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The Joint Laplace-Hankel Transforms for

Fractional Diffusion Equation

Arman Aghili

Abstract: Operational methods are used to accomplish the solution
of certain problems with less effort and in a simple routine way. Laplace
transforms can be used to solve certain types of fractional singular inte-
gral equation not considered in the literature. In this study, the author
implemented an analytical technique the joint Laplace-Hankel transforms
to provide the exact solution for a time fractional non-homogeneous dif-
fusion equation with non-constant coefficients in cylindrical coordinates.
The obtained results reveal that the joint transform method is very con-
venient and effective. Certain non trivial integral identities involving Airy
functions and modified Bessel functions of the second kind are also pro-
vided.

AMS Subject Classification: 26A33, 44A10, 44A20, 35A22.
Keywords and Phrases: Laplace transforms; Hankel transform; Modified Bessel func-
tion; Airy function; Gross Levi.

1. Introduction and Preliminaries

In recent years, a growing number of research works done by many researchers from
various fields of engineering and science deal with dynamical systems described by
equations of fractional order which means equations involving derivatives and inte-
grals of fractional order.
In this work, the author studied analytically distribution functions during ion cy-
clotron resonance heating (ICRH) by using the one-dimensional Fokker-Planck equa-
tion incorporating ion-electron and ion-ion collisions and quasi-linear diffusion. In the
equation, we include source and loss terms and we find the steady-state and time-
dependent solutions which are regular in the origin and vanish at high energies. The



6 A. Aghili

main purpose of the current study is to develop a method for evaluation of certain
integrals and finding analytic solutions of fractional PDEs. An analytical technique
approaches, the joint Laplace-Hankel transforms to provide the exact solution for a
time fractional non-homogeneous diffusion equation with non-constant coefficients in
cylindrical coordinates.

1.1. Definitions and Notations

Definition 1.1. With Dc,α
t we denote the time fractional derivative of order α

(0 < α < 1) regularized in the Dzhrbashyan-Caputo sense defined for a sufficiently
regular function ϕ(t), as

Dc,α
t ϕ(t) =

1

Γ(1− α)

∫ t

a

1

(t− ξ)α
ϕ′(ξ)dξ. (1.1)

Remark. In this work, we prefer Caputo fractional derivative to Riemann-Liouville
one since the former is more popular in real applications. When we adopt the Ca-
puto fractional derivative of order-α, the initial values of y(0), y′(0), ..., ym(0), where
m = [α], are enough. Obviously, these initial values are prone to measure since they
have all physical meaning. On the other hand, we choose Caputo fractional derivative
due to another fact that the non-homogeneous initial conditions are permitted if such
conditions are necessary.

Definition 1.2. The Laplace transform of the function f(t) is given by[1-3]

L{f(t)} =

∫ ∞

0

e−stf(t)dt := F (s). (1.2)

If L{f(t)} = F (s), then L−1{F (s)} is as follows

f(t) =
1

2πi

∫ c+i∞

c−i∞
estF (s)ds, (1.3)

where F (s) is analytic in the region Re(s) > c.
The expression in equation (1.3) is the inverse Laplace transform for the function
F (s), and is often called the Bromwich integral.

Lemma 1.1. Let L{f(t)} = F (s) then, the following identities hold

1. L−1( 1√
s(
√
s+λ)

) = eλ
2tErfc(λ

√
t),

2. e−ωsβ = 1
π

∫∞
0
e−rβ(ω cos βπ) sin(ωrβ sin βπ)

s+r dr,

3. L−1(F (sα)) = 1
π

∫∞
0
f(u)

∫∞
0
e−tr−urα cosαπ sin(urα sinαπ)drdu,

4. L−1(F ( 3
√
s)) = 1

3π

∫∞
0

(ut )
3
2K 1

3
( 2u

√
u

3
√
3t
)f(u)du.

Proof. See [1].
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Example 1.1. The fractional integral of order α of the function ϕ(t), with 0 < α < 1
is defined as follows

J αϕ(t) =
1

Γ(α)

∫ t

0

(t− ξ)α−1ϕ(ξ)dξ,

then the Laplace transform of the fractional integral of order α is as below

L[J αϕ(t)] =

∫ +∞

0

e−st[
1

Γ(α)

∫ t

0

(t− ξ)α−1ϕ(ξ)dξ]dt =
Φ(s)

sα
.

Lemma 1.2. The following integral relation holds

L−1[
e−k

√
s

sν + λ
; s→ t] = f(t) =

1

π

∫ +∞

0

e−tξ[
ξν sin(πν − k

√
ξ)− λ sin(k

√
ξ)

ξ2ν + 2λξν cos(πν) + λ2
]dξ.

Proof. In view of the Titchmarch theorem or Gross-Levi lemma [3], we have the
following

f(t) =
1

π

∫ +∞

0

e−tξIm[
e−k

√
ξe−iπ

(ξe−iπ)ν + λ
]dξ,

or

f(t) =
1

π

∫ +∞

0

e−tξIm[
e−ik

√
ξ

ξν(cos(πν)− i sin(πν)) + λ
]dξ,

after simplifying we have

f(t) =
1

π

∫ +∞

0

e−tξIm
[cos(k

√
ξ)− i sin(k

√
ξ)][ξν cos(πν) + λ+ iξν sin(πν)]

ξ2ν + 2λξν cos(πν) + λ2
dξ,

or

f(t) =
1

π

∫ +∞

0

e−tξ[
ξν sin(πν − k

√
ξ)− λ sin(k

√
ξ)

ξ2ν + 2λξν cos(πν) + λ2
]dξ.

Let us consider the special cases
1. λ = k = 0, 0 < ν < 1 we have

L−1[
1

sν
; s→ t] = f(t) =

sin(πν)

π

∫ +∞

0

e−tξξ−νdξ =
tν−1

Γ(ν)
.

2. k = 0, we have

L−1[
1

sν + λ
; s→ t] = f(t) =

sin(πν)

π

∫ +∞

0

[
ξνe−tξ

ξ2ν + 2λξν cos(πν) + λ2
]dξ.
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Lemma 1.3. The following integral relation holds

L−1[
1

sβ(sν + λ)
; s→ t] =

∫ t

0

(t− η)β−1

Γ(β)

[
sin(πν)

π

∫ +∞

0

[
ξνe−ηr

ξ2ν + 2λrν cos(πν) + λ2
]dξ

]
dη.

Proof. Making use of the convolution theorem for the Laplace transform.
Corollary 1.1. Let us show that

L−1[
π√
3
e−3 3

√
s; s→ t] = t−

3
2K 1

3
(
2√
t
).

Note. In the above relation Kν(.) stands for the modified Bessel function of the
second kind of order ν.
Proof. Let us choose f(u) = δ(u−λ) then we have F (s) = e−λs, in view of part four
of the Lemma 1.1. we get

L−1[e−3 3
√
s; s→ t] =

1

3π

∫ ∞

0

(
u

t
)

3
2K 1

3
(
2u

√
u

3
√
3t

)δ(u− λ)du =
1

3π
(
λ

t
)

3
2K 1

3
(
2λ

√
λ

3
√
3t

).

If we choose λ = 3, after simplifying we arrive at

L−1[
π√
3
e−3 3

√
s; s→ t] = t−

3
2K 1

3

(
2√
t

)
.

In the above relation if we set s = 0 we have∫ +∞

0

t−
3
2K 1

3
(
2√
t
)dt =

∫ +∞

0

K 1
3
(ξ)dξ =

π√
3
.

Theorem 1.1. Let us consider fractional singular integro-differential equation

Dc,α
0,t ϕ(t) = f(t) + λ

∫ +∞

t

ϕ(ξ)dξ, 0 < t < +∞

ϕ(0) = u0,

∫ +∞

0

ϕ(ξ)dξ = k, 0 < α < 1,

then, the above fractional singular integro-differential equation has the following for-
mal solution

ϕ(t) = u0

+∞∑
n=0

(−λ)nt(α+1)n

Γ(1 + (α+ 1)n)
+

+∞∑
n=0

(−λ)n
∫ t

0

f(t− η)
η(α+1)n

Γ(1 + (α+ 1)n)
dη

− λk

+∞∑
n=0

(−λ)nt(α+1)(1+n)−1

Γ(1 + (α+ 1)n)
.
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Note. To the best of the author’s knowledge this kind of singular integral equation
is not considered in the literature.
Solution. Taking the Laplace transform of the above fractional singular integral
equation term wise, leads to

sαΦ(s)− sα−1u0 = F (s) + λ
Φ(s)− Φ(0)

s
= F (s) + λ

Φ(s)− k

s
.

After solving the above equation, we obtain

Φ(s) =
sF (s)

λ+ sα+1
+
u0s

α − λk

λ+ sα+1
,

or

Φ(s) =

+∞∑
n=0

(−λ)n
[

F (s)

sn(α+1)+α
+

u0
s(α+1)n+1

− λk

s(α+1)(n+1)

]
.

At this point, taking the inverse Laplace transform term-wise, we arrive at

ϕ(t) =

+∞∑
n=0

(−λ)n[
∫ t

0

f(t− ξ)
ξn(α+1)+α−1

Γ(n(α+ 1) + α)
dξ

+
u0t

(α+1)n

Γ(n(α+ 1) + 1)
− λkt(α+1)(n+1)−1

Γ((α+ 1)(n+ 1))
], 0 < t < +∞.

It is easy to verify that ϕ(0) = u0.
Let us consider the special case α = 0.5, we have

ϕ(t) =

+∞∑
n=0

(−λ)n[
∫ t

0

f(t− ξ)
ξ

3n−1
2

Γ( 3n+1
2 )

dξ

+
u0t

3n
2

Γ( 3n2 + 1)
− λkt

3n+1
2

Γ(( 32 (n+ 1))
], 0 < t < +∞.

Example 1.2. Let us assume that

Ψn(s) =

∫ +∞

0

(ξ2 + 1)
n−1
2 e−s

√
ξ2+1dξ

then we have

L−1[Ψn(s); s→ t] =
t
n+1
2

√
t2 − 1

.
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Proof. Let us start with the integral representation of Ψ1(s), Ψ1(s)=
∫ +∞
0

e−s
√

ξ2+1dξ,
then taking n-times derivative with respect to parameter s leads to

Ψn(s) =

∫ +∞

0

(ξ2 + 1)
n−1
2 e−s

√
ξ2+1dξ.

By taking inverse Laplace transform followed by the complex inversion formula, we
have

ψn(t) = L−1[Ψn(s); s→ t] =
1

2πi

∫ c+i∞

c−i∞
est[

∫ +∞

0

(ξ2 + 1)
n−1
2 e−s

√
ξ2+1dξ]ds.

At this stage changing the order of integration leads to

ϕn(t) = L−1[Ψn(s); s→ t] =

∫ +∞

0

(ξ2 + 1)
n−1
2 [

1

2πi

∫ c+i∞

c−i∞
e(t−

√
ξ2+1)sds]dξ.

The value of the inner integral is δ(t−
√
ξ2 + 1), we arrive at

ψn(t) = L−1[Ψn(s); s→ t] =

∫ +∞

0

(ξ2 + 1)
n−1
2 δ(t−

√
ξ2 + 1)dξ.

In order to evaluate the above integral, we make a change of variable

t−
√
ξ2 + 1 = η

ψn(t) = L−1[Ψn(s); s→ t] =

∫ t−1

−∞
(t− η)

n−1
2 .

t− η√
(t− η)2 − 1

δ(η)dη =
t
n+1
2

√
t2 − 1

.

Finally using convolution theorem for the Laplace transform, we have the following
relation

ψ(t) = L−1[Ψn(s)Ψm(s); s→ t] =

∫ t

0

(t− ξ)
m+1

2√
(t− ξ)2 − 1

ξ
n+1
2√

ξ2 − 1
dξ.

2. Generalized Bessel’s Equation, Bessel Functions,
Hankel Transform

Let us consider the following second order differential equation with non-constant
coefficients

x2y′′ + (1− 2α)xy′ + [(kcxc)2 + α2 − ν2c2]y = 0, (2.1)
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the above equation has the following solution

y(x) = xα[C1Jν(kx
c) + C2Yν(kx

c)]. (2.2)

We note that if α = 0, c = 1 we obtain the Bessel equation

x2y′′ + xy′ + [(kx)2 − ν2c2]y = 0, (2.3)

with the solution as follows

y(x) = C1Jν(kx) + C2Yν(kx). (2.4)

In Eq.(2.1), if we set α = 0.5, c = 3
2 , ν = 1

3 , k = 2i
3 we get

x2y′′ + [(ix
3
2 )2 +

1

4
− 1

4
]y = 0, (2.5)

after simplifying we obtain

y′′ − xy = 0, (2.6)

the above equation is known as an Airy differential equation with the solution as
below

y(x) =
√
x[C1J 1

3
(
2i

3
x

3
2 ) + C2J− 1

3
(
2i

3
x

3
2 )]. (2.7)

At this stage using the fact that

Jν(ix) = e
−iπν

2 Iν(x), Kν(x) =
2

sin(πν)
[I−ν(x)− Iν(x)].

Where Iν(x), Kν(x) are the modifed Bessel functions of the first and second kind
respectively. Therefore, we get

y(x) =
√
x[C ′

1I 1
3
(
2

3
x

3
2 ) + C ′

2I− 1
3
(
2

3
x

3
2 )]. (2.8)

In the special case ν = 1
3 , we have the following relations [8,11]

Ai(x) =
1

π

√
x

3
K 1

3
(
2x

3
2

3
) =

√
x

3
[I− 1

3
(
2x

3
2

3
)− I 1

3
(
2x

3
2

3
)]

and

Bi(x) =

√
x

3
[I− 1

3
(
2x

3
2

3
) + I 1

3
(
2x

3
2

3
)].

Finally, equation (2.6) has the following solution in terms of the Airy functions
Ai(x), Bi(x)

y(x) = C ′′
1Ai(x) + C ′′

2Bi(x).

Remark. It is worth mentioning that the Airy function Ai(x) is used in physics to
model of the diffraction of light.
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Theorem 2.1. We have the following integral representation of the square of the
Airy function

Ai2(ϕ) =
1

π
√
3

∫ +∞

0

ηJ0(2ϕη +
2η3

3
)dη. (2.9)

Note. In the literature the integral representation of the square of the Airy function
is given [8,11].
Proof. Let us start with an integral representation of the product of the modified
Bessel functions of order ν as follows

Kν(x)Kν(y) =
π

2 sin(πν)

∫ +∞

ln( y
x )

J0(
√

2xy cosh ξ − (x2 + y2)) sinh(νξ)dξ,

by taking ν = 1
3 , x = y, we have the following relation [8]

K2
1
3
(x) =

π

2 sin(π3 )

∫ +∞

0

J0(x
√
2 cosh ξ − 2)) sinh(

ξ

3
)dξ.

At this stage using the well-known identity K 1
3
(x) = π

√
3√
ϕ
Ai(ϕ), where x = 2

3ϕ
3
2 ,

therefore, we have

[
π
√
3√
ϕ
Ai(ϕ)]2 =

π√
3

∫ +∞

0

J0(
2

3
ϕ

3
2

√
2 cosh ξ − 2))2 sinh(

ξ

6
) cosh(

ξ

6
)dξ,

after simplifying we obtain

Ai2(ϕ) =
ϕ

3π
√
3

∫ +∞

0

J0[
4ϕ

√
ϕ

3
(3 sinh(

ξ

6
) + 4 sinh3(

ξ

6
))]2 sinh(

ξ

6
) cosh(

ξ

6
)dξ.

Let us introduce a change of variable sinh( ξ6 ) =
η

2
√
ϕ
, then we have 1

6 cosh(
ξ
6 )dξ =

dη
2
√
ϕ
,

from which we deduce that

Ai2(ϕ) =
ϕ

3π
√
3

∫ +∞

0

J0[
4ϕ

√
ϕ

3
[(

3η

2
√
ϕ
) + 4(

η

2
√
ϕ
)3]]12

η

2
√
ϕ

dη

2
√
ϕ
.

Finally, we obtain

Ai2(ϕ) =
1

π
√
3

∫ +∞

0

ηJ0(2ϕη +
2η3

3
)dη. (2.10)

Let us consider the following special cases
1. ϕ = 0, we get

Ai2(0) =
1

3
4
3Γ2( 23 )

=
1

π
√
3

∫ +∞

0

ηJ0(
2η3

3
)dη.

2. In Eq.(2.10), taking derivitive with respect to ϕ and setting ϕ = 0, we have

2Ai(0)Ai′(0) =
−2

2π
√
3
=

−2

π
√
3

∫ +∞

0

η2J1(
2η3

3
)dη,



The Joint Laplace-Hankel Transforms for Fractional Diffusion Equation 13

or ∫ +∞

0

2η2J1(
2η3

3
)dη =

∫ +∞

0

J1(τ)dτ = 1.

Theorem 2.2. We have the following integral identity for the modified Bessel function
of the second kind or Macdonald function∫ +∞

0

Kν(λ
√
x2 + z2)

x2β+1

(x2 + z2)
ν
2
dx =

2βΓ(β + 1)

λβ+1zν−(β+1)
Kν−(β+1)(λz).

Proof. Let us start with the left hand side, by using an integral representation for
the modified Bessel function, we have∫ +∞

0

Kν(λ
√
x2 + z2)

x2β+1

(x2 + z2)
ν
2
dx =

=

∫ +∞

0

x2β+1

(x2 + z2)
ν
2
[(
λ(
√
x2 + z2)

2
)ν

∫ +∞

0

e−ξ−λ2(x2+z2)
4ξ

dξ

2ξν+1
]dx,

changing the order of integration in the double integral and after simplifying, we
obtain

L.H.S = (
λ

2
)ν

∫ +∞

0

e−ξ−λ2z2

4ξ [

∫ +∞

0

x2β+1e−
λ2x2

4ξ dx]
dξ

2ξν+1
.

At this point let us make a change of variable u = λ2x2

4ξ in the inner integral after
simplification we obtain

L.H.S =
1

2
(
λ

2
)νΓ(β + 1)(

2

λ
)2(β+1)

∫ +∞

0

e−ξ−λ2z2

4ξ
dξ

2ξν+1
.

Let us rewrite the above relation as follows

L.H.S =
1

2
(
λ

2
)νΓ(β + 1)(

2

λ
)2(β+1)(

λz

2
)−ν+(β+1))[(

λz

2
)ν−(β+1)(

∫ +∞

0

e−ξ−λ2z2

4ξ
dξ

2ξν+1
].

But the expression in the brackets is the integral representation for the modified
Bessel function Kν−(β+1)(λz), therefore we get

L.H.S =
2βΓ(β + 1)

zν−(β+1)λβ+1
Kν−(β+1)(λz).

Let us consider the special case ν = 0 then we get∫ +∞

0

K0(λ
√
x2+z2)x2β+1dx=

2βΓ(β+1)

λβ+1z−(β+1)
K−(β+1)(λz)=

2βz(β+1)Γ(β+1)

λβ+1
K(β+1)(λz).
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Also, considering the special case β = − 1
2 we obtain∫ +∞

0

K0(λ
√
x2 + z2)dx =

√
λz

2π
K 1

2
(λz).

In the above theorem, we used the fact that Kν(.) = K−ν(.) and the well-known

integral representation Kν(az) = (az2 )ν
∫ +∞
0

e−ξ− a2z2

4ξ dξ
2ξν+1 , [5,8].

Hankel Transforms

Hankel transforms arise naturally in solving boundary-value problems formulated in
cylindrical coordinates. They also occur in other applications such as determining
oscillations of the suspended heavy chain from one end.
We define the general Hankel transforms of order ν by

Hν [ϕ(r); ρ] =

∫ +∞

0

rJν(ρr)ϕ(r)dr = Φ(ρ). (2.11)

The corresponding inversion formula of which takes the form

H−1
ν [Φ(ρ); r] =

∫ +∞

0

ρJν(rρ)Φ(ρ)dρ = ϕ(r). (2.12)

The basic requirement for the existence of the Hankel transform is that the function√
rf(r) be absolutely integrable and piecewise continuous on the positive real line. In

this section we will determine the Hankel transform of certain functions and develop
some of the fundamental operational properties of the Hankel transform.

Lemma 2.1. Let us assume that Hν [ϕ(r); ρ] = Φ(ρ), then we have

1. Hν [
1

rν+1

d

dr
[r2ν+1 d

dr
(
1

rν
ϕ(r))]; ρ] = −ρ2Φ(ρ). (2.13)

2. H0[
1

r

d

dr
[r
d

dr
(ϕ(r))]; ρ] = −ρ2Φ(ρ). (2.14)

Proof. See [3,4,9].

Example 2.1. Show that

H0[
1√

r2 + a2
; ρ] =

1

ρ
e−aρ.

Proof. Let us start with the Laplace transform of the function J0(rρ), we have

L[J0(rρ); ρ→ a] =

∫ +∞

0

e−aρJ0(rρ)dρ =
1√

a2 + r2
.
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In terms of the Hankel transform of order zero we have

H0[
e−aρ

ρ
; ρ→ r] =

1√
r2 + a2

.

Inverting the above relation leads to

H−1
0 [

1√
r2 + a2

; r → ρ] =

∫ +∞

0

ρJ0(ρr)
1√

r2 + a2
dr =

e−aρ

ρ
.

Lemma 2.2. Parseval identity for the Hankel transform.
If Φ(ρ) and Ψ(ρ) are the Hankel transforms of the functions ϕ(r) and ψ(r), respec-
tively, then ∫ +∞

0

rϕ(r)ψ(r)dr =

∫ +∞

0

ρΦ(ρ)Ψ(ρ)dρ. (2.15)

Proof. The integral on the right side can be rewritten as follows∫ +∞

0

ρΦ(ρ)Ψ(ρ)dρ =

∫ +∞

0

ρΦ(rho)[

∫ +∞

0

rJν(ρr)ψ(r)dr]dρ.

Changing the order of integration, we get∫ +∞

0

ρΦ(ρ)Ψ(ρ)dρ =

∫ +∞

0

rψ(r)[

∫ +∞

0

ρJν(rρ)Φ(ρ)dρ]dr =

∫ +∞

0

rψ(r)ϕ(r)dr.

Lemma 2.3. The following integral identity holds

1

2
δ(
a2 − b2

4
) =

∫ +∞

0

ρJν(aρ)Jν(bρ)dρ. (2.16)

Proof. Let us take ϕ(r) = 1
2δ(

r2−a2

4 ) and ψ(r) = 1
2δ(

r2−b2

4 ). In view of the Parseval
identity and using Lemma 2.4. we have∫ +∞

0

1

2
δ(
r2 − a2

4
)
1

2
δ(
r2 − b2

4
)rdr =

1

2
δ(
a2 − b2

4
) =

∫ +∞

0

ρJν(aρ)Jν(bρ)dρ. (2.17)

Lemma 2.4. We have the following relations for the Hankel transform

Hν [
1

2
δ(
r2 − a2

4
); ρ] =

∫ +∞

0

rJν(ρr)δ(
r2 − a2

4
)dr = Jν(aρ). (2.18)
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Proof. Let us make a change of variable ξ = r2−a2

4 in the above integral, we get

Hν [
1

2
δ(
r2 − a2

4
); ρ] =

∫ +∞

− a2

4

√
4ξ + a2Jν(ρ

√
4ξ + a2)δ(ξ)

2dξ√
4ξ + a2

= Jν(aρ).

(2.19)

3. Solution for the Time Fractional Heat Equation
in Cylindrical Coordinates Via the Joint Laplace-
Hankel Transform

Fractional calculus deals with the fractional integrals and derivatives of arbitrary or-
der. It provides better models for systems having long range memory and non-local
effects and it has important applications in several fields of engineering and sciences.
Fractional differential equations are widely used for modeling anomalous diffusion
phenomena. In this section, the author implemented the joint Laplace-Hankel trans-
forms to construct the exact solution for the time fractional heat conduction equation.
In the past three decades, considerable research work has been invested in the study
of the anomalous diffusion using the time fractional equation.
Problem 3.1 Let us solve the following impulsive time fractional heat conduction
equation in cylindrical coordinates

Dc,α
t u =

a2

r

∂

∂r
(r
∂u

∂r
) + δ(t)δ(r − r0), α = 0.5, t > 0, 0 < r < +∞.

with the boundary conditions as follows

1. u(r, 0) = f(r), 2. lim
r→0

|u(r, t)| < +∞, 3. lim
r→+∞

u(r, t) = 0.

Solution. Let us define the joint Laplace-Hankel transform of order zero as follows

U(ρ, s) =

∫ +∞

0

rJ0(ρr)[

∫ +∞

0

e−stu(r, t)dt]dr. (3.1)

Application of the joint Laplace-Hankel transform the above equation leads to the
following transformed equation with the boundary conditions as follows

sαU(ρ, s) + a2ρ2U(ρ, s) = sα−1F (ρ) + r0J0(r0ρ), H0[f(r); ρ] = F (ρ). (3.2)

Solving the above equation (3.2) yields

U(ρ, s)=
sα−1F (ρ) + r0J0(r0ρ)

sα + a2ρ2
= F (ρ)[

1

s1−α(sα + a2ρ2)
]+J0(r0ρ)

r0
s1−α(sα + a2ρ2)

.

(3.3)
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At this point, taking the joint inverse Laplace-Hankel transform of order zero to obtain

u(r, t) =

∫ +∞

0

ρJ0(rρ)F (ρ)[L−1[
1

s1−α(sα + a2ρ2)
]dρ

+ r0

∫ +∞

0

ρJ0(r0ρ)J0(rρ)[L−1[
1

s1−α(sα + a2ρ2)
]dρ. (3.4)

At this stage let us take α = 0.5, then we have

L−1[
1

s1−α(sα + a2ρ2)
] = L−1[

1√
s(
√
s+ a2ρ2)

] = ea
4ρ4tErfc(a2ρ2

√
t). (3.5)

In relation (3.6), let us replace F (ρ) = H0[f(r); ρ], r0J0(r0ρ) = H0[δ(r − r0); ρ] by
the following integrals

F (ρ) =

∫ +∞

0

ξJ0(ρξ)f(ξ)dξ, r0J0(r0ρ) =

∫ +∞

0

τJ0(ρτ)δ(τ − r0)dτ (3.6)

we arrive at

u(r, t) =

∫ +∞

0

ρJ0(rρ)e
a4ρ4tErfc(a2ρ2

√
t)[

∫ +∞

0

ξJ0(ρξ)f(ξ)dξ]dρ+

+

∫ +∞

0

ρJ0(rρ)e
a4ρ4tErfc(a2ρ2

√
t)[

∫ +∞

0

τJ0(ρτ)δ(τ − r0)dτ ]dρ (3.7)

By changing the order of integration we obtain the formal solution to boundary-
value problem

u(r, t) =

∫ +∞

0

ξf(ξ)[

∫ +∞

0

ρJ0(rρ)e
a4ρ4tErfc(a2ρ2

√
t)J0(ξρ)dρ]dξ+

+

∫ +∞

0

τδ(τ − r0)[

∫ +∞

0

ρJ0(rρ)e
a4ρ4tErfc(a2ρ2

√
t)J0(τρ)dρ]dτ. (3.8)

Note. In the above relation Erfc(ξ) = 2√
π

∫ +∞
ξ

e−t2dt.

The last step is to evaluate u(r, 0) as below

u(r, 0)=

∫ +∞

0

ξf(ξ)[

∫ +∞

0

ρJ0(rρ)J0(ξρ)dρ]dξ +

∫ +∞

0

τδ(τ − r0)[

∫ +∞

0

ρJ0(rρ)J0(τρ)dρ]dτ.

(3.9)

In view of the Lemma 2.4. the value of the inner integrals are 1
2δ(

r2−ξ2

4 ) and 1
2δ(

r2−τ2

4 )
respectively, therefore

u(r, 0) =

∫ +∞

0

ξf(ξ)[
1

2
δ(
r2 − ξ2

4
)]dξ +

∫ +∞

0

τδ(τ − r0)[
1

2
δ(
r2 − τ2

4
)]dτ = f(r).

(3.10)

Note. In the last step we have made a change of variable r2−ξ2

4 = η in the above
integral.
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4. Main Result. Solution for The Time Fractional
Non-Homogeneous Heat Equation in Cylindrical
Coordinates via the Joint Laplace-Hankel Trans-
form

Let us consider the following time fractional heat conduction equation a fractional
generalization of the problem Ion distribution function during ion cyclotron resonance
heating at the fundamental frequency [6]

Dc,α
t u =

∂2u

∂r2
+

1

r

∂u

∂r
− λu+ ϕ(r) + J αh(t), 0 < α < 1, t > 0, 0 < r < +∞

with the boundary conditions as below

1. u(r, 0) = ψ(r), 2. lim
r→0

|u(r, t)| < +∞, 3. lim
r→+∞

u(r, t) = 0.

Note. Analytic solutions are more important than numerical solutions, because these
are valid in the whole domain of definition whereas the numerical solutions are only
valid at chosen points in the domain of definition.
Solution. Let us define the joint Laplace-Hankel transforms of order zero as follows

U(ρ, s) =

∫ +∞

0

rJ0(ρr)[

∫ +∞

0

e−stu(r, t)dt]dr. (4.1)

By applying the joint Laplace-Hankel transforms of order zero the above equation,
we arrive at the following transformed equation with the boundary conditions

(sα + ρ2 + λ)U(ρ, s) = sα−1Ψ(ρ) +
Φ(ρ)

s
+
H(s)

sα
. (4.2)

Solution of the above equation (4.2) leads to

U(ρ, s) =
Ψ(ρ)

s1−α(sα + ρ2 + λ)
+

Φ(ρ)

s(sα + ρ2 + λ)
+

H(s)

sα(sα + ρ2 + λ)
. (4.3)

By taking the inverse joint Laplace-Hankel transform of order zero, we have

u(r, t) =

∫ +∞

0

ρJ0(rρ)Ψ(ρ)[L−1[
1

s1−α(sα + ρ2 + λ)
]dρ+

+

∫ +∞

0

ρJ0(rρ)Φ(ρ)[L−1[
1

s(sα + ρ2 + λ)
]dρ+

∫ +∞

0

ρJ0(rρ)[L−1[
H(s)

sα(sα + ρ2 + λ)
]dρ.

(4.4)

In view of the Corollary 1.2. we have the following formal solution

u(r, t)=
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=
sin(πα)

πΓ(1−α)

∫ +∞

0

ρJ0(rρ)Ψ(ρ)[

∫ t

0

1

(t−η)α
[

∫ +∞

0

ξαe−ηξdξ

ξ2α+2(
√
ρ2+λ)ξα cos(πα)+λ+ρ2

]dη]dρ+

+
sin(πα)

π

∫ +∞

0

ρJ0(rρ)Φ(ρ)[

∫ t

0

[

∫ +∞

0

[
ξαe−ηξ

ξ2α + 2(
√
ρ2 + λ)ξα cos(πα)+λ+ρ2

]dξ]dη]dρ+

+
sin(πα)

π

∫ +∞

0

ρJ0(rρ)[

∫ t

0

J αh(t−η)[
∫ +∞

0

[
ξαe−ηξ

ξ2α+2(
√
ρ2+λ)ξα cos(πα)+λ+ρ2

]dξ]dη]dρ.

(4.5)

At this stage let us take α = 0.5, then we obtain the solution as follows

u(r, t) =
1

πΓ( 12 )

∫ +∞

0

ρJ0(rρ)Ψ(ρ)[

∫ t

0

1

(t− η)
1
2

[

∫ +∞

0

√
ξe−ηξdξ

ξ + λ+ ρ2
]dη]dρ+

+
1

π

∫ +∞

0

ρJ0(rρ)Φ(ρ)[

∫ t

0

[

∫ +∞

0

[

√
ξe−ηξ

ξ + λ+ ρ2
]dξ]dη]dρ

+
1

π

∫ +∞

0

ρJ0(rρ)[

∫ t

0

J αh(t− η)[

∫ +∞

0

[

√
ξe−ηξ

ξ + λ+ ρ2
]dξ]dη]dρ. (4.6)

At this point, we may use the following integral identity in order to evaluate the inner
most integral [5]∫ +∞

0

√
ξe−ηξ

ξ + (λ+ ρ2)
dξ =

√
λ+ ρ2eη(λ+ρ2)Γ(−1

2
, η(λ+ ρ2)),

therefore we get

u(r, t)=
1

πΓ( 12 )

∫ +∞

0

ρJ0(rρ)Ψ(ρ)[

∫ t

0

1

(t− η)
1
2

[
√
λ+ρ2eη(λ+ρ

2)Γ(−1

2
, η(λ+ ρ2))]dη]dρ+

+
1

π

∫ +∞

0

ρJ0(rρ)Φ(ρ)[

∫ t

0

[
√
λ+ ρ2eη(λ+ρ2)Γ(−1

2
, η(λ+ ρ2))]dη]dρ+

+
1

π

∫ +∞

0

ρJ0(rρ)[

∫ t

0

J αh(t− η)[
√
λ+ ρ2eη(λ+ρ2)Γ(−1

2
, η(λ+ ρ2))]dη]dρ. (4.7)

Note. In the above relation Γ(a, ξ) =
∫ +∞
ξ

ts−1e−tdt stands for the incomplete
gamma function.
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5. Conclusion

The paper is devoted to studying and application of the joint Laplace-Hankel trans-
form for solving time fractional heat equation in cylindrical coordinates. The main
purpose of this work is to develop a method for finding analytic solutions of fractional
PDEs, evaluation of certain integrals. These results should be applicable to obtaining
solutions of a wide class of problems in applied mathematics, engineering and math-
ematical physics. The methods and techniques discussed in this article can also be
applied to solve other types of the fractional partial differential equations.
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1. Introduction

In this paper we utilize the nonconformable fractional derivative introduced in [1] and
[4] to study the asymptotic behavior of solutions to very general nonlinear fractional
differential equations that are generalizations of Emden-Fowler and other types of
ordinary (integer order) equations. One advantage of using this type of fractional
derivative, which we will denote by N , is that if a function is α-order, α ∈ (0, 1],
differentiable at a point t0 ∈ (0,∞), then it is continuous at that point (see [1,
Theorem 2.2]). Also, this fractional derivative obeys product and quotient rules that
mimic those for ordinary (integer order) derivatives (see [1, Theorem 2.3]). But
probably its most important feature is that it satitfies a chain rule like the one for
integer order derivatives (see Lemma 2.5 below). This type of fractional derivative is
well described in the paper [1]. We also obtain a Gronwall type inequality for this
kind of fractional derivative.
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2. Preliminaries and Basic Concepts

We begin with the notion of the nonconformable fractional derivative.

Definition 2.1. ([1, Definition 2.1], [5, Definition 1]) Let f : [0,∞) → R. The
nonconformable fractional derivative of f of order α ∈ (0, 1) is defined by

(Nαf)(t) = lim
ϵ→0

f(t+ ϵet
−α

)− f(t)

ϵ

for all t > 0.

Remark. If (Nαf)(t) exists in some (0, a) and limt→0+(N
αf)(t) exists, then we

define (Nαf)(0) = limt→0+(N
αf)(t).

Corresponding to the nonconformable fractional derivative, we have the noncon-
formable fractional integral.

Definition 2.2. ([5, Definition 2]) Let f : [0,∞) → R. The nonconformable fractional
integral of f of order α ∈ (0, 1) is defined by

(NJα
t0f)(t) =

∫ t

t0

f(s)

es−α ds.

In view of Definitions 2.1 and 2.2 it is obvious that the following lemma is needed.

Lemma 2.3. ([5, Theorem 3]) If f is Nα–differentiable on (t0,∞) with α ∈ (0, 1],
then for t > t0:

(a) If f is differentiable, NJα
t0(N

αf)(t) = f(t)− f(t0).

(b) Nα(NJα
t0f)(t) = f(t).

For convenience, we next give some properties of the nonconformable fractional
derivative.

Lemma 2.4. Let f and g be Nα differentiable, α ∈ (0, 1], at a point t > 0; then:

(1) Nα(c) = 0 for any constant c ∈ R.

(2) Nα(fg)(t) = f(t)(Nαg)(t) + g(t)(Nαf)(t).

(3) Nα
(

f
g

)
=

g(t)(Nαf)(t)− f(t)(Nαg)(t)

g2(t)
.

(4) If f is differentiable (in the ordinary sense), then (Nαf)(t) = et
−α

f ′(t).

Proof. This is parts (c)–(f) of Theorem 2.3 in [1].

Remark. ([1, p. 91]) If (Nαf)(t) exists for t > 0, then f is differentiable (in the
ordinary sense) at t, and

f ′(t) = e−t−α

(Nαf)(t).
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As mentioned earlier, a very important advantage that the nonconformable frac-
tional derivative has over other fractional derivatives is the existence of a chain rule
that mimics the one for ordinary (integer valued) derivatives. We state it here as the
following lemma; its proof can be found in [1, Theorem 3.1].

Lemma 2.5. Let α ∈ (0, 1], g be Nα differentiable at t > 0, and f be differentiable
at g(t). Then

Nα(f ◦ g)(t) = f ′(g(t))(Nαg)(t).

In the study of continuability, boundedness, stability, and other asymptotic prop-
erties of solutions of nonlinear differential equations, the kinetic energy of the system
often appears as an integral such as F (x) =

∫ x

0
f(s)ds. It then becomes necessary to

differentiate this quantity. By applying the above chain rule, we obtain,

NαF (x) = f(x(t))(Nαx)(t).

Due to its importance, we formulate this as the following corollary.

Corollary 2.6. Let f : R → R and define F (x) =
∫ x

0
f(s)ds. Then

(NαF )(x) = f(x(t))(Nαx)(t).

Remark. An intermediate value theorem for nonconformable derivatives can be
found in [3, Theorem 4] framed in a multivariate setting, as can a multivariate chain
rule [3, Theorem 8]. Similarly, there is an implicit function theorem [3, Theorem 12].

We conclude this section with a Gronwall type inequality for nonconformable
fractional derivatives. Here, we let R = (−∞,∞) and R+ = [0,∞).

Lemma 2.7. Let c ∈ R+ and a, u : R → R+. If

u(t) ≤ c+ (NJα
t0au)(t), (2.1)

then
u(t) ≤ c exp{(NJα

t0a)(t)}. (2.2)

Proof. If we let K(t) denote the right hand side of (2.1), then it is easy to see that
(2.1) can be rewritten as

NαK(t)

K(t)
≤ a(t).

This implies
K ′(t)

K(t)
≤ e−t−α

a(t)

by Remark 2. Integrating, we have

lnK(t) ≤ lnK(t0) +

∫ t

t0

e−s−α

a(s)ds,
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so

K(t) ≤ K(t0) exp

∫ t

t0

e−s−α

a(s)ds.

Hence,

u(t) ≤ K(t) ≤ c exp{(NJα
t0a)(t)},

which proves (2.2).

3. Main Results

Consider the perturbed nonlinear differential equation with nonconformable fractional
derivatives

Nα(a(t)Nαx) + b(t, x,Nαx) + q(t)f(x)g(Nαx) = e(t, x,Nαx), (E)

where a, q : R+ → R+, b, e : R+ × R × R → R, and f , g : R → R are continuous
functions with g(v) > 0 for v ∈ R.

Special cases of the left hand side of this equation include the Emden–Fowler
equation (b ≡ 0 and g ≡ 1), the Liénard equation (a ≡ 1 ≡ q, b(t, u, v) = b(u)v,
g ≡ 1), and the Rayleigh equation (a ≡ 1 ≡ q, b(t, u, v) = b(v), g ≡ 1). We will make
use of a variety of different conditions on the coefficient functions including:

|e(t, u, v)| ≤ r(t), (3.1)

where r : R+ → R is a continuous function;

b(t, u, v)v ≥ 0, (3.2)

F (x) =

∫ x

0

f(s)ds → ∞ as |x| → ∞, (3.3)

|v|
g(v)

≤ m+ nG(v), (3.4)

where m and n are nonnegative constants and G(v) =

∫ v

0

sds

g(s)
,

v2

g(v)
≤ MG(v) for all v, (3.5)

where M is a positive constant;

Nαa(t) ≥ 0, (3.6)

and

a(t) ≤ A, (3.7)

where A > 0 is a constant.
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For any continuous function d : [0,∞) → R, we set (Nαd)(t)+ = max{(Nαd)(t), 0}
and Nαd(t)− = max{−(Nαd)(t), 0} which means that (Nαd)(t) = (Nαd)(t)+ −
(Nαd)(t)−. Also, if we let

b(t) = exp

{
−
(

NJα
t0

Nαd(t)−
d(t)

)
(t)

}
and c(t) = exp

{(
NJα

t0

Nαd(t)+
d(t)

)
(t)

}
then d(t) = d(t0)b(t)c(t). Moreover, it is not hard to show that if

NJα
t0

(
Nαd(t)−

d(t)

)
(∞) < ∞, (3.8)

then d(t) is bounded from below away from 0, and if

NJα
t0

(
Nαd(t)+

d(t)

)
(∞) < ∞,

then then d(t) is bounded from above.
In view of the above discussion, we list the following possible assumptions to be

used in this paper:

NJα
t0

(
Nαa(s)+

a(s)

)
(∞) < ∞, (3.9)

NJα
t0

(
Nαa(s)−

a(s)

)
(∞) < ∞, (3.10)

NJα
t0

(
Nαq(s)+

q(s)

)
(∞) < ∞, (3.11)

NJα
t0

(
Nαq(s)−

q(s)

)
(∞) < ∞. (3.12)

For convenience, we will write equation (E) as the system{
Nαx = y,

Nαy = [−(Nα(a(t))y − b(t, x, y)− q(t)f(x)g(y) + e(t, x, y)]/a(t).
(S1)

Note: As long as there is no ambiguity to the meaning, in what follows we will
write

NJα
t0M(t) to mean (NJα

t0M)(t).

It is important to know that solutions to our problem can be defined for all time in
the future, i.e., they are continuable. One such result is given in the following theorem.
By interchanging some of the conditions, it is possible to obtain some variations of it.

Theorem 3.1. Assume that F (x) is bounded from below and conditions (3.1), (3.2),
(3.4) and (3.6) hold. If G(v) → ∞ as |v| → ∞, then all solutions of system (S1) and
hence equation (E) are defined for all t > 0.
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Proof. Let x(t) be a solution of equation (E) and (x(t), y(t)) be the corresponding
solution of system (S1), and assume that the solution is not continuable, i.e.,

lim sup
t→T−

[|x(t)|+ |y(t)|] = +∞

for some 0 < T < ∞ (that is, the solution has finite escape time).

Now F (x(t)) ≥ −K for some constant K ≥ 0, so we define

V (t) = V (t, x(t), y(t)) = [F (x) +K]/a(t) +G(y)/q(t), (3.13)

where we have suppressed some of the dependence on t.

Then, by Lemmas 2.4 and 2.5 and Corollary 2.6,

NαV (t) = −[F (x) +K]Nαa(t)/a2(t) + f(x)Nαx/a(t)−G(y)Nαq(t)/q2(t)

+
y

g(y)q(t)
Nαy

≤ −G(y)Nαq(t)/q2(t) +
e(t, x, y)y

g(y)q(t)a(t)

≤ −G(y)Nαq(t)/q2(t) +
r(t)

q(t)a(t)

(
m+ nG(y)

)
.

If we now integrate NαV (t) from t0 to T , we see that

G(y(t))

q(t)
≤V (t)≤NJα

t0

(
G(y(t))

q(t)

[
Nαq(t)−/q(t) +

nr(t)

a(t)

])
+NJα

t0

(
mr(t)

a(t)q(t)

)
+V (t0),

(3.14)
or

G(y(t))/q(t) ≤ C + NJα
t0

{
G(y(t))

q(t)

[
Nαq(t)−/q(t) +

nr(t)

a(t)

]}
for some constant C > 0. By Lemma 2.7 we see that G(y(t))/q(t) and hence G(y(t))
is bounded on (0, T ). This implies y(t) is bounded on (0, T ) and an integration shows
that x(t) is bounded there as well. Therefore, the solution (x(t), y(t)) of (S1) does
not have finite escape time, and this proves the theorem.

It is possible to formulate alternate versions of Theorem 3.1, for example, if
b(t, u, v) ≡ 0, then obviously condition (3.2) is not needed; if e(t, u, v) ≡ 0, then (3.1)
and (3.4) are not needed; if a(t) ≡ 1, (3.6) is not needed; and (3.6) can be dropped
if we add condition (3.5). We leave the formulation and proofs of such results to the
reader.

Based on Theorem 3.1 and its proof, we can formulate a number of different
boundedness results. As an example, we have the following one. We will need the
condition

NJα
t0

( r
a

)
(∞) < ∞. (3.15)
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Theorem 3.2. If conditions (3.1)–(3.4), (3.6), (3.7), (3.12), and (3.15) hold, then
all solutions of equation (E) are bounded. If in addition, q(t) ≤ q2 < ∞ and

G(v) → ∞ as |v| → ∞, (3.16)

then all solutions of system (S1) are bounded.

Proof. First observe that condition (3.3) ensures that F (x) is bounded from below.
Then proceeding as in the proof of Theorem 3.1, we obtain (3.14) and so

V (t) ≤ NJα
t0

{
V (t)

[
Nαq(t)−/q(t) +

nr(t)

a(t)

]}
+ NJα

t0

{
mr(t)

a(t)q(t)

}
+ V (t0).

An application of Gronwall’s inequality (Lemma 2.7) and conditions (3.8) and (3.15)
show that V (t) is bounded. Hence, [F (x)+K]/a(t) is bounded, and so x(t) is bounded
by (3.3) and (3.7).

Now V (t) bounded implies G(y(t))
q(t) is bounded, and the additional hypotheses imply

that y(t) is bounded. This completes the proof of the theorem.

In order to show the versatility of the nonconformable fractional derivative, let us
consider the special case of equation (E)

Nα(Nαx) + b(x)Nαx+ f(x) = 0, (L)

i.e., the fractional Liènard equation, which we will write as the system{
Nαx = y −B(x)

Nαy = −f(x)
(S2)

where B(x) = NJα
t0b(x). Define

W (t) = W (t, x(t), y(t)) =
y2(t)

2
+ F (x).

Then along solutions of system (S2), we have

NαW (t) = yNαy + f(x)Nαx = −yf(x) + f(x)(y −B(x)) = −f(x)B(x).

Condition (3.2) implies xB(x) ≥ 0, so if xf(x) ≥ 0, we have NαW (t) ≤ 0. Thus,
W (t) is decreasing along solutions of (S2). Standard Lyapunov stability theorems
imply that the zero solution of (S2) is stable. In addition, if F (x) → ∞ as |x| → ∞,
then all solutions of (S2) are bounded.

We indicated earlier that variations of Theorem 3.1 can be obtained by swapping
some of the hypotheses. This is also the case for the boundedness result in Theorem
3.2. One such result is contained in the following theorem.
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Theorem 3.3. In addition to conditions (3.2), (3.3), (3.5), (3.7), (3.10), and (3.12),
assume that

|e(t, x, y)| ≤ r(t)a(t)

q(t)
(3.17)

and

NJα
t0

(
r

q

)
(∞) < ∞. (3.18)

Then all solutions of equation (E) are bounded. If, in addition, q(t) ≤ q2 < ∞ and
(3.16) holds, then all solutions of system (S1) are bounded.

Proof. Since the proof will proceed along the same lines as that of Theorem 3.2, let
us consider the terms arising from the differentiation of (3.13). First, we see that

−[F (x) +K]Nαa(t)/a2(t) ≤ V (t)Nαa(t)−/a(t)

and

−G(y)Nαq(t)/q2(t) ≤ V (t)Nαq(t)−/q(t).

Also,

y

g(y)q(t)
[−yNαa(t)] ≤ +

MG(y)

q(t)

Nαa(t)−
a(t)

≤ MV (t)
Nαa(t)−

a(t)
.

Now if |y| ≤ 1, then |y|
g(y) ≤ M1 for some M1 > 0, and if |y| ≥ 1, then |y|/g(y) ≤

|y|2/g(y), so |y|
g(y) ≤ M1 + |y|2/g(y) for all y. In view of condition (3.5), it is easy to

see that |y|
g(y) ≤ M1+MG(y) for all y. Also, (3.12) implies that q(t) ≥ q1 > 0. Hence,

by (3.17),

ye(t, x, y)

g(y)q(t)a(t)
≤ (M1 +MG(y))

r(t)

q(t)
≤

(
M1

q1
+

MG(y)

q(t)

)
r(t)

q(t)
.

We then have

NαV (t) ≤ V (t)

{
(1 +M)Nαa(t)−/a(t) +Nαq(t)−/q(t) +M

r(t)

q(t)

}
+

M1

q1

r(t)

q(t)
.

Applying our Gronwall type inequality and the hypotheses easily completes the proof.

Let us consider another Lyapunov (energy) type function,

W1(t) = W1(t, x(t), y(t)) = q(t)[F (x) +K]/a(t) +G(y). (3.19)
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Then,

NαW1(t) ≤ W1(t)
Nα

(
q(t)
a(t)

)
q(t)
a(t)

+
Nαa(t)−

a(t)

(
y2

g(y)

)
+

e(t, x, y)y

a(t)g(y)

≤ W1(t)

Nα
(

q(t)
a(t)

)
q(t)
a(t)

+M
Nαa(t)−

a(t)

+ (M1 +MG(y))
r(t)

a(t)

= W1(t)

Nα
(

q(t)
a(t)

)
q(t)
a(t)

+M
Nαa(t)−

a(t)
+M

r(t)

a(t)

+M1
r(t)

a(t)
.

Based on the above calculations, we can formulate the following result.

Theorem 3.4. In addition to conditions (3.1)–(3.3), (3.5), and (3.15), assume that

NJα
t0

Nα
(

q(t)
a(t)

)
q(t)
a(t)

 (∞) < ∞ (3.20)

and
q(t)

a(t)
≥ B1 > 0 (3.21)

for some constant B1. Then all solutions of equation (E) are bounded. If, in addition,
q(t) ≤ q2 < ∞ and (3.16) holds, then all solutions of system (S1) are bounded.

For our next boundedness theorem, we modify the Lyapunov (energy) functions we
have been using and see that this leads to a different set of conditions to be satisfied.
We begin by defining

v(t) = exp

{
NJα

t0

(
Nαq(t)−

q(t)

)
(t)

}
and w(t) = exp

{
NJα

t0

(
Nαa(t)−

a(t)

)
(t)

}
and note that v(t) ≤ 1 and w(t) ≤ 1.

Theorem 3.5. In addition to conditions (3.1)–(3.3), (3.5), (3.7), (3.10), (3.12), and
(3.15), assume that

y2/g(y) ≤ N1 for all y (3.22)

and

NJα
t0

(
r

aq

)
(∞) < ∞. (3.23)

Then all solutions of equation (E) are bounded. If, in addition, If, in addition,
q(t) ≤ q2 < ∞ and (3.16) holds, then all solutions of system (S1) are bounded.
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Proof. Define

W2(t) = W2(t, x(t), y(t)) = v(t)w(t) {[F (x) +K]/a(t) +G(y)/q(t)} . (3.24)

Then,

NαW2(t) ≤ v(t)w(t)

{
[F (x) +K]

Nαa(t)−
a2(t)

+ f(x)y/a(t) +
y

q(t)g(y)
Nαy

−G(y)
Nαq(t)−
q2(t)

+
(
[F (x) +K]/a(t)+G(y)/q(t)

)(Nαq(t)−
q(t)

+
Nαa(t)−

a(t)

)}
.

Condition (3.12) implies q(t) ≥ q1 > 0 and v(t) ≥ v1 > 0, and (3.10) implies
a(t) ≥ a1 > 0 and w(t) ≥ w1 > 0. We also see that |y|/g(y) is bounded for |y| ≤ 1
and |y|/g(y) ≤ |y|2/g(y) for |y| > 1, so from condition (3.22), |y|/g(y) ≤ N2 for all y
and some N2 > 0. Hence,

NαW2(t)≤W2(t)

[
Nαa(t)−

a(t)
+
Nαq(t)−

q(t)
+

1

v1w1

(
Nαa(t)−

a(t)
+
Nαq(t)−

q(t)
+
N2

q1

Nαa(t)−
a(t)

)]
+ v(t)w(t)

yr(t)

g(y)a(t)q(t)
.

Therefore,

NαW2(t)≤W2(t)

[
Nαa(t)−

a(t)
+
Nαq(t)−

q(t)
+

1

v1w1

(
Nαa(t)−

a(t)
+
Nαq(t)−

q(t)
+
N2

q1

Nαa(t)−
a(t)

)]
+

N2r(t)

a(t)q(t)
.

The remainder of the proof follows as before with an application of the Gronwall
inequality and the conditions of the theorem.

We conclude this section with the following observation. Notice that conditions
(3.15), (3.18), and (3.23) do not require that the perturbation term e be small, even
in the case where (3.1) holds. Many existing results on boundedness in the literature,
even for those not involving fractional derivatives, require

NJα
t0(r)(∞) < ∞.

This is not the case with Theorems 3.2–3.5 in this paper.

4. Asymptotic Properties of Solutions

The publication of the paper by Hammett [2] in 1971 generated a great deal of interest
in obtaining sufficient conditions for ensuring that nonoscillatory solutions x(t) of
various differential equations satisfy lim inft→∞ |x(t)| = 0, and this interest continues
to the present day. For the purposes of our discussion here, we classify solutions of
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equation (E) as follows. A solution of equation (E) is said to be nonoscillatory if for
any t0 > 0 there exists t1 > t0 such that x(t) ̸= 0 for t ≥ t1. A solution of equation
(E) is said to be oscillatory if for any t0 > 0 there exist t1 > t0 and t2 > t0, with
x(t1) > 0 and x(t2) < 0. A solution will be said to be a Z-type solution if it has
arbitrarily large zeros but is eventually nonnegative or nonpositive. It turns out that
asymptotic properties of nonoscillatory solutions often hold for the Z-type solutions
as well.

We begin with two results that give sufficient conditions for bounded nonoscillatory
and Z-type solutions to satisfy lim inft→∞ |x(t)| = 0. This is followed by four theorems
ensuring that all solutions of equation (E) converge to zero.

In what follows we will assume that

xf(x) > 0 if x ̸= 0 (4.1)

and that f(x) is bounded away from 0 if x is bounded away from 0.

This means that the constant K appearing in the Lyapunov type functions (3.13),
(3.19), and (3.24) can be chosen to be 0. In addition, we will use the conditions:

if u is bounded, there exists a continuous function k1 : R+ → R+ such that

|b(t, u, v)| ≤ k1(t)g(v), (4.2)

g(v) ≥ C for some constant C > 0, (4.3)

NJα
t0(q)(∞) = ∞, (4.4)

k1(t)

q(t)
→ 0 and

r(t)

q(t)
→ 0 as t → ∞, (4.5)

NJα
t0

(
1

a

)
(∞) = ∞, (4.6)

a(t)k1(t) → 0 and a(t)r(t) → 0 as t → ∞. (4.7)

Theorem 4.1. Assume conditions (3.1) and (4.1)–(4.6) hold. If x(t) is a bounded
nonoscillatory or Z-type solution of (E), then lim inft→∞ |x(t)| = 0.

Proof. If x(t) is a Z-type solution, the conclusion obviously holds, so let x(t) is a
bounded nonoscillatory solution of (E), say 0 < x(t) < c1 for t ≥ t0 > 0 and some
c1 > 0. The proof in case x(t) is eventually negative is similar. If lim inft→∞ x(t) ̸= 0,
then there exists t1 ≥ t0 and c2 > 0 so that x(t) ≥ c2 for t ≥ t1. Thus,
f(x(t)) > c3 > 0 for t ≥ t1 for some c3 by (4.1).

From equation (E) we have

Nα(a(t)Nαx)/g(Nαx) ≤ −b(t, x,Nαx)/g(Nαx)− q(t)f(x) + e(t, x,Nαx)g(Nαx)

≤ k1(t)− q(t)c3 + r(t)/C

≤ q(t)[k1(t)/q(t)− c3 + r(t)/q(t)].
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Since k1(t)/q(t) → 0 and r(t)/q(t) → 0 as t → ∞, we can choose t2 > t1 such that

Nα(a(t)Nαx)/g(Nαx) ≤ −(c3/3)q(t)

for t ≥ t2.
Integrating and applying condition (4.4) shows that a(t)Nαx is eventually nega-

tive, and this fact together with condition (4.6) shows that x(t) is eventually negative,
which is a contradiction. Therefore, lim inft→∞ x(t) = 0.

We also have the companion result.

Theorem 4.2. Assume that conditions (3.1), (4.1)–(4.3), (4.6), and (4.7) hold, and
a(t)q(t) ≥ B2 for some B2 > 0. If x(t) is a bounded nonoscillatory or Z-type solution
of (E), then lim inft→∞ |x(t)| = 0.

Proof. Proceeding as in the proof of Lemma 4.1, we arrive at

Nα(a(t)Nαx)/g(Nαx) ≤ k1(t)− q(t)c3 + r(t)/C

≤ 1

a(t)
[a(t)k1(t)− a(t)q(t)c3 + a(t)r(t)/C].

Condition (4.7) implies there exits T > 0 such that

Nα(a(t)Nαx)/g(Nαx) ≤ B2c3
2

for t ≥ T . The remainder of the proof is similar to that of Theorem 4.1

Our first theorem guaranteeing that all solutions converge to zero is built upon
Theorem 3.2.

Theorem 4.3. If conditions (3.1)–(3.4), (3.6), (3.7), (3.12), and (3.15) hold, then
every solution of (E) converges to zero as t → ∞.

Proof. Let x(t) be solution of (E). By Theorem 3.2, x(t) is bounded. Define V (t)
as in the proof of Theorem 3.2 (see (3.13) in the proof of Theorem 3.1) taking (4.1)
into account. Differentiating, we obtain

NαV (t) ≤
{
V (t)

[
Nαq(t)−/q(t) +

nr(t)

a(t)

]}
+

mr(t)

a(t)q(t)
. (4.8)

From the proof of Theorem 3.2, we have that V (t) is bounded, say V (t) ≤ K1 for
some K1 > 0. Let ϵ > 0 be given. By conditions (3.12) and (3.15), we can choose
Tϵ > t0 such that

NJα
Tϵ

(
Nαq(s)−

q(s)

)
(t) <

ϵ

4K1
and NJα

Tϵ

( r
a

)
(t) < min

{
q1ϵ

4m
,

ϵ

4nK1

}
for t ≥ Tϵ. Then, an integration of (4.8) shows that V (t) ≤ ϵ for t ≥ Tϵ, that is,

F (x(t))

A
≤ F (x(t))

a(t)
≤ V (t) → 0

as t → ∞, which implies x(t) → 0 as t → ∞.
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Our next theorem is based on Theorem 3.3.

Theorem 4.4. Let conditions (3.2), (3.3), (3.5), (3.7), (3.10), and (3.12), (3.17) and
(3.18) hold. Then then every solution of (E) converges to zero as t → ∞.

Proof. Let x(t) be a solution of (E); it is bounded by Theorem 3.3. Define V (t) as
used in the proof of Theorem 4.3. Differentiating, we obtain

NαV (t) ≤ V (t)

{
(1 +M)Nαa(t)−/a(t) +Nαq(t)−/q(t) +M

r(t)

q(t)

}
+

M1

q1

r(t)

q(t)
.

Again V (t) is bounded, say V (t) ≤ K2 for some K2 > 0. Let ϵ > 0. We then find
T1 > t0 so that

NJα
T1

(
Nαa(s)−

a(s)

)
(t) <

ϵ

4(1 +M)K1
, NJα

T1

(
Nαq(s)−

q(s)

)
(t) <

ϵ

4K1

and

NJα
T1

(
r

q

)
(t) < min

{
ϵ

4MK1
,

q1ϵ

K1M1

}
for t ≥ T1. The remainder of the proof follows as before.

Corresponding to the boundedness result in Theorem 3.4 we have the following
theorem.

Theorem 4.5. Let conditions (3.1)–(3.3), (3.5), (3.15), (3.20) and (3.21) hold. Then
any solution x(t) of equation (E) satisfies x(t) → 0 as t → ∞.

Proof. Let x(t) be a solution of (E) and define W1(t) by

W1(t) = W1(t, x(t), y(t)) = q(t)F (x)/a(t) +G(y).

We then have

NαW1(t) = W1(t)

Nα
(

q(t)
a(t)

)
q(t)
a(t)

+M
Nαa(t)−

a(t)
+M

r(t)

a(t)

+M1
r(t)

a(t)
.

The boundedness of W1 follows from the conditions in the theorem. Denote this fact
by W1(t) ≤ K3 for all t > t0 and let ϵ > 0 be given. Our conditions allow us to choose
T2 > t0 such that

NJα
T2

Nα
(

q(t)
a(t)

)
q(t)
a(t)

 (t) <
ϵ

4K3
NJα

T2

(
Nαa(t)−

a(t)

)
(t) <

ϵ

4MK3

and

NJα
T2

(
r(t)

a(t)

)
(t) <

ϵ

4K3(M +M1)

for t ≥ T2. The remainder of the proof proceeds as before.
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Based on Theorem 3.5 we have our last result in this paper.

Theorem 4.6. Let conditions (3.1)–(3.3), (3.5), (3.7), (3.10), (3.12), and (3.15)
(3.22) and (3.23) hold. Then every solution x(t) of equation (E) converges to 0 as
t → ∞.

Proof. With W2(t) defined as in the proof of Theorem 3.5, we find that

NαW2(t) ≤ W2(t)

[
Nαa(t)−

a(t)
+

Nαq(t)−
q(t)

+
1

v1w1

(
Nαa(t)−

a(t)
+

Nαq(t)−
q(t)

)]
+

N2r(t)

a(t)q(t)

and W2(t) ≤ K4 for t ≥ t0.
For a given ϵ > 0, we choose T3 > t0 with

NJα
T2

(
Nαa(t)−

a(t)

)
(t) <

ϵ

K4(1 +
1

v1w1
)
, NJα

T2

(
Nαq(t)−

q(t)

)
(t) <

ϵ

K4(1 +
1

v1w1
)

and

NJα
T2

(
r(t)−
a(t)q(t)

)
(t) <

ϵ

4

for all t ≥ T2. The remainder of the proof is straightforward and is left to the
reader.

In conclusion, we wish to point out that all the results in this section are new for
fractional differential equations of any type. Also, we remark that it would be inter-
esting to apply this definition of a nonconformable fractional derivative to equations
on time scales.
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appear.
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Szymanek

Abstract: We define the Demyanov metric and new metric and com-
pare with the Hausdorff and Vitale metrics. Vitale compared the Haus-
dorff metric ρH and Vitale metric ρV . We proved that main metric ρLV

is equivalence with ρH metric and that the family of nonempty, convex,
compact sets and the ρLV metric is the complete space.

AMS Subject Classification: 00A69, 97E60.
Keywords and Phrases: Demyanov metric; Hausdorff metric; Convex sets; Support
function.

1. Introduction

In the convex sets space metrics has a crucial role which we use for approximation of
convex sets, optimization, multifunction theory, control theory etc.

The well-known a Hausdorff metric is widely applied. In some situations the
Hausdorff metric is not fine enough to capture some changes in sets which may be
crucial. If we rotate a polytope then the Hausdorff distance is small but their faces
will not be parallel. Diamond et al in [2] reformulated the Demyanov metric and
showed that the Demyanov metric majorizes the Hausdorff metric but this metrics
are not equivalent for the of compact, convex sets. In 1985 R.A. Vitale give a metric
similar to metric use in the Lp function space and give relation from the Hausdorff
metric.
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2. Basic notations and preliminaries

We introduce some notation. By Kd will stand for the space of nonempty, compact,
convex subsets of Rd. To each A ∈ Kd we assign a support function in the direction
v: pA(v) = supa∈A < a, v > where < ·, · > is a scalar product and v is a vector the
unit sphere Sd−1.For bounded A this is a convex, positively homogenous functional
on Rd.

By A(v) = {a ∈ A :< a, v >= pA(v)} we define the face of set A ∈ Kd in the
direction v.

Definition 2.1. The point e ∈ A is exposed point of a set A if exist a vector v ∈ Sd−1

such that A(v) = e.

Let TA = {v ∈ Rd : A(v) is singleton}. The set TA is a set of full Lebesque
measure in Rd. The set Rd \ TA has always measure 0 and so for any two A,B ∈ Kd

the complement of TA ∩ TB has also measure 0.
As aritmetic operations in Kd we use the classical ones, namely the Minkowski

sum and scalar multiplication:

A+ b = {a+ b : a ∈ A, b ∈ B} for A,B ∈ Kd,

λA = {λa : a ∈ A} for λ ∈ Rd, A ∈ Kd.

3. The Hausdorff and Demyanov metric

Definition 3.1. Let A,B ∈ Kd. The Hausdorff metric is defined by

ρH(A,B) = max{e(A,B), e(B,A)}

where e(A,B) = supa∈A infb∈B ∥a− b∥, (∥ · ∥ is Euclidean norm in Rd).

We use this paper the following definition the Hausdorff distance

ρH(A,B) = sup
v∈Sd−1

|pA(v)− pB(v)|.

We recall a definition the stricly convex set.

Definition 3.2. The set A ∈ Kd we call stricly convex if for all v ∈ Rd, A(v) is
singleton.
By K̄d be shall denote the family of nonempty, compact and stricly convex sets.

The following examples a shows that the space (K̄d, ρH) is not complete.

Example 3.3. We consider the following sequence sets in K̄2

An = {(x1, x2) : x
2
1 + 2nx2

2 ≤ 1}.

Then ρH(An, Am) = | 1
2n − 1

2m | and is so the Cauchy sequence converges to a set
A = {(x1, x2) : −1 ≤ x1 ≤ 1, x2 = 0} which is not stricly convex.
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Now we define the Demyanov metric has been introduce earlier by Plís [4].

Definition 3.4. Let A,B ∈ Kd. The Demyanov distance we define

ρD(A,B) = sup{∥A(v)−B(v)∥ : v ∈ TA ∩ TB}.

The triangle inequality and the symmetricity are obvious. To prove that defines
a metric we remark that A = clco{A(v) : v ∈ TA},clco stands here for the closed,
convex hull of a set.This equality is a consequence that every compact, convex set
is the closed, convex hull of the set of its extreme points and with the Straszewicz
theorem give that the set of extreme points of a set in Kd is contained in the closure
of the set of its exposed points. So if ρD(A,B) = 0 then the boundaries of A and B
coincide and A = B.

Use the inequality |pA(v)− pB(v)| ≤ ∥A(v)−B(v)∥ for all v ∈ Sd−1 we have that
ρH(A,B) ≤ ρD(A,B).

The following example ilustrate that the Hausdorff metric not respond on of ro-
tation the sets.

Example 3.5. Let be the family sets from K2

Ax = clco{(0, 0), (cosx, sinx)}

where x ∈< 0, 2π >. We find the Hausdorff distance

ρH(Ax, Ay) =
√
(cosx− cosy)2 + (sinx− siny)2 =

√
2(1− cos(x− y)) =

sin|x− y| ≤ |x− y|.

So we have that if x → y then ρH(Ax, Ay) → 0. Now we find the Demyanov distance
for the sets Ax and Ay. Fix z such that π

2 + x < z < π
2 + y. Then Ax(z) = (0, 0) and

Ay(z) = (cosy, siny) so ρD(Ax, Ay) = 1.

T.Rzeżuchowski in( [5] Theorem 2.2) prove that in K̄d the Hausdorff metric and
the Demyanov metric are equivalent. T.Rzeżuchowski prove the following theorem.

Theorem 3.6. The metrics ρH and ρD are equivalent in K̄d, the metric space
(K̄d, ρH) is not complete and the space (K̄d, ρD) is complete.

4. The Vitale metric

In 1985 R.Vitale in [7] defined a new metric in Kd as follows

ρV (A,B) = (

∫
Sd−1

|pA(v)− pB(v)|p)dµ(v))
1
p for 1 ≤ p < ∞

where µ(·) is Lebesque unit measure on Sd−1.
The inequality |pA(v)−pB(v)| ≤ supv∈Sd−1 |pA(v)−pB(v)| is true for all v ∈ Sd−1

which implies immediately that ρV (A,B) ≤ ρH(A,B).
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In [7] Vitale showing that if we have the sequence sets An from Kd and A ∈ Kd

then ρV (An, A) → 0 ⇔ ρH(An, A) → 0 for all 1 ≤ p < ∞.

This fact imply the following theorem (Theorem 3 in [7]).

Theorem 4.1. All of the ρV metrics, 1 ≤ p < ∞, induce the same topology on Kd

and yield complete metric spaces in which closed, bounded sets are compact.

5. Main result

We introduce now the new metric

ρLV (A,B) = (

∫
TA∩TB

∥A(v)−B(v)∥pdµ(v))
1
p .

Obviously we have the inequality ρLV (A,B) ≤ ρD(A,B) and

ρV (A,B) ≤ ρLV (A,B).

Now we consider the example which a showed that ρD and ρLV metrics are not
equivalent.

Example 5.1. Let be the sequence sets from K2:

An = clco{(−1, 1), (1,−1), (1, 1 +
1

n
), (−1, 1)} and A ∈ K2

where

A = clco{(−1, 1), (1,−1), (1, 1), (−1, 1)}.

Then the metrics are:

ρH(An, A) =
1

n
, ρV (An, A) =

1

n
(
π

2
+ arctg

1

n
), ρD(An, A) =

√
4 +

1

n2

and main metric

ρLV (An, A) =

√
4 +

1

n2
arctg

1

n
.

We have that ρH(An, A) → 0 and ρV (An, A) → 0 and ρLV (An, A) → 0.

The Vitale result in [7] and the inequality ρV (A,B) ≤ ρLV (A,B) give that

ρLV (An, A) → 0 => ρV (An, A) → 0 =⇒ ρH(An, A) → 0.

Now we showing the inverse implication.

Theorem 5.2. Let A ∈ Kd and the sequence sets An ∈ Kd be such that
ρH(An, A) → 0. Then for all v ∈ T = TA ∩

⋂∞
n=1 TAn

, ∥An(v)−A(v)∥ → 0.
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Proof. Fix the v ∈ T where T = TA ∩
⋂∞

n=1 An and we assume that

∥An(v)−A(v)∥

not converges to 0. Exist α > 0 and the subsequence of the sequence An, denoted
again by An for which ∥yn −A(v)∥ > α > 0 for yn ∈ An(v).

Let yn → y0, then ∥y0 −A(v)∥ ≥ α. Because A(v) is the exposed point then

< y0, v > − < A(v), v >> 2α.

The following condition with assume the theorem ρH(An, A) → 0 imply that

sup
v∈Sd−1

|pAn(v)− pA(v)| → 0.

For sufficiently large n and for ϵ = α this the condition give that

< yn, v > − < A(v), v >≤ ϵ.

Because yn → y0 we have that

2ϵ < < y0, v > − < A(v), v >≤ ϵ.

This contradiction shows that ∥An(v)−A(v)∥ → 0.

The Theorem 5.2 implies:

Corollary 5.3. Let be A ∈ Kd and the sequence sets An be such that

T = TA ∩
∞⋂

n=1

TAn
.

Then the metrics ρH and ρLV are equivalent.

This result showed the following corollary:

Corollary 5.4. The space (Kd, ρLV ) is complete.

6. Summary

We can use the metrics to characterization of a set-valued Lipschitz map by uniformly
the Lipschitz selections in the cases for ρV the Lipschitz maps with the convex, com-
pact images or the ρLV Lipschitz maps with the convex, compact images.
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1. Introduction

Thivagar and Richard [23] established the field of nano topological spaces. In 2016,
Thivagar and Devi [21] introduced the notion of nano local functions and explore
the field of nano topological spaces. In 2018, Parimala and Jafari [18] introduced
the notion of nano I-continuous functions in nano ideal topological spaces. Jamal
M. Mustafa [13 - 16] studied weakly nano semi-I-open sets and weakly nano semi-I-
continuous functions and some covering properties using the b-open sets. In this paper
we introduce and study the new classes of continuous, irresolute and open functions
namely nano b − I − continuous, nano b − I − irresolute and nano b − I − open
functions in nano ideal topological spaces and we discuss some of their properties.

Let (D, ζ) be a topological space and A ⊆ D. The complement of A in D, the
closure of A, the interior of A and the power set of A will be denoted by D−A = Ac,
Cl (A), Int (A) and P (A), respectively. The subject of ideals in topological spaces
has been studied by Kuratowski [10] and Vaidyanathaswamy [25]. An ideal on a
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topological space (D, ζ) is defined as a non-empty collection I of subsets ofD satisfying
the following two conditions: (1) If A ∈ I and B ⊆ A, then B ∈ I; (2) If A ∈ I
and B ∈ I, then A ∪ B ∈ I. An ideal topological space is a topological space
(D, ζ) with an ideal I on D and is denoted by (D, ζ, I). For a subset A ⊆ D,
A∗(I) = {x ∈ D : U ∩ A /∈ I for every U ∈ ζ with x ∈ U} is called the local function
of A with respect to I and ζ [10]. We simply write A∗ instead of A∗(I) in case there is
no chance of confusion. It is well known that Cl∗(A) = A ∪A∗ defines a Kuratowski
closure operator for τ∗(I).

First we shall recall some definitions used in the sequel.

Definition 1.1. Let A be a subset of a topological space (D, ζ). Then

a) A is called semi− open [9] if A ⊆ Cl(Int(A)).

b) A is called pre− open [10] if A ⊆ Int(Cl(A)).

c) A is called α− open [10] if A ⊆ Int(Cl(Int(A))).

c) A is called b− open [1] if A ⊆ Cl(Int(A)) ∪ Int(Cl(A)).

d) A is called semi− closed [4] if it is the complement of a semi-open set.

e) The semi− closure of A [4], denoted by sCl (A), is the smallest semi-closed set
that contains A.

Definition 1.2. A subset A of an ideal topological space (D, ζ, I) is said to be

a) I − open [9] if A ⊆ Int(A∗).

b) semi− I − open [7] if A ⊆ Cl∗(Int(A)).

c) pre− I − open [5] if A ⊆ Int(Cl∗(A)).

d) b− I − open [6] if A ⊆ Cl∗(Int(A)) ∪ Int(Cl∗(A)).

2. Preliminaries

Definition 2.1. [23] Let U be a non-empty finite set of all objects called the universe
and R be an equivalence relation on U named as indiscernibility relation. Then U is
divided into disjoint equivalence classes. Elements belonging to the same equivalence
class are said to be indiscernible with one another. The pair (U,R) is said to be the
approximation space. Let D ⊆ U . Then,

(1) The lower approximation of D with respect to R is the set of all objects which
can be for certain classified as D with respect to R and is denoted by LR(D).
LR(D) = ∪{R(x) : R(x) ⊆ D,x ∈ U} where R(x) denotes the equivalence class
determined by x ∈ U .
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(2) The upper approximation of D with respect to R is the set of all objects which
can be possibly classified as D with respect to R and is denoted by UR(D) =
∪{R(x) : R(x) ∩D ̸= ϕ, x ∈ U}.

(3) The boundary region of X with respect to R is the set of all objects which can
be classified neither as X nor as not−D with respect to R and is denoted by
BR(D). BR(D) = UR(D)− LR(D).

Remark. [23] If (U,R) is an approximation space and D,E ⊆ U , then

(1) LR(D) ⊆ D ⊆ UR(D).

(2) LR(ϕ) = UR(ϕ) = ϕ.

(3) LR(U) = UR(U) = U .

(4) UR(D ∪ E) = UR(D) ∪ UR(E).

(5) UR(D ∩ E) ⊆ UR(D) ∩ UR(E).

(6) LR(D ∪ E) ⊇ LR(D) ∪ LR(E).

(7) LR(D ∩ E) = LR(D) ∩ LR(E).

(8) LR(D) ⊆ LR(E) and UR(D) ⊆ UR(E) whenever D ⊆ E.

(9) UR(D
c) = [LR(D)]c and LR(D

c) = [UR(D)]c.

(10) UR(UR(D)) = LR(UR(D)) = UR(D).

(11) LR(LR(D)) = UR(LR(D)) = LR(D).

Definition 2.2. [23] Let U be the universe, R be an equivalence relation on U and
ζR(D) = {U, ϕ, LR(D), UR(D), BR(D)} where D ⊆ U . Then by the last remark,
ζR(D) satisfies the following axioms:

(1) U and ϕ ∈ ζR(D).

(2) The union of the elements of any subcollection of ζR(D) is in ζR(D).

(3) The intersection of the elements of any finite subcollection of ζR(D) is in ζR(D).

Then ζR(D) is a topology on U called the nano topology on U with respect to X.
(U, ζR(D)) is called the nano topological space. Elements of the nano topology are
known as nano open sets in U and the complement of a nano open set is called nano
closed.

Definition 2.3. [23] If ζR(D) is the nano topology on U with respect to D, then the
set B = {U,LR(D), BR(D)} is the basis for ζR(D).

Definition 2.4. [23] If (U, ζR(D)) is a nano topological space with respect to D
where D ⊆ U and if A ⊆ U , then
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(1) The nano interior of the set A is defined as the union of all nano open subsets
contained in A and is denoted by nInt(A). nInt(A) is the largest nano open
subset of A.

(2) The nano closure of the set A is defined as the intersection of all nano closed
sets containing A and is denoted by nCl(A). nCl(A) is the smallest nano closed
set containing A.

Definition 2.5. [23] Let (U, ζR(D)) be a nano topological space and A ⊆ U . Then
A is said to be:

(1) nano semi− open if A ⊆ nCl(nInt(A)).

(2) nano pre open if A ⊆ nInt(nCl(A)).

Definition 2.6. Let (U, ζR(D)) and (V, ζR′(E)) be two nano topological spaces. A
function f : (U, ζR(D)) → (V, ζR′(E)) is called:

(1) nano continuous [24] if f−1(B) is nano open in U for every nano open set B
in V .

(2) nano semi-continuous [20] if f−1(B) is nano semi-open in U for every nano open
set B in V .

(3) nano precontinuous [22] if f−1(B) is nano preopen in U for every nano open set
B in V .

(4) nano open if f(A) is nano open in V for every nano open set A in U .

(5) nano closed if f(C) is nano closed in V for every nano closed set C in U .

3. Nano ideal topological spaces

In 2016, Thivagar and Devi [21] considered the nano local function in nano ideal
topological space and they obtained a new topology. A nano ideal topological space
is a nano topological space (U, ζR(D)) with an ideal I on U and is denoted by
(U, ζR(D), I). For a subset A ⊆ U , nA∗(I) = {x ∈ U : W ∩ A /∈ I for every
W ∈ ζR(D) with x ∈ W} is called the nano local function of A with respect to I
and ζR(D) [21]. We simply write nA∗ instead of nA∗(I) in case there is no chance of
confusion. It is well known that nCl∗(A) = A ∪ nA∗ defines a nano closure operator
for (ζR(D))∗(I).

Theorem 3.1. [21] Let (U, ζR(D)) be a nano topological space with ideals I, J on U
and A, B be subsets of U . Then the following statements are true:

(i) if A ⊆ B, then nA∗ ⊆ nB∗

(ii) if I ⊆ J , then nA∗(I) ⊆ nA∗(J).
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(iii) nA∗ = nCl(nA∗) ⊆ nCl(A).

(iv) n(nA∗)∗ = nA∗.

(v) nA∗ ∪ nB∗ = n(A ∪B)∗.

(vi) nA∗ − nB∗ = n(A−B)∗ − nB∗ ⊆ n(A−B)∗.

(vii) if V ∈ τR(D), then V ∩ nA∗ = V ∩ n(V ∩A)∗ ⊆ n(V ∩A)∗.

(viii) if E ∈ I, then n(A ∪ E)∗ = nA∗ = n(A− E)∗.

Theorem 3.2. [21] The nano closure operator nCl∗ satisfies the following conditions:

(i) A ⊆ nCl∗(A).

(ii) nCl∗(ϕ) = ϕ and nCl∗(U) = U .

(iii) if A ⊆ B then nCl∗(A) ⊆ nCl∗(B).

(iv) nCl∗(A) ∪ nCl∗(B) = nCl∗(A ∪B).

(v) nCl∗(nCl∗(A)) = nCl∗(A).

Definition 3.3. A subset A of a nano ideal topological space (U, ζR(D), I) is said
to be

(1) nano semi I − open [21] if A ⊆ nCl∗(nInt(A)).

(2) nano pre I − open [8] if A ⊆ nInt(nCl∗(A)).

(3) nano α− I − open [21] if A ⊆ nInt(nCl∗(nInt(A))).

Definition 3.4. A subset A ⊆ U in a nano ideal topological space (U, ζR(D), I) is
said to be nano b− I − open [19] if A ⊆ nCl∗(nInt(A)) ∪ nInt(nCl∗(A)).

The family of all nano b-I-open sets of the space (U, ζR(D), I) will be denoted by
NbIO(U, ζR(D)).

A subset A ⊆ U in a nano ideal topological space (U, ζR(D), I) is said to be nano
b− I − closed if its complement is nano b− I − open.

Theorem 3.5. For a subset of a nano ideal topological space, the following properties
hold:

(a) Every nano semi I − open set is nano b-I-open.

(b) Every nano pre I − open set is nano b-I-open.

(c) Every nano α− I − open set nano b-I-open.

The converse of each part in the above theorem need not be true as shown in the
following example.
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Example 3.6. Let U = {a, b, c, d} be the universe, D = {b, d} ⊆ U , U/R =
{{a}, {b}, {c, d}}, ζR(D) = {ϕ,U, {b}, {c, d}, {b, c, d}} and the ideal I = {ϕ, {a}}.
Then

(1) The set {a, b, d} is a nano b-I-open set but it is not nano semi-I-open.

(2) The set {a, b} is a nano b-I-open set but it is not nano pre-I-open and not nano
α− I − open.

Lemma 3.7. [9] Let A and B be subsets of U in a nano ideal topological space
(U, ζR(D), I).

a) If A ⊆ B, then A∗ ⊆ B∗.

b) If V ∈ ζR(D), then V ∩A∗ ⊆ (V ∩A)∗.

c) A∗ is nano closed in (U, ζR(D)).

Theorem 3.8. Let (U, ζR(D), I) be an ideal topological space and A,B subsets of U .

1) If Aα ∈ NbIO(U, ζR(D)) for each α ∈ ∆, then
⋃
{Aα : α ∈ ∆} ∈

NbIO(U, ζR(D)).

2) If A ∈ NbIO(U, ζR(D)) and B ∈ ζR(D), then A ∩B ∈ NbIO(U, ζR(D)).

Proof. 1) Since Aα ∈ NbIO(U, ζR(D)), we have⋃
α∈∆

Aα ⊆
⋃
α∈∆

[nCl∗(nInt(Aα)) ∪ nInt(nCl∗(Aα))]

⊆
⋃
α∈∆

{[(nInt(Aα)) ∪ (nInt(Aα))
∗] ∪ [nInt(Aα ∪A∗

α)]}

⊆ [nInt(
⋃
α∈∆

Aα) ∪ (nInt(
⋃
α∈∆

Aα))
∗] ∪ [nInt((

⋃
α∈∆

Aα) ∪ (
⋃
α∈∆

Aα)
∗)]

= nCl∗(nInt(
⋃
α∈∆

Aα)) ∪ nInt(nCl∗(
⋃
α∈∆

Aα)).

Hence
⋃

α∈∆
Aα ∈ NbIO(U, ζR(D)).

2) Let A ∈ NbIO(U, ζR(D)) and B ∈ ζR(D). Then A ⊆ nCl∗(nInt(A)) ∪
nInt(nCl∗(A)) and so

A ∩B ⊆ [nCl∗(nInt(A)) ∪ nInt(nCl∗(A))] ∩B

= [nCl∗(nInt(A)) ∩B] ∪ [nInt(nCl∗(A)) ∩B]

= [[nInt(A) ∪ (nInt(A))∗] ∩B] ∪ [nInt(A ∪A∗) ∩B]

⊆ [(nInt(A) ∩B) ∪ ((nInt(A)) ∩B)∗] ∪ [nInt[(A ∩B) ∪ (A∗ ∩B)]]

⊆ [(nInt(A) ∩B) ∪ (nInt(A) ∩B)∗] ∪ [nInt[(A ∩B) ∪ (A ∩B)∗]]

⊆ [(nInt(A ∩B)) ∪ (nInt(A ∩B))∗] ∪ [nInt[(A ∩B) ∪ (A ∩B)∗]]

= nCl∗(nInt(A ∩B)) ∪ nInt(nCl∗(A ∩B)).

This shows that A ∩B ∈ NbIO(U, ζR(D)).
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The following example shows that the finite intersection of nano b-I-open sets need
not be nano b-I-open.

Example 3.9. Let U = {a, b, c, d} be the universe, D = {b, d} ⊆ U , U/R =
{{a}, {b}, {c, d}}, ζR(D) = {ϕ,U, {b}, {c, d}, {b, c, d}} and the ideal I = {ϕ, {a}}.
Then the sets A = {a, b, d} and B = {a, c, d} are nano b-I-open sets but A∩B = {a, d}
is not nano b-I-open.

4. Nano b-I-continuous functions

Definition 4.1. [8] A function f : (U, ζR(D), I) → (V, ζR′(E)) is said to be nano
semi− I − continuous (resp. nano pre− I − continuous, nano α− I − continuous)
if f−1(B) is nano semi I-open (resp. nano pre I -open, nano α-I-open) set in
(U, ζR(D), I) for every nano open set B in (V, ζR′(E)).

Definition 4.2. A function f : (U, ζR(D), I) → (V, ζR′(E)) is called nano b − I −
continuous if the inverse image of each nano open set in (V, ζR′(E)) is a nano b-I-open
set in (U, ζR(D), I).

Remark.

1) Every nano continuous function is nano b-I-continuous.

2) Every nano semi-I-continuous function is nano b-I-continuous.

3) Every nano pre-I-continuous function is nano b-I-continuous.

4) Every nano α-I-continuous function is nano b-I-continuous.

The converse in each part of the above remark need not be true as shown in the
following three examples.

Example 4.3. Let U = {a, b, c, d} be the universe, D = {a, d} ⊆ U , U/R =
{{a, d}, {b}, {c}}, ζR(D) = {ϕ,U, {a, d}} and the ideal I = {ϕ, {a}} and let V =
{a, b, c}, Y = {a, c, d} ⊆ V , V/R′ = {{b}, {a, c}, {d}}, ζR′(E)) = {ϕ, V, {a, c, d}}.
Define f : (U, ζR(D), I) → (V, ζR′(E)) by f(a) = a, f(b) = b, f(c) = c, f(d) = d.
We note that, f−1({a, c, d}) = {a, c, d} is a nano b− I − open set but not nano open.
Hence, f is nano b-I-continuous but not nano continuous.

Example 4.4. Let U = {a, b, c, d} be the universe, D = {b, d} ⊆ U , U/R =
{{a, d}, {b}, {c}}, ζR(D) = {ϕ,U, {a, d}, {b}, {a, b, d}} and the ideal I = {ϕ, {a}}
and let V = {a, b, c, d}, E = {a, b, d} ⊆ V , V/R′ = {{a}, {b, d}, {c}}, ζR′(E)) =
{ϕ, V, {a, b, d}}.

(1) Define f : (U, ζR(D), I) → (V, ζR′(E)) by f(a) = c, f(b) = b, f(c) = a, f(d) = d.
Then f is nano b-I-continuous but not nano semi I-continuous.

(2) Define g : (U, ζR(D), I) → (V, ζR′(E)) by g(a) = a, g(b) = c, g(c) = b, g(d) = d.
Then g is nano b-I-continuous but not nano pre I-continuous.
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Example 4.5. Let U = {a, b, c, d} be the universe, D = {a, b} ⊆ U , U/R =
{{a}, {b, d}, {c}}, ζR(D) = {ϕ,U, {a}, {b, d}, {a, b, d}} and the ideal I = {ϕ, {a}} and
let V = {a, b, c}, E = {a} ⊆ V , V/R′ = {{a}, {b, c}}, ζR′(E)) = {ϕ, V, {a}}. Define
f : (U, ζR(D), I) → (V, ζR′(E)) by f(a) = f(b) = f(c) = a, f(d) = c. Then f is nano
b− I − continuous but not nano α− I − continuous.

Theorem 4.6. For a function f : (U, ζR(D), I) → (V, ζR′(E)) the following state-
ments are equivalent:

1) f is nano b-I-continuous.

2) For each x ∈ D and each B ∈ ζR′ (E) with f(x) ∈ B, there exists
A ∈ NbIO(U, ζR(D)) with x ∈ A such that f(A) ⊆ B.

3) The inverse image of each nano closed set in (V, ζR′(E)) is nano b-I-closed in
(U, ζR(D), I).

Proof. Straightforward.

Definition 4.7. Let A ⊆ U in a nano ideal topological space (U, ζR(D), I) and x ∈ U .
Then A is called a nano b− I −neighborhood of x, if there exists a nano b-I-open set
B containing x such that B ⊆ A.

Theorem 4.8. For a function f : (U, ζR(D), I) → (V, ζR′(E)), the following state-
ments are equivalent:

1) f is nano b-I-continuous.

2) For each x ∈ U and each nano open set B in (V, ζR′(E)) with f(x) ∈ B,
f−1(B) is nano b-I-neighborhood of x.

Proof. (1) ⇒ (2). Let x ∈ U and let B be a nano open set in (V, ζR′(E)) such
that f(x) ∈ B. By Theorem 4.7, there exists a nano b-I-open set A in (U, ζR(D), I)
with x ∈ A such that f(A) ⊆ B. So x ∈ A ⊆ f−1(B). Hence f−1(B) is a nano
b-I-neighborhood of x.

(2) ⇒ (1). Let B be a nano open set in (V, ζR′(E)) and let f(x) ∈ B. Then
by assumption, f−1(B) is a nano b-I-neighborhood of x. Thus for each x ∈ f−1(B)
there exists a nano b-I-open set Ax containing x such that x ∈ Ax ⊆ f−1(B). Hence
f−1(B) = ∪{Ax : x ∈ f−1(B)} and so f−1(B) ∈ NbIO(U, ζR(D)).

Definition 4.9. A function f : (U, ζR(D), I) → (V, ζR′(E)) is called nano b − I −
irresolute if f−1(B) is nano b-I-open in (U, ζR(D), I) for every nano b-I-open set B
in (V, ζR′(E)).

Theorem 4.10. Let f : (U, ζR(D), I) → (V, ζR′(E), J) and g : (V, ζR′(E), J) →
(W, ζR′′(Z),K) then

1) gof is nano b-I-continuous if f is nano b-I-continuous and g is nano continu-
ous.
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2) gof is nano b-I-continuous if f is nano b-I-irresolute and g is nano b-I-
continuous.

If (U, ζR(D), I) is a nano ideal topological space and A is a subset of U , we denote
by ζR(D)|A the relative nano topology on A and I|A = {A ∩ B : B ∈ I} is obviously
an ideal on A.

The proofs of the following two lemmas is similar to the proofs of Lemma 3.14
and Lemma 3.15 in [18].

Lemma 4.11. Let (U, ζR(D), I) be a nano ideal topological space and A, B be subsets
of U such that B ⊆ A. Then nB∗(ζR(D)|A, I|A) = nB∗(ζR(D), I) ∩A.

Lemma 4.12. Let (U, ζR(D), I) be a nano ideal topological space, A ⊆ U and
W ∈ ζR(D). Then nCl∗(A) ∩W = nCl∗W (A ∩W ).

Theorem 4.13. Let (U, ζR(D), I) be a nano ideal topological space, A ⊆ W ∈ ζR(D).
If A ∈ NbIO(U, ζR(D)) then A ∈ NbIO(W, ζR(D)|W , I|W ).

Proof. Since W ∈ ζR(D) and A ∈ NbIO(U, ζR(D)), we have

A = W ∩A ⊆ W ∩ [nCl∗(nInt(A)) ∪ nInt(nCl∗(A))]

= [W ∩ (nCl∗(nInt(A)))] ∪ [W ∩ (nInt(nCl∗(A)))]

⊆ nCl∗(W ∩ nInt(A)) ∪ (W ∩ nInt(nCl∗(A)))

= nCl∗(Int(W ∩A)) ∪ nInt(W ∩ nCl∗(A))

= nCl∗(nIntW (W ∩A)) ∪ nIntW (W ∩ nCl∗(A)).

Since W ∈ ζR(X) ⊆ ζR(X)∗, we obtain

A = W ∩A ⊆ W ∩ [nCl∗(nIntW (W ∩A)) ∪ nIntW (W ∩ nCl∗(A))]

= [W ∩ (nCl∗(nIntW (W ∩A)))] ∪ [W ∩ (nIntW (W ∩ nCl∗(A)))]

= nCl∗W (nIntW (W ∩A)) ∪ nIntW (W ∩ nCl∗(A))

= nCl∗W (nIntW (A)) ∪ nIntW (nCl∗W (A)).

Then A ∈ NbIO(W, ζR(X)|W , I|W ).

Corollary 4.14. Let (U, ζR(D), I) be a nano ideal topological space, W ∈ ζR(D) and
A ∈ NbIO(U, ζR(D)), then W ∩A ∈ NbIO(U, ζ|U , I|U ).

Proof. Since W ∈ ζR(D) and A ∈ NbIO(U, ζR(D)), by Theorem 3.8, W ∩ A ∈
NbIO(U, ζR(D)). SinceW ∈ ζR(D), by Theorem 4.14,W∩A∈NbIO(W,ζR(D)|W , I|W).

Theorem 4.15. Let f : (U, ζR(D), I) → (V, ζR′(E)) be a nano b−I−continuous func-
tion and W ∈ ζR(D). Then the restriction f|W : (W, ζR(D)|W , I|W ) → (V, ζR′(E)) is
nano b− I − continuous.
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Proof. Let G be any nano open set in (V, ζR′(E)). Since f is nano b − I −
continuous, we have f−1(G) ∈ NbIO(U, ζR(D)). Since W ∈ ζR(D), by Theo-
rem 4.14, we have W ∩ f−1(G) ∈ NbIO(W, τR(D)|W , I|W ). On the other hand,
(f|W )−1(G) = W ∩ f−1(G) and (f|W )−1(G) ∈ NbIO(W, τR(D)|W , I|W ). This shows
that f|W : NbIO(W, ζR(D)|W , I|W ) → (V, ζR′(E)) is nano b− I − continuous.

Definition 4.16. A nano ideal topological space (U, ζR(D), I) is said to be nano
b− I − normal if for each pair of non-empty disjoint nano closed subsets A and B of
U , there exist two nano b-I-open subsets G and W of U such that A ⊆ G, B ⊆ W
and G ∩W = ϕ.

Theorem 4.17. If f : (U, ζR(D), I) → (V, ζR′(E)) is nano b-I-continuous, nano
closed injection and V is nano normal, then (U, ζR(D), I) is nano b-I-normal.

Proof. Let A and B be two disjoint nano closed subsets of U . Since f is nano closed
and injective, f(A) and f(B) are disjoint nano closed subsets of (V, ζR′(E)). Since V
is nano normal, there exist two nano open subsets G and W of V such that f(A) ⊆ G,
f(B) ⊆ W and G ∩W = ϕ. Now f−1(G) and f−1(W ) are nano b-I-open in U with
A ⊆ f−1(G), B ⊆ f−1(W ) and f−1(G) ∩ f−1(W ) = ϕ. Thus (U, ζR(D), I) is nano
b-I-normal.

Definition 4.18. A nano ideal topological space (U, ζR(D), I) is said to be nano b−
I − connected if U can’t be written as a union of two disjoint nano b-I-open subsets
of D.

Theorem 4.19. The nano b-I-continuous image of a nano b-I-connected space is
nano connected.

Proof. Let f : (U, ζR(D), I) → (V, ζR′(E)) be a nano b-I-continuous function of
a nano b-I-connected space (U, ζR(D), I) onto a nano topological space (V, ζR′(E)).
Assume that V is not nano connected, then V = A∪B where A and B are non-empty
nano clopen with A∩B = ϕ. Since f is nano b-I-continuous, f−1(A) and f−1(B) are
non-empty nano b-I-open in U . Also, U = f−1(V ) = f−1(A∪B) = f−1(A)∪ f−1(B)
and f−1(A)∩f−1(B) = ϕ. Hence U is not nano b-I-connected which is a contradiction.
Therefore, V is nano connected.

5. Nano b-I-open functions

Recall that a subset F of a nano ideal topological space (U, ζR(D), I) is said to be
nano semi− I − closed [26 ] if its complement is nano semi-I-open.

Definition 5.1. A function f : (U, ζR(D)) → (V, ζR′(E), I) is called nano semi−I−
open (resp.,nano semi−I−closed) if the image of every nano open (resp., nano closed)
set in (U, ζR(D)) is nano semi-I-open (resp., nano semi-I-closed) in (V, τR′(E), I).
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Definition 5.2. A function f : (U, ζR(D)) → (V, ζR′(E), I) is called nano b−I−open
(resp., nano b − I − closed) if the image of every nano open (resp., nano closed) set
in (U, ζR(D)) is nano b-I-open (resp., nano b-I-closed) in (V, ζR′(E), I).

Remark. Every nano semi-I-open (resp., nano semi-I-closed) function is nano b-I-
open (resp., nano b-I-closed).

The converse of the above remark need not be true as shown in the following
example.

Example 5.3. Let U = {a, b, c, d} be the universe, D = {a, b, d} ⊆ U , U/R =
{{a}, {b, d}, {c}}, ζR(D) = {ϕ,U, {a, b, d}} and let V = {a, b, c, d}, E = {b, d} ⊆
V , V/R′ = {{a, d}, {b}, {c}}, ζR′(E)) = {ϕ, V, {a, d}, {b}, {a, b, d}} and the ideal
I = {ϕ, {a}}. Define f : (U, ζR(D)) → (V, ζR′(E), I) by f(a) = c, f(b) = b, f(c) = a,
f(d) = d. Then f is nano b-I-open but not nano semi I-open.

Theorem 5.4. A function f : (U, ζR(D)) → (V, ζR′(E), I) is nano b-I-open if
and only if for each x ∈ U and each nano neighborhood W of x there exists
G ∈ NbIO(V, ζR′(E)) containing f(x) such that G ⊆ f(W ).

Proof. ⇒) Suppose that f is a nano b− I − open function. For each x ∈ U and each
nano neighborhood W of x, there exists Wx ∈ ζR(D) such that x ∈ Wx ⊆ W . Let
G = f(Wx). Since f is nano b-I-open, G ∈ NbIO(V, ζR′(E)) and f(x) ∈ G ⊆ f(W ).

⇐) Let W be a nano open set in (U, ζR(D)). For each x ∈ W , there exists
Gx ∈ NbIO(V, ζR′(E)) such that f(x) ∈ Gx ⊆ f(W ). Now f(W ) = ∪{Gx : x ∈ W}
and so f(W ) ∈ NbIO(V, ζR′(E)). This shows that f is nano b-I-open.

Theorem 5.5. Let f : (U, ζR(D)) → (V, ζR′(E), I) be a nano b-I-open function. If G
is any subset of V and C is a nano closed subset of U with f−1(G) ⊆ C, then there
exists a nano b-I-closed subset H of V with G ⊆ H such that f−1(H) ⊆ C.

Proof. Suppose that f is a nano b-I-open function. Let G be any subset of V and
C a nano closed subset of U with f−1(G) ⊆ C. Then U −C is nano open. Since f is
nano b-I-open, f(U − C) is nano b-I-open in V . Let H = V − f(U − C). Then H is
nano b-I-closed in V . Since f−1(G) ⊆ C, G ⊆ H. Also, we obtain f−1(H) ⊆ C.

Theorem 5.6. Let f : (U, ζR(D)) → (V, ζR′(E), I) be nano b-I-closed. If G is any
subset of V and W is a nano open subset of U with f−1(G) ⊆ W , then there exists a
nano b-I-open subset H of V with G ⊆ H such that f−1(H) ⊆ W .

Proof. Similar to that used in Theorem 5.6.

Theorem 5.7. For any bijective function f : (U, ζR(D)) → (V, ζR′(E), I), the follow-
ing are equivalent:

1) f−1 : (V, ζR′(E), I) → (U, ζR(D)) is nano b-I-continuous.

2) f is nano b-I-open.

3) f is nano b-I-closed.
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Proof. It is straightforward.

Theorem 5.8. Let f : (U, ζR(D)) → (V, ζR′(E), I) and g : (V, ζR′(E), I) →
(W, ζR”(Z),K).

1) gof is nano b-I-open if f is nano open and g is a nano b-I-open.

2) f is nano b-I-open if gof is nano open and g is a nano b-I-continuous injection.
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Equations and its applications
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Abstract: In the present article, an extension for the family of
Volterra-type integro-differential equations, involving a generalization of
Hilfer fractional derivative with the Lorenzo-Hartley’s G-function (LHGF)
in the kernel, is proposed. A compact and computable solution of the con-
sidered family of integro-differential equations is established in terms of an
infinite series of LHGF. Further, certain known and new special cases of
the proposed family are also established. Furthermore, some examples of
the integro-differential equation are also discussed. Moreover, from the ap-
plication point of view, generalized fractional free-electron laser equations
involving the Caputo and the Riemann-Liouville fractional derivatives are
also determined. Finally, the graphical illustrations for the solutions of
the studied generalized fractional free-electron laser equations are demon-
strated.
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Keywords and Phrases: Fractional-order integro-differential equation; Hilfer-Prabhakar
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1. Introduction

The study of fractional calculus (FC) is gaining popularity in the scientific community.
It is applied to analyze several complicated phenomena in applied sciences. Several
fractional-order models are explored in the recent past that characterize the multi-
faceted behavior of a number of systems with complex dynamics. As an emerging
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area the subject has a wide variety of applications in different fields such as Medi-
cal Sciences, Space Sciences, Statistical mechanics, Control systems, Nuclear-physics,
Thermal power, Finance and Material sciences, etcetera. Substantial development for
the profound understanding of fractional calculus is noticed in the last few decades.
For some recent and new real-world applications of fractional calculus, we refer to Sun
at al. [62]. To review and insightful study of different concepts of fractional calculus
we refer to standard monographs such as [6, 7, 15, 24, 30, 32, 37, 39, 41, 42, 44, 48, 54].

Special functions (SFs) are widely used in mathematics [8]. Mathematicians and
applied scientists have made lots of efforts for the development of SFs while seeking an
exhaustive and unified theory for the subject matter. In most of the cases, classical
SFs are emerged as solutions of ordinary differential equations/partial differential
equations and represented in terms of series, or integrals, or in both [51, 52]. Several
classical SFs are useful in applied analysis and may be represented as particular
cases of generalized special functions (GSFs), such as Fox’s H-functions, Meijer’s G-
functions and generalized hypergeometric functions pFq, etcetera (we may call them
generalized classical functions). For a more detailed description of classical SFs, we
refer to classical monographs [1, 51, 52].

From the available corpus of classical SFs some may be referred as Special functions
for fractional calculus (SFs for FC) [32]. Most often, Special functions for fractional
calculus appear in the solution of arbitrary order differential equation or may arise
during modelling of complex physical systems, see [22, 29, 34, 38, 50] etcetera. FC,
in general, consists of differentiation and integration of arbitrary order and involves
differential and integral operator of fractional order. The development of the theory of
fractional calculus is largely dependent on the development of functions for the frac-
tional calculus [35]. Thus, one may expect that exploration about generalized func-
tions for fractional calculus may contribute towards the establishment of a unified the-
ory of fractional calculus. We believe that such generalizations of fractional calculus
may also provide a coherent methodology for analysis and applications. Generalized
fractional integral and derivative operators are generally introduced by the suitable
choice of functions that appeared in the kernel by more generalized functions, particu-
larly for more details we refer [16, 18, 19, 20, 21, 25, 26, 27, 28, 29, 49, 50, 56, 60, 61, 63].
One can believe that the future growth in the theory of fractional calculus as the gen-
eralized fractional calculus would be an outcome of the manifestation of generalized
special functions in different branches of science.

Fractional-order integro-differential equations are observed frequently in modelling
and analysis of physical systems, see [3, 13, 14, 55, 56]. For more background, we
refer to [43] and references therein. The present paper is about the applications of
generalized fractional operators and generalized functions for fractional calculus to
determine a unification of several fractional-order integro-differential equations that
arise in applied sciences. The work presented in this paper is inspired by the remark-
able contributions of other researchers (see [3, 4, 9, 10, 13, 14, 28, 43, 55]).

We present a brief description of different classical and novel fractional calculus
operators and introduce the Lorenzo-Hartley’s G-function (say LHGF) in the cur-
rent section. In Section 2, we propose a unification for family of fractional-ordered
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integro-differential equations including a generalized fractional function in the kernel
and a generalized fractional derivative operator (i.e., the Hilfer-Prabhakar derivative).
Next, we investigate the convergence of the obtained solution for further computa-
tional requirements. Further, some of the corollaries of Theorem 2.1 are derived in
the next Section 3. For the applications of the derived unification, two examples
are discussed in Section 4. Furthermore, in Section 5, solutions for two general-
ized fractional free-electron laser equations, involving Caputo and Riemann-Liouville
derivatives respectively, are determined. Moreover, some graphical illustrations for
the considered generalized fractional free-electron laser equations are demonstrated
in the same Section 5. Finally, in Section 6 we present some concluding remarks.

1.1. Riemann-Liouville fractional-order derivative

If h(t), where −∞ ≤ a < t < b ≤ ∞, is locally integrable real-valued function in
L1[a, b], then the µth(µ ∈ C) order right-sided Riemann-Liouville fractional integral
of h(t) is denoted by RLI

µ
a+h and defined as [42, 48, 54]:

(RLI
µ

a+h)(t) =
1

Γ(µ)

∫ t

a

h(u)

(t− u)1−µ
du = (h ∗ Fµ)(t), (1)

with the condition that (t > 0;Re(µ) > 0). The expression Fµ(t) is given by Fµ(t) =
tµ−1

Γ(µ)
.

If h(t) ∈ L1[a, b], where −∞ < a < t < b < ∞ and h ∗ Fm−µ ∈ Wm,1[a, b], m = ⌈µ⌉,
µ > 0, where ⌈·⌉ is the least integer function. Also, Wm,1[a, b] is used to denote the
Sobolev space defined as:

Wm,1[a, b] =
{
h(t) ∈ L1[a, b] :

dm

dtm
h(t) ∈ L1[a, b]

}
. (2)

The classical Riemann-Liouville right-sided fractional derivative of order µ (µ ∈ C,
Re(µ) > 0) is defined as:

(RLDµ
a+h)(t) =

( d
dt

)m(
(RLI

m−µ

a+ h)(t)
)
=

1

Γ(m− µ)

dm

dtm

∫ t

a

(t− u)m−µ−1h(u)du,

(3)
with m = −[−Re(µ)], where [·] denotes the integral part of the argument, i.e.

m =

 [Re(µ)] + 1 for µ /∈ N0,

µ for µ ∈ N0.
(4)

Particularly for µ = m ∈ N0, we write

(RLDµ
a+h)(t) = h(m)(t), (5)

where h(m)(t) is the standard mth order derivative of the function h(t).
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If AC[a, b] is the space of absolutely continuous functions and h(t) be the real-valued
functions with continuous derivative up to order (m − 1) on the interval [a, b] such
that hm−1(t) ∈ AC[a, b], we say that function h(t) ∈ ACm[a, b](m ∈ N). The space
ACm[a, b] of real-valued function is given as:

ACm[a, b] =
{
h : [a, b] → R :

dm−1

dtm−1
h(t) ∈ AC[a, b]

}
. (6)

1.2. Caputo fractional-order derivative

The Caputo fractional derivative of a function h(t), denoted by CDµ
a+h(t), has

a close connection with Riemann-Liouville fractional derivative RLDµ
a+h(t) (see

[15, 39, 41, 42]).

If h(t) ∈ ACm[a, b], µ ∈ C (Re(µ) > 0),m = ⌈µ⌉ then the right-sided µth order
Caputo fractional derivative of h(t) is defined as:

CDµ
a+h(t) =

(
RLI

m−µ

a+

dm

dtm
h
)
(t) =

1

Γ(m− µ)

∫ t

a

(t− u)m−µ−1 d
m

dum
h(u)du. (7)

The study of generalized fractional-order derivatives, being part of the investigation
of several researchers [19, 24, 27, 28, 29, 31, 34, 40, 55, 56, 59, 60, 61, 63], are of great
need as such generalized fractional derivatives play a vital role in the justification
of various phenomena in different complex systems. Now we consider some of the
popular generalizations of the above-defined classical fractional derivatives.

1.3. Hilfer derivative

If h(t) ∈ L1[a, b], h ∗ F(1−µ)(1−ν)(·) ∈ AC1[a, b] with the restrictions −∞ ≤ a < t <
b ≤ ∞, µ ∈ (0, 1) and ν ∈ [0, 1], then the right-sided Hilfer fractional-order derivative
of h(t), symbolically denoted by (HD

µ,ν
a+ h)(t), is defined as [24, 25, 26, 27, 30, 63]:

(HD
µ,ν

a+ h)(t) =
(
RLI

ν(1−µ)

a+

d

dt
RLI

(1−ν)(1−µ)

a+ h
)
(t). (8)

For ν = 0, the derivative HD
µ,ν
a+ reduces into the classical Riemann-Liouville fractional-

order derivative RLDµ
a+. Also on taking ν = 1 the derivative HD

µ,ν
a+ becomes Caputo

fractional-order derivative [33].

1.4. Prabhakar integral

If h ∈ L1(a, b), 0 ≤ a < t ≤ b ≤ ∞, then the right-sided Prabhakar integral PE
γ
ρ,µ,ω,a+

of the function h(t) is given as [29, 49, 50]:

(PE
γ

ρ,µ,ω,a+h)(t) = h ∗ eγρ,µ,ω(t) =
∫ t

a

(t− u)µ−1Eγ
ρ,µ(ω(t− u)ρ)h(u)du, (9)
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with γ, ρ, µ, ω ∈ C and Re(ρ) > 0,Re(µ) > 0. The symbol eγρ,µ,ω(t) in above Eq.
(9) is tµ−1Eγ

ρ,µ(ωt
ρ), and Eγ

ρ,µ(·) (where (·) denotes argument of the function) is
the generalized Mittag-Leffler function, for more details, see [50]. If we take γ = 0,
the integral operator PE

γ
ρ,µ,ω,a+ reduces into the Riemann-Liouville fractional-order

integral operator (see Eq. (1)).

1.5. Prabhakar derivative

The Prabhakar derivative is defined as the inverse operator of Prabhakar integral.
It is a generalization of the classical Riemann-Liouville derivative. If h ∈ L1(a, b),
0 ≤ a < t ≤ b ≤ ∞, and h ∗ e−γ

ρ,m−µ,ω(·) ∈ Wm,1(a, b),m = ⌈µ⌉, the right-sided

Prabhakar derivative PD
γ
ρ,µ,ω,a+ of a function h(t) is given as [29, 49, 50]:

(PD
γ

ρ,µ,ω,a+h)(t) =
( dm
dtm

(PE
−γ

ρ,m−µ,ω,a+h)
)
(t), (10)

where γ, ρ, µ, ω ∈ C and Re(ρ) > 0,Re(µ) > 0.

1.6. Regularized Prabhakar derivative

The regularized Prabhakar derivative operator can be considered as a generalization
of Caputo fractional derivative operator. If h(t) ∈ ACm(a, b), 0 ≤ a < t ≤ b ≤ ∞, the
regularized Prabhakar derivative is defined as [49]:

(CD
γ

ρ,µ,ω,a+h)(t) =
(
PE

−γ

ρ,m−µ,ω,a+

dm

dtm
h
)
(t). (11)

On substituting γ = 0 the derivative (CD
γ
ρ,µ,ω,a+h)(t) reduces into Caputo derivative

CDµ
a+h(t), defined by Eq. (7) in the subsection 1.2.

1.7. Hilfer-Prabhakar derivative

The Hilfer-Prabhakar derivatives (also known as the generalized Hilfer derivative) is
emerging as a useful differential operator, particularly in mathematical physics and
other branches of applied mathematics. Garra et al. [19] have described the dynam-
ics of the generalized renewal stochastic process and some other classical equations of
mathematical physics in terms of Hilfer-Prabhakar derivatives.

If h ∈ L1(a, b), h∗e−γ(1−ν)
ρ,(1−ν)(1−µ),ω(.)∈ AC1(a, b) with the restrictions 0 ≤ a < t ≤ b ≤ ∞,

µ ∈ (0, 1), and ν ∈ [0, 1], then the Hilfer-Prabhakar derivative is defined as [19]:

(HPD
γ,µ,ν

ρ,ω,a+h)(t) =
(
PE

−γν

ρ,ν(1−µ),ω,a+

d

dt
(PE

−γ(1−ν)

ρ,(1−µ)(1−ν),ω,a+h)
)
(t), (12)

where ω, ρ, γ ∈ C with Re(ρ) > 0. Particularly, If we put γ = 0, the Hilfer-Prabhakar
derivative becomes the Hilfer derivative given in above Eq. (8). The remarkable prop-
erty of the Hilfer-Prabhakar derivative is that it interpolates between the Prabhakar
derivative and its regularized version, given in Eq. (10) and Eq. (11), respectively.



66 S.C. Pandey, K. Chaudhary

1.8. The Lorenzo-Hartley’s function

Special functions arise ubiquitously in solutions of fractional differential equations.
The Agarwal’s function, Mittag-Leffler functions (with one, two & three parameters),
Erdélyi’s function, Robotnov & Hartley’s function, Miller & Ross’s function are some
of the appear naturally in the solution of various differential equations of integer and
non-integer orders. Lorenzo and Hartley [34] investigated a multivalued generalization
of standard exponential function known as Lorenzo-Hartley’s G-function (LHGF),
denoted as G{ρ,β,δ}(ω, v, t). Being an eigenfunction, all the order fractional differ-
integrals of LHGF appear in terms of LHGF (with suitably modified parameters). In
a recent monograph [35], it is shown that such generalized functions have a great po-
tential in investigations of scientific applications pertaining to Galactic classification,
Shell morphology, Weather prediction, etcetera. The infinite series representation of
LHGF given as:

G{ρ,β,δ}(ω, v, t) =

∞∑
k=0

(δ)kω
k(t− v)(k+δ)ρ−β−1

k!Γ((k + δ)ρ− β)
, with Re(ρδ − β) > 0, (13)

where (δ)k is the generalization of factorial (also known as rising factorial or Pochham-
mer’s symbol), is defined as:

(δ)0 = 1, (δ)1 = δ, (δ)2 = (δ)(δ + 1), ..., (δ)n = (δ)(δ + 1)...(δ + n− 1). (14)

On substituting v = 0 Eq. (13) reduces in to following convenient form:

G{ρ,β,δ}(ω, 0, t) = G{ρ,β,δ}(ω, t) =

∞∑
k=0

(δ)kω
kt(k+δ)ρ−β−1

k!Γ((k + δ)ρ− β)
, with Re(ρδ − β) > 0.

(15)
A number of functions have direct and elegant relationships with the LHGF

G{ρ,β,δ}(ω, b, t), for more details one can refer recent investigation [46].

A fractional function LHGF is gaining importance in applications and analysis as
it can handle increased time-domain complexity. In [64] Yang has discussed general-
ized fractional derivatives and integrals involving LHGFs (of one and two parameters)
in the kernel and illustrates some applications in applied sciences. In a most recent
monograph, Yang et al. [65] have demonstrated applications of such fractional op-
erators for the investigations of models pertaining to viscoelasticity. Chaurasia and
Pandey [11, 12] have extended the work of Haubold and Mathai [23] and studied
computable closed-forms of some generalized fractional kinetic equations in terms of
LHGF. Saxena et al. [57] have used LHGF in the investigation of generalized frac-
tional kinetic equations. Goufo [17] have applied this function in the study related to
bio-mathematical analysis associated with cellulose degradation dynamics. For some
more details about LHGF one can also refer to Mahmood et al. [36], Saha et al. [53],
Shakeel et al. [58] and recent investigations by Pandey [45, 46] .
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2. A unification of fractional Volterra-type integro-
differential equations

In this section, after presenting a chronological review pertaining to the development
of a Volterra-type fractional integro-differential equation (FIDE), we propose a unified
family of Volterra-type fractional integro-differential equations involving LHGF in the
kernel and a generalized Hilfer derivative. It is emphasized that the solution obtained
is also represented in a closed-form of LHGF. For the sake of simplified computations
via LHGF we have assumed that the order of fractional derivative lies between 0 and
1. Moreover, we discuss the convergence of the solution by the method recently used
by Giusti and Colombaro in [20] during the investigation of a generalized Viscoelastic
model.

Dattoli et al. [14] studied the following first-order integro-differential equation of
Volterra-type involving exponential function in the kernel:

d

dt
(h(t)) = −iπg0

∫ t

0

ζh(t− ζ)eiωζdζ, 0 ≤ t ≤ 1, with h(0) = h0 and g0, ω ∈ R,

(16)
and discussed analytical treatment that describes the unsaturated behaviour of the
free-electron laser equation (for other details, see [13]).

In this direction, Boyadjiev et al. [9] proposed following fractional analogue form
of the Volterra-type integro-differential Eq. (16) and examined analytic and numeri-
cal behaviour of the solution:(

RLD
µ

t h
)
(t) = ℓ

∫ t

0

ζh(t− ζ)eiωζdζ, 0 ≤ t ≤ 1, (17)

with RLD
µ−j
t h(t)|t=0 = hj ∈ R (j = 1, 2, 3, . . . , n), and where µ, ℓ ∈ C, (n − 1) <

Re(µ) ≤ n, n = −[−Re(µ)], ω ∈ R. The symbol RLD
µ
t in above Eq. (17) denotes is

the well-known Riemann-Liouville fractional derivative of order µ.
On substituting ϑ = (t− ζ), the Eq. (17) reduces into the following alternative form:

(
RLD

µ

t h
)
(t) = ℓ

∫ t

0

(t− ϑ)h(ϑ)eiω(t−ϑ)dϑ. (18)

Concurrently, Boyadjiev et al. [10] studied and investigated non-homogeneous FIDE
of the form: (

RLD
µ

t h
)
(t) = ℓ

∫ t

0

ζh(t− ζ)eiωζdζ + β′eiωt, 0 ≤ t ≤ 1, (19)

with RLD
µ−j
t h(t)|t=0 = hj ∈ R (j = 1, 2, 3, . . . n), where µ, β′, ℓ ∈ C; ω ∈ R; (n−1) <

Re(µ) ≤ n, and n = −[−Re(µ)]. An alternative form of the above FIDE can also
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be obtained as:

(
RLD

µ

t h
)
(t) = ℓ

∫ t

0

(t− ϑ)h(ϑ)eiω(t−ϑ)dϑ+ β′eiωt. (20)

Al-Shammery et al. [4] discussed following generalized form of FIDE and extended
the idea of Boyadjiev et al. [10]:

(
RLD

µ

t h
)
(t) = ℓ

∫ t

0

ζκh(t− ζ)eiωζdζ + β′eiωt, 0 ≤ t ≤ 1, (21)

with µ, β′, ℓ ∈ C, and ω ∈ R, and κ > −1. The above FIDE can be alternatively
put in following form:

(
RLD

µ

t h
)
(t) = ℓ

∫ t

0

(t− ϑ)κh(ϑ)eiω(t−ϑ)dϑ+ β′eiωt, 0 ≤ t ≤ 1, (22)

withµ, β′, ℓ ∈ C, ω ∈ R and κ > −1.

In continuation Saxena and Kalla [55] considered following extension of FIDE in-
volving Kummer’s hypergeometric function [38, 39]:

(
RLD

µ

t h
)
(t) = ℓ

∫ t

0

ζκh(t−ζ)Φ(b, κ+1; iωζ)dζ+ρ′tγΦ(β′, γ+1; iωt), 0 ≤ t ≤ 1, (23)

with µ, b, β′, ρ′, ℓ ∈ C, ω ∈ R, andκ > −1. The above FIDE (23) alternatively can be
put in following form:

(
RLD

µ

t h
)
(t) = ℓ

∫ t

0

(t− ϑ)κh(ϑ)Φ(b, κ+ 1; iω(t− ϑ))dϑ+ ρ′tγΦ(β′, γ + 1; iωt), (24)

0 ≤ t ≤ 1, with µ, b, β′, ρ′, ℓ ∈ C and ω ∈ R and κ > −1.

At the same time Kilbas et al. [28] have proposed and studied following interest-
ing and generalized form of the of above Eq. (24) which involves the well-known
Mittag-Leffler function [22] in the kernel and a general function ψ(t):

(
RLD

µ

a+h
)
(t) = ℓ

∫ t

a

(t− ϑ)(κ−1)Eδ
ρ,κ(ω(t− ϑ)ρ)h(ϑ)dϑ+ ψ(t), (25)

where µ, ρ, κ, δ and ω ∈ C (with Re(κ) > 0, Re(µ) > 0, Re(ρ) > 0).

Now, we propose a unified family of fractional integro-differential equations of
Volterra-type. Such unifications may deduce several interesting forms of well-known
(maybe also new) fractional integro-differential equations and provide a common
framework for computation of numerous problems in applied sciences.
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Theorem 2.1. If ψ(t) is a general function with h(t) ∈ L1(0,∞); γ, δ, ρ, ω, α, β
∈ C; 0 < µ < 1, 0 ≤ ν ≤ 1; Re(γ) ≥ 0, Re(δ) ≥ 0, Re(ρδ − β) > 0, Re(ρ) > 0,
Re(ω) > 0, then for FIDE:(

HPD
γ,µ,ν

ρ,ω,0+h
)
(t) + α

∫ t

0

G{ρ,β,δ}(ω, x, t)h(x)dx = ψ(t), (26)

with
(
PE

−γ(1−ν)
ρ,(1−ν)(1−µ),ω,0+h(t)

)
t=0+

= c, the following solution holds:

h(t) = ψ(t) ∗
∞∑
k=0

(−α)k
[
G{ρ,[(β−µ−ρδ)k−µ+ρ{(γ+δ)k+γ}],[(γ+δ)k+γ]}(ω, 0, t)

]

+c

∞∑
k=0

(−α)k
[
G{ρ,[(β−µ−ρδ)k−µ−ν(1−µ)+ρ{(γ+δ)k+γ−νγ}],[(γ+δ)k+γ−νγ]}(ω, 0, t)

]
, (27)

provided the sums on the RHS of above Eq. (27) converges.

Proof. The proof of the theorem is based on the Laplace transform method [47].
Applying the Laplace transform both the sides of the above integro-differential Eq.
(26), and using the following well-known result pertaining to the Laplace transform
of Hilfer-Prabhakar derivative operator (see for more details [19, 46, 49]):

L
(
HPD

γ,µ,ν

ρ,ω,a+h
)
(s) = L

(
(PE−γν

ρ,ν(1−µ),ω,a+

d

dt
(PE

−γ(1−ν)
ρ,(1−µ)(1−ν),ω,a+h)

)
(s)

= sµ[1− ωs−ρ]γL[h](s)− s−ν(1−µ)[1− ωs−ρ]γν
(
PE

−γ(1−ν)
ρ,(1−µ)(1−ν),ω,a+h(t)

)
t=a+

, (28)

we get

sµ(1− ωs−ρ)γ h̄(s)− cs−ν(1−µ)(1− ωs−ρ)γν + α
sβ−ρδ

(1− ωs−ρ)δ
h̄(s) = ḡ(s), (29)

where h̄(s) and ḡ(s) are the Laplace transforms of h(t) and ψ(t), respectively. Also,
Eq. (29) can be rewritten as:

h̄(s)

[
sµ(1− ωs−ρ)γ + α

sβ−ρδ

(1− ωs−ρ)δ

]
= ḡ(s) + cs−ν(1−µ)(1− ωs−ρ)νγ , (30)

or alternatively

h̄(s) =
ḡ(s)

sµ(1− ωs−ρ)γ

[
1 +

α

sµ+ρδ−β(1− ωs−ρ)(γ+δ)

]−1

+
s−ν(1−µ)(1− ωs−ρ)νγc

sµ(1− ωs−ρ)γ

[
1 +

α

sµ+ρδ−β(1− ωs−ρ)(γ+δ)

]−1

. (31)
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By the use of binomial series expansion the above Eq. (31) reduces into following
computable series:

h̄(s) = ḡ(s)

∞∑
k=0

(−α)k s(β−µ−ρδ)k−µ

(1− ωs−ρ)(γ+δ)k+γ
+ c

∞∑
k=0

(−α)k s(β−µ−ρδ)k−µ−ν(1−µ)

(1− ωs−ρ)(γ+δ)k+γ−νγ
. (32)

It is easy to see that the expressions involved in Eq. (31) will be there in the existence
provided both the infinite series are absolutely convergent power series, i.e., we must
have following condition: ∣∣∣ α

sµ+ρδ−β(1− ωs−ρ)(γ+δ)

∣∣∣ < 1. (33)

By the application of the well-known convolution theorem of the Laplace transform
and taking inverse Laplace transform on both the sides of above Eq. (32) , we arrive
on the desired solution of Eq. (26), given in Eq. (27).

Computation of the solution obtained in Eq. (27) is less trivial and based on the
convergence of each term involved therein. The first expression involves convolution
of the function ψ(t) with each term of infinite series of LHGF, i.e.

ψ(t) ∗
∞∑
k=0

(−α)k
[
G{ρ,[(β−µ−ρδ)k−µ+ρ{(γ+δ)k+γ}],[(γ+δ)k+γ]}(ω, 0, t)

]
. (34)

The convergence of the above expression, Eq. (34), is based on the convergence of
following infinite series consisting repeated series of LHGF:

∞∑
k=0

(−α)k
[
G{ρ,[(β−µ−ρδ)k−µ+ρ{(γ+δ)k+γ}],[(γ+δ)k+γ]}(ω, 0, t)

]
,

which can be rewritten by the use of series form of LHGF as:

∞∑
k=0

(−α)k
∞∑

n=0

((γ + δ)k + γ)nω
nt{(n+(γ+δ)k+γ)ρ−(β−µ−ρδ)k+µ−ρ((γ+δ)k+γ)−1}

n!Γ{(n+ (γ + δ)k + γ)ρ− (β − µ− ρδ)k + µ− ρ((γ + δ)k + γ)}
,

(35)
or equivalently

∞∑
k=0

(−α)k
∞∑

n=0

((γ + δ)k + γ)nω
nt{ρn+(ρδ+µ−β)k+µ−1}

n!Γ{ρn+ (ρδ + µ− β)k + µ}
. (36)

In order to prove the absolute convergence of the series labelled by k, we need to show
that the series

∞∑
k=0

(−α)k ((γ + δ)k + γ)nω
nt{ρn+(ρδ+µ−β)k+µ−1}

n!Γ{ρn+ (ρδ + µ− β)k + µ}
, (37)
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is absolutely convergent for each (fixed) n ∈ N ∪ {0} (for more details, see [5]).
Let us define

uk(n, t) = (−α)k ((γ + δ)k + γ)nω
nt{ρn+(ρδ+µ−β)k+µ−1}

n!Γ{ρn+ (ρδ + µ− β)k + µ}

= (−α)kΓ{(γ + δ)k + γ + n}
Γ{(γ + δ)k + γ}

(ωtρ)nt{(ρδ+µ−β)k+µ−1}

n!Γ{ρn+ (ρδ + µ− β)k + µ}
, (38)

using the asymptotic behaviour of the ratio of gamma functions we get∣∣∣uk+1(n, t)

uk(n, t)

∣∣∣ ∼ ∣∣∣ (−α)t(ρδ+µ−β)

k(ρδ + µ− β)

∣∣∣ ∀ t > 0, ∀ n ∈ N ∪ {0}, (39)

hence for k → ∞ we get

lim
k→∞

∣∣∣uk+1(n, t)

uk(n, t)

∣∣∣ = 0, ∀ t > 0, ∀ n ∈ N ∪ {0}, (40)

which indicates that the absolute convergence of the series involved in the first term
of Eq. (27). Also, if the function ψ(t) is continuous and suitably defined in L1(0,∞)
then the convolution must be convergent and the first term of Eq. (27) must be
convergent. The convergence of the second term of Eq. (27) can also be investigated
in a similar manner, thus we omit the details here.

3. Certain Volterra-type fractional integro-differential
equations based on the family of unified fractional
Volterra-type integro-differential equations

The above-discussed family of Volterra-type FIDE is general in nature and unifies
several elegant and interesting results proposed by eminent scholars. In the present
section, based on Theorem 2.1 we deduce some of the corollaries which may be directly
applicable in different fields of sciences, such as laser, nuclear, astrophysics, thermal
analysis, heat transfer etcetera.
For δ = 0;β = −η, Theorem 2.1 reduces into the following result recently investigated
by Pandey [46]:

Corollary 3.1. If h(t) ∈ L1(0,∞); γ, ρ, ω, α, η ∈ C; 0 < µ < 1, 0 ≤ ν ≤ 1;Re(γ) ≥
0,Re(δ) ≥ 0, Re(η) > 0,Re(ρ) > 0,Re(ω) > 0, then for the FIDE:(

HPD
γ,µ,ν

ρ,ω,0+h
)
(t) + α

∫ t

0

G{ρ,−η,0}(ω, x, t)h(x)dx = ψ(t), (41)

or, equivalently (
HPD

γ,µ,ν

ρ,ω,0+h
)
(t) +

α

Γ(η)

∫ t

0

(t− x)η−1h(x)dx = ψ(t), (42)
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with
(
PE

−γ(1−ν)
ρ,(1−ν)(1−µ),ω,0+h(t)

)
t=0+

= c, following solution holds:

h(t) = ψ(t) ∗
∞∑
k=0

(−α)k
[
G{ρ,[ργ(k+1)−(η+µ)k−µ],[γ(k+1)]}(ω, 0, t)

]

+c

∞∑
k=0

(−α)k
[
G{ρ,[ν(µ−1)−µ−(η+µ)k+ρ{γ(k+1)−νγ}],[γ(k+1)−νγ]}(ω, 0, t)

]
, (43)

provided the sums on the RHS of above Eq. (43) converges.

Remark. The results presented as Corollaries 7, 8 and 9 in [46] can also be deduced
as the particular cases of the theorem 2.1. For more details, see [2] and [63].

On taking γ = 0 in Theorem 2.1, we arrive on the following corollary pertaining
to certain family of Volterra-type FIDE based on the Hilfer derivative that involves
LHGF in the kernel.

Corollary 3.2. If h(t) ∈ L1(0,∞); 0 < µ < 1, 0 ≤ ν ≤ 1; α, ρ, β, δ ∈ C;
Re(ρδ − β) > 0, Re(ω) > 0 then for FIDE of the form:(

HDµ,ν

0+ h
)
(t) + α

∫ t

0

G{ρ,β,δ}(ω, x, t)h(x)dx = ψ(t), (44)

with
(
RLI

(1−µ)(1−ν)
0+ h(t)

)
t=0+

= c, following solution holds:

h(t) = ψ(t) ∗
∞∑
k=0

(−α)k
[
G{ρ,[(β−µ)k−µ],δk}(ω, 0, t)

]

+c

∞∑
k=0

(−α)k
[
G{ρ,[(β−µ)k−µ−ν(1−µ)],[δk]}(ω, 0, t)

]
, (45)

provided the sums on the RHS of above Eq. (45) converges.

On setting ν = 0 in Corollary 3.2, we get the following form of Volterra-type
FIDE:

Corollary 3.3. If h(t) ∈ L1(0,∞); 0 < µ < 1; α, ρ, β, δ ∈ C; Re(ρδ − β) > 0,
Re(ω) > 0, then for FIDE:(

RLD
µ

0+h
)
(t) + α

∫ t

0

G{ρ,β,δ}(ω, x, t)h(x)dx = ψ(t), (46)

with
(
RLI

(1−µ)
0+ h(t)

)
t=0+

= c, following solution holds:

h(t) = ψ(t) ∗
∞∑
k=0

(−α)k
[
G{ρ,[(β−µ)k−µ],δk}(ω, 0, t)

]
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+c

∞∑
k=0

(−α)k
[
G{ρ,[(β−µ)k−µ],δk}(ω, 0, t)

]
, (47)

provided the sums on the RHS of above Eq. (47) converges.

Remark. If we substitute α = −ℓ(Γ(κ+ 1)) with ρ→ 1; β → (ϖ − κ+ 1); δ → ϖ;
ω → iω and ψ(t) = ρ′Γ(γ + 1)G{1,(β′−γ+1),β′}(iω, 0, t) in the above Eq. (46) of
Corollary 3.3, we arrive on the following Volterra-type FIDE:(

RLD
µ

0+h
)
(t) = ℓ(Γ(κ+ 1))

∫ t

0

G{1,(ϖ−κ+1),ϖ}(iω, x, t)h(x)dx

+ρ′Γ(γ + 1)G{1,(β′−γ+1),β′}(iω, 0, t), (48)

with
(
RLI

(1−µ)
0+ h(t)

)
t=0+

= c. The FIDE in Eq. (48) is equivalent to the result studied

by Saxena and Kalla [55], discussed in Eq. (24).

Remark. Using the relation given in [46], Eq. (25), in above Eq. (46), we arrive on
following FIDE:(

RLD
µ

0+h
)
(t) + α

∫ t

0

(t− x)ρδ−β−1Eδ
ρ,(ρδ−β)(ω(t− x)ρ)(h(x)dx = ψ(t), (49)

with
(
RLI

(1−µ)
0+ h(t)

)
t=0+

= c, which on substituting α = −ℓ; ρδ − β = κ yields the

well-known Volterra-type integro-differential equation investigated by Kilbas et al.
[28], given in above Eq. (25).

On taking ν = 1 in Corollary 3.2, we get following family of Volterra-type FIDE
in terms of the Caputo derivative involving LHGF in the kernel.

Corollary 3.4. If h(t) ∈ L1(0,∞); 0 < µ < 1; α, ρ, β, δ ∈ C; Re(ρδ − β) > 0,
Re(ω) > 0, then for FIDE:(

CD
µ

0+h
)
(t) + α

∫ t

0

G{ρ,β,δ}(ω, x, t)h(x)dx = ψ(t), (50)

with h(t)t=0+ = c, following solution holds:

h(t) = ψ(t) ∗
∞∑
k=0

(−α)k
[
G{ρ,[(β−µ)k−µ],δk}(ω, 0, t)

]

+c

∞∑
k=0

(−α)k
[
G{ρ,[(β−µ)k−µ−(1−µ)],δk}(ω, 0, t)

]
, (51)

provided the sum on the RHS of above Eq. (51) converges.

Remark. The detailed analysis of the corollaries concerning convergence discussed in
this section can be done exactly in the same way as we have proposed in Theorem 2.1.
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4. Certain examples pertaining to the unified fam-
ily of Volterra-type fractional integro-differential
equations

In this section, we investigate some applications of Theorem 2.1 by considering
some particular forms of the function ψ(t). Let’s consider the case when ψ(t) =
G{ρ,η,ξ}(ω, 0, t), we arrive on the following result:

Example 4.1. If h(t)∈L1(0,∞); 0 < µ < 1, 0 ≤ ν ≤ 1; γ ≥ 0; ρ, ω, α, η, β, δ, ξ, λ ∈ C;
Re(ρδ − β) > 0, Re(ρξ − η) > 0, Re(ρ) > 0, Re(ω) > 0, then for FIDE:

(
HPD

γ,µ,ν

ρ,ω,0+h
)
(t) + α

∫ t

0

G{ρ,β,δ}(ω, x, t)h(x)dx = ψ(t) = λG{ρ,η,ξ}(ω, 0, t), (52)

with
(
PE

−γ(1−ν)
ρ,(1−ν)(1−µ),ω,0+h(t)

)
t=0+

= c, following solution holds:

h(t) = c

∞∑
k=0

(−α)k
[
G{ρ,[(β−µ+ργ)k−ν(1−µ)−µ+ργ(1−ν)],[(γ+δ)k+γ(1−ν)]}(ω, 0, t)

]

+λ

∞∑
k=0

(−α)k
[
G{ρ,[(β−µ+ργ)k+(η−µ+ργ)],[(γ+δ)k+γ+ξ]}(ω, 0, t)

]
, (53)

provided the sum on RHS of above Eq. (53) converges.

Particularly, if we substitute λ = 0 in the above example we arrive on the follow-
ing homogeneous FIDE:(

HPD
γ,µ,ν

ρ,ω,0+h
)
(t) + α

∫ t

0

G{ρ,β,δ}(ω, x, t)h(x)dx = 0, (54)

with
(
PE

−γ(1−ν)
ρ,(1−ν)(1−µ),ω,0+h(t)

)
t=0+

= c, then following solution holds:

h(t) = c

∞∑
k=0

(−α)k
[
G{ρ,[(β−µ+ργ)k−ν(1−µ)−µ+ργ(1−ν)],[(γ+δ)k+γ(1−ν)]}(ω, 0, t)

]
, (55)

provided the sum on RHS of above Eq. (55) converges.

Furthermore, if we substitute δ = 0; β = −τ with the conditions Re (ρ) > 0,
Re(τ) > 0,Re(ρξ − η) > 0, Re(ω) > 0 in Example 4.1, we arrive on following FIDE:

(
HPD

γ,µ,ν

ρ,ω,0+h
)
(t) + α

∫ t

0

G{ρ,−τ,0}(ω, x, t)h(x)dx = λG{ρ,η,ξ}(ω, 0, t), (56)
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or equivalently (applying the relation [46], Eq. (16))(
HPD

γ,µ,ν

ρ,ω,0+h
)
(t) +

α

Γ(τ)

∫ t

0

(t− x)τ−1h(x)dx = λG{ρ,η,ξ}(ω, 0, t), (57)

with
(
PE

−γ(1−ν)
ρ,(1−ν)(1−µ),ω,0+h(t)

)
t=0+

= c, which has its solution as:

h(t) = c

∞∑
k=0

(−α)k
[
G{ρ,[(ργ−τ−µ)k−ν(1−µ)−µ+ργ(1−ν)],[γk+γ(1−ν)]}(ω, 0, t)

]

+λ

∞∑
k=0

(−α)k
[
G{ρ,[(ργ−τ−µ)k+(η−µ+ργ)],[γk+γ+ξ]}(ω, 0, t)

]
, (58)

provided the sum on the RHS of above Eq. (58) converges.

Let us consider the case when the function ψ(t) = λG{ρ,−η,0}(ω, 0, t), then by the
Theorem 2.1 we can deduce following particular example:

Example 4.2. If h(t) ∈ L1(0,∞); 0 < µ < 1, 0 ≤ ν ≤ 1; γ ≥ 0; ρ, ω, α, η, β, δ ∈ C;
Re(ρδ − β) > 0, Re(η) > 0, Re(ρ) > 0, Re(ω) > 0 then for FIED:(

HPD
γ,µ,ν

ρ,ω,0+h
)
(t) + α

∫ t

0

G{ρ,β,δ}(ω, x, t)h(x)dx = λG{ρ,−η,0}(ω, 0, t), (59)

or equivalently (applying the relation [46], Eq. (21))(
HPD

γ,µ,ν

ρ,ω,0+h
)
(t) + α

∫ t

0

G{ρ,β,δ}(ω, x, t)h(x)dx = λ
tη−1

Γ(η)
, (60)

with
(
PE

−γ(1−ν)
ρ,(1−ν)(1−µ),ω,0+h(t)

)
t=0+

= c, following solution holds:

h(t) = c

∞∑
k=0

(−α)k
[
G{ρ,[(β−µ+ργ)k−ν(1−µ)−µ+ργ(1−ν)],[(γ+δ)k+γ(1−ν)]}(ω, 0, t)

]

+λ

∞∑
k=0

(−α)k
[
G{ρ,[(β−µ+ργ)k+(ργ−η−µ)],[(γ+δ)k+γ]}(ω, 0, t)

]
, (61)

provided the sum on RHS of above Eq. (61) converges.

Moreover, for δ = 0;β = −σ with Re(σ) > 0,Re(η) > 0 FIDE, presented as Eq.
(59), reduces into following form:(

HPD
γ,µ,ν

ρ,ω,0+h
)
(t) + α

∫ t

0

G{ρ,−σ,0}(ω, x, t)h(x)dx = λG{ρ,−η,0}(ω, 0, t), (62)
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which equivalently can be rewritten as(
HPD

γ,µ,ν

ρ,ω,0+h
)
(t) +

α

Γ(σ)

∫ t

0

(t− x)σ−1h(x)dx = λ
tη−1

Γ(η)
, (63)

with
(
PE

−γ(1−ν)
ρ,(1−ν)(1−µ),ω,0+h

)
t=0+

= c has its solution as:

h(t) = c

∞∑
k=0

(−α)k
[
G{ρ,[(ργ−σ−µ)k−ν(1−µ)−µ+ργ(1−ν)],[γk+γ(1−ν)]}(ω, 0, t)

]

+λ

∞∑
k=0

(−α)k
[
G{ρ,[(ργ−σ−µ)k+(ργ−η−µ)],[γk+γ]}(ω, 0, t)

]
, (64)

provided the sum on RHS of above Eq. (64) converges.

The solutions of Theorem 2.1, its corollaries, and associated examples are obtained
in terms of LHGF where we tactically assumed that the range of different parameters
are taken in such a way that the obtained solutions must be convergent.

5. Applications in Free-electron laser (FEL) equa-
tions

To demonstrate applications of the presented unified family of fractional Volterra-
type integro-differential equation, we deduce two fractional-order generalizations of
free-electron laser equations involving LHGF in the kernel as the special cases of
Example 4.1.

5.1. Fractional free-electron laser equation based on Caputo
derivative

On setting λ = 0, γ = 0, ν = 1, above Example 4.1 reduces into following generali-
zation of fractional free-electron laser equation based on Caputo derivative:

If 0 < µ < 1, Re(ρδ − β) > 0, then FIDE that represents generalized FEL :(
CD

µ

0+h
)
(t) + α

∫ t

0

G{ρ,β,δ}(ω, x, t)h(x)dx = 0, (65)

with [h(t)]t=0+ = c, has its solution in terms of LHGF as:

h(t) = c

∞∑
k=0

(−α)k
[
G{ρ,[(β−µ)k−1],δk}(ω, 0, t)

]
, (66)

provided the sum on RHS of Eq. (66) converges.
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Figure 1: Graph demonstrates the real part of the solution for Caputo derivative of
order µ = 1/9

Figure 2: Graph exhibits the imaginary part of the solution for Caputo derivative of
order µ = 1/9
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Figure 3: Graph displays the real part of the solution for Caputo derivative of order
µ = 1/2

Figure 4: Graph describes the imaginary part of the solution for Caputo derivative
of order µ = 1/2
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Figure 5: Graph indicates the real part of the solution for Caputo derivative of order
µ = 8/9

Figure 6: Graph reflects the imaginary part of the solution for Caputo derivative of
order µ = 8/9
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5.2. Fractional free-electron laser equation based on Riemann-
Liouville derivative

On substituting λ = 0, γ = 0, ν = 0, above Example 4.1 give rise to the following frac-
tional homogeneous fractional free-electron laser equation based on Riemann-Liouville
derivative:

If 0 < µ < 1, Re(ρδ − β) > 0, then FIDE that represents generalized FEL:(
RLDµ

0+h
)
(t) + α

∫ t

0

G{ρ,β,δ}(ω, x, t)h(x)dx = 0, (67)

with
(
RLI(1−µ)

0+ h(t)
)
t=0+

= c, has it solution in terms of LHGF as:

h(t) = c

∞∑
k=0

(−α)k
[
G{ρ,[(β−µ)k−µ],δk}(ω, 0, t)

]
, (68)

provided the sum on RHS of Eq. (68) converges.

Figure 7: Graph demonstrates the real part of the solution for Riemann-Liouville
derivative of order µ = 1/9
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Figure 8: Graph exhibits the imaginary part of the solution for Riemann-Liouville
derivative of order µ = 1/9

Figure 9: Graph displays the real part the of the solution for Riemann-Liouville
derivative of order µ = 1/2
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Figure 10: Graph describes the imaginary part of the solution for Riemann-Liouville
derivative of order µ = 1/2

Figure 11: Graph indicates the real part the of the solution for Riemann-Liouville
derivative of order µ = 8/9
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Figure 12: Graph reflects the imaginary part of the solution for Riemann-Liouville
derivative of order µ = 8/9

To illustrate the behaviour of the solutions of the above-mentioned generalized
free-electron laser Equations (65) and (67) based on Caputo derivative and Riemann-
Liouville derivative, respectively, the computation for the solutions are performed
on MATLAB using series representation of LHGF. Particularly, the parameters for
computations are taken as: α = 1, c = 1, ρ = 1, δ = 1, (0 + i0.07) < ω < (0 + i7),
(with the difference of (0 + i0.07)) 0.01 < t < 1.0, and β = 0.2 (with the difference of
0.01). The behavior of the obtained solutions are shown in figures. Figure 1 through
Figure 6 exhibit the behaviour of the real and imaginary parts of the solutions for
homogeneous fractional free-electron laser Eq. (65) with Caputo derivative. Figure
7 through Figure 12 demonstrate the behaviour of the real and imaginary parts of
the solutions for homogeneous fractional free-electron laser Eq. (67) with Riemann-
Liouville derivative.

6. Concluding remarks

In this paper, we have investigated a unified family of Volterra-type fractional integro-
differential equations. The solution of the considered family is determined in the
closed-forms of LHGF, which works well in case of increased time-domain complex-
ity. To investigate the computational nature of the solution of the considered unified
family, we have discussed the convergence of the solution. Several known and new
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fractional integro-differential equations involving different functions for fractional cal-
culus in the kernel (obtained by proper choice of parameters in LHGF) accompanied
by various forms of fractional derivatives, can be derived by specializing the param-
eters involved therein. Notably, the results can also be used to obtain closed-form
solutions for several other Volterra-type fractional integro-differential equations that
arise in different engineering sciences fields. From the application point of view, we
have illustrated two forms of fractional free-electron laser and obtained their solutions
in the closed and computable form of LHGF. Several graphical illustrations are pre-
sented, which demonstrate the behaviour of the solutions.

Remarkably, Hilfer-Prabhakar derivative interpolates between the Prabhakar deriva-
tive and its regularized version, given in Eq. (10) and Eq. (11), respectively. It
can also be reduced into Hilfer derivative which may reduced into Riemann-Liouville
and Caputo fractional derivatives by proper choice of parameters. Thus, the re-
sults established in the paper may be used to derive closed-form solutions for several
Volterra-type fractional integro-differential equations, hitherto scattered in the litera-
ture.
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and Shooting Uniform Jitter
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Abstract: The progressive discrete silent duel is studied modeling
limited observability within a system in order to make the best discrete-
time decision. The moments to make a decision (to take an action, to
shoot a bullet) are scheduled beforehand. The kernel of the duel is skew-
symmetric, and the duelists (players) have identical linear accuracy func-
tions. The duel is a finite zero-sum game defined on a subset of the unit
square. As the duel starts, time moments of possible shooting become
denser by a geometric progression. Apart from the duel beginning and
end time moments, every following time moment is the partial sum of the
respective geometric series, to which a value of the jitter is added. Regard-
less of the jitter, both the duelists have the same optimal strategies and
the game optimal value is 0 due to the skew-symmetry. The only optimal
behavior of the duelist at any positive jitter is to shoot at the positively
jittered middle of the duel time span. The only optimal behavior of the
duelist in the 3 × 3 duel at any negative jitter is to shoot at the very end
of the duel. In the 4 × 4 and bigger duels, there is an open interval of the

negative jitter, between

√
17 − 5

8
and 0, at which the duel does not have

a pure strategy solution. Value −1

4
is the boundary case of the negative

jitter, at which the 4 × 4 duel has four versions of the solution. At any
other negative jitter, the only optimal behavior of the duelist in the 4× 4
duel is to shoot at the very end of the duel. Bigger duels are more affected
by negative jitter. There are two intervals of the pure strategy solution
nonexistence in 5 × 5 and bigger duels, one of which is mentioned above,
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and the other one approaches to interval

(
−1

2
; −1

4

)
on the left endpoint

from the right.

AMS Subject Classification: 91A05, 91A50, 91A55.
Keywords and Phrases: Game of timing; Silent duel; Linear accuracy function; Matrix
game; Pure strategy solution; Jittered possible shooting moments.

1. Introduction and motivation

Games of timing that represent a wide class of competitive interaction models are
intended to develop rational time decisions for participants under limited system
observability [2, 3, 6, 14]. The player (participant) must make a decision of innovation,
adoption, response, etc., during a time span on which the game exists [16, 17, 15, 7].
If a decision is made in a two-person game commonly referred to as a duel, the other
player either learns it or does not learn it until the duel ends. The latter is the case
of the silent duel [19, 7, 9, 1], whose solution heavily depends on whether the game
is finite or not [4, 7, 12], apart from the game symmetry [6, 3, 11].

A common pattern of the symmetric silent duel is a zero-sum game

⟨X, Y, K (x, y)⟩ (1)

defined on unit square

X × Y = [0; 1] × [0; 1] (2)

with kernel

K (x, y) = x− y + xy sign (y − x) , (3)

where X = [0; 1] and Y = [0; 1] are the sets of pure strategies of the duelists,
in which the pure strategy is a time moment of possible shooting (i. e., making a
decision). Obviously, kernel (3) is skew-symmetric:

K (y, x) = y − x + yx sign (x− y) = −K (x, y) . (4)

Game (1) by (2) and (3) is a silent duel with identical linear accuracy functions of
the duelists, which are allowed to shoot at any moment during the duel time span
[0; 1]. Owing to property (4), both the duelists in this duel have the same optimal
strategies and the game optimal value is 0 [19, 7, 5].

To get rid of infinite supports in the duelists’ optimal strategies [4, 19, 7, 18, 10],
a discrete version of duel (1) is considered, where the sets of pure strategies of the
duelists are

X = {xi}Ni=1 = Y = {yj}Nj=1 = T = {tq}Nq=1 ⊂ [0; 1] (5)

by

tq < tq+1 ∀ q = 1, N − 1 and t1 = 0, tN = 1 for N ∈ N\ {1} . (6)
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The discrete silent duel includes the moments of the duel beginning x = y = 0 and
duel end x = y = 1. By (5), finite symmetric game (1) is a matrix game whose
solution is of finite supports only [7, 19]. Moreover, the solution is computed far
easier than that in the case of infinite game (1) by X = [0; 1] and Y = [0; 1].

A specific case of possible shooting moments {tq}Nq=1 is when they, still obeying

(6), are assigned according to a geometrical progression:

tq =

q−1∑
l=1

2−l =
2q−1 − 1

2q−1
for q = 2, N − 1. (7)

In this case, the density of pure strategies of the duelist grows in the geometrical
progression as the duelist approaches to the duel end [18, 8]. Apart from the duel
beginning and end moments, every following moment is the partial sum of the re-
spective geometric series. However, the precise assignment is not always realizable in
practice (e. g., due to finite accuracy in measuring the distance between neighboring
moments of possible shooting), so

tq = ξ +

q−1∑
l=1

2−l = ξ +
2q−1 − 1

2q−1
for q = 2, N − 1 and ξ ∈

(
−1

2
;

1

2N−2

)
(8)

instead of (7). The possible shooting moments {tq}N−1
q=2 specified by (8) is a shooting

uniform jitter, which slightly moves points {tq}N−1
q=2 by (7) within the duel time span

[0; 1] not violating their relative order (topology) within [t2; tN−1].
The case of ξ = 0 is the known progressive discrete silent duel (PDSD) with iden-

tical linear accuracy functions whose solutions are studied in [13]: the pure strategy
solution is situation

{x2, y2} =

{
1

2
,

1

2

}
(9)

in 3 × 3 PDSDs and bigger. In PDSDs bigger than the 3 × 3 PDSD, optimal pure
strategy situation (9) is the single one. For a trivial 3× 3 PDSD, in which the duelist
possesses just one moment of possible shooting between the duel beginning and end
moments, any pure strategy situation, not containing the duel beginning moment, is
optimal.

2. Objective and tasks to be fulfilled

The objective is to study pure strategy solutions of the PDSD〈
{xi}Ni=1 , {yj}

N
j=1 , KN

〉
(10)

with identical linear accuracy functions and shooting uniform jitter by (8), where
payoff matrix

KN = [kij ]N×N by kij = K (xi, yj) =

= xi − yj + xiyj sign (yj − xi) and N ∈ N\ {1} (11)
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and it is skew-symmetric, i. e. KN = −KT
N or

kij = −kji ∀ i = 1, N and ∀ j = 1, N.

The primary task is to encompass all existing pure strategy solutions for

ξ ∈
(
−1

2
;

1

2N−2

)
\ {0} . (12)

The secondary task is to determine all ξ by (12) such that no pure strategy solution
exists. Finally, the solution results are to be summarized along with recapitulating
their peculiarities, whereupon the study is discussed and concluded in the last section.

3. Trivial cases

If the duelist is allowed to shoot at either the very beginning or end of the PDSD,
this is the most trivial case, where N = 2 and the respective payoff matrix (11)

K2 = [kij ]2×2 =

[
0 −1
1 0

]
(13)

does not depend on ξ. The single optimal solution here is pure strategy situation

{x2, y2} = {1, 1} . (14)

The case with payoff matrix (13) is not referenced further.
It is worth mentioning that

K (x1, yj) = K (0, yj) = −yj < 0 ∀ j = 2, N

and therefore the minimum of the first row of matrix (11) does not exceed −1 < 0
and thus the game optimal value vopt = 0 cannot be reached in this row, whichever
number N is. So, the first row of matrix (11) cannot be an optimal pure strategy
of the first duelist (the first row does not contain saddle points). Due to the skew-
symmetry of matrix (11), the stated inference is immediately followed by that the first
column does not contain saddle points either (the first column cannot be an optimal
pure strategy of the second duelist). In the further consideration, only the inferences
on saddle points in definite rows of matrix (11), which imply the same inferences on
saddle points in respective columns, will be stated. As only a zero entry of matrix (11)
can be a saddle point, then a row containing a negative entry does not contain saddle
points; neither does the respective column containing the positive entry. Meanwhile,
a nonnegative row contains a saddle point on the main diagonal of the payoff matrix.
A row whose entries are positive, except for the main diagonal entry, contains a single
saddle point which is the single one in such a duel (all the other N − 1 rows of the
respective column contain negative entries).

In the next case of triviality, when the shooting, apart from the very beginning

and end moments t1 = 0, t3 = 1, is also allowed at moment t2 =
1

2
, the solution

depends on the sign of ξ. The following assertion supplements the abovementioned
case of ξ = 0 [13].
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Theorem 1. In a PDSD (10) by (8) and (11) for N = 3, pure strategy situation

{x2, y2} =

{
1

2
+ ξ,

1

2
+ ξ

}
(15)

is solely optimal by ξ > 0, whereas pure strategy situation

{x3, y3} = {1, 1} (16)

is solely optimal by ξ < 0.

Proof. Due to k13 = −1, situation

{x1, y1} = {0, 0} (17)

is never optimal in the PDSD. The respective payoff matrix is

K3 = [kij ]3×3 =


0 −1

2
− ξ −1

1

2
+ ξ 0 2ξ

1 −2ξ 0

 . (18)

If ξ > 0 then the second row of matrix (18) is nonnegative and the third row contains
a negative entry. The only zero entry in the second row is k22, whence situation (15)
is optimal and it is the single saddle point for the 3 × 3 PDSD with kernel (18) by
ξ > 0.

If ξ < 0 then the second row of matrix (18) contains a negative entry, and thus
the second row does not contain saddle points. The third row is nonnegative and its
single zero entry is k33, whence situation (16) is optimal and it is the single saddle
point for the 3 × 3 PDSD with kernel (18) by ξ < 0.

In the further consideration, the case with ξ > 0 will be called a positive jitter,
and the case with ξ < 0 will be called a negative jitter. Time moment

tq = ξ +
2q−1 − 1

2q−1
at q ∈

{
2, N − 1

}
will be called positively ξ-jittered moment and negatively |ξ|-jittered moment by ξ > 0
and ξ < 0, respectively.

4. The positive jitter duel solution

In fact, Theorem 1 determines the single solution of the 3 × 3 PDSD with a positive
jitter, according to which the best decision is made right after the duel passes its
start. The question of whether this property remains for bigger PDSDs is answered
by the following assertion.

Theorem 2. In a PDSD (10) by (8) and (11) for N ∈ N\ {1, 2}, pure strategy
situation (15) is solely optimal by ξ > 0.

Proof. Due to Theorem 1, situation (15) is the single saddle point for N = 3. For
N ∈ N\ {1, 2, 3} consider entry k22 that is the result of when both the duelists simul-
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taneously shoot at the positively ξ-jittered middle of the duel time span corresponding
to situation (15). This entry is in the second row of matrix (11), where

K (x2, y1) = K

(
1

2
+ ξ, 0

)
=

1

2
+ ξ > 0 (19)

and

K (x2, yj) = K

(
1

2
+ ξ, yj

)
=

1

2
+ ξ − yj +

(
1

2
+ ξ

)
· yj =

=
1

2
+ ξ − 1

2
yj + ξyj > 0 by j = 3, N and ξ > 0 (20)

inasmuch as
1

2
− 1

2
yj ⩾ 0 for 0 ⩽ yj ⩽ 1. So, the second row of matrix (11), apart

from the main diagonal entry k22, is positive and therefore situation (15) is optimal;
the second row does not contain any other saddle points. Inequalities (19) and (20)
also imply that entries ki2 < 0 ∀ i = 3, N in the second column, so saddle point (15)
is the single one by ξ > 0.

5. Negative jitter duel solutions

In the 3 × 3 PDSD with a negative jitter, according to Theorem 1, the best decision
is made at the very end of the duel. This rule is generally broken in bigger PDSDs.

Theorem 3. In a PDSD (10) by (8) and (11) for N ∈ N\ {1, 2, 3}, pure strategy
situation

{x3, y3} =

{
3

4
+ ξ,

3

4
+ ξ

}
(21)

is solely optimal by

ξ ∈

(
−1

4
;

√
17 − 5

8

]
. (22)

Proof. Inasmuch as

K (x2, yN ) = K

(
1

2
+ ξ, 1

)
=

=
1

2
+ ξ − 1 +

1

2
+ ξ = 2ξ < 0 by ξ < 0, (23)

the second row of matrix (11) does not contain saddle points, whichever the negative
jitter is. In the third row, the first entry is

k31 = K (x3, y1) = K

(
3

4
+ ξ, 0

)
=

3

4
+ ξ > 0 by ξ ∈

(
−1

2
; 0

)
, (24)

the second entry is

k32 = K (x3, y2) = K

(
3

4
+ ξ,

1

2
+ ξ

)
=
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=
3

4
+ ξ −

(
1

2
+ ξ

)
−
(

3

4
+ ξ

)(
1

2
+ ξ

)
=

= −1

8
− 5

4
ξ − ξ2 ⩾ 0 by ξ ∈

[
−
√

17 − 5

8
;

√
17 − 5

8

]
, (25)

where

−
√

17 − 5

8
< −1 < −1

2
< −1

4
<

√
17 − 5

8
< 0. (26)

The remaining entries of the third row, apart from (24), (25), k33 = 0, are

k3j = K (x3, yj) = K

(
3

4
+ ξ, yj

)
=

3

4
+ ξ − yj +

(
3

4
+ ξ

)
· yj =

=
3

4
+ ξ − 1

4
yj + ξyj ∀ yj >

3

4
+ ξ by j = 4, N, (27)

whence
3

4
+ ξ − 1

4
yj + ξyj ⩾

1

2
+ 2ξ > 0 by ξ > −1

4
. (28)

So,

k3j = K (x3, yj) > 0 ∀ yj >
3

4
+ ξ by j = 4, N and ξ > −1

4
. (29)

With using (24) — (29), the third row of matrix (11), apart from the main diagonal
entry k33, is positive by

ξ ∈

(
−1

4
;

√
17 − 5

8

)
. (30)

Therefore, situation (21) is solely optimal by (30). If ξ =

√
17 − 5

8
then, according to

(25), k32 = 0, while still entries (27) are positive by (28); but as the second row does
not contain saddle points, situation (21) remains solely optimal by (22).

Inequality (23) means that any negative jitter precludes optimality of situation
(15). By a negative jitter, shooting straight after the duel begins (at the time moment
following the very beginning) is not optimal. The optimality jumps one moment
farther by (22), still being achieved without mixing pure strategies. As it will turn
out below, the PDSD is not solved in pure strategies at shallower negative jitter
compared to (22).

Theorem 4. No pure strategy solutions exist in a PDSD (10) by (8) and (11) for
N ∈ N\ {1, 2, 3} by

ξ ∈

(√
17 − 5

8
; 0

)
. (31)

Proof. If (31) holds, then, using (25), k32 < 0, i. e. the third row does not contain
saddle points. As (29) is true (the third row entries above the main diagonal are
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positive),

kj3 = −k3j = −K (x3, yj) < 0 ∀ yj >
3

4
+ ξ

by j = 4, N and ξ >

√
17 − 5

8
> −1

4
, (32)

i. e. the third column entries below the main diagonal are negative and rows whose
number i = 4, N do not contain saddle points. Consequently, the PDSD is not solved
in pure strategies by (31).

Another interesting aspect is when the negative jitter equals to the left endpoint
of the half-open interval in (22). This boundary case is treated differently for the
4 × 4 PDSD and bigger ones.

Theorem 5. At ξ = −1

4
a PDSD (10) by (8) and (11) for N ∈ N\ {1, 2, 3, 4} has

a single optimal situation

{x3, y3} =

{
1

2
,

1

2

}
. (33)

Proof. If ξ = −1

4
then k31 =

1

2
, k32 =

1

8
,

k3N = K (x3, yN ) = K

(
1

2
, 1

)
= 0 (34)

while

k3j = K (x3, yj) = K

(
1

2
, yj

)
=

=
1

2
− yj +

1

2
yj =

1

2
− 1

2
yj > 0 ∀ yj >

3

4
+ ξ =

1

2
by j = 4, N − 1. (35)

So, the third row is nonnegative containing a saddle point on the main diagonal,
which is situation (33). Besides, inequalities (35) imply that columns whose number
j = 4, N − 1 (or rows whose number i = 4, N − 1) do not contain saddle points.
Despite (34), the N -th column (row) for N ⩾ 5 does not contain saddle points either
because

kN4 = K (xN , y4) = K

(
1, −1

4
+

23 − 1

23

)
=

= K

(
1,

5

8

)
= 1 − 2 · 5

8
= −1

4
< 0, (36)

and thus saddle point (33) is the single one at ξ = −1

4
and N ⩾ 5.

Theorem 6. The 4 × 4 PDSD (10) by (8) and (11) at ξ = −1

4
has four optimal

situations: (33),

{x4, y4} = {1, 1} , (37)
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{x3, y4} =

{
1

2
, 1

}
, (38)

{x4, y3} =

{
1,

1

2

}
. (39)

Proof. It is easy to see that the payoff matrix of the 4 × 4 PDSD at ξ = −1

4
is

K4 = [kij ]4×4 =



0 −1

4
−1

2
−1

1

4
0 −1

8
−1

2
1

2

1

8
0 0

1
1

2
0 0


. (40)

Payoff matrix (40) has four saddle points (33), (37) — (39).

Finally, the case when

ξ ∈
(
−1

2
; −1

4

)
(41)

is to be considered. Once again, 4 × 4 PDSDs are recognized differently from bigger
PDSDs, which will be shown in the following two assertions. Besides, a subinterval
within interval (41) will be determined, by which the PDSDs bigger than the 4 × 4
PDSD are not solved in pure strategies.

Theorem 7. In a PDSD (10) by (8) and (11) for N ∈ N\ {1, 2, 3, 4}, pure strategy
situation

{xN , yN} = {1, 1} (42)

is solely optimal by

ξ ∈
(
−1

2
; −1

2
+

1

2N−2

]
. (43)

Proof. Then N -th entry in the third row of matrix (11) is

k3N = K (x3, yN ) = K

(
3

4
+ ξ, 1

)
=

1

2
+ 2ξ < 0 by ξ < −1

4
, (44)

so situation (21) is not optimal. The last row of matrix (11) contains saddle point
(42) if

kNj = K (xN , yj) = K (1, yj) = 1 − 2yj ⩾ 0 ∀ j = 1, N (45)

or, briefly,

yj ⩽
1

2
∀ j = 2, N − 1 (46)
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owing to y1 = 0 ⩽
1

2
and kNN = 0 regardless of yN = 1 >

1

2
. Using (8), inequality

(46) is re-written as

yj = ξ +
2j−1 − 1

2j−1
⩽

1

2
,

whence

ξ ⩽
1

2j−1
− 1

2
< −1

4
by j = 2, N − 1. (47)

The strict inequality in (47) is
1

2j−1
<

1

4
or 2j−1 > 4, which holds ∀ j = 4, N − 1

for N ∈ N\ {1, 2, 3, 4} by the least possible value −1

2
+

1

2N−2
of the negative jitter.

Therefore, situation (42) is optimal if (43) is true.
If

ξ ∈
(
−1

2
; −1

2
+

1

2N−2

)
for N ∈ N\ {1, 2, 3, 4} (48)

then inequality (46) holds strictly, that is

kNj = K (xN , yj) = K (1, yj) = 1 − 2yj > 0 ∀ j = 1, N − 1, (49)

whence the N -th row of matrix (11), apart from the main diagonal entry kNN , is
positive and therefore optimal situation (42) is the single one. If

ξ = −1

2
+

1

2N−2
for N ∈ N\ {1, 2, 3, 4} (50)

then

yN−1 = ξ +
2N−2 − 1

2N−2
= −1

2
+

1

2N−2
+

2N−2 − 1

2N−2
=

1

2
(51)

and

yj < yN−1 =
1

2
∀ j = 2, N − 2, (52)

where (51) and (52) imply that

kNj = K (xN , yj) = K (1, yj) = 1 − 2yj > 0 ∀ j = 1, N − 2, (53)

that is the first N − 2 entries of the N -th row are positive. Next,

kN,N−1 = 1 − 2yN−1 = 0 = kN−1,N ,

but

xN−1 =
1

2
,

yN−2 = ξ +
2N−3 − 1

2N−3
= −1

2
+

1

2N−2
+ 1 − 1

2N−3
=

1

2
− 1

2N−2
,
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and

kN−1,N−2 = K (xN−1, yN−2) = K

(
1

2
,

1

2
− 1

2N−2

)
=

=
1

2
− 1

2
+

1

2N−2
− 1

2
·
(

1

2
− 1

2N−2

)
=

=
1

2N−2
− 1

4
+

1

2N−1
=

3

2N−1
− 1

4
< 0 for N ∈ N\ {1, 2, 3, 4} ,

which implies that the (N − 1)-th row of matrix (11) does not contain saddle points
by (50).

Theorem 8. In the 4×4 PDSD (10) by (8) and (11), situation (42) is solely optimal
by (41).

Proof. At N = 4 (
−1

2
; −1

2
+

1

2N−2

)
=

(
−1

2
; −1

4

)
.

In the respective 4 × 4 PDSD inequality (46) holds as

yN−1 = y3 = ξ +
3

4
<

1

2
by ξ < −1

4
, (54)

so situation (42) is optimal as well. Besides, it is solely optimal due to inequality (49)
holds after (54).

Theorem 9. No pure strategy solutions exist in a PDSD (10) by (8) and (11) for
N ∈ N\ {1, 2, 3, 4} by

ξ ∈
(
−1

2
+

1

2N−2
; −1

4

)
. (55)

Proof. The first row of matrix (11) does not contain saddle points; the second row
does not contain saddle points due to (23) holds; the third row does not contain saddle
points due to (44) holds. Consider entry knn in matrix (11) for n ∈

{
4, N − 1

}
and

N ∈ N\ {1, 2, 3, 4}. This entry is the result of when both the duelists shoot at
moment

tn = ξ +
2n−1 − 1

2n−1
(56)

corresponding to situation

{xn, yn} =

{
ξ +

2n−1 − 1

2n−1
, ξ +

2n−1 − 1

2n−1

}
. (57)

If situation (57) is optimal, then, in the n-th row of matrix (11), inequality

knj = K (xn, yj) = xn − yj − xnyj ⩾ 0 ∀ yj < xn by j = 1, n− 1 (58)

must hold. From inequality (58) it follows that

xn

1 + xn
⩾ yj ∀ yj < xn by j = 1, n− 1. (59)
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As

yj ⩽ ξ +
2n−2 − 1

2n−2
= yn−1 < ξ +

2n−1 − 1

2n−1
= xn, (60)

then inequality (59) is transformed into(
ξ +

2n−1 − 1

2n−1

)
· 1

1 + ξ +
2n−1 − 1

2n−1

⩾ ξ +
2n−2 − 1

2n−2
,

ξ · 2n−1 + 2n−1 − 1

2n + ξ · 2n−1 − 1
⩾

ξ · 2n−2 + 2n−2 − 1

2n−2
,

(
ξ · 2n−1 + 2n−1 − 1

)
· 2n−2 −

(
2n + ξ · 2n−1 − 1

)
·
(
ξ · 2n−2 + 2n−2 − 1

)
(2n + ξ · 2n−1 − 1) · 2n−2

⩾ 0. (61)

It is clear that 2n + ξ · 2n−1 − 1 > 0 in the denominator of the fraction in (61), so
inequality (61) holds as the numerator of the fraction in (61)

ξ · 22n−3 + 22n−3 − 2n−2 −
−
(
ξ · 22n−2 + ξ2 · 22n−3 − ξ · 2n−2 + 22n−2 + ξ · 22n−3 −

−2n−2 − 2n − ξ · 2n−1 + 1
)

=

= −ξ2 · 22n−3 + ξ ·
(
22n−3 − 22n−2 + 2n−2 − 22n−3 + 2n−1

)
+

+22n−3 − 2n−2 − 22n−2 + 2n−2 + 2n − 1 =

= −ξ2 · 22n−3 + ξ · 2n−2 · (3 − 2n) − 22n−3 + 2n − 1 ⩾ 0. (62)

The discriminant of the respective quadratic equation

−ξ2 · 22n−3 + ξ · 2n−2 · (3 − 2n) − 22n−3 + 2n − 1 = 0 (63)

is

D = 22n−4 · (3 − 2n)
2

+ 4 · 22n−3 ·
(
−22n−3 + 2n − 1

)
=

= 22n−4 ·
(
9 − 6 · 2n + 22n − 8 · 22n−3 + 8 · 2n − 8

)
= 22n−4 ·

(
1 + 2n+1

)
,

whence (63) holds by

ξ =
−2n−2 · (3 − 2n) −

√
22n−4 · (1 + 2n+1)

−22n−2
=

=
2n−2 · (3 − 2n) + 2n−2 ·

√
(1 + 2n+1)

22n−2
=

3 − 2n +
√

1 + 2n+1

2n

and

ξ =
3 − 2n −

√
1 + 2n+1

2n
.

So, (62) is true by

ξ ∈

[
3 − 2n −

√
1 + 2n+1

2n
;

3 − 2n +
√

1 + 2n+1

2n

]
. (64)
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At n = 4,

3 − 24 +
√

1 + 25

24
=

√
33 − 13

16
∈ (−0.5; −0.45) ,

but

k43 = K (x4, y3) = K

(
ξ +

7

8
, ξ +

3

4

)
=

= ξ +
7

8
−
(
ξ +

3

4

)
−
(
ξ +

7

8

)(
ξ +

3

4

)
=

=
1

8
− ξ2 − ξ · 13

8
− 21

32
= −ξ2 − ξ · 13

8
− 17

32
⩾ 0

by ξ ∈

[
−
√

33 + 13

16
;

√
33 − 13

16

]
(65)

and

k4N = K (x4, yN ) = K

(
ξ +

7

8
, 1

)
=

= ξ +
7

8
− 1 + ξ +

7

8
= 2ξ +

3

4
⩾ 0 by ξ ∈

[
−3

8
; −1

4

)
, (66)

where
√

33 − 13

16
< −3

8

and thus [
−
√

33 + 13

16
;

√
33 − 13

16

]
∩
[
−3

8
; −1

4

)
= ∅.

The latter means that inequalities (65) and (66) are impossible together, and so the
fourth row of matrix (11) does not contain saddle points.

At n = 5,

3 − 25 −
√

1 + 26

25
= −

√
65 + 29

32
< −1.15,

3 − 25 +
√

1 + 26

25
=

√
65 − 29

32
< −0.65,

i. e. inequality (62) holds only at ξ for which (55) is false, or, in other words, inequality
(62) is impossible for n = 5 and (55). Denote b = 2n for n ⩾ 5 and consider the right
endpoint of the interval in (64) as a function of 2n:

3 − 2n +
√

1 + 2n+1

2n
= f (b) =

3 − b +
√

1 + 2b

b
. (67)
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The first derivative of function (67) is

df (b)

db
=

−b +
2b

2
√

1 + 2b
− 3 + b−

√
1 + 2b

b2
=

=
b− 3

√
1 + 2b− 1 − 2b

b2
√

1 + 2b
= −3

√
1 + 2b + 1 + b

b2
√

1 + 2b
< 0,

so function (67) is decreasing. Therefore,

max
b⩾32

f (b) = max
b⩾32

3 − b +
√

1 + 2b

b
=

= max
n⩾5

3 − 2n +
√

1 + 2n+1

2n
= f

(
25
)

=

=

√
65 − 29

32
< −0.65 < −1

2
+

1

2N−2
, (68)

whence inequality (62) is impossible for n ⩾ 5 and (55). The latter means that
situation (57) is not optimal also for n ∈

{
5, N − 1

}
and N ∈ N\ {1, 2, 3, 4}.

In the last row of matrix (11),

kN,N−1 = K (xN , yN−1) = K

(
1, ξ +

2N−2 − 1

2N−2

)
=

= 1 −
(
ξ +

2N−2 − 1

2N−2

)
−
(
ξ +

2N−2 − 1

2N−2

)
= 1 − 2ξ − 2N−2 − 1

2N−3
=

= −1 − 2ξ +
1

2N−3
= 2 ·

(
−1

2
+

1

2N−2

)
− 2ξ < 0

due to (55), and thus the payoff matrix of any PDSD (10) by (8) and (11) for N ∈
N\ {1, 2, 3, 4} does not contain saddle points by (55).

6. Recapitulation

In the PDSD with a positive jitter, the only optimal behavior of the duelist is to
shoot at the positively ξ-jittered middle of the duel time span. This is ascertained
by Theorem 1 and Theorem 2. When a negative jitter exists, it is reasonable to
consider 3 × 3 and 4 × 4 PDSDs separately from bigger PDSDs. The only optimal
behavior of the duelist is to shoot at the very end in the 3× 3 PDSD with a negative

jitter (Theorem 1). The 4× 4 PDSD with a negative jitter higher than

√
17 − 5

8
does

not have a pure strategy solution (Theorem 4). Neither do bigger PDSDs by such a
negative jitter (Theorem 4). The only optimal behavior of the duelist in the 4 × 4

PDSD with a negative jitter higher than −1

4
and not higher than

√
17 − 5

8
is to shoot

at the negatively |ξ|-jittered moment following the negatively |ξ|-jittered middle of



Pure Strategy Solutions in Discrete Silent Duel with Linear Accuracy and Jitter 105

the duel time span (Theorem 3). Such a behavior remains optimal for bigger PDSDs
as well (Theorem 3).

Value −1

4
is the boundary case of the negative jitter, at which, as Theorem 6

asserts, the 4× 4 PDSD has four optimal situations whose strategies include only the
duel end moment and middle of the duel time span (the latter is not the moment
following the duel beginning moment, but it is the moment following the negatively
1

4
-jittered middle of the duel time span). Bigger PDSDs, however, have the single

optimal situation at the middle of the duel time span (Theorem 5). Here, the assertion
of Theorem 3 might have been modified in order to consider the closed interval between

−1

4
and

√
17 − 5

8
, by considering only 5 × 5 PDSDs and bigger, and thus to merge

with Theorem 5.
The only optimal behavior of the duelist is to shoot at the very end in the 4 × 4

PDSD with a negative jitter higher than −1

2
and lower than −1

4
(Theorem 8). Such

a behavior remains optimal for bigger N × N PDSDs with a negative jitter higher

than −1

2
and not higher than −1

2
+

1

2N−2
(Theorem 7). Such PDSDs do not have

pure strategy solutions when a negative jitter falls between −1

2
+

1

2N−2
and −1

4
(Theorem 9).

So, the positive jitter does not affect the possibility of implementing the best
decision in a single action (or, in terms of the duel, in a single shot). In this case,
all the possible shooting moments followed by the duel beginning moment are shifted
towards the duel end moment. The negative jitter does not effect the 3 × 3 PDSD
at all, but it affects the 4 × 4 PDSD at a lesser negative jitter, when its magnitude

is below
5 −

√
17

8
(Figure 1). Nevertheless, the relative interval of the pure strategy

solution nonexistence in the 4 × 4 PDSD with a negative jitter is narrower than the

half-open interval between −1

2
and

√
17 − 5

8
, at which the 4 × 4 PDSD is solved in

pure strategies.
 

 
Figure 1. The relative interval of the pure strategy solution nonexistence  
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Figure 2. The change of the two relative intervals of the pure strategy solution nonexistence  
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Figure 1: The relative interval of the pure strategy solution nonexistence in the 4× 4
PDSD with a negative jitter

Bigger PDSDs, in which the duelist, apart from the duel beginning and end mo-
ments, possesses no fewer than three possible shooting moments, are affected to a

more considerable extent. The negative jitter splits the open interval between −1

2
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and 0 into four subintervals (Figure 2), at two of which an N ×N PDSD has a single
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Figure 2: The change of the two relative intervals of the pure strategy solution nonex-
istence in N×N PDSDs with a negative jitter by N = 5, 11 (as the PDSD gets bigger)

optimal situation. Namely, if

ξ ∈
(
−1

2
; −1

2
+

1

2N−2

]
∪

[
−1

4
;

√
17 − 5

8

]
for N ∈ N\ {1, 2, 3, 4} , (69)

then the N ×N PDSD has a single optimal situation. As the PDSD gets bigger, the
leftmost interval in (69) fades away.

7. Discussion and conclusion

The jitter is a substantially important component of a game-of-timing model that
reflects imperfection of time setting and measurements. The duelists’ accuracy func-
tions presumed to be linear are hardly identical in practical applications as well, but
their identity is attained on average. However, the considered shooting uniform jitter
is just the first step in studying game-of-timing models with imperfection, where the
symmetry is still maintained. Subsequently, the jitter may be considered non-uniform,
with probably known statistical properties.

The importance of possessing an optimal pure strategy is hard to overestimate.
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In real-world applications, it allows almost instantly implementing or starting to im-
plement the best decision, unlike a mixed strategy requiring long-run repetitions of
the game conditions without deviations. Pure strategy solutions in the PDSD with
identical linear accuracy functions are guaranteed only for positive jitter. An excep-
tion from the rule exists for the trivial case, where any 3 × 3 PDSD is solved in pure
strategies, whichever sign and magnitude of the jitter are.

The 4 × 4 PDSD does not have a pure strategy solution only if a negative jitter

is higher than

√
17 − 5

8
. Bigger PDSDs, in addition to this rule, have another open

interval of the pure strategy solution nonexistence — it is (55) for N × N PDSDs,
N ∈ N\ {1, 2, 3, 4}. The latter interval gets wider as N increases, approaching

to interval

(
−1

2
; −1

4

)
on the left endpoint from the right. The narrowest interval

of pure strategy solution nonexistence at ξ < −1

4
has the length of

1

8
(it is when

N = 5), which is more than 1.14 times longer than the low-negative-jitter interval
of pure strategy solution nonexistence (31). As N increases (i. e., the PDSD gets
bigger), the ultimately-high-negative-jitter interval (43) gets narrower, making the
only optimal behavior of the duelist to shoot at the very end of the duel less probable
compared to other intervals of negative jitter.
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