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ABSTRACT: Employing critical theory and concentration estimates,
we establish the existence of two classes of infinitely many weak solutions
fractional Schrodinger-Poisson system involving critical Sobolev growth.
The first classe of solutions with negative energy is found by using of
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1. Introduction

In this paper we focus our attention on the following critical fractional system

(=A)*u + u + ¢pu = Xa(z)|u|"%u + b(z)|u|? 2u  in R,

(1)
(-A)'¢ =u? in R3,

where s € (2,1), t € (0,1) with 4s + 2t > 3,1 <r <2 < 2% := 35 Xis a positive
parameter, a(x),b(z) € C(R?).

The system is made up of a fractional Schrédinger equation coupled to a frac-
tional poisson equation. It is well known that the system has a strong physical
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significance, because it appears in many quantum mechanics modules (see for example
[B, 14]) and in semiconductor theory [3], and so on. In recent years, there has been
an increasing attention to this type of system on the existence and the multiplicity of
positive solutions, see the following references [2] 6] 8, [10, 111, 12| 15, 16, 2I]. To our
knowledge, there are few recent articles dealing with the result of the existence of two
classes of solutions of infinite types and different signs of energies. By using the trun-
cation tip at the level of the functional to make it bounded from below and satisfied
the condition of (P.S), for any ¢ < 0. Following the Ljusternick-Schnirelmann theory,
we obtain a negative class with infinitely solutions. Via the Fountain Theorem, we
obtain the second class of infinitely positive solutions.

(A) Let 1 < 7 <2 <2, 0 = 72 and 2 = 35, a(2) € C(R®) N L7(R?),
b(z) € C(R%) N L=(R3),

(A2) a(z) > 0 in some open bounded subset Q of R? with strictly positive Lebesgue
measure,

(G1) Let G be a subgroup of O3, #G = oo, a(z), b(x) are G—invariant,
(G2) a(z) € C(R3,RT) N LL(R3), b(x) € C(R®,RT), b(z) = b(|z|) for any = € R® and
b(0) = b(c0) = 0.
Our first main result is the following:

Theorem 1.1.
If (A1) and (A2) are satisfied. Then there exists Ao > 0 such that, for each A € (0, \o),
the problem has infinitely many solutions with negative energy.

Our next goal is the following:

Theorem 1.2.
If (G1) and (G2) are satisfied. Then for all X > 0 the problem has infinitely many
solutions with positive energy.

The paper is organized as follows. In Section 2, we present some preliminaries re-
sults and we give the interval parameter A for which the energy functional is compact.
In Section 3, when A is small enough, we prove the first Theorem by application
of genus. In Section 4, we give the proof of the second Theorem without condition
under the parameter A\ > 0, we establish this result via Fountain theorem.

2. Functional framework and preliminary

For any s € (0,1), we define the homogeneous fractional Sobolev space D%?(R?) as
follows

DR = {ue LZ®RY) : [gla(e) € LARY)},
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which is the completion of C§°(R?) under the norm

ooy = ([ 1aria) = ([ eerac)”

The fractional Sobolev space H*®(R?) can be described by means of the Fourier trans-
form, i.e.

/2

HP(B®) = {ueL?R?’ [ e 1aP + late >|2d5<+oo}

which is a Hilbert space under the norm. In this case, the inner product and the norm
are defined as

(o) = [ 16Pa 70 + (e

1/2
fulla- = ([ Il + aeyPae)

From Plancherel’s theorem we have [lul|z2@s) = |4 r2®s) and ||[£]*|@]]|2ms) =

| (—A)% ul| 12 (gs). Hence

m

1/2
fullre = ([ 188 ) + uw)ac) v 1@
In our context, the Sobolev constant is given by
g des | A 50 + fula) P
(fR3 |u]? dz) %

From the embedding results, we know that H®(R3) is continuously and compactly
embedded in LP(R?) when 1 < p < 2%, where 2; = 3% and the embedding is
continuous but not compact if p = 2%. For more general facts about the fractional
Laplacian we refer the reader to the paper [1].

From [20], the author has proved that if 4s 4+ 2t > 3, for each u € H*(R?), the
Lax-Milgram theorem implies that there exists a unique ¢!, € D1?(R3) such that

/(—A)%¢Z(—A)%vd$:/ u?vdz
R3 R3

Vv € DV2(R3), that is ¢!, is a weak solution of
(7A)t¢f¢ = u2’ T e RB

(2)

and the representation formula holds
2 r 3—2t
¢Z(l‘) = ct/ “ (y3)72t dya S Rsa Ct = ﬂ-_%2_2t ( 2 )a
s [T — Yl

which is called ¢t—Riesz potential.
The properties of the function ¢!, are given in the following lemma (see [[20],
Lemma 2.3]).
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Lemma 2.1. If 4s + 2t > 3, then for any u € H*(R?), we have
(i) ¢, =0;
(ii) ¢ : H*(R3?) — D*%(R3), is continuous and maps bounded sets into bounded sets;
(iif) Jo du?de < STull?ys < Clullfy. ps);
(iv) If up = u in H*(R3), then ¢! — ¢, in D¥*(R?), and
s 0 30— [y Shda.
Substituting ¢!, in , it reduces as follows
(=A)*u +u+ ¢hu = ha(x)|u]" 2w+ b(x)|u/* ~2u in R,

To find solutions of , we will use a variational approach. Hence, we will associate
a suitable functional to our problem. More precisely, the Euler-Lagrange functional
related to problem (] is given by I : H*(R3) — R defined as follows

D) = gl + 5 [ oo =2 [ a@plds = o [ sl s
3 s JR3

Obviously, I, € C'(H*(R?),R) and its critical points are weak solutions to (I). We
call u € H*(R3) is a weak solution of (1)) if
u(—A)? vdz + / uvdx + ¢Zuvdm

Bw.o) = [ ()
R3
—)\/ x)|u|"" qudx—/ b(x)|ul? ~2uvde = 0,
for any v € H*(R?).
Defined N : H*(R?*) — R by N(u) = [gs ¢! u?dx. The following lemma shows that

the functional and possesses property which is similar to the well-known Brezis-Lieb
lemma [4].

[N

Lemma 2.2. Assume that 4s + 2t > 3. Let u,, — u in H*(R3) and u, — u a.e. in
R3. Then

(1) N(up —u) = N(un) — N(u)+ 0,(1);
(i) N'(un, —u) = N'(u,) — N'(u) + 0,(1); in H=3(R3).

Proof. We can consult for example ([[20], Lemma 2.4]). O

Along the way one can easily the following lemma

Lemma 2.3. Under the same conditions as the Lemma[2.2. Let v, = u, —u — 0.
Then
In(vy) = ¢ — In(u),
(3)
I} (v,) — 0.
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We recall that
Definition 1. Let X be a Banach space

(i) For ¢ € R, a sequence {u,} C H*(R3) is a (PS). for I if I (u,) = ¢+ o(1) and
I, (u,,) = o(1) strongly in H~*(R3) as n — 400;

(i) I, satisfies the (PS). condition in X if any (PS). sequence for I contains a
convergent subsequence.

Let us show firstly the (PS). sequence is bounded.

Lemma 2.4. Let ¢ € R. If {u,} is (PS)c- sequence for I, then {u,} is bounded in
H*(R3).

Proof. We have
In(un) = ¢+ o(1) and Iy (u,) = o(1) in H—*(R%), (4)

By contradiction, we assume that ||u,||gs — +oo.
Let un, = 2. Clearly, @, || s = 1 is bounded in H*(R?). Up to a subsequence,
we may assume that

7

U, — 0 in H*(R3).
This implies

U, —u in L"(R%), 1 <r <2k

By , we have

1 N 1 . 1 2r ~ 2
e+ 001) = a3l + Fulye [ 6%, e = Ll [ bl
R3 s R3
A ~
— —|wn|s / a(x)|u,|"dz, as n — 400,
T R3
and

.
% dx

~ ~ 2 ~
o) = I 7 + e | 08, Tz = . [ ot

Al / o(2)|@n|"dz, as n — +oc.
RB

By using the above two equalities, we have

1 1 1 1
D) = (2 = Nanll + (- — ) [ ¢ a2d
o) = (¢ = Pl + G =) [ ok,

1 1 2% _9 ~
. n SS b n
+ (2: T) llwn 7 /R3 (z)|u

% da,
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as n — +oo, that is

11, ., 1 1 L
S n s - = u. d
G- Pl + G- [ b,
1 1 2* -2 ~ 2F
=\, l|lwn 7 b(@)[wn [ dz + o(1),
T s R3

as n — +o00.

This implies,
1 1., 9 1 1 ¢ ~2
— = =) Un || - — -  u,dr — ,
= Nalle + (= ) [ b, Tde =+

as n — +00. By Lemma [2.1] (iii), there C > 0 and ||, ||z« = 1 we have

11 11 .
= = Maallde + (== 2) | ¢, @2d
400 = (7 = lnlf + (- =) [ oh T

1 1 1 1
< G = Aallf +Cllaal* = (= 5) + C. asn— +oo,

which is a contradiction. Thus {uy,} is bounded in H*(R3). O

Lemma 2.5. There exists Ay > 0 such that for every 0 < A < Ag the functional Iy
satisfies (PS). for all ¢ < 0.

Proof. Consider a (PS). sequence {u,} for I) with ¢ < 0. From Lemma [2.4] {u,}
is bounded in H*(R?). Going if necessary to a subsequence, we can assume that
Up — u, in H*(R3),

(5)

up, = u, in L7(R3), 1 <r < 2%
By Lemma [2.3] we have

<I;\(u),cp> =0 for any ¢ € H*(R?). (6)

With and o = 23 ET and the Holder Inequality we get

1
Iy(tn) = 5= (T (), ) = €+ 0(1)un 172 — € < 0

11 ) 11 A 11 /
> (= = ) lunlde + (5 - = de+ A — — - o|7d
_.<2 2§>Hu % +(2 22) | G tind + (22 T) | a@lun|"d

Then, there exists some constant C' > 0 such that

2: < OAT, (7)

Iun
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and Brezis-Lieb Lemma [4] implies
lula: < OATT.
By @, note that

e+ [ dtde=x [ a@lulrds+ [ ba)
R3 R3 R3
also, using Lemma [2.3] Lemma (iv) and (4) we have
on 13 :/ b(z)|vn]* dz + o(1).
R3
Now, we suppose that
li ol = 1 b Zde =14 0.
Jm fon|lz. = lm . () z=1#0

By Sobolev inequality, we have

ol >s( [ 1en )
_ (3-2s)
> Sboo ° (/ b(x)
R3

2s—3
1> Sib2 .

2
o 23
s dx) ,

which implies that

2 de,

93

(10)

(11)

Let 1 < r < 2 < 2. By Lemmas (iv), (@.().(T0), and the Holder

inequality, we have

o(l) +c = = ||u||H5 / ot de—f/ a(x)|u\rdx—2i*/ b(a)|ul d
3 s JR3

%dx + o(1)

gl = 5 [ v,

_ 1 1 2 1 2 t, 2
— 1l + (3 2)||vn|H< t(htt o [ otueas

—5/ a(2)uf dz — - /b Yl da
T JRr3

1, 11 11
=l + (5 2 +A (= == rd
i + (5 - ) fonli (1) [ a@lurda

11 .
+ (4 — 2*) b(x)|u|®s dx
—4
Z—S%b 5 +)\( o )|ag|u§:.

25 3 253 2 (r—4
> S35 p 28 = o
= 3 SZ boo +C)\2 ( dr ) |a‘g

T
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Then there exists K > 0 such that

2s—3
0>c¢> %S%bogs — KAT7,

which is a contradiction for A small enough. Then, [ = 0, that is, u,, — u strongly in
HS(R3). O

3. Proof of the first Theorem (1.1

First by the Sobolev inequality we obtain
Ix(u) = h(||ullz:), (12)

where

An easy computation shows that, there exists A, > 0 such that for all 0 < A < A,,
the real valued function x — h(z) has exactly two positive zeros denoted by Ry, Ry
and the point R is where h attains its nonnegative maximum, verifies Ry < R < R;.
We now introduce the following truncation of the functional Iy. Take the nonincreasing
function 7 : Rt — [0,1] and C*°(R™") such that

() =1 if z < Ry,
(13)
T(x) =0 ifz>R;

Let p(u) = 7(||ul|g+). We consider the truncated functional

Zip(u)dz. (14)

. 1 1 A . 1
B) = gl + 5 [ dtwidr =3 [ a@uris = [ @)

Similar to we have

In(u) = h(|jull#-) (15)
where . b
Rla) = 3o — 5 a?ir(a) — 0
2¥S=
Clearly, 7
h(x) = h(z) (16)
for > 0 and h(z) = ()ing:USRO,E(x) > 0,if Ry < < Ry and if
x> Ry, h(z) = 2"(32*7" — 2C,) is strictly increasing and so h(z) > 0, if z > R;.
Consequently B
h(z) >0 for x > Ry. (17)

We have the following result.
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Lemma 3.1. This lemma can be expressed as three assertions:
1. I, € C*(H*(R?),R), is even.

2. If Ix(up) < 0 then |luol|gs < Ro. Moreover, Ix(u) = Ix(u) for all u in a small
enough neighborhood of uyg.

8. There exists A\g > 0, such that if 0 < A < Ag, then I, verifies a local Palais-Smale
condition for ¢ < 0.

Proof. Since ¢ € C®(H*(R?),R) and ¢(u) = 1 for u near 0, I, € C}(H*(R?),R)
and assertion 1 holds. .
Note that Ix(ug) > Ix(ug). By taking I (ug) < 0, we can deduce from [15| that

h(|luol 7)< 0.
Then By and we have
l[uoll s < Ro. (18)

For the proof of (3), let {u,} C H*(R?) is a (PS). sequence I, with ¢ < 0. Then we
may assume that Iy (u,) < 0, I} (un) — 0. By (2) and for 0 < A < Ao, ||un| ms < Ro,
50 Iy (un) = Ix(uy) and I} (uy,) = I} (uy). By Lemma I, satisfies (PS). condition
for ¢ < 0, so there is a subsequence {u,} such that u, — u in H*(R?). Thus I\
satisfies (P.S). condition for ¢ < 0. O

We first recall some concepts and results in minimax theory.
Let X be a Banach space, and ) denote all closed subsets of X — {0} which are
symmetric with respect to the origin. For A € Y, we define the genus v(A) by

A(A) = min {k € N: 3¢ € C(A; R — {0}), 6(—2) = é(a)}
if the minimum exists, and if such a minimum does not exist then we define y(A) = co.
The main properties of genus are contained in the following lemma (see[9] for the
details).
Lemma 3.2. Let A,B €. Then
1. If A C B, then v(A) < ~(B).
2. If there exists an odd homeomorphism between A and B, then y(A) = ~(B).

3. If SN=1 s the sphere in RN | then v(SN—1) = N.

4- 7(AU B) < ~y(A) +~(B).
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5. If y(A) < oo, then v(A — B) > v(A) —v(B).

6. If A is compact, then y(A) < oo, and there exists 6 > 0 such that y(A) =
v(Ns(A)) where Ns(A) = {z € X : d(z, A) < 5}.

7. If X is a subspace of X with codimension k, and y(A) > k, then AN X, # 0.

It is possible to prove the existence of level sets of I, with arbitrarily large genus,
more precisely:

Lemma 3.3. Vn € N Je(n) > 0 such that
(€ BB Iy(w) < —e()}) > n.

Proof. Let Q is an open bounded subset with strictly positive Lebesgue measure
such that a(z) > 0 in Q. Let X§(€2) be the function space defined as

X§(Q) =={ue H*R?) :u=0ae. in R\Q}.

So, X5(2) C H*(R?). Observe that by [[7], Proposition 3.6] we have the following

identity
1/2
lullxs ) = (/ [(=A)2u(z))? + |u( )|2d33> = ||t g--

For n € N, we consider E,, be a n—dimensional subspace of X§(12). Let u,, € E,, with
norm ||u,||gs = 1. By (A42) there exists a ¢, > 0 such that

/ a(z)|uy|"dx > ¢, > 0.
Q

For 0 < p < Ry and using Lemma [2.1] (iii), we get

1
Bpun) < 52 + 508 = [ b(o)

. A
< Zde — fpr/ a(x)|up|"dz.  (19)
2 T 0

Since E, is a finite-dimensional space, all the norms in F,, are equivalent. Thus we
can define

O 1nf{/ )| up|"dx s uy € Ep, ||upl|lgs =1} > ¢, >0,

1nf{/ Dunl%da : un € En, Junllss = 13 > 0.

By using the definitions of a,, 3, and inequality [I9] we obtain

- 1 1 . A
< IR lOA 2 D e
In(puy) 2,0 +4C’p 0% Bn Tp ay,
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Then, there exists ¢(n) > 0 and 0 < p < Ry such that
F(pu) < —e(n)
for u € B, and |luy|| g = 1. Let S, = {u € H*(R®)/||ul|ms = n}, so
S, NE, C {uc H*(R®)/I\(u) < —¢(n)},
therefore, by Lemma we see that

Y({u € HYR®)/T(w) < —€}) = (S, N By) = n.

We are now in a position to prove the first result.

Proof of the Theorem [I.1l
For n € N, we define

I, ={AcC H*(R?) — {0}/A is close, A = —A,v(A) > n}.

Let us set
¢, = min max I (u
"™ Aer, ueA A(w),

and R R
K.={uec H*R?: I(u) = 0,1\(u) = c},

and suppose 0 < A < A, where A, is the constant given by Lemma [3.1
We claim if n,r € N are such that ¢ = ¢,, = ¢y 41 = - * “Cpyr, then y(K.) > r + 1. For
simplicity, we call y }

I7¢={ue H¥(R?)/I\(u) < —€}.

By lemma there exists e(n) > 0 such that v(I;) > n, for all n € N. Because
I\ (u) is continuous and even,I; € € T',,, then ¢, < —e(n) < 0 for all n in N. But I, is
bounded from below, hence ¢, > —oc for all n in N.

Let us assume that ¢ = ¢, = ¢p41 = ... = cpqr. Note that ¢ < 0 therefore, f)\ verifies
the Plais-Smale condition in ¢, and it is easy to see that K, is a compact set.

If v(K.) < r, there exists a closed and symmetric set U verifying K. C U, such that
v(U) < r. By the deformation lemma (see [19]), we have an odd homeomorphism

n: H3(R3) — H*(R?), such that n(I{™ — U) € IS0, for some & > 0. By definition,

c=c¢, = inf suply(u).
A€lnirucA

There exists then A € T, ., such that sup,c 4 L(u) <c+dieAcC I~§+6,
n(A-U) cn(I5F —U) I,

By Lemma (5) again y(A—-U) > v(4) —~({U) > n, and y(n(A-U)) >
Y(A-U))=>n.
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Then, n(A — U) € I'y. Impossible, in fact n(A — U) € I', implies sup,, ¢, a= Ii(u) >
Cn = cC.

So we have proved that v(K.) > r+1. We are now ready to show that I has infinitely
many critical point solutions. Note that ¢, is non-decreasing and strictly negative.
We distinguish two cases.

Case 1 Suppose that there are 1 < n; < ---n; < -- -, satisfying

Cn1<...<cni<...

In this case, we have infinitely many distinct critical points.

Case 2 We assume in this case, that for some positive integer ng, there is a r > 1

such that ¢ = cpy = Cpo1 =+ ++ = Cngr, then ¥(Kc, ) > 7+ 1 which shows that

K., contains infinitely many distinct elements. Since Ii(u) = In(u) if Ix(u) < 0, we

see that there are infinitely many critical points of I (u). The theorem is proved.
O

4. Proof of the second Theorem (1.2

In this section, we show the existence of infinitely many solutions via the Fountain
Theorem [22].
We consider

HE(R?) :={u € H*(R®) : u(rz) = u(z),7 € G},

where G is a subgroup of the group of orthogonal linear transformations Os. Let us
consider the functional Iy ¢ : HE(R?) — R as Iy g = I,\|H5(R3). By the principle of
symmetric criticality of Krawcewicz-Marzantowicz [13], we know that w is a critical
point of I if and only if u is a critical point of Iy ¢ = I>\|Hf;(]R3)~

Lemma 4.1. For any A > 0, s € (3,1) and t € (0,1) such that 4s + 2t > 3, the
functional I ¢ satisfies (PS). for all c € R.

Proof. Let {u,} in H4(R?) such that Iy ¢(un) — ¢ and I} 4(u,) — 0 strongly in
H;*(R?). Following the same arguments as in the proof of Lemma [2.4] we have {u,}
is bounded. Therefore, up to a subsequence, we may assume that

Up — u, in H*(R3);
up, — u, in L7(R3), 1 <r < 2% (20)
un(r) = u(z), ae. in R3.

From the concentration-compactness alternative for bounded sequences in the frac-
tional space HZ (R?), see [[I8], Theorem 2.2 ]: There exists a subsequence, still denoted
by {u,}, at most countable set A, a set of points {z;};en C R* and real numbers
pj,vj € [0,00) such that

(=A)*Pun > = dp > [(=A)Pul® + > pibe,, ny = pla;), (21)
JEA
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|t % s dy = |u 2 +Zyj5Ij7 v; = v(zj), (22)
JEA
%

We claim that the concentration of v cannot occur at any x # 0. Now we suppose
that there exists z; # 0, where jo € A such that v;, = vy, > 0. The measure v is
G—invariant. For all 7 € G, v(z;,) = v(rzj,) > 0. We know that #G = oo, thus

v({rz;, : 7€ G}) = o0,

Note that the measure v is finite, which is a contradiction. Then, for any xz; # 0
where j € A, we get v; = v(z;) = 0. Now we suppose that 0 ¢ {z; : j € A}. In fact,
assume ¢ > 0 small enough such that for any 0 ¢ B.(0). Let ¢, € C§°(R?) be a cut-off
function centered at 0 satisfying

1if |z| < £,

Since (peuy) is bounded, (I3 o (un), peun) — 0, that is

(M

(=) () (=8)F () + ((=8)F () (<8)F () + [ e

+ qﬁtunuiapgdx = )\/ a(x)|un|"pedr +/ b(x)|un, 2«:g05d9: +0(1)
R3 RS RS
tim ((-2)% (un), 92 (~8)% () = [ e (24)
n o0 Rg
lim b()|un|? podz = / b(x)pedv = / b(z)|u|® pedz 4 b(x;)v; (25)
n—+00 Jp3 R3 R3

lim lim [((—A)2 (up), un (—A)2 (02))

o

e—0n—0
1/2 1/2
I, CAVS L, 12 21 (A2 |2
sgg(( [ 18 dx) X(/RS'%' TN dx) )
1/2
< ; 21 (_A)2 2
<Cli (/ uf?] (~2)F | dx) o)

< Clim / |u
e—0 BE(O)

< Clim / |u
e—0 BE(O)

o

s
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100
and
lim | (—A)2 ul?podz =0
e—0 R3
lim b(a)|u|® p.dx = 0,
e—0 R3
(27)
lim a(x)|u|"pedr =0, lim |u|?peda = 0,
e—0 R3 e—0 R3
lim [ ¢ up.de = 0.
e—0 R3
Thus,

p({0}) = b(0)r({0}).

Note that b(0) = 0, then p({0}) = 0. In the next step, we claim that the concentration
of v cannot occur at infinity.

Voo = lim limsup/ |un |** da,
R—+400 n—4o0 |z|>R

oo =limsup [ | (-8)% u, P,
z|>R

n—-+o0o

Hence, by using the concept of the concentration-compactness in ([1I7],[I8]) at
infinity, vo, and peo exist and satisfy :

2 dy = / dv + Vs
RS

limsup [ |up
n—4+oo JR3

limsup [ |
n—+oco JR3

() e = [ du+ .
R3
Sugf: < foo- (28)

For any R > 0, take a radially symmetric function xz € C°°(R?) such that 0 < yz < 1,
Xr = 1 in R®\Bag, xgr = 0 in Bg. It is easy to obtain that ygu, is bounded on
HE(R3?). Then

. 7 _
nEI_POOUA,G(“n)a XRUn) = 0.

We have

()% () (=) (1)) + (=) () (=) ) + [ v

+/ P uiXRdac:)\/ a(x)|un|’"XRd:E+/ b(x)|un|2:XRda:+0(1)
RS R3 R3
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Similar to the proof of , we have

(M

1/2°
lim limsup((—A)? (wn), un (—A)F (xg)) < C_lim / wZdr|] o
R—r+o00 \ Jp<|z|<2R

R—+00 n—4oo

Also,
lim limsup/ a(z)|un|"xrdx = lim a(x)|u|"xrdx =0,
R—400 n—stoo JR3 R—+4o00 Jp3
lim lim sup/ uiXRdx = lim u?xrdx =0,
R—=400 n—stoo JRr3 R—+o00 Jps3
. . t 2 _ : t, 2 _
lim hmsup/ ¢, UnXrRdT = lim ¢, u"xrdxr = 0.
R—4o0 n—+oo JR3 R—4o0 ‘$|>R

Since b(o0) = 0,
R—+00 n— oo

lim 1imsup/ b(z)|u,|* dz = 0.
|z|>R

Then,

loo = lim limsup/ | (=A% up|?de < lim limsup/ b(x)|un,
z|>R R |z|>R

R—+400 n—s4oo —++00 n—+4oco

2 dx = 0.

Thus pteo = 0. Then, from we obtain v, = 0. Hence, up to a subsequence, we

derive
lim |y, | % da = |u
n—-4o0o R3 R3

By Brézis-Leib [A] u, — u in L% (R3). Note that b € L (R3) we obtain

25 dx.

2 de = 0.

ngr—ir-loo . b(x)|un — u

Then u,, — u strongly in HE(R?). O

Since HE (R?) is separable (see [1]), there exist {e;, tnen C HE(R?) and {fp }nen C
Hg*(R?) with

He(R?) = span{en}p2y, Hg*(R?) =span{fn};Z,

[ 1lifi=y,
<f“ej>_{ 0if i # j,
where (,) is the duality pairing between Hg*(R?) and HE (R?).

Let X; = span{e;}, Y, = @Xj, Zy = @Xj.
j=n

Jj=0

Let
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Lemma 4.2. ([22] Fountain theorem)
Consider an even functional I g € C(HE(R3),R). If, for every k € N, there exist
pr > 1K > 0 such that

1. oy = max {Ixg(u) : u € Yy, |ullas, = pr} <O0.
2. By :=inf {IA,G(u) cu € Z, |Jullmg, = pk} — 00 as k — +oo.
3. I satisfying (PS) condition for every ¢ > 0.
Then Iy g has an unbounded sequence of critical values.
Proof of Theorem [1.2]
The functional Iy ¢ is even, I ¢ € C(HE(R?),R). By Lemma[,\g satisfying (PS)
condition for any ¢ € R. We only need to verify I ¢ satisfying (1) and (2) of Lemma

Since X is a finite-dimensional subspace of H (R?) for each j € N and b(z) > 0
a.e. in R3, this implies that there exists a constant €5 > 0 such that for all v € X

with [[v]| gz, = 1 we have
/ b(z)|v|*dx > ¢;.
R3
On the other hand,

for any v € X;\{0}, with ||lu|[zs, = 1 and by using the Lemma Sobolev inequality
we get

AtT
Iw(tu):ﬂunm +0—||u||Hs 2 @)l dz—— / ()l
T R3
t2 tt %
— C*
=5 + B 5 €;

Since 4 < 2%, there exists t; > 1 such that e; = t;u satisfies I ¢(e;) < 0. This proves

(1) of Lemma[£.2]
1/2*
B = sup (/ b(x) 2sdx> .
u€Zj |lull g, =1 \J/R?

Define

By the definition of Z;, we get u; — 0 in H&(R?). Since b(z) is continuous, b(0) = 0,
b(c0) = 0 and by the same argument using in Lemma we see that a concentration
of the measure v can only occur at 0 and oco. We deduce that

RIS

ﬂj—>0.

sdx — 0,

as j — 00, SO
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For all u € Z;, we have

o
1 AC B;° 2%
Bu(u) 2 gl — 2l — 2l

1

2:,72

Let u € Zj, such that |ul[mg, = A; = (ﬁ;) Since 3; — 0 we have A; — +00 as
J

j — 4o00. Since 1 < r < 2 we have

1 1 AC
Inc(u) > <2 - 22&) A — TA; — +00, as j — +oo.
So, I ¢ satisfies (2). All the assumptions of Lemma are satisfied. Therefore, this
concludes the proof of Theorem [T.2] O
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