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Abstrat: In this paper we apply Rothe's Fixed Point Theorem to

prove the interior approximate ontrollability of the following semilinear

impulsive Heat Equation















zt = ∆z + 1ωu(t, x) + f(t, z, u(t, x)), in (0, τ ]× Ω, t 6= tk
z = 0, on (0, τ)× ∂Ω,
z(0, x) = z0(x), x ∈ Ω,
z(t+k , x) = z(t−k , x) + Ik(tk, z(tk, x), u(tk, x)), x ∈ Ω,

where k = 1, 2, . . . , p, Ω is a bounded domain in R
N (N ≥ 1), z0 ∈ L2(Ω), ω

is an open nonempty subset of Ω, 1ω denotes the harateristi funtion of

the set ω,the distributed ontrol u belongs to C([0, τ ];L2(Ω)) and f, Ik ∈
C([0, τ ]× R× R;R), k = 1, 2, 3, . . . , p, suh that

|f(t, z, u)| ≤ a0|z|
α0 + b0|u|

β0 + c0, u ∈ R, z ∈ R.

|Ik(t, z, u)| ≤ ak|z|
αk + bk|u|

βk + ck, k = 1, 2, 3, . . . , p, u ∈ R, z ∈ R.

with

1
2 ≤ αk < 1, 1

2 ≤ βk < 1, k = 0, 1, 2, 3, . . . , p. Under this ondition
we prove the following statement: For all open nonempty subsets ω of

Ω the system is approximately ontrollable on [0, τ ]. Moreover, we ould

exhibit a sequene of ontrols steering the nonlinear system from an initial

state z0 to an ǫ neighborhood of the �nal state z1 at time τ > 0.
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1 Introdution

There are many pratial examples of impulsive ontrol systems, a hemial reator

system with the quantities of di�erent hemials serve as the states, a �nanial system

with two state variables of the amount of money in a market and the saving rates

of a entral bank and the growth of a population di�using throughout its habitat is

often modeled by reation-di�usion equation, for whih muh has been done under the

assumption that the system parameters related to the population environment, either

are onstant or hange ontinuously.However, one may easily visualize situations in

nature where abrupt hanges suh as harvesting, disasters and instantaneous stoking

may our. This observation motivates us to study the approximate ontrollability of

the following Semilinear Impulsive Heat Equation















zt = ∆z + 1ωu(t, x) + f(t, z, u(t, x)), in (0, τ ]× Ω, t 6= tk
z = 0, on (0, τ)× ∂Ω,
z(0, x) = z0(x), x ∈ Ω,
z(t+k , x) = z(t−k , x) + Ik(tk, z(tk, x), u(tk, x)), x ∈ Ω,

(1.1)

where k = 1, 2, . . . , p, Ω is a bounded domain in R
N (N ≥ 1), z0 ∈ L2(Ω), ω is an

open nonempty subset of Ω, 1ω denotes the harateristi funtion of the set ω,the

distributed ontrol u belongs to C([0, τ ];L2(Ω)) and f, Ik ∈ C([0, τ ] × R × R;R),
k = 1, 2, 3, . . . , p, suh that

|f(t, z, u)| ≤ a0|z|
α0 + b0|u|

β0 + c0, u, z ∈ R. (1.2)

|Ik(t, z, u)| ≤ ak|z|
αk + bk|u|

βk + ck, k = 1, 2, 3, . . . , p, u, z ∈ R. (1.3)

1

2
≤ αk < 1,

1

2
≤ βk < 1, k = 0, 1, 2, 3, . . . , p, (1.4)

and

z(tk, x) = z(t+k , x) = lim
t→t+

k

z(t, x), z(t−k , x) = lim
t→t−

k

z(t, x).

In almost all referene on impulsive di�erential equations the natural spae to work

in is the Banah spae

PC([0, τ ];Z)

= {z : J = [0, τ ] → Z : z ∈ C(J ′;Z), ∃z(t+k , ·), z(t
−
k , ·) and z(tk, ·) = z(t+k , ·)},

where Z = L2(Ω) and J ′ = [0, τ ]\{t1, t2, . . . , tp}, endowed with the norm

‖z‖ = sup
t∈[0,τ ]

|z(t, ·)|Z ,

with

‖z‖Z =

√

∫

Ω

‖z(x)‖2dx, ∀z ∈ Z = L2(Ω).
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De�nition 1.1 (Approximate Controllability) The system (1.1) is said to be

approximately ontrollable on [0, τ ] if for every z0, z1 ∈ Z = U = L2(Ω), ε > 0 there

exists u ∈ C([0, τ ];U) suh that the solution z(t) of (1.1) orresponding to u veri�es:

z(0) = z0 and ‖z(τ)− z1‖Z < ε, (Fig.2),

where

‖z(τ)− z1‖Z =

(
∫

Ω

|z(τ, x)− z1(x)|
2dx

)
1
2

.

b

b

z(0) = z0

z(τ) = z1

b

b

b

z(0) = z0

z(τ)

z1

ǫ

Fig.1 Fig.2

De�nition 1.2 (Controllability to Trajetories) The system (1.1) is said to be

ontrollable to trajetories on [0, τ ] if for every z0, ẑ0 ∈ Z = U = L2(Ω) and û ∈
C([0, τ ];U) there exists u ∈ C([0, τ ];U) suh that the mild solution z(t) of (1.1)

orresponding to u veri�es:

z(τ, z0, u) = z(τ, ẑ0, û), (Fig.3).

ẑ0

z0

ẑ(τ, ẑ0, û) = z(τ, z0, u)

Fig.3

De�nition 1.3 (Null Controllability) The system (1.1) is said to be null ontrol-

lable on [0, τ ] if for every z0 ∈ Z = U = L2(Ω) there exists C([0, τ ];U) suh that the

mild solution z(t) of (1.1) orresponding to u veri�es:

z(0) = z0 and z(τ) = 0, (Fig.4).
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z0

z(τ ) = 0

Fig.4

Remark 1.1 It is lear that exat ontrollability of the system(1.1) implies approx-

imate ontrollability, null ontrollability and ontrollability to trajetories of the sys-

tem.But, it is well known ([2℄) that due to the di�usion e�et or the ompatness

of the semigroup generated by −∆, the heat equation an never be exatly ontrol-

lable. We observe also that in the linear ase ontrollability to trajetories and null

ontrollability are equivalent. Nevertheless, the approximate ontrollability and the

null ontrollability are in general independent. Therefore, in this paper we will be

onentrated only on the study of the approximate ontrollability of the system(1.1).

Reently the interior ontrollability of the semilinear heat equation (1.1) without

impulses has been proved in [13℄, [14℄ and [15℄ under the following ondition:

sup
(t,z,u)∈Qτ

|f(t, z, u)− az − cu| < ∞, (1.5)

where a, c ∈ IR, with c 6= −1 and Qτ = [0, τ ]× IR × IR.

More reently, in [14℄, the approximate ontrollability of the semilinear heat equation

(1.1) without impulses has been proved under the following non linear perturbation:

|f(t, z, u)− az| ≤ c|u|β + b, ∀u, z ∈ IR, |u|, |z| ≥ R, (1.6)

where a, b, c ∈ IR, R > 0 and

1
2 ≤ β < 1. We note that, the interior approximate

ontrollability of the linear heat equation







zt(t, x) = ∆z(t, x) + 1ωu(t, x) in (0, τ ]× Ω,
z = 0, on (0, τ) × ∂Ω,
z(0, x) = z0(x), x ∈ Ω,

(1.7)

has been study by several authors, partiularly by [22℄,[23℄,[24℄; and in a general fash-

ion in [12℄.

The ontrollability of Impulsive Evolution Equations has been studied reently for

several authors, but most them study the exat ontrollability only, to mention:

D.N. Chalishajar([4℄), studied the exat ontrollability of impulsive partial neu-

tral funtional di�erential equations with in�nite delay, B. Radhakrishnan and K.

Balahandran([19℄) studied the exat ontrollability of semilinear impulsive inte-

grodi�erential evolution systems with nonloal onditions and S. Selvi, M. Mallika

Arjunan([20℄) studied the exat ontrollability for impulsive di�erential systems with

�nite delay. To our knowledge, there are a few works on approximate ontrollability of

impulsive semilinear evolution equations, to mention: Lizhen Chen and Gang Li([5℄)
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studied the Approximate ontrollability of impulsive di�erential equations with non-

loal onditions, using measure of nonompatness and Monh �xed point theorem,

and assuming that the nonlinear term f(t, z) does not depend on the ontrol variable.

Finally, the approximate ontrollability of the system (1.1) follows from the ap-

proximate ontrollability of (1.7), the ompatness of the semigroup generated by the

Laplaian operator −∆, the onditions (1.2) and (1.5) satis�ed by the nonlinear term

f, Ik and the following results:

Proposition 1.1 Let (X,Σ, µ) be a measure spae with µ(X) < ∞ and 1 ≤ q < r <

∞. Then Lr(µ) ⊂ Lq(µ) and

‖f‖q ≤ µ(X)
r−q
rq ‖f‖r, f ∈ Lr(µ). (1.8)

Proof The proof of this proposition follows from Theorem I.V.6 from [3℄ by putting

p = r
q > 1 and onsidering the relation

∫

X

(|f |q)pdµ =

∫

X

|f |rdµ, ∀f ∈ Lr(µ).

Theorem 1.1 (Rothe's Fixed Theorem, [1℄,[9℄, [21℄) Let E be a Banah spae. Let

B ⊂ E be a losed onvex subset suh that the zero of E is ontained in the interior

of B. Let Φ : B → E be a ontinuous mapping with Φ(B) relatively ompat in E

and Φ(∂B) ⊂ B. Then there is a point x∗ ∈ B suh that Φ(x∗) = x∗
.

The tehnique we use here to prove the approximate ontrollability of the linear part

of equation (1.7) is based on the lassial Unique Continuation for Ellipti Equations

(see [18℄) and the following lemma:

Lemma 1.1 (see Lemma 3.14 from [6℄, pg. 62) Let {αj}j≥1 and {βi,j : i =
1, 2, . . . ,m}j≥1 be two sequenes of real numbers suh that: α1 > α2 > α3 · · · . Then

∞
∑

j=1

eαjtβi,j = 0, ∀t ∈ [0, τ ], i = 1, 2, · · · ,m

i�

βi,j = 0, i = 1, 2, · · · ,m; j = 1, 2, · · · ,∞.

2 Abstrat Formulation of the Problem

In this setion we hoose a Hilbert spae where system (1.1) an be written as an

abstrat di�erential equation; to this end, we onsider the following results appearing

in [6℄ pg.46, [8℄ pg.335 and [10℄ pg.147:

Let us onsider the Hilbert spae Z = L2(Ω) and 0 < λ1 < λ2 < ... < λj −→ ∞ the

eigenvalues of −∆ with the Dirihlet homogeneous onditions, eah one with �nite
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multipliity γj equal to the dimension of the orresponding eigenspae. Then we have

the following well known properties

(i) There exists a omplete orthonormal set {φj,k} of eigenvetors of A = −∆.

(ii) For all z ∈ D(A) we have

Az =

∞
∑

j=1

λj

γj
∑

k=1

< z, φj,k > φj,k =

∞
∑

j=1

λjEjz, (2.1)

where < ·, · > is the inner produt in Z and

Ejz =

γj
∑

k=1

< z, φj,k > φj,k. (2.2)

So, {Ej} is a family of omplete orthogonal projetions in Z and z =
∑∞

j=1 Ejz, z ∈
Z.

(iii) −A generates an analyti semigroup {T (t)} given by

T (t)z =
∞
∑

j=1

e−λjtEjz and ‖T (t)‖ ≤ e−λ1t, t ≥ 0. (2.3)

Consequently, system (1.1) an be written as an abstrat impulsive di�erential

equations in Z:






z′ = −Az +Bωu+ fe(t, z, u), t ∈ (0, τ ], t 6= tk, z ∈ Z

z(0) = z0,

z(t+k ) = z(t−k ) + Iek(tk, z(tk), u(tk)), k = 1, 2, 3, . . . , p.
(2.4)

where u ∈ C([0, τ ];U), U = Z, Bω : U −→ Z, Bωu = 1ωu is a bounded linear

operator,Iek, f
e : [0, τ ]× Z × U → Z, are de�ned by

Iek(t, z, u)(x) = Ik(t, z(x), u(x)), fe(t, z, u)(x) = f(t, z(x), u(x)), ∀x ∈ Ω, k = 1, 2, . . . , p.

On the other hand, from onditions (1.2) and (1.5) we get the following estimates.

Proposition 2.1 Under the onditions (1.2)-(1.5) the funtions fe, Iek : [0, τ ]× Z ×
U → Z,k = 1, 2, 3, . . . , p, de�ned above satisfy ∀u, z ∈ Z = L2(Ω):

‖fe(t, z, u)‖Z ≤ ã0‖z‖
α0

Z + b̃0‖u‖
β0

Z + c̃0 (2.5)

‖Iek(t, z, u)‖Z ≤ ãk‖z‖
αk

Z + b̃k‖u‖
βk

Z + c̃k, k = 1, 2, 3, . . . , p. (2.6)

Proof.

‖fe(t, z, u)‖2Z =

∫

Ω

|f(t, z(x), u(x))|2dx

≤

∫

Ω

(

a0|z(x)|
α0 + b0|u(x)|

β0 + c0
)2

dx

≤

∫

Ω

(4a20|z(x)|
2α0 + 42b20|u(x)|

2β0 + 42c20)dx

≤ 4a20

∫

Ω

|z(x)|2α0dx + 42b20

∫

Ω

|u(x)|2β0dx + 42c20µ(Ω).
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Then

‖fe(t, z, u)‖Z ≤ 2a0

(
∫

Ω

|z(x)|2α0dx

)
1
2

+ 4b0

(
∫

Ω

|u(x)|2β0dx

)
1
2

+ 4c0
√

µ(Ω)

= 2a0‖z‖
α0

L2α0

+ 4b0‖z‖
β0

L2β0

+ 4c0
√

µ(Ω)

Now, sine

1
2 ≤ α0 < 1 ⇔ 1 ≤ 2α0 < 2 and

1
2 ≤ β0 < 1 ⇔ 1 ≤ 2β0 < 2 applying

proposition 1.1, we obtain that:

‖fe(t, z, u)‖Z ≤ 2a0µ(Ω)
1−α0
α0 ‖z‖α0

Z + 2b0µ(Ω)
1−β0
β0 ‖u‖β0

Z + 4c0
√

µ(Ω).

Analogously, we obtain the following estimate for k = 1, 2, 3, . . . , p

‖Iek(t, z, u)‖Z ≤ 2akµ(Ω)
1−αk
αk ‖z‖αk

Z + 2bkµ(Ω)
1−βk
βk ‖u‖βk

Z + 4ck
√

µ(Ω),

whih ompletes the proof.

3 Controllability of the Linear Equation without Im-

pulses

In this setion we shall present some haraterization of the interior approximate

ontrollability of the linear heat equations without impulses. To this end, we note

that, for all z0 ∈ Z and u ∈ L2(0, τ ;U) the initial value problem
{

z′ = −Az +Bωu(t), z ∈ Z,

z(0) = z0,
(3.1)

where the ontrol funtion u belongs to L2(0, τ ;U), admits only one mild solution

given by

z(t) = T (t)z0 +

∫ t

0

T (t− s)Bωu(s)ds, t ∈ [0, τ ]. (3.2)

De�nition 3.1 For system (3.1) we de�ne the following onept: The ontrollability

map (for τ > 0) G : L2(0, τ ;U) −→ Z is given by

Gu =

∫ τ

0

T (τ − s)Bωu(s)ds. (3.3)

whose adjoint operator G∗ : Z −→ L2(0, τ ;Z) is given by

(G∗z)(s) = B∗
ωT

∗(τ − s)z, ∀s ∈ [0, τ ], ∀z ∈ Z. (3.4)

Therefore, the Grammian operator W : Z → Z is given

Wz = GG∗z =

∫ τ

0

T (τ − s)BωB
∗
ωT

∗(τ − s)ds. (3.5)

The following lemma holds in general for a linear bounded operator G : W → Z

between Hilbert spaes W and Z.
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Lemma 3.1 (see [6℄, [7℄ and [12℄) The equation (3.1) is approximately ontrollable

on [0, τ ] if, and only if, one of the following statements holds:

a) Rang(G) = Z.

b) Ker(G∗) = {0}.

) 〈GG∗z, z〉 > 0, z 6= 0 in Z.

d) limα→0+ α(αI +GG∗)−1z = 0.

e) B∗
ωT

∗(t)z = 0, ∀t ∈ [0, τ ], ⇒ z = 0.

f ) For all z ∈ Z we have Guα = z − α(αI +GG∗)−1z, where

uα = G∗(αI +GG∗)−1z, α ∈ (0, 1].

So, limα→0 Guα = z and the error Eαz of this approximation is given by

Eαz = α(αI +GG∗)−1z, α ∈ (0, 1].

Remark 3.1 The Lemma 3.1 implies that the family of linear operators

Γα : Z → L2(0, τ ;U), de�ned for 0 < α ≤ 1 by

Γαz = B∗
ωT

∗(·)(αI +GG∗)−1z = G∗(αI +GG∗)−1z, (3.6)

is an approximate inverse for the right of the operator G in the sense that

lim
α→0

GΓα = I, (3.7)

in the strong topology.

Proposition 3.1 (See [15℄) If Rang(G) = Z, then

sup
α>0

‖α(αI +GG∗)−1‖ ≤ 1. (3.8)

Remark 3.2 The proof of the following theorem follows from foregoing harateriza-

tion of dense range linear operators and the lassial Unique Continuation for Ellipti

Equations (see [18℄), and it is similar to the one given in Theorem 4.1 in [14℄.

Theorem 3.1 System (3.1) is approximately ontrollable on [0, τ ]. Moreover, a se-

quene of ontrols steering the system (3.1) from initial state z0 to an ǫ neighborhood

of the �nal state z1 at time τ > 0 is given by

uα(t) = B∗
ωT

∗(τ − t)(αI +GG∗)−1(z1 − T (τ)z0),

and the error of this approximation Eα is given by

Eα = α(αI +GG∗)−1(z1 − T (τ)z0).
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Proof . It is enough to show that Rang(G) = Z or Ker(G∗) = {0}. To this end, we

observe that Bω = B∗
ω and T ∗(t) = T (t). Suppose that

B∗
ωT

∗(t)z = 0, ∀t ∈ [0, τ ].

Then,

B∗
ωT

∗(t)z =
∞
∑

j=1

e−λjtB∗
ωEjz =

∞
∑

j=1

e−λjt

γj
∑

k=1

< z, φj,k > 1ωφj,k = 0.

⇐⇒
∞
∑

j=1

e−λjt

γj
∑

k=1

< z, φj,k > 1ωφj,k(x) = 0, ∀x ∈ ω.

Hene, from Lemma 1.1, we obtain that

Ejz(x) =

γj
∑

k=1

< z, φj,k > φj,k(x) = 0, ∀x ∈ ω, j = 1, 2, 3, . . . .

Now, putting f(x) =
∑γj

k=1 < z, φj,k > φj,k(x), ∀x ∈ Ω, we obtain that

{

(∆ + λjI)f ≡ 0 in Ω,
f(x) = 0 ∀x ∈ ω.

Then, from the lassial Unique Continuation for Ellipti Equations (see [18℄), it

follows that f(x) = 0, ∀x ∈ Ω. So,

γj
∑

k=1

< z, φj,k > φj,k(x) = 0, ∀x ∈ Ω.

On the other hand, {φj,k}is a omplete orthonormal set in Z = L2(Ω), whih implies

that < z, φj,k >= 0.

Therefore, Ejz = 0, j = 1, 2, 3, . . . , whih implies that z = 0. So, Rang(G) = Z.

Hene, the system (3.1) is approximately ontrollable on [0, τ ], and the remainder of

the proof follows from Lemma 3.1.

Lemma 3.2 Let S be any dense subspae of L2(0, τ ;U). Then, system (3.1) is ap-

proximately ontrollable with ontrol u ∈ L2(0, τ ;U) if, and only if, it is approximately

ontrollable with ontrol u ∈ S. i.e.,

Rang(G) = Z ⇐⇒ Rang(G|S) = Z,

where G|S is the restrition of G to S.

Proof (⇒) Suppose Rang(G) = Z and S = L2(0, τ ;U). Then, for a given ǫ > 0 and

z ∈ Z there exits u ∈ L2(0, τ ;U) and a sequene {un}n≥1 ⊂ S suh that

‖Gu− z‖ <
ǫ

2
and lim

n→∞
un = u.

Therefore, limn→∞ Gun = Gu and ‖Gun − z‖ < ǫ for n big enough. Hene,

Rang(G|S) = Z.

(⇐) This side is trivial.
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Remark 3.3 Aording to the previous lemma, if the system is ontrollable, it is

approximately ontrollable with ontrol funtions in the following dense spaes of

L2(0, τ ;U):

S = C([0, τ ];U), S = C∞(0, τ ;U), S = PC(J).

Moreover, the operators G, W and Γ are well de�ne in the spae of ontinuous fun-

tions: G : C([0, τ ];U) −→ Z by

Gu =

∫ τ

0

T (τ − s)Bωu(s)ds, (3.9)

and G∗ : Z −→ C([0, τ ];U) by

(G∗z)(s) = B∗(s)T ∗(τ − s)z, ∀s ∈ [0, τ ]. ∀z ∈ Z. (3.10)

Also, the Controllability Grammian operator still the same W : Z → Z

Wz = GG∗z =

∫ τ

0

T (τ − s)BωB
∗
ω(s)T

∗(τ − s)zds. (3.11)

Finally, the operators Γα : Z → C([0, τ ];U) de�ned for 0 < α ≤ 1 by

Γαz = B∗
ωT

∗(τ − ·)(αI +W)−1z = G∗(αI +GG∗)−1z, (3.12)

is an approximate inverse for the right of the operator G in the sense that

lim
α→0

GΓα = I. (3.13)

4 Controllability of the Semilinear System

In this setion we shall prove the main result of this paper, the interior approximate

ontrollability of the Semilinear Impulsive Heat Equation given by (1.1), whih is

equivalent to prove the approximate ontrollability of the system (2.4). To this end,

for all z0 ∈ Z and u ∈ C([0, τ ];U) the initial value problem






z′ = −Az +Bωu+ fe(t, z, u), t ∈ (0, τ ], t 6= tk, z ∈ Z

z(0) = z0,

z(t+k ) = z(t−k ) + Iek(t, z(tk), u(tk)), k = 1, 2, 3, . . . , p.
(4.1)

admits only one mild solution given by

zu(t) = T (t)z0 +

∫ t

0

T (t− s)Bωu(s)ds (4.2)

+

∫ t

0

T (t− s)fe(s, zu(s), u(s))ds (4.3)

+
∑

0<tk<t

T (t− tk)I
e
k(tk, z(tk), u(tk)), t ∈ [0, τ ].
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Now, we are ready to present and prove the main result of this paper, whih is the

interior approximate ontrollability of the semilinear impulsive heat equation (1.1).

We shall de�ne the operator Kα : PC([0, τ ];Z) × C([0, τ ];U) → PC([0, τ ];Z) ×
C([0, τ ];U) by the following formula:

(y, v) = (Kα
1 (z, u),K

α
2 (z, u)) = Kα(z, u)

where

y(t) = Kα
1 (z, u)(t) = T (t)z0 +

∫ t

0

T (t− s)Bω(ΓαL(z, u))(s)ds (4.4)

+

∫ t

0

T (t− s)fe(s, z(s), u(s))ds+
∑

0<tk<t

T (t− tk)I
e
k(tk, z(tk), u(tk)),

and

v(t) = Kα
2 (z, u)(t) = (ΓαL(z, u))(t) = B∗

ωT
∗(τ − t)(αI +W)−1L(z, u), (4.5)

with L : PC([0, τ ];Z)× C([0, τ ];U) → Z is given by

L(z, u) = z1 − T (τ)z0 −

∫ τ

0

T (τ − s)fe(s, z(s), u(s))ds (4.6)

−
∑

0<tk<τ

T (τ − tk)I
e
k(tk, z(tk), u(tk)).

Theorem 4.1 The nonlinear system (1.1) is approximately ontrollable on [0, τ ].
Moreover, a sequene of ontrols steering the system (1.1) from initial state z0 to

an ǫ-neighborhood of the �nal state z1 at time τ > 0 is given by

uα(t) = B∗
ωT

∗(τ − t)(αI +W)−1L(zα, uα),

and the error of this approximation Eαz is given by

Eαz = α(αI +W)−1L(zα, uα),

where

zα(t) = T (t)z0 +

∫ t

0

T (t− s)Bωuα(s)ds

+

∫ t

0

T (t− s)fe(s, zα(s), uα(s))ds

+
∑

0<tk<t

T (t− tk)I
e
k(tk, zα(tk), uα(tk)), t ∈ [0, τ ].

Proof We shall prove this Theorem by laims. Before we note that ‖Bω‖ = 1 and

‖T (t)‖ ≤ e−λ1t, t ≥ 0.
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Claim 1. The operator Kα
is ontinuous. In fat, it is enough to prove that the

operators:

Kα
1 : PC([0, τ ];Z)× C([0, τ ];U) → PC([0, τ ];Z)

and

Kα
2 : PC([0, τ ];Z)× C([0, τ ];U) → C([0, τ ];U),

de�ne above are ontinuous. The ontinuity of Kα
1 follows from the ontinuity of the

nonlinear funtions fα(t, z, u), Iek(t, z, u) and the following estimate

‖Kα
1 (z, u)(t)−Kα

1 (w, v)(t)‖ ≤

∫ t

0

e−λ1(t−s)‖(αI +W)−1‖‖L(z, u)− L(w, v)‖ds

+

∫ t

0

e−λ1(t−s)‖fe(s, z(s), u(s))− fe(s, w(s), v(s))‖ds

+
∑

0<tk<t

e−λ1(t−tk)‖Iek(tk, z(tk), u(tk))− Iek(tk, w(tk), v(tk))‖.

On the other hand,

‖L(z, u)− L(w, v)‖ ≤ τ sup
s∈[0,τ ]

‖fe(s, z(s), u(s))− fe(s, w(s), v(s))‖

+
∑

0<tk<τ

e−λ1(t−tk)‖Iek(tk, z(tk), u(tk))− Iek(tk, w(tk), v(tk))‖.

Therefore,

‖Kα
1 (z, u)−Kα

1 (w, v)‖ ≤ L1 sup
s∈[0,τ ]

‖fe(s, z(s), u(s))− fe(s, w(s), v(s))‖

+ L2

∑

0<tk<τ

‖Iek(tk, z(tk), u(tk))− Iek(tk, w(tk), v(tk))‖.

where L1 = τ(τ‖(αI +W)−1‖+ 1) and L2 = (1 + τ‖(αI +W)−1‖).
The ontinuity of the operator Kα

2 follows from the ontinuity of the operators L and

Γα de�ne above.

Claim 2. The operator Kα
is ompat. In fat, let D be a bounded subset of

PC(J ;Z)× C(J ;U). It follows that ∀(z, u) ∈ D,we have

‖fe(·, z, u)‖ ≤ L3, ‖(αI +W)−1L(z, u)‖ ≤ L4,

‖L(z, u)‖ ≤ L5, ‖Iek(·, z, u)‖ ≤ lk, k = 1, 2, . . . , p.

Therefore , K(D) is uniformly bounded.

Now, onsider the following estimate:

‖|Kα(z, u)(t2)−Kα(z, u)(t1)‖| = ‖Kα
1 (z, u)(t2)−Kα

1 (z, u)(t1)‖

+ ‖Kα
2 (z, u)(t2)−Kα

2 (z, u)(t1)‖.
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Without lose of generality we assume that 0 < t1 < t2. On the other hand we have:

‖Kα
1 (z, u)(t2)−Kα

1 (z, u)(t1)‖ ≤ ‖T (t2)− T (t1)‖‖z0‖

+

∫ t1

0

‖T (t2 − s)− T (t1 − s)‖‖L(z, u)(s)‖ds

+

∫ t2

t1

‖T (t2 − s)‖‖L(z, u)(s)‖ds

+

∫ t1

0

‖T (t2 − s)− T (t1 − s)‖‖fe(s, z(s), u(s))‖ds

+

∫ t2

t1

‖T (t2 − s)‖‖fe(s, z(s), u(s))‖ds

+
∑

0<tk<t1

‖T (t2 − tk)− T (t1 − tk)‖‖I
e
k(tk, z(tk), u(tk))‖

+
∑

t1<tk<t2

‖T (t2 − tk)I
e
k(tk, z(tk), u(tk))‖,

and

‖Kα
2 (z, u)(t2)−Kα

2 (z, u)(t1)‖ ≤ ‖T ∗(τ − t2)− T ∗(τ − t1)‖‖(αI +W)−1L(z, u)‖.

On the other hand, sine T (t) is a ompat operator for t > 0, then from [17℄ we know

that the funtion 0 < t → T (t) is uniformly ontinuous. So,

lim
|t2−t1|→0

‖T (t2)− T (t1)‖ = 0.

Consequently, if we take a sequene {φj : j = 1, 2, . . . } on Kα(D), this sequene is

uniformly bounded and equiontinuous on the interval [0, t1] and, by Arzela theorem,

there is a subsequene {φ1
j : j = 1, 2, . . . } of {φj : j = 1, 2, . . .}, whih is uniformly

onvergent on [0, t1].
Consider the sequene {φ1

j : j = 1, 2, . . .} on the interval (t1, t2]. On this interval the

sequene {φ1
j : j = 1, 2, . . .} is uniformly bounded and equiontinuous, and for the

same reason, it has a subsequene {φ2
j} uniformly onvergent on [0, t2].

Continuing this proess for the intervals (t2, t3], (t3, t4], . . . , (tp, τ ], we see that the

sequene {φp+1
j : j = 1, 2, . . .} onverges uniformly on the interval [0, τ ]. This means

that Kα(D) is ompat, whih implies that the operator Kα
is ompat.

Claim 3.

lim
‖|(z,u)‖|→∞

‖|Kα(z, u)‖|

‖|(z, u)‖|
= 0,

where ‖|(z, u)‖| = ‖z‖ + ‖u‖ is the norm in the spae PC([0, τ ];Z) × C(0, τ ;Z). In

fat, onsider the following estimates:

‖L(z, u)‖ ≤ M1+M2{a0‖z‖
α0 + b0‖u‖

β0 + c0}+M3

∑

0<tk<τ

{ak‖z‖
αk + bk‖u‖

βk + ck},
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where

M1 = ‖z1‖+ e−λ1τ‖z0‖, M2 =
1

−λ1
(e−λ1τ − 1) and M3 = e−λ1τ .

‖Kα
2 (z, u)‖ ≤ M3M1‖(αI +W)−1‖+M3M2‖(αI +W)−1‖{a0‖z‖

α0 + b0‖u‖
β0 + c0}

+ M3M2‖(αI +W)−1‖
∑

0<tk<τ

{ak‖z‖
αk + bk‖u‖

βk + ck}.

and

‖Kα
1 (z, u)‖ ≤ M3{‖z0‖+M1M2‖(αI +W)−1‖}

+M2{1 +M2M3‖(αI +W)−1‖}{a0‖z‖
α0 + b0‖u‖

β0 + c0}

+M3{1 +M2M3‖(αI +W)−1‖}
∑

0<tk<τ

{ak‖z‖
αk + bk‖u‖

βk + ck}.

Therefore,

‖|Kα(z, u)‖| = ‖Kα
1 (z, u)‖+ ‖Kα

2 (z, u)‖ ≤ M4

+ {M3M2‖(αI +W)−1‖{1 + 2M2}{a0‖z‖
α0 + b0‖u‖

β0 + c0}

+ {M3M2‖(αI +W)−1‖{1 +M3}+M3}
∑

0<tk<τ

{ak‖z‖
αk + bk‖u‖

βk + ck},

where M4 is given by:

M4 = M3{‖z0‖+ (M2 + 1)M1‖(αI +W)−1‖}.

Hene

‖|Kα(z, u)‖|

‖|(z, u)‖|
≤

M4

‖z‖+ ‖u‖

+ {M3M2‖(αI +W)−1‖{1 +M2}}

×{a0‖z‖
α0−1 + b0‖u‖

β0−1 +
c0

‖z‖+ ‖u‖
}

+ {M3M2‖(αI +W)−1‖{1 +M3}+M3} ×
∑

0<tk<τ

{ak‖z‖
αk−1 + bk‖u‖

βk−1 +
ck

‖z‖+ ‖u‖
},

and

lim
‖|(z,u)‖|→∞

‖|Kα(z, u)‖|

‖|(z, u)‖|
= 0. (4.7)

Claim 4.The operator Kα
has a �xed point. In fat, for a �xed 0 < ρ < 1, there

exists R > 0 big enough suh that

‖|Kα(z, u)‖| ≤ ρ‖|(z, u)‖|, ‖|(z, u)‖| = R.
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Hene, if we denote by B(0, R) the ball of enter zero and radius R > 0, we get that
Kα(∂B(0, R)) ⊂ B(0, R). Sine Kα

is ompat and maps the sphere ∂B(0, R) into the
interior of the ball B(0, R), we an apply Rothe's �xed point Theorem 1.1 to ensure

the existene of a �xed point (zα, uα) ∈ B(0, R) ⊂ PC([0, τ ];Z) × C([0, τ ];U) suh
that

(zα, uα) = Kα(zα, uα). (4.8)

Claim 5. The sequene {(zα, uα)}α∈(0,1] is bounded. In fat, for the purpose of

ontradition, let us assume that {(zα, uα)}α∈(0,1] is unbounded. Then, there exits a

subsequene {(zαn
, uαn

)}α∈(0,1] ⊂ {(zα, uα)}α∈(0,1] suh that

lim
n→∞

‖|(zαn
, uαn

)‖| = ∞.

On the other hand, from (4.7) we know for all α ∈ (0, 1] that

lim
n→∞

‖|Kα(zαn
, uαn

)‖|

‖|(zαn
, uαn

)‖|
= 0.

Partiularly, we have the following situation:

‖|Kα1(zα1
,uα1

)‖|

‖|(zα1
,uα1

)‖|

‖|Kα1(zα2
,uα2

)‖|

‖|(zα2
,uα2

)‖|

‖|Kα1(zα3
,uα3

)‖|

‖|(zα3
,uα3

)‖| . . . . . .
‖|Kα1(zαn ,uαn )‖|

‖|(zαn ,uαn)‖| → 0.

‖|Kα2(zα1
,uα1

)‖|

‖|(zα1
,uα1

)‖|

‖|Kα2(zα2
,uα2

)‖|

‖|(zα2
,uα2

)‖|

‖|Kα2(zα3
,uα3

)‖|

‖|(zα3
,uα3

)‖| . . . . . .
‖|Kα2(zαn ,uαn )‖|

‖|(zαn ,uαn)‖| → 0.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

‖|Kαk(zα1
,uα1

)‖|

‖|(zα1
,uα1

)‖|

‖|Kαk(zα2
,uα2

)‖|

‖|(zα2
,uα2

)‖|

‖|Kαk(zα3
,uα3

)‖|

‖|(zα3
,uα3

)‖| . . . . . .
‖|Kαk (zαn ,uαn )‖|

‖|(zαn ,uαn)‖| → 0.

Now, applying Cantor's diagonalization proess, we obtain that

lim
n→∞

‖|Kαn(zαn
, uαn

)‖|

‖|(zαn
, uαn

)‖|
= 0,

and from (4.8) we have that

‖|Kαn(zαn
, uαn

)‖|

‖|(zαn
, uαn

)‖|
= 1,

whih is evidently a ontradition. Then, the laim is true and there exists γ > 0
suh that

‖|(zαn
, uαn

)‖| ≤ γ, (0 < α ≤ 1).

Therefore, without loss of generality, we an assume that the sequene L(zα, uα)
onverges to y ∈ Z. So, if

uα = ΓαL(zα, uα) = G∗(αI +GG∗)−1L(zα, uα).
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Then,

Guα = GΓαL(zα, uα) = GG∗(αI +GG∗)−1L(zα, uα)

= (αI +GG∗ − αI)(αI +GG∗)−1L(zα, uα)

= L(zα, uα)− α(αI +GG∗)−1L(zα, uα).

Hene,

Guα − L(zα, uα) = −α(αI +GG∗)−1L(zα, uα).

To onlude the proof of this Theorem, it enough to prove that

lim
α→0

{−α(αI +GG∗)−1}L(zα, uα) = 0.

From Lemma 3.1.d) we get that

lim
α→0

{α(αI +GG∗)−1L(zα, uα)} = lim
α→0

α(αI +GG∗)−1y

+ lim
α→0

α(αI +GG∗)−1(L(zα, uα)− y)

= lim
α→0

−α(αI +GG∗)−1(L(zα, uα)− y)

On the other hand, from Proposition 3.1, we get that

‖α(αI +GG∗)−1(L(zα, uα)− y)‖ ≤ ‖L(zα, uα)− y)‖.

Therefore, sine L(zα, uα) onverges to y, we get that

lim
α→0

{−α(αI +GG∗)−1(L(zα, uα)− y)} = 0.

Consequently,

lim
α→0

{−α(αI +GG∗)−1L(zα, uα)} = 0.

Then,

lim
α→0

{Guα − L(zα, uα)} = 0.

Therefore,

lim
α→0

{T (τ)z0 +

∫ τ

0

T (τ − s)Bωuα(s)ds +

∫ τ

0

T (τ − s)fe(s, zα(s), uα(s))ds

+
∑

0<tk<τ

T (τ − tk)I
e
k(zα(tk), uα(tk))} = z1,

and the proof of the theorem is ompleted.

As a onsequene of the foregoing theorem we an prove the following harateri-

zation:

Theorem 4.2 The Impulsive Semilinear System (1.1) is approximately ontrollable if

for all states z0 and a �nal state z1 and α ∈ (0, 1] the operator Kα
given by (4.4)-(4.6)

has a �xed point and the sequene {L(zα, uα)}α∈(0,1] onverges. i.e.,

(zα, uα) = Kα(zα, uα),

lim
α→0

L(zα, uα) = y ∈ Z.



Approximate ontrollability of the impulsive semilinear heat equation 101

5 Final Remark

Our tehnique is simple and an be apply to those system involving ompat semi-

groups like some ontrol system governed by di�usion proesses. For example, the

Benjamin -Bona-Mohany Equation, the strongly damped wave equations, beam equa-

tions, et.

Example 5.1 The original Benjamin -Bona-Mohany Equation is a non-linear one,

in [16℄ the authors proved the approximate ontrollability of the linear part of this

equation, whih is the fundamental base for the study of the ontrollability of the non

linear BBM equation. So, our next work is onerned with the ontrollability of non

linear BBM equation















zt − a∆zt − b∆z = 1ωu(t, x) + f(t, z, u(t)), t ∈ (0, τ), x ∈ Ω,
z(t, x) = 0, t ≥ 0, x ∈ ∂Ω,
z(0, x) = z0(x), x ∈ Ω,
z(t+k , x) = z(t−k , x) + Ik(t, z(tk, x), u(tk, x)), x ∈ Ω,

where a ≥ 0 and b > 0 are onstants, k = 1, 2, . . . , p, Ω is a bounded domain in

R
N (N ≥ 1), z0 ∈ L2(Ω), ω is an open nonempty subset of Ω, 1ω denotes the hara-

teristi funtion of the set ω,the distributed ontrol u belongs to C([0, τ ];L2(Ω; )) and
f, Ik ∈ C([0, τ ]× R× R;R), k = 1, 2, 3, . . . , p.

Example 5.2 We believe that this tehnique an be applied to prove the interior on-

trollability of the strongly damped wave equation with Dirihlet boundary onditions























wtt + η(−∆)1/2wt + γ(−∆)w = 1ωu(t, x) + f(t, w, wt, u(t)), in (0, τ)× Ω,
w = 0, in (0, τ)× ∂Ω,
w(0, x) = w0(x), wt(0, x) = w1(x), in Ω,
w(t+k , x) = w(t−k , x) + I1k(t, w(tk, x), wt(tk, x), u(tk, x)), x ∈ Ω,
wt(t

+
k , x) = wt(t

−
k , x) + I2k(t, w(tk, x), wt(tk, x), u(tk, x)), x ∈ Ω,

in the spae Z1/2 = D((−∆)1/2) × L2(Ω), k = 1, 2, . . . , p, Ω is a bounded domain

in R
N (N ≥ 1), , ω is an open nonempty subset of Ω, 1ω denotes the harateristi

funtion of the set ω,the distributed ontrol u ∈ C([0, τ ];L2(Ω)), η, γ are positive

numbers and f, I1k , I
2
k ∈ C([0, τ ]× R× R;R), k = 1, 2, 3, . . . , p.

Example 5.3 Another example where this tehnique may be applied is a partial dif-

ferential equations modeling the strutural damped vibrations of a string or a beam:























ytt − 2β∆yt +∆2y = 1ωu(t, x) + f(t, y, yt, u(t)), on (0, τ)× Ω,
y = ∆y = 0, on (0, τ)× ∂Ω,
y(0, x) = y0(x), yt(0, x) = y1(x), in Ω,
y(t+k , x) = y(t−k , x) + I1k(t, y(tk, x), yt(tk, x), u(tk, x)), x ∈ Ω,
yt(t

+
k , x) = yt(t

−
k , x) + I2k (t, y(tk, x), yt(tk, x), u(tk, x)), x ∈ Ω,

where Ω is a bounded domain in IRn
, ω is an open nonempty subset of Ω, 1ω denotes

the harateristi funtion of the set ω, the distributed ontrol u ∈ C([0, τ ];L2(Ω))
and y0 ∈ H2(Ω) ∩H1

0 , y1 ∈ L2(Ω).
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Moreover, our result an be formulated in a more general setting. Indeed, we an

onsider the following semilinear evolution equation in a general Hilbert spae Z






ź = −Az +Bu(t) + fe(t, z, u), z ∈ Z, t ∈ (0, τ ],
z(0) = z0,

z(t+k ) = z(t−k ) + Iek(tk, z(tk), u(tk)), k = 1, 2, 3, . . . , p.
(5.1)

where u ∈ C([0, τ ];U), U = Z, Bω : U −→ Z, Bωu = 1ωu is a bounded linear

operator,Iek, f
e : [0, τ ] × Z × U → Z, A : D(A) ⊂ Z → Z is an unbounded linear

operator in Z with the following spetral deomposition:

Az =

∞
∑

j=1

λj

γj
∑

k=1

< z, φj,k > φj,k,

with the eigenvalues 0 < λ1 < λ2 < · · · < · · ·λn → ∞ of A having �nite multipliity

γj equal to the dimension of the orresponding eigenspaes, and {φj,k} is a om-

plete orthonormal set of eigenfuntions of A. The operator −A generates a strongly

ontinuous ompat semigroup {TA(t)}t≥0 given by

TA(t)z =
∞
∑

j=1

e−λjt

γj
∑

k=1

< z, φj,k > φj,k.

The ontrol u ∈ C([0, τ ];U), with U = Z, B : Z → Z is a linear and bounded

operator(linear and ontinuous) and the funtions fe, Iek : [0, τ ] × Z × U → Z are

smooth enough and

‖fe(t, z, u)‖Z ≤ ã0‖z‖
α0

Z + b̃0‖u‖
β0

Z + c̃0 (5.2)

‖Iek(t, z, u)‖Z ≤ ãk‖z‖
αk

Z + b̃k‖u‖
βk

Z + c̃k, k = 1, 2, 3, . . . , p. (5.3)

In this ase the harateristi funtion set is a partiular operator B, and the following

theorem is a generalization of Theorem 4.1.

Theorem 5.1 If vetors B∗φj,k are linearly independent in Z, then the system (5.1)

is approximately ontrollable on [0, τ ].
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