
has at least one random solution on C.

Theorem 3.5. Assume that the assumptions (H1), (H2), (H5)− (H7) hold. Then the
random equation (1) is generalized Ulam-Hyers-Rassias stable.

Proof. Let u : Ω → AC(J) be a solution of the inequality (5). By Theorem 3.4,
there exists v which is a solution of the random problem (1)-(2). Hence

v(x, y, w) = µ(x, y, w)
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+

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
f(s, t, v(s, t, w), w)dtds; (x, y) ∈ J, w ∈ Ω.

By differential inequality (5), for each (x, y) ∈ J and w ∈ Ω, we have∥∥∥∥u(x, y, w)− µ(x, y, w)−
∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
f(s, t, u(s, t, w), w)dtds

∥∥∥∥
E

≤
∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
Φ(s, t, w)dtds.

Thus, by (H7) for each (x, y) ∈ J and w ∈ Ω, we obtain∥∥∥∥u(x, y, w)− µ(x, y, w)−
∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
f(s, t, u(s, t, w), w)dtds

∥∥∥∥
E

≤ λΦΦ(x, y, w).

Hence for each (x, y) ∈ J and w ∈ Ω, it follows that

‖u(x, y, w)− v(x, y, w)‖E

≤
∥∥∥∥u(x, y, w)− µ(x, y, w)−

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
f(s, t, u(s, t, w), w)dtds

∥∥∥∥
E

+

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
‖f(s, t, u(s, t, w), w)− f(s, t, v(s, t, w), w)‖Edtds.

From (H6), for each (x, y) ∈ J and w ∈ Ω, we get

‖u(x, y, w)− v(x, y, w)‖E

≤λΦΦ(x, y, w) +
q∗

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1‖u(s, t, w)−v(s, t, w)‖Edtds.

From Lemma 2.20, there exists a constant δ = δ(r1, r2) such that

‖u(x, y, w)− v(x, y, w)‖E ≤ λΦΦ(x, y, w)

+
δq∗λΦ

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1Φ(s, t, w)dtds

≤ (1 + δq∗λΦ)λΦΦ(x, y, w)

:= cf,ΦΦ(x, y, w).

Finally, the random equation (1) is generalized Ulam-Hyers-Rassias stable.

4. An Example

Let E = R, Ω = (−∞, 0) be equipped with the usual σ-algebra consisting of Lebesgue
measurable subsets of (−∞, 0).Given a measurable function u : Ω→ AC([0, 1]×[0, 1]),
consider the following partial functional random differential equation of the form

(cDr
θu)(x, y, w) =

w2e−x−y−10

1 + w2 + |u(x, y, w)|
; a.a. (x, y) ∈ J = [0, 1]× [0, 1], w ∈ Ω, (8)
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with the initial conditions{
u(x, 0, w) = x sinw; x ∈ [0, 1],

u(0, y, w) = y2 cosw; y ∈ [0, 1],
w ∈ Ω, (9)

where (r1, r2) ∈ (0, 1]× (0, 1]. Set

f(x, y, u(x, y, w), w) =
w2

(1 + w2 + |u(x, y, w)|)ex+y+10
, (x, y) ∈ [0, 1]× [0, 1], w ∈ Ω.

The functions w 7→ ϕ(x, 0, w) = x sinw and w 7→ ψ(0, y, w) = y2 cosw are measurable
and bounded with

|ϕ(x, 0, w)| ≤ 1, |ψ(0, y, w)| ≤ 1,

hence, the condition (H1) is satisfied.
Clearly, the map (x, y, w) 7→ f(x, y, u, w) is jointly continuous for all u ∈ R and hence
jointly measurable for all u ∈ R. Also the map u 7→ f(x, y, u, w) is continuous for all
(x, y) ∈ J and w ∈ Ω. So the function f is Carathéodory on [0, 1]× [0, 1]× R× Ω.
For each u ∈ R, (x, y) ∈ [0, 1]× [0, 1] and w ∈ Ω, we have

|f(x, y, u, w)| ≤ 1 +
1

e10
|u|.

Hence the condition (H3) is satisfied with p1(x, y, w) = p∗1 = 1 and p2(x, y, w) = p∗2 =
1
e10 .
Also, condition (H6) is satisfied with q∗ = 1

e10 . Indeed, for each u, u ∈ R and
(x, y) ∈ [0, 1]× [0, 1] and w ∈ Ω, we get

|f(x, y, u, w)− f(x, y, u, w)| ≤ 1

e10
|u− u|.

We shall show that condition ` < 1 holds with a = b = 1. Indeed, we have q∗ = 1
e10

and for each (r1, r2) ∈ (0, 1]× (0, 1] we get

` =
4q∗ar1br2

Γ(1 + r1)Γ(1 + r2)

=
4

e10Γ(1 + r1)Γ(1 + r2)

< 1.

Finally, the hypothesis (H7) is satisfied with

Φ(x, y, w) = w2xy2,

and

λΦ =
2

Γ(2 + r1)Γ(3 + r2)
.
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Indeed, for each (x, y) ∈ [0, 1]× [0, 1] and w ∈ Ω, we get

(IrθΦ)(x, y, w) =
w2Γ(2)Γ(3)

Γ(2 + r1)Γ(3 + r2)
x1+r1y2+r2

≤ 2w2xy2

Γ(2 + r1)Γ(3 + r2)

= λΦΦ(x, y, w).

Consequently, Theorem 3.4 implies that the problem (8)-(9) has a random solution
defined on [0, 1] × [0, 1], and Theorem 3.5 implies that the random equation (8) is
generalized Ulam-Hyers-Rassias stable.
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479.

[3] S. Abbas, M. Benchohra, A. Cabada, Partial neutral functional integro-
differential equations of fractional order with delay, Bound. Value Prob. 2012
(2012) 128, 15 pp.

[4] S. Abbas, M. Benchohra, G.M. N’Guérékata, Topics in Fractional Differential
Equations, Springer, New York, 2012.

[5] S. Abbas, M. Benchohra, G.M. N’Guérékata, Advanced Fractional Differential
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