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Abstract: A problem of simultaneously reducing a group of inter-
val uncertainties is considered. The intervals are positively normalized.
There is a constraint, by which the sum of any point estimates taken
from those intervals is equal to 1. Hence, the last interval is suspended.
For mapping the interval uncertainties into point estimates, a minimax
decision-making method is suggested. The last interval’s point estimate
is then tacitly found. Minimax is applied to a maximal disbalance be-
tween a real unknown amount and a guessed amount. These amounts
are interpreted as aftermaths of the point estimation. According to this
model, the decision-maker is granted a pure strategy, whose components
are the most appropriate point estimates. Such strategy is always single.
Its components are always less than the right endpoints. The best map-
ping case is when we obtain a totally regular strategy whose components
are greater than the left endpoints. The irregular strategy’s components
admitting many left endpoints are computed by special formulae. The
worst strategy exists, whose single component is greater than the corre-
sponding left endpoint. Apart from the point estimation, irregularities
in the decision-maker’s optimal strategy may serve as an evidence of the
intervals’ incorrectness. The irregularity of higher ranks is a criterion for
correcting the intervals.
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1. Introduction

Interval estimates are unavoidable in modeling processes whose parameters are gen-
erated with a variety of stochastic or weakly controllable factors. It is a poor practice
to deal with such estimates because conclusions and inferences from them come “in-
tervally” uncertain (e.g., [4, 13, 49, 19]). For reducing interval uncertainties, both
expert judgments and statistically observed data are used [1, 21, 23]. Ideally, this
is Bayesian decision making. Practically, a faithful elicitation of the probability and
utility functions is almost always prohibitive [23, 18, 46]. Estimations based on expert
judgments allow narrowing the interval in a limited number of steps [41, 50]. When
no expert or other statistical data are available, decisions on reducing intervals are
made with special policies/strategies [4, 47, 20, 2].

On the other hand, point estimates are much less reliable. As the interval becomes
shorter, reliability of the interval estimate requires more statistical data [9, 36]. For
performing a decision analysis involving fuzzy logic, we need to substantiate a mem-
bership function and a method of defuzzification [22, 43]. Their substantiation also
relies on statistical observations. In general, a proper/valid mapping of the interval
estimate into a point estimate takes huge statistics [17, 47, 46]. Is the mapping pos-
sible without statistical data? Can we “guess” the most appropriate point value that
could substitute the interval? These questions are answered positively only by using
a conception of the least risk under the worst conditions that could happen. In other
words, this is about minimax principle.

In decision making, minimax principle allows forgetting the absence of any statis-
tics. In contrast to decisions using expected value or expected utility, being non-
probabilistic is a key feature of minimax decision making. Minimax robustness is used
in statistical decision theory, where a deterministic parameter is estimated under un-
certainty [3, 35]. Minimax is also used in designing linear estimators, where solutions
of convex optimization problems give the optimal, minimax regret-minimizing linear
estimator [32, 6, 17]. The main ground for trusting the use of minimax principle is
that it minimizes losses [42, 26]. Minimaxing risks/damages is a common routine in
studying processes with highly volatile and non-controllable parameters [4, 19, 14, 3].
Then game models are involved. Their solutions may propose both pure and mixed
strategies [44, 33]. Pure strategies are quite acceptable for a decision-maker, whereas
mixed ones contain probabilities (or probabilistic measures). Practical realization of
probabilities is inseparably associated with relative statistical frequencies. The fre-
quencies tend to the corresponding probabilities by some statistical data [46, 39, 9,
11]. But if we have those data, we can map the interval estimate into a point estimate
without minimaxing. Then no game modeling is needed anymore.

Availability of statistical data excludes reasonability of the minimax mixed strate-
gies. Therefore, only pure strategies are reasonable to make non-statistical decisions
on point estimates. This task becomes severer for multiple interval uncertainties rep-
resenting a group of connected/intertwined parameters [13, 19, 34, 12, 8]. Indeed,
if intervals are closed, then we have to map a multidimensional hyperparallelepiped
into a point of the same dimensionality.
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2. Background, related works, and motivation

Generally, uncertainty of a group of N parameters studied in RN by N ∈ N\ {1}
consists in that we can choose its value X from a subset X ⊂ RN :

X = [xk]1×N ∈
N

×
k=1

Xk = X ⊂ RN by |Xn| > 1 or µR (Xn) 6= 0 ∀n = 1, N. (1)

If subset X is finite, then µRN (X) = 0 and only condition |Xn| > 1 ∀n = 1, N
in (1) remains relevant. Both conditions in (1) are relevant for infinite subset X.
The uncertainty becomes partial if X is a closed N -dimensional hyperparallelepiped

within the nonnegative orthant of RN , and
N∑

n=1
xn is a constant value [44, 38]. It is

very convenient to consider the normalized uncertainty [13, 21, 23, 9]:

xk ∈ [ak; bk] = Xk ⊂ (0; 1)

by ak < bk ∀ k = 1, N − 1 and xN = 1−
N−1∑
n=1

xn > 0. (2)

It is important to note that (2) is followed with an inequality

N−1∑
k=1

ak <

N−1∑
k=1

bk < 1. (3)

If we knew a probabilistic measure Fn (xn) over Xn (being a generatrix to the
Lebesgue–Stieltjes integral), where

bn∫
an

dFn (xn) = 1,

the n-th interval uncertainty could be reduced as follows:

MFn
(Θ) =

bn∫
an

xndFn (xn). (4)

Value (4) is a point estimate [17], which is the mathematical expectation of a random
variable Θ with its values xn ∈ [an; bn] by the probabilistic measure Fn (xn). In
particular, knowing a probability density function f (xn), which is fn (xn) dxn =
dFn (xn), the point estimate becomes

Mfn (Θ) =

bn∫
an

xnfn (xn) dxn.
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However, as it was mentioned above, eliciting a probability function is not an easy
process. All the more that there are simultaneously N such functions (see, e.g., [29,
49]), although the N -th function (for cases with N > 1) is needless for the partial
uncertainty, where value

1−
N−1∑
n=1

MFn
(Θ) or 1−

N−1∑
n=1

Mfn (Θ)

can be accepted as a point estimate of the N -th interval. Besides, those N − 1
probability functions must be constant through a given amount of time [15, 17, 5,
31]. Otherwise, the point estimates intended for this amount become fluent. Thus
the estimation loses its sense.

Without statistical data, the guessed values are used instead of the intervals in
(2). While “guessing”, the minimax principle is applied in order to prevent the
most inappropriate guess. The prevention is understood as smoothing over the most
negative effect [40]. The effect is computed as a ratio between an aftermath of what
is real (becoming known for us only after some period of time) and an aftermath of
our guess (the point estimation aftermaths). Such aftermath is a function ρ defined
on every interval [17, 7, 48, 44]. If we say that yk is a point estimate for the k-th
interval but xk is a real value (valid for the given amount of time), then the effect is
ρ (xk)

ρ (yk)
. Owing to (2), only N − 1 point estimates

XN−1 = [xk]1×(N−1)

∈
{
XN−1 ∈ RN−1| xn ∈ [an; bn] = Xn ⊂ (0; 1) ∀n = 1, N − 1

}
(5)

are guessed as

YN−1 = [yk]1×(N−1)

∈
{
YN−1 ∈ RN−1| ym ∈ [am; bm] = Ym ⊂ (0; 1) ∀m = 1, N − 1

}
. (6)

Then the most negative effect is a function of 2N − 2 variables:

K (XN−1, YN−1) = K
(
{xi}N−1i=1 , {yj}N−1j=1

)

= max


{
ρ (xk)

ρ (yk)

}N−1

k=1

,

ρ

(
1−

N−1∑
n=1

xn

)

ρ

(
1−

N−1∑
m=1

ym

)
 . (7)

In fact, (6) is a strategy of the decision-maker in the problem of choosing the best
point estimates (Figure 1). The best version of this strategy is found as the second
player’s optimal strategy in a game with kernel (7) on a hyperparallelepiped
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Figure 1: Conception of choosing the best point estimates with minimax
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N−1

×
n=1

Xn

}
×

{
N−1

×
m=1

Ym

}
⊂

{
N−1

×
n=1

(0; 1)

}
×

{
N−1

×
m=1

(0; 1)

}
⊂ R2N−2, (8)

where (5) and (6) are pure strategies of the first and second players, respectively

[44, 45]. The first player’s pure strategy set is
N−1
×
n=1

Xn, and the second player’s pure

strategy set is
N−1
×
m=1

Ym.

The simplest case of the effect computation is just ρ (yk) = yk (see [45, 38]). Then
the game kernel (7) is

K (XN−1, YN−1) = K
(
{xi}N−1i=1 , {yj}N−1j=1

)

= max


{
xk
yk

}N−1

k=1

,

1−
N−1∑
n=1

xn

1−
N−1∑
m=1

ym

 . (9)

In a trivial case, when N = 2, kernel (9) is

K (x1, y1) = max

{
x1
y1
,

1− x1
1− y1

}
and the best minimax decision is [45]

y∗1 =
b1

1 + b1 − a1
.

For the general case, in the game with kernel (9) on hyperparallelepiped (8),
the decision-maker (as the second player) has a pure optimal strategy Y∗N−1 =
[y∗k]1×(N−1) (see [38]).

The case with kernel (7) is still unsolved. Shall the decision-maker possess a pure
optimal strategy in this case just for certain types of the function ρ? Will there
be any peculiarities (or special cases) in computing components of strategy Y∗N−1?
Can there be a continuum of such strategies? If it can, then what is a routine to
select a single unique strategy? Answers to these open questions may become a fair
contribution to the field of non-statistical interval uncertainty reduction.

3. Goals and tasks to be fulfilled

The goal is to find a decision-maker’s optimal strategy Y∗N−1, if any, in the game
with kernel

K (XN−1, YN−1) = K
(
{xi}N−1i=1 , {yj}N−1j=1

)
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= max


{
xqk
yqk

}N−1

k=1

,

(
1−

N−1∑
n=1

xn

)q

(
1−

N−1∑
m=1

ym

)q


(10)

on hyperparallelepiped (8) for any q > 0. Along with point estimates {y∗m}
N−1
m=1 of

the first N − 1 intervals, this strategy will allow to find a point estimate of the N -th
interval as

y∗N = 1−
N−1∑
m=1

y∗m. (11)

For achieving the goal, the following tasks are to be fulfilled:

1. To ascertain whether the second player has an optimal pure strategy Y∗N−1 in
the game.

2. If strategy Y∗N−1 exists, to state conditions for finding its components.

3. To give examples of finding components of strategy Y∗N−1.

4. To discuss its applicability and significance.

4. Decision-maker’s optimal strategy

Before we get started, an abbreviation of the game notation should be given.

Definition 1. The game with kernel (10) on hyperparallelepiped (8) for any q > 0
is called partial uncertainty reduction game (PURG).

The positive q is not emphasized in PURG. The reason is going to be made plain
below.

Theorem 1. The decision-maker has a pure optimal strategy

Y∗N−1 = [y∗k]1×(N−1)

in PURG. Components of this strategy are

y∗k =
bk

1 +

N−1∑
n=1

(bn − an)

∀ k = 1, N − 1 (12)

if only
bk

1 +

N−1∑
n=1

(bn − an)

> ak ∀ k = 1, N − 1. (13)
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Proof. Let

Lk (xk, yk) =
xqk
yqk

for k = 1, N − 1 and

LN

(
{xi}N−1i=1 , {yj}N−1j=1

)
=

(
1−

N−1∑
n=1

xn

)q

(
1−

N−1∑
m=1

ym

)q . (14)

So, kernel (10) is a maximum of N functions (14). Partial derivatives of the sec-
ond order of those functions with respect to components of the second player’s pure
strategy are:

∂2

∂y2k
Lk (xk, yk) =

∂2

∂y2k

(
xqk
yqk

)
=

∂

∂yk

(
−
qxqk
yq+1
k

)

=
q (q + 1)xqk

yq+2
k

for k = 1, N − 1 (15)

and

∂2

∂y2k
LN

(
{xi}N−1i=1 , {yj}N−1j=1

)
=

∂2

∂y2k


(

1−
N−1∑
n=1

xn

)q

(
1−

N−1∑
m=1

ym

)q



=
∂

∂yk


q

(
1−

N−1∑
n=1

xn

)q

(
1−

N−1∑
m=1

ym

)q+1



=

q (q + 1)

(
1−

N−1∑
n=1

xn

)q

(
1−

N−1∑
m=1

ym

)q+2 for k = 1, N − 1. (16)

Each of those 2N −2 derivatives (15) and (16) is positive. This implies that functions{
{Lk (xk, yk)}N−1k=1 , LN

(
{xi}N−1i=1 , {yj}N−1j=1

)}
are strictly convex [44]. Then, owing to [37], function (10) is strictly convex itself.
Therefore, PURG is convex. Owing to the game strict convexity, the second player
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herein has a pure strategy, which is

Y∗N−1 ∈ arg

 min

YN−1∈
N−1

×
m=1

Ym

 max

XN−1∈
N−1

×
n=1

Xn

K (XN−1, YN−1)




= arg

 min

YN−1∈
N−1

×
m=1

[am; bm]

 max

XN−1∈
N−1

×
n=1

[an; bn]

K (XN−1, YN−1)


 .

Further, we have:

max

XN−1∈
N−1

×
n=1

[an; bn]

K (XN−1, YN−1)

= max

XN−1∈
N−1

×
n=1

[an; bn]


max


{
xqk
yqk

}N−1

k=1

,

(
1−

N−1∑
i=1

xi

)q

1−
N−1∑
j=1

yj

q





= max


{

max
xk∈[ak; bk]

{
xqk
yqk

}}N−1

k=1

, max

XN−1∈
N−1

×
n=1

[an; bn]



(
1−

N−1∑
i=1

xi

)q

1−
N−1∑
j=1

yj

q





= max


{(

bk
yk

)q}N−1

k=1

,


1−

N−1∑
i=1

ai

1−
N−1∑
j=1

yj


q

. (17)

Maximum (17) is a function of N − 1 variables {yk}N−1k=1 . This function consists of
N upper parts of hyperbolic hypersurfaces raised to the power q. Its minimum on
N−1
×
m=1

Ym is reached when all those N parts are equal [45, 38]:

min

YN−1∈
N−1

×
m=1

[am; bm]

 max

XN−1∈
N−1

×
n=1

[an; bn]

K (XN−1, YN−1)


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= min

YN−1∈
N−1

×
m=1

[am; bm]


max


{(

bk
yk

)q}N−1

k=1

,


1−

N−1∑
i=1

ai

1−
N−1∑
j=1

yj


q



= max


{(

bk
y∗k

)q}N−1

k=1

,


1−

N−1∑
i=1

ai

1−
N−1∑
j=1

y∗j


q

= vopt,

where the optimal game value

vopt =

(
bk
y∗k

)q

=


1−

N−1∑
i=1

ai

1−
N−1∑
j=1

y∗j


q

∀ k = 1, N − 1. (18)

It is apparent that we can state

bk
y∗k

=

1−
N−1∑
i=1

ai

1−
N−1∑
j=1

y∗j

∀ k = 1, N − 1 (19)

instead of (18). It follows from (18) that

y∗m =
bm
bk
y∗k ∀m = 1, N − 1 and ∀ k = 1, N − 1 (20)

along with that

y∗k

(
1−

N−1∑
i=1

ai

)
= bk

1−
N−1∑
j=1

y∗j

 ∀ k = 1, N − 1. (21)

Ratio (20) allows to see that

bky
∗
m = bk

bm
bk
y∗k = bmy

∗
k. (22)

Equality (22) implies that we can exchange indices. This allows to re-write the right
term in (21) as follows:

bk

1−
N−1∑
j=1

y∗j

 = bk −
N−1∑
j=1

bky
∗
j = bk −

N−1∑
j=1

bjy
∗
k = bk − y∗k

N−1∑
j=1

bj . (23)
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Now, we plug the last term of (23) into the right-hand side of (21):

y∗k

(
1−

N−1∑
i=1

ai

)
= bk − y∗k

N−1∑
j=1

bj ,

whence

y∗k =
bk

1 +

N−1∑
j=1

bj −
N−1∑
i=1

ai

=
bk

1 +

N−1∑
n=1

(bn − an)

.

However, value (12) can really be the k-th component of the decision-maker’s optimal
strategy if

bk

1 +

N−1∑
n=1

(bn − an)

∈ [ak; bk] .

Inequality
bk

1 +

N−1∑
n=1

(bn − an)

6 bk ∀ k = 1, N − 1 (24)

is always true because
1

1 +

N−1∑
n=1

(bn − an)

6 1

and

1 6 1 +

N−1∑
n=1

(bn − an), (25)

where
N−1∑
n=1

(bn − an) > 0 (26)

that follows (3). Finally, just requirement (13) remains.

Thus the decision-maker’s optimal strategy does not depend upon q. The optimal
game value (18), showing the poorest ratio between the point estimation aftermaths,
however, is directly influenced with q.

Example 1. Consider an example construing the sense of requirement (13). Suppose
that N = 3, a1 = 0.3, b1 = 0.6, a2 = 0.25, b2 = 0.3. Then

b1

1 +

2∑
n=1

(bn − an)

=
0.6

1 + 0.6− 0.3 + 0.3− 0.25
=

4

9
>

3

10
= a1
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but
b2

1 +

2∑
n=1

(bn − an)

=
0.3

1 + 0.6− 0.3 + 0.3− 0.25
=

2

9
<

1

4
= a2.

Thus requirement (13) is violated here for the second component. This counterexam-
ple prompts to consider the following theorem of necessity.

Theorem 2. To have the k-th component as (12) in PURG, it is necessary that the
inequality

bk − ak
N−1∑
n=1

(bn − an)

> ak (27)

be true.

Proof. Requirement (13) for the k-th component is expanded as follows:

bk > ak + ak

N−1∑
n=1

(bn − an),

bk − ak > ak

(
N−1∑
m=1

bm −
N−1∑
m=1

am

)
,

whence, dividing with owing to (3), we get inequality (27).

It will be shown below that condition (27) is not sufficient for having the k-th
component as (12). But it is sufficient to say that if condition (27) is violated, then
the k-th component is not computed as (12). This is, so to speak, a rejection of
conditions in Theorem 1. Henceforward, the following definitions become important.

Definition 2. The second player’s optimal strategy Y∗N−1 in PURG is called regular
if its components are computed as (12). A component of a regular strategy is called
regular.

Definition 3. The regular optimal strategy Y∗N−1 in PURG is called totally regular
if

y∗k ∈ (ak; bk) ∀ k = 1, N − 1. (28)

A component of a totally regular strategy is called totally regular.

Definition 4. The second player’s optimal strategy Y∗N−1 in PURG is called irregular
if at least a one inequality in requirement (13) is violated. A component of an irregular
strategy is called irregular.

These definitions facilitate in treating various types of optimal strategy Y∗N−1. It

easy to see that if inequality (27) holds for every k = 1, N − 1, then Y∗N−1 is regular.
Obviously, a regular strategy Y∗N−1 consists of N − 1 (all) regular components. They
are computed straightforwardly by (12). If strategy Y∗N−1 has an irregular compo-
nent, this strategy is not a regular one. Before finding irregular strategies, the span
of the regular component is asserted below.
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Theorem 3. Whichever regular strategy Y∗N−1 in PURG is, its k-th component

y∗k ∈ [ak; bk) ∀ k = 1, N − 1. (29)

Proof. As an inequality in requirement (13) can be violated, then an occurrence
y∗k = ak is possible. Owing to (26), inequality (25) holds strictly. Hence, inequality
(24) holds strictly as well.

Do we know a PURG, in which strategy Y∗N−1 is totally regular? Actually, such
a PURG exists, although the intervals seem “regular” themselves [38].

Theorem 4. In PURG whose hyperparallelepiped (8) is a hypercube{
N−1

×
n=1

[a; b]

}
×

{
N−1

×
m=1

[a; b]

}
⊂

{
N−1

×
n=1

(0; 1)

}
×

{
N−1

×
m=1

(0; 1)

}
⊂ R2N−2 (30)

by
{[ak; bk] = [a; b]}N−1k=1 , (31)

the decision-maker has a totally regular strategy Y∗N−1 whose components are identi-
cal:

y∗k =
b

1 + (N − 1) (b− a)
∀ k = 1, N − 1. (32)

Proof. Formula (32) is directly obtained by plugging (31) into (12). We know from
(3) that

N−1∑
k=1

ak = (N − 1) a < 1.

So,
1

N − 1
> a

and
b− a

(N − 1) (b− a)
> a. (33)

Inequality (33) is referred to Theorem 2 by considering inequality (27) with the strict
sign that gives (28).

Thus identical or “regular” intervals (31) generate totally regular and identical
components (32). In this way, interval uncertainties are “regulated” if we are allowed
to slightly adjust endpoints of different intervals. Of course, this is not always possible
in practical situations. If endpoints of different intervals are not adjustable, then
condition (13) is not guaranteed. Now the question is whether requirement (13) can
be violated entirely, i.e., inequality (27) fails ∀ k = 1, N − 1.
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Theorem 5. Inequality (27) in PURG holds strictly at least for a one k ∈
{

1, N − 1
}

.

Proof. Assume that inequality (27) nonstrictly fails ∀ k = 1, N − 1. This implies
that

bk − ak
N−1∑
n=1

(bn − an)

6 ak ∀ k = 1, N − 1.

Then, summing up both sides, we get

N−1∑
k=1

(bk − ak)

N−1∑
n=1

(bn − an)

= 1 6
N−1∑
k=1

ak

that is impossible. This contradiction proves the theorem assertion.

So, strategy Y∗N−1 is irregular if inequality (27) fails at least for a one k ∈{
1, N − 1

}
. How is y∗k then computed? What is strategy Y∗N−1 then, after all?

The following theorem answers this question partially.

Theorem 6. In PURG, let

bu

1 +

N−1∑
n=1

(bn − an)

< au for u ∈ U ⊂
{

1, N − 1
}

by U 6= ∅. (34)

Then |U | components of an irregular strategy Y∗N−1 are found as

y∗u = au ∀u ∈ U ⊂
{

1, N − 1
}
. (35)

The rest N − 1− |U | components are computed as

y∗k =

bk

(
1−

∑
w∈U

aw

)

1 +

N−1∑
n=1

(bn − an)−
∑
w∈U

bw

∀ k ∈
{

1, N − 1
}
\U (36)

if only

bk

(
1−

∑
w∈U

aw

)

1 +

N−1∑
n=1

(bn − an)−
∑
w∈U

bw

> ak ∀ k ∈
{

1, N − 1
}
\U . (37)
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Proof. Let

y∗∗u =
bu

1 +

N−1∑
n=1

(bn − an)

for u ∈ U ⊂
{

1, N − 1
}
. (38)

Due to (34), points (38) cannot be components of Y∗N−1 because y∗∗u /∈ [au; bu]. So,

y∗u > y∗∗u ∀u ∈ U . (39)

Let (18) be re-written as

(
bu
y∗∗u

)q

=

(
bk
y∗k

)q

=


1−

N−1∑
i=1

ai

1−
∑

z∈{1, N−1}\U
y∗z −

∑
w∈U

y∗∗w


q

∀u ∈ U and ∀ k ∈
{

1, N − 1
}
\U . (40)

Taking into account (39), from (40) we get

(
bu
y∗u

)q

<

(
bk
y∗k

)q

<


1−

N−1∑
i=1

ai

1−
∑

z∈{1, N−1}\U
y∗z −

∑
w∈U

y∗w


q

∀u ∈ U and ∀ k ∈
{

1, N − 1
}
\U (41)

instead of (18). Inequalities (41) are equivalent to inequalities

bu
y∗u

<
bk
y∗k

<

1−
N−1∑
i=1

ai

1−
∑

z∈{1, N−1}\U
y∗z −

∑
w∈U

y∗w

∀u ∈ U and ∀ k ∈
{

1, N − 1
}
\U . (42)

Similarly to getting equality (19), the second player here endeavors to minimize the
right term in (42) to get equality

vopt =
bk
y∗k

=

1−
N−1∑
i=1

ai

1−
∑

z∈{1, N−1}\U
y∗z −

∑
w∈U

y∗w
∀ k ∈

{
1, N − 1

}
\U (43)
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that is still possible by setting

y∗k <
bk

1 +

N−1∑
n=1

(bn − an)

for
bk

1 +

N−1∑
n=1

(bn − an)

> ak. (44)

Setting simultaneously y∗w > aw only increases the right term in (43). To decrease
this term, it would be necessary to decrease y∗k for some k ∈

{
1, N − 1

}
\U by (44)

more. But then the term
bk
y∗k

would be increased as well. Such behavior of the second

player contradicts with its optimality principle, where vopt is tried for minimization.
Therefore, setting (35) is optimal, and the rest N − 1− |U | components are roots of
equations (43). Similarly to (20),

y∗m =
bm
bk
y∗k ∀m ∈

{
1, N − 1

}
\U and ∀ k ∈

{
1, N − 1

}
\U , (45)

whence exchanging indices (22) is true. On the other hand, we get N − 1 − |U |
equations

y∗k

(
1−

N−1∑
i=1

ai

)

= bk

1−
∑

z∈{1, N−1}\U
y∗z −

∑
w∈U

y∗w

 ∀ k ∈
{

1, N − 1
}
\U (46)

from (43). Equations (46) are re-written with (35) and (45) as follows:

bk

1−
∑

z∈{1, N−1}\U
y∗z −

∑
w∈U

y∗w


= bk

(
1−

∑
w∈U

aw

)
− bk

∑
z∈{1, N−1}\U

y∗z

= bk

(
1−

∑
w∈U

aw

)
− y∗k

∑
z∈{1, N−1}\U

bz

= bk

(
1−

∑
w∈U

aw

)
− y∗k

(
N−1∑
i=1

bi −
∑
w∈U

bw

)
∀ k ∈

{
1, N − 1

}
\U . (47)

Now, we plug the last term of (47) into the right-hand side of (46):

y∗k

(
1−

N−1∑
i=1

ai

)
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= bk

(
1−

∑
w∈U

aw

)
− y∗k

(
N−1∑
i=1

bi −
∑
w∈U

bw

)
∀ k ∈

{
1, N − 1

}
\U ,

whence (36) follows on. However, value (36) can really be the k-th component of the
decision-maker’s optimal strategy if

bk

(
1−

∑
w∈U

aw

)

1 +

N−1∑
n=1

(bn − an)−
∑
w∈U

bw

∈ [ak; bk] ∀ k ∈
{

1, N − 1
}
\U .

From inequality

bk

(
1−

∑
w∈U

aw

)

1 +

N−1∑
n=1

(bn − an)−
∑
w∈U

bw

6 bk ∀ k ∈
{

1, N − 1
}
\U (48)

successively we have:

1−
∑
w∈U

aw

1 +

N−1∑
n=1

(bn − an)−
∑
w∈U

bw

6 1,

1−
∑
w∈U

aw 6 1 +

N−1∑
n=1

(bn − an)−
∑
w∈U

bw,

0 6
N−1∑
n=1

(bn − an)−
∑
w∈U

(bw − aw) =
∑

z∈{1, N−1}\U
(bz − az). (49)

Inequality (49) is always true, so inequality (48) holds as well. Finally, just require-
ment (37) remains.

According to Theorem 5, in PURG ∃ k ∈
{

1, N − 1
}

such that the k-th inequality
in requirement (13) holds. Therefore, the maximal number of inequalities (34) is
N − 2, i.e., |U | 6 N − 2. So, Example 1 gave a case with the maximal number by
N = 3, where U = {2}. For that case, y∗2 = a2 = 0.25 and

y∗1 =
b1 (1− a2)

1 +

2∑
n=1

(bn − an)− b2

=
0.6 · 0.75

1 + 0.6− 0.3 + 0.3− 0.25− 0.3
=

3

7
>

3

10
= a1.
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Example 2. Consider an example construing the sense of requirement (37). Suppose
that N = 4, a1 = 0.1, b1 = 0.5, a2 = 0.15, b2 = 0.2, a3 = 0.16, b3 = 0.25. Then

3∑
n=1

(bn − an) = 0.5− 0.1 + 0.2− 0.15 + 0.25− 0.16 = 0.54,

b1

1 +

3∑
n=1

(bn − an)

=
0.5

1 + 0.54
=

25

77
>

1

10
= a1

and
b3

1 +

3∑
n=1

(bn − an)

=
0.25

1 + 0.54
=

25

154
>

4

25
= a3,

but
b2

1 +

3∑
n=1

(bn − an)

=
0.2

1 + 0.54
=

10

77
<

3

20
= a2.

So, U = {2} and, according to Theorem 6, y∗2 = a2 = 0.15,

b1 (1− a2)

1 +

3∑
n=1

(bn − an)− b2

=
0.5 · (1− 0.15)

1 + 0.54− 0.2
=

85

268
>

1

10
= a1,

but
b3 (1− a2)

1 +

3∑
n=1

(bn − an)− b2

=
0.25 · (1− 0.15)

1 + 0.54− 0.2
=

85

536
<

4

25
= a3.

Thus requirement (37) is violated here for the third component. This counterexample
shows that Theorem 6 does not conclude the question of finding an irregular strategy
Y∗N−1 in PURG. This question also needs knowing the span of the irregular strategy
component.

Theorem 7. Whichever irregular strategy Y∗N−1 in PURG is, its k-th component is
(29). Besides,

bk

(
1−

∑
w∈U

aw

)

1 +

N−1∑
n=1

(bn − an)−
∑
w∈U

bw

<
bk

1 +

N−1∑
n=1

(bn − an)

< bk

∀ k ∈
{

1, N − 1
}
\U . (50)
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Proof. Let components of an irregular strategy Y∗N−1 be (35) and (36). The right
inequality in (50) has been already proved in Theorem 3. Consider the difference
between the left and right terms in the left inequality in (50) divided by bk:(

1−
∑
w∈U

aw

)(
1 +

N−1∑
n=1

(bn − an)

)
−

(
1 +

N−1∑
n=1

(bn − an)−
∑
w∈U

bw

)
(

1 +

N−1∑
n=1

(bn − an)−
∑
w∈U

bw

)(
1 +

N−1∑
n=1

(bn − an)

)

=

(
1 +

N−1∑
n=1

(bn − an)−
∑
w∈U

aw

(
1 +

N−1∑
n=1

(bn − an)

)
− 1−

N−1∑
n=1

(bn − an)

+
∑
w∈U

bw

)(
1 +

N−1∑
n=1

(bn − an)−
∑
w∈U

bw

)−1(
1 +

N−1∑
n=1

(bn − an)

)−1

=

−
∑
w∈U

aw

(
1 +

N−1∑
n=1

(bn − an)

)
+
∑
w∈U

bw(
1 +

N−1∑
n=1

(bn − an)−
∑
w∈U

bw

)(
1 +

N−1∑
n=1

(bn − an)

) . (51)

Summing up both sides of (34), we get∑
u∈U

bu

1 +

N−1∑
n=1

(bn − an)

<
∑
u∈U

au,

∑
u∈U

bu −
∑
u∈U

au

(
1 +

N−1∑
n=1

(bn − an)

)
< 0,

whence the numerator in the last term of (51) is negative. This confirms the double
inequality (50).

As requirement (37) can be violated at least for a one k, irregularity of strategy
Y∗N−1 by Theorem 6 and property (50) of span (29) of its components need supple-
mentation. An irregular strategy Y∗N−1, wherein

bk

(
1−

∑
w∈U

aw

)

1 +

N−1∑
n=1

(bn − an)−
∑
w∈U

bw

< ak by k ∈
{

1, N − 1
}
\U ,



166 V. Romanuke

acquires deeper irregularity. Therefore, components of the irregular strategy should
be distinguished by ranks of their irregularity. Particularly, this is about downward-
biasing of their values in accordance to (50).

Definition 5. The u-th component (35) of the second player’s optimal strategy Y∗N−1
in PURG is called a simple irregular component of the first rank (SIC-1) if condition
(34) holds. A set of those components (SICs-1) is called a left strategy subset of the
first rank (LSS-1).

Definition 6. The k-th component (36) of the second player’s optimal strategy Y∗N−1
in PURG is called a downward-biased irregular component of the first rank (DBIC-1).
A set of those components (DBICs-1) is called a biased strategy subset of the first
rank (BSS-1).

Clearly, an irregular strategy Y∗N−1 contains at least an SIC-1. Owing to The-
orem 5 we know that number of SICs-1 does not exceed N − 2. Going deeper with
irregularity, can requirement (37) be violated entirely?

Theorem 8. Whichever nonempty LSS-1 in PURG is, ∃ l ∈
{

1, N − 1
}
\U such

that

bl

(
1−

∑
w∈U

aw

)

1 +

N−1∑
n=1

(bn − an)−
∑
w∈U

bw

> al. (52)

Proof. Assume that inequality (37) holds with the reverse sign implying that

bk

(
1−

∑
w∈U

aw

)

1 +

N−1∑
n=1

(bn − an)−
∑
w∈U

bw

6 ak ∀ k ∈
{

1, N − 1
}
\U . (53)

Then, summing up both sides of (53) over k ∈
{

1, N − 1
}
\U , we get

∑
k∈{1, N−1}\U

bk

(
1−

∑
w∈U

aw

)

1 +

N−1∑
n=1

(bn − an)−
∑
w∈U

bw

6
∑

k∈{1, N−1}\U
ak,

∑
k∈{1, N−1}\U

bk

(
1−

∑
w∈U

aw

)
6

∑
k∈{1, N−1}\U

ak

(
1 +

N−1∑
n=1

(bn − an)−
∑
w∈U

bw

)
,
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∑
k∈{1, N−1}\U

bk

(
1−

∑
w∈U

aw

)

6
∑

k∈{1, N−1}\U
ak

1−
N−1∑
n=1

an +
∑

j∈{1, N−1}\U
bj

 ,

∑
k∈{1, N−1}\U

bk

(
1−

∑
w∈U

aw

)
−

∑
k∈{1, N−1}\U

ak
∑

j∈{1, N−1}\U
bj

6
∑

k∈{1, N−1}\U
ak

(
1−

N−1∑
n=1

an

)
,

∑
k∈{1, N−1}\U

bk

1−
∑
w∈U

aw −
∑

k∈{1, N−1}\U
ak


6

∑
k∈{1, N−1}\U

ak

(
1−

N−1∑
n=1

an

)
,

∑
k∈{1, N−1}\U

bk

(
1−

N−1∑
n=1

an

)
6

∑
k∈{1, N−1}\U

ak

(
1−

N−1∑
n=1

an

)
,

∑
k∈{1, N−1}\U

bk 6
∑

k∈{1, N−1}\U
ak, (54)

that is impossible. The refuted assumption implies that ∃ l ∈
{

1, N − 1
}
\U such

that (52) holds.

Although requirement (37) cannot be violated entirely, some of its inequalities
may turn false (see Example 2). Then the corresponding irregular optimal strategy
Y∗N−1 does not contain BSS-1.

Definition 7. An irregular optimal strategy Y∗N−1 of the second player in PURG
is called an irregular strategy of the first rank (IS-1) if it consists only of LSS-1 and
BSS-1.

We found an IS-1 in Example 1. Example 2 showed a case, where DBICs-1 cannot
be computed by (36), although y∗2 = 0.15 turned to be a single SIC-1. That is why
the irregular strategy Y∗N−1 in Example 2 cannot be an IS-1. Apparently, irregular
strategies can have different ranks of their irregularity. Deeper irregularity implies a
higher rank of irregular components. As irregular strategies Y∗N−1 in PURG may be
of higher ranks, Theorem 1 and Theorem 6 must be generalized.
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Theorem 9. Let Uh ⊂
{

1, N − 1
}

be a subset of those indices within the set{
1, N − 1

}
in PURG, for which inequality

buh

1−
∑

w∈A h−1

aw


1 +

N−1∑
n=1

(bn − an)−
∑

w∈A h−1

bw

< auh

for Ah−1 =

h−1⋃
q=1

U q and uh ∈ Uh (55)

holds successively starting from h = 1 up to some h ∈ N and

h⋂
q=1

U q = ∅ for U q 6= ∅ ∀ q = 1, h. (56)

Then the maximal value of the index h is constrained:

h 6 N − 2. (57)

Besides,

Ah =

h⋃
q=1

U q

and |Ah| components of an irregular strategy Y∗N−1 are found as

y∗ur
= aur

∀ur ∈ U r ⊂
{

1, N − 1
}

by r = 1, h. (58)

The rest N − 1− |Ah| components are computed as

y∗k =

bk

(
1−

∑
w∈A h

aw

)

1 +

N−1∑
n=1

(bn − an)−
∑

w∈A h

bw

∀ k ∈
{

1, N − 1
}
\Ah (59)

if only

bk

(
1−

∑
w∈A h

aw

)

1 +

N−1∑
n=1

(bn − an)−
∑

w∈A h

bw

> ak ∀ k ∈
{

1, N − 1
}
\Ah. (60)
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Proof. If h = 1 then Ah−1 = ∅ and it falls directly within conditions of Theorem 6.
By induction for h > 2, the reasoning for (58)–(60) under (55) and (56) is the same
as that in Theorem 6, where U along the proof is substituted with Ah, formula (38)
is substituted with

y∗∗u =

bu

1−
∑

w∈A h−1

aw


1 +

N−1∑
n=1

(bn − an)−
∑

w∈A h−1

bw

for u ∈ U ⊂
{

1, N − 1
}

and formula (44) is substituted with

y∗k <

bk

1−
∑

w∈A h−1

aw


1 +

N−1∑
n=1

(bn − an)−
∑

w∈A h−1

bw

for

bk

1−
∑

w∈A h−1

aw


1 +

N−1∑
n=1

(bn − an)−
∑

w∈A h−1

bw

> ak.

Thus, it remains only to prove (57). The maximal number of non-overlapping
nonempty subsets of the set

{
1, N − 1

}
is N − 1 (meaning not every possible com-

bination, but “pieces” of the whole set once broken into them). In this case, they all
are singletons. If h = N − 1 then

AN−1 =

N−1⋃
q=1

U q =
{

1, N − 1
}

and the k-th component (59) would be

y∗k =

bk

1−
∑

w∈A N−1

aw


1 +

N−1∑
n=1

(bn − an)−
∑

w∈A N−1

bw

=

bk

(
1−

N−1∑
w=1

aw

)

1 +

N−1∑
n=1

(bn − an)−
N−1∑
w=1

bw

=

bk

(
1−

N−1∑
w=1

aw

)

1−
N−1∑
n=1

an

= bk

by k ∈
{

1, N − 1
}
\AN−1 = ∅. Hence, the case h = N−1 is impossible. If h = N−2

then the subset

AN−2 =

N−2⋃
q=1

U q (61)
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consists of N − 2 indices, and thus k ∈
{

1, N − 1
}
\AN−2 exists as a single index.

So, from inequality (60) we have that

bk

1−
∑

w∈A N−2

aw


1 +

N−1∑
n=1

(bn − an)−
∑

w∈A N−2

bw

> ak, (62)

bk

1−
∑

w∈A N−2

aw


1 + bk −

N−1∑
n=1

an

> ak,

bk

1−
∑

w∈A N−2

aw

 > ak

(
1 + bk −

N−1∑
n=1

an

)
,

bk

1−
∑

w∈A N−2

aw

− akbk > ak

(
1−

N−1∑
n=1

an

)
,

bk

1−
∑

w∈A N−2

aw − ak

 > ak

(
1−

N−1∑
n=1

an

)
,

bk

(
1−

N−1∑
n=1

an

)
> ak

(
1−

N−1∑
n=1

an

)
. (63)

Inequality (63) is true, so that confirms the case h = N − 2 is possible. Possibility of
cases h < N − 2 is inductively verifiable.

The following definitions generalize ranking the irregularity of the decision-maker’s
optimal strategy.

Definition 8. The uh-th component y∗uh
= auh

of the second player’s optimal strat-
egy Y∗N−1 in PURG is called a simple irregular component of the h-th rank (SIC-h)

if condition (55) holds, h = 1, N − 2. A set of those components (SICs-h) is called a
left strategy subset of the h-th rank (LSS-h).

Definition 9. The k-th component (59) of the second player’s optimal strategy Y∗N−1
in PURG is called a downward-biased irregular component of the h-th rank (DBIC-h),
h = 1, N − 2. A set of those components (DBICs-h) is called a biased strategy subset
of the h-th rank (BSS-h).
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Definition 10. An irregular optimal strategy Y∗N−1 of the second player in PURG
is called an irregular strategy of the h-th rank (IS-h) if it includes an LSS-h and does
not contain irregular components of ranks higher than h.

According to Theorem 9, IS-h always contains SICs-r ∀ r = 1, h and BSS-h. Every
LSS-r contains at least a one component. IS-h does not contain BSS-r ∀ r = 1, h− 1.
The irregular optimal strategy of the highest rank, which is, literally, IS-(N − 2), has
a captivating property.

Theorem 10. IS-(N − 2) in PURG has a one and only one component, which is
greater than the corresponding left endpoint.

Proof. Using (61) from the proof of Theorem 9, we have (58) for N−2 indices. Here,
inequality (62) holds for a single index k ∈

{
1, N − 1

}
\AN−2. But inequality (63)

always holds strictly. Therefore, inequality (62) holds strictly as well.

Reverting to Example 2, its decision-maker’s optimal strategy Y∗N−1 is computable
now: U 1 = {2} and a single SIC-1 is y∗2 = a2 = 0.15, U 2 = {3} and a single SIC-2 is
y∗3 = a3 = 0.16. Finally, a single DBIC-2 is

y∗1 =
b1 (1− a2 − a3)

1 +

3∑
n=1

(bn − an)− b2 − b3

=
0.5 · (1− 0.15− 0.16)

1 + 0.54− 0.2− 0.25
=

69

218
>

1

10
= a1.

This IS-2 is an instance that supports the assertion of Theorem 10. Inequality (52)
within the assertion of Theorem 8 holds as well. Similar to Theorem 9, which gener-
alizes Theorem 6, an inductive generalization to Theorem 8 is important as well.

Theorem 11. Whichever nonempty IS-h in PURG is, ∃ l ∈
{

1, N − 1
}
\Ah such

that

bl

(
1−

∑
w∈A h

aw

)

1 +

N−1∑
n=1

(bn − an)−
∑

w∈A h

bw

> al for h ∈
{

1, N − 2
}
. (64)

Proof. Assume that inequality (60) holds with the reverse sign implying that

bk

(
1−

∑
w∈A h

aw

)

1 +

N−1∑
n=1

(bn − an)−
∑

w∈A h

bw

6 ak ∀ k ∈
{

1, N − 1
}
\Ah.

Then, U is substituted with Ah, and we get the same reasoning as that in The-
orem 8, finally coming to contradiction (54). The refuted assumption implies that
∃ l ∈

{
1, N − 1

}
\Ah such that (64) holds.
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According to Theorem 11, a case of y∗k = ak ∀ k ∈
{

1, N − 1
}

in PURG is im-
possible. Nevertheless, it is revealed that a potential DBIC-h is always less than a
potential DBIC-(h− 1).

Theorem 12. DBICs-h and DBICs-(h− 1) obey the inequality

bk

(
1−

∑
w∈A h

aw

)

1 +

N−1∑
n=1

(bn − an)−
∑

w∈A h

bw

<

bk

1−
∑

z∈A h−1

az


1 +

N−1∑
n=1

(bn − an)−
∑

z∈A h−1

bz

∀ k ∈
{

1, N − 1
}
\Ah and ∀h = 2, N − 2. (65)

Proof. The difference between the left and right terms in inequality (65) divided by
bk is:(1−

∑
w∈A h

aw

)1 +

N−1∑
n=1

(bn − an)−
∑

z∈A h−1

bz


−

1−
∑

z∈A h−1

az

(1 +

N−1∑
n=1

(bn − an)−
∑

w∈A h

bw

)(1 +

N−1∑
n=1

(bn − an)

−
∑

w∈A h

bw

)−11 +

N−1∑
n=1

(bn − an)−
∑

z∈A h−1

bz

−1 . (66)

Using that Ah = Ah−1 ∪Uh and∑
w∈A h

aw =
∑

z∈A h−1

az +
∑
l∈U h

al,∑
w∈A h

bw =
∑

z∈A h−1

bz +
∑
l∈U h

bl,

the expanded numerator in (66) is:

1 +

N−1∑
n=1

(bn − an)−
∑

z∈A h−1

bz −
∑

w∈A h

aw

−
∑

w∈A h

aw

N−1∑
n=1

(bn − an) +
∑

w∈A h

aw
∑

z∈A h−1

bz

− 1−
N−1∑
n=1

(bn − an) +
∑

w∈A h

bw +
∑

z∈A h−1

az
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+
∑

z∈A h−1

az

N−1∑
n=1

(bn − an)−
∑

z∈A h−1

az
∑

w∈A h

bw

= −
∑
l∈U h

al −
∑
l∈U h

al

N−1∑
n=1

(bn − an)

+
∑

w∈A h

aw
∑

z∈A h−1

bz +
∑
l∈U h

bl −
∑

z∈A h−1

az
∑

w∈A h

bw

= −
∑
l∈U h

al

(
1 +

N−1∑
n=1

(bn − an)

)
+

 ∑
z∈A h−1

az +
∑
l∈U h

al

 ∑
z∈A h−1

bz

+
∑
l∈U h

bl −
∑

z∈A h−1

az

 ∑
z∈A h−1

bz +
∑
l∈U h

bl


= −

∑
l∈U h

al

(
1 +

N−1∑
n=1

(bn − an)

)
+

∑
l∈U h

al
∑

z∈A h−1

bz +
∑
l∈U h

bl −
∑

z∈A h−1

az
∑
l∈U h

bl

= −
∑
l∈U h

al

1 +

N−1∑
n=1

(bn − an)−
∑

z∈A h−1

bz


+

∑
l∈U h

bl

1−
∑

z∈A h−1

az

 . (67)

Summing up both sides of (55), we get

∑
uh∈U h

buh

1−
∑

w∈A h−1

aw


1 +

N−1∑
n=1

(bn − an)−
∑

w∈A h−1

bw

<
∑

uh∈U h

auh
,

∑
uh∈U h

buh

1−
∑

w∈A h−1

aw

− ∑
uh∈U h

auh

1 +

N−1∑
n=1

(bn − an)−
∑

w∈A h−1

bw

 < 0,

whence the last term of (67) is negative. Thus, difference (66) is negative, so inequality
(65) holds.
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Henceforward, strategy Y∗N−1 in PURG is either regular or irregular. Whichever
strategy Y∗N−1 is, its k-th component is (29) following Theorem 7 and Theorem 12.

5. Application

Branches, where PURG and the strategy Y∗N−1 may be applied, relate to multi-
parametric systems whose statistics either are very poor or include a high volatil-
ity. These systems must consist of N objects, over which some action is accom-
plished. Delivering capacities, loading/charging up to uncertain levels, time win-
dowing/scheduling are the most attractable examples of the action [44, 45, 19, 40,
10]. Volumes or periods thereby are either non-predictable or their adjustment takes
significant time/resources/energy.

An instance of the PURG’s application is an incipient consumer service, where
amounts of demands at the start are given as intervals, although the grand total
is fixed. The N -th consumer is a fictional one, whose “demand” is an unclaimed
amount. This amount is usually delivered backward or utilized. If all consumers are
equal (without priorities), the PURG-based model with (30)–(32) is acceptable.

If the amounts are areas to be appropriately divided, then q = 2. Cases with q = 2
relate mostly to areas/squares when intervals are given in feet, yards, miles, etc. If
the amounts are measured in cubature (say, for gallonage, barrels, or cubic meters),
then q = 3. Cases with q = 3 relate to volumes when intervals are given similarly.
The power q, although not influencing on the strategy Y∗N−1, stands for the factual
results and the point estimation aftermaths.

PURG can be used in preparing data for interval analysis, without mapping in-
tervals into points. The data preparation purports refinement of intervals. If an
irregularity is revealed then the intervals may be considered inappropriate for oper-
ating over them. Thus, the presence of irregular components in Y∗N−1 is a criterion
for preventing improper interval operations. Only regular strategy Y∗N−1 or Y∗N−1
with just DBICs-1 and a few SICs-1 might admit operations over the corresponding
N − 1 intervals.

Example 3. Let N = 5, a1 = 0.175, b1 = 0.225, a2 = 0.2, b2 = 0.225, a3 = 0.2,
b3 = 0.25, a4 = 0.15, b4 = 0.275. Here, first of all,

4∑
n=1

(bn − an) = 0.225− 0.175 + 0.225− 0.2 + 0.25− 0.2 + 0.275− 0.15 = 0.25,

b1

1 +

4∑
n=1

(bn − an)

=
0.225

1 + 0.25
=

9

50
>

7

40
= a1,

b2

1 +

4∑
n=1

(bn − an)

=
0.225

1 + 0.25
=

9

50
<

1

5
= a2,
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b3

1 +

4∑
n=1

(bn − an)

=
0.25

1 + 0.25
=

1

5
= a3,

b4

1 +

4∑
n=1

(bn − an)

=
0.275

1 + 0.25
=

11

50
>

3

20
= a4,

whence U 1 = {2} and y∗2 = a2 = 0.2. Then

b1 (1− a2)

1 +

4∑
n=1

(bn − an)− b2

=
0.225 · (1− 0.2)

1 + 0.25− 0.225
=

36

205
>

7

40
= a1,

b3 (1− a2)

1 +

4∑
n=1

(bn − an)− b2

=
0.25 · (1− 0.2)

1 + 0.25− 0.225
=

8

41
<

1

5
= a3,

b4 (1− a2)

1 +

4∑
n=1

(bn − an)− b2

=
0.275 · (1− 0.2)

1 + 0.25− 0.225
=

44

205
>

3

20
= a4,

whence U 2 = {3} and y∗3 = a3 = 0.2. Further,

b1 (1− a2 − a3)

1 +

4∑
n=1

(bn − an)− b2 − b3

=
0.225 · (1− 0.2− 0.2)

1 + 0.25− 0.225− 0.25
=

27

155
<

7

40
= a1,

b4 (1− a2 − a3)

1 +

4∑
n=1

(bn − an)− b2 − b3

=
0.275 · (1− 0.2− 0.2)

1 + 0.25− 0.225− 0.25
=

33

155
>

3

20
= a4,

whence U 3 = {1} and y∗1 = a1 = 0.175. Finally, according to Theorem 10,

y∗4 =
b4 (1− a2 − a3 − a1)

1 +

4∑
n=1

(bn − an)− b2 − b3 − b1

=
0.275 · (1− 0.2− 0.2− 0.175)

1 + 0.25− 0.225− 0.25− 0.225
=

17

80
>

3

20
= a4.
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The found IS-3 is obviously poor. But after corrections of the first three intervals
to [0.165; 0.225], [0.17; 0.235], [0.19; 0.26], [0.15; 0.275] a totally regular strategy is
obtained. The intervals herein are made wider for 20 %, 160 %, and 40 %, respectively
(the second interval was initially too short).

It is quite clear that the cost vopt of mapping interval uncertainties into point
estimates by the minimax approach is always lesser than the cost by any other point
estimation:

vopt = max


{(

bk
y∗k

)q}N−1

k=1

,


1−

N−1∑
i=1

ai

1−
N−1∑
j=1

y∗j


q

6 max


{(

bk

y
〈0〉
k

)q}N−1

k=1

,


1−

N−1∑
i=1

ai

1−
N−1∑
j=1

y
〈0〉
j


q

= v〈0〉, (68)

where
{
y
〈0〉
m

}N−1

m=1
are point estimates the first N − 1 intervals, and

y
〈0〉
N = 1−

N−1∑
m=1

y〈0〉m .

Point estimates
{
y
〈0〉
m

}N−1

m=1
can be obtained, for example, by simply finding an arith-

metic/geometric mean of left and right endpoints for every interval. The numerical

analysis, based on randomly generated positive intervals {[ak; bk]}N−1k=1 by (3), shows
that non-minimax cost v〈0〉 for both arithmetic and geometric mean approaches is far
greater that that of minimax (Figure 2). The cost of choosing the point estimates as
values of random variables is obviously the worst.

The average costs of the point estimation inevitably grow as N increases. The
minimax cost growth is significantly slower (Figure 3). Moreover, it looks like it has
an asymptote, which is less than 1.3 for a reasonably wide sequence of N . The growths
of the cost for both arithmetic and geometric mean approaches along with the random
point choice do not seem to have such asymptotes. Nonetheless, the worst minimax
cost vopt > 1.4 (before averaging in Figure 3).

The advantage of the minimax approach reflected in Figure 3 strengthens as the
number of intervals to be mapped into point estimates increases. Despite the minimax
cost expectedly grows, prevention of the worst event is the main goal. This is especially
important for branches where consequences of mistaken decisions will cost far much
more than vopt by (68), e.g., power management systems planning [4, 32], allocation
of resources for sustainability [24, 19, 25], nuclear data processing (1) and design of
reactor in-core monitoring systems [16], reliable flight trajectories [28], cybersecurity
[30, 25].
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Figure 2: Costs of the point estimation (for q = 1) for six series of 100 sets of
intervals by increasing N from 2 through 7 (moving from the top to bottom), where
the maximal ratio of the right and left endpoints is not greater than 2
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Figure 3: The average costs of the point estimation (for q = 1) for 15 series of 5000
sets of intervals, where the maximal ratio of the right and left endpoints is not greater
than 2

6. Discussion

An apparent demerit of the PURG-based model is that the decision-maker’s optimal
strategy Y∗N−1 becomes inefficient as statistical data are accumulated. When sta-
tistical data are still insufficient for Bayesian decisions, the minimax strategy can be
softened with expectations [27, 51]. A suitable moment to stop using the minimax ap-
proach along with the PURG-based model is when the respective probability density
functions can be elicited from the accumulated statistics. However, strategy Y∗N−1
appears efficient when external conditions change frequently/quickly (i.e., are highly
volatile) regardless of whether statistical data are sufficient or not.

Figure 4 shows interrelation of the proven theorems. Simpler cases are enveloped
in more general cases. Theorem 4 describes an ideal version of PURG. It is naively
believed that approximating to such PURG will give a totally regular strategy for the
decision-maker.
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Figure 4: Assertions and purposes of the proven theorems
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Normalization to 1 allows considering a fluent grand total, but the endpoints of
N − 1 intervals must be fixed. This means that the portion of a particular interval
should be always fixed. This is the fundamental step while dealing with real interval
data.

Simple realizability in practice is a merit of the PURG-based model. Another one
is a non-sophisticated routine of building PURG and finding the minimax strategy.
This routine is of two stages. Firstly, grand total and boundaries of objects’ portions
are normalized. Secondly, components {y∗k}

N−1
k=1 are computed, whichever formulae

are used. Moreover, the solution is independent of q. Such independency imparts
some universality to PURG.

Strategy Y∗N−1 is always single, there are no PURGs with a continuum of such
strategies. This saves from solving a subsequent decision making problem that lies
in selecting a single unique strategy. Additionally, the minimax irregular strategy is
ranked, that facilitate in comparing different intervals given before the point estima-
tion. Intervals which are mapped into simple irregular components of higher ranks
are less reliable.

Notwithstanding the intervals and IS-3 in Example 3, a series of numerical tests
confirms that cases of deeply irregular components (high ranks of irregularity) are
unlikely. Unlikelihood strengthens when endpoints of the same type (left or right) are
close by value, especially if they are identical. A confluent case is PURG on hypercube
(30) granting a totally regular strategy with components (32).

7. Conclusion

The PURG-based model, including formulae for {y∗k}
N−1
k=1 and (11), is a contribu-

tion to the field of non-statistical interval uncertainty reduction. This is a model of
maximal disbalance between a real unknown amount and a guessed amount. These
amounts are interpreted as aftermaths of the point estimation. This model grants a
pure strategy Y∗N−1 whose components are the most appropriate point estimates. The
appropriateness is founded on the minimax principle. This is a subtle optimization
model addressing minimum information processes. The approach will work efficiently
only by when no information is available but those interval estimates. Such a situation
is common in processing raw data of difficult measurements and measurements with
jeopardy (for instance, concentrations of river/air/ground pollutants, radiation con-
trol, etc.), where statistics are too small to estimate, e.g., a probability distribution
and find point estimates of its main characteristics (expectance and variance). The
minimax approach is applicable for cases just like those mentioned above, when the
risk of a biased decision should be as minimal as possible until additional information
becomes available.

Main benefits of PURG and Y∗N−1 are simplicity and acceptability of any time
period for practical realization. This is because we do not have expected values, but
only ready-to-go values. In other words, decisions based on minimax strategy Y∗N−1
are implemented on-the-fly, whichever changes of initial intervals are, and the result
of such an implementation comes instantly. If something new emerges frequently



A Minimax Approach to Mapping Uncertainties into Point Estimates 181

(resulting in frequently “floating” intervals), the minimax reaction by strategy Y∗N−1
is immediate owing to its components are re-computed easily.

Apart from the point estimation, the PURG-based model contributes to the deci-
sion making theory by deciding on appropriateness of the initial interval estimations
grouped as (2) by (3). Irregularities in the decision-maker’s optimal strategy Y∗N−1
may serve as an evidence of incorrectly setting the corresponding intervals’ endpoints.
Furthermore, higher ranks of irregularity might reject the corresponding intervals and
send them for correction before starting interval calculus. More specifically, a totally
regular strategy Y∗N−1 satisfying condition (28) is the best case for mapping partial
interval uncertainties into point estimates. A regular strategy Y∗N−1 found by (12)
but failing with (28) produces a suspicion of that not all the intervals are evaluated
correctly. An irregular strategy of the first rank (IS-1) found by (34)–(37) is a fea-
ture of poorly evaluated intervals. Then, correction of the intervals corresponding
to LSS-1 (a set of SICs-1) is an option. Deeper irregularity implying a higher rank
of irregular components directs that option to compulsorily correcting the intervals
which correspond to left strategy subsets of all the ranks reached. Therefore, LSS-2
and left strategy subsets of higher ranks play a role of indicators to which intervals
should be necessarily corrected.
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[30] J. Moon, T. Başar, Minimax control over unreliable communication channels,
Automatica 59 (2015) 182–193.

[31] D.E. Morris, J.E. Oakley, J.A. Crowe, A web-based tool for eliciting probability
distributions from experts, Environmental Modelling & Software 52 (2014) 1–4.

[32] C. Ning, F. You, Adaptive robust optimization with minimax regret criterion:
Multiobjective optimization framework and computational algorithm for planning
and scheduling under uncertainty, Computers & Chemical Engineering 108 (2018)
425–447.
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