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Abstract: In decade eighty, Bang-Yen Chen introduced the concept
of biharmonic hypersurface in the Euclidean space. An isometrically im-
mersed hypersurface x : Mn → En+1 is said to be biharmonic if ∆2x = 0,
where ∆ is the Laplace operator. We study the Lr-biharmonic hypersur-
faces as a generalization of biharmonic ones, where Lr is the linearized
operator of the (r + 1)th mean curvature of the hypersurface and in spe-
cial case we have L0 = ∆. We prove that Lr-biharmonic hypersurface
of Lr-finite type and also Lr-biharmonic hypersurface with at most two
distinct principal curvatures in Euclidean spaces are r-minimal.
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1. Introduction

The concept of biharmonic surfaces in Euclidean space has applications in elastic-
ity and fluid mechanics. In sixty decade, G.B. Airy and J.C. Maxwell have studied
the plane elastic problems in terms of the biharmonic equation ([1, 13]). In more
general case, the subject of polyharmonic functions was developed by E. Almansi, T.
Levi-Civita, M. Nicolaescu. In addition to the differential geometric point of view,
biharmonic maps are appeared in PDE theory as solutions of a fourth order strongly
elliptic semilinear PDE and in computational geometry as the biharmonic Bezier sur-
faces.

Clearly, the importance of biharmonic maps will be serious where harmonic maps
do not exist. For example, since there exists no harmonic map as T2 → S2 (whatever
the metrics chosen) in the homotopy class of Brower degree ±1, it is important to
find a biharmonic map from T2 into S2 (see in [9]). Obviously, harmonic maps are
biharmonic but not vis versa. Biharmonic non-harmonic maps are called proper-
biharmonic. The variational problem associated to the bienergy functional on the set
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of Riemannian metrics on a domain gave rise to the biharmonic stress-energy tensor.
This is useful to obtain a new example of proper-biharmonic maps for the study of
submanifolds with certain geometric properties, like pseudo-umbilical and parallel
submanifolds.

A differential geometric motivation of the subject of biharmonic hypersurfaces is
the well-known conjecture of Bang-Yen Chen (in 1987) which says that the biharmonic
surfaces in Euclidean 3-spaces are minimal ones. Later on, Dimitrić proved that any
biharmonic hypersurface in Em with at most two distinct principal curvatures is
minimal ([8]). Also, in 1995, Hasanis and Vlachos proved extended Chen’s result to
the hypersurfaces in Euclidean 4-spaces ([10]). Under the assumption of completeness,
Akutagawa and Maeta ([2]) gave a generalization of the result to the global version
of Chen’s conjecture on biharmonic submanifolds in Euclidean spaces. On the other
hand, Dimitrić has found a good relation between the finite type hypersurfaces and
biharmonic ones. The theory of finite type hypersurfaces is a well-known subject
interested by Chen and also L.J. Alias, S.M.B. Kashani and others. One can see
main results in the last chapter of Chen’s book ([6]). In [11], Kashani has introduced
the notion of Lr-finite type hypersurfaces as an extension of finite type ones in the
Euclidean space, which is followed in the doctoral thesis of first author.

The map Lr, as an extension of the Laplacian operator L0 = ∆, stands for the
linearized operator of the first variation of the (r+ 1)th mean curvature of the hyper-
surface (see, for instance, [17]). This operator is given by Lr(f) = tr(Pr ◦ ∇2f) for
any f ∈ C∞(M), where Pr denotes the rth Newton transformation associated to the
second fundamental from of the hypersurface and ∇2f is the hessian of f .

It seems interesting to generalize the definition of biharmonic hypersurface by
replacing ∆ by Lr. We call these hypersurfaces Lr-biharmonic. Since r-minimal im-
mersions are Lr-biharmonic, one can ask naturally ”what about the vise versa?”

In this paper, we study Lr-biharmonic hypersurfaces in the Euclidean space En+1.
Recently, Aminian and Kashani proved ([5]) the Lr-conjecture for the hypersurfaces
with at most two distinst prinicipal curvatures. In this paper, we give an alternative
proof of this result by a different method. As our first result on Lr-biharmonic hy-
persurfaces, we prove that each Lr-biharmonic hypersurface of Lr-finite type in the
Euclidean space is r-minimal. Then, we show that any Lr-biharmonic hypersurface
in Euclidean space with at most two distinct principal curvatures is r-minimal. The
case r = 0 (biharmonic hypersurfaces) was studied by Dimitrić, [7]. He proved that,
biharmonic hypersurface of finite type or concerning at most two distinct principal
curvatures is minimal.

Here are our main results.

Theorem 1.1. The Lr-biharmonic hypersurfaces of Lr-finite type in Euclidean spaces
are r-minimal.

Theorem 1.2. The only Lr-biharmonic hypersurfaces of Euclidean spaces En+1 with
at most two distinct principal curvatures are the r-minimal ones (0 ≤ r ≤ n− 1).

Corollary 1.3. Every L1-biharmonic surface in E3 is flat.
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Corollary 1.4. Let Mn be a conformally flat Lr-biharmonic hypersurface of En+1,
n > 3. Then Mn is r-minimal.

After the preliminaries in section 2, in the third section, we prove the main results.

2. Preliminaries

In this section, we introduce some basic notations and facts that will appear along
the paper from [19], [4] and [11].

Consider an isometrically immersed hypersurface x : Mn → En+1 in the Euclidean
space. We choose a local orthonormal frame {eA}1≤A≤n+1 in En+1, with dual coframe
{ωA}1≤A≤n+1, such that, at each point of M , e1, . . . , en are tangent to M and en+1

is the positively oriented unit normal vector. We shall make use of the following
convention on the ranges of indices:

1 ≤ A,B,C, ...,≤ n+ 1; 1 ≤ i, j, k, ...,≤ n.

Then the structure equations of En+1 are given by

dωA =

n+1∑
B=1

ωAB ∧ ωB , ωAB + ωBA = 0, (1)

dωAB =

n+1∑
C=1

ωAC ∧ ωCB . (2)

When restricted to M , we have ωn+1 = 0 and

0 = dωn+1 =

n∑
i=1

ωn+1i ∧ ωi. (3)

By Cartan’s lemma, there exist functions hij such that

ωn+1i =

n∑
j=1

hijωj , hij = hji. (4)

This gives the second fundamental form of M , as B =
∑
i,j

hijωiωjen+1. The mean

curvature H is defined by H = 1
n

∑
i

hii. From (1) - (4) we obtain the structure equa-

tions of M (see [19]).

dωi =

n∑
j=1

ωij ∧ ωj , ωij + ωji = 0, (5)

dωij =

n∑
k=1

ωik ∧ ωkj −
1

2

n∑
k,l=1

Rijklωk ∧ ωl, (6)
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and the Gauss equations
Rijkl = (hikhjl − hilhjk), (7)

where Rijkl denotes the components of the Riemannian curvature tensor of M .
Let hijk denote the covariant derivative of hij . We have∑

k

hijkωk = dhij +
∑
k

hkjωki +
∑
k

hikωkj . (8)

Thus, by exterior differentiation of (4), we obtain the Codazzi equation

hijk = hikj . (9)

We choose e1, . . . , en such that
hij = λiδij . (10)

The rth mean curvature Hr of the hypersurface is then defined by(
n

r

)
Hr =

∑
1≤i1<i2<···<ir≤n

λi1 · · ·λir . (11)

And Hn = λ1 · · ·λn, is called the Gauss-Kronecker curvature of M . A hypersurface
with zero (r + 1)th mean curvature in Rn+1 is called r-minimal. To get more infor-
mation about r-minimal Euclidean hypersurfaces, the reader is referred to [3, 20].

The classical Newton transformations Pr : χ(M)→ χ(M) are defined inductively
by the shape operator S as

P0 = I and Pr =

(
n

r

)
HrI − S ◦ Pr−1,

for every r = 1, . . . , n, where I denotes the identity transformation in χ(M). Equiv-
alently,

Pr =

r∑
j=0

(−1)j
(

n

r − j

)
Hr−jS

j .

Note that by the Cayley-Hamilton theorem stating that any operator is annihi-
lated by its characteristic polynomial, we have Pn = 0.

Since each Pr(p) is also a self-adjoint linear operator on each tangent plane TpM
which commutes with S(p). Indeed, S(p) and Pr(p) can be simultaneously diago-
nalized: if {e1, . . . , en} are the eigenvectors of S(p) corresponding to the eigenvalues
λ1(p), . . . , λn(p), respectively, then they are also the eigenvectors of Pr(p) with cor-
responding eigenvalues given by

µi,r(p) =
∑

i1<···<ir,ij 6=i

λi1(p) · · ·λir (p), (12)

for every 1 ≤ i ≤ n. We have the following formulae for the Newton transformations,
[4].

tr(Pr) = crHr, (13)
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tr(S ◦ Pr) = crHr+1, (14)

and

tr(S2 ◦Pn−1) = nH1Hn, tr(S2 ◦Pr) =

(
n

r + 1

)
(nH1Hr+1−(n−r−1)Hr+2) (15)

for r = 1, . . . , n− 2, where

cr = (n− r)
(
n

r

)
= (r + 1)

(
n

r + 1

)
.

Associated to each Newton transformation Pr, we consider the second-order linear
differential operator Lr : C∞(M)→ C∞(M) given by

Lr(f) = tr(Pr ◦ ∇2f).

Here ∇2f : χ(M) → χ(M) denotes the self-adjoint linear operator metrically
equivalent to the Hessian of f and is given by

< ∇2f(X), Y >=< ∇X(∇f), Y >,

where X,Y ∈ χ(M), ∇f is the gradient of f and ∇ is the Levi-Civita connections on
M .

Now we recall the definition of an Lr-finite type hypersurface from [11], which is
the basic notion of the paper.

Definition 2.1. An isometrically immersed hypersurfaces x : Mn → En+1 is said to
be of Lr-finite type if x has a finite decomposition x =

∑m
i=0 xi, for some positive

integer m satisfying the condition that Lrxi = κixi, κi ∈ R, 1 ≤ i ≤ m, where
xi : Mn → En+1 are smooth maps, 1 ≤ i ≤ m, and x0 is constant. If all κi’s are
mutually different, Mn is said to be of Lr-m-type. An Lr-m-type hypersurface is said
to be null if some κi; 1 ≤ i ≤ m, is zero.

3. Lr-biharmonic hypersurfeces

Consider x : Mn → En+1 a connected orientable hypersurface immersed into the
Euclidean space, with the Gauss map N . Then Mn is called a Lr-biharmonic hyper-
surface if and only if L2

rx = 0 or equivalently, Lr(Hr+1N) = 0 (see [4]).
By definition of the Lr-biharmonic hypersurface, it is clear that r-minimal immer-

sions are trivially Lr-biharmonic. By using formula for L2
rx of [4] and the considering

normal and tangent parts of the Lr-biharmonic condition L2
rx = 0, one obtains nec-

essary and sufficient conditions for Mn to be Lr-biharmonic in En+1, namely

LrHr+1 =

(
n

r + 1

)
Hr+1(nH1Hr+1 − (n− r − 1)Hr+2) = tr(S2 ◦ Pr)Hr+1 (16)
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and

(S ◦ Pr)(∇Hr+1) = −1

2

(
n

r + 1

)
Hr+1∇Hr+1. (17)

In [7], Dimitrić proved that each biharmonic hypersurface of finite type in a Eu-
clidean space is minimal. In Theorem 1.1, we follow Dimitrić’s work and prove that
each Lr-biharmonic hypersurface of Lr-finite type in a Euclidean space is r-minimal.
Case r = 0 corresponds to the classical one.

3.1. Proof of Theorem 1.1

Proof. Let x : Mn → En+1 be an isometrically immersed Lr-biharmonic hypersurface
of Lr-finite type in the Euclidean space. Then it has finite decomposition

x = x0 + xt1 + · · ·+ xtk , (18)

with Lrx0 = 0, Lrxti = λtixti for nonzero distinct eigenvalues λt1 , . . . , λtk of Lr. By
taking Lsr of (18) we find

0 = Lsrx = λst1xt1 + · · ·+ λstkxtk , s = 2, 3, . . . . (19)

Since λt1 , . . . , λtk are distinct eigenvalues of Lr, system (19) is incinsistent unless
k = 0. Thus, x = x0, which implies that M is r-minimal.

In [6], Chen proved that every biharmonic surface in E3 is minimal. Dimitrić
([7]) generalizing Chen’s result, proved that any biharmonic hypersurface with at
most two distinct principal curvatures is minimal. In Theorem 1.2, we generalize this
result and prove that any Lr-biharmonic Euclidean hypersurface with at most two
distinct principal curvatures in En+1 is r-minimal.

Since always exists an open dense subset of M on which the multiplicities of the
principal curvatures are locally constant (see Reckziegel [16]), therefore we use the
following Lemma locally for the proof of Theorem 1.2.

Lemma 3.1. [15] Let M be an n-dimensional hypersurface in the Euclidean space
En+1 such that multiplicities of principal curvatures are constant. Then the distribu-
tion of the space of principal vectors corresponding to each principal curvature is com-
pletely integrable. In particular, if the multiplicity of a principal curvature is greater
than one, then this principal curvature is constant on each integral submanifold of the
corresponding distribution of the space of principal vectors.

3.2. Proof of Theorem 1.2

Proof. Let x : Mn → En+1 be an isometrically immersed Lr-biharmonic Euclidean
hypersurface. It is enough to prove that U = {p ∈M : ∇H2

r+1(p) 6= 0}, our objective
is to show that U is empty.

In order to prove the Theorem 1.2, we considering three different cases as follows.
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Case I: r = n− 1.
Case II: r 6= n− 1 and the multiplicities are greater than one.
Case III: r 6= n− 1 and one of the principal curvatures is simple.

Case I: First, we show that the Gauss-Kronecker curvature of M is constant. By
using formulae (16) and (17) on U we get

(SoPn−1)∇Hn = −1

2
Hn∇Hn, (20)

Ln−1Hn = nH1H
2
n. (21)

But by the Cayley-Hamilton theorem we have Pn = 0, so

SoPn−1 = HnI, (SoPn−1)∇Hn = Hn∇Hn,

which jointly with (20) yields ∇H2
n = 0 on U , which is a contradiction.

If Hn 6= 0, by using (21) we obtain that the mean curvature is constant. By the
fact that M has at most two principal curvatures and H, Hn are constant, we get
that the principal curvatures are constant, so M is isoparametric. A classical result of
B. Segre [18], states that isoparametric hypersurfaces in Rn+1 with non zero Gauss-
Kronecker curvature are locally isometric to Sn. On the other hand, since Sn is of
Ln−1-1-type (see [11]), by using Theorem 1.1, we conclude that it is impossible. This
finishes the proof of case I.

Case II: Since Sn is of Ln−1-1-type (see [11]), therefore, if Mn is totally umbilical,
then Mn is a piece of En. Therefore, we assume that M has two distinct principal
curvatures of multipilicities q and n− q, (q , n− q > 1).

Consider {e1, . . . , en}, to be a local orthonormal frame of principal directions of
S on U such that Sei = λiei for every i = 1, . . . , n. We assume that

λ1 = λ2 = · · · = λq = λ, λq+1 = · · · = λn = µ.

Therefore from (12) we have

Pr+1ei = µi,r+1ei,

with
µi,r+1 =

∑
i1<···<ir+1,ij 6=i

λi1 . . . λir+1
.

So, we get

µ1,r+1 = · · · = µq,r+1 =
∑
s

(
q − 1

s

)(
n− q

r + 1− s

)
λsµr+1−s,

µq+1,r+1 = · · · = µn,r+1 =
∑
s

(
q

s

)(
n− q − 1

r + 1− s

)
λsµr+1−s.

(22)
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We obtain from (11) that(
n

r + 1

)
Hr+1 =

∑
s

(
q

s

)(
n− q

r + 1− s

)
λsµr+1−s. (23)

Since r 6= n − 1, it follows from the inductive definition of Pr+1 that (17) is
equivalent to

Pr+1(∇H2
r+1) =

3

2

(
n

r + 1

)
Hr+1∇H2

r+1 on U . (24)

Therefore, writing

∇H2
r+1 =

n∑
i=1

< ∇H2
r+1, ei > ei, (25)

we see that (24) is equivalent to

< ∇H2
r+1, ei > (µi,r+1 −

3

2

(
n

r + 1

)
Hr+1) = 0 on U ,

for every i = 1, . . . , n. So, there is no loss of generality, assuming that,

µ1,r+1 = · · · = µq,r+1 =
3

2

(
n

r + 1

)
Hr+1. (26)

Let us denote the integral submanifolds through x ∈ U corresponding to λ and µ
by Uq1 (x) and Un−q1 (x) respectively. From Lemma 3.1, we know that λ is constant on
Uq1 (x). (22), (23) and (26) imply that µ is constant on Uq1 (x). Again by Lemma 3.1,
we get that µ is constant on Un−q1 (x). It now follows from [12], p. 182, Vol. I, that
U is locally isometric to the Riemannian product of the maximal integral manifolds
Uq1 (x) and Un−q1 (x). Therefore, µ is constant on U . By the same assertion, we know
that λ is constant on U , so Hr+1 is constant on U , which is a contradiction. Hence
Hr+1 is constant on M . If Hr+1 6= 0, then from (16), we obtain that tr(S2 ◦ Pr) is
constant. By the fact that M has two principal curvatures and Hr+1, tr(S2 ◦Pr) are
constant, we get that the principal curvatures are constant. So, M is isoparametric.
The discussion as in the last part of the proof of case I, we get the result in Case II.

Case III: In this case, we suppose that M has two distinct principal curvatures of
multiplicities 1 and n−1. Assume that U 6= ∅ (then we will try to get a contradiction).
One can express Hr+1 as a polynomial in λ (the non simple principal curvature of M)
with constant coefficients, after that we express λ as a constant multiple of the simple
principal curvature of M . By using Otsuki’s Lemma (Lemma 3.1), the structure
equations of M , and the fact that M is Lr-biharmonic hypersurface, we get that
λ satisfies a polynomial with constant coefficients. So λ is constant, hence Hr+1 is
constant, a contradiction with U 6= ∅. Therefore, U is empty.

Here, is the detailed treatment of the proof.
With the assumption that U 6= ∅, consider {e1, . . . , en}, to be a local orthonormal



On some Lr-biharmonic euclidean hypersurfaces 99

frame of principal directions of S on U such that Sei = λiei for every i = 1, . . . , n.
We assume

λ1 = λ2 = · · · = λn−1 = λ, λn = µ.

Therefore we have

µ1,r+1 = · · · = µn−1,r+1 =

(
n− 2

r + 1

)
λr+1 +

(
n− 2

r

)
λrµ,

µn,r+1 =

(
n− 1

r + 1

)
λr+1.

(27)

We obtain from (12) that(
n

r + 1

)
Hr+1 =

(
n− 1

r + 1

)
λr+1 +

(
n− 1

r

)
λrµ. (28)

Since r 6= n − 1, it follows from the inductive definition of Pr+1 that (17) is
equivalent to

Pr+1(∇H2
r+1) =

3

2

(
n

r + 1

)
Hr+1∇H2

r+1 on U . (29)

Therefore, by the formula

∇H2
r+1 =

n∑
i=1

< ∇H2
r+1, ei > ei, (30)

we see that (29) is equivalent to

< ∇H2
r+1, ei > (µi,r+1 −

3

2

(
n

r + 1

)
Hr+1) = 0 on U ,

for every i = 1, . . . , n. Hence, for every i such that < ∇H2
r+1, ei > 6= 0 on U we get

µi,r+1 =
3

2

(
n

r + 1

)
Hr+1. (31)

So for the expression ∇H2
r+1 in (30) we consider two subcases.

Subcases 1. < ∇H2
r+1, en > 6= 0, by using (27) and (31), we obtain that

Hr+1 =
2

3

(n− r − 1)

n
λr+1. (32)

Subcases 2. < ∇H2
r+1, en >= 0, so on U we have < ∇H2

r+1, ej > 6= 0 for some
j = 1, . . . , n− 1. By using (27), (31) and the formula of tr(Pr+1), we obtain that

Hr+1 =
(n− r − 1)

n(− 1
2n− r + 1

2 )
λr+1. (33)
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Both states requires the same calculation, so, we consider just state I.
By Lemma 3.1, let us denote the maximal integral submanifold through x ∈ U ,

corresponding to λ by Un−11 (x). We write

dλ =
∑
i

λiωi dµ =
∑
j

µjωj . (34)

Then Lemma 3.1 implies that λ1 = · · · = λn−1 = 0. We can assume that λ > 0
on U , then (28) and (32) yields

µ =
r + 1− n

3r + 3
λ. (35)

By means of (8) and (10), we obtain that∑
k

hijkωk = δijdλj + (λi − λj)ωij . (36)

We adopt the notational convention that 1 ≤ a, b, c, . . . ≤ n− 1.
From (34) and (36), we have

hijk = 0, if i 6= j, λi = λj ,

haab = 0, haan = λn,

hnna = 0, hnnn = µn.

(37)

Combining this with (9) and the formula∑
i

haniωi = dhan +
∑
i

hinωia +
∑
i

haiωin = (λ− µ)ωan,

we obtain from (35)

ωan =
λn
λ− µ

ωa =
(3r + 3)λn

(2r + 2 + n)λ
ωa. (38)

Therefore, we have

dωn =
∑
a

ωna ∧ ωa = 0.

Notice that we may consider λ to be locally a function of the parameter s, where s
is the arc length of an orthogonal trajectory of the family of the integral submanifolds
corresponding to λ. We may put ωn = ds.

Thus, for λ = λ(s), we have

dλ = λnds, λn = λ′(s),

so, from (38), we get

ωan =
λn
λ− µ

ωa =
(3r + 3)λ′(s)

(2r + 2 + n)λ
ωa. (39)
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According to the structure equations of En+1 and (39), we may compute

dωan =

n−1∑
b=1

ωab ∧ ωbn + ωan+1 ∧ ωn+1n

=

(
(3r + 3)λ′

(2r + 2 + n)λ

) n−1∑
b=1

ωab ∧ ωb − λµωa ∧ ds,

dωan = d

{
(3r + 3)λ′

(2r + 2 + n)λ
ωa

}
=

(
(3r + 3)λ′

(2r + 2 + n)λ

)′
ds ∧ ωa +

(
(3r + 3)λ′

(2r + 2 + n)λ

)
dωa

=

{
−
(

(3r + 3)λ′

(2r + 2 + n)λ

)′
+

(
(3r + 3)λ′

(2r + 2 + n)λ

)2
}
ωa ∧ ds

+

(
(3r + 3)λ′

(2r + 2 + n)λ

) n−1∑
b=1

ωab ∧ ωb.

(40)

Then we obtain from two equalities above that(
(3r + 3)λ′

(2r + 2 + n)λ

)′
−
(

(3r + 3)λ′

(2r + 2 + n)λ

)2

− λµ = 0. (41)

Combining (41) with (35), we have(
(3r + 3)λ′

(2r + 2 + n)λ

)′
−
(

(3r + 3)λ′

(2r + 2 + n)λ

)2

−
(
r + 1− n

3r + 3

)
λ2 = 0. (42)

Let us define a function β(s), s ∈ (−∞,+∞) by β =
(
1
λ

) 3r+3
2r+2+n , then (42) reduces

to

β′′ =

(
n− r − 1

3r + 3

)
β

−r−1−2n
3r+3 . (43)

Integrating (43), we obtain

(β′)2 = −β
2r+2−2n

3r+3 + c, (44)

where c is the constant of integration.
(44) is equivalent to

(λ′)2 = −
(

2 + 2r + n

3r + 3

)2

λ
8r+4n+8
2r+2+n + c

(
2 + 2r + n

3r + 3

)2

λ
10r+10+2n

2r+2+n . (45)

Now by the definition of LrHk+1 = tr(Pr ◦∇2Hr+1), we compute LrHr+1. So we
need to compute ∇ea∇Hr+1, ∇en∇Hr+1, Pr(ea) and Pr(en).

From (32) we have

∇Hr+1 =
2(r + 1)(n− r − 1)

3n
λrλ′en. (46)
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By using (39) and (46) we obtain

∇ea∇Hr+1 =
2(r + 1)(n− r − 1)

3n
λrλ′∇eaen =

2(r + 1)(n− r − 1)

3n
λrλ′

∑
b

ωnb(ea)eb

= − 2(n− r − 1)(r + 1)2

n(2r + 2 + n)
λr−1λ′

2
ea

∇en∇Hr+1 =
2(r + 1)(n− r − 1)

3n
∇en(λrλ′en)

=
2r(r + 1)(n− r − 1)

3n
λr−1λ′

2
en +

2(r + 1)(n− r − 1)

3n
λrλ′′en.

(47)

By using (27) and (35), we compute Pr(ea) and Pr(en).

Pr(ea) = µa,rea =

 ∑
i1<···<ir,ij 6=a

λi1 . . . λir

 ea =

(
n− 2

r

)
2r + 3

3r + 3
λrea,

Pr(en) =

(
n− 1

r

)
λren.

(48)

From (47) and (48), we get

LrHr+1 = crHr+1

(
(−2r − 3)(r + 1)(n− r − 1)

n(2r + 2 + n)
λr−2λ′

2

+
r(r + 1)

n
λr−2λ′

2
+
r + 1

n
λr−1λ′′

)
.

(49)

Since Mn is of Lr-biharmonic hypersurface, hence from (16), we get

LrHr+1 = Hr+1tr(S
2 ◦ Pr) = Hr+1

(
n− 1

r

)
2nr + 3n− 2r − 2r2

3r + 3
λr+2. (50)

Combining (49) and (50), we have

λλ′′ +

(
r +

(−2r − 3)(n− r − 1)

2r + 2 + n

)
λ′

2 −
(
n− 1

r

)
n(2nr + 3n− 2r − 2r2)

(r + 1)(3r + 3)
λ4 = 0.

(51)
(42) is equivalent to

λλ′′ =
5r + 5 + n

2r + 2 + n
λ′

2
+

(2r + 2 + n)(r + 1− n)

(3r + 3)2
λ4. (52)

Thus, putting together (51) and (52) one has

4r2 + 12r − rn− 2n+ 8

2r + 2 + n
λ′

2

+
(2r + 2 + n)(r + 1− n) + 3

(
n−1
r

)
n(2nr + 3n− 2r − 2r2)

(3r + 3)2
λ4 = 0.

(53)
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We deduce, using (45), (53) and (32), that Hr+1 is locally constant on U , which is a
contradiction with the definition of U . Hence Hr+1 is constant on M . The discussion
as in the last part of the proof of the case I, we get the result.

An important consequence of the Theorem is the classification of conformally flat
Lr-biharmonic hypersurfaces Mn for n > 3.

The dimension of the hypersurface plays an important role in the study of con-
formally flat Euclidean hypersurfaces. For n = 2, the existence of isothermal coordi-
nates means that any Riemannian surface is conformally flat. For n > 3, the result
of Cartan-Schouten states that a conformally flat hypersurface is characterized with
two principal curvatures that one multiplicity at least n−1 (see [14] for more details).
This significant fact is crucial in our classification of Lr-biharmonic conformally flat
Euclidean hypersurfaces Mn for n > 3.

As a simple consequence of Theorem 1.2; case III, we obtain the Corollary 1.4.
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