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1 Introduction and Preliminaries

The subject of ideals in topological spaces has been studied by Kuratowski [12] and
Vaidyanathaswamy [25]. Jankovic and Hamlett [11] investigated further properties of
ideal space. The importance of continuity and generalized continuity is significant in
various areas of mathematics and related sciences. One of them, which has been in
recent years of interest to general topologists, is its decomposition. The decomposition
of continuity has been studied by many authors. The class of e-open sets is contains all
δ-preopen [15] sets and δ-semiopen [14] sets. In this paper, we introduce the notation
of e-I-open sets which is a generalization of semi∗-I-open sets [8] and pre∗-I-open
[5] sets is introduced, and strong B∗I -set to obtain a decomposition of continuing via
idealization. Additionally, we investigate properties of e-I-open sets and strong B∗I -
set. Also we studied some more properties of e-I-open sets and obtained several
characterizations of e-I-continuous functions and investigate their relationship with
other types of functions.
A subset A of a space (X, τ) is said to be regular open (resp. regular closed) [23] if
A = Int(Cl(A)) (resp.A = Cl(Int(A))). A is called δ-open [26] if for each x ∈ A,
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there exist a regular open set G such that x ∈ G ⊂ A. The complement of δ-open set
is called δ-closed. A point x ∈ X is called a δ-cluster point of A if Int(Cl(U))∩A 6= ∅
for each open set U containing x. The set of all δ-cluster points of A is called the
δ-closure of A and is denoted by Clδ(A) [26]. The set δ-interior of A [26] is the union
of all regular open sets of X contained in A and its denoted by Intδ(A). A is δ-open
if Intδ(A) = A. The collection of all δ-open sets of (X, τ) is denoted by δO(X) and
forms a topology τ δ. The topology τ δ is called the semi regularization of τ and is
denoted by τs.

An ideal I on a topological space (X, τ) is a nonempty collection of subsets of X
which satisfies the following conditions:
A ∈ I and B ⊂ A implies B ∈ I; A ∈ I and B ∈ I implies A∪B ∈ I. Applications
to various fields were further investigated by Jankovic and Hamlett [11] Dontchev et
al. [3]; Mukherjee et al. [13]; Arenas et al. [2]; et al. Nasef and Mahmoud [18], etc.
Given a topological space (X, τ) with an ideal I on X and if ℘(X) is the set of all
subsets of X, a set operator (.)

∗
: ℘(X)→ ℘(X), called a local function [24, 11] of A

with respect to τ and I is defined as follows: for A ⊆ X,

A∗(I, τ) = {x ∈ X | U ∩A /∈ I for every U ∈ τ(x)}

where τ(x) = {U ∈ τ | x ∈ U}. A Kuratowski closure operator Cl∗(x) = A∪A∗(I, τ).
When there is no chance for confusion, we will simply write A∗ for A∗(I, τ). X∗ is
often a proper subset of X.

A subset A of an ideal space (X, τ) is said to be R-I-open (resp. R-I-closed) [28]
if A = Int(Cl∗(A)) (resp.A = Cl∗(Int(A)). A point x ∈ X is called δ − I-cluster
point of A if Int(Cl∗(U)) ∩ A 6= ∅ for each open set U containing x. The family of
all δ-I-cluster points of A is called the δ-I-closure of A and is denoted by δClI(A).
The set δ-I-interior of A is the union of all R-I-open sets of X contained in A and
its denoted by δIntI(A). A is said to be δ-I-closed if δClI(A) = A [28].

Definition 1.1. A subset A of a topological space X is called

1. β-open [1] if A ⊂ Cl(Int(Cl(A))).

2. α-open [19] if A ⊂ Int(Cl(Int(A))).

3. t-set [22] if Int(A) = Int(Cl(A)).

4. e-open set [7] if A ⊂ Int(δCl(A)) ∪ Cl(δInt(A)).

5. strongly B-set [7] if A = U ∩ V where U is an open set and V is a t-set and
Int(Cl(A)) = Cl(Int(A)).

6. δ-preopen [15] if A ⊂ Int(δCl(A)).

7. δ-semiopen [14] if A ⊂ Cl(δInt(A)).

8. a-open [4] if A ⊂ Int(Cl(δInt(A))).
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The class of all δ-preopen (resp. δ-semiopen, a-open) sets of (X, τ) is denoted by
δPO(X) (resp. δSO(X), aO(X)).

Definition 1.2. A subset A of an ideal topological space (X, τ, I) is called

1. δα-I-open [8] if A ⊂ Int(Cl(δIntI(A))).

2. semi∗-I-open [8] if A ⊂ Cl(δIntI(A)).

3. pre∗-I-open [5] if A ⊆ Int(δClI(A)).

4. Strongly t-I-set [5] if Int(A) = Int(δClI(A)).

5. Strongly B-I-set [5] if A = U ∩ V where U is an open set and V is a Strongly
t-I-set.

6. δβI-open [8] if A ⊂ Int(Cl(δIntI(A))).

7. BI-set [9] if A = U ∩ V where U is an open set and V is a t-I-set.

The class of all semi∗-I-open (resp. pre∗-I-open, δβI -open, δα-I-open) sets of
(X, τ, I) is denoted by S∗IO(X) (resp. P ∗IO(X), δβIO(X), δαIO(X)). [8, 5].

2 e-I-open
Definition 2.1. A subset A of an ideal topological space (X, τ, I) is said to be e-I-
open if A ⊂ Cl(δIntI(A)) ∪ Int(δClI(A)).

The class of all e-I-open sets in X will be denoted by EIO(X, τ).

Proposition 2.2. Let A be an e-I-open such that δIntI(A) = ∅, then A is pre∗-I-
open. For a subset of an ideal topological space the following hold:

1. Every semi∗-I-open is e-I-open,

2. Every pre∗-I-open is e-I-open,

3. Every e-I-open is δβI-open.

Proof. (1) Obvious.
(2) Obvious.
(3) Let A be e-I-open. Then we have

A ⊂ Cl(δIntI(A)) ∪ Int(δClI(A))

⊂ Cl(Int(δIntI(A))) ∪ Int(Int(δClI(A)))

⊂ Cl(Int(δIntI(A)) ∪ Int(δClI(A)))

⊂ Cl[Int(δIntI(A)) ∪ δClI(A)]

⊂ Cl[Int(δClI(A ∪A))]

= Cl(Int(δClI(A))).

This show that A is an δβI -open set.
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Remark 2.3. From above the following implication and none of these implications
is reversible as shown by examples given below

δI open //

��

δα-I-open // semi∗-I-open

��

open

��
pre∗-I-open //

''

e-I-open

ww
δβI-open

Example 2.4. Let X = {a, b, c, d} with a topology τ = {∅, X, {b}, {a, d}, {a, b, d}} and
an ideal I = {∅, {b}}. Then the set A = {b, d} is e-I-open, but is not semi∗-I-open.
Because Cl(δIntI(A))∪ Int(δClI(A)) = Cl(∅)∪ Int(X) = ∅∪X = X ⊃ A and hence
A is e-I-open. Since Cl(δIntI(A)) = Cl(∅) = ∅ + A. So A is not semi∗-I-open.

Example 2.5. Let X = {a, b, c} with a topology τ = {∅, X, {a}, {b}, {a, b}} and an
ideal I = {∅, {b}}. Then the set A = {a, c} is e-I-open, but is not pre∗-I-open. For
Cl(δIntI(A)) ∪ Int(δClI(A)) = Cl({a, b}) ∪ Int({a, c}) = {a, b, c} ∪ {a} = X ⊃ A
and hence A is e-I-open. Since Int(δClI(A)) = Int({a, c}) = {a} + A. Hence A is
not Pre∗-I-open.

Example 2.6. Let X = {a, b, c, d} with a topology τ = {∅, X, {b}, {a, d}, {a, b, d}} and
an ideal I = {∅, {b}}. Then the set A = {a, c} is δβI-open, but is not e-I-open. Since
Cl(δIntI(A))∪Int(δClI(A)) = Cl(∅)∪Int({a, c, d}) = {a, d} + A and hence A is not
e-I-open. For Cl(Int(δClI(A))) = Cl(Int({a, c, d})) = Cl({a, d}) = {a, c, d} ⊇ A.
Hence A is δβI-open.

Proposition 2.7. Let (X, τ, I) be an ideal topological space and let A, U ⊆ X. If A
is e-I-open set and U ∈ τ . Then A ∩ U is an e-I-open.

Proof. By assumption A ⊂ Cl(δIntI(A)) ∪ Int(δClI(A)) and U ⊆ Int(U). Then

A ∩ U ⊂(Cl(δIntI(A)) ∪ Int(δClI(A))) ∩ Int(U)

⊂ (Cl(δIntI(A)) ∩ Int(U)) ∪ (Int(δClI(A)) ∩ Int(U))

⊂ (Cl(δIntI(A)) ∩ Cl(Int(U))) ∪ (Int(δClI(A)) ∩ Cl(Int(U)))

⊂ (Cl(δIntI(A)) ∩ Int(U)) ∪ (Int(Cl(δClI(A)) ∩ Cl(Cl(Int(U)))))

⊂ Cl(δIntI(A ∩ U) ∪ (Int(Cl(δClI(A)) ∩ Cl(Int(U))))

⊂ Cl(δIntI(A ∩ U)) ∪ (Int(Cl(δClI(A)) ∩ Int(U)))

⊂ Cl(δIntI(A ∩ U)) ∪ (Int(δClI(A ∩ U))).

Thus A ∩ U is e-I-open.
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Definition 2.8. A subset A of an ideal topological space (X, τ, I) is said to be e-I-
closed if its complement is e-I-open.

Theorem 2.9. A subset A of an ideal topological space (X, τ, I) is e-I-closed, then
Cl(δIntI(A)) ∩ Int(δClI(A)) ⊂ A.

Proof. Since A is e-I-closed, X − A is e-I-open, from the fact τ∗ finer than τ , and
the fact τ δ ⊂ τ δI we have,

X −A ⊂ Cl(δIntI(X −A)) ∪ Int(δClI(X −A))

⊂ Cl(δInt(X −A)) ∪ Int(δCl(X −A))

= [X − [Cl(δInt(A))]] ∪ [X − [Int(δCl(A))]]

⊂ [X − [Cl(δIntI(A))]] ∪ [X − [Int(δClI(A))]]

= X − [[Cl(δIntI(A))] ∩ [Int(δClI(A))]].

Therefore we obtain [Cl(δIntI(A)) ∩ Int(δClI(A))] ⊂ A.

Corollary 2.10. A subset A of an ideal topological space (X, τ, I) such that X −
[Cl(δIntI(A))] = Int(δClI(X − A)) and X − [Int(δClI(A))] = Cl(δIntI(X − A)).
Then A is e-I-closed if and only if [Cl(δIntI(A)) ∩ Int(δClI(A))] ⊂ A.

Proof. Necessity : This is immediate consequence of Theorem 2.9
Sufficiency : Let [Cl(δIntI(A)) ∩ Int(δClI(A))] ⊂ A. Then

X −A ⊂ X − [Cl(δIntI(A)) ∩ Int(δClI(A))]

⊂ [X − [Cl(δIntI(A))]] ∪ [X − [Int(δClI(A))]]

= Cl(δIntI(X −A)) ∪ Int(δClI(X −A))

Thus X −A is e-I-open and hence A is e-I-closed.

If (X, τ, I) is an ideal topological space and A is a subset of X, we denote by I|A.
If (X, τ, I) relative ideal on A and I|A = {A ∩ I : I ∈ I} is obviously an ideal on A.

Lemma 2.11. [11] Let (X, τ, I) be an ideal topological space and A, B subsets of X
such that B ⊂ A. Then B∗(τ |A, I|A) = B∗(τ, I) ∩A.

Proposition 2.12. Let (X, τ, I) be ideal topological space and let A, U ⊆ X. If A is
an e-I-open set and U ∈ τ . Then A ∩ U ∈ EIO(U, τ |U , I|U ).

Proof. Straight forward from Proposition 2.7

Theorem 2.13. If A ∈ EIO(X, τ, I) and B ⊂ τ , then A ∩B ∈ EIO(X, τ, I).
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Proof. Let A ∈ EIO(X, τ, I) and B ⊂ τ then A ⊂ Cl(δIntI(A)) ∪ Int(δClI(A)) and

A ∩B ⊂ [Cl(δIntI(A)) ∪ Int(δClI(A))] ∩B
⊂ [Cl(δIntI(A)) ∩B] ∪ [Int(δClI(A)) ∩B]

⊂ [Cl(δIntI(A ∩B))] ∪ [Int(δClI(A ∩B))].

This proof come from the fact δIntI(A) is the union of all R-I-open of X contained
in A. Then

A = Int(Cl∗(A))⇒ A ∩B = Int(Cl∗(A)) ∩B
= Int(A∗ ∪A) ∩B
= Int[(A ∩B) ∪ (A∗ ∩B)]

⊂ Int[Cl∗(A ∩B)] = A ∩B

Hence Cl(δIntI(A)) ∩B ⊂ Cl(δIntI(A ∩B)), and other part is obvious.

Proposition 2.14. for any ideal topological space (X, τ, I) and A ⊂ X we have:

1. If I = ∅, then A is e-I-open if and only if A is e-open.

2. If I = ℘(X), then A is e-I-open if and only if A ∈ τ .

3. If I = N , then A is e-I-open if and only if A is e-open.

Proof. (1) Let I = ∅ and A ⊂ X. We have δClI(A)) = δCl(A)), δIntI(A)) =
δInt(A)) and A∗ = Cl(A). on other hand, Cl∗(A) = A∗ ∪ A = Cl(A). Hence
A∗ = Cl(A) = Cl∗(A). Since A is e-I-open

A ⊂ Cl(δIntI(A)) ∪ Int(δClI(A))=Cl(δInt(A)) ∪ Int(δCl(A))

Thus, A is e-open.
Conversely, let A is e-open. Since I = ∅, then

A ⊂ Cl(δInt(A)) ∪ Int(δCl(A))=Cl(δIntI(A)) ∪ Int(δClI(A))

Thus A is e-I-open.
(2) Let I = P (X) and A ⊂ X. We have A∗ = ∅. Since δIntI(A)) is the union of all
R-I-open contained in A, since A∗ = ∅, then Int(A) = A, and δClI(A) is the family
of all δ-I- cluster points of A, since A∗ = ∅, then Int(A) ∩A 6= ∅ On other hand

A ⊂ Cl(δIntI(A)) ∪ Int(δClI(A))

= Cl(Int(A)) ∪ Int(Cl(A))

⊂ Int(Cl(Int(A))) ∪ Int(Cl(A))

= Int(Cl(Int(A)) ∪ Int(Cl(A)))

⊂ Int(Cl(Int(A) ∪ Cl(A)))

⊂ Int(Cl(Cl(A ∪A)

⊂ Int(Cl(A ∪A) = Int(Cl(A)).



On e-I-open sets, e-I-continuous functions and decomposition of continuity 21

This show A ∈ τ .
Conversely, It is shown in Remark 2.3 .
(3) Every e-I-open is e-open.
Let A be e-I-open then, A ⊂ Cl(δIntI(A)) ∪ Int(δClI(A)). by using this fact A∗ =
Cl(A) = Cl∗(A), we have δClI(A) = δCl(A), δIntI(A) = δInt(A), since δClI(A) is
the familly of all δ-I-cluster point of A, and δIntI(A) the union of all R-I-open set
of X we have respectively,

∅ 6= Int(Cl∗(U)) ∩A = Int(U∗ ∪ U) ∩A = Int(Cl(U) ∪ U) ∩A
= Int(Cl(U)) ∩A 6= ∅

From this we get δClI(A) = δCl(A), and

A = Int(Cl∗(A)) = Int(A∗ ∪A) = Int[Cl(A) ∪A]

= Int(Cl(A)) = A

From this we get δIntI(A) = δInt(A). This show that

A ⊂ Cl(δIntI(A)) ∪ Int(δClI(A)) ⊂ Cl(δInt(A)) ∪ Int(δCl(A))

Hence (3) is proved
Let us consider I = N and A is e-open
If I = N then A∗ = Cl∗(Int(Cl∗A)).
Since A is e-open then A ⊂ Cl(δInt(A)) ∪ Int(δCl(A)). Then

∅ 6= Int(Cl(U)) ∩A = Int(U ∪ U) ∩A = Int(Cl(Int(Cl(U)) ∪ U) ∩A
⊂ Int(Cl∗(Int(Cl∗(U))) ∪ U) ∩A = Int(U∗ ∪ U) ∩A = Int(Cl∗(U)) ∩A 6= ∅

From this we get δCl(A) ⊂ δClI(A), and

A = Int(Cl(A)) = Int(A ∪A) = Int[Cl(Int(Cl(A))) ∪A]

⊂ Int[Cl∗(Int(Cl∗(A))) ∪A] = Int(A∗ ∪A) = Int(Cl∗(A)) = A

From this we get δInt(A) ⊂ δIntI(A).
A is e-I-open. Hence the proof.

Proposition 2.15. 1. The union of any family of e-I-open sets is an e-I-open
set.

2. The intersection of even two e-I-open open sets need not to be e-I-open as
shown in the following example.

Proof. (1) Let {Aα/α ∈ ∆} be a family of e-I-open set,
Aα ⊂ Cl(δIntI(Aα)) ∪ Int(δClI(Aα))
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Hence

∪αAα ⊂ ∪α[Cl(δIntI(Aα)) ∪ Int(δClI(Aα))]

⊂ ∪α[Cl(δIntI(Aα))] ∪ ∪α[Int(δClI(Aα))]

⊂ [Cl(∪α(δIntI(Aα))] ∪ [Int(∪α(δClI(Aα))]

⊂ [Cl(∪α(δIntI(Aα))] ∪ [Int(∪α(δClI(Aα))]

⊂ [Cl(δIntI(∪αAα))] ∪ [Int(δClI(∪αAα))].

∪αAα is e-I-open.

Example 2.16. Let X = {a, b, c, d} with a topology τ = {∅, X, {a}, {b, d}, {a, b, d}}
and I = {Ø, {c}, {d}, {c, d}}. Then the set A = {a, c} and A = {b, c} are e-I-
open, but A ∩ B = {c} is not e-I-open. Since {b, c} and {b, c} ⊂ Cl(δIntI(A)) ∪
Int(δClI(A)). For Cl(δIntI(A)) ∪ Int(δClI(A)) = Cl(∅) ∪ Int({c, d}) = Cl(∅) ∪ ∅ =
∅ + {c}. So A ∩B * Cl(δIntI(A ∩B)) ∪ Int(δClI(A ∩B)).

Definition 2.17. Let A be a subset of X.

1. The intersection of all e-I-closed containing A is called the e-I-closure of A and
its denoted by Cl∗e(A),

2. The e-I-interior of A, denoted by Int∗e(A), is defined by the union of all e-I-open
sets contained in A.

Proposition 2.18. Let (X, τ, I) be an ideal topological space. Then if A ∈ EIO(X, τ)
and B ∈ τa, then A ∩B ∈ eO(X, τ).

Proof. Let A ∈ EIO(X, τ), i.e., A ⊂ Cl(δIntI(A)) ∪ Int(δClI(A)) and B ∈ τa, i.e.,
B ⊂ Int(Cl(δInt(B))). Then

A ∩B ⊂ Cl(δIntI(A)) ∪ Int(δClI(A)) ∩ Int(Cl(δInt(B)))

= [Cl(δIntI(A)) ∩ Int(Cl(δInt(B)))] ∪ [Int(δClI(A)) ∩ Int(Cl(δInt(B)))]

⊂ [Cl(Cl(δIntI(A))) ∩ Cl(Cl(δInt(B)))] ∪ [Int(δClI(A)) ∩ Cl(δInt(B))]

⊂ [Cl(Cl(δIntI(A)) ∩ Cl(δInt(B)))] ∪ [Int(Cl(δClI(A)) ∩ Cl(δInt(B)))]

⊂ [Cl(Cl(δIntI(A) ∩ δInt(B))] ∪ [Int(Cl(δClI(A) ∩ δInt(B)))]

⊂ [Cl(δIntI(A ∩ δInt(B)))] ∪ [Int(δClI(δClI(A ∩B)))]

⊂ [Cl(δInt(A ∩B))] ∪ [Int(δCl(A ∩B))].

Then A ∩B ∈ eO(X, τ) .

Remark 2.19. 1. Let A be a subset of an ideal topological space (X, τ, I). Then
A is e-I-closed if and only if Cl∗e(A) = A,

2. Let B be a subset of an ideal topological space (X, τ, I). Then B is e-I-open if
and only if Int∗e(B) = B,
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Proposition 2.20. Let A, B be a subsets of an ideal topological space (X, τ, I) such
that A is e-I-open and B is e-I-closed in X. Then there exist e-I-open set H and
e-I-closed set K such that A ∩B ⊂ H and K ⊂ A ∪B.

Proof. Let K = Cl∗e(A) ∩ B and H = A ∪ Int∗e(B). Then, K is e-I-closed and H is
e-I-open. A ⊂ Cl∗e(A) implies A ∩ B ⊂ Cl∗e(A) ∩ B = K and Int∗e(B) ⊂ B implies
A ∪ Int∗e(B) = H ⊂ A ∪B.

Definition 2.21. 1. A subset S of an ideal topological space (X, τ, I) is called e-
dense if Cle(S) = X, where Cle(S) [7] (Def 2.9) is the smallest e-closed sets
containing S,

2. A subset S of an ideal topological space (X, τ, I) is called e-I-dense if Cl∗e(S) =
X.

3 strong B∗I-set
Definition 3.1. Let (X, τ, I) be an ideal topological space. A subset A of X is
called strong B∗I -set if A = U ∩ V , where U ∈ τ and V is a strongly t-I-set and
Int(δClI(V )) = Cl(δIntI(V )).

Proposition 3.2. Let (X, τ, I) be an ideal topological space and A be a subset of X.
The following hold:

1. If A is strong B∗I -set, then A is a BI-set,

2. If A is strongly t-I-set, then A is a t-I-set.

Proof. 1. It follows from the fact every strongly t-I-set is t-I-set, the proof is
obvious.

2. It follows from ([5] Theorem 21 (3)).

Remark 3.3. The following diagram holds for a subset A of a space X:

open // strong B∗I -set // BI-set

strongly tI-set //

OO

tI-set

OO

Remark 3.4. The converses of proposition 3.2 (1), (2) need not to be true as the
following examples show.
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Example 3.5. Let X = {a, b, c, d} with a topology τ = {∅, X, {a} , {a, c} , {a, b, c}}
and an ideal I = {Ø, {c} , {a, c}}. Then the set A = {a, c} is BI-set, but not a
strong B∗I -set and hence A is a tI-set but not strongly t-I-set. For Int(Cl∗(A)) =
Int({a, c}) = {a} = Int(A) and hence A is a tI-set. It is obvious that A is a BI-
set. But Int(δClI(A)) = Int({X}) = X and Cl(δIntI(A)) = Cl({a}) = {a, d} i.e
Int(δClI(A)) 6= Cl(δIntI(A)). So A is not strong B∗I -set.

Example 3.6. Let X = {a, b, c, d} with a topology τ = {∅, X, {b} , {b, c} , {b, c, d}}
and an ideal I = {Ø, {b} , {c} , {b, c}}. Then the set A = {b, c} is strong B∗I -set,
but not a strongly t-I-set. Int(δClI(A)) = Int({X}) = X and Cl(δIntI(A)) =
Cl({b, c}) = {X} i.e Int(δClI(A)) = Cl(δIntI(A)). So A is strong B∗I -set. But,
Int(δClI(A)) = Int({X}) = X 6= Int(A). Therefor A is not a strongly t-I-set.

Proposition 3.7. Let A be subset of an ideal topological space (X, τ, I). Then the
following condition are equivalent:

1. A is open.

2. A is e-I-open and strong B∗I -set.

Proof. (1)⇒(2): By Remark 2.3 and Remark 3.3, every open set is e-I-open. On
other hand every open set is strongly B∗I -set.
(2)⇒(1): Let A is e-I-open and strong B∗I -set. Then A ⊂ Cl(δIntI(A))∪Int(δClI(A))
= Cl(δIntI(U ∩ V )) ∪ Int(δClI(U ∩ V )), where U is open and V is strongly t-I-set
and Int(δClI(V )) = Int(V ), Int(δClI(V )) = Cl(δIntI(V )). Hence

A ⊂ [Int(δClI(U)) ∩ Int(δClI(V ))] ∪ [Cl(δIntI(U)) ∩ Cl(δIntI(V ))]

= [U ∩ Int(δClI(V ))] ∪ [U ∩ Cl(δIntI(V ))]

⊂ [U ] ∩ [Int(δClI(V )) ∪ Cl(δIntI(V ))]

⊂ [U ] ∪ [Int(δClI(V )) ∩ Int(δIntI(V ))]

⊂ [U ] ∪ [Int(δClI(V ))]

⊂ U ∪ Int(V ) = Int(A).

On other hand, we have U ∩ Int(V ) ⊂ U ∩ V = A. Thus, A = U ∩ Int(V ) and A is
open.

4 decomposition of continuity

Definition 4.1. [7] A function f : (X, τ) −→ (Y, σ) is said to be e-continuous if for
each open set V of (Y, σ), f−1(V ) is e-open.

Definition 4.2. A function f : (X, τ, I) −→ (Y, σ) is said to be e-I-continuous (resp.
pre∗-I-continuous [5], strong B∗I -continuous ) if for each open set V of (Y, σ), f−1(V )
is e-I-open (resp. pre∗-I-open, strong B∗I -set) in (X, τ, I).

Definition 4.3. A function f : (X, τ, I) −→ (Y, σ) is said to be semi∗-I-continuous
if for each open set V of (Y, σ), f−1(V ) is semi∗-I-open in (X, τ, I).
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Proposition 4.4. If a function f : (X, τ, I) −→ (Y, σ) is semi∗-I-continuous (pre∗-
I-continuous), then f is e-I-continuous.

Proof. This is immediate consequence of Proposition 2.2 (2) and (3).

Proposition 4.5. If a function f : (X, τ, I) −→ (Y, σ) is strong B∗I -continuous, then
f is BI-continuous

Proof. This is immediate consequence of Proposition 3.2 (1).

Theorem 4.6. For a function f : (X, τ, I) → (Y, σ). Then the following properties
are equivalent,

1. f is continuous.

2. f is e-I-continuous and strong B∗I -continuous.

Proof. This is immediate consequence of Proposition 3.7.

5 e-I- continuous mappings

Definition 5.1. 1. A function f : (X, τ) −→ (Y, σ) is called δ-almost-continuous
if the inverse image of each open set in Y is δ-preopen set in X [15].

2. A function f : (X, τ, I) −→ (Y, σ) is called δ-semicontinuous if the inverse
image of each open set in Y is δ-semiopen set in X [6].

3. A function f : (X, τ, I) −→ (Y, σ) is called be a-continuous if for each open set
V of (Y, σ), f−1(V ) is a-open [4].

4. A function f : (X, τ, I) −→ (Y, σ) is called δα-I-continuous if for each δI-open
set V of (Y, σ), f−1(V ) is δα-I-open [8].

Definition 5.2. [16] Let (X, τ) be topological space and A ⊆ X. Then the set
∩{U ∈ τ : A ⊂ U} is called the kernel of A and denoted by Ker(A).

Lemma 5.3. [10] Let (X, τ) be topological space and A ⊆ X.

1. x ∈ Ker(A) if and only if A ∩ F 6= ∅ for any closed subset of X with x ∈ F ,

2. A ⊂ Ker(A) and A = Ker(A) if A is open in X,

3. if A ⊂ B, then Ker(A) ⊂ Ker(B).

Definition 5.4. Let N be a subset of a space (X, τ, I), and let x ∈ X. Then N
is called e-I-neighborhood of x, if there exist e-I-open set U containing x such that
U ⊂ N .

Theorem 5.5. The following statement are equivalent for a function f : (X, τ, I) −→
(Y, σ):
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1. f is e-I-continuous,

2. for each x ∈ X and each open set V in Y with f(x) ∈ V , there exist e-I-open
set U containing x such that f(U) ⊂ V ,

3. for each x ∈ X and each open set V in Y with f(x) ∈ V , f−1(V ) is e-I-
neighborhood of x,

4. for every subset A of X, f(Int∗e(A)) ⊂ Ker(f(A)),

5. for every subset B of Y , Int∗e(f
−1(B)) ⊂ f−1(Ker(B)).

Proof. (1)⇒(2): Let x ∈ X and let V be an open set in Y such that f(x) ∈ V . Since
f is e-I-continuous, f−1(V ) is e-I-open. By butting U = f−1(V ) which is containing
x, we have f(U) ⊂ V .
(2)⇒(3): Let V be an open set in Y such that f(x) ∈ V . Then by (2) there exists
a e-I-open set U containing x such that f(U) ⊂ V . So x ∈ U ⊂ f−1(V ). Hence
f−1(V ) is e-I-neighborhood of x.
(3)⇒(1): Let V be an open set in Y such that f(x) ∈ V . Then by (3), f−1(V ) is
e-I–neighborhood of x. Thus for each x ∈ f−1(V ), there exists a e-I-open set Ux
containing x such that x ∈ Ux ⊂ f−1(V ). Hence f−1(V ) ⊂

⋃
x∈f−1(V ) Ux and so

f−1(V ) ∈ EIO(X, τ).
(1)⇒(5): Let A be any subset of X. Suppose that y /∈ Ker(A). Then, by Lemma 5.3,
there exists a closed subset F of Y such that y ∈ F and f(A) ∩ F = ∅. Thus we have
A∩f−1(F ) = ∅ and (Int∗e(A))∩f−1(F ) = ∅. Therefore, we obtain f(Int∗e(A))∩(F ) =
∅ and y /∈ f(Int∗e(A)). This implies that f(Int∗e(A)) ⊂ Ker(f(A))
(5)⇒(6): Let B be any subset of Y . By (5) and Lemma 5.3, we have f(Int∗e(f

−1(B)))
⊂ Ker(f(f−1(B))) ⊂ Ker(B) and Int∗e(f

−1(B)) ⊂ f−1(Ker(B)).
(6)⇒(1): Let V be any subset of Y . By (6) and Lemma 5.3, we have Int∗e(f

−1(V ))
⊂ f−1(Ker(V ))=f−1(V ) and Int∗e(f

−1(V ))=f−1(V ). This shows that f−1(V ) is
e-I-open.

The following examples show that e-I-continuous functions do not need to be
semi∗-I-continuous and pre∗-I-continuous, and e-continuous function does not need
to be e-I-continuous.

Example 5.6. Let X = Y = {a, b, c, d} be a topology space by setting τ = σ =
{∅, X, {a} , {d} , {a, d}} and I = {∅, {c}} on X. Define a function f : (X, τ, I) −→
(Y, σ) as follows f(a) = f(c) = d and f(b) = f(d) = b. Then f is e-I-continuous but
it is not pre∗-I-continuous.

Example 5.7. Let X = Y = {a, b, c} be a topology space by setting τ = σ =
{∅, X, {a, b}} and I = {∅, {c}} on X. Define a function f : (X, τ, I) −→ (Y, σ)
as follows f(a) = a, f(b) = c, f(c) = b. Then f is e-I-continuous but it is not
semi∗-I-continuous.

Example 5.8. Let (X, τ) be the real line with the indiscrete topology and (Y, τ)
the real line with the usual topology and I = {∅}. Then the identity function f :
(X, τ, I) −→ (Y, σ) is e-continuous but not e-I-continuous.
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Proposition 5.9. Let f : (X, τ, I) −→ (Y, σ,J ) and g : (Y, σ,J ) −→ (Z, ρ) be
two functions, where I and J are ideals on X and Y , respectively. Then g ◦ f is
e-I-continuous if f is e-I-continuous and g is continuous.

Proof. The proof is clear.

Proposition 5.10. Let f : (X, τ, I) −→ (Y, σ) be e-I-continuous and U ∈ τ . Then
the restriction f|U : (X, τ|U , I|U ) −→ (Y, σ) is e-I-continuous.

Proof. Let V be any open set of (Y, σ). Since f is e-I-continuous, f−1(V ) ∈
EIO(X, τ) and by Lemma 2.11, f−1|U (V ) = f−1(V ) ∩ U ∈ EIO(U, I|U ). This shows

that f|U : (X, τ|U , I|U ) −→ (Y, σ) is e-I-continuous.

Theorem 5.11. Let f : (X, τ, I) −→ (Y, σ) be a function and let {Uα : α ∈ ∆} be
an open cover of X. If the the restriction function f |Uα is e-I-continuous for each
α ∈ ∆, then f is e-I-continuous.

Proof. The proof is similar to that of Theorem 5.10

Lemma 5.12. [20] For any function f : (X, τ, I) −→ (Y, σ,J ), f(I) is an ideal on
Y .

Definition 5.13. [20, 21] A subset A of an ideal topological space (X, τ, I) is said to
be I-compact if for every τ -open cover {ωα : α ∈ ∆} of A, there exists a finite subset
∆o of ∆ such that (X − ∪{ωα : α ∈ ∆}) ∈ I.

Definition 5.14. An ideal topological space (X, τ, I) is said to be e-I-compact if for
every e-I-open cover {ωα : α ∈ ∆} of X, there exists a finite subset ∆o of ∆ such
that (X − ∪{ωα : α ∈ ∆}) ∈ I.

Theorem 5.15. The image of e-I-compact space under e-I-continuous surjective
function is f(I)-compact.

Proof. Let f : (X, τ, I) −→ (Y, σ) be a e-I-continuous surjection and {Vα : α ∈ ∆}
be an open cover of Y . Then

{
f−1(Vα) : α ∈ ∆

}
is a e-I-open cover of X due to our

assumption on f . Since X is e-I-compact, then there exists a finite subset ∆o of ∆
such that (X −∪

{
f−1(Vα) : α ∈ ∆o

}
) ∈ I. Therefore (Y −∪{Vα : α ∈ ∆o}) ∈ f(I),

which shows that (Y, σ, f(I)) is f(I)-compact.

Theorem 5.16. A e-I-continuous image of an e-I-connected space is connected.

Proof. Let f : (X, τ, I) −→ (Y, σ) is e-I-continuous function of e-I–connected space
X onto a topological space Y . If possible, let Y be disconnected. Let A and B form
a disconnected set of Y . Then A and B are clopen and Y = A∪B, where A∩B = ∅
. Since f is e-I-continuous, X = f−1(Y ) = f−1(A ∪ B) = ∅, where f−1(A) and
f−1(B) are nonempty e-I-open sets in X. Also f−1(A) ∩ f−1(B) = ∅. Hence X is
non e-I-connected, which is contradiction. Therefore, Y is connected.
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Definition 5.17. A function f : (X, τ, I) −→ (Y, σ,J ) is called e-J -open (resp.,
e-J -closed) if for each U ∈ τ (resp., closed set M in X), f(U) (resp., f(M)) is e-
J -open (resp., e-J -closed)

Remark 5.18. Every e-I-open (resp., e-I-closed) function is e-open (resp., e-closed)
and the converses are false in general.

Example 5.19. Let X = {a, b, c} be a topology space by setting τ1 = {∅, X, {b, c}}
and τ2 = {∅, X, {a, b}, {b}, {a}} and an ideal I = {∅, {a}}. Then the identity function
f : (X, τ1) −→ (X, τ2, I) is e-open but not e-I-open.

Example 5.20. Let X = {a, b, c} be a topology space by setting τ1 = {∅, X, {a}} and
τ2 = {∅, X, {b, c}, {b}, {c}} and an ideal I = {∅, {c}}. Defined function f : (X, τ1) −→
(X, τ2, I) as follows:f(a) = a, f(b) = f(c) = b. Then f is e-closed but not e-I-closed.

Theorem 5.21. A function f : (X, τ, I) −→ (Y, σ,J ) is e-J -open if and only if for
each x ∈ X and each neighborhood U of x, there exists V ∈ EJO(Y, σ) containing
f(x) such that V ⊂ f(U).

Proof. Suppose that f is a e-J -open function. For each x ∈ X and each neighborhood
U of x, there exists Uo ∈ τ such that x ∈ Uo ⊂ U . Since f is e-J -open, V = f(Uo) ∈
EJO(Y, σ) and f(x) ∈ V ⊂ f(U). Conversely, let U be an open set of (X, τ). For
each x ∈ U , there exists Vx ∈ EJO(Y, σ) such that f(x) ∈ Vx ⊂ f(U). Therefore
we obtain f(U) =

⋃
{Vx : x ∈ U} and hence by Proposition 2.7, f(U) ∈ EJO(Y, σ).

This shows that f is e-J -open.

Theorem 5.22. A function f : (X, τ, I) −→ (Y, σ,J ) be e-J -open (resp., e-J -
closed). If W is any subset of Y and F is a closed (resp., open) set of X containing
f−1(W ), then there exists e-J -closed (resp., e-J -open) subset H of Y containing W
such that f−1(W ) ⊂ F .

Proof. Suppose that f is e-J -open function. Let W be any subset of Y and F a
closed subset of X containing f−1(W ). Then X − F is open and since f is e-J -
open, f(X − F ) e-J -open. Hence H = Y − f(X − F ) is e-J -closed. It follows from
f−1(W ) ⊂ F that W ⊂ H. Moreover, we obtain f−1(H) ⊂ F . For e-J -closed
function.

Theorem 5.23. For any objective function f : (X, τ) −→ (Y, σ,J ), the following are
equivalent:

1. f−1 : (Y, σ,J ) −→ (X, τ) is e-J -continuous,

2. f is e-J -open,

3. f is e-J -closed,

Proof. It is straightforward.

Definition 5.24. A space (X, τ) is called
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1. e-space if every e-open set of X is open in X.

2. submaximal if every dense subset of X is open in X [17].

3. extremely disconnected if the closure of every open set of X is open in X [27].

Corollary 5.25. If a function f : (X, τ, I) −→ (Y, σ) is continuous, then f is e-I-
continuous.

Corollary 5.26. If (X, τ) is extremely disconnected and submaximal, then for any
ideal I on X, P ∗IO(X, τ) = S∗IO(X, τ) = δSO(X, τ) = δPO(X, τ) = δαIO(X, τ) =
aO(X, τ) = τ .

Corollary 5.27. If (X, τ) is e-space, then for any ideal I on X, EIO(X, τ) =
eO(X, τ) = P ∗IO(X, τ) = S∗IO(X, τ) = δSO(X, τ) = δPO(X, τ) = δαIO(X, τ) =
aO(X, τ) = τ .

Corollary 5.28. Let f : (X, τ, I) −→ (Y, σ) be a function and let (X, τ) be e-space,
then the following are equivalent:

1. f is e-I-continuous,

2. f is e-continuous,

3. f is pre∗-I-continuous,

4. f is δ-almostcontinuous,

5. f is semi∗-I-continuous,

6. f is δ-semicontinuous,

7. f is δα-I-continuous,

8. f is δα-continuous,

9. f is continuous,
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