Journal of Mathematics
and Applications
JMA No 37, pp 51-58 (2014)

On the zeros of an analytic function

V.K. Jain

Abstract: Kuniyeda, Montel and Toya had shown that the polynomial $p(z)=\sum_{k=0}^{n} a_{k} z^{k} ; a_{0} \neq 0$, of degree n, does not vanish in

$$
|z| \leq\left\{1+\left(\sum_{j=1}^{n}\left|a_{j} / a_{0}\right|^{p}\right)^{q / p}\right\}^{-1 / q}
$$

where $p>1, q>1,(1 / p)+(1 / q)=1$ and we had proved that $p(z)$ does not vanish in $|z| \leq \alpha^{1 / q}$, where
$\alpha=$ unique root in $(0,1)$ of $D_{n} x^{3}-D_{n} S x^{2}+\left(1+D_{n} S\right) x-1=0$, $D_{n}=\left(\sum_{j=1}^{n}\left|a_{j} / a_{0}\right|^{p}\right)^{q / p}$,

$$
S=\left(\left|a_{1}\right|+\left|a_{2}\right|\right)^{q}\left(\left|a_{1}\right|^{p}+\left|a_{2}\right|^{p}\right)^{-(q-1)},
$$

a refinement of Kuniyeda et al.'s result under the assumption

$$
D_{n}<(2-S) /(S-1)
$$

Now we have obtained a generalization of our old result and proved that the function

$$
f(z)=\sum_{k=0}^{\infty} a_{k} z^{k},(\not \equiv \text { aconstant }) ; a_{0} \neq 0
$$

analytic in $|z| \leq 1$, does not vanish in $|z|<\alpha_{m}^{1 / q}$, where
$\alpha_{m}=$ unique root in $(0,1)$ of $D x^{m+1}-D M_{m} x^{2}+\left(1+D M_{m}\right) x-1=0$,
$D=\left(\sum_{k=1}^{\infty}\left|a_{k} / a_{0}\right|^{p}\right)^{q / p}$,
$M_{m}=\left(\sum_{k=1}^{m}\left|a_{k}\right|\right)^{q}\left(\sum_{k=1}^{m}\left|a_{k}\right|^{p}\right)^{-q / p}$,
$m=$ any positive integer with the characteristic that there
exists a positive integer $k(\leq m)$ with $a_{k} \neq 0$.
COPYRIGHT © by Publishing Department Rzeszów University of Technology P.O. Box 85, 35-959 Rzeszów, Poland

AMS Subject Classification: Primary 30C15, Secondary 30C10
Keywords and Phrases: zeros, polynomial, function analytic in $|z| \leq 1$, generalization, Hölder's inequality.

1 Introduction and statement of results

Let

$$
P(z)=b_{0}+b_{1} z+\ldots+b_{n} z^{n}
$$

be a polynomial of degree n. Then according to a classical result of Kuniyeda, Montel and Toya [3, p. 124] on the location of zeros of a polynomial we have
Theorem A. All the zeros of the polynomial $P(z)$ lie in

$$
|z|<\left\{1+\left(\sum_{j=0}^{n-1}\left|b_{j} / b_{n}\right|^{p}\right)^{q / p}\right\}^{1 / q}
$$

where

$$
\begin{equation*}
p>1, \quad q>1, \quad(1 / p)+(1 / q)=1 \tag{1.1}
\end{equation*}
$$

On applying Theorem A to the polynomial $z^{n} p(1 / z)$, we have the following equivalent formulation of Theorem A.

Theorem B. The polynomial

$$
\begin{equation*}
p(z)=a_{0}+a_{1} z+a_{2} z^{2}+\ldots+a_{n} z^{n} ; a_{0} \neq 0 \tag{1.2}
\end{equation*}
$$

of degree n does not vanish in

$$
\begin{equation*}
|z| \leq\left(1+D_{n}\right)^{-1 / q} \tag{1.3}
\end{equation*}
$$

where p, q are given in (1.1) and

$$
\begin{equation*}
D_{n}=\left(\sum_{j=1}^{n}\left|a_{j} / a_{0}\right|^{p}\right)^{q / p} \tag{1.4}
\end{equation*}
$$

We [2] had obtained
Theorem C. All the zeros of $P(z)$ lie in

$$
|z|<\chi^{1 / q}
$$

where χ is the unique root of the equation

$$
x^{3}-(1+L M) x^{2}+L M x-L=0
$$

in $(1, \infty)$,

$$
\begin{aligned}
L & =\left(\sum_{j=0}^{n-1}\left|b_{j} / b_{n}\right|^{p}\right)^{q / p} \\
M & =\left(\left|b_{n-1}\right|+\left|b_{n-2}\right|\right)^{q}\left(\left|b_{n-1}\right|^{p}+\left|b_{n-2}\right|^{p}\right)^{-(q-1)}
\end{aligned}
$$

Theorem C is a refinement of Theorem A, under the assumption

$$
L<(2-M) /(M-1) .
$$

The equivalent formulation of Theorem C, (similar to the formulation of Theorem B from Theorem A) is

Theorem D. The polynomial

$$
p(z)=a_{0}+a_{1} z+\ldots+a_{n} z^{n} ; a_{0} \neq 0
$$

of degree n does not vanish in

$$
|z| \leq \alpha^{1 / q}
$$

where α is the unique root of the equation

$$
D_{n} x^{3}-D_{n} S x^{2}+\left(1+D_{n} S\right) x-1=0
$$

in $(0,1)$,

$$
S=\left(\left|a_{1}\right|+\left|a_{2}\right|\right)^{q}\left(\left|a_{1}\right|^{p}+\left|a_{2}\right|^{p}\right)^{-(q-1)},
$$

and D_{n} is as in Theorem B.
Theorem D is a refinememnt of Theorem B, under the assumption

$$
D_{n}<(2-S) /(S-1)
$$

In this paper we have obtained a generalization of Theorem D for the functions, analytic in $|z| \leq 1$. More precisely we have proved

Theorem 1. Let

$$
\begin{equation*}
f(z)=\sum_{k=0}^{\infty} a_{k} z^{k},(\not \equiv \text { aconstant }) ; a_{0} \neq 0 \tag{1.5}
\end{equation*}
$$

be analytic in $|z| \leq 1$. Then $f(z)$ does not vanish in

$$
\begin{equation*}
|z|<\alpha_{m}^{1 / q}, \tag{1.6}
\end{equation*}
$$

where

$$
\begin{align*}
q> & 1, p>1, \quad(1 / p)+(1 / q)=1, \\
m= & \text { any positive integer with the characteristic that } \tag{1.7}\\
& \text { there exists a positive integer } k(\leq m) \text { with } a_{k} \neq 0, \\
\alpha_{m}= & \text { unique root in }(0,1), \text { of } \\
& \{g(x) \equiv\}, D x^{m+1}-D M_{m} x^{2}+\left(1+D M_{m}\right) x-1=0, \tag{1.8}\\
D= & \left(\sum_{k=1}^{\infty}\left|a_{k} / a_{0}\right|^{p}\right)^{q / p},(>0, \operatorname{by}(1.5)), \tag{1.9}\\
M_{m}= & \left(\sum_{k=1}^{m}\left|a_{k}\right|\right)^{q}\left(\sum_{k=1}^{m}\left|a_{k}\right|^{p}\right)^{-q / p},(>0, \operatorname{by}(1.7)) . \tag{1.10}
\end{align*}
$$

From Theorem 1 we easily get
Corollary 1. Under the same hypothesis as in Theorem 1, $f(z)$ does not vanish in

$$
|z|<\sup _{m \geq M, q>1} \alpha_{m}^{1 / q}
$$

where

$$
M=\text { least positive integer } k \text { such that } a_{k} \neq 0 .
$$

2 Lemmas

For the proof of the theorem, we require the following lemmas.
Lemma 1. Let

$$
\begin{aligned}
\alpha_{j} & >0, \quad \beta_{j}>0, \quad \text { for } j=1,2, \ldots, n, \\
q & >1, \quad p>1, \quad(1 / p)+(1 / q)=1, \\
1 & \leq m<n
\end{aligned}
$$

Then
$\sum_{j=1}^{n} \alpha_{j} \beta_{j} \leq\left(\left(\sum_{j=1}^{n} \beta_{j}^{p}\right)^{1 / p}\left(\sum_{j=1}^{m} \beta_{j}^{p}\right)^{-1 / p}\right)\left\{\left(\sum_{j=1}^{m} \alpha_{j} \beta_{j}\right)^{q}+\left(\left(\sum_{j=1}^{m} \beta_{j}^{p}\right)^{q-1}\right)\left(\sum_{j=m+1}^{n} \alpha_{j}^{q}\right)\right\}^{1 / q}$.

This lemma is due to Beckenbach [1].
From Lemma 1 we easily obtain
Lemma 2. Inequality (2.1) is true even if

$$
\begin{aligned}
\alpha_{j} \geq 0, & j=1,2, \ldots, n \\
\beta_{j} \geq 0, & j=1,2, \ldots, n
\end{aligned}
$$

with

$$
\beta_{j} \neq 0, \text { foratleastone } j, 1 \leq j \leq m
$$

Lemma 3. The equation

$$
\begin{equation*}
D x^{m+1}-D M_{m} x^{2}+\left(1+D M_{m}\right) x-1=0 \tag{2.2}
\end{equation*}
$$

has a unique root α_{m} in $(0,1)$ where m, D and M_{m} are as in Theorem 1.
Proof of Lemma 3. We firstly assume that

$$
m>1
$$

Now we consider the transformation

$$
x=1 / t
$$

in equation (2.2), thereby giving the transformed equation

$$
\begin{equation*}
t^{m+1}-\left(1+D M_{m}\right) t^{m}+D M_{m} t^{m-1}-D=0 \tag{2.3}
\end{equation*}
$$

and then the transformation

$$
t=1+y
$$

in (2.3), thereby giving the transformed equation

$$
\begin{equation*}
(1+y)^{m+1}-\left(1+D M_{m}\right)(1+y)^{m}+D M_{m}(1+y)^{m-1}-D=0 \tag{2.4}
\end{equation*}
$$

i.e.

$$
\begin{aligned}
y^{m+1} & +y^{m}\left((m / 1)-D M_{m}\right)+((m-1) / 1!)\left((m / 2)-D M_{m}\right) y^{m-1} \\
& +((m-1)(m-2) / 2!)\left((m / 3)-D M_{m}\right) y^{m-2}+\ldots \\
& +((m-1)(m-2) \ldots(m-j+1) /(j-1)!)\left((m / j)-D M_{m}\right) y^{m+1-j}+\ldots \\
& +((m-1)(m-2) \ldots(m-m+1) /(m-1)!)\left((m / m)-D M_{m}\right) y-D
\end{aligned}
$$

$$
\begin{equation*}
=0 \tag{2.5}
\end{equation*}
$$

By using Déscarte's rule of signs we can say that equation (2.5) (i.e. equation (2.4)) will have a unique positive root and accordingly the equation (2.3) will have a unique root in $(1, \infty)$. Hence the equation (2.2) will have a unique root α_{m}, (say), in $(0,1)$, thereby proving Lemma 3 for the possibility under consideration.

For the possibility

$$
m=1
$$

the transformed equation, similar to equation (2.5), (i.e. equation (2.4)), is

$$
y^{2}+y\left(1-D M_{m}\right)-D=0
$$

Now Lemma 3 follows for this possibility, by using arguments similar to those used for proving Lemma 3 for the possibility

$$
m>1
$$

This completes the proof of Lemma 3.

3 Proof of Theorem 1

Let

$$
f_{n}(z)=\sum_{k=0}^{n} a_{k} z^{k}, n=1,2,3, \ldots
$$

Then for $|z|<1$ and $n>m$

$$
\begin{aligned}
\left|f_{n}(z)\right| \geq & \left|a_{0}\right|-\sum_{k=1}^{n}|z|^{k}\left|a_{k}\right|, \\
\geq & \left|a_{0}\right|-\left\{\left(\sum_{k=1}^{n}\left|a_{k}\right|^{p}\right)^{1 / p}\left(\sum_{k=1}^{m}\left|a_{k}\right|^{p}\right)^{-1 / p}\right\}\left[\left(\sum_{k=1}^{m}|z|^{k}\left|a_{k}\right|\right)^{q}\right. \\
& \left.+\left\{\left(\sum_{k=1}^{m}\left|a_{k}\right|^{p}\right)^{q-1}\right\}\left(\sum_{k=m+1}^{n}|z|^{k q}\right)\right]^{1 / q},(\text { by Lemma } 2), \\
\geq & \left|a_{0}\right|-\left(\sum_{k=1}^{n}\left|a_{k}\right|^{p}\right)^{1 / p}\left[\left(\sum_{k=1}^{m}\left|a_{k}\right||z|^{k}\right)^{q}\left(\sum_{k=1}^{m}\left|a_{k}\right|^{p}\right)^{-q / p}\right. \\
& \left.\left.+\left(\sum_{k=m+1}^{n}|z|^{k q}\right)\right]^{1 / q},(\text { by } 1.1)\right), \\
\geq & \left.\left|a_{0}\right|-\left(\sum_{k=1}^{n}\left|a_{k}\right|^{p}\right)^{1 / p}\left[M_{m}|z|^{q}+\left(\sum_{k=m+1}^{n}|z|^{k q}\right)\right]^{1 / q},(\text { by } 1.10)\right),
\end{aligned}
$$

which, by making

$$
n \rightarrow \infty
$$

implies that

$$
\begin{align*}
|f(z)| \geq & \left|a_{0}\right|-\left(\sum_{k=1}^{\infty}\left|a_{k}\right|^{p}\right)^{1 / p}\left[M_{m}|z|^{q}+\left(\sum_{k=m+1}^{\infty}|z|^{k q}\right)\right]^{1 / q},\left(\sum_{k=1}^{\infty}\left|a_{k}\right|^{p}\right. \text { will converge } \\
& \left.\quad \text { as } \sum_{k=1}^{\infty}\left|a_{k}\right| \text { converges and }\left(\sum_{k=1}^{n}\left|a_{k}\right|^{p}\right)^{1 / p} \leq \sum_{k=1}^{n}\left|a_{k}\right|, n=1,2, \ldots\right) \\
= & \left.\left|a_{0}\right|\left[1-\left\{D\left(M_{m}|z|^{q}+\left(|z|^{(m+1) q} /\left(1-|z|^{q}\right)\right)\right)\right\}^{1 / q}\right],(\text { by } 1.9)\right) \\
> & 0 \tag{3.1}
\end{align*}
$$

if

$$
\begin{equation*}
D|z|^{(m+1) q}-D M_{m}|z|^{2 q}+\left(1+D M_{m}\right)|z|^{q}-1<0 \tag{3.2}
\end{equation*}
$$

Now as

$$
g(0)=-1,(\operatorname{by}(1.8))
$$

we can say by Lemma 3 , (3.1) and (3.2) that

$$
|f(z)|>0
$$

if

$$
|z|^{q}<\alpha_{m}
$$

thereby proving Theorem 1.

Remark 1. Theorem 1 gives better bound than that given by the result, that $f(z)$ does not vanish in

$$
|z|<\{1 /(1+D)\}^{1 / q}
$$

obtained by using Hölder's inequality instead of Lemma 2 and following the method of proof of Theorem 1, provided

$$
\begin{array}{rcl}
m=1 & \& & M_{m}<m \\
m \geq 2 & \& & M_{m} \leq 1 \tag{3.3}\\
m \geq 2,1<M_{m}<m & \text { and } & D<D_{0}
\end{array}
$$

where D_{0} is the unique positive root of the equation

$$
\begin{aligned}
\left(M_{m}-1\right) D^{m-1} & +(m-1)\left(M_{m}-(m /(m-1))\right) D^{m-2} \\
& +((m-1)(m-2) / 2)\left(M_{m}-(m /(m-2))\right) D^{m-3} \\
& +\ldots+(m-1)\left(M_{m}-(m / 2)\right) D+\left(M_{m}-m\right) \\
= & 0, \quad\left(m \geq 2 \& 1<M_{m}<m\right)
\end{aligned}
$$

as for $m=1 \& M_{m}<m$

$$
g(1 /(1+D))<0
$$

and for $m \geq 2$

$$
g(1 /(1+D))<0
$$

is equivalent to

$$
\begin{aligned}
\left(M_{m}-1\right) D^{m-1} & +(m-1)\left(M_{m}-(m /(m-1))\right) D^{m-2} \\
& +((m-1)(m-2) / 2)\left(M_{m}-(m /(m-2))\right) D^{m-3} \\
& +\ldots+(m-1)\left(M_{m}-(m / 2)\right) D+\left(M_{m}-m\right) \\
< & 0
\end{aligned}
$$

The function

$$
f(z)=1+z+(z /(2 i))^{3}+(z /(2 i))^{4}+(z /(2 i))^{5}+\ldots
$$

satisfies (3.3) with

$$
p=q=m=2
$$

and the corresponding $\alpha_{m}^{1 / q}$ is .752.

References

[1] Beckenbach, E. F., On Hölder's inequality, J. Math. Anal. Appl. 15 (1966), 21-29.
[2] Jain, V. K., On the zeros of a polynomial, Publ. L'inst. Math. (Nouvelle série) 41 (1987), 75-77.
[3] Marden, M., The geometry of polynomials, A. M. S. Surveys 3 (1966), New York.

DOI: 10.7862/rf.2014.5
V.K. Jain
email: vkj@maths.iitkgp.ernet.in
Mathematics Department,
I.I.T. Kharagpur - 721302, INDIA

Received 31.12.2013, Accepted 10.06.2014

