
J o u r n a l of
Mathematics
and Applications

JMA No 40, pp 5-20 (2017)

COPYRIGHT c© by Publishing House of Rzeszów University of Technology
P.O. Box 85, 35-959 Rzeszów, Poland

De la Vallée Poussin Summability,

the Combinatorial Sum
∑2n−1

k=n

(
2k
k

)
and the de la Vallée Poussin Means

Expansion

Ziad S. Ali

Abstract: In this paper we apply the de la Vallée Poussin sum to
a combinatorial Chebyshev sum by Ziad S. Ali in [1]. One outcome of
this consideration is the main lemma proving the following combinatorial
identity: with Re(z) standing for the real part of z we have

2n−1∑
k=n

(
2k

k

)
= Re

((
2n

n

)
2F1(1, 1/2 + n; 1 + n; 4)

−
(

4n

2n

)
2F1(1, 1/2 + 2n; 1 + 2n; 4)

)
.

Our main lemma will indicate in its proof that the hypergeometric
factors

2F1(1, 1/2 + n; 1 + n; 4), and 2F1(1, 1/2 + 2n; 1 + 2n; 4)

are complex, each having a real and imaginary part.
As we apply the de la Vallée Poussin sum to the combinatorial Cheby-

shev sum generated in the Key lemma by Ziad S. Ali in [1], we see in the
proof of the main lemma the extreme importance of the use of the main
properties of the gamma function. This represents a second important
consideration.

A third new outcome are two interesting identities of the hypergeomet-
ric type with their new Meijer G function analogues. A fourth outcome is
that by the use of the Cauchy integral formula for the derivatives we are
able to give a different meaning to the sum:

2n−1∑
k=n

(
2k

k

)
.
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A fifth outcome is that by the use of the Gauss-Kummer formula we
are able to make better sense of the expressions(

2n

n

)
2F1(1, 1/2 + n; 1 + n; 4), and

(
4n

2n

)
2F1(1, 1/2 + 2n; 1 + 2n; 4)

by making use of the series definition of the hypergeometric function. As
we continue we notice a new close relation of the Key lemma, and the
de la Vallée Poussin means. With this close relation we were able to
talk about the de la Vallée Poussin summability of the two infinite series∑∞
n=0 cosnθ, and

∑∞
n=0(−1)n cosnθ.

Furthermore the application of the de la Vallée Poussin sum to the
Key lemma has created two new expansions representing the following
functions:

2(n−1)(1 + x)n(−1 + 2n(1 + x)n)

n(2x+ 1)
, where x = cos θ,

and

−2(n−1)(−1 + 2n(1− x)n)(1− x)n

n(2x− 1)
, where x = cos θ

in terms of the de la Vallée Poussin means of the two infinite series

∞∑
n=0

cosnθ ,

and
∞∑
n=0

(−1)n cosnθ .

AMS Subject Classification: 47H09, 47H14, 54E35.
Keywords and Phrases: Complete metric space; Hyperbolic space; Infinite product;
Nonexpansive mapping; Random weak ergodic property.

1. Introduction

The Gauss’ Hypergeometric function is given by:

2F1(a, b; c; z) = 1 +
ab

1 · c
z +

a(a+ 1)b(b+ 1)

1 · 2 · c(c+ 1)
z2 + . . . =

∞∑
n=0

(a)n(b)n
(c)n

zn

n !
,

where the above series converges for |z| < 1 and (a)n is is the Pochhammer symbol
defined by:

(a)0 = 0, and (a)n = a(a+ 1)(a+ 2) . . . (a+ n− 1) .
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We further note that:

(a)n =
Γ(a+ n)

Γ(a)
,

where the symbol Γ refers to the gamma function.
Now we like to bring up two definitions related to de la Vallée Poussin; one is

related to the de la Vallée Poussin means, and the other is related to the de la Vallée
Poussin sum. We have: the de la Vallée Poussin means of the infinite series

∞∑
n=0

an

are defined by (see [3]):

V (n, an) =

n∑
j=0

(n!)2

(n− j)!(n+ j)!
aj .

Let Ti be the Chebyshev polynomials. Then Charles Jean de la Vallée-Poussin
defines (see [2]) the de la Vallée Poussin sum SVn as follows:

SVn =
Sn + Sn+1 + . . .+ S2n−1

n
,

where

Sn =
1

2
c0(f) +

n∑
j=1

cj(f)Tj .

We shall refer to the Sn as the Chebyshev sum or the Chebyshev expansion of f .
The very important properties of the gamma functions that were used in this work,
and helped immensely in the proof of the main lemma are:

Γ(z + 1) = zΓ(z), and Γ(z)Γ(1− z) =
π

sinπz
.

Let f by holomorphic in an open subset U of the complex plane C, and let
|z − z0| ≤ r, be contained completely in U . Now let a be any point interior to
|z − z0| ≤ r. Then the Cauchy integral formula for the derivative says that the n-
th derivative of f at a is given by:

fn(a) =
n!

2πi

∫
|z−z0|=r

f(z)

(z − a)n+1
dz .

The Meijer G function is defined by

Gm,np,q

(
a1, . . . , ap
b1, . . . , bq

; z

)
=

1

2πi

∫
L

∏m
j=1 Γ(bj − s)

∏n
j=1 Γ(1− aj + s)∏q

j=m+1 Γ(1− bj + s)
∏p
j=n+1 Γ(aj − s)

zsds .
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The L in the integral represents the path of integration. We may choose L to run
from −i∞ to +i∞ such that all poles of Γ(bj − s), j = 1, 2, . . . ,m, are on the right of
the path, while all poles of Γ(1− ak + s), k = 1, 2, . . . , n, are on the left.

The Meijer G function, and the Hypergeometric function pFq are related by:

pFq

(
a1, . . . , ap
b1, . . . , bq

; z

)
=

∏q
k=1 Γ(bk)∏p
k=1 Γ(ak)

G1,p
p,q−1

(
1− a1, . . . , 1− ap
0, 1− b1, . . . 1− bq

;−z
)
.

2. The close relation between the Key lemma and
the de la Vallée Poussin means

In [1] we have the following Key lemma:

Lemma 2.1. For 1 ≤ r ≤ n, and θ real we have:

(i)

n∑
r=1

(
2n

n− r

)(
cos rθ + (−1)r+1

)
= 2n−1(1 + cos θ)n.

(ii)

n∑
r=1

(−1)r
(

2n

n− r

)
cos rθ +

1

2

(
2n

n

)
= 2n−1(1− cos θ)n .

Before we move to the main lemma and its proof we state two theorems which are
direct consequences of the Key lemma. We like to indicate before we state them that
they are related to the de la Vallée Poussin means of the the following two infinite
series:

∞∑
n=0

cosnθ, and

∞∑
n=0

(−1)n cosnθ .

Clearly from the Key lemma we have :

n∑
r=0

(
2n

n− r

)
cos rθ − 1

2

(
2n

n

)
= 2n−1(1 + cos θ)n ,

n∑
r=0

(−1)r
(

2n

n− r

)
cos rθ − 1

2

(
2n

n

)
= 2n−1(1− cos θ)n .

Accordingly with

V (n, cosnθ)

being the de la Vallée Poussin means of

∞∑
n=0

cosnθ,
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and
V (n, (−1)n cosnθ)

being the de la Vallée Poussin means of

∞∑
n=0

(−1)n cosnθ .

We have:

V (n, cosnθ) =
2n−1(1 + cos θ)n(

2n
n

) +
1

2
,

and

V (n, (−1)n cosnθ) =
2n−1(1− cos θ)n(

2n
n

) +
1

2
.

Now it can be shown that for each real θ 6= 2kπ, where k is an integer the following
limit:

lim
n→∞

2n−1(1 + cos θ)n(
2n
n

) = 0 , and

for each real θ 6= kπ ,where k is an odd integer the following limit

lim
n→∞

2n−1(1− cos θ)n(
2n
n

) = 0 .

One way of showing the above limits is the use of the Stirling’s formula for the
gamma function which says:

Γ(x) ∼ e−x
√

(2π)x−1/2+x as x→ ∞ .

Accordingly we have the following two theorems:

Theorem 2.2. For each real θ 6= 2kπ, where k is an integer the infinite series

∞∑
n=0

cosnθ

is summable in the sense of de la Vallée Poussin to 1
2 .

Theorem 2.3. For each real θ 6= kπ, where k is an odd integer the infinite series

∞∑
n=0

(−1)ncosnθ

is summable in the sense of de la Vallée Poussin to 1
2 .
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3. The main lemma

There are two versions of the main lemma. We give now one version, and we will
provide the other one at the end of the current section.

Lemma 3.1. Let 2F1(a, b; c; z) be the Gauss’ Hypergeometric function, then we have:

k=2n−1∑
k=n

(
2k

k

)
=

(
2n

n

)
2F1(1, 1/2 + n; 1 + n; 4)−

(
4n

2n

)
2F1(1, 1/2 + 2n; 1 + 2n; 4) .

Before we prove the above lemma we like to indicate that by the Gauss-Kummer
formula it is easily seen that the hypergeometric functions 2F1(1, 1/2 + n; 1 + n; 4),
and 2F1(1, 1/2 + 2n; 1 + 2n; 4) are both discrete complex valued functions, and they
are interesting as for exmple the left hand side of the identity given above is a natural
number, which leads us to say that the imaginary part of the right hand side of the
identity above is actually zero. Another interesting view is that the second term in
the above lemma is obtained by replacing n in the first term by 2n. The further
interesting ideas involved are coming as we continue to prove the above lemma, and
continue further.

Proof of the case n = 1 of Lemma 3.1. By induction on n. We note first that for
n = 1 we have:

2 = 2 2F1(1, 3/2; 2; 4)− 6 2F1(1, 5/2; 3; 4) .

Now one way to evaluate the above expression is by using an already known technique,
where the numbers 1, 3/2, 2, 4 inside the hypergeometric function 2F1 for example in
this case are fed into their proper slot of a computer program or a plug in algorithm
which evaluates the hypergeometric functions of the type given above to get the
complex number representing 2F1(1, 3/2; 2; 4). Similarly the numbers 1, 5/2, 3, 4 are
fed into each slot in the computer program to get the complex number representing

2F1(1, 5/2; 3; 4). For example we see by using this method we have:

2

(
−1

2
− i
√

3

6

)
− 6

(
−1

2
− i
√

3

18

)
,

and the identity given in the lemma is true for n = 1.
One way to prove the case for n = 1 without the use of a computer is by the use

of the Gauss-Kummer formula, which states: for (a− b) not an integer, and z not
in the unit interval (0, 1) we have

2F1(a, b; c; z) =
Γ(b− a)Γ(c)

Γ(b)Γ(c− a)
(−z)−a 2F1(a, a− c+ 1; a− b+ 1; 1/z)

+
Γ(a− b)Γ(c)

Γ(a)Γ(c− b)
(−z)−b 2F1(b, b− c+ 1;−a+ b+ 1; 1/z) .



De la Vallée Poussin summability 11

We will now do basic calculations for the proof of Corollary 3.2, and Corollary 3.3
coming up. Accordingly we have:

2F1(1, 3/2; 2; 4) =
Γ(1/2)Γ(2)

Γ(3/2)Γ(1)
(−4)−1 2F1(1, 0; 1/2; 1/4)

+
Γ(−1/2)Γ(2)

Γ(1)Γ(1/2)
(−4)−3/2 2F1(3/2, 1/2; 3/2; 1/4) .

Now since

Γ(1/2) =
√
π,Γ(3/2) =

√
π

2
,Γ(−1/2) = −2

√
π

we have:

2F1(1, 3/2; 2; 4) =
Γ(1/2)Γ(2)

Γ(3/2)Γ(1)
(−4)−1 2F1(1, 0; 1/2; 1/4) =

−1

2
.

Note that
∞∑
n=0

(0)n(1)n
(1/2)n4nn!

= 1 .

Now since

2F1(3/2, 1/2; 3/2; 1/4) =
1

(1− (1/4))1/2
=

2
√

3

3
,

and (−4)−3/2 = i
8 , we have:

Γ(−1/2)Γ(2)

Γ(1)Γ(1/2)
(−4)−3/2 2F1(3/2, 1/2; 3/2; 1/4) = −i

√
3

6
.

We like to note now that by using the binomial expansion formula

(x+ a)γ =

∞∑
k=0

(
γ

k

)
xkaγ−k,

we have for |z| < 1:

(−z + 1)−1/2 =

∞∑
k=0

(−1)kzk
(−1

2

k

)
= 2F1(3/2, 1/2; 3/2; 1/4) .

Similarly we have:

2F1(1, 5/2; 3; 4) =
Γ(3/2)Γ(3)

Γ(5/2)Γ(2)
(−4)−1 2F1(1,−1;−1/2; 1/4)

+
Γ(−3/2)Γ(3)

Γ(1)Γ(1/2)
(−4)−5/2 2F1(5/2, 1/2; 5/2; 1/4) ,
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which simplifies to:

−4

3

1

4

3

2
− i

32

8

3

2
√

3

3
=
−1

2
− i
√

3

18
.

Note that

2F1(1,−1;−1/2; 1/4) =

∞∑
k=0

(1)k(−1)k
(−1/2)k4kk!

=
3

2
.

For k ≥ 2 the term (−1 + 1) is present in each product of (−1)k: accordingly we
are adding the first two terms only; furthermore

2F1(5/2, 1/2; 5/2; 1/4) =
2
√

3

3
.

This is the case where a = c = 5/2, and in this case the sum is

1√
1− 1/4

=
2
√

3

2
.

This completes the induction proof for the case n = 1 without the use of a com-
puter. �

We can clearly see from above that 2F1(1, 3/2; 2; 4), and 2F1(1, 5/2; 3; 4) are com-
plex numbers, while 2F1(1, 0; 1/2; 1/4), 2F1(3/2, 1/2; 3/2; 1/4), 2F1(1,−1;−1/2; 1/4),
and 2F1(5/2, 1/2; 5/2; 1/4) are real numbers.

From above we have the following Corollaries resulting from the induction proof
when n = 1, and in relation to the real part, and the imaginary part of 2F1(1, 3/2; 2; 4),
and 2F1(1, 5/2; 3; 4).

Corollary 3.2. Let i be the imaginary unit, let Re(z), and Im(z) respectively denote
the real part, and the imaginary part of z. We have:

Re 2F1(1, 3/2; 2; 4) =
Γ(1/2)Γ(2)

Γ(3/2)Γ(1)
(−4)−1 2F1(1, 0; 1/2; 1/4) = −1

2
,

and

i Im 2F1(1, 3/2; 2; 4) =
Γ(−1/2)Γ(2)

Γ(1)Γ(1/2)
(−4)−3/2 2F1(3/2, 1/2; 3/2; 1/4) = −i

√
3

6
.
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Corollary 3.3. Let i be the imaginary unit, let Re(z), and Im(z) respectively denote
the real part, and the imaginary part of z. We have:

Re 2F1(1, 5/2; 3; 4) =
Γ(3/2)Γ(3)

Γ(5/2)Γ(2)
(−4)−1 2F1(1,−1;−1/2; 1/4) = −1

2
,

and

i Im 2F1(1, 5/2; 3; 4) =
Γ(−3/2)Γ(3)

Γ(1)Γ(1/2)
(−4)−5/2 2F1(5/2, 1/2; 5/2; 1/4) = −i2

√
3

18
.

Accordingly we have the following general lemmas:

Lemma 3.4. Let i be the imaginary unit, let Re(z), and Im(z) respectively denote
the real part, and the imaginary part of z. We have:

Re 2F1(1, 1/2 + n; 1 + n; 4) =
Γ(n− 1/2)Γ(n+ 1)

Γ(n+ 1/2)Γ(n)
(−4)−12F1(1, 1− n; 3/2− n; 1/4)

i Im 2F1(1, 1/2 + n; 1 + n; 4) =
Γ(1/2− n)Γ(n+ 1)

Γ(1)Γ(1/2)
(−4)−1/2−n

× 2F1(1/2 + n, 1/2; 1/2 + n; 1/4) .

The proof of the above lemma follows by using the Gauss-Kummer formula, and by
the presence of (−4)−1/2−n in the second equation.

Lemma 3.5. Let i be the imaginary unit, let Re(z), and Im(z) respectively denote
the real part, and the imaginary part of z. We have:

Re 2F1(1, 1/2+2n; 1+2n; 4) =
Γ(2n− 1/2)Γ(2n+ 1)

Γ(2n+ 1/2)Γ(2n)
(−4)−12F1(1, 1−2n; 3/2−2n; 1/4)

i Im 2F1(1, 1/2 + 2n; 1 + 2n; 4) =
Γ(1/2− 2n)Γ(2n+ 1)

Γ(1)Γ(1/2)
(−4)−1/2−2n

× 2F1(1/2 + 2n, 1/2; 1/2 + 2n; 1/4) .

The proof of the above lemma follows by using the Gauss-Kummer formula, and by
the presence of (−4)−1/2−2n in the second equation.

Now we have the following lemma showing that the imaginary part of the right
hand side of the main lemma above equals to zero, i.e.:
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Lemma 3.6. Let i be the imaginary unit, and let Im(z) denote the imaginary part
of z. We have:

Im

((
2n

n

)
2F1(1, 1/2 + n; 1 + n; 4)−

(
4n

2n

)
2F1(1, 1/2 + 2n; 1 + 2n; 4)

)
= 0 .

Proof of Lemma 3.6.(
2n

n

)(
Γ(1/2− n)Γ(n+ 1)

Γ(1)Γ(1/2)
(−4)−1/2−n2F1(1/2 + n, 1/2; 1/2 + n; 1/4)

)

−
(

4n

2n

)(
Γ(1/2− 2n)Γ(2n+ 1)

Γ(1)Γ(1/2)
(−4)−1/2−2n2F1(1/2 + 2n, 1/2; 1/2 + 2n; 1/4)

)
= 0 ,

clearly

2F1(1/2+n, 1/2; 1/2+n; 1/4)) = 2F1(1/2+2n, 1/2; 1/2+2n; 1/4)) =
1√

1− 1/4
=

2
√

3

3
.

Now by noting that(
2n

n

)
=

22nΓ(n+ 1/2)√
πΓ(n+ 1)

and

(
4n

2n

)
=

24nΓ(2n+ 1/2)√
πΓ(2n+ 1)

,

what we do now is to substitute the just above identities for
(
2n
n

)
, and

(
4n
2n

)
, in the

above equation whose right hand side is zero; then we use the complement formula of
the gamma function which is:

Γ(z)Γ(1− z) =
π

sinπz

to handle both of the following products: Γ(1/2 + n)Γ(1/2 − n) and Γ(1/2 +
2n)Γ(1/2− 2n).

Finally by writing

(−4)−1/2−jn = (22eiπ)−1/2−jn, with j = 1, 2 .

We can easily show that the stated lemma above is correct, and that the imaginary
part of the right hand side of the main lemma is identically equal to zero. This com-
pletes the proof of the above lemma. �
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Proof of the induction step. Since the imaginary part of the right hand side of the
main lemma given above equals zero. We have:(

2n

n

)
2F1(1, 1/2 + n; 1 + n; 4)−

(
4n

2n

)
2F1(1, 1/2 + 2n; 1 + 2n; 4)

=

(
2n

n

)
Γ(n− 1/2)Γ(n+ 1)

Γ(n+ 1/2)Γ(n)
(−4)−12F1(1, 1− n; 3/2− n; 1/4)

−
(

4n

2n

)
Γ(2n− 1/2)Γ(2n+ 1)

Γ(2n+ 1/2)Γ(2n)
(−4)−12F1(1, 1− 2n; 3/2− 2n; 1/4) .

Now assume that the identity we are to prove is true for n, we need to show that
it is true for n+ 1; i.e. we need to show that:

k=2n+1∑
k=n+1

(
2k

k

)
=

(
2n+ 2

n+ 1

)
2F1(1, 3/2+n; 2+n; 4)−

(
4n+ 4

2n+ 2

)
2F1(1, 5/2+2n; 3+2n; 4)

equivalently we need to show that:

k=2n+1∑
k=n+1

(
2k

k

)
=

(
2n+ 2

n+ 1

)
Γ(n+ 1/2)Γ(n+ 2)

Γ(n+ 3/2)Γ(n+ 1)
(−4)−12F1(1,−n; 1/2− n; 1/4)

−
(

4n+ 4

2n+ 2

)
Γ(2n+ 3/2)Γ(2n+ 3)

Γ(2n+ 5/2)Γ(2n+ 2)
(−4)−12F1(1,−1− 2n;−1/2− 2n; 1/4)

equivalently again we need to show that:(
2n+ 2

n+ 1

)
Γ(n+ 1/2)Γ(n+ 2)

Γ(n+ 3/2)Γ(n+ 1)
(−4)−12F1(1,−n; 1/2− n; 1/4)

−
(

4n+ 4

2n+ 2

)
Γ(2n+ 3/2)Γ(2n+ 3)

Γ(2n+ 5/2)Γ(2n+ 2)
(−4)−12F1(1,−1− 2n;−1/2− 2n; 1/4)

=

(
2n

n

)
Γ(n− 1/2)Γ(n+ 1)

Γ(n+ 1/2)Γ(n)
(−4)−12F1(1, 1− n; 3/2− n; 1/4)

−
(

4n

2n

)
Γ(2n− 1/2)Γ(2n+ 1)

Γ(2n+ 1/2)Γ(2n)
(−4)−12F1(1, 1− 2n; 3/2− 2n; 1/4)

−
(

2n

n

)
+

(
4n

2n

)
+

(
4n+ 2

2n+ 1

)
.

The above induction step can be shown by noting the following two new hyperge-
ometric identities:

2F1(1,−n; 1/2− n; 1/4) =
−n

4( 1
2 − n)

2F1(1, 1− n; 3/2− n; 1/4) + 1 ,



16 Z.S. Ali

2F1(1, 1− 2n; 3/2− 2n; 1/4) =

(
8n+ 2

2n+ 1

)(
4n− 1

n

)
× 2F1(1,−1− 2n;−(1/2)− 2n; 1/4)−

(
10n+ 3

2n+ 1

)(
4n− 1

n

)
.

The proof of the first hypergeometric identity above is simple, and the proof of the
second hypergeometric identity above is one where one really appreciates the simple
law of cancellation. �

Based from above, we provide the second version of the main lemma:

Lemma 3.7. Let Re(z) be the real part of z, then we have:

2n−1∑
k=n

(
2k

k

)
= Re

((
2n

n

)
2F1(1, 1/2 + n; 1 + n; 4)−

(
4n

2n

)
2F1(1, 1/2 + 2n; 1 + 2n; 4)

)
.

An interesting corollary is the following:

Corollary 3.8. Let

f(n) =
22nΓ(n+ 1/2)Γ(1/2− n)(−4)−1/2−n√

π
, then f(n) = f(2n) .

4. Presentation of the two new hypergeometric
identities above in terms of the Meijer G function

Since the following identities relating the hypergeometric function 2F1, and the Meijer
G1,2

2,2 function, hold:

2F1(1,−n; 1/2− n; 1/4) =
Γ(1/2− n)

Γ(−n)
G1,2

2,2

(
0 (1 + n)
0 (1/2 + n)

;−1/4

)
,

2F1(1, 1− n; 3/2− n; 1/4) =
Γ(3/2− n)

Γ(1− n)
G1,2

2,2

(
0 n
0 (−1/2 + n)

;−1/4

)
,

2F1(1, 1− 2n; 3/2− 2n; 1/4) =
Γ(3/2− n)

Γ(1− 2n)
G1,2

2,2

(
0 2n
0 (−1/2 + 2n)

;−1/4

)
,
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2F1(1,−1− 2n;−1/2− 2n; 1/4) =
Γ(−1/2− 2n)

Γ(−1− 2n)
G1,2

2,2

(
0 (2n+ 2)
0 (3/2 + 2n)

;−1/4

)
,

then we have the following two new identities relating the Meijer function G1,2
2,2 :

Γ(1/2− n)

Γ(−n)
G1,2

2,2

(
0 (1 + n)
0 (1/2 + n)

;−1/4

)
=

−n
4(1/2− n)

Γ(3/2− n)

Γ(1− n)

× G1,2
2,2

(
0 n
0 (−1/2 + n)

;−1/4

)
+ 1 ,

Γ(3/2− n)

Γ(1− 2n)
G1,2

2,2

(
0 2n
0 (−1/2 + 2n)

;−1/4

)
=

(
8n+ 2

2n+ 1

)(
4n− 1

n

)
Γ(−1/2− 2n)

Γ(−1− 2n)

× G1,2
2,2

(
0 (2n+ 2)0 (3/2 + 2n);−1/4

)
−
(

10n+ 3

2n+ 1

)(
4n− 1

n

)
.

5. A different meaning of
∑2n−1

k=n

(
2k
k

)
Let r > 0 be given: (

m

r

)
=

1

2πi

∫
|z|=r

(1 + z)m

zr+1
dz .

Accordingly: (
2k

k

)
=

1

2πi

∫
|z|=r

(1 + z)2k

zk+1
dz .

Hence
2n−1∑
k=n

1

2πi

∫
|z|=r

(1 + z)2k

(z − 0)k+1
dz =

(
2n

n

)
2F1(1, 1/2 + n; 1 + n; 4)

−
(

4n

2n

)
2F1(1, 1/2 + 2n; 1 + 2n; 4) .

Accordingly by the Cauchy integral formula for derivatives we have the following new,
and different meaning of

∑2n−1
k=n

(
2k
k

)
:

2n−1∑
k=n

(
2k

k

)
=

2n−1∑
k=n

1

k!

dk
(
(1 + z)2k

)
dzk

∣∣∣∣
z=0

.

The above formula clearly states the different meaning of the sum
∑2n−1
k=n

(
2k
k

)
.

We remark that
dk
(
(1 + z)2k

)
dzk

∣∣∣∣
z=0

stands for the kth derivative of of (1 + z)2k evaluated at z = 0.
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6. The de la Vallée Poussin sum, and the de la
Vallée Poussin means expansion

In this section, we apply the de la Vallée Poussin sum SVn to the Key lemma parts (i),
and (ii) to obtain an implicit, and an explicit de la Vallée Poussin means expansions
DV Pi, and DV Pii of two particular functions, which will be defined in the statements
of the theorems. We remark that from the Key lemma we can easily see:

Sk =

(
2k
k

)
2

+

k∑
j=1

(
2k

k − j

)
cos jθ .

Accordingly, we have the following two theorems:

Theorem 6.1. The function

2(n−1)(1 + x)n(−1 + 2n(1 + x)n)

n(2x+ 1)
, where x = cos θ

has an implicit de la Vallée Poussin means expansion DV Pi of the form

=
1

2n

2n−1∑
k=n

(
2k

k

)
+

1

n

2n−1∑
k=n

 k∑
j=1

(
2k

k − j

)
Tj(x)


and an explicit de la Vallée Poussin expansion DV Pi of the form

=
1

2n

2n−1∑
k=n

(
2k

k

)
+

1

n

2n−1∑
k=n

(
2k

k

)
Vk1 ,

where Vk1 are the de la Vallée Poussin means of

∞∑
k=1

cos kθ .

Theorem 6.2. The function

−2(n−1)(−1 + 2n(1− x)n)(1− x)n

n(2x− 1)
, where x = cos θ

has an implicit de la Vallée Poussin means expansion DV Pii of the form

=
1

2n

2n−1∑
k=n

(
2k

k

)
+

1

n

2n−1∑
k=n

 k∑
j=1

(−1)j
(

2k

k − j

)
Tj(x)
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and an explicit de la Vallée Poussin expansion DV Pii of the form

=
1

2n

2n−1∑
k=n

(
2k

k

)
+

1

n

2n−1∑
k=n

(
2k

k

)
Vk2 ,

where Vk2 are the de la Vallée Poussin means of

∞∑
k=1

(−1)k cos kθ .

7. Concluding remark

In this paper, we were able to show that

2n−1∑
k=n

(
2k

k

)
= Re

((
2n

n

)
2F1(1, 1/2 + n; 1 + n; 4)−

(
4n

2n

)
2F1(1, 1/2 + 2n; 1 + 2n; 4)

)
.

Moreover, we were able to create two new hypergeometric identities to prove the
induction step. After, it was interesting to find their Meijer G function analogue.
Further, by the use of the Key lemma and the definition of the de la Vallée Poussin
means, we were able to find two new expansions representing the following functions:

2(n−1)(1 + x)n(−1 + 2n(1 + x)n)

n(2x+ 1)
, where x = cos θ

and
−2(n−1)(−1 + 2n(1− x)n)(1− x)n

n(2x− 1)
, where x = cos θ.

The general form of the expansions can be put into a more familiar form as:

A0

2
+

n∑
K=1

A(K,n)V(K,n), where

A0 =
1

n

n∑
K=1

(
2K + 2n− 2

K + n− 1

)
, and

A(K,n) =
1

n

(
2K + 2n− 2

K + n− 1

)
.

We like to add that the strong connection of the Key lemma, and the de la Vallée
Poussin means has given us two theorems about the de la Vallée Poussin summability
of the two infinite series

∞∑
n=0

cosnθ θ 6= 2kπ k integer, and
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∞∑
n=0

(−1)n cosnθ θ 6= kπ k odd integer.

Moreover we note for example that

∞∑
n=0

(−1)n

is also de la Vallée Poussin summable to 1
2 just like it’s Cesàro sum, and it’s Abel

sum.
We remark finaly that:

n∑
K=1

(
2K + 2n− 2

K + n− 1

)
= Re

((
2n

n

)
2F1(1, 1/2 + n; 1 + n; 4)

−
(

4n

2n

)
2F1(1, 1/2 + 2n; 1 + 2n; 4)

)
.
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