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1 Introduction

The study of the existence, the structure and properties of (approximate) solu-
tions of optimal control problems defined on infinite intervals and on sufficiently large
intervals has recently been a rapidly growing area of research [4-8, 10, 11, 14, 15,
16, 18-20, 22, 23, 27, 30]. These problems arise in engineering [1, 32], in models of
economic growth [2, 9, 12, 17, 21, 24, 25, 27-29, 31], in infinite discrete models of
solid-state physics related to dislocations in one-dimensional crystals [3, 26] and in
the theory of thermodynamical equilibrium for materials [13, 16].

In this paper we study the structure of approximate solutions of nonautonomous
discrete-time optimal control systems arising in economic dynamics which are deter-
mined by sequences of lower semicontinuous objective functions.

For each nonempty set Y denote by B(Y ) the set of all bounded functions f : Y →
R1 and for each f ∈ B(Y ) set

‖f‖ = sup{|f(y)| : y ∈ Y }.

For each nonempty compact metric space Y denote by C(Y ) the set of all continuous
functions f : Y → R1.
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Let (X, ρ) be a compact metric space with the metric ρ. The set X×X is equipped
with the metric ρ1 defined by

ρ1((x1, x2), (y1, y2)) = ρ(x1, y1) + ρ(x2, y2), (x1, x2), (y1, y2) ∈ X ×X.

For each integer t ≥ 0 let Ωt be a nonempty closed subset of the metric space
X ×X .

Let T ≥ 0 be an integer. A sequence {xt}
∞

t=T ⊂ X is called a program if
(xt, xt+1) ∈ Ωt for all integers t ≥ T .

Let T1, T2 be integers such that 0 ≤ T1 < T2. A sequence {xt}
T2

t=T1
⊂ X is called

a program if (xt, xt+1) ∈ Ωt for all integers t satisfying T1 ≤ t < T2.
We assume that there exists a program {xt}

∞

t=0. Denote by M the set of all
sequences of functions {ft}

∞

t=0 such that for each integer t ≥ 0

ft ∈ B(Ωt) (1.1)

and that

sup{‖ft‖ : t = 0, 1, . . .} < ∞. (1.2)

For each pair of sequences {ft}
∞

t=0, {gt}
∞

t=0 ∈ M set

d({ft}
∞

t=0, {gt}
∞

t=0) = sup{‖ft − gt‖ : t = 0, 1, . . . }. (1.3)

It is easy to see that d : M×M → [0,∞) is a metric on M and that the metric space
(M, d) is complete.

Let {ft}
∞

t=0 ∈ M. We consider the following optimization problems

T2−1∑

t=T1

ft(xt, xt+1) → min s. t. {xt}
T2

t=T1
is a program,

T2−1∑

t=T1

ft(xt, xt+1) → min s. t. {xt}
T2

t=T1
is a program and xT1

= y,

T2−1∑

t=T1

ft(xt, xt+1) → min s. t. {xt}
T2

t=T1
is a program and xT1

= y, xT2
= z,

where y, z ∈ X and integers T1, T2 satisfy 0 ≤ T1 < T2.
The interest in these discrete-time optimal problems stems from the study of vari-

ous optimization problems which can be reduced to this framework, e. g., continuous-
time control systems which are represented by ordinary differential equations whose
cost integrand contains a discounting factor [12], the study of the discrete Frenkel-
Kontorova model related to dislocations in one-dimensional crystals [3, 26] and the
analysis of a long slender bar of a polymeric material under tension in [13, 16]. Similar
optimization problems are also considered in mathematical economics [9, 17, 24, 28,
29, 31].
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For each y, z ∈ X and each pair of integers T1, T2 satisfying 0 ≤ T1 < T2 set

U({ft}
∞

t=0, T1, T2) = inf{

T2−1∑

t=T1

ft(xt, xt+1) : {xt}
T2

t=T1
is a program}, (1.4)

U({ft}
∞

t=0, T1, T2, y) = inf{

T2−1∑

t=T1

ft(xt, xt+1) : {xt}
T2

t=T1
is a program and xT1

= y},

(1.5)

U({ft}
∞

t=0, T1, T2, y, z) = inf{

T2−1∑

t=T1

ft(xt, xt+1) :

{xt}
T2

t=T1
is a program and xT1

= y, xT2
= z}. (1.6)

Here we assume that the infimum over empty set is ∞.
Denote by Mreg the set of all sequences of functions {fi}

∞

i=0 ∈ M for which

there exist a program {xf
t }

∞

t=0 and constants cf > 0, γf > 0 such that the following
conditions hold:

(C1) the function ft is lower semicontinuous for all integers t ≥ 0;
(C2) for each pair of integers T1 ≥ 0, T2 > T1,

T2−1∑

t=T1

ft(x
f
t , x

f
t+1) ≤ U({ft}

∞

t=0, T1, T2) + cf ;

(C3) for each ǫ > 0 there exists δ > 0 such that for each integer t ≥ 0 and each

(x, y) ∈ Ωt satisfying ρ(x, xf
t ) ≤ δ, ρ(y, xf

t+1) ≤ δ we have

|ft(x
f
t , x

f
t+1)− ft(x, y)| ≤ ǫ;

(C4) for each integer t ≥ 0, each (xt, xt+1) ∈ Ωt satisfying ρ(xt, x
f
t ) ≤ γf and each

(x′

t+1, x
′

t+2) ∈ Ωt+1 satisfying ρ(x′

t+2, x
f
t+2) ≤ γf there is x ∈ X such that

(xt, x) ∈ Ωt, (x, x
′

t+2) ∈ Ωt+1;

moreover, for each ǫ > 0 there exists δ ∈ (0, γf ) such that for each integer t ≥

0, each (xt, xt+1) ∈ Ωt and each (x′

t+1, x
′

t+2) ∈ Ωt+1 satisfying ρ(xt, x
f
t ) ≤ δ and

ρ(x′

t+2, x
f
t+2) ≤ δ there is x ∈ X such that

(xt, x) ∈ Ωt, (x, x
′

t+2) ∈ Ωt+1, ρ(x, x
f
t+1) ≤ ǫ.

Denote by M̄reg the closure of Mreg in (M, d). Denote by Mc,reg the set of all
sequences {fi}

∞

i=0 ∈ Mreg such that fi ∈ C(Ωi) for all integers i ≥ 0 and by M̄c,reg

the closure of Mc,reg in (M, d).
We study the optimization problems stated above with the sequence of objective

functions {fi}
∞

i=0 ∈ Mreg. Our study is based on the relation between these finite
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horizon problems and the corresponding infinite horizon optimization problem deter-
mined by {fi}

∞

i=0. Note that the condition (C2) means that the program {xf
t }

∞

t=0 is
an approximate solution of this infinite horizon problem.

We are interested in turnpike properties of approximate solutions of our optimiza-
tion problems, which are independent of the length of the interval T2 − T1, for all
sufficiently large intervals. To have these properties means that the approximate so-
lutions of the problems are determined mainly by the objective functions, and are
essentially independent of the choice of interval and endpoint conditions, except in
regions close to the endpoints. Turnpike properties are well known in mathematical
economics. The term was first coined by Samuelson in 1948 (see [26]) where he showed
that an efficient expanding economy would spend most of the time in the vicinity of
a balanced equilibrium path (also called a von Neumann path).

The paper is organized as follows. In Section 2 we present turnpike results and
show the existence of optimal solutions over infinite horizon established in [31]. Our
main results (Theorems 3.1 and 3.2) are stated in Section 3. Section 4 contains an
example. Our auxiliary results are proved in Section 5. Section 6 contains the proof
of Theorem 3.1 while Theorem 3.2 is proved in Section 7.

2 Preliminaries

Let {fi}
∞

i=0 ∈ Mreg, a program {xf
i }

∞

i=0, cf > 0 and γf > 0 be such that (C1)-(C4)
hold.

In [31] we proved the following useful result.

Proposition 2.1Let S ≥ 0 be an integer and {xi}
∞

i=S be a program. Then either the

sequence {
∑T−1

i=S fi(xi, xi+1)−
∑T−1

i=S fi(x
f
i , x

f
i+1)}

∞

T=S+1 is bounded or

lim
T→∞

[

T−1∑

i=S

fi(xi, xi+1)−

T−1∑

i=S

fi(x
f
i , x

f
i+1)] = ∞.

A program {xt}
∞

t=S , where S ≥ 0 is an integer, is called ({fi}
∞

i=0)-good if the
sequence

{

T−1∑

i=S

fi(xi, xi+1)−

T−1∑

i=S

fi(x
f
i , x

f
i+1)}

∞

T=S+1

is bounded [9, 27-29, 31].
We say that the sequence {fi}

∞

i=0 possesses an asymptotic turnpike property (or

briefly (ATP)) [31] with {xf
i }

∞

i=0 being the turnpike if for each integer S ≥ 0 and each
({fi}

∞

i=0)-good program {xi}
∞

i=S ,

lim
i→∞

ρ(xi, x
f
i ) = 0.

We say that the sequence {fi}
∞

i=0 possesses a turnpike property (or briefly (TP))
[31] if for each ǫ > 0 and each M > 0 there exist δ > 0 and a natural number L such
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that for each pair of integers T1 ≥ 0, T2 ≥ T1 +2L and each program {xt}
T2

t=T1
which

satisfies

T2−1∑

i=T1

fi(xi, xi+1) ≤ min{U({fi}
∞

i=0, T1, T2, xT1
, xT2

) + δ, U({fi}
∞

i=0, T1, T2) +M},

the inequality ρ(xi, x
f
i ) ≤ ǫ holds for all integers i = T1 + L, . . . , T2 − L.

The sequence {xf
i }

∞

i=0 is called the turnpike of {fi}
∞

i=0.
In [31] we proved the following results (see Theorems 2.1-2.4).

Theorem 2.1The sequence {fi}
∞

i=0 possesses the turnpike property if and only if
{fi}

∞

i=0 possesses (ATP) and the following property:
(P) For each ǫ > 0 and each M > 0 there exist δ > 0 and a natural number L

such that for each integer T ≥ 0 and each program {xt}
T+L
t=T which satisfies

T+L−1∑

i=T

fi(xi, xi+1)

≤ min{U({fi}
∞

i=0, T, T + L, xT , xT+L) + δ, U({fi}
∞

i=0, T, T + L) +M}

there is an integer j ∈ {T, . . . , T + L} for which ρ(xj , x
f
j ) ≤ ǫ.

The property (P) means that if a natural number L is large enough and a program
{xt}

T+L
t=T is an approximate solution of the corresponding finite horizon problem, then

there is j ∈ {T, . . . , T + L} such that xj is close to x
f
j .

We denote by Card(A) the cardinality of the set A.

Theorem 2.2 Assume that the sequence {fi}
∞

i=0 possesses (ATP) and the property
(P), ǫ > 0 and M > 0. Then there exists a natural number L such that for each pair
of integers T1 ≥ 0, T2 > T1 + L and each program {xt}

T2

t=T1
which satisfies

T2−1∑

t=T1

ft(xt, xt+1) ≤ U({fi}
∞

i=0, T1, T2) +M

the following inequality holds:

Card({t ∈ {T1, . . . , T2} : ρ(xt, x
f
t ) > ǫ}) ≤ L.

Let S ≥ 0 be an integer. A program {xt}
∞

t=S is called ({fi}
∞

i=0)-minimal [3, 26,
31] if for each integer T > S,

T−1∑

t=S

ft(xt, xt+1) = U({fi}
∞

i=0, S, T, xS , xT ).
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A program {xt}
∞

t=S is called ({fi}
∞

i=0)-overtaking optimal [12, 27, 31] if for each
program {x′

t}
∞

t=S satisfying xS = x′

S ,

lim sup
T→∞

(

T−1∑

t=S

ft(xt, xt+1)−

T−1∑

t=S

ft(x
′

t, x
′

t+1)) ≤ 0.

Theorem 2.3 Assume that the sequence {fi}
∞

i=0 possesses (ATP), z ∈ X , S ≥ 0 is
an integer and that there exists an ({fi}

∞

i=0)-good program {xt}
∞

t=S satisfying xS = z.
Then there exists an ({fi}

∞

i=0)-overtaking optimal program {x∗

t }
∞

t=S satisfying x∗

S = z.

Theorem 2.4 Assume that the sequence {fi}
∞

i=0 possesses (ATP), z ∈ X , S ≥ 0 is
an integer and that there exists an ({fi}

∞

i=0)-good program {x̄t}
∞

t=S satisfying x̄S = z.
Let a program {xt}

∞

t=S satisfy xS = z. Then the following properties are equivalent.
(i) {xt}

∞

t=S is an ({fi}
∞

i=0)-overtaking optimal program;
(ii) the program {xt}

∞

t=S is ({fi}
∞

i=0)-minimal and ({fi}
∞

i=0)-good;

(iii) the program {xt}
∞

t=S is ({fi}
∞

i=0)-minimal and satisfies limt→∞ ρ(xt, x
f
t ) = 0.

3 Main results

Let {fi}
∞

i=0 ∈ Mreg, a program {xf
i }

∞

i=0, cf > 0 and γf > 0 be such that (C1)-(C4)
hold.

We say that the sequence {fi}
∞

i=0 possesses a strong asymptotic turnpike property

(or briefly (SATP)) with {xf
i }

∞

i=0 being the turnpike if for each integer S ≥ 0 and
each ({fi}

∞

i=0)-good program {xi}
∞

i=S ,

∞∑

i=0

ρ(xi, x
f
i ) < ∞.

Clearly, (SATP) implies (ATP).
We say that the sequence {fi}

∞

i=0 possesses a a strong turnpike property (or briefly
(STP)) if for each ǫ > 0 and each M > 0 there exist δ > 0 and a natural number L
such that for each pair of integers T1 ≥ 0, T2 ≥ T1 + 2L and each program {xt}

T2

t=T1

which satisfies

T2−1∑

i=T1

fi(xi, xi+1) ≤ min{U({fi}
∞

i=0, T1, T2, xT1
, xT2

) + δ, U({fi}
∞

i=0, T1, T2) +M},

the inequality
∑T2−L

i=T1+L ρ(xi, x
f
i ) ≤ ǫ holds.

The sequence {xf
i }

∞

i=0 is called the turnpike of {fi}
∞

i=0.
Clearly, (STP) implies (TP).
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In this paper we prove the following two results which are extensions of Theorems
2.1 and 2.2 respectively.

Theorem 3.1 The sequence {fi}
∞

i=0 possesses the strong turnpike property if and
only if {fi}

∞

i=0 possesses (SATP) and the property (P).

Theorem 3.2 Assume that the sequence {fi}
∞

i=0 possesses (SATP) and the property
(P), and M > 0. Then there exist a natural number L and M0 > 0 such that for each
pair of integers T1 ≥ 0, T2 > T1 + L and each program {xt}

T2

t=T1
which satisfies

T2−1∑

t=T1

ft(xt, xt+1) ≤ U({fi}
∞

i=0, T1, T2) +M

the following inequality holds:

T2∑

i=T1

ρ(xi, x
f
i ) ≤ M0.

4 An example

Let {fi}
∞

i=0 ∈ Mreg, a program {xf
i }

∞

i=0, cf > 0 and γf > 0 be such that (C1)-(C4)
hold.

Now we show that {fi}
∞

i=0 is approximated by elements ofMreg possessing (STP).
For each r ∈ (0, 1) and all integers i ≥ 0 set

f
(r)
i (x, y) = fi(x, y) + rρ(x, xf

i ), (x, y) ∈ Ωi. (4.1)

Clearly, {f
(r)
i }∞i=0 ∈ Mreg for all r ∈ (0, 1) and limr→0+ d({f

(r)
i }∞i=0, {fi}

∞

i=0) = 0.

Proposition 4.1 Let r ∈ (0, 1). Then {f
(r)
i }∞i=0 possesses (STP) with {xf

i }
∞

i=0 being
the turnpike.

Proof. By Proposition 2.6 of [31], {f
(r)
i }∞i=0 possesses (TP) with {xf

i }
∞

i=0 being

the turnpike. It follows from Theorem 2.1 that {f
(r)
i }∞i=0 has the property (P). In

view of Theorem 3.1 it is sufficient to show that {f
(r)
i }∞i=0 possesses (SATP).

Assume that S ≥ 0 is an integer and that a program {xi}
∞

i=S is ({f
(r)
i }∞i=0)-good.

Then there is c1 > 0 such that

|
T−1∑

t=S

f
(r)
t (xt, xt+1)−

T−1∑

t=S

f
(r)
t (xf

t , x
f
t+1)| ≤ c1forallintegersT > S. (4.2)

By Proposition 2.1, (4.1) and (4.2),
∑

∞

t=S ρ(xt, x
f
t ) < ∞. Thus (SATP) holds. Propo-

sition 4.1 is proved.
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5 Auxiliary results

We use the notation, definitions and assumptions introduced in Sections 1-3.
The following two results were obtained in [31].

Lemma 5.1 Let an integer S ≥ 0 and a program {xi}
∞

i=S be ({fi}
∞

t=0)-good. Then
there is a number c > 0 such that for each pair of integers T1 ≥ S and T2 > T1,

T2−1∑

i=T1

fi(xi, xi+1) ≤ U({fi}
∞

i=0, T1, T2) + c

and the following property holds:
for each ǫ > 0 there exists a natural number L such that for each integer T1 ≥ L

and each integer T2 > T1,

T2−1∑

i=T1

fi(xi, xi+1) ≤ U({fi}
∞

i=0, T1, T2, xT1
, xT2

) + ǫ.

Lemma 5.2 Let ǫ > 0. Then there exists δ > 0 such that for each pair of integers
T1 > 0, T2 > T1 + 2 and each program {xi}

T2

i=T1
satisfying

ρ(xT1+1, x
f
T1+1) ≤ δ, ρ(xT2−1, x

f
T2−1) ≤ δ,

T2−2∑

i=T1+1

fi(xi, xi+1) ≤ U({fi}
∞

i=0, T1 + 1, T2 − 1, xT1+1, xT2−1) + δ

there exists a program {x̃i}
T2+1
i=T1−1 such that

x̃T1−1 = x
f
T1−1, x̃T2+1 = x

f
T2+1, x̃i = xi, i = T1 + 1, . . . .T2 − 1

and that the following inequality holds:

T2∑

i=T1−1

fi(x̃i, x̃i+1) ≤

T2∑

i=T1−1

fi(x
f
i , x

f
i+1) + ǫ.

Lemma 5.3 Assume that {fi}
∞

i=0 possesses (SATP) and let ǫ > 0. Then there exist
δ > 0 and a natural number L such that for each pair of integers T2 > T1 ≥ L and
each program {xi}

T2

i=T1
satisfying

xT1
= x

f
T1
, xT2

= x
f
T2
,

T2−1∑

i=T1

fi(xi, xi+1) ≤

T2−1∑

i=T1

fi(x
f
i , x

f
i+1) + δ

the inequality
∑T2

t=T1
ρ(xt, x

f
t ) ≤ ǫ holds.



Structure of solutions of nonautonomous optimal control ... 159

Proof. Assume that the lemma is not true. Then there exist sequences of natural
numbers {Tk}

∞

k=1, {Sk}
∞

k=1 such that for each natural number k,

Tk < Sk < Tk+1

and there exists a program {x
(k)
i }Sk

i=Tk
such that

x
(k)
Tk

= x
f
Tk
, x

(k)
Sk

= x
f
Sk
, (5.1)

Sk−1∑

i=Tk

fi(x
(k)
i , x

(k)
i+1) ≤

Sk−1∑

i=Tk

fi(x
f
i , x

f
i+1) + 2−k, (5.2)

Sk∑

i=Tk

ρ(x
(k)
i , x

f
i ) > ǫ. (5.3)

Define a sequence {xi}
∞

i=0 ⊂ X as follows: for each integer k ≥ 1,

xi = x
(k)
i , i = Tk, . . . , Sk, (5.4)

xi = x
f
i for all integers i ≥ 0 such that i 6∈ ∪∞

k=1{Tk, . . . , Sk}. (5.5)

By (5.1), (5.4) and (5.5) {xi}
∞

i=0 is a well-defined program. By (5.2), (5.4) and (5.5)
for each integer p ≥ 1,

Sp∑

i=0

fi(xi, xi+1) ≤

Sp∑

i=0

fi(x
f
i , x

f
i+1) +

p∑

i=1

2−i.

Combined with Proposition 2.1 this implies that the program {xi}
∞

i=0 is ({fi}
∞

i=0)-
good. In view of (SATP),

∞∑

i=0

ρ(xi, x
f
i ) < ∞.

On the other hand, it follows from (5.3), (5.4) and (5.5) that

∞∑

i=0

ρ(xi, x
f
i ) ≥

∞∑

k=0

(

Sk∑

i=Tk

ρ(x
(k)
i , x

f
i )) ≥

∞∑

k=0

ǫ = ∞.

The contradiction we have reached completes the proof of Lemma 5.3.

Lemma 5.4 Assume that {fi}
∞

i=0 possesses (SATP) and let ǫ > 0. Then there exist
δ > 0 and a natural number L such that for each pair of integers T1, T2 satisfying
T1 > L, T2 > T1 + 2 and each program {xi}

T2

i=T1
satisfying

ρ(xT1+1, x
f
T1+1) ≤ δ, ρ(xT2−1, x

f
T2−1) ≤ δ, (5.6)
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T2−2∑

i=T1+1

fi(xi, xi+1) ≤ U({fi}
∞

i=0, T1 + 1, T2 − 1, xT1+1, xT2−1) + δ (5.7)

the following inequality holds:

T2−1∑

t=T1+1

ρ(xt, x
f
t ) ≤ ǫ.

Proof. By Lemma 5.3, there exist δ1 > 0 and a natural number L such that for each
pair of integers S2 > S1 ≥ L and each program {xi}

S2

i=S1
satisfying

xSi
= x

f
Si
, i = 1, 2,

S2−1∑

i=S1

fi(xi, xi+1) ≤

S2−1∑

i=S1

fi(x
f
i , x

f
i+1) + δ1 (5.8)

we have
S2∑

i=S1

ρ(xi, x
f
i ) ≤ ǫ. (5.9)

By Lemma 5.2 there exist δ > 0 such that for each pair of integers T1 > 0, T2 > T1+2
and each program {xi}

T2

i=T1
satisfying

ρ(xT1+1, x
f
T1+1) ≤ δ, ρ(xT2−1, x

f
T2−1) ≤ δ,

T2−2∑

i=T1+1

fi(xi, xi+1) ≤ U({fi}
∞

i=0, T1 + 1, T2 − 1, xT1+1, xT2−1) + δ

there exists a program {x̃i}
T2+1
i=T1−1 such that

x̃T1−1 = x
f
T1−1, x̃T2+1 = x

f
T2+1, x̃i = xi, i = T1 + 1, . . . .T2 − 1, (5.10)

T2∑

i=T1−1

fi(x̃i, x̃i+1) ≤

T2∑

i=T1−1

fi(x
f
i , x

f
i+1) + δ1. (5.11)

Assume that an integer T1 > L, an integer T2 > T1 + 2 and a program {xi}
T2

i=T1

satisfies (5.6) and (5.7). By (5.6), (5.7) and the choice of δ, there exists a program
{x̃i}

T2+1
i=T1−1 which satisfies (5.10), (5.11). By (5.10), (5.11), the choice of δ1 (see (5.8),

(5.9)),
T2+1∑

i=T1−1

ρ(x̃i, x
f
i ) ≤ ǫ.

Together with (5.10) this implies that

T2−1∑

i=T1+1

ρ(xi, x
f
i ) ≤ ǫ.

Lemma 5.4 is proved.
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6 Proof of Theorem 3.1

Assume that (STP) holds. Then (TP) holds and in view of Theorem 2.1, (ATP)
and the the property (P) hold. Therefore

lim
t→∞

ρ(xt, x
f
t ) = 0 (6.1)

for each integer S ≥ 0 and each ({fi}
∞

i=0)-good program {xi}
∞

i=S .
Let us show that (SATP) holds. Assume that S ≥ 0 is an integer and a program

{xi}
∞

i=S is ({fi}
∞

i=0)-good. Then (6.1) is true. By Lemma 5.1, there is c > 0 such that
for all integers T1 ≥ S, T2 > T1,

T2−1∑

i=T1

fi(xi, xi+1) ≤ U({fi}
∞

i=0, T1, T2) + c. (6.2)

By (STP), there exist δ > 0 and a natural number L0 such that for each pair of
integers T1 ≥ 0, T2 ≥ T1 + 2L0 and each program {zt}

T2

t=T1
which satisfies

T2−1∑

i=T1

fi(zi, zi+1) ≤ min{U({fi}
∞

i=0, T1, T2, zT1
, zT2

) + δ, U({fi}
∞

i=0, T1, T2) + c} (6.3)

we have
T2−L0∑

i=T1+L0

ρ(zi, x
f
i ) ≤ 1. (6.4)

By Lemma 5.1, there exists a natural number L1 > S such that for each integer
T1 ≥ L1 and each integer T2 > T1,

T2−1∑

i=T1

fi(xi, xi+1) ≤ U({fi}
∞

i=0, T1, T2, xT1
, xT2

) + δ. (6.5)

Assume that integers
T1 ≥ L1, T2 ≥ T1 + 2L0. (6.6)

Then (6.2) and (6.5) hold. In view of (6.2), (6.5), (6.6) and the choice of δ, L0,

T2−L0∑

i=T1+L0

ρ(xi, x
f
i ) ≤ 1. (6.7)

Since (6.7) holds for any pair of integers T1, T2 satisfying (6.6) we conclude that

∞∑

i=L1+L0

ρ(xi, x
f
i ) ≤ 1.

This implies that
∑

∞

i=0 ρ(xi, x
f
i ) < ∞ and that (SATP) holds. Thus we have shown

that (STP) implies (SATP) and the property (P).
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Assume that (SATP) and the property (P) hold.

Let ǫ > 0 and M > 0. By Lemma 5.4 there exist δ0 > 0 and a natural number
L0 such that for each pair of integers S1, S2 satisfying S1 > L0, S2 > S1 +2 and each
program {xi}

S2

i=S1
satisfying

ρ(xS1+1, x
f
S1+1) ≤ δ0, ρ(xS2−1, x

f
S2−1) ≤ δ0,

S2−2∑

i=S1+1

fi(xi, xi+1) ≤ U({fi}
∞

i=0, S1 + 1, S2 − 1, xS1+1, xS2−1) + δ0 (6.8)

we have
S2−2∑

i=S1+1

ρ(xi, x
f
i ) ≤ ǫ. (6.9)

By the property (P) there exist

δ ∈ (0, δ0) (6.10)

and a natural number L1 such that for each integer T ≥ 0 and each program {xt}
T+L1

t=T

which satisfies
T+L1−1∑

i=T

fi(xi, xi+1)

≤ min{U({fi}
∞

i=0, T, T+L1, xT , xT+L1
)+δ, U({fi}

∞

i=0, T, T+L1)+3cf+M}, (6.11)

there is an integer j such that

j ∈ {T, . . . , T + L1}, ρ(xj , x
f
j ) ≤ δ0. (6.12)

Choose a natural number

L ≥ 4L0 + 4L1. (6.13)

Assume that a pair of integers T1 ≥ 0, T2 ≥ T1 + 2L and that a program {xt}
T2

t=T1

satisfies

T2−1∑

i=T1

fi(xi, xi+1) ≤ min{U({fi}
∞

i=0, T1, T2, xT1
, xT2

) + δ, U({fi}
∞

i=0, T1, T2) +M}.

(6.14)
In order to complete the proof of the theorem it is sufficient to show that

T2−L∑

i=T1+L

ρ(xi, x
f
i ) ≤ ǫ. (6.15)
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Let integers S1, S2 satisfy T1 < S1 < S2 < T2. By (6.14) and (C2),

S2−1∑

i=S1

fi(xi, xi+1) =

T2−1∑

i=T1

fi(xi, xi+1)−

S1−1∑

i=T1

fi(xi, xi+1)−

T2−1∑

i=S2

fi(xi, xi+1)

≤ U({fi}
∞

i=0, T1, T2) +M − U({fi}
∞

i=0, T1, S1)− U({fi}
∞

i=0, S2, T2)

≤

T2−1∑

i=T1

fi(x
f
i , x

f
i+1) +M −

S1−1∑

i=T1

fi(x
f
i , x

f
i+1) + cf −

T2−1∑

i=S2

fi(x
f
i , x

f
i+1) + cf

=

S2−1∑

i=S1

fi(x
f
i , x

f
i+1) + 2cf +M ≤ U({fi}

∞

i=0, S1, S2) + 3cf +M.

Thus
S2−1∑

i=S1

fi(xi, xi+1) ≤ U({fi}
∞

i=0, S1, S2) + 3cf +M (6.16)

for all pairs of integers S1, S2 satisfying T1 < S1 < S2 < T2.
By (6.13), (6.14), (6.16), the choice of δ (see (6.10)-(6.12)) there exist integers

τ1 ∈ {L1 + T1 + 2L0, . . . , T1 + 2L0 + 2L1}, τ2 ∈ {T2 − 2L1, . . . , T2 − L1} (6.17)

such that
ρ(xτ i

, xf
τ i
) ≤ δ0, i = 1, 2. (6.18)

By (6.13) and (6.17),
τ2 − τ1 ≥ 2L0 + L. (6.19)

By (6.14) and (6.17),

τ2−1∑

i=τ1

fi(xi, xi+1) ≤ U({fi}
∞

i=0, τ1, τ2, xτ1
, xτ2

) + δ. (6.20)

By (6.19), (6.20), (6.17), (6.18), (6.10) and the choice of L0 and δ0 (see (6.7)-(6.9)),

τ2∑

i=τ1

ρ(xi, x
f
i ) ≤ ǫ.

Together with (6.13) and (6.17) this implies (6.15). Theorem 3.1 is proved.

7 Proof of Theorem 3.2

Set
D0 = sup{ρ(z1, z2) : z1, z2 ∈ X}. (7.1)

We suppose that the sum over empty set is zero. By (SATP), the property (P) and
Theorem 3.1, {fi}

∞

i=0 possesses (STP). By (STP) there exist δ ∈ (0, 1) and a natural
number L0 such that the following property holds:



164 A. J. Zaslavski

(a) for each pair of integers τ1 ≥ 0, τ2 ≥ τ1 + 2L0 and each program {xt}
τ2

t=τ1

which satisfies

τ2−1∑

t=τ1

ft(xt, xt+1) ≤ min{U({fi}
∞

i=0, τ1, τ2, xτ1
, xτ2

)+δ, U({fi}
∞

i=0, τ1, τ2)+2M+4cf}

the inequality
τ2−L0∑

i=τ1+L0

ρ(xi, x
f
i ) ≤ 1

holds.
Choose a natural number

L > (4L0 + 3)(δ−1M + 1) (7.2)

and

M0 > 1 + (δ−1M + 2)(1 + 2D0(2L0 + 1)). (7.3)

Assume that integers T1 ≥ 0, T2 > T1 + L and that a program {xt}
T2

t=T1
satisfies

T2−1∑

t=T1

ft(xt, xt+1) ≤ U({fi}
∞

i=0, T1, T2) +M. (7.4)

Set
t0 = T1. (7.5)

By induction we define a finite strictly increasing sequence of integers {ti}
q
i=0 ⊂

[T1, T2] where q is a natural number such that:

tq = T2; (7.6)

(b) for each integer i satisfying 0 ≤ i < q − 1,

ti+1−1∑

t=ti

ft(xt, xt+1) > U({fi}
∞

i=0, ti, ti+1, xti , xti+1
) + δ; (7.7)

(c) if an integer i satisfies 0 ≤ i ≤ q − 1 and (7.7), then

ti+1 > ti + 1 and

ti+1−2∑

t=ti

ft(xt, xt+1) ≤ U({fj}
∞

j=0, ti, ti+1 − 1, xti , xti+1−1) + δ. (7.8)

Assume that an integer p ≥ 0 and we have already defined a strictly increasing
sequence of integers {ti}

p
i=0 ⊂ [T1, T2] such that tp < T2 and that for each integer i

satisfying 0 ≤ i < p, (7.7) and (7.8) hold. (Note that for p = 0 our assumption holds.)
We define tp+1.
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There are two cases:

T2−1∑

t=tp

ft(xt, xt+1) ≤ U({fi}
∞

i=0, tp, T2, xtp , xT2
) + δ; (7.9)

T2−1∑

t=tp

ft(xt, xt+1) > U({fi}
∞

i=0, tp, T2, xtp , xT2
) + δ. (7.10)

Assume that (7.9) holds. Then we set q = p+ 1, tq = T2, the construction of the
sequence is completed and the properties (b), (c) hold.

Assume that (7.10) holds. Set

tp+1 = min{S ∈ {tp + 1, . . . , T2} :

S−1∑

t=tp

ft(xt, xt+1) > U({fi}
∞

i=0, tp, S, xtp , xS) + δ}. (7.11)

Clearly, tp+1 is well-defined. If tp+1 = T2, then we set q = p + 1, the construction is
completed and it is not difficult to see that (b) and (c) hold.

Assume that tp+1 < T2. Then it is easy to see that the assumption made for p is
also true for p+ 1.

Clearly our construction is completed after a final number of steps and let tq = T2

be its last element, where q is a natural number. It follows from the construction that
the properties (b) and (c) hold.

By (7.4) and the property (b)

M ≥

T2−1∑

t=T1

ft(xt, xt+1)− U({fi}
∞

i=0, T1, T2)

≥

T2−1∑

t=T1

ft(xt, xt+1)− U({fi}
∞

i=0, T1, T2, xT1
, xT2

)

≥
∑

{

ti+1−1∑

t=ti

ft(xt, xt+1)− U({fj}
∞

j=0, ti, ti+1, xti , xti+1
) :

iis an integer, 0 ≤ i < q − 1} ≥ δ(q − 1),

q ≤ δ−1M + 1. (7.12)

Set

A = {i ∈ {0, . . . , q − 1} : ti+1 − ti > 2L0}. (7.13)

Let

j ∈ A. (7.14)
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By (b), (c) and (7.13) and (7.14),

tj+1−2∑

t=tj

ft(xt, xt+1) ≤ U({fi}
∞

i=0, tj , tj+1 − 1, xtj , xtj+1−1) + δ. (7.15)

By (7.4), (7.13), (7.14) and (C2),

tj+1−2∑

t=tj

ft(xt, xt+1) =

T2−1∑

t=T1

ft(xt, xt+1)

−
∑

{ft(xt, xt+1) : t is an integer, T1 ≤ t < tj} −

T2−1∑

t=tj+1−1

ft(xt, xt+1)

≤

T2−1∑

t=T1

ft(x
f
t , x

f
t+1) +M + cf

−
∑

{ft(x
f
t , x

f
t+1) : t is an integer, T1 ≤ t < tj}+ cf −

T2−1∑

t=tj+1−1

ft(x
f
t , x

f
t+1)

=

tj+1−2∑

t=tj

ft(x
f
t , x

f
t+1) +M + 2cf ≤ U({fi}

∞

i=0, tj , tj+1 − 1) +M + 3cf . (7.16)

By (7.13), (7.14), (7.15), (7.16) and property (a),

tj+1−1−L0∑

t=tj+L0

ρ(xt, x
f
t ) ≤ 1 (7.17)

for all j ∈ A. By (7.5), (7.6), (7.13), (7.1), (7.17), (7.12) and (7.3),

T∑

t=0

ρ(xt, x
f
t ) ≤ D0 +

q−1∑

j=0

(

tj+1−1∑

t=tj

ρ(xt, x
f
t ))

= D0 +
∑

j∈A

(

tj+1−1∑

t=tj

ρ(xt, x
f
t ))

+
∑

{

tj+1−1∑

t=tj

ρ(xt, x
f
t ) : j ∈ {0, . . . , q − 1} \A}

≤ D0 +
∑

j∈A

(L0D0 + 1 +D0(L0 + 1)) + qD0(2L0 + 1)

≤ D0 + q(1 + 2D0(2L0 + 1)) ≤ (δ−1M + 2)(1 + 2D0(2L0 + 1)) < M0.

Theorem 3.2 is proved. *
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