
J o u r n a l of
Mathematics
and Applications

JMA No 41, pp 123-156 (2018)

COPYRIGHT c© by Publishing House of Rzeszów University of Technology
P.O. Box 85, 35-959 Rzeszów, Poland

The Real and Complex Convexity
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Abstract: We prove that the holomorphic differential equation
ϕ′′(ϕ+c) = γ(ϕ′)2 (ϕ : C→ C be a holomorphic function and (γ, c) ∈ C2)
plays a classical role on many problems of real and complex convexity. The
condition exactly γ ∈ {1, s−1s /s ∈ N\{0}} (independently of the constant
c) is of great importance in this paper.

On the other hand, let n ≥ 1, (A1, A2) ∈ C2, and g1, g2 : Cn → C be
two analytic functions. Put u(z, w) =| A1w − g1(z) |2 + | A2w − g2(z) |2,
v(z, w) =| A1w − g1(z) |2 + | A2w − g2(z) |2, for (z, w) ∈ Cn × C. We
prove that u is strictly plurisubharmonic and convex on Cn×C if and only
if n = 1, (A1, A2) ∈ C2\{0} and the functions g1 and g2 have a classical
representation form described in the present paper.

Now v is convex and strictly psh on Cn × C if and only if (A1, A2) ∈
C2\{0}, n ∈ {1, 2} and g1, g2 have several representations investigated in
this paper.
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1. Introduction

It is not difficult to prove that if g : D → C be a function (not necessarily holomorphic)
such that v is convex over D × C, then g is an affine function, where D is a convex
domain of Cn, n ≥ 1 and v(z, w) =| w − g(z) |2, for (z, w) ∈ D × C.
But if we consider the case of 2 functions, the problem is difficult. However if g1, g2 :
Cn → C be 2 holomorphic functions, v1(z, w) =| A1w − g1(z) |2
+ | A2w − g2(z) |2, v2(z, w) = v1(z, w), for (z, w) ∈ Cn × C and A1, A2 ∈ C.

We have the questions:
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– Find exactly all the conditions described by g1 and g2 such that v1 is convex
over Cn × C?

– Find exactly all the conditions described by g1 and g2 such that v1 (respectively
v2) is convex and not strictly psh over Cn × C?

– Find exactly all the conditions described by g1 and g2 such that v1 (respectively
v2) is convex and strictly psh over Cn × C?

Several questions can be studied in this situation.
The class of convex and strictly psh functions is a good family for the study

and has several applications in complex analysis, convex analysis in several complex
variables, harmonic analysis (representation theory), physics, mechanics and others.
For example, the importance of my study of this last class is to discover the existence
of an infinite family of convex and strictly psh functions but not strictly convex (or
not strictly convex in all Euclidean open ball of the domain of definition) on the
above form. It follows that the exact characterization of the (convex and strictly psh)
functions of the form | A1w − g1(z) |2 + | A2w − g2(z) |2 describe the existence of
an important family of holomorphic functions (which is fundamental for the study).
Note that if n increases, the problem is difficult if we consider several absolute values.

Using this paper, we can answer to the following question.
Characterize all the holomorphic not constant functions f1, f2 : Cn → C and all
the holomorphic not constant functions F1, F2 : Cm → C, such that u is convex
(respectively convex and strictly psh) over Cn × Cm, where n,m ≥ 1 and

u(z, w) =| f1(z)− F1(w) |2 + | f2(z)− F2(w) |2

for each (z, w) ∈ Cn × Cm.
Now, for example, given g1, g2 : Cn → C be two analytic functions, n ≥ 1 and

A1, A2 ∈ C\{0}. Define u(z, w) =| A1w − g1(z) |2 + | A2w − g2(z) |2, for (z, w) ∈
Cn × C. We prove that u is convex and strictly plurisubharmonic on Cn × C if and
only if n = 1, g1 and g2 satisfies{

g1(z) = A1(az + b) +A2(cz + d)
g2(z) = A2(az + b)−A1(cz + d)

(for each z ∈ C with a, b, d ∈ C and c ∈ C\{0}), or{
g1(z) = A1(a1z + b1) +A2e

(c1z+d1)

g2(z) = A2(a1z + b1)−A1e
(c1z+d1)

(for each z ∈ C, where a1, b1, d1 ∈ C and c1 ∈ C\{0}).
However, the number of the absolute values implies that n = 1. The great differences
between the classes of functions (convex and strictly psh) and strictly convex is one
of the purpose of this paper.
Moreover, if we replace Cn by a convex domain bounded on Cn, the above result is
not true.
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We show extension results of ([3], Corollaire 17), which is the following.

Let α, β ∈ C, (α 6= β) and g : Cn → C be analytic. Using holomorphic differential
equations, we prove that | g + α | and | g + β | are convex functions over Cn if and
only if g is an affine function on Cn.
Observe that the complex structure plays a key role in this situation. For example,
let ϕ(z) = x21 + 1, for z = (z1, ..., zn) ∈ Cn, z1 = (x1 + iy1) ∈ C, where x1, y1 ∈ R.
Then ϕ is real analytic on Cn. | ϕ + 0 |=| ϕ | and | ϕ + 1 | are convex functions on
Cn. But ϕ is not affine on Cn.

Let U be a domain of Rd, (d ≥ 2). We denote by sh(U) the subharmonic functions
on U and md the Lebesgue measure on Rd. Let f : U → C be a function. | f | is the
modulus of f, Re(f) is the real part of f. supp(f) is the support of f. For N ≥ 1 and

h = (h1, ..., hN ), where h1, ..., hN : U → C, ‖ h ‖= (| h1 |2 +...+ | hN |2)
1
2 .

Let g : D → C be an analytic function, D is a domain of C. We denote by g(0) =
g, g(1) = g′ is the holomorphic derivative of g over D. g(2) = g′′, g(3) = g′′′. In general
g(m) = ∂mg

∂zm is the holomorphic derivative of g of order m, for all m ∈ N.
Let z ∈ Cn, z = (z1, ..., zn), n ≥ 1. For n ≥ 2 and j ∈ {1, ..., n}, we write z =
(zj , Zj) = (z1, ..., zj−1, zj , zj+1, ..., zn) where Zj = (z1, ..., zj−1, zj+1, ..., zn) ∈ Cn−1. If
ξ = (ξ1, ..., ξn) ∈ Cn, we denote < z/ξ >= z1ξ1 + ... + znξn and B(ξ, r) = {ζ ∈ Cn/
‖ ζ − ξ ‖< r} for r > 0, where

√
< ξ/ξ > =‖ ξ ‖ is the Euclidean norm of ξ.

C(U) = {ϕ : U → C/ϕ is continuous on U}.
Ck(U) = {ϕ : U → C/ϕ is of class Ck on U} and Ckc (U) = {ϕ : U → C/ϕ ∈
Ck(U) and have a compact support on U}, k ∈ N ∪ {∞} and k ≥ 1.
Let ϕ : U → C be a function of class C2. ∆(ϕ) is the Laplacian of ϕ.
Let D be a domain of Cn, (n ≥ 1). psh(D) and prh(D) are respectively the class of
plurisubharmonic and pluriharmonic functions on D.

Definition 1. Let ϕ : D → R be a function of class C2 and a ∈ D. We say that ϕ

is strictly plurisubharmonic at a if

n∑
j,k=1

∂2ϕ

∂zj∂zk
(a)αjαk > 0, for all α = (α1, ..., αn) ∈

Cn\{0}.

Moreover, we say that ϕ is strictly plurisubharmonic on D if ϕ is strictly psh at
every point a ∈ D.
For all a ∈ C, | a | is the modulus of a. Re(a) is the real part of a. D(a, r) = {z ∈ C/
| z − a |< r} and ∂D(a, r) = {z ∈ C/ | z − a |= r}, for r > 0.

For p an analytic polynomial over C, deg(p) is the degree of p.

For the study of properties and extension problems of analytic and plurisubhar-
monic functions we cite the references [1], [4], [5], [6], [7], [8], [10], [13], [14], [15], [16],
[19], [20], [21], [24], [25], [26], [27], [29], [30], [32], [34], [35] and [12]. Several properties
of analytic functions and their graphs are obtained in [12] and [13].

The class of n-harmonic functions is introduced by Rudin in [33]. There are many
investigations of plurisubharmonic functions in [2], [18], [22], [23], [28], [29], [31], [11]
and [9]. Good references for the study of convex functions in complex convex domains
are [17], [21] and [35].
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2. A Fundamental Properties over Cn

The following 4 lemmas (Lemma 1, Lemma 2, Lemma 3 and Lemma 4) are fun-
damental in this paper. Convex and plurisubharmonic functions are connected by
the

Lemma 1. Let u : Cn → R be a continuous function, n ≥ 1. Put v(z, w) = u(w− z),
for (z, w) ∈ Cn × Cn. For z = (z1, ..., zn), α = (α1, ..., αn) ∈ Cn and 1 ≤ j ≤ n, we
write zj = (xj + ixj+n) and αj = (bj + ibj+n), where xj , xj+n, bj , bj+n ∈ R.
The following conditions are equivalent

(a) u is convex on Cn;

(b) v is psh on Cn × Cn;

(c) For all ϕ ∈ C∞c (Cn), ϕ ≥ 0, we have

1

2

2n∑
j,k=1

∫
u(z)

∂2ϕ

∂xj∂xk
(z)bjbkdm2n(z) = Re(

n∑
j,k=1

∫
u(z)

∂2ϕ

∂zj∂zk
(z)αjαkdm2n(z))

+

n∑
j,k=1

∫
u(z)

∂2ϕ

∂zj∂zk
(z)αjαkdm2n(z) ≥ 0

for each α = (α1, ..., αn) ∈ Cn;

(d) For all ϕ ∈ C∞c (Cn), ϕ ≥ 0, we have

Re(

n∑
j,k=1

∫
u(z)

∂2ϕ

∂zj∂zk
(z)αjαkdm2n(z)) ≤ 1

4

2n∑
j,k=1

∫
u(z)

∂2ϕ

∂xj∂xk
(z)bjbkdm2n(z)

≤
n∑

j,k=1

∫
u(z)

∂2ϕ

∂zj∂zk
(z)αjαkdm2n(z)

for each α = (α1, ..., αn) ∈ Cn. (This is an important property in real and
complex analysis);

(e)

∣∣∣∣∣∣
n∑

j,k=1

∫
u(z)

∂2ϕ

∂zj∂zk
(z)αjαkdm2n(z)

∣∣∣∣∣∣ ≤
n∑

j,k=1

∫
u(z)

∂2ϕ

∂zj∂zk
(z)αjαkdm2n(z),

for each α = (α1, ..., αn) ∈ Cn, for each ϕ ∈ C∞c (Cn), ϕ ≥ 0.

Proof. (a) implies (b) is evident.

(b) implies (a).
Case 1. n = 1.

Let ρ : C→ R+, ρ is a radial C∞ function, supp(ρ) ⊂ D(0, 1) and
∫
ρ(ξ)dm2(ξ) = 1.

For all δ > 0, we define ρδ by ρδ(ξ) = 1
δ2 ρ( ξδ ), for ξ ∈ C.

Observe that v(z, .) is sh and continuous on C.
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Fix δ > 0 and z ∈ C. We have

v(z, .) ∗ ρδ(w) =

∫
v(z, w − ξ)ρδ(ξ)dm2(ξ) =

∫
u(w − ξ − z)ρδ(ξ)dm2(ξ)

= ϕδ(w − z) = ψδ(z, w),

where ϕδ(ζ) =
∫
u(ζ − ξ)ρδ(ξ)dm2(ξ) = u ∗ ρδ(ζ), for ζ ∈ C.

Therefore the function ϕδ is C∞ on C. Consequently, ψδ is C∞ on C2.
Let A(z, w, ξ) = v(z, w− ξ)ρδ(ξ), for z, w, ξ ∈ C. Since u is continuous on C, then

A is continuous on C3. Note that the function A(., ., ξ) is psh on C2, for each ξ ∈ C.
Since ρδ have a support compact, then by ([32], p.75), ψδ is psh on C2.
Consequently, ψδ is C∞ and psh over C2.
By ([3], Lemme 3 p. 339), the function ϕδ is convex over C. Thus u ∗ ρδ is a convex
function on C, for all δ > 0. The sequence of functions (u ∗ ρ 1

j
), ( for j ∈ N\{0}),

converges to the function u uniformly over all compact subset of C because u is
continuous. Therefore, u is convex on C.

Case 2. n ≥ 2. This proof is similar to the Case 1.

(a) implies (c) is well known.

(c) implies (a).
Let j ∈ {1, ..., 2n}. If bj = 1 and bk = 0, for all k 6= j, then∫

u(z)
∂2ϕ

∂x2j
(z)dm2n(z) ≥ 0.

It follows that

2n∑
j=1

∫
u(z)

∂2ϕ

∂x2j
(z)dm2n(z) =

∫
u(z)∆ϕ(z)dm2n(z) ≥ 0,

for all ϕ ∈ C∞c (Cn), ϕ ≥ 0.
Therefore u = v on Cn\E, where v is a subharmonic function on Cn and E is a
borelien subset of Cn with m2n(E) = 0.

Now, assume that u is not subharmonic on Cn. Then there exists z0 ∈ Cn and
r > 0 such that

u(z0) >
1

m2n(B(z0, r))

∫
B(z0,r)

u(ξ)dm2n(ξ).

Since ∫
B(z0,r)

u(ξ)dm2n(ξ) =

∫
B(z0,r)

v(ξ)dm2n(ξ),

it follows that u(z0) > v(z0) and consequently, v(z0)− u(z0) < 0.
Since u is continuous on Cn, then (v − u) is an upper semi-continuous function

on Cn. Therefore, there exists η ∈]0, r[ such that (v − u) < 0 on B(z0, η). Since
m2n(B(z0, η)) > 0 and u = v on Cn\E, we have a contradiction.

The rest of the proof of this lemma is similar to the two above proofs.
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Remark 1. The constant 1
4 is the good constant for the two inequalities in the

assertion (d) at Lemma 1.
Let D be a not empty convex domain of Cn, n ≥ 1 and s ∈ N\{0, 1}. There does

not exists a constant c > 0 such that for all u : D → R be a function of class Cs and
convex on D, we have

1

c
|

n∑
j,k=1

∂2u

∂zj∂zk
(z)αjαk |≤

2n∑
j,k=1

∂2u

∂xj∂xk
(z)bjbk ≤ c |

n∑
j,k=1

∂2u

∂zj∂zk
(z)αjαk |,

∀z = (z1, ..., zn) ∈ D, ∀α = (α1, ..., αn) ∈ Cn, zj = (xj + ixj+n), αj = (bj + ibj+n),
(xj , xj+n, bj , bj+n ∈ R), 1 ≤ j ≤ n.

Lemma 2. Let a, b, c ∈ C. We have

(A) (aαα + bββ + 2Re(cαβ) ≥ 0, for all (α, β) ∈ C2) if and only if (a ≥ 0, b ≥ 0
and | c |2≤ ab).

(B) (aαα+bββ+2Re(cαβ) > 0, for all (α, β) ∈ C2\{0}) if and only if (a > 0, b > 0
and | c |2< ab).

Proof. See ([3], Lemme 9, p. 354).

Lemma 3. Let u : G → R and h : D → C, G is a convex domain of Cn, D is
a domain of Cn, n ≥ 1. Suppose that u is a function of class C2 on G and h is a
pluriharmonic (prh) function over D. Then we have

(A) The Levi hermitian form of | h |2 is

L(| h |2)(z)(α) =

n∑
j,k=1

∂2(| h |2)

∂zj∂zk
(z)αjαk

=|
n∑
j=1

∂h

∂zj
(z)αj |2 + |

n∑
j=1

∂(h)

∂zj
(z)αj |2

for each z = (z1, ..., zn) ∈ D, for all α = (α1, ..., αn) ∈ Cn.
We can also study the case where h is n-harmonic on D.

(B) u is convex on G if and only if

|
n∑

j,k=1

∂2u

∂zj∂zk
(z)αjαk |≤

n∑
j,k=1

∂2u

∂zj∂zk
(z)αjαk

for each z ∈ G and all α = (α1, ..., αn) ∈ Cn.
u is strictly convex on G if and only if

|
n∑

j,k=1

∂2u

∂zj∂zk
(z)αjαk |<

n∑
j,k=1

∂2u

∂zj∂zk
(z)αjαk

for each z ∈ G and every α = (α1, ..., αn) ∈ Cn\{0}.
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Proof. Let z = (z1, ..., zn) ∈ D, α = (α1, ..., αn) ∈ Cn.

∀j, k ∈ {1, ..., n}, since h is prh on D then

∂2(| h |2)

∂zj∂zk
(z) =

∂h

∂zj
(z)

∂(h)

∂zk
(z) +

∂h

∂zk
(z)

∂(h)

∂zj
(z).

Therefore,

n∑
j,k=1

∂2(| h |2)

∂zj∂zk
(z)αjαk =

n∑
j,k=1

∂h

∂zj
(z)αj

∂(h)

∂zk
(z)αk +

n∑
j,k=1

∂h

∂zk
(z)αk

∂(h)

∂zj
(z)αj

= (
n∑
j=1

∂h

∂zj
(z)αj)(

n∑
k=1

∂(h)

∂zk
(z)αk) + (

n∑
j=1

∂h

∂zj
(z)αj)(

n∑
k=1

∂h

∂zk
(z)αk)

=|
n∑
j=1

∂h

∂zj
(z)αj |2 + |

n∑
j=1

∂h

∂zj
(z)αj |2 .

The following lemma plays a classical role on several problems of complex analysis.
Several fundamental properties of pluripotential theory deduced by this lemma was
obtained in this paper.

Lemma 4. Let f1, ..., fN , g1, ..., gN : D → C, D is a domain of Cn, n,N ≥ 1.
Put f = (f1, ..., fN ), g = (g1, ..., gN ) and assume that f1, ..., fN , g1, ..., gN are
holomorphic functions on D. Let u : D → R be a function of class C2. Then
(‖ f ‖2 + ‖ g ‖2) and (‖ f + g ‖2) have the same hermitian Levi form over D.
In particular (u+ ‖ f ‖2 + ‖ g ‖2) is strictly psh on D if and only if (u+ ‖ f + g ‖2)
is strictly psh on D.

Proof. ‖ f + g ‖2=

N∑
j=1

| fj + gj |2=‖ f ‖2 + ‖ g ‖2 +

N∑
j=1

fjgj +

N∑
j=1

fjgj on D.

Observe that

N∑
j=1

(fjgj + fjgj) = 2Re(

N∑
j=1

fjgj) is a pluriharmonic (prh) function on

D. Consequently, the Levi hermitian form of the function

N∑
j=1

(fjgj + fjgj) is equal

zero on D × Cn. It follows that ‖ f + g ‖2 and (‖ f ‖2 + ‖ g ‖2) have the same
hermitian Levi form on D.

Now we choose a proof which is classical in complex analysis of the following.

Theorem 1. Let g1, g2 : Cn → C be two analytic functions, n ≥ 1 and A1, A2 ∈
C\{0}. Put

u(a,b)(z) =| A1(< z/a > +b)− g1(z) |2 + | A2(< z/a > +b)− g2(z) |2= u(z),
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for z ∈ Cn, a ∈ Cn and b ∈ C.
The following conditions are equivalent

(A) u(a,b) is convex on Cn, for all a ∈ Cn and b ∈ C;

(B) {
g1(z) = A1(< z/a1 > +b1) +A2(< z/c1 > +d1)m

g2(z) = A2(< z/a1 > +b1)−A1(< z/c1 > +d1)m

(for each z ∈ Cn with a1, c1 ∈ Cn, b1, d1 ∈ C,m ∈ N), or{
g1(z) = A1(< z/a2 > +b2) +A2e

(<z/c2>+d2)

g2(z) = A2(< z/a2 > +b2)−A1e
(<z/c2>+d2)

(for each z ∈ Cn, where a2, c2 ∈ Cn, b2, d2 ∈ C).

Proof. Case 1. n = 1.

(A) implies (B). For a, b ∈ C, u(a,b) is a function of class C∞ on C2. Therefore we
have

|
∂2u(a,b)

∂z2
(z) |≤

∂2u(a,b)

∂z∂z
(z), ∀z ∈ C,∀(a, b) ∈ C2.

Fix z ∈ C. Then

| g′′1 (z)[A1(az + b)− g1(z)] + g′′2 (z)[A2(az + b)− g2(z)] |
≤| A1a− g′1(z) |2 + | A2a− g′2(z) |2,

for all a, b ∈ C.

State 1. Take a = 0. Then

| −g′′1 (z)g1(z)− g′′2 (z)g2(z) + b(A1g
′′
1 (z) +A2g

′′
2 (z)) |≤| g′1(z) |2 + | g′2(z) |2,

for all b ∈ C.
If (A1g

′′
1 (z) +A2g

′′
2 (z)) 6= 0. Then the subset C is bounded. A contradiction.

It follows that (A1g
′′
1 + A2g

′′
2 ) = 0 over C. Consequently, (A1g1 + A2g2) is an affine

function on C.
State 2. For all a ∈ C, we have

| g′′1 (z)[A1az − g1(z)] + g′′2 (z)[A2az − g2(z)] |
≤| A1a− g′1(z) |2 + | A2a− g′2(z) |2, ∀z ∈ C.

It follows that

| g′′1 (z)g1(z) + g′′2 (z)g2(z) |≤| A1a− g′1(z) |2 + | A2a− g′2(z) |2
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for each z ∈ C. We have

(| A1 |2 + | A2 |2) | a |2 −2Re[a(A1g
′
1(z) +A2g

′
2(z))]+ | g′1(z) |2 + | g′2(z) |2

− | g′′1 (z)g1(z) + g′′2 (z)g2(z) |≥ 0,∀z ∈ C, ∀a ∈ C.

Now observe that

(| A1 |2 + | A2 |2) | a |2 −2Re[a(A1g
′
1(z) +A2g

′
2(z))]+ | g′1(z) |2 + | g′2(z) |2

− | g′′1 (z)g1(z) + g′′2 (z)g2(z) |=| a
√
| A1 |2 + | A2 |2

− 1√
| A1 |2 + | A2 |2

(A1g
′
1(z) +A2g

′
2(z)) |2 +

−1

| A1 |2 + | A2 |2
| A1g

′
1(z) +A2g

′
2(z) |2

+ | g′1(z) |2 + | g′2(z) |2 − | g′′1 (z)g1(z) + g′′2 (z)g2(z) |≥ 0

for each a ∈ C.
For a = 1

|A1|2+|A2|2 (A1g
′
1(z) +A2g

′
2(z)), we have

| A2 |2

| A1 |2 + | A2 |2
| g′1(z) |2 +

| A1 |2

| A1 |2 + | A2 |2
| g′2(z) |2

− 2

| A1 |2 + | A2 |2
Re[A1A2g

′
1(z)g′2(z)]− | g′′1 (z)g1(z) + g′′2 (z)g2(z) |≥ 0.

Thus

1

| A1 |2 + | A2 |2
| A2g

′
1(z)−A1g

′
2(z) |2 − | g′′1 (z)g1(z) + g′′2 (z)g2(z) |≥ 0

for each z ∈ C. Put A = A1

A2
∈ C\{0}.

A1g
′′
1 +A2g

′′
2 = 0 on C and then g′′2 = −Ag′′1 over C.

Therefore we have

(1)
1

(| A1 |2 + | A2 |2)
| A2g

′
1(z)−A1g

′
2(z) |2≥| g′′1 (z)(g1(z)−Ag2(z)) |

for each z ∈ C.
Since g′′1 = − 1

A
g′′2 , then

(2)

1

(| A1 |2 + | A2 |2)
| A2g

′
1(z)−A1g

′
2(z) |2≥

| 1

A
g′′2 (z)(g1(z)−Ag2(z)) |=| −1

A
g′′2 (z)(g1(z)−Ag2(z)) |

for every z ∈ C.
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(1) implies that

| g′′1 (z)(g1(z)−Ag2(z)) |≤ 1

(| A1 |2 + | A2 |2)
| A2g

′
1(z)−A1g

′
2(z) |2

for each z ∈ C.
Then

| g′′1 (z)(g1(z)− A1

A2
g2(z)) |= 1

| A2 |2
| A2g

′′
1 (z)(A2g1(z)−A1g2(z)) |

≤ 1

(| A1 |2 + | A2 |2)
| A2g

′
1(z)−A1g

′
2(z) |2

for each z ∈ C.
Then we obtain the inequality

(3)

| A2g
′′
1 (z)(A2g1(z)−A1g2(z)) |≤ | A2 |2

(| A1 |2 + | A2 |2)
| A2g

′
1(z)−A1g

′
2(z) |2

for every z ∈ C.

Now (2) implies the following inequality

(4)

| −A1g
′′
1 (z)(A2g

′
1(z)−A1g

′
2(z)) |≤ | A1 |2

(| A1 |2 + | A2 |2)
| A2g

′
1(z)−A1g

′
2(z) |2

for every z ∈ C.

The sum between the inequalities (3) and (4) implies that

| A2g
′′
1 (z)(A2g1(z)−A1g2(z)) | + | −A1g

′′
2 (z)(A2g1(z)−A1g2(z)) |

≤ (| A1 |2 + | A2 |2)

(| A1 |2 + | A2 |2)
| A2g

′
1(z)−A1g

′
2(z) |2=| A2g

′
1(z)−A1g

′
2(z) |2

for each z ∈ C.
By the triangle inequality we have

| (A2g
′′
1 (z)−A1g

′′
2 (z))(A2g1(z)−A1g2(z)) |≤| A2g

′
1(z)−A1g

′
2(z) |2

for each z ∈ C.
Now put ϕ(z) = A2g1(z)−A1g2(z), for z ∈ C.

Note that ϕ : C→ C, ϕ is holomorphic over C. ϕ satisfy the holomorphic differential
inequality | ϕ′′ϕ |≤| ϕ′ |2 on C. Then ϕ′′ϕ = γ(ϕ′)2, where γ ∈ C, | γ |≤ 1.
By ([3],Corollaire 14, p. 361; Théorème 22, p. 362) exactly γ ∈ {1, t−1t /t ∈ N\{0}}.
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Therefore ϕ(z) = (az+ b)s for all z ∈ C, where a, b ∈ C and s ∈ N, or ϕ(z) = e(cz+d),
for all z ∈ C, where c, d ∈ C.
Step 1. ϕ(z) = (az + b)s, for all z ∈ C. Then A2g1(z)−A1g2(z) = (az + b)s.

Now since A1g
′′
1 (z) + A2g

′′
2 (z) = 0, then A1g1(z) + A2g2(z) = a1z + b1, for all

z ∈ C, where a1, b1 ∈ C. We have the system{
A2g1(z)−A1g2(z) = (az + b)s

A1g1(z) +A2g2(z) = a1z + b1

for each z ∈ C.
It follows that (| A2 |2 + | A1 |2)g1(z) = A2(az + b)s +A1(a1z + b1), and then{

g1(z) = A1(a2z + b2) +A2(a3z + b3)s

g2(z) = A2(a2z + b2)−A1(a3z + b3)s

for each z ∈ C, where a2, b2, a3, b3 ∈ C and s ∈ N.
Step 2. ϕ(z) = e(cz+d), for all z ∈ C.
Then we have by the Step 1, the system{

A2g1(z)−A1g2(z) = e(cz+d)

A1g1(z) +A2g2(z) = a1z + b1

for all z ∈ C, with (a1, b1 ∈ C).
Then {

g1(z) = A1(c1z + d1) +A2e
(c2z+d2)

g2(z) = A2(c1z + d1)−A1e
(c2z+d2)

for each z ∈ C, where c1, d1, c2, d2 ∈ C.
(B) implies (A) is evident.

Case 2. n ≥ 2.
For z = (z1, ..., zn) ∈ Cn, we write z = (z1, Z1), Z1 ∈ Cn−1, z1 ∈ C.
We can prove that (A1g1 +A2g2) is an affine function on Cn.

A1g1(z) +A2g2(z) =< z/a0 > +b0, a0 ∈ Cn, b0 ∈ C.

Consider the functions g1(., Z1), g2(., Z1) and we use the problem of fibration as
follows. By the Case 1, we have{

g1(z) = A1[α(Z1)z1 + β(Z1)] +A2ϕ(z)
g2(z) = A2[α(Z1)z1 + β(Z1)]−A1ϕ(z),

where α, β : Cn−1 → C and ϕ : Cn → C.

A2g1(z)−A1g2(z) = (| A1 |2 + | A2 |2)ϕ(z).

Then ϕ is analytic on Cn. Consequently,

(A1g1(z) +A2g2(z)) = (| A1 |2 + | A2 |2)[α(Z1)z1 + β(Z1)] =< z/a0 > +b0
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for each z ∈ Cn.

Then α and β are analytic functions. α is constant and β is an affine function on
Cn−1. Then α(Z1)z1 + β(Z1) =< z/λ > +µ, λ ∈ Cn, µ ∈ C (z = (z1, Z1) ∈ Cn).
It follows that | ϕ |2 is convex on Cn. By ([3], Théorème 20, p. 358), the proof is
complete.

Theorem 2. Let g1, g2 : Cn → C be two analytic functions, n ≥ 1 and A1, A2 ∈
C\{0}. For all a ∈ Cn and b ∈ C, define

u(a,b)(z) =| A1(< z/a > +b)− g1(z) |2 + | A2(< z/a > +b)− g2(z) |2,

u(a,b,c1,c2)(z) =| A1(< z/a > +b)− g1(z) + c1 |2 + | A2(< z/a > +b)− g2(z) + c2 |2,

for each z ∈ Cn.
The following assertions are equivalent

(A) u(a,b) is strictly convex on Cn, for each (a, b) ∈ Cn × C;

(B) n = 1 and g1, g2 are affine functions on C with the condition (A1g
′
2 6= A2g

′
1);

(C) There exists c1, c2 ∈ C such that u(a,b,c1,c2) is strictly convex on Cn, for every
(a, b) ∈ Cn × C.

Proof. (A) implies (B).

Since u(a,b) is strictly convex on Cn, for each (a, b) ∈ Cn×C, then by Theorem 1, we
have {

g1(z) = A1(< z/a1 > +b1) +A2(< z/c1 > +d1)m

g2(z) = A2(< z/a1 > +b1)−A1(< z/c1 > +d1)m

(for each z ∈ Cn, where a1, c1 ∈ Cn, b1, d1 ∈ C,m ∈ N), or

{
g1(z) = A1(< z/a2 > +b2) +A2e

(<z/c2>+d2)

g2(z) = A2(< z/a2 > +b2)−A1e
(<z/c2>+d2)

(for each z ∈ Cn, where a2, c2 ∈ Cn, b2, d2 ∈ C).

Case 1. {
g1(z) = A1(< z/a1 > +b1) +A2(< z/c1 > +d1)m

g2(z) = A2(< z/a1 > +b1)−A1(< z/c1 > +d1)m

for each z ∈ Cn.

u(a,b)(z) =| A1(< z/a > +b− < z/a1 > −b1)−A2(< z/c1 > +d1)m |2

+ | A2(< z/a > +b− < z/a1 > −b1) +A1(< z/c1 > +d1)m |2,
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where (a, b) ∈ Cn × C.
Choose now a = a1 and b = b1. It follows that

u(z) =|< z/c1 > +d1 |2m (| A1 |2 + | A2 |2)

and u is strictly convex on Cn.
Thus v is strictly convex on Cn, where v(z) =|< z/c1 >|2m, for z ∈ Cn. But v is
strictly convex on Cn if and only if m = 1, n = 1 and c1 ∈ C\{0}.

g1(z) = A1(a1z + b1) +A2(c1z + d1) = α1z + β1,

g2(z) = A2(a1z + b1)−A1(c1z + d1) = α2z + β2,

for z ∈ C, with α1, β1, α2, β2 ∈ C and (α1 6= 0 or α2 6= 0).
In this case A1g

′
2 = A1(A2a1 −A1c1), A2g

′
1 = A2(A1a1 +A2c1).

A1g
′
2 6= A2g

′
1, because − | A1 |2 c1 6=| A2 |2 c1.

Case 2. {
g1(z) = A1(< z/a2 > +b2) +A2e

(<z/c2>+d2)

g2(z) = A2(< z/a2 > +b2)−A1e
(<z/c2>+d2)

for each z ∈ C. For (a, b) ∈ Cn × C,

u(a,b)(z) = | A1(< z/a > +b− < z/a2 > −b2)−A2e
(<z/c2>+d2) |2

+ | A2(< z/a > +b− < z/a2 > −b2) +A1e
(<z/c2>+d2) |2 .

Choose now a = a2 and b = b2. It follows that

u(z) =| e(<z/c2>+d2) |2 (| A1 |2 + | A2 |2)

and u is strictly convex on Cn. Thus ϕ is strictly convex on Cn, where ϕ(z) =
| e<z/c2> |2, for all z ∈ Cn. But now observe that ϕ is not strictly convex at all
point of Cn, for all n ≥ 1. Therefore this case is impossible.

(B) implies (A) is evident.

(B) implies (C). Note that if

u(a,b,c1,c2)(z) =| A1(az + b)− g1(z) + c1 |2 + | A2(az + b)− g2(z) + c2 |2,

a, b, c1, c2 ∈ C, we now prove that

0 <| A1a− g′1 |2 + | A2a− g′2 |2, for each a ∈ C.

If a =
g′1
A1
∈ C (g1 is an affine function), then a 6= g′2

A2
, because if a =

g′2
A2
, then

g′1
A1

=
g′2
A2

and therefore A2g
′
1 = A1g

′
2. A contradiction.

Consequently, | A1a − g′1 |2 + | A2a − g′2 |2> 0, for every a ∈ C. It follows that
u(a,b,c1,c2) is strictly convex on C, for all (a, b, c1, c2) ∈ C4.

(C) implies (B). By the proof of the assertion (A) implies (B), we have{
g1(z)− c1 = A1(< z/α1 > +β1) +A2(< z/α2 > +β2)m

g2(z)− c2 = A2(< z/α1 > +β1)−A1(< z/α2 > +β2)m
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(for each z ∈ Cn, where α1, α2 ∈ Cn, β1, β2 ∈ C,m ∈ N), or{
g1(z)− c1 = A1(< z/γ1 > +δ1) +A2e

(<z/γ2>+δ2)

g2(z)− c2 = A2(< z/γ1 > +δ1)−A1e
(<z/γ2>+δ2)

(for each z ∈ Cn, where γ1, γ2 ∈ Cn, δ1, δ2 ∈ C).

Case 1. {
g1(z)− c1 = A1(< z/α1 > +β1) +A2(< z/α2 > +β2)m

g2(z)− c2 = A2(< z/α1 > +β1)−A1(< z/α2 > +β2)m

for each z ∈ Cn.

u(a,b,c1,c2)(z) = | A1(< z/a > +b− < z/α1 > −β1) +A2(< z/α2 > +β2)m |2

+ | A2(< z/a > +b− < z/α1 > −β1) +A1(< z/α2 > +β2)m |2

for each z ∈ Cn.
Take a = α1, b = β1, then we have

u(a,b,c1,c2) = (| A1 |2 + | A2 |2) |< z/α2 > +β2 |2m .

Therefore u(a,b,c1,c2) is strictly convex on Cn if and only if m = n = 1 and α2 6= 0.
Therefore (g1 − c1) and (g2 − c2) are affine functions and consequently, g1 and g2 are
affine functions.

g1(z) = λ1z + µ1 = A1(α1z + β1) +A2(α2z + β2) + c1,

g2(z) = λ2z + µ2 = A2(α1z + β1)−A1(α2z + β2) + c2,

where λ1, µ1, λ2, µ2 ∈ C. Then (A1g
′
2 6= A2g

′
1).

Case 2. {
g1(z)− c1 = A1(< z/γ1 > +δ1) +A2e

(<z/γ2>+δ2)

g2(z)− c2 = A2(< z/γ1 > +δ1)−A1e
(<z/γ2>+δ2)

for each z ∈ Cn.
We prove that this case is impossible.

Using the holomorphic differential equation k′′(k+c) = γ(k′)2 (k : C→ C, (γ, c) ∈
C2, k is holomorphic on C), we prove

Theorem 3. Let (A1, A2) ∈ C2\{0} and n ≥ 1. Given two analytic functions g1, g2 :
Cn → C. Put u(a,b)(z) =| A1(< z/a > +b)− g1(z) |2 + | A2(< z/a > +b)− g2(z) |2,
for z ∈ Cn, (a, b) ∈ Cn × C.
The following conditions are equivalent

(A) u(a,b) is strictly convex on Cn, for each (a, b) ∈ Cn × C;

(B) n = 1, g1, g2 are affine functions on C and we have the following 3 cases.
A2 = 0, A1 6= 0. Then g′2 6= 0.
A1 = 0, A2 6= 0. Then g′1 6= 0.
A1 6= 0 and A2 6= 0. Then A2g

′
1 6= A1g

′
2.
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Proof. If A1 6= 0 and A2 6= 0, we use the above Theorem 2.
Now suppose that A2 = 0 and A1 6= 0. For (a, b) ∈ Cn × C, u(a,b) is C∞ and strictly
convex on Cn. Therefore we have

|
n∑

j,k=1

∂2u(a,b)

∂zj∂zk
(z)αjαk |<

n∑
j,k=1

∂2u(a,b)

∂zj∂zk
(z)αjαk

for each z = (z1, ..., zn) ∈ Cn, for every α = (α1, ..., αn) ∈ Cn\{0}.
It follows that for z = (z1, ..., zn) fixed on Cn, for a ∈ Cn fixed and α =

(α1, ..., αn) ∈ Cn\{0} fixed, we have the inequality

(S) | g1(z)

n∑
j,k=1

∂2g1
∂zj∂zk

(z)αjαk + g2(z)

n∑
j,k=1

∂2g2
∂zj∂zk

(z)αjαk

− A1(< z/a > +b)

n∑
j,k=1

∂2g1
∂zj∂zk

(z)αjαk | < | A1 < α/a > −
n∑
j=1

∂g1
∂zj

(z)αj |2

+ |
n∑
j=1

∂g2
∂zj

(z)αj |2

for each b ∈ C.
Observe that the right expression of the above strict inequality (S) is independent

of b. Therefore if

n∑
j,k=1

∂2g1
∂zj∂zk

(z)αjαk 6= 0, then the subset C is bounded.

A contradiction. It follows that
n∑

j,k=1

∂2g1
∂zj∂zk

(z)αjαk = 0, for every z = (z1, ..., zn) ∈ Cn and α = (α1, ..., αn) ∈ Cn.

Since g1 is a holomorphic function over Cn, then g1 is an affine function on Cn.
Choose (a0, b0) ∈ Cn × C such that A1(< z/a0 > +b0) = g1(z), for all z ∈ Cn.

Therefore u(a0,b0)(z) =| g2(z) |2, for each z ∈ Cn. Consequently, | g2 |2 is
strictly convex on Cn. Then, n = 1. In particular | g2 |2 is convex on C. By
([3], Théorème 20, p. 358) we have g2(z) = (λz + δ)s, (for all z ∈ C, where λ, δ ∈ C,
s ∈ N), or g2(z) = e(λ1z+δ1), (for all z ∈ C, with λ1, δ1 ∈ C).

Case 1. g2(z) = (λz + δ)s, for all z ∈ C.
We have | g′′2 (z)g2(z) |<| g′2(z) |2, for each z ∈ C. Then λ 6= 0 and s = 1.

g′2(z) = λ 6= 0, (z ∈ C).

Case 2. g2(z) = e(λ1z+δ1), for each z ∈ C.
| g2 |2 is a function of class C∞ on C. We prove that | g2 |2 is not strictly convex at
all point of C. Therefore this case is impossible.

Corollary 1. Let g1, g2 : Cn → C be two analytic functions. For a ∈ Cn, b, c ∈ C, put

u(a,b,c)(z) =|< z/a > +b− g1(z) + c |2 + |< z/a > +b− g2(z) |2
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for z ∈ Cn. The following conditions are equivalent

(A) u(a,b,c) is convex on Cn, for each (a, b, c) ∈ Cn × C× C;

(B) g1 and g2 are affine functions on Cn.

Question. Let (A1, A2) ∈ C2\{0} and n ≥ 1. Find exactly all the analytic functions
g1, g2 : Cn → C such that v is convex and u is strictly (n+ 1)− sh on Cn ×C, where
v(z, w) =| A1w − g1(z) |2 + | A2w − g2(z) |2 and u(z, w) = v(z, w) + v(z, w), for
(z, w) ∈ Cn × C?

The case of the conjugate of holomorphic functions

Theorem 4. Let g1, g2 : Cn → C be two analytic functions, where n ≥ 1. Given
(A1, A2) ∈ (C\{0})2 and u(z, w) =| A1w − g1(z) |2 + | A2w − g2(z) |2, for (z, w) ∈
Cn × C. The following assertions are equivalent

(A) u is convex on Cn × C;

(B) We have the two following fundamental representations.{
g1(z) = A1(< z/a > +b) +A2(< z/c > +d)m

g2(z) = A2(< z/a > +b)−A1(< z/c > +d)m

(for each z ∈ Cn, where a, c ∈ Cn, b, d ∈ C,m ∈ N), or{
g1(z) = A1(< z/λ > +µ) +A2e

(<z/γ>+δ)

g2(z) = A2(< z/λ > +µ)−A1e
(<z/γ>+δ)

(for each z ∈ Cn, where λ, γ ∈ Cn, µ, δ ∈ C).

Proof. Let T (z, w) = (z, w), for (z, w) ∈ Cn × C. T is an R− linear bijective
transformation over Cn × C. Therefore, v = uoT is convex on Cn × C. But

v(z, w) =| A1w − g1(z) |2 + | A2w − g2(z) |2=| A1w − g1(z) |2 + | A2w − g2(z) |2

for (z, w) ∈ Cn × C. By the Theorem 1, we conclude the proof.

Example. Let g(z) = z2 + 2, z ∈ C. Put g1 = g, g2 = −g.
Then g1 and g2 are analytic functions on C. Let D = D(2i, 14 ). Define u(z, w) =|
w − g1(z) |2 + | w − g2(z) |2, v(z, w) =| w − g1(z) |2 + | w − g2(z) |2, (z, w) ∈ C2.
Then u(z, w) = v(z, w) = 2(| w |2 + | g(z) |2), (z, w) ∈ C2. We have u is strictly
convex on D×C. But we can not write g1 and g2 on the form of the above theorem.

Now let (A1, A2) ∈ C2\{0}. Define u1(z, w) =| A1w − k1(z) |2 + | A2w − k2(z) |2,
v1(z, w) =| A1w − k3(z) |2 + | A2w − k4(z) |2, for (z, w) ∈ D × C, where k1 = A2g,
k2 = −A1g, k3 = A2g, k4 = −A1g. Note that k1, k2, k3 and k4 are analytic functions
on D. We have u1(z, w) = v1(z, w) = (| A1 |2 + | A2 |2)(| w |2 + | g(z) |2), for
(z, w) ∈ D × C. Then u1 and v1 are functions strictly convex on D × C, but k1, k2,
k3 and k4 are not affine functions on D.

It follows that in all bounded not empty convex domain of Cn (n ≥ 1), the above
theorem is false.
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Theorem 5. Let g1, g2 : Cn → C be two analytic functions, where n ≥ 1. Let
(A1, A2) ∈ (C\{0})2 and define v(z, w) =| A1w − g1(z) |2 + | A2w − g2(z) |2, for
(z, w) ∈ Cn × C. The following assertions are equivalent

(A) v is convex and strictly psh on Cn × C;

(B) n ∈ {1, 2} and we have the following cases:
If n = 1, then {

g1(z) = A1(az + b) +A2(cz + d)m

g2(z) = A2(az + b)−A1(cz + d)m

(for each z ∈ C, where a, b, c, d ∈ C,m ∈ N with (m = 0, a 6= 0), (m = 1, (a, c) 6=
(0, 0)), (m ≥ 2, a 6= 0) ), or{

g1(z) = A1(λz + µ) +A2e
(γz+δ)

g2(z) = A2(λz + µ)−A1e
(γz+δ)

(for each z ∈ C, where λ, µ, γ, δ ∈ C, (λ, γ) 6= (0, 0)).
If n = 2, then {

g1(z) = A1(< z/a > +b) +A2(< z/c > +d)
g2(z) = A2(< z/a > +b)−A1(< z/c > +d)

(for each z ∈ C2, where a, c ∈ C2, b, d ∈ C with the determinant det(a, c) 6= 0),
or {

g1(z) = A1(< z/λ > +µ) +A2e
(<z/γ>+δ)

g2(z) = A2(< z/λ > +µ)−A1e
(<z/γ>+δ)

(for each z ∈ C2, where λ, γ ∈ C2, µ, δ ∈ C with the determinant det(λ, γ) 6= 0).

Proof. Let T : Cn × C→ Cn × C, T (z, w) = (z, w), for (z, w) ∈ Cn × C.
T is an R linear bijective transformation on Cn × C. Then voT = u is convex on
Cn × C. u(z, w) =| A1w − g1(z) |2 + | A2w − g2(z) |2, for (z, w) ∈ Cn × C.
It follows that {

g1(z) = A1(< z/a > +b) +A2(< z/c > +d)m

g2(z) = A2(< z/a > +b)−A1(< z/c > +d)m

(for each z ∈ Cn, where a, c ∈ Cn, b, d ∈ C,m ∈ N), or{
g1(z) = A1(< z/λ > +µ) +A2e

(<z/γ>+δ)

g2(z) = A2(< z/λ > +µ)−A1e
(<z/γ>+δ)

(for each z ∈ Cn, where λ, γ ∈ Cn, µ, δ ∈ C).
Case 1. {

g1(z) = A1(< z/a > +b) +A2(< z/c > +d)m

g2(z) = A2(< z/a > +b)−A1(< z/c > +d)m

for each z ∈ Cn. We have
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v(z, w) = | A1(w −< z/a >− b)−A2(< z/c > +d)m |2

+ | A2(w −< z/a >− b) +A1(< z/c > +d)m |2

= (| A1 |2 + | A2 |2)(| w −< z/a >− b |2 + |< z/c > +d |2m),

for (z, w) ∈ Cn × C.
Let v1(z, w) =| w −< z/a >− b |2 + |< z/c > +d |2m, (z, w) ∈ Cn × C.

v and v1 are functions of class C∞ on Cn × C. Note that v is strictly psh on Cn × C
if and only if v1 is strictly psh on Cn ×C. By Lemma 4, v1 is strictly psh on Cn ×C
if and only if v2 is strictly psh on Cn × C, where

v2(z, w) =| w |2 + |< z/a > +b |2 + |< z/c > +d |2m

for each (z, w) ∈ Cn × C (v2 is a function of class C∞ on Cn × C).
But the Levi hermitian form of v2 is

L(v2)(z, w)(α, β) =| β |2 + |< α/a >|2 +m2 |< α/c >|2|< z/c > +d |2m−2,

for each (z, w) ∈ Cn × C and all (α, β) ∈ Cn × C.
We have (L(v2)(z, w)(α, β) > 0, ∀(z, w) ∈ Cn × C, ∀(α, β) ∈ Cn × C\{0}) if and

only if (ϕ2(z, α) > 0, ∀z ∈ Cn, ∀α ∈ Cn\{0}), where

ϕ2(ξ, δ) =|< δ/a >|2 +m2 |< δ/c >|2|< ξ/c > +d |2m−2

for (ξ, δ) ∈ Cn × Cn.
Step 1. m = 0.

Then |< α/a >|> 0, for each α ∈ Cn\{0}. Thus n = 1 and a ∈ C\{0}.
In this case we have {

g1(z) = A1(az + b) +A2

g2(z) = A2(az + b)−A1

for each z ∈ C.
Step 2. m = 1.

Let ϕ3(α) = ϕ2(z, α) =|< α/a >|2 + |< α/c >|2, for (z, α) ∈ Cn × C. Now since we
have ϕ2(z, α) > 0, for each z ∈ Cn, and α ∈ Cn\{0}. Then ϕ3(α) =|< α/a >|2 +
|< α/c >|2> 0, for every α ∈ Cn\{0}.

Put a = (a1, ..., an), c = (c1, ..., cn). Let α = (α1, ..., αn) ∈ Cn. We have ϕ3(α) = 0
if and only if α = 0. But ϕ3(α) = 0 is equivalent with < α/a >= 0 and < α/c >= 0.
Therefore {

α1a1 + ...+ αnan = 0
α1c1 + ...+ αncn = 0.

Then α1(a1, c1) + ... + αn(an, cn) = (0, 0) ∈ C2 (C2 is considered a complex vector
space of dimension 2) if and only if α1 = ... = αn = 0. Then the set of vectors
{(a1, c1), ..., (an, cn)} is a free family of n vectors of C2. Therefore n ≤ 2.
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State 1. n = 1.

|< α/a >|2 + |< α/c >|2=| αa |2 + | αc |2> 0,

for each α ∈ C\{0}. Then (a, c) 6= (0, 0). Therefore{
g1(z) = A1(az + b) +A2(cz + d)
g2(z) = A2(az + b)−A1(cz + d)

for each z ∈ C. We have

v1(z, w) =| w − az − b |2 + | cz + d |2

and
v2(z, w) =| w |2 + | az + b |2 + | cz + d |2 .

v2 is strictly psh on C2 because | a |2 + | c |2> 0.

State 2. n = 2.
In this case {(a1, c1), (a2, c2)} is a basis of the C− vector space C2. It follows that
{(a1, a2), (c1, c2)} is a basis of C2 and consequently, {(a1, a2), (c1, c2)} = {a, c} is a
basis of C2. Then the determinant det(a, c) 6= 0.
In this case we have{

g1(z) = A1(< z/a > +b) +A2(< z/c > +d)
g2(z) = A2(< z/a > +b)−A1(< z/c > +d)

(for each z ∈ C2, where a, c ∈ C2, b, d ∈ C with the determinant det(a, c) 6= 0).

Step 3. m ≥ 2.

ϕ2(z, α) =|< α/a >|2 +m2 |< α/c >|2|< z/c > +d |2m−2, z, α ∈ Cn.

State 1. c = 0.
Then ϕ2(z, α) =|< α/a >|2> 0, for every α ∈ Cn\{0}.
It follows that n = 1. Consequently, a 6= 0. In this case we have{

g1(z) = A1(az + b) +A2d
m

g2(z) = A2(az + b)−A1d
m

(for each z ∈ C, where a ∈ C\{0}, b, d ∈ C and m ∈ N, m ≥ 2).

State 2. c 6= 0.
There exists z0 ∈ Cn such that |< z0/c > +d |= 0.
Since (2m− 2) ≥ 2, then |< z0/c > +d |2m−2= 0. It follows that ϕ2(z0, α) =
|< α/a >|2> 0, for each α ∈ Cn\{0}.
Then n = 1 and a ∈ C\{0}. In this case{

g1(z) = A1(az + b) +A2(cz + d)m

g2(z) = A2(az + b)−A1(cz + d)m
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(for each z ∈ C, where a ∈ C\{0}, c ∈ C\{0}, b, d ∈ C and m ∈ N, m ≥ 2).
Consequently, for m ≥ 2 and independently of c, we have in all this step 3, n = 1 and{

g1(z) = A1(az + b) +A2(cz + d)m

g2(z) = A2(az + b)−A1(cz + d)m

(for each z ∈ C, where a ∈ C\{0}, b, c, d ∈ C and m ∈ N, m ≥ 2).

Case 2. {
g1(z) = A1(< z/λ > +µ) +A2e

(<z/γ>+δ)

g2(z) = A2(< z/λ > +µ)−A1e
(<z/γ>+δ)

for all z ∈ Cn.

v(z, w) = (| A1 |2 + | A2 |2)(| w −< z/λ >− µ |2 + | e(<z/γ>+δ) |2),

for (z, w) ∈ Cn × C.
Let u1(z, w) =| w −< z/λ >− µ |2 + | e(<z/γ>+δ) |2, for (z, w) ∈ Cn × C.

v and u1 are functions of class C∞ on Cn ×C. We have v is strictly psh on Cn ×C if
and only if u1 is strictly psh on Cn × C.

Now define

u2(z, w) =| w |2 + |< z/λ > +µ |2 + | e(<z/γ>+δ) |2,

for (z, w) ∈ Cn × C. u2 is a function of class C∞ on Cn × C. By Lemma 4, we have
u1 is strictly psh on Cn × C if and only if u2 is strictly psh on Cn × C.

The Levi hermitian form of u2 is

L(u2)(z, w)(α, β) =| β |2 + |< α/λ >|2 + |< α/γ >|2| e(<z/γ>+δ) |2,

for each (z, w) ∈ Cn × C, for all (α, β) ∈ Cn × C. We have

(L(u2)(z, w)(α, β) > 0, ∀(z, w) ∈ Cn × C, ∀(α, β) ∈ Cn × C\{(0, 0)})

if and only if

(ϕ1(z, α) =|< α/λ >|2 + |< α/γ >|2| e(<z/γ>+δ) |2> 0, ∀z ∈ Cn, ∀α ∈ Cn\{0}).

Now observe that (ϕ1(z, α) > 0, ∀z ∈ Cn, ∀α ∈ Cn\{0}) if and only if (θ(z, α) =
|< α/λ >|2 + |< α/γ >|2> 0,∀α ∈ Cn\{0}). But θ is independent of z ∈ Cn.
Therefore, u is strictly psh on Cn×C if and only if ϕ(α) =|< α/λ >|2 + |< α/γ >|2>
0, for all α ∈ Cn\{0}).

By the same method of the Case 1, we prove that n ≤ 2.

Step 1. n = 1. Then (| λ |2 + | γ |2) > 0.

Step 2. n = 2. Then by the same algebraic method developed in the Case 1, we prove
that the determinant det(λ, γ) 6= 0.

The proof is now finished.
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The complete characterization

Theorem 6. Let g1, g2 : Cn → C be two analytic functions, n ≥ 1. Given (A1, A2) ∈
C2\{(0, 0)}. Put v(z, w) =| A1w − g1(z) |2 + | A2w − g2(z) |2, for (z, w) ∈ Cn × C.
The following conditions are equivalent

(A) v is convex and strictly psh on Cn × C;

(B) n ∈ {1, 2} and we have the following three cases.
If A1, A2 ∈ C\{0}, this situation is studied in the above theorem.
If A1 6= 0, A2 = 0, then g1 is affine on Cn, | g2 |2 is convex on Cn and
(| g1 |2 + | g2 |2) is strictly psh on Cn.
If A1 = 0, A2 6= 0, then g2 is affine, | g1 |2 is convex on Cn and
(| g1 |2 + | g2 |2) is strictly psh on Cn.

Corollary 2. Let g1, g2 : Cn → C be two analytic functions, n ≥ 1. Given (A1, A2) ∈
C2. Put v(z, w) =| A1w − g1(z) |2 + | A2w − g2(z) |2, for (z, w) ∈ Cn × C.
The following conditions are equivalent

(A) v is convex strictly psh and not strictly convex on Cn × C;

(B) n ∈ {1, 2}, (A1, A2) ∈ C2\{0} and we have{
g1(z) = A1(< z/λ > +µ) +A2(< z/λ1 > +µ1)s

g2(z) = A2(< z/λ > +µ)−A1(< z/λ1 > +µ1)s

(for each z ∈ Cn, where λ, λ1 ∈ Cn, µ, µ1 ∈ C, s ∈ N with (s = 0, n = 1, λ = 0),
or (s = 1, λ1 = 0, n = 1, λ 6= 0), or (s ≥ 2, n = 1, λ 6= 0)), or{

g1(z) = A1(< z/λ2 > +µ2) +A2e
(<z/λ3>+µ3)

g2(z) = A2(< z/λ2 > +µ2)−A1e
(<z/λ3>+µ3)

(for each z ∈ Cn, where λ2, λ3 ∈ Cn, µ2, µ3 ∈ C, with (n = 1, λ2 6= 0), or
(n = 1, λ3 6= 0), or (n = 2, the determinant det(λ2, λ3) 6= 0)).

Corollary 3. Let g1, g2 : Cn → C be two analytic functions, n ≥ 1. Given (A1, A2) ∈
C2. Put v(z, w) =| A1w − g1(z) |2 + | A2w − g2(z) |2, for (z, w) ∈ Cn × C.
The following conditions are equivalent

(A) v is convex strictly psh and not strictly convex at all point of Cn × C;

(B) n ∈ {1, 2}, (A1, A2) ∈ C2\{0} and we have{
g1(z) = A1(< z/λ > +µ) +A2(< z/λ1 > +µ1)s

g2(z) = A2(< z/λ > +µ)−A1(< z/λ1 > +µ1)s

(for each z ∈ Cn, where λ, λ1 ∈ Cn, µ, µ1 ∈ C, s ∈ N with (n = 1, s = 0, λ 6= 0),
or (n = 1, s ∈ N, λ1 = 0, λ 6= 0)), or{

g1(z) = A1(< z/λ2 > +µ2) +A2e
(<z/λ3>+µ3)

g2(z) = A2(< z/λ2 > +µ2)−A1e
(<z/λ3>+µ3)
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(for each z ∈ Cn, where λ2, λ3 ∈ Cn, µ2, µ3 ∈ C, with (n = 1, λ3 6= 0, λ2 = 0),
or (n = 2 and the determinant det(λ2, λ3) 6= 0)).

In fact we have the following.

Theorem 7. Let n ≥ 1 and consider two holomorphic functions g1, g2 : Cn → C.
Given (A1, A2) ∈ (C\{0})2. Let

u(z, w) =| A1w − g1(z) |2 + | A2w − g2(z) |2, v(z, w) = u(z, w)+ | A1w − g1(z) |2

+ | A2w − g2(z) |2, v1(z, w) =| A1w − g1(z) |2 + | A2w − g2(z) |2

+ | A1w − g1(z) |2 + | A2w − g2(z) |2,

for (z, w) ∈ Cn × C. The following conditions are equivalent

(A) u is convex on Cn × C and v is strictly psh on Cn × C;

(B) u is convex on Cn × C and v1 is strictly psh on Cn × C;

(C) n ∈ {1, 2} and we have the following two cases.
(I) {

g1(z) = A1(< z/λ > +µ) +A2(< z/λ1 > +µ1)s

g2(z) = A2(< z/λ > +µ)−A1(< z/λ1 > +µ1)s

(for each z ∈ Cn, where λ, λ1 ∈ Cn, µ, µ1 ∈ C, s ∈ N, with (n = 1, λ 6= 0), or
(n = 1, λ1 6= 0, s = 1), or (n = 2, s = 1 and the determinant det(λ, λ1) 6= 0)).
(II) {

g1(z) = A1(< z/λ2 > +µ2) +A2e
(<z/λ3>+µ3)

g2(z) = A2(< z/λ2 > +µ2)−A1e
(<z/λ3>+µ3)

(for each z ∈ Cn, where λ2, λ3 ∈ Cn, µ2, µ3 ∈ C, with (n = 1, λ2 6= 0), or
(n = 1, λ3 6= 0), or (n = 2 and the determinant det(λ2, λ3) 6= 0)).

Proof. This proof is similar to the proof of Theorem 4.

Now we can answer to the following question.

Question. Let n ≥ 1 and A1, A2 ∈ C\{0}. Find all the functions f1, f2 : Cn → C
such that f1 ∈ C(Cn) and {

ϕ1 is psh on Cn × C
ϕ2 is convex on Cn × C,

or (for example) ϕ1 is psh on Cn × C
ϕ2 is convex and strictly psh on Cn × C, but not strictly convex on all
not empty open ball of Cn × C,
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where

ϕ1(z, w) = log | A1w − f1(z) | + log | A2w − f2(z) |,
ϕ2(z, w) = | A1w − f1(z) |2 + | A2w − f2(z) |2,

for (z, w) ∈ Cn × C.

Using algebraic methods, we can prove the following theorem:

Theorem 8. Let n ≥ 1 and (A1, A2) ∈ C2. Given g1, g2 : Cn → C be two analytic
functions. Put u(z, w) =| A1w − g1(z) |2 + | A2w − g2(z) |2, (z, w) ∈ Cn × C.
The following conditions are equivalent

(A) u is convex and strictly psh on Cn × C;

(B) n ∈ {1, 2}, (A1, A2) ∈ C2\{(0, 0)} and we have the following three situations.

(1) A1 6= 0 and A2 = 0. Then n = 1, g1 is affine, | g2 |2 is convex and strictly
sh on C.

(2) A1 = 0 and A2 6= 0. Then n ∈ {1, 2}, | g1 |2 is convex on Cn, g2 is affine
on Cn and (| g1 |2 + | g2 |2) is strictly psh on Cn.

(3) A1, A2 ∈ C\{0}. Then n ∈ {1, 2}, g1 and g2 are affine functions on Cn
and (| g1 |2 + | g2 |2) is strictly psh on Cn.

3. A Classical Complex Analysis Problem

Let n,N ≥ 1 and (A1, B1, ..., AN , BN ∈ C\{0}). For f1, g1, ..., fN , gN : Cn → C,
define

u1(z, w) = | A1w − f1(z) |2 + | B1w − g1(z) |2,
v1(z, w) = | A1w − f1(z) |2 + | B1w − g1(z) |2, . . . ,
uN (z, w) = | ANw − fN (z) |2 + | BNw − gN (z) |2,
vN (z, w) = | ANw − fN (z) |2 + | BNw − gN (z) |2,

u = (u1 + ...+ uN ) and v = (v1 + ...+ vN ), for (z, w) ∈ Cn × C. Define

ϕ1(z, w) = log | A1w − f1(z) | + log | B1w − g1(z) |, . . . ,
ϕN (z, w) = log | ANw − fN (z) | + log | BNw − gN (z) |, (z, w) ∈ Cn × C.

Question. Find all the functions f1, g1, ..., fN , gN : Cn → C such that f1, ..., fN are
continuous functions on Cn and

u1 is convex on Cn × C and
ϕ1 is psh on Cn × C
.
.
.
uN is convex on Cn × C and
ϕN is psh on Cn × C; and
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the function u is strictly psh on Cn × C?

Question. Find exactly all the functions f1, g1, ..., fN , gN : Cn → C such that
f1, ..., fN are continuous functions on Cn, and

v1 is convex on Cn × C and
ϕ1 is psh on Cn × C
.
.
.
vN is convex on Cn × C and
ϕN is psh on Cn × C; and

v is strictly psh on Cn × C?

Theorem 9. Let n ≥ 1, n + 1 = 2q, q ∈ N. Let A1, B1, ..., Aq, Bq ∈ C\{0} and
f1, g1, ..., fq, gq : Cn → C be 2q analytic functions. Define

u1(z, w) = | A1w − f1(z) |2 + | B1w − g1(z) |2, . . . ,
uq(z, w) = | Aqw − fq(z) |2 + | Bqw − gq(z) |2

and u = (u1 + ...+ uq), for (z, w) ∈ Cn × C.
The following conditions are equivalent

(A) u1, ..., uq are convex functions on Cn × C and u is strictly psh on Cn × C;

(B) For each j ∈ {1, ..., q}, we have{
fj(z) = Aj(< z/λj > +µj) +Bjϕj(z)
gj(z) = Bj(< z/λj > +µj)−Ajϕj(z)

for each z ∈ Cn, with λj ∈ Cn, µj ∈ C, ϕj : Cn → C be a holomorphic function,
| ϕj |2 is a convex function on Cn and

(λ1 − λ2, ..., λ1 − λq, (
∂ϕ1

∂z1
(a), ...,

∂ϕ1

∂zn
(a)), ..., (

∂ϕq
∂z1

(a), ...,
∂ϕq
∂zn

(a)))

is a basis of Cn, for all a ∈ Cn.

(We can also study the problem u is strictly psh on Cn×C and not strictly convex on
all not empty open ball of Cn × C, ...).

Proof. (A) implies (B). Let j ∈ {1, ..., q}. By Theorem 1, we have{
fj(z) = Aj(< z/λj > +µj) +Bjϕj(z)
gj(z) = Bj(< z/λj > +µj)−Ajϕj(z)

ϕj : Cn → C, ϕj is analytic and | ϕj |2 is convex on Cn.
In fact ϕj(z) = (< z/γj > +δj)

sj , (for all z ∈ Cn, where γj ∈ Cn, δj ∈ C, sj ∈ N), or
ϕj(z) = e(<z/aj>+bj), for all z ∈ Cn, with aj ∈ Cn, bj ∈ C.
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We consider in this proof the case where

{
fj(z) = Aj(< z/λj > +µj) +Bj(< z/γj > +δj)

sj

gj(z) = Bj(< z/λj > +µj)−Aj(< z/γj > +δj)
sj

for each z ∈ Cn and all j ∈ {1, ..., n} (the proof of the other cases are similar of this
proof). Therefore,

u(z, w) = (| A1 |2 + | B1 |2)[| w− < z/λ1 > −µ1 |2 + |< z/γ1 > +δ1 |2s1 ] + · · ·
+ (| Aq |2 + | Bq |2)[| w− < z/λq > −µq |2 + |< z/γq > +δq |2sq ],

(z, w) ∈ Cn × C.

Define

v(z, w) = | w− < z/λ1 > −µ1 |2 + |< z/γ1 > +δ1 |2s1 + · · ·
+ | w− < z/λq > −µq |2 + |< z/γq > +δq |2sq ,

(z, w) ∈ Cn × C. u and v are functions of class C∞ on Cn × C.

We have in fact u is strictly psh on Cn×C if and only if v is strictly psh on Cn×C.
Because this situation, we study the function v.

Let T : Cn×C→ Cn×C, T (z, w) = (z, w+ < z/λ1 >), for (z, w) ∈ Cn×C. T is a
C− linear bijective transformation over Cn ×C. Put v1 = voT. Then v1 is a function
of class C∞ on Cn × C.
We have v is strictly psh on Cn × C if and only if v1 is strictly psh on Cn × C.

v1(z, w) = | w − µ1 |2 + |< z/γ1 > +δ1 |2s1 + | w− < z/λ2 − λ1 > −µ2 |2

+ |< z/γ2 > +δ2 |2s2 +...+ | w− < z/λq − λ1 > −µq |2

+ |< z/γq > +δq |2sq ,

for (z, w) ∈ Cn × C.
The Levi hermitian form of v1 is

L(v1)(z, w)(α, β) = | β |2 +s21 |< α/γ1 >|2|< z/γ1 > +δ1 |2s1−2

+ | β− < α/λ2 − λ1 >|2 +s22 |< α/γ2 >|2|< z/γ2 > +δ2 |2s2−2 +...

+ | β− < α/λq − λ1 >|2 +s2q |< α/γq >|2|< z/γq > +δq |2sq−2,

for (z, w), (α, β) ∈ Cn × C.
Fix now (z0, w0) ∈ Cn×C. Let (α, β) ∈ Cn×C with L(v)(z0, w0)(α, β) = 0. Then
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

β = 0

s21 |< α/γ1 >|2|< z/γ1 > +δ1 |2s1−2= 0

< α/λ2 − λ1 >= 0

s22 |< α/γ2 >|2|< z/γ2 > +δ2 |2s2−2= 0

.

.

.

< α/λq − λ1 >= 0

s2q |< α/γq >|2|< z/γq > +δq |2sq−2= 0.

Thus 

β = 0
< α/λ2 − λ1 >= 0
.
.
.
< α/λq − λ1 >= 0
s21 |< α/γ1 >|2|< z/γ1 > +δ1 |2s1−2= 0
.
.
.
s2q |< α/γq >|2|< z/γq > +δq |2sq−2= 0.

Therefore this above system is equivalent with β = 0 and the system

< α/λ2 − λ1 >= 0
.
.
.
< α/λq − λ1 >= 0
s21 |< α/γ1 >|2|< z/γ1 > +δ1 |2s1−2= 0
.
.
.
s2q |< α/γq >|2|< z/γq > +δq |2sq−2= 0.

Consequently, v1 is strictly psh on Cn×C if and only if (for each (α, β) ∈ Cn×C
and every (z, w) ∈ Cn × C, the condition L(v1)(z, w)(α, β) = 0 implies that α = 0
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and β = 0). Then the system

< α/λ2 − λ1 >= 0
.
.
.
< α/λq − λ1 >= 0
s21 |< α/γ1 >|2|< z/γ1 > +δ1 |2s1−2= 0
.
.
.
s2q |< α/γq >|2|< z/γq > +δq |2sq−2= 0

implies that α = 0.

Using algebraic methods, we have then (λ2 − λ1, ..., λq − λ1, γ1, ..., γq) is a basis
of Cn = C2q−1 and s1 = ... = sq = 1 (Cn considered a complex vector space of
dimension n).

Theorem 10. Let n = 2q, n ∈ N, n ≥ 1, q ∈ N. Let f1, g1, ..., fq, gq : Cn → C be 2q
holomorphic functions and A1, B1, ..., Aq, Bq ∈ C\{0}.
Define

uj(z, w) =| Ajw − fj(z) |2 + | Bjw − gj(z) |2, u = (u1 + ...+ uq),

for (z, w) ∈ Cn × C and j ∈ {1, ..., q}. The following conditions are equivalent

(A) u1, ..., uq are convex functions on Cn × C and u is strictly psh on Cn × C;

(B) For every j ∈ {1, ..., q},{
fj(z) = Aj(< z/λj > +µj) +Bjϕj(z)
gj(z) = Bj(< z/λj > +µj)−Ajϕj(z)

(for each z ∈ Cn, with λj ∈ Cn, µj ∈ C, ϕj : Cn → C be a holomorphic function
and | ϕj |2 is a convex function on Cn) and

(λ1, ..., λq, (
∂ϕ1

∂z1
(a), ...,

∂ϕ1

∂zn
(a)), ..., (

∂ϕq
∂z1

(a), ...,
∂ϕq
∂zn

(a)))

is a basis of Cn for all a ∈ Cn.

(We can also study the problem u is strictly psh on Cn×C and not strictly convex on
all not empty Euclidean open ball of Cn × C, ...).
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4. Real Convexity and Complex Convexity

Question. An original question of complex analysis is now to find exactly the set of
all continuous functions f1, ..., fN : D → C (D is a convex domain of Cn, n ≥ 1, N ≥ 1)
such that ϕ is psh on D×C, where ϕ(z, w) = log(| w− f1(z) |2 +...+ | w− fN (z) |2),
for (z, w) ∈ D × C.

Observe that for N = 1, this is exactly all the holomorphic functions over D. But
for N ≥ 2, the set of solution contains several classes of functions.

Example. N = 2 and D = Cn. Put

k1(z) = (< z/a > +b) + (< z/c > +d)s,

k2(z) = (< z/a > +b)− (< z/c > +d)s,

z ∈ Cn, a, c ∈ Cn\{0}, b, d ∈ C, s ∈ N\{0}. k1, k2, k1 and k2 are not holomorphic
functions over Cn. The function ψ is psh on Cn×C, where ψ(z, w) = log(| w−k1(z) |2
+ | w − k2(z) |2), (z, w) ∈ Cn × C.

Theorem 11. Let g1, g2, k : Cn → C be three analytic functions, n ≥ 1. Let
(A1, A2) ∈ (C\{0})2. Put u(z, w) =| A1(w−k(z))−g1(z) |2 + | A2(w−k(z))−g2(z) |2,
v(z, w) =| A1w − g1(z) |2 + | A2w − g2(z) |2, for (z, w) ∈ Cn × C.
The following conditions are equivalent

(A) u is convex on Cn × C;

(B) k is an affine function and{
g1(z) = A1(< z/a > +b) +A2(< z/c > +d)m

g2(z) = A2(< z/a > +b)−A1(< z/c > +d)m

(for each z ∈ Cn, where a, c ∈ Cn, b, d ∈ C), or{
g1(z) = A1(< z/λ > +µ) +A2e

(<z/γ>+δ)

g2(z) = A2(< z/λ > +µ)−A1e
(<z/γ>+δ)

(for each z ∈ Cn, where λ, γ ∈ Cn, µ, δ ∈ C);

(C) v is convex on Cn × C and k is an affine function on Cn.

Theorem 12. Let A1, A2 ∈ C\{0}. Consider three holomorphic functions g1, g2, k :Cn→C,
n ≥ 1. Put

v(z, w) = | A1(w − k(z))− g1(z) |2 + | A2(w − k(z))− g2(z) |2,
u(z, w) = | A1w − g1(z) |2 + | A2w − g2(z) |2,
u1(z, w) = | A1(w − k(z)) |2 + | A2(w − k(z)) |2,

for (z, w) ∈ Cn × C. The following conditions are equivalent
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(A) v is strictly psh and convex on Cn × C;

(B) n ∈ {1, 2}, k is an affine function and{
g1(z) = A1(< z/λ > +µ) +A2ϕ(z)
g2(z) = A2(< z/λ > +µ)−A1ϕ(z)

(for each z ∈ Cn, where λ ∈ Cn, µ ∈ C and ϕ : Cn → C be analytic, | ϕ |2 is
convex on Cn and (| k |2 + | ϕ |2) is strictly psh on Cn);

(C) 

| A2g1 −A1g2 |2 is convex on Cn,

(A1g1 +A2g2) is affine on Cn,

k is affine on Cn, and

the function (| k |2 + 1
(|A1|2+|A2|2)2 | A2g1 −A1g2 |2) is strictly psh on Cn;

(D) u is convex on Cn × C, u1 is convex on Cn × C and the function (u + u1) is
strictly psh on Cn × C.
(If n = 1, we can study the strict plurisubharmonicity of v and u on a neigh-
borhood of ∂D(0, 1)×D(0, 1)).

Remark 2. Let A1, A2 ∈ C\{0} with (A1A2 6= A1A2) and g1, g2 : C → C be two
analytic functions. Put u(z, w) =| A1w − g1(z) |2 + | A2w − g2(z) |2, v(z, w) =
| A1w − g1(z) |2 + | A2w − g2(z) |2, for (z, w) ∈ C2. If u is strictly psh on C2, then v
is strictly psh on C2 (and the converse is false).

By a simple study of u and v, we prove that this property is not true for the class
of convex functions (respectively strictly psh and convex, strictly convex, strictly psh
convex and not strictly convex on all not empty Euclidean open ball of C2, ...). This
is one of the great differences between the above classes of functions.

A good comparison between the subject strictly convex and the concept (convex
and strictly psh) can be follows by the following two theorems.

Theorem 13. Fix g1, g2 : Cn → C be two holomorphic functions, n ∈ N\{0}. Let
(A1, A2) ∈ C2. Define

v(z, w) =| A1w − g1(z) |2 + | A2w − g2(z) |2, (z, w) ∈ Cn × C.

The following conditions are equivalent

(A) v is strictly convex on Cn × C;

(B) n = 1, (A1, A2) ∈ C2\{(0, 0)} and{
g1(z) = A1(az + b) +A2(cz + d)
g2(z) = A2(az + b)−A1(cz + d)

(for each z ∈ C, where a, b, c, d ∈ C, c 6= 0).
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Theorem 14. Let g1, g2 : Cn → C be two holomorphic functions, n ∈ N\{0}. Let
(A1, A2) ∈ C2. Define

u(z, w) =| A1w − g1(z) |2 + | A2w − g2(z) |2, (z, w) ∈ Cn × C.

The following conditions are equivalent

(A) u is strictly psh and convex on Cn × C, but u is not strictly convex in all not
empty Euclidean open ball of Cn × C;

(B) n = 1, (A1, A2) ∈ C2\{(0, 0)} and{
g1(z) = A1(az + b) +A2e

(cz+d)

g2(z) = A2(az + b)−A1e
(cz+d)

for each z ∈ C, with a, b, d ∈ C and c ∈ C\{0}.

Now one can observe that there exists a great differences between the classes (con-
vex and strictly psh) and strictly convex functions in all of the above two theorems.

The representation theorems for another cases

We begin by

Theorem 15. Let k(w) = (aw + b)m, for all w ∈ C, where a ∈ C\{0} and b ∈ C,
m ∈ N, m ≥ 2. (| k |2 is convex on C). Let (A1, A2) ∈ C2\{0} and consider two
holomorphic functions g1, g2 : Cn → C, n ≥ 1. Define

u(z, w) =| A1k(w)− g1(z) |2 + | A2k(w)− g2(z) |2, (z, w) ∈ Cn × C.

We have

(A) u is convex on Cn × C if and only if{
g1(z) = A2ϕ(z)
g2(z) = −A1ϕ(z)

for each z ∈ Cn, where ϕ : Cn → C, ϕ is holomorphic and | ϕ |2 is convex on
Cn;

(B) u is convex on Cn ×C and u(., 0) is strictly psh on Cn if and only if n = 1 and
| ϕ |2 is strictly sh on C.
(The same case for k(w) = e(a1w+b1), for all w ∈ C, with a1 ∈ C\{0} and
b1 ∈ C).

Observe that, in all not empty convex domain G subset of Cn, (n ≥ 2), there
exists K : G → R be a function of class C2 such that K is strictly psh on G, but
K is not convex in all not empty Euclidean open ball subset of G. For example
K1(z, w) =| w − ez |2, (z, w) ∈ C2. K1 is strictly psh on C2, but K1 is not convex in
all Euclidean open ball of C2 (consider K1(z, w)).

The converse can be studied and investigated by the following.
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Theorem 16. Let (A1, A2) ∈ C2\{0} and n ≥ 1.
Let ϕ(w) = (aw + b)m, where a ∈ C\{0}, b ∈ C, m ∈ N, m ≥ 2 (for all w ∈ C) and
g1, g2 : Cn → C be two holomorphic functions. Define

u(z, w) =| A1ϕ(w)− g1(z) |2 + | A2ϕ(w)− g2(z) |2,

for (z, w) ∈ Cn × C. The following conditions are equivalent

(A) u is convex and not strictly psh at all point of Cn × C;

(B) We have the following two cases{
g1(z) = A2(< z/λ > +µ)s

g2(z) = −A1(< z/λ > +µ)s

(for every z ∈ Cn, where λ ∈ Cn, µ ∈ C, s ∈ N such that (s = 0), or
(n = 1, λ = 0), or (n ≥ 2)), or{

g1(z) = A2e
(<z/λ1>+µ1)

g2(z) = −A1e
(<z/λ1>+µ1)

(for each z ∈ Cn, where λ1 ∈ Cn, µ1 ∈ C, such that (n = 1, λ1 = 0), or (n ≥ 2)).
(The same situation if ϕ(w) = e(aw+b), for w ∈ C, where a ∈ C\{0}, b ∈ C).

In general observe that if k is an arbitrary holomorphic function on C, there does
not exists (B1, B2) ∈ C2\{0}, there does not exists n ≥ 1 and f1, f2 : Cn → C be two
holomorphic functions such that v is convex on Cn ×C; v(z, w) =| B1k(w)− f1(z) |2
+ | B2k(w)−f2(z) |2, (z, w) ∈ Cn×C. The example is given by the following theorem
which is fundamental in mathematical analysis.

Theorem 17. Let (A1, A2) ∈ (C\{0})2 and n ∈ N\{0}. Define p1(w) = w3,
p2(w) = w4 + w2 and p3(w) = w3 + w, for w ∈ C and p be an analytic polyno-
mial over C, deg(p) ≤ 2. Let ϕ = (ϕ1, ϕ2), where ϕ1, ϕ2 : Cn → C be two analytic
functions. Define

uϕ(z, w) = | A1p1(w)− ϕ1(z) |2 + | A2p1(w)− ϕ2(z) |2,
vϕ(z, w) = | A1p2(w)− ϕ1(z) |2 + | A2p2(w)− ϕ2(z) |2,
ψϕ(z, w) = | A1p3(w)− ϕ1(z) |2 + | A2p3(w)− ϕ2(z) |2 and

ρϕ(z, w) = | A1p(w)− ϕ1(z) |2 + | A2p(w)− ϕ2(z) |2,

for (z, w) ∈ Cn × C. We have the following four assertions:

(A) There exists an infinite number of holomorphic functions g1, g2 : Cn → C,
g = (g1, g2) and ug is convex on Cn × C.

(B) There does not exists an holomorphic function f = (f1, f2), where f1, f2 : Cn→C
such that vf is convex on Cn × C.
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(C) There does not exists an holomorphic function k = (k1, k2), where k1, k2 : Cn→C
such that ψk is convex on Cn × C.

(D) For all polynomial p analytic on C, deg(p) ≤ 2, there exists always an infinite
number of holomorphic functions θ1, θ2 : Cn → C, θ = (θ1, θ2) and ρθ is convex
on Cn × C.
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[16] L. Hörmander, An Introduction to Complex Analysis in Several Variables, Third
Edition (revised), Mathematical Library, Vol. 7, North Holland, Amsterdam-New
York-Oxford-Tokyo, 1990.
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