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Abstract: In this paper, we investigate the various important prop-
erties and characteristics of the subclasses Sn(p, q, α, β) and Cn(p, q, α, β)
of multivalent functions with negative coefficients defined by using a dif-
ferential operator. We also derive many results for the modified Hadamard
products of functions belonging to the classes Sn(p, q, α, β) and Cn(p, q, α, β).
Finally several applications involving an integral operator and certain frac-
tional calculus operators are also considered
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1. Introduction

Let T (n, p) denote the class of functions of the form :

f(z) = zp −
∞∑

k=n+p

akz
k (ak ≥ 0; p, n ∈ N = {1, 2, ....}), (1.1)

which are analytic and p-valent in the open unit disc U = {z : |z| < 1}. A function
f(z) ∈ T (n, p) is said to be p-valently starlike of order α if it satisfies the inequality:

Re

{
zf

′

(z)

f(z)

}

> α (z ∈ U ; 0 ≤ α < p; p ∈ N). (1.2)

We denote by T ∗n(p, α) the class of all p-valently starlike functions of order α. Also
a function f(z) ∈ T (n, p) is said to be p-valently convex of order α if it satisfies the
inequality:

Re

{

1 +
zf

′′

(z)

f
′(z)

}

> α (z ∈ U ; 0 ≤ α < p; p ∈ N). (1.3)
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We denote by Cn(p, α) the class of all p-valently convex functions of order α. We note
that ( see for example Duren [4] and Goodman [5])

f(z) ∈ Cn(p, α) ⇐⇒ zf
′

(z)

p
∈ T ∗n(p, α) ( 0 ≤ α < p; p ∈ N). (1.4)

The classes T ∗n(p, α) and Cn(p, α) are studied by Owa [12].
For each f(z) ∈ T (n, p) , we have (see [3])

f (q)(z) =
p!

(p− q)!
zp−q −

∞∑

k=n+p

k!

(k − q)!
akz

k−q (q ∈ N0 = N ∪ {0}; p > q). (1.5)

The main purpose of the present paper is to investigate various intersting prop-
erties and characteristics of functions belonging to two subclasses Sn(p, q, α, β) and
Cn(p, q, α, β) of the class T (n, p), which consist (respectivaly) of p-valently starlike
functions of order α and type β and p-valently convex functions of order α and type
β (0 ≤ α < p− q; p ∈ N ; q ∈ N0; p > q; 0 < β ≤ 1). Indeed we have

Sn(p, q, α, β) = { f(z) ∈ T (n, p) :

∣∣∣∣∣∣∣∣∣

zf (1+q)(z)

f (q)(z)
− (p− q)

zf (1+q)(z)

f (q)(z)
+ (p− q − 2α)

∣∣∣∣∣∣∣∣∣

< β , z ∈ U





(1.6)

and
Cn(p, q, α, β) = { f(z) ∈ T (n, p) :
∣∣∣∣∣∣∣∣∣

(1 +
zf (2+q)(z)

f (1+q)(z)
)− (p− q)

(1 +
zf (2+q)(z)

f (1+q)(z)
) + (p− q − 2α)

∣∣∣∣∣∣∣∣∣

< β , z ∈ U





. (1.7)

It follows from (1.6) and (1.7) that

f (q)(z) ∈ Cn(p, q, α, β) ⇔ zf (1+q)(z)

(p− q)
∈ Sn(p, q, α, β). (1.8)

We note that, by specializing the parameters n, p, q, α and β, we obtain the fol-
lowing subclasses studied by various authors:

(i) Sn(p, q, α, 1) = Sn(p, q, α) and Cn(p, q, α, 1) = Cn(p, q, α) (Chen et al. [2]);

(ii) Sn(p, 0, α, 1) =

{
T ∗n(p, α) (Owa [12])
Tα(p, n) (Yamakawa [19])

(0 ≤ α < p; p, n ∈ N)

(iii) Cn(p, 0, α, 1) =

{
Cn(p, α) (Owa [12])
CTα(p, n) (Yamakawa [19])

(0 ≤ α < p; p, n ∈ N)
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(iv) S1(p, 0, α, 1) = T ∗(p, α) and C1(p, 0, α, 1) = C(p,α)
(0 ≤ α < p; p ∈ N) (Owa [11]) and Salagean et al. [13]);

(v) S1(p, 0, α, β) = S∗(p, α, β) and C1(p, 0, α, β) = C∗(p, α, β)
(0 ≤ α < p; p ∈ N ; 0 ≤ β < 1) (Hossen [7]);

(vi) S1(1, 0, α, β) = T ∗(α, β) and C1(1, 0, α, β) = C(α, β)
(0 ≤ α < 1; 0 < β ≤ 1) (Gupta and Jain [6]);

(vii) Sn(1, 0, α, 1) = Tα(n) and Cn(1, 0, α, 1) = Cα(n)
(0 ≤ α < 1;n ∈ N) (Srivastava et al. [18]).

In our present paper, we shall make use of the familiar integral operator Jc,p defined
by (cf. [1], [8] and [9] ; see also [17])

(Jc,pf)(z) =
c + p

zc

z∫

0

tc−1f(t)dt (1.9)

(f(z) ∈ T (n, p); c > −p; p ∈ N)

as well as the fractional calculus operator Dµ
z for which it is well known that (see, for

details, [10] and [15] ; see also Section 5 below)

Dµ
z {zρ} =

Γ(ρ + 1)

Γ(ρ + 1− µ)
zρ−µ (ρ > −1;µ ∈ R) (1.10)

in terms of Gamma functions.

2. Coefficient estimates

Theorem 1. Let the function f(z) ∈ T (n, p) be given by (1.1). Then f(z) ∈
Sn(p, q, α, β) if and only if

∞∑

k=n+p

{(k − p) + β[(k − p) + 2(p− q − α)]} δ(k, q)ak ≤ 2β(p− q − α)δ(p, q) (2.1)

(0 ≤ α < p− q; p, n ∈ N ; q ∈ N0; p > q), where

δ(p, q) =
p!

(p− q)!
=

{
p(p− 1)...(p− q + 1) (q �= 0)
1 (q = 0) .

(2.2)
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Proof. Assume that the inequality (2.1) holds true, we find from (1.1) and (2.1) that

∣∣∣zf (1+q)(z)− (p− q)f (q)(z)
∣∣∣− β

∣∣∣zf (1+q)(z) + (p− q − 2α)f (q)(z)
∣∣∣

=

∣∣∣∣∣∣
−

∞∑

k=n+p

(k − p)δ(k, q)akz
k−q

∣∣∣∣∣∣

−β

∣∣∣∣∣∣
2(p− q − α)δ(p, q)zp−q −

∞∑

k=n+p

[(k − p) + 2(p− q − α)] δ(k, q)akz
k−q

∣∣∣∣∣∣

≤
∞∑

k=n+p

{(k − p) + β [(k − p) + 2(p− q − α)]} δ(k, q)ak − 2β(p− q − α)δ(p, q) ≤ 0

(z ∈ U). Hence, by the maximum modulus theorem, we have f(z) ∈ Sn(p, q, α, β).

Conversely, let f(z) ∈ Sn(p, q, α, β) be given by (1.1). Then from (1.1) and (1.6),
we find that
∣∣∣∣∣∣∣∣∣

zf (1+q)(z)

f (q)(z)
− (p− q)

zf (1+q)(z)

f (q)(z)
+ (p− q − 2α)

∣∣∣∣∣∣∣∣∣

(2.3)

=






∞∑

k=n+p

(k − p)δ(k, q)akzk−q

2(p− q − α)δ(p, q)zp−q −
∞∑

k=n+p

[(k − p) + 2(p− q − α)] δ(k, q)akzk−q





< β

(z ∈ U). Now, since |Re(z)| ≤ |z| for all z, we have

Re






∞∑

k=n+p

(k − p)δ(k, q)zk−q

2(p− q − α)δ(p, q)zp−q −
∞∑

k=n+p

[(k − p) + 2(p− q − α)] δ(k, q)akzk−q





< β.

(2.4)

Now choose values of z on the real axis so that
zf (1+q)(z)

f (q)(z)
is real. Then, upon clearing

the denominator in (2.4) and letting z → 1− through real values, we get

∞∑

k=n+p

(k−p)δ(k, q)ak ≤ β





2(p− q − α)δ(p, q)−

∞∑

k=n+p

[(k − p) + 2(p− q − α)] δ(k, q)ak





.

This gives the required condition.
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Corollary 1. Let the function f(z) defined by (1.1) be in the class Sn(p, q, α, β).
Then

ak ≤
2β(p− q − α)δ(p, q)

{(k − p) + β [(k − p) + 2(p− q − α)]} δ(k, q)
(2.5)

(k ≥ n + p; p, n ∈ N ; q ∈ N0; p > q).
The result is sharp for the function f(z) given by

f(z) = zp − 2β(p− q − α)δ(p, q)

{(k − p) + β [(k − p) + 2(p− q − α)]} δ(k, q)
zk (2.6)

(k ≥ n + p; p, n ∈ N ; q ∈ N0; p > q).

From Theorem 1 and using (1.8), we can prove the following theorem.

Theorem 2. Let the function f(z) ∈ T (n, p) be given by (1.1). Then f(z) ∈
Cn(p, q, α, β) if and only if

∞∑

k=n+p

(
k − q

p− q
) {(k − p) + β [(k − p) + 2(p− q − α)]} δ(k, q)ak ≤ 2β(p− q − α)δ(p, q).

(2.7)

Corollary 2. Let the function f(z) defined by (1.1) be in the class Cn(p, q, α, β).
Then

ak ≤
2β(p− q − α)δ(p, q)

(
k − q

p− q
) {(k − p) + β [(k − p) + 2(p− q − α)]} δ(k, q)

(2.8)

(k ≥ n + p; p, n ∈ N ; q ∈ N0; p > q).

The result is sharp for the function f(z) given by

f(z) = zp − 2β(p− q − α)δ(p, q)

(
k − q

p− q
) {(k − p) + β [(k − p) + 2(p− q − α)]} δ(k, q)

zk (2.9)

(k ≥ n + p; p, n ∈ N ; q ∈ N0; p > q).

3. Distortion theorems

Theorem 3. If a function f(z) defined by (1.1) is in the class Sn(p, q, α, β), then

{
p!

(p− j)!
− 2β(p− q − α)δ(p, q)(n + p− q)!

{n + β[n + 2(p− q − α)]} (n + p− j)!
|z|n

}
|z|p−j (3.1)

≤
∣∣∣f (j)(z)

∣∣∣

≤
{

p!

(p− j)!
+

2β(p− q − α)δ(p, q)(n + p− q)!

{n + β[n + 2(p− q − α)]} (n + p− j)!
|z|n

}
|z|p−j
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(z ∈ U ; 0 ≤ α < p− q; p, n ∈ N ; q, j ∈ N0; p > max{q, j}).
The result is sharp for the function f(z) given by

f(z) = zp − 2β(p− q − α)δ(p, q)

{n + β[n + 2(p− q − α)]} δ(n + p, q)
zn+p (3.2)

(p, n ∈ N ; q ∈ N0; p > q).

Proof. Since the sequence {δ(k, q)}(k ≥ n + p) is nondecreasing, where δ(k, q) is
defined by (2.2), in view of Theorem 1, we have

{n + β[n + 2(p− q − α)]} δ(n + p, q)

2β(p− q − α)δ(p, q)(n + p)!

∞∑

k=n+p

k!ak

≤
∞∑

k=n+p

{(k − p) + β [(k − p) + 2(p− q − α)]} δ(k, q)

2β(p− q − α)δ(p, q)
ak ≤ 1

which readily yields

∞∑

k=j+p

k!ak ≤
2β(p− q − α)δ(p, q)(n + p− q)!

{n + β[n + 2(p− q − α)]} . (3.3)

Now, by differentiating both of (1.1) j times, we obtain

f (j)(z) =
p!

(p− j)!
zp−j −

∞∑

k=n+p

k!

(k − j)!
akz

k−j (3.4)

(k ≥ n + p; p, n ∈ N ; q, j ∈ N0; p > max{q, j}).
Theorem 2 follows readily from (3.3) and (3.4).
Finally, it is easy to see that the bounds in (3.1) are attained for the function f(z)

given by (3.2).

Theorem 4. If a function f(z) defined by (1.1) is in the class Cn(p, q, α, β), then
{

1

(p− j)!
− 2β(p− q − α)(n + p− q − 1)!

(p− q − 1)! {n + β[n + 2(p− q − α)]} (n + p− j)!
|z|n

}
p! |z|p−j (3.5)

≤
∣∣∣f (j)(z)

∣∣∣

≤
{

1

(p− j)!
+

2β(p− q − α)(n + p− q − 1)!

(p− q − 1)! {n + β[n + 2(p− q − α)]} (n + p− j)!
|z|n

}
p! |z|p−j

(z ∈ U ; 0 ≤ α < p− q; p, n ∈ N ; q, j ∈ N0; p > max{q, j}).
The result is sharp for the function f(z) given by

f(z) = zp − 2β(p− q − α)δ(p, q)

(n+p−q
p−q

) {n + β[n + 2(p− q − α)]} δ(n + p, q)
zn+p (3.6)

(p, n ∈ N ; q ∈ N0; p > q).
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4. Modified Hadamard products

For the functions fν(z)(ν = 1, 2) given by

fν(z) = zp −
∞∑

k=n+p

ak,νz
k (ak,ν ≥ 0; ν = 1, 2) (4.1)

we denote by (f1 ⊛ f2)(z) the modified Hadamard product (or convolution) of the
functions f1(z) and f2(z) defined by

(f1 ⊛ f2)(z) = zp −
∞∑

k=n+p

ak,1.ak,2z
k. (4.2)

Theorem 5. Let the functions fν(z)(ν = 1, 2) defined by (4.1) be in the class
Sn(p, q, α, β). Then (f1 ⊛ f2)(z) ∈ Sn(p, q, γ, β), where

γ = (p− q)− 2β(1 + β)n(p− q − α)2δ(p, q)

{n + β[n + 2(p− q − α)]}2 δ(n + p, q)− 4β2(p− q − α)2δ(p, q)
. (4.3)

The result is sharp for the functions fν(z)(ν = 1, 2) given by

fν(z) = zp − 2β(p− q − α)δ(p, q)

{n + β[n + 2(p− q − α)]} δ(n + p, q)
zn+p (ν = 1, 2). (4.4)

Proof. Emloying the technique used earlier by Schild and Silverman [14], we need to
find the largest γ such that

∞∑

k=n+p

{(k − p) + β[(k − p) + 2(p− q − γ)]} δ(k, q)

2β(p− q − γ)δ(p, q)
ak,1.ak,2 ≤ 1 (4.5)

(fν(z) ∈ Sn(p, q, α, β) (ν = 1, 2)).

Since fν(z) ∈ Sn(p, q, α, β)(ν = 1, 2), we readily see that

∞∑

k=n+p

{(k − p) + β[(k − p) + 2(p− q − α)]} δ(k, q)

2β(p− q − α)δ(p, q)
ak,ν ≤ 1 (ν = 1, 2). (4.6)

Therefore, by the Cauchy - Schwarz inequality, we obtain

∞∑

k=n+p

{(k − p) + β[(k − p) + 2(p− q − α)]} δ(k, q)

2β(p− q − α)δ(p, q)

√
ak,1.ak,2 ≤ 1. (4.7)

Thus we only need to show that

{(k − p) + β[(k − p) + 2(p− q − γ)]}
(p− q − γ)

ak,1.ak,2 (4.8)
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≤ {(k − p) + β[(k − p) + 2(p− q − α)]}
(p− q − α)

√
ak,1.ak,2

(k ≥ n + p; p, n ∈ N), or, equivalently, that

√
ak,1.ak,2 ≤

(p− q − γ) {(k − p) + β[(k − p) + 2(p− q − α)]}
(p− q − α) {(k − p) + β[(k − p) + 2(p− q − γ)]} (4.9)

(k ≥ n + p; p, n ∈ N). Hence, in light of the inequality (4.7), it is sufficient to prove
that

2β(p− q − α)δ(p, q)

{(k − p) + β[(k − p) + 2(p− q − α)]} δ(k, q)
≤

(p− q − γ) {(k − p) + β[(k − p) + 2(p− q − α)]}
(p− q − α) {(k − p) + β[(k − p) + 2(p− q − γ)]} (4.10)

(k ≥ n + p; p, n ∈ N). It follows from (4.10) that

γ ≤ (p− q) (4.11)

− 2β(1 + β)(k − p)(p− q − α)2δ(p, q)

{(k − p) + β[(k − p) + 2(p− q − α)]}2 δ(k, q)− 4β2(p− q − α)2δ(p, q)

(k ≥ n + p; p, n ∈ N). Now, defining the function G(k) by

G(k) = (p− q) (4.12)

− 2β(1 + β)(k − p)(p− q − α)2δ(p, q)

{(k − p) + β[(k − p) + 2(p− q − α)]}2 δ(k, q)− 4β2(p− q − α)2δ(p, q)

k ≥ n + p; p, n ∈ N),we see that G(k) is an increasing function of k. Therefore, we
conclude that

γ ≤ G(n + p) = (p− q) (4.13)

− 2β(1 + β)n(p− q − α)2δ(p, q)

{n + β[n + 2(p− q − α)]}2 δ(n + p, q)− 4β2(p− q − α)2δ(p, q)

which evidently completes the proof of Theorem 5.
Putting β = 1 Theorem 5, we obtain

Corollary 3. Let the functions fν(z)(ν = 1, 2) defined by (4.1) be in the class
Sn(p, q, α). Then (f1 ⊛ f2)(z) ∈ Sn(p, q, γ), where

γ = (p− q)− n(p− q − α)2δ(p, q)

(n + p− q − α)2δ(n + p, q)− (p− q − α)2δ(p, q)
. (4.14)

The result is sharp.

Remark 1. We note that the result obtained by Chen et al. [2, Theorem 5] is not
correct. The correct result is given by (4.14).
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Using arguments similar to those in the proof of Theorem 5, we obtain the following
results.

Theorem 6. Let the function f1(z) defined by (4.1) be in the class Sn(p, q, α, β).
Suppose also that the function f2(z) defined by (4.1) be in the class Sn(p, q, γ, β).
Then (f1 ⊛ f2)(z) ∈ Sn(p, q, ζ, β), where

ζ = (p− q) (4.15)

− 2β(1 + β)n(p− q − α)(p− q − γ)δ(p, q)

{n + β[n + 2(p− q − α)]} {n + β[n + 2(p− q − γ)]} δ(n + p, q)−Ω

(Ω = 4β2(p− q − α)(p− q − γ)δ(p, q)).

This result is sharp for the functions fν(z)(ν = 1, 2) given by

f1(z) = zp − 2β(p− q − α)δ(p, q)

{n + β[n + 2(p− q − α)]} δ(n + p, q)
zn+p (p, n ∈ N) (4.16)

and

f2(z) = zp − 2β(p− q − γ)δ(p, q)

{n + β[n + 2(p− q − γ)]} δ(n + p, q)
zn+p (p, n ∈ N). (4.17)

Theorem 7. Let the functions fν(z)(ν = 1, 2) defined by (4.1) be in the class
Cn(p, q, α, β). Then (f1 ⊛ f2)(z) ∈ Cn(p, q, γ, β), where

γ = (p− q) (4.18)

− 2β(1 + β)n(p− q − α)2δ(p, q)

(
n + p− q

p− q
) {n + β[n + 2(p− q − α)]}2 δ(n + p, q)− 4β2(p− q − α)2δ(p, q)

.

The result is sharp for the functions fν(z)(ν = 1, 2) given by

fν(z) = zp − 2β(p− q − α)δ(p, q)

(
n + p− q

p− q
) {n + β[n + 2(p− q − α)]} δ(n + p, q)

zn+p (4.19)

(ν = 1, 2).

Remark 2. Putting β = 1 in Theorem 7, we obtain

Corollary 4. Let the functions fν(z)(ν = 1, 2) defined by (4.1) be in the class
Cn(p, q, α). Then (f1 ⊛ f2)(z) ∈ Cn(p, q, γ), where

γ = (p− q)− n(p− q − α)2δ(p, q + 1)

(n + p− q − α)2δ(n + p, q + 1)− (p− q − α)2δ(p, q + 1)
. (4.20)

The result is sharp.
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Remark 3. We note that the result obtained by Chen et al. [2, Theorem 6] is not
correct. The correct result is given by (4.20).

Theorem 8. Let the functions fν(z)(ν = 1, 2) defined by (4.1) be in the class
Sn(p, q, α, β). Then the function

h(z) = zp −
∞∑

k=n+p

(a2k,1 + a2k,2)z
k (4.21)

belongs to the class Sn(p, q, ξ, β), where

ξ = (p− q) (4.22)

− 4β(1 + β)n(p− q − α)2δ(p, q)

{n + β[n + 2(p− q − α)]}2 δ(n + p, q)− 8β2(p− q − α)2δ(p, q)
.

The result is sharp for the functions fν(z)(ν = 1, 2) defined by (4.4).
Theorem 9. Let the functions fν(z)(ν = 1, 2) defined by (4.1) be in the class
Cn(p, q, α, β). Then the function h(z) defined by (4.21) belongs to the class Cn(p, q, α, ξ),
where

ξ = (p− q) (4.23)

− 4β(1 + β)n(p− q − α)2δ(p, q)

(
n + p− q

p− q
) {n + β[n + 2(p− q − α)]}2 δ(n + p, q)− 8β2(p− q − α)2δ(p, q)

.

The result is sharp for the functions fν(z)(ν = 1, 2) defined by (4.19).

5. Applications of fractional calculus

Various operators of fractional calculus (that is, fractional integral and fractional
derivatives) have been studied in the literature rather extensively (cf., e.g., [3] , [10],
[16] and [17]; see also the various references cited therein). For our present investiga-
tion, we recall the following definitions.

Definition 1. The fractional integral of order µ is defined, for a function f(z), by

D−µ
z f(z) =

1

Γ(µ)

z∫

0

f(ζ)

(z − ζ)1−µ
dζ (µ > 0), (5.1)

where the function f(z) is analytic in a simply- connected domain of the complex z -
plane containing the origin and the multiplicity of (z− ζ)µ−1 is removed by requiring
log(z − ζ) to be real when z − ζ > 0.

Definition 2. The fractional derivative of order µ is defined, for a function f(z), by

Dµ
z f(z) =

1

Γ(1− µ)

z∫

0

f(ζ)

(z − ζ)µ
dζ (0 ≤ µ < 1), (5.2)
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where the function f(z) is constrained, and the multiplicity of (z − ζ)−µ is removed,
as in Definition 1.

Definition 3. Under the hypotheses of Definition 2, the fractional derivative of order
n + µ is defined, for a function f(z), by

Dn+µ
z f(z) =

dn

dzn
{Dµ

z f(z)} (0 ≤ µ < 1;n ∈ N0). (5.3)

In this section, we shall investigate the growth and distortion properties of func-
tions in the classes Sn(p, q, α, β) and Cn(p, q, α, β), involving the operators Jc,p and
Dµ
z . In order to derive our results, we need the following lemma given by Chen et

al. [3].

Lemma 1. (see Chen et al. [3]). Let the function f(z) defined by (1.1). Then

Dµ
z {(Jc,pf)(z)} =

Γ(p + 1)

Γ(p + 1− µ)
zp−µ −

∞∑

k=n+p

(c + p)Γ(k + 1)

(c + k)Γ(k + 1− µ)
akz

k−µ (5.4)

(µ ∈ R; c > −p; p, n ∈ N) and

Jc,p(D
µ
z {f(z)}) =

(c + p)Γ(p + 1)

(c + p− µ)Γ(p + 1− µ)
zp−µ (5.5)

−
∞∑

k=n+p

(c + p)Γ(k + 1)

(c + k − µ)Γ(k + 1− µ)
akz

k−µ

(µ ∈ R; c > −p; p, n ∈ N), provided that no zeros appear in the denominators in (5.4)
and (5.5).

Theorem 8. Let the function f(z) defined by (1.1) be in the class Sn(p, q, α, β). Then

∣∣D−µ
z {(Jc,pf)(z)}

∣∣ ≥
{

Γ(p + 1)

Γ(p + 1 + µ)
(5.6)

− (c + p)Γ(n + p + 1)2β(p− q − α)δ(p, q)

(c + n + p)Γ(n + p + 1 + µ) {n + β[n + 2(p− q − α)} δ(n + p, q)
|z|n

}
|z|p+µ

(z ∈ U ; 0 ≤ α < p− q;µ > 0; c > −p; p, n ∈ N, q ∈ N0; p > q) and

∣∣D−µ
z {(Jc,pf)(z)}

∣∣ ≤
{

Γ(p + 1)

Γ(p + 1 + µ)
(5.7)

+
(c + p)Γ(n + p + 1)2β(p− q − α)δ(p, q)

(c + n + p)Γ(n + p + 1 + µ) {n + β[n + 2(p− q − α)} δ(n + p, q)
|z|n

}
|z|p+µ

(z ∈ U ; 0 ≤ α < p− q;µ > 0; c > −p; p, n ∈ N, q ∈ N0; p > q).

Each of the assertions (5.6) and (5.7) is sharp.
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Proof. In view of Theorem 1, we have

{n + β[n + 2(p− q − α)} δ(n + p, q)

2β(p− q − α)δ(p, q)

∞∑

k=n+p

ak ≤ (5.8)

∞∑

k=n+p

{(k − p) + β[(k − p)2(p− q − α)} δ(k, q)

2β(p− q − α)δ(p, q)
ak ≤ 1,

which readily yields

∞∑

k=n+p

ak ≤
2β(p− q − α)δ(p, q)

{n + β[n + 2(p− q − α)} δ(n + p, q)
. (5.9)

Consider the function F (z) defined in U by

F (z) =
Γ(p + 1 + µ)

Γ(p + 1)
z−µD−µ

z {(Jc,pf)(z)}

= zp −
∞∑

k=n+p

(c + p)Γ(k + 1)Γ(p + 1 + µ)

(c + k)Γ(k + 1 + µ)Γ(p + 1)
akz

k

= zp −
∞∑

k=n+p

Φ(k)akz
k (z ∈ U)

where

Φ(k) =
(c + p)Γ(k + 1)Γ(p + 1 + µ)

(c + k)Γ(k + 1 + µ)Γ(p + 1)
(k ≥ n + p; p, n ∈ N ;µ > 0) . (5.10)

Since Φ(k) is a decreasing function of k when µ > 0, we get

0 < Φ(k) ≤ Φ(n + p) =
(c + p)Γ(n + p + 1)Γ(p + 1 + µ)

(c + n + p)Γ(n + p + 1 + µ)Γ(p + 1)
(5.11)

(c > −p; p, n ∈ N ;µ > 0). Thus, by using (5.9) and (5.11), we deduce that

|F (z)| ≥ |z|p −Φ(n + p) |z|n+p
∞∑

k=n+p

ak

≥ |z|p− (c + p)Γ(n + p + 1)Γ(p + 1 + µ)2β(p− q − α)δ(p, q)

(c + n + p)Γ(n + p + 1 + µ)Γ(p + 1) {n + β[n + 2(p− q − α)]} δ(n + p, q)
|z|n+p

(z ∈ U) and

|F (z)| ≤ |z|p + Φ(n + p) |z|n+p
∞∑

k=n+p

ak
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≤ |z|p+ (c + p)Γ(n + p + 1)Γ(p + 1 + µ)2β(p− q − α)δ(p, q)

(c + n + p)Γ(n + p + 1 + µ)Γ(p + 1) {n + β[n + 2(p− q − α)]} δ(n + p, q)
|z|n+p

(z ∈ U), which yield the inequalities (5.6) and (5.7) of Theorem 10. The equalities in
(5.6) and (5.7) are attained for the function f(z) given by

D−µ
z {(Jc,pf)(z)} =

{
Γ(p + 1)

Γ(p + 1 + µ)

− (c + p)Γ(n + p + 1)2β(p− q − α)δ(p, q)

(c + n + p)Γ(n + p + 1 + µ) {n + β[n + 2(p− q − α)]} δ(n + p, q)
zn
}

zp+µ (5.12)

or, equivalently, by

(Jc,pf)(z) = zp − (c + p)2β(p− q − α)δ(p, q)

(c + n + p) {n + β[n + 2(p− q − α)]} δ(n + p, q)
zn+p. (5.13)

Thus we complete the proof of Theorem 10.

Theorem 10. Let the function f(z) defined by (1.1) be in the class Sn(p, q, α, β).
Then

|Dµ
z {(Jc,pf)(z)}| ≥

{
Γ(p + 1)

Γ(p + 1− µ)
(5.14)

− (c + p)Γ(n + p + 1)2β(p− q − α)δ(p, q)

(c + n + p)Γ(n + p + 1− µ) {n + β[n + 2(p− q − α)]} δ(n + p, q)
|z|n

}
|z|p−µ

(z ∈ U ; 0 ≤ α < p− q; 0 ≤ µ < 1; c > −p; p, n ∈ N ; q ∈ N0; p > q) and

|Dµ
z {(Jc,pf)(z)}| ≤

{
Γ(p + 1)

Γ(p + 1− µ)
(5.15)

+
(c + p)Γ(n + p + 1)2β(p− q − α)δ(p, q)

(c + n + p)Γ(n + p + 1− µ) {n + β[n + 2(p− q − α)]} δ(n + p, q)
|z|n

}
|z|p−µ

(z ∈ U ; 0 ≤ α < p− q; 0 ≤ µ < 1; c > −p; p, n ∈ N ; q ∈ N0; p > q).

Each of the assertions (5.14) and (5.15) is sharp.
Proof. It follows from Theorem 1, that

∞∑

k=n+p

kak ≤
(n + p)2β(p− q − α)δ(p, q)

{n + β[n + 2(p− q − α)]} δ(n + p, q)
. (5.16)

We consider the function H(z) defined in U by

H(z) =
Γ(p + 1− µ)

Γ(p + 1)
zµDµ

z {(Jc,pf)(z)}

= zp −
∞∑

k=n+p

Ψ(k)kakz
k (z ∈ U),
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where, for convenience,

Ψ(k) =
(c + p)Γ(k)(p + 1− µ)

(c + k)Γ(k + 1− µ)Γ(p + 1)
(k ≥ n + p; p, n ∈ N ; 0 ≤ µ < 1).

Since Ψ(k) is a decreasing function of k when µ < 1, we find that

0 < Ψ(k) ≤ Ψ(n + p) =
(c + p)Γ(n + p)Γ(p + 1− µ)

(c + n + p)Γ(n + p + 1− µ)Γ(p + 1)
(5.17)

(c > −p; p, n ∈ N ; 0 ≤ µ < 1).

Consequently, with the aid of (5.16) and (5.17), we find that

|H(z)| ≥ |z|p −Ψ(n + p) |z|n+p
∞∑

k=n+p

kak

≥ |z|p− (c + p)Γ(n + p + 1)Γ(p + 1− µ)2β(p− q − α)δ(p, q)

(c + n + p)Γ(n + p + 1− µ)Γ(p + 1) {n + β[n + 2(p− q − α)]} δ(n + p, q)
|z|n+p

(z ∈ U), and

|H(z)| ≤ |z|p + Ψ(n + p) |z|n+p
∞∑

k=n+p

kak

≤ |z|p+ (c + p)Γ(n + p + 1)Γ(p + 1− µ)2β(p− q − α)δ(p, q)

(c + n + p)Γ(n + p + 1− µ)Γ(p + 1) {n + β[n + 2(p− q − α)]} δ(n + p, q)
|z|n+p

(z ∈ U) which yield the inequalities (5.14) and (5.15) of Theorem 11. The equalities
in (5.14) and (5.15) are attained for the function f(z) given by

Dµ
z {(Jc,pf)(z)} =

{
Γ(p + 1)

Γ(p + 1− µ)

− (c + p)Γ(n + p + 1)2β(p− q − α)δ(p, q)

(c + n + p)Γ(n + p + 1− µ) {n + β[n + 2(p− q − α)]} δ(n + p, q)
zn
}

zp+µ (5.18)

or for the function (Jc,pf)(z) given by (5.13). The proof of Theorem 11 is thus
completed.

Theorem 11. Let the function f(z) defined by (1.1) be the class Cn(p, q, α, β). Then
for z ∈ U ; 0 ≤ α < p− q;µ > 0; c > −p; p, n ∈ N ; q ∈ N0 and p > q, we have

∣∣D−µ
z {(Jc,pf)(z)}

∣∣ ≥
{

Γ(p + 1)

Γ(p + 1 + µ)
(5.19)

− (c + p)Γ(n + p + 1)2β(p− q − α)δ(p, q + 1)

(c + n + p)Γ(n + p + 1 + µ) {n + β[n + 2(p− q − α)]} δ(n + p, q + 1)
|z|n

}
|z|p+µ ,

(1)
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and
∣∣D−µ

z {(Jc,pf)(z)}
∣∣ ≤

{
Γ(p + 1)

Γ(p + 1 + µ)
(5.20)

+
(c + p)Γ(n + p + 1)2β(p− q − α)δ(p, q + 1)

(c + n + p)Γ(n + p + 1 + µ) {n + β[n + 2(p− q − α)]} δ(n + p, q + 1)
|z|n

}
|z|p+µ .

(2)
Also for z ∈ U.; 0 ≤ α < p− q; 0 ≤ µ < 1; c > −p; p, n ∈ N ; q ∈ N0 and p > q, we have

|Dµ
z {(Jc,pf)(z)}| ≥

{
Γ(p + 1)

Γ(p + 1− µ)

− (c + p)Γ(n + p + 1)2β(p− q − α)δ(p, q + 1)

(c + n + p)Γ(n + p + 1− µ) {n + β[n + 2(p− q − α)]} δ(n + p, q + 1)
|z|n

}
|z|p−µ

(5.21)
and

|Dµ
z {(Jc,pf)(z)}| ≤

{
Γ(p + 1)

Γ(p + 1− µ)

+
(c + p)Γ(n + p + 1)2β(p− q − α)δ(p, q + 1)

(c + n + p)Γ(n + p + 1− µ) {n + β[n + 2(p− q − α)]} δ(n + p, q + 1)
|z|n

}
|z|p−µ .

(5.22)
The equalities (5.19), (5.20), (5.21) and (5.22) are attained for the function f(z) given
by

(Jc,pf)(z) = zp − (c + p)2β(p− q − α)δ(p, q + 1)

(c + n + p) {n + β[n + 2(p− q − α)]} δ(n + p, q + 1)
zn+p. (5.23)

Remark 4. Putting β = 1 in Theorems 10, 11 and 12, we obtain the corresponding
results for the classes Sn(p, q, α) and Cn(p, q, α), respectively.
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1. Introduction

Let D denote the class of functions f(z) of the form :

f(z) = z +
∞∑

k=2

akz
k , (1)

which are analytic in U = U(1), where U(r) = {z : z ∈ C and |z| < r}.
If f(z) and g(z) are analytic in U , we say that f(z) is subordinate to g(z), written

symbolically as follows :

f ≺ g or f(z) ≺ g(z) (z ∈ U) ,

if there exists a Schwarz function w(z) in U such that f(z) = g(w(z)) (z ∈ U).
A function f(z) belonging to the class D is said to be convex in U(r) if and only

if

Re

{
1 +

z f ′′(z)

f ′(z)

}
> 0 (z ∈ U(r); 0 < r ≤ 1) .
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A function f(z) belonging to the class D is said to be starlike in U(r) if and only
if

Re

{
z f ′(z)

f(z)

}
> 0 (z ∈ U(r); 0 < r ≤ 1) .

We denote by Sc the class of all functions in D which are convex in U and by S∗ we
denote the class of all functions in D which are starlike in U .

For analytic functions f(z) =
∞∑

k=0

akz
k and g(z) =

∞∑

k=0

bkz
k, by (f ∗g)(z) we denote

the Hadamard product (or convolution) of f(z) and g(z), defined by

(f ∗ g)(z) =
∞∑

k=0

akbkz
k .

Let B be a subclass of the class D. We define the radius of starlikeness R∗(B) and
the radius of convexity Rc(B) for the class B by

R∗(B) = inf
f∈B

(sup {r ∈ (0, 1] : f is starlike of order 0 in U(r)}) ,

Rc(B) = inf
f∈B

(sup {r ∈ (0, 1] : f is convex in U(r)}) ,

respectively.
Let α1, A1, ..., αq,Aq and β1, B1, ..., βs,Bs(q, s ∈ N = {1, 2, ...}) be positive real

parameters such that

1 +
s∑

k=1

Bk −

q∑

k=1

Ak ≥ 0 .

The Wright generalized hypergeometric function [15] (see also [6])

qΨs[(α1, A1), ..., (αq, Aq); (β1, B1), ..., (βs, Bs); z] =q Ψs[(αn, An)1,q; (βn, Bn)1,s; z]

is defined by

qΨs[(αk, Ak)1,q; (βk, Bk)1,s; z]

=
∞∑

k=0

{
q∏

n=1

Γ(αn + kAn)

}{
s∏

n=1

Γ(βn + kBn)

}−1
zk

k!
(z ∈ U) .

If An = 1(n = 1, ..., q) and Bn = 1(n = 1, ..., s), we have the relationship :

Ω qΨs[(αn,1)1,q; (βn,1)1,s; z] = qFs(α1, ..., αq; β1, ..., βs; z) ,

where qFs(α1, ..., αq; β1, ..., βs; z) is the generalized hypergeometric function (see for
details [2], [3], [4], [5] and [7]) and

Ω =

(
q∏

n=1

Γ(αn)

)−1( s∏

n=1

Γ(βn)

)

. (2)
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The Wright generalized hypergeometric functions were invoked in the geometric func-
tion theory (see [1], [2], [3], [8], [9] and [10]) .

By using the generalized hypergeometric function Dziok and Srivastava [3] intro-
duced a linear operator. In [1] Dziok and Raina extended the linear operator by
using the Wright generalized hypergeometric function.

First we define a function qφs[(αn, An)1,q; (βn, Bn)1,s; z] by

qφs[(αn, An)1,q; (βn, Bn)1,s; z] = ΩzqΨs[(αn, An)1,q; (βn, Bn)1,s; z]

and consider the following linear operator

θ[(αn, An)1,q; (βn, Bn)1,s] : D → D ,

defined by the convolution

θ[(αn, An)1,q; (βn, Bn)1,s]f(z) = qφs[(αn, An)1,q; (βn, Bn)1,s; z] ∗ f(z) .

We observe that, for a function f(z) of the form (1), we have

θ[(αn, An)1,q; (βn, Bn)1,s]f(z) = z +
∞∑

k=2

Ωσk(α1)akz
k , (3)

where Ω is given by (2) and σk(α1) is defined by

σk(α1) =
Γ(α1 + A1(k − 1))......Γ(αq + Aq(k − 1))

Γ(β1 + B1(k − 1)).......Γ(βs + Bs(k − 1))(k − 1)!
. (4)

We note that :
If An = 1(n = 1, ..., q), Bn = 1(n = 1, ..., s), q = 2 and s = 1, we have

(i) θ[n + 1, 1; 1]f(z) = Dnf(z) (n ∈ N0 = {0, 1, ...}), where Dnf(z) is the n − th

order Ruscheweyh derivative of f(z) (see [13]);
(ii) θ[2, 1; 2−φ]f(z) = Ωφf(z) = Γ(2−φ)zφDφ

z f(z) (ϕ ∈ R;ϕ �= 2, 3, 4, ...; f ∈ D),
where the operator Ωφf(z) was introduced by Owa and Srivastava [11].

If, for convenience, we write

θ[α1]f(z) = θ[(α1, A1), ..., (αq, Aq); (β1,B1), ..., (βs, Bs)]f(z) ,

then one can easily verify from the definition (3) that

zA1(θ[α1]f(z))
′

= α1θ[α1 + 1]f(z)− (α1 −A1)θ[α1]f(z) . (5)

The linear operator θ[α1] was introduced by Dziok and Raina [1].
Let us denote by V (q, s;A,B, λ) the class of functions of the form (1) which also

satisfy the following condition:

1

(1− λ)

(
α1

θ[α1 + 1]f(z)

θ[α1]f(z)
+ A1(1− λ)− α1

)
≺ A1

1 + Az

1 + Bz

(0 ≤ B ≤ 1;−B ≤ A < B; 0 ≤ λ < 1) ,
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or, by using (5), if it satisfies the following condition:

1

(1− λ)

(
z(θ[α1]f(z))

′

θ[α1]f(z)
− λ

)

≺
1 + Az

1 + Bz

or, equivalently, if
∣∣∣∣∣∣

z(θ[α1]f(z))
′

θ[α1]f(z)
− 1

B
z(θ[α1]f(z))

′

θ[α1]f(z)
− [B + (A−B)(1− λ)]

∣∣∣∣∣∣
< 1 (z ∈ U) . (6)

Let T denote the subclass of D consisting of functions of the form:

f(z) = z −
∞∑

k=2

akz
k (ak ≥ 0) (7)

Further, we define the class W (q, s;A,B, λ) by

W (q, s;A,B,λ) = V (q, s;A,B, λ) ∩ T .

In particular, for q = s + 1 and αs+1 = As+1 = 1, we write W (s;A,B, λ) =
W (s + 1, s;A,B, λ). The class W (q, s;A,B, 0) = W (q, s;A,B) was studied by Dziok
and Raina [1].

If An = 1(n = 1, ..., q) and Bn = 1(n = 1, ..., s), then we note that:
(i) W (q, s;A,B, 0) = V 1

2 (q, s;A,B) (Dziok and Srivastava [3]);
(ii) For α1 = n + 1, α2 = 1 and β1 = 1, we have:

W (2, 1;−ρ, ρ, λ) = Tn(λ, ρ) =





f ∈ T :

∣∣∣∣∣∣

z(Dnf(z))
′

Dnf(z) − 1

z(Dnf(z))′

Dnf(z) + 1− 2λ

∣∣∣∣∣∣
< ρ ,

(z ∈ U, 0 ≤ λ < 1, 0 < ρ ≤ 1, n ∈ N0)}.

The class Tn(λ, ρ) was studied by Patel and Acharya [12];
(ii) For α1 = 2, α2 = 1 and β1 = 2− φ(φ ∈ R;φ �= 2, 3, 4, ...), we have:

W (2, 1;−ρ, ρ, λ) = Tφ(λ, ρ) =





f ∈ T :

∣∣∣∣∣∣

z(Ωφf(z))
′

Ωφf(z) − 1

z(Ωφf(z))′

Ωφf(z)
+ 1− 2λ

∣∣∣∣∣∣
< ρ ,

(z ∈ U, 0 ≤ λ < 1, 0 < ρ ≤ 1, φ ∈ R(�= 2, 3, ...))} .

2. Coefficient estimates

Theorem 1 Let a function f(z) of the form (7) belongs to the class D and let Ω
σk(α1) be defined by (2) and (4), respectively. If

∞∑

k=2

Ωδk |ak| ≤ (B −A)(p− λ), (8)
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where
δk = [(1 + B)(k − 1) + (B −A)(1− λ)]σk(α1) , (9)

then f(z) ∈W (q, s;A,B, λ).

Proof. Let z ∈ U . If (8) holds, we find from (7) that

−
∣∣∣z(θ[α1]f(z))

′

− θ[α1]f(z)
∣∣∣−

∣∣∣Bz(θ[α1]f(z))
′

− [B + (A−B)(1− λ)] θ[α1]f(z)| =

∣∣∣∣∣
−

∞∑

k=2

(k − 1)Ωσk(α1)akz
k

∣∣∣∣∣

−

∣∣∣∣∣
(B −A)(1− λ) z −

∞∑

k=2

[B(k − 1) + (B −A)(1− λ)]Ωσk(α1)akz
k

∣∣∣∣∣

≤
∞∑

k=2

(k − 1)Ωσk(α1) |ak| r
k − {(B −A)(1− λ)r −

∞∑

k=2

[B(k − 1) + (B −A)(1− λ)] Ωσk(α1) |ak| r
k

}

= r

{
∞∑

k=2

[(1 + B)(k − 1) + (B −A)(1− λ)]Ωσk(α1) |ak| r
k−1 − (B −A)(1− λ)

}

<

∞∑

k=2

Ωδk |ak| − (B − A)(1− λ) ≤ 0 .

Thus we have condition (6) and f(z) ∈W (q, s;A,B, λ).

Theorem 2 A function f(z) of the form (7) belongs to the class W (q, s;A,B, λ) if
and only if

∞∑

k=2

Ωδkak ≤ (B −A)(p− λ), (10)

where δk is defined by (9).

Proof. By Theorem 1 we have that (10) is the sufficient condition for the class
W (q, s;A,B, λ). Let now f(z) ∈W (q, s;A,B, λ) be given by (7). Then, from (6) and
(7), we have

∣∣∣∣∣∣

z(θ[α1]f(z))
′

θ[α1]f(z)
− 1

B
z(θ[α1]f(z))

′

θ[α1]f(z)
− [B + (A−B)(1− λ)]

∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣

∞∑

k=2

(k − 1)Ωσk(α1)akz
k−1

(B −A)(1− λ)−
∞∑

k=2

[B(k − 1) + (B −A)(1− λ)]Ωσk(α1)akzk−1

∣∣∣∣∣∣∣∣
< 1

(z ∈ U) ,
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where Ω and σk(α1) are defined by (2) and (4), respectively. Putting z = r (0 ≤ r <

1), we obtain

∞∑

k=2

(k − 1)Ωσk(α1)akr
k−1 < (B −A)(1− λ)

−
∞∑

k=2

[B(k − 1) + (B −A)(1− λ)]Ωσk(α1)akr
k−1 ,

which, upon letting r → 1−, readily yields the assertion (10). This completes the
proof of Theorem 2.

Since the expression δk defined by (9) is a decreasing function with respect to
βn, Bn(n = 1, ..., s) and an increasing function with respect to αℓ, Aℓ(ℓ = 1, ..., q),
from Theorem 2, we obtain :

Corollary 1 If ℓ ∈ {1, ..., q}; j ∈ {1, ..., s}, 0 ≤ α
′

ℓ ≤ αℓ, 0 < A
′

ℓ ≤ Aℓ and

0 ≤ βj ≤ β
′

j , 0 < Bℓ ≤ B
′

ℓ, then the class W (q, s;A,B, λ) (for the parameters
(αn, An)1,q; (βn, Bn)1,s) is included in the class W (q, s;A,B, λ) for the parameters

(α1, A1)..., (αℓ−1, Aℓ−1), (α
′

ℓ, A
′

ℓ), (αℓ+1, Aℓ+1), ...., (αq, Aq)

and
(β1, B1)..., (βj−1, Bj−1), (β

′

j , B
′

j), (βj+1, Bj+1), ...., (βs, Bs) .

From Theorem 2, we also have the following corollary.

Corollary 2 If a function f(z) of the form (7) belongs to the class W (q, s;A,B, λ),
then

ak ≤
(B −A)(1− λ)

Ωδk
(k ≥ 2) .

The result is sharp, the functions fk(z) of the form :

fk(z) = z −
(B −A)(1− λ)

Ωδk
zk (k ≥ 2) (11)

being the extremal functions.

Let f(z) be defined by (7) and for A = −1 and B = 1, the condition (6) is
equivalent to

θ[α1]f(z) ∈ T ∗(λ) (0 ≤ λ < 1) ,

where T ∗(λ) is the class of starlike functions of order λ(0 ≤ λ < 1) with negative
coefficients, was studied by Silverman [14]. Thus we have the following lemma :

Lemma 1 If αn = βn and An = Bn(n = 1, ..., s) then

W (s;−1, 1, λ) ⊂ T ∗(λ) (0 ≤ λ < 1) .
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By the definition of the class W (q, s;A,B, λ), we have the following lemma.

Lemma 2 If A1 ≤ A2, B1 ≥ B2 and 0 ≤ λ1 ≤ λ2 < 1 then

W (q, s;A1, B1, λ2) ⊂W (q, s;A2,B2, λ1) ⊂W (q, s;−1, 1, 0) .

Remark 1 Throught our paper we use Ω and δk, where Ω and δk are defined by (2)
and (9), respectively.

3. Distortion theorem

Theorem 3 Let a function f(z) of the form (7) belong to the class W (q, s;A,B, λ)
If the sequence {δk} is nondecreasing, then

r −
(B −A)(1− λ)

Ωδ2
r2 ≤ |f(z)| ≤ r +

(B −A)(1− λ)

Ωδ2
r2 (|z| = r < 1). (12)

If the sequence
{
δk
k

}
is nondecreasing, then

1−
2(B −A)(1− λ)

Ωδ2
r ≤ |f

′

(z)| ≤ 1 +
2(B −A)(1− λ)

Ωδ2
r (|z| = r < 1). (13)

The result is sharp, with the extremal function f(z) given by

f(z) = z −
(B −A)(1− λ)

Ωδ2
z2 . (14)

Proof. Let a function f(z) of the form (7) belong to the class W (q, s;A,B, λ). If the
sequence {δk} is nondecreasing and positive, by Theorem 2, we have

∞∑

k=2

ak ≤
(B −A)(1− λ)

Ωδ2
, (15)

and if the sequence
{
δk
k

}
is nondecreasing and positive, by Theorem 2, we have

∞∑

k=2

k ak ≤
2(B −A)(1− λ)

Ωδ2
. (16)

Making use of the conditions (15) and (16), in conjunction with the definition (7), we
readily obtain the assertions (12) and (13) of Theorem 3

Corollary 3 Let a function f(z) of the form (7) belong to the class W (s;A,B, λ). If
βn ≤ αn, Bn ≤ An(n = 1, 2, ..., s), then the assertions (12) and (13) hold true.

Proof. If q = s and βn ≤ αn, Bn ≤ An(n = 1, 2, ..., s), then the sequences {δk} and{
δk
k

}
are nondecreasing. Thus, by Theorem 3, we have Corollary 3.
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4. The radii of convexity and starlikeness

Theorem 4 The radius of starlikeness for the class W (q, s;A,B, λ) is given by

R∗(W (q, s;A,B,λ)) = inf
k≥2

[
Ωδk

k(B −A)(1− λ)

] 1

k−1

. (17)

The result is sharp.

Proof. It is sufficient to show that
∣∣∣∣∣
zf

′

(z)

f(z)
− 1

∣∣∣∣∣
< 1 (z ∈ U(r); 0 < r ≤ 1) . (18)

Since
∣∣∣∣∣
zf

′

(z)

f(z)
− 1

∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

∞∑

k=2

(k − 1)akz
k

z +
∞∑

k=2

akzk

∣∣∣∣∣∣∣∣
≤

∞∑

k=2

(k − 1)ak|z|
k−1

1−
∞∑

k=2

ak|z|k−1
,

putting |z| = r, the condition (18) is true if

∞∑

n=2

kak rk−1 ≤ 1 . (19)

By Theorem 2, we have

∞∑

k=2

Ωδk

(B −A)(1− λ)
ak ≤ 1 .

Thus the condition (19) is true if

k rk−1 ≤
Ωδk

(B −A)(1− λ)
(k ≥ 2) ,

that is, if

r ≤

(
Ωδk

k(B −A)(1− λ)

) 1

k−1

(k ≥ 2) .

It follows that any function f(z) ∈W (q, s;A,B, λ) is starlike in the disc U(R∗(W (q, s;A,B, λ))),
where R∗(W (q, s;A,B,λ)) is defined by (17).

Corollary 4

R∗(W (s;A,B, λ)) =






1 (αk ≥ βk, Ak ≥ Bk; k = 1, ..., s)

min
k≥2

(
Ωδk

k(B−A)(1−λ)

) 1

k−1

(αk < βk, Ak < Bk; k = 1, ..., s) .

The result is sharp.
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Proof. From Corollary 1, Lemma 1 and Lemma 2, we have

W (s;A,B, λ) ⊂ T ∗(λ) (αn ≥ βn, An ≥ Bn; n = 1, ..., s).

By Theorem 3, any function f(z) ∈W (s;A,B,λ) is starlike in the disc U(r), where

r = inf
k≥2

(dk)
1

k−1

(
dk =

Ωδk

k(B −A)(1− λ)

)
.

Since, for αn < βn, An < Bn(n = 1, ..., s), we have lim
k→∞

dk = d < 1,

lim
k→∞

(dk)
1

k−1 = 1, and dk > 0(k ≥ 2), the infimum of the set
{
(dk)

1

k−1 : k ≥ 2
}

is

realized for an element of this set for some k = k0. Moreover, the function

fk0(z) = z −
(B −A)(1− λ)

Ωδk0
zk0 ,

belongs to the class W (s;A,B, λ), and for z = (dk0)
1

k0
−1, we have

Re

{
z0 f

′

k0
(z)

fk0(z)

}

= 0 .

Thus the result is sharp.

Theorem 5 The radius of convexity for the class W (q, s;A,B,λ) is given by

Rc(W (q, s;A,B, λ)) = inf
k≥2

(
Ωδk

k2(B −A)(1− λ)

) 1

k−1

,

The result is sharp.

Proof. The proof is analagous to that of Theorem 4, and we omit the details.
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1. Introduction

This paper presents new fixed point theorems for multivalued Mönch type maps be-
tween Fréchet spaces. In the literature [1, 2, 3, 5, 6] one usually assumes the map F
is defined on a subset X of a Fréchet space E and its restriction (again called F )
is well defined on Xn (see Section 2). In general of course for Volterra operators the
restriction is always defined on Xn and in most applications it is in fact defined on
Xn and usually even on En (see Section 2). In this paper we make use of the fact
that the restriction is well defined on Xn and we only assume it admits an extension
(satisfying certain properties) on Xn. We also show how easily one can extend fixed
point theory in Banach spaces to fixed point theory in Fréchet spaces. In particu-
lar we obtain an applicable Leray-Schauder alternative in Fréchet spaces for Volterra
Kakutani Mönch type operators. Also inward type maps are discussed.

Existence in Section 2 is based on a Leray—Schauder alternative for Kakutani
Mönch maps [1, 6] which we state here for the convenience of the reader.

Theorem 1.1. Let K be a closed convex subset of a Banach space X, U a relatively
open subset of K, x0 ∈ U and suppose F : U → CK(K) is a upper semicontinuous
map (here CK(K) denotes the family of nonempty convex compact subsets of K).
Also assume the following conditions hold:

(1.1)

{
M ⊆ U, M ⊆ co ({x0} ∪ F (M)) with M = C and
C ⊆M countable, implies M is compact
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and

(1.2) x /∈ (1− λ) {x0}+ λF x for x ∈ U \U and λ ∈ (0, 1).

Then there exists a compact set
∑

of U and a x ∈
∑

with x ∈ F x.

Also in Section 2 we will discuss inward Kakutani Mönch maps. Let Q be a subset
of a Hausdorff topological space X and x ∈ X. The inward set IQ(x) is defined by

IQ(x) = {x + r (y − x) : y ∈ Q, r ≥ 0}.

If Q is convex and x ∈ Q then

IQ(x) = x + {r (y − x) : y ∈ Q, r ≥ 1}.

In our next definition and theorem E is a Banach space, C a closed convex subset
of E and U0 a bounded open subset of E. We will let U = U0∩C and 0 ∈ U . In our
definitions U and ∂U denote the closure and the boundary of U in C respectively.

Definition 1.1.We say F ∈ K(U,E) if F : U → CK(E) is upper semicontinuous,
F (U) is bounded, F (x) ⊆ IC(x) for x ∈ U , and if D ⊆ E with D ⊆ co ({0}∪F (D∩
U)) and D = B with B ⊆ D countable then D ∩ U is compact.

The following theorem [2, 5] will be needed in Section 2.

Theorem 1.2. Let E, C, U0, U be as before Definition 1.1, 0 ∈ U and F ∈
K(U,E) with

(1.3) x /∈ λFx for x ∈ ∂U and λ ∈ (0, 1)

holding. Then there exists a compact set
∑

of U and a x ∈
∑

with x ∈ F x.

Now let I be a directed set with order ≤ and let {Eα}α∈I be a family of locally
convex spaces. For each α ∈ I, β ∈ I for which α ≤ β let πα,β : Eβ → Eα be a
continuous map. Then the set

{

x = (xα) ∈
∏

α∈I

Eα : xα = πα,β(xβ) ∀α, β ∈ I, α ≤ β

}

is a closed subset of
∏
α∈I Eα and is called the projective limit of {Eα}α∈I and is

denoted by lim← Eα (or lim← {Eα, πα,β} or the generalized intersection [4, pp. 439]
∩α∈I Eα.)

2. Fixed point theory in Fréchet spaces.

Let E = (E, {| · |n}n∈N ) be a Fréchet space with the topology generated by a family
of seminorms {| · |n : n ∈ N}; here N = {1, 2, ....}. We assume that the family of
seminorms satisfies

(2.1) |x|1 ≤ |x|2 ≤ |x|3 ≤ ....... for every x ∈ E.
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A subset X of E is bounded if for every n ∈ N there exists rn > 0 such that
|x|n ≤ rn for all x ∈ X. For r > 0 and x ∈ E we denote B(x, r) = {y ∈ E :
|x− y|n ≤ r ∀n ∈ N}. To E we associate a sequence of Banach spaces {(En, | · |n)}
described as follows. For every n ∈ N we consider the equivalence relation ∼n
defined by

(2.2) x ∼n y iff |x− y|n = 0.

We denote by En = (E /∼n, | · |n) the quotient space, and by (En, | · |n) the com-
pletion of En with respect to | · |n (the norm on En induced by | · |n and its
extension to En are still denoted by | · |n). This construction defines a continu-
ous map µn : E → En. Now since (2.1) is satisfied the seminorm | · |n induces
a seminorm on Em for every m ≥ n (again this seminorm is denoted by | · |n).
Also (2.2) defines an equivalence relation on Em from which we obtain a continuous
map µn,m : Em → En since Em /∼n can be regarded as a subset of En. Now
µn,m µm,k = µn,k if n ≤ m ≤ k and µn = µn,m µm if n ≤ m. We now assume the
following condition holds:

(2.3)

{
for each n ∈ N, there exists a Banach space (En, | · |n)
and an isomorphism (between normed spaces) jn : En → En.

Remark 2.1. (i). For convenience the norm on En is denoted by | · |n.
(ii). In our applications En = En for each n ∈ N .
(iii). Note if x ∈ En (or En) then x ∈ E. However if x ∈ En then x is not necessaily
in E and in fact En is easier to use in applications (even though En is isomorphic
to En). For example if E = C[0,∞), then En consists of the class of functions in
E which coincide on the interval [0, n] and En = C[0, n].

Finally we assume

(2.4)

{
E1 ⊇ E2 ⊇ ........ and for each n ∈ N,
|jn µn,n+1 j−1n+1 x|n ≤ |x|n+1 ∀ x ∈ En+1

(here we use the notation from [4] i.e. decreasing in the generalized sense). Let
lim← En (or ∩∞1 En where ∩∞1 is the generalized intersection [4]) denote the pro-
jective limit of {En}n∈N (note πn,m = jn µn,m j−1m : Em → En for m ≥ n) and note
lim← En ∼= E, so for convenience we write E = lim← En.

For each X ⊆ E and each n ∈ N we set Xn = jn µn(X), and we let Xn, intXn

and ∂Xn denote respectively the closure, the interior and the boundary of Xn with
respect to | · |n in En. Also the pseudo-interior of X is defined by

pseudo− int (X) = {x ∈ X : jn µn(x) ∈ Xn \ ∂Xn for every n ∈ N}.

The set X is pseudo-open if X = pseudo − int (X). For r > 0 and x ∈ En we
denote Bn(x, r) = {y ∈ En : |x− y|n ≤ r}.

Let M ⊆ E and consider the map F : M → 2E. Assume for each n ∈ N and
x ∈ M that jn µn F (x) is closed. Let n ∈ N and Mn = jn µn(M). Since we only
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consider Volterra type operators we assume

(2.5) if x, y ∈ E with |x− y|n = 0 then Hn(F x, F y) = 0;

here Hn denotes the appropriate generalized Hausdorff distance (alternatively we
could assume ∀n ∈ N,∀x, y ∈ M if jn µn x = jn µn y then jn µn F x = jn µn F y
and of course here we do not need to assume that jn µn F (x) is closed for each n ∈ N
and x ∈M). Now (2.5) guarantees that we can define (a well defined) Fn on Mn as
follows:

For y ∈ Mn there exists a x ∈ M with y = jn µn(x) and we let

Fn y = jn µn F x

(we could of course call it F y since it is clear in the situation we use it); note
Fn : Mn → C(En) and note if there exists a z ∈ M with y = jn µn(z) then
jn µn F x = jn µn F z from (2.5) (here C(En) denotes the family of nonempty closed
subsets of En). In this paper we assume Fn will be defined on Mn i.e. we assume
the Fn described above admits an extension (again we call it Fn) Fn : Mn → 2En

(we will assume certain properties on the extension).

We now show how easily one can extend fixed point theory in Banach spaces to
applicable fixed point theory in Fréchet spaces.

Theorem 2.1. Let E and En be as described above and let F : X → 2E where
X ⊆ E. Also assume for each n ∈ N and x ∈ X that jn µn F (x) is closed and also
for each n ∈ N that Fn : Xn → 2En is as described above. Suppose the following
conditions are satisfied:

(2.6) x0 ∈ pseudo− int (X)

(2.7)

{
for each n ∈ N, Fn : intXn → CK(En) is a upper
semicontinuous map

(2.8)






for each n ∈ N, M ⊆ intXn with
M ⊆ co ({jn µn(x0)} ∪ Fn(M)) with M = C
and C ⊆M countable, implies M is compact

(2.9)

{
for each n ∈ N, y /∈ (1− λ) jn µn(x0) + λFn y in En
for all λ ∈ (0, 1] and y ∈ ∂ intXn

and

(2.10)

{
for each n ∈ {2, 3, ....} if y ∈ intXn solves y ∈ Fn y
in En then jk µk,n j−1n (y) ∈ intXk for k ∈ {1, ..., n− 1}.

Then F has a fixed point in E.
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PROOF: For each n ∈ N let
∑
n = {x ∈ intXn : x ∈ Fn x in En}. From Theorem

1.1 there exists yn ∈ intXn (note (2.9) holds with λ ∈ (0, 1]) with yn ∈ Fn yn. Lets
look at {yn}n∈N . Notice y1 ∈ intX1 and j1 µ1,k j−1k (yk) ∈ intX1 for k ∈ N\{1}
from (2.10). Note j1 µ1,n j−1n (yn) ∈ F1 (j1 µ1,n j−1n (yn)) in E1; to see note for n ∈ N
fixed there exists a x ∈ E with yn = jn µn (x) so jn µn (x) ∈ Fn (yn) = jn µn F (x)
on En so on E1 we have

j1 µ1,n j−1n (yn) = j1 µ1,n j−1n jn µn (x) ∈ j1 µ1,n j−1n jn µn F (x)

= j1 µ1,n µn F (x) = j1 µ1 F (x) = F1(j1 µ1 (x))

= F1(j1 µ1,n j−1n jn µn (x)) = F1 (j1 µ1,n j−1n (yn)).

Thus j1 µ1,n j−1n (yn) ∈ F1 (j1 µ1,n j−1n (yn)) in E1 and so j1 µ1,n j−1n (yn) ∈
∑
1 for

n ∈ N . Now since
∑
1 is compact there is a subsequence N⋆

1 of N and a z1 ∈∑
1 with j1 µ1,n j−1n (yn) → z1 in E1 as n → ∞ in N⋆

1 and z1 ∈ F1 z1 since
F1 is upper semicontinuous. Also (2.9) implies z1 ∈ intX1. Let N1 = N⋆

1 \ {1}.
Now j2 µ2,n j−1n (yn) ∈ intX2 for n ∈ N1 and

∑
2 compact guarantees that there

exists a subsequence N⋆
2 of N1 and a z2 ∈

∑
2 with j2 µ2,n j−1n (yn) → z2 in E2

as n → ∞ in N⋆
2 and z2 ∈ F2 z2. Also (2.9) implies z2 ∈ intX2. Note from

(2.4) and the uniqueness of limits that j1 µ1,2 j−12 z2 = z1 in E1 since N⋆
2 ⊆ N1

(note j1 µ1,n j−1n (yn) = j1 µ1,2 j−12 j2 µ2,n j−1n (yn) for n ∈ N⋆
2 ). Let N2 = N⋆

2 \ {2}.
Proceed inductively to obtain subsequences of integers

N⋆
1 ⊇ N⋆

2 ⊇ ......, N⋆
k ⊆ {k, k + 1, ....}

and zk ∈
∑
k with jk µk,n j−1n (yn) → zk in Ek as n → ∞ in N⋆

k and zk ∈ Fk zk.
Also (2.9) implies zk ∈ intXk. Note jk µk,k+1 j−1k+1 zk+1 = zk in Ek for k ∈ {1, 2, ...}.
Also let Nk = N⋆

k \ {k}.
Fix k ∈ N . Now zk ∈ Fk zk in Ek. Note as well that

zk = jk µk,k+1 j−1k+1 zk+1 = jk µk,k+1 j−1k+1 jk+1 µk+1,k+2 j−1k+2 zk+2

= jk µk,k+2 j−1k+2 zk+2 = ..... = jk µk,m j−1m zm = πk,m zm

for every m ≥ k. We can do this for each k ∈ N . As a result y = (zk) ∈ lim←En = E
and also note y ∈ X since zk ∈ intXk for each k ∈ N . Thus for each k ∈ N we
have

jk µk (y) = zk ∈ Fk zk = jk µk F y in Ek

so y ∈ F y in E. �

Remark 2.2. Usually in our applications we have ∂Xn = ∂ intXn (so Xn =
intXn). If X is a pseudo-open subset of E then for each n ∈ N we have Xn

is a open subset of En so intXn = Xn. To see this note Xn ⊆ Xn \∂Xn since
if y ∈ Xn then there exists x ∈ X with y = jnµn(x) and this together with
X = pseudo − intX yields jnµn(x) ∈ Xn \∂Xn i.e. y ∈ Xn \ ∂Xn. In addition
notice

Xn \ ∂Xn = (intXn ∪ ∂Xn) \∂Xn = intXn \ ∂Xn = intXn
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since intXn ∩ ∂Xn = ∅. Consequently

Xn ⊆ Xn \ ∂Xn = intXn, so Xn = intXn.

Remark 2.3. We can replace (2.10) in Theorem 2.1 with
{

for each n ∈ {2, 3, ....} if y ∈ intXn solves y ∈ Fn y
in En then jk µk,n j−1n (y) ∈ Xk for k ∈ {1, ..., n− 1}

provided we adjust (2.7) and (2.8) appropriately (i.e. replace intXn with Xn).

Remark 2.4. It is possible to replace λ ∈ (0, 1] in (2.9) with λ ∈ (0, 1) provided in
this case we take X to be a closed subset of E and (2.10) is changed to

(2.10)⋆
{

for each n ∈ {2, 3, ....} if y ∈ intXn solves y ∈ Fn y
in En then jk µk,n j−1n (y) ∈ intXk for k ∈ {1, ..., n− 1}.

The proof follows as in Theorem 2.1 except in this case yn ∈ intXn and zk ∈ intXk.
Also from y = (zk) ∈ lim←En = E and πk,m (ym)→ zk in Ek as m →∞ we can
conclude that y ∈ X = X (note q ∈ X iff for every k ∈ N there exists (xk,m) ∈ X,
xk,m = πk,n (xn,m) for n ≥ k with xk,m → jk µk (q) in Ek as m → ∞). Thus
zk = jk µk (y) ∈ Xk and so jk µk (y) ∈ jk µk F (y) in Ek as before.

Note here also that (2.10)⋆ could be replaced by

{
for each n ∈ {2, 3, ....} if y ∈ intXn solves y = Fn y
in En then jk µk,n j−1n (y) ∈ Xk for k ∈ {1, ..., n− 1}

provided we adjust (2.7) and (2.8) appropriately (i.e. replace intXn with Xn).

Essentially the same reasoning as in Theorem 2.1 (now using Theorem 1.2) estab-
lishes the following result.

Theorem 2.2. Let E and En be as described in the beginning of Section 2, C a
convex subset in E, V a pseudo-open bounded subset of E, 0 ∈ V ∩C, and F : Y →

2E with Y ⊆ E, and Un = Vn ∩ Cn ⊆ Yn for each n ∈ N (here Un = Vn ∩ Cn).
Also assume for each n ∈ N and x ∈ Y that jn µn F (x) is closed and also for each
n ∈ N that Fn : Un → 2En is as described above. Suppose the following conditions
are satisfied:

(2.11)






for each n ∈ N, Fn : Un → CK(En) is
upper semicontinuous and Fn(Un) is bounded;
here Un denotes the closure of Un in Cn

(2.12)






for each n ∈ N, D ⊆ En with
D ⊆ co ({jn µn(0)} ∪ Fn(D ∩Un)) and D = B
with B ⊆ D countable, implies D ∩ Un is compact

(2.13) for each n ∈ N, Fn(x) ⊆ ICn (x) for each x ∈ Un
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(2.14)






for each n ∈ N, y /∈ λFn y in En for all
λ ∈ (0, 1] and y ∈ ∂ Un; here ∂Un
denotes the boundary of Un in Cn

and

(2.15)

{
for each n ∈ {2, 3, ....} if y ∈ Un solves y ∈ Fn y in En
then jk µk,n j−1n (y) ∈ Uk for k ∈ {1, ..., n− 1}.

Then F has a fixed point in E.

Remark 2.5. Note in Theorem 2.2 if x ∈ Un then x ∈ Yn so there exists a y ∈ Y
with x = jn µn (y) and so Fn (x) = jn µn F (y).

PROOF: Fix n ∈ N . Let
∑
n = {x ∈ Un : x ∈ Fn x in En}. We would like to

apply Theorem 1.2. To do so we need to show

(2.16) Cn is convex

and

(2.17) Vn is a bounded open subset of En and jn µn (0) ∈ Un.

First we check (2.16). To see this let x̂, ŷ ∈ µn(C) and λ ∈ [0, 1]. Then for every
x ∈ µ−1n (x̂) and y ∈ µ−1n (ŷ) we have λx + (1 − λ)y ∈ C since C is convex and so
λx̂+(1−λ)ŷ = λµn(x)+(1−λ)µn(y). It is easy to check that λµn(x)+(1−λ)µn(y) =
µn(λx + (1− λ)y) so as a result

λx̂ + (1− λ)ŷ = µn(λx + (1− λ)y) ∈ µn(C),

and so µn(C) is convex. Now since jn is linear we have Cn = jn(µn(C)) is convex
and as a result Cn is convex. Thus (2.16) holds.

Now since V is pseudo-open and 0 ∈ V then jn µn (0) ∈ pseudo − int V so
jn µn(0) ∈ Vn \∂Vn (here Vn and ∂Vn denote the closure and boundary of Vn in
En respectively). Of course

Vn \∂Vn = (Vn ∪ ∂Vn) \∂Vn = Vn \∂Vn

so jn µn (0) ∈ Vn \∂Vn, and in particular jn µn (0) ∈ Vn. Thus jn µn (0) ∈ Vn∩Cn =
Un. Next notice Vn is bounded since V is bounded (note if y ∈ Vn then there exists
x ∈ V with y = jnµn(x)). Finally notice Vn is open in En (see Remark 2.2) so
(2.17) holds.

For each n ∈ N (see Theorem 1.2) there exists yn ∈ Un = Vn ∩ Cn with
yn ∈ Fn yn . Lets look at {yn}n∈N . Notice y1 ∈ U1 and j1 µ1,k j−1k (yk) ∈ U1
for k ∈ N\{1} from (2.15). Also as in Theorem 2.1 we have j1 µ1,n j−1n (yn) ∈
F1 (j1 µ1,n j−1n (yn)) in E1 and so j1 µ1,n j−1n (yn) ∈

∑
1 for n ∈ N . Now since

∑
1 is

compact there is a subsequence N⋆
1 of N and a z1 ∈

∑
1 with j1 µ1,n j−1n (yn)→ z1

in E1 as n → ∞ in N⋆
1 and z1 ∈ F1 z1 since F1 is upper semicontinuous. Also
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(2.14) implies z1 ∈ U1. Let N1 = N⋆
1 \ {1}. Proceed inductively to obtain subse-

quences of integers

N⋆
1 ⊇ N⋆

2 ⊇ ......, N⋆
k ⊆ {k, k + 1, ....}

and zk ∈
∑
k with jk µk,n j−1n (yn) → zk in Ek as n → ∞ in N⋆

k and zk ∈ Fk zk.
Also (2.14) implies zk ∈ Uk. Note jk µk,k+1 j−1k+1 zk+1 = zk in Ek for k ∈ {1, 2, ...}.
Also let Nk = N⋆

k \ {k}.
Fix k ∈ N . Now zk ∈ Fk zk in Ek. Note as well that

zk = jk µk,k+1 j−1k+1 zk+1 = jk µk,k+1 j−1k+1 jk+1 µk+1,k+2 j−1k+2 zk+2

= jk µk,k+2 j−1k+2 zk+2 = ..... = jk µk,m j−1m zm = πk,m zm

for every m ≥ k. We can do this for each k ∈ N . As a result y = (zk) ∈ lim←En = E
and also note zk ∈ Uk ⊆ Yk for each k ∈ N . Thus for each k ∈ N we have

jk µk (y) = zk ∈ Fk zk = jk µk F y in Ek

so y ∈ F y in E. �

Remark 2.6. In Theorem 2.2 it is possible to replace Cn ∩ Vn ⊆ Yn with Cn ∩ Vn a
subset of the closure of Yn in En provided Y is a closed subset of E so in this case we

could have Y = C∩V if Cn ∩ Vn is a subset of the closure of jn µn (C∩V ) in En and
if C is closed. To see this note from y = (zk) ∈ lim←En = E and πk,m (ym) → zk
in Ek as m→∞ we can conclude that y ∈ Y = Y (note q ∈ Y iff for every k ∈ N
there exists (xk,m) ∈ Y , xk,m = πk,n (xn,m) for n ≥ k with xk,m → jk µk (q) in
Ek as m → ∞). Thus zk = jk µk (y) ∈ Yk and so jk µk (y) ∈ jk µk F (y) in Ek as
before. Also it is easy to see with the above argument that λ ∈ (0, 1] in (2.14) can

be replaced by λ ∈ (0, 1) again provided Cn ∩ Vn is a subset of the closure of Yn in
En and Y is a closed subset of E.
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Abstract: Two methods based on Fourier series expansions (a Chan-
drasekhar functions - based method and a shifted Legendre polynomials -
based method) are used to study analytically the eigenvalue problem gov-
erning the linear convection problem with an uniform internal heat source
in a horizontal fluid layer bounded by two rigid walls. For each method
some theoretical remarks are made. Numerical results are given and they
are compared with some existing ones. Good agrement is found
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1. Problem setting

The effects of the presence in a fluid of an internal heat source have been experimen-
tally, numerically and analytically investigated by researchers in many convection
problems [6], [7], [8],[9]. The investigations concerned the effects of the heating and
cooling rate. Various conditions were imposed on the lower and upper boundaries.
The motion in the atmosphere or mantle convection are two among phenomena of
natural convection induced by internal heat sources. They bifurcate from the con-
duction state as a result of its loss of stability. In spite of their importance, due to
the occurrence of variable coefficients in the nonlinear partial differential equations
governing the evolution of the perturbations around the basic equilibrium, so far these
phenomena were treated mostly numerically and experimentally.

Herein a horizontal layer of viscous incompressible fluid with constant viscosity
and thermal conductivity coefficients ν and k is considered [9]. In this context, the
heat and hydrostatic transfer equations are [9]

η = k
∂2θB
∂z2

, (1)
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dpB
dz

= −ρBg, (2)

where η = const. is the heating rate, θB , pB and ρB are the potential temperature,
pressure and density in the basic state, respectively. In the fluid, the temperature
at all point varies at the same rate as the boundary temperature, so the problem is
characterized by a constant potential temperature difference between the lower and
the upper boundaries ∆θB = θB0 − θB1 . Taking into account (1) this leads to the
following formula for the potential temperature distribution [9]

θB = θB0 −
∆θB
h

(
z +

h

2

)
+
η

2k

[
z2 −

(h2

2

)2]
. (3)

In nondimensional variables the system of equations characterizing the problem is






dU

dt
= −∇p′ + ∆U+Grθ′k,

divU = 0,

dθ′

dt
= (1−Nz)Uk+ Pr−1∆θ′,

(4)

where U = (u, v, w) is the velocity, θ′ and p′ are the temperature and pressure devi-
ations from the basic state [9], Gr is the Grashof number, Pr is the Prandtl number
and N is a nondimensional parameter characterizing the heating (cooling) rate of the
layer.

The boundaries are assumed rigid and ideal heat conducting, so the boundary
conditions read

U = θ′ = 0 at z = −
1

2
and z =

1

2
. (5)

In [9] the numerical investigations concerned the vertical distribution of the total
heat fluxes and their individual components for small and moderate supercritical
Rayleigh number in the presence of a uniform heat source.

The eigenvalue problem associated with the equations for a convection problem
with an uniform internal heat source in a horizontal fluid layer bounded by two rigid
walls was deduced in [2].

Consider the viscous incompressible fluid confined into a periodicity rectangular

box V : 0 ≤ x ≤ a1, 0 ≤ y ≤ a2, −
1

2
≤ z ≤

1

2
[4] bounded by two rigid horizontal

walls. The corresponding eigenvalue problem [2] has the form

{
(D2 − a2)2W − a2RaΘ = 0,
(D2 − a2)Θ + (1−Nz)W = 0.

(6)

with the boundary conditions

W = DW = Θ = 0 at z = −
1

2
and z =

1

2
. (7)
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In (6) the Rayleigh number Ra represents the eigenvalue while (W,Θ) represents
the corresponding eigenvector. The analytical study of this stability problem consists
in finding the smallest eigenvalue, i.e. the critical value of the Rayleigh number at
which the convection sets in.

In [2] the analytical study of the eigenvalue problem (6)-(7) was performed by
means of a method from [1]. First the system (6)-(7) was written in a more convenient

independent variable x = z +
1

2
. Then, two methods (one based on Fourier series

expansions of the unknown functions and other a variational one) were used in order
to find the smallest eigenvalue. Here, the analytical study in also based on Fourier
series expansions of the unknown functions, but the expansion functions satisfy all
boundary conditions.

Taking into account the form of the boundary conditions two methods are used
and, for each of them, some analytical remarks on the chosen sets of expansion func-
tions are presented.

2. A method based on Chandrasekhar functions

In this method, the unknown function W is expanded upon a complete set of orthog-

onal functions that satisfy all boundary conditions
(
W = DW = 0 at z = ±

1

2

)
and

then, from (6)2 we find the expression of the unknown function Θ. Replacing these
expansions in (6)1 and imposing the condition that the left-hand side of the obtained
equation to be orthogonal to each function from the expansion set, we obtain an alge-
braic system of equations which leads us to the secular equation, yielding the critical
value of the Rayleigh number.

When the normal component of the velocity and its derivative are zero at z =

−
1

2
and z =

1

2
, the classical set of complete orthogonal functions that satisfy these

conditions are the Chandrasekhar sets of functions {Cn}n∈N, {Sn}n∈N[1]

Cn(z) =
coshλnz

coshλn/2
−

cosλnz

cosλn/2
, (8)

Sn(z) =
sinh(µnz)

sinh(µn/2)
−

sin(µnz)

sin(µn/2)
(9)

where λn and µn are the positive roots of the equations tanh
(λ
2

)
+tan

(λ
2

)
= 0 and

coth
(µ
2

)
− cot

(µ
2

)
= 0. We have

∫ 0.5

−0.5

Cn(z)Cm(z)dz =

∫ 0.5

−0.5

Sn(z)Sm(z)dz = δmn.

By definition, the functions Cn and Sn and their derivatives vanish at z = ±
1

2
so

the boundary conditions (7) are satisfied.
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Let us consider W =
∞∑

n=1
WnCn(z). From (6)2 we obtain the expression of the

unknown function Θ,

Θ = A cosh az +B sinh az +
Wn coshλnz(Nz − 1)

(λ2n − a
2) coshλn/2

−
2λnNWn

(λ2n − a
2)2 coshλn/2

·

· sinhλnz +
(1−Nz)Wn cosλnz

(λ2n + a2) cosλn/2
−

2λnNWn

(λ2n + a2)2 cosλn/2
sinλnz,

where A =
2a2Wn

(λ2n − a
2)(λ2n + a2) cosh a/2

and

B =
8λ3nNWna

2

(λ2n − a
2)2(λ2n + a2)2 coshλn/2

−
a2NWn

(λ2n − a
2)(λ2n + a2)

.

However, in our case, replacing these expressions in (6)1 and imposing the condi-
tion that the left-hand side of the obtained equation to be orthogonal to Cm, m ∈ N,
we obtain an expression in which the physical parameter N is missing. The mathe-
matical explanation is that the chosen set of expansion functions introduced an ex-
traparity (inexistent in the given problem), leading to the loss of one of the physical
parameter, in this case the cooling (heating) rate N .
Remark 1. The physical parameter N also disappear when the expansion func-

tions are Sn, n = 1, 2, ....
Another explanation could be the fact that we have no physical or mathematical

reason to assume that W is either even or odd. The general form of W , W (z) =
∞∑

n=1
Cn(z)W

1
n + Sn(z)W

2
n , will be considered elsewhere.

3. A method based on shifted Legendre polynomials

In order to avoid the loss of N , we use a different set of orthogonal functions, namely
a basis of shifted Legendre polynomials (SLP) on [0, 1].

Let us modify the system (6) by a translation of the variable z, x = z +
1

2
, such

that the eigenvalue problem becomes

{
(D2 − a2)2W − a2RaΘ = 0,
(D2 − a2)Θ + (N1 −Nx)W = 0,

(10)

with N1 = 1 +
N

2
and the boundary conditions

W = DW = Θ = 0 at x = 0 and 1. (11)

Starting with the classical Legendre polynomials defined on (−1, 1), let us in-
troduce the complete sets of expansion functions. We are interested in expansion
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functions that satisfy all boundary conditions. Let H1
0 (0, 1), H

2
0 (0, 1) be two Hilbert

spaces [5]
H1
0 (0, 1) = {f |f, f ′ ∈ L2(0, 1), f(0) = f(1) = 0},

H2
0 (0, 1) = {f |f, f ′, f ′′ ∈ L2(0, 1), f(0) = f(1) = f ′(0) = f ′(1) = 0}

and denote by Lk the Legendre polynomials defined on (−1, 1). By means of them, we

construct the SLP (denoted by us by Qk) on (a, b), namely Qk(x) = Lk
(2x− a− b

b− a

)
.

Taking (a, b) = (0, 1) we find that Qk are orthogonal polynomials on the interval

(0, 1), i.e.

∫ 1

0

QiQjdx =
1

2i+ 1
δij . Using the identity [5]

2(2i+ 1)Qi(x) = Q′i+1(x)−Q
′

i−1(x). (12)

we define the complete sets of orthogonal functions {φi}i=1,2,... ⊂ H
1
0 (0, 1),

φi(x) =

∫ x

0

Qi(t)dt =
Qi+1 −Qi−1

2(2i+ 1)
,

satisfying boundary conditions φi(0) = φi(1) = 0 at x = 0 and 1 and {βi}i=1,2,... ⊂
H2
0 (0, 1),

βi(x) =

∫ x

0

∫ s

0

Qi+1(t)dtds =
1

4

[ Qi+3 −Qi+1
(2i+ 3)(2i+ 5)

−
Qi+1 −Qi−1

(2i+ 1)(2i+ 3)

]
,

satisfying boundary conditions βi(0) = βi(1) = β′i(0) = β′i(1) = 0 at x = 0 and 1.

Remark 2. We could also work with SLP on (a, b) =
(
−

1

2
,
1

2

)
. However, the

choice (a, b) = (0, 1) leads us to simplified numerical evaluations.
The system (6) can be solved numerically by approximating the solution (W,Θ)

by

W =
n∑

i=1

Wiβi(x), Θ =
n∑

i=1

Θiφi(x) (13)

with Wi and Θi the Fourier coefficients. In this way, the system (6) can be written
in terms of the expansion functions only






n∑

i=1

[Wi(D
2 − a2)2βi − a

2RaΘiφi] = 0,

n∑

i=1
[Θi(D

2 − a2)φi + (N1 −Nz)Wiβi] = 0.
(14)

Multiplying the system (14) by the vector (βk, φk) we obtain the algebraic system






n∑

i=1
[Wi

(
(D2 − a2)2βi, βk

)
− a2RaΘi(φi, βk)] = 0,

n∑

i=1
[Θi

(
(D2 − a2)φi, φk

)
+WiN1(βi, φk)−WiN(zβi, φk)] = 0.

(15)
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Taking into account the fact that the coefficients Wi, Θi are not all null, i.e. the
Cramer determinant vanishes, the secular equation has the form

((D2 − a2)2βi, βk) −a2Ra(φi, βk)
N1(βi, φk)−N(zβi, φk) ((D2 − a2)φi, φk)

= 0. (16)

The scalar products from (16) are given in the Appendix.
The system (10) has variable coefficients (functions of x). In this case, the following

recurrence relation was used for the numerical study

2xQi =
i+ 1

2i+ 1
Qi+1 +Qi +

i

2i+ 1
Qi−1. (17)

4. Numerical results

Taking n = m = 1 we obtained a first approximation of the Rayleigh number, which
proved to be a good approximation compared to the one obtained in [2]. The obtained
numerical results are presented in Table 1 in comparison with the results from [2].

N a2 Ra− Fourier Ra − var.meth. Ra− Legendre
0 9.711 1715.079324 1749.97575 1749.95727
1 9.711 1711.742588 1746.804944 1746.809422
2 9.711 1701.891001 1737.45025 1737.450242
1 10.0 1712.257687 1747.29100 1747.290998
4 10.0 1664.341789 1701.62704 1701.627037
4 12.0 1685.422373 1723.62407 1723.624047
8 12.0 1547.460446 1590.19681 1590.196769
9 12.0 1508.147637 1551.72378 1551.723746
10 12.0 1468.449223 1512.69203 1512.691998
12 12 1389.837162 1434.90396 1434.903926
16 12 1243.442054 1288.50149 1288.501459
10 9.0 1482.527042 1525.59302 1525.593072
11 9.0 1446.915467 1490.55802 1490.558078
12 9.00 1411.401914 1455.48233 1455.482384

Table 1. Numerical evaluations of the Rayleigh number for various values of the

parameters N and a.

The disadvantage of this method is given by the fact that the approximations are
limited by the difficult evaluation of the associated matrix for a large number of
functions in the expansion sets. However, the expressions of the neutral manifolds
are easy to obtain with this method.

When the wavenumber is kept constant an increase in the heating (cooling) rate
parameter leads to a decreasing of the Rayleigh number. When N = 0 the problem
reduces to the particular case of Rayleigh-Bénard convection and the numerical eval-
uation lead us to a value similar to the classical value for the Rayleigh number, i.e.
Ra = 1749.95727 for a = 3.117.
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5. Appendix

Let us give the expressions of the scalar products occurring in (16). Since in (10)1
the expression ((D2 − a2)2βi, βk) is written as

((D2 − a2)2βi, βk) = (D4βi, βk)− 2a2(D2βi, βk) + a4(βi, βk)

let us simplify these products or simply evaluate them. Taking into account the

definition of the scalar product on L2(0, 1), i.e. (f, g) =

∫ 1

0

fgdx and the boundary

conditions satisfied by the expansion functions, we have

(D4βi, βk) = (β′′i , β
′′

k ) =






1

2i+ 3
ifi = k,

0ifi �= k

(18)

and

(D2βi, βk) = −(β′i, β
′

k) =






−
1

2(2i+ 1)(2i+ 3)(2i+ 5)
ifi = k,

1

4(2i− 1)(2i+ 1)(2i+ 3)
ifi = k + 2,

0otherwise

(19)

Given the fact that (βi, βk) =
1

2

(φi+2 − φi
2i+ 3

,
φk+2 − φk

2k + 3

)
we first evaluated the prod-

uct (φi, φk) and we get

(φi, φk) =






1

2(2i− 1)(2i+ 1)(2i+ 3)
ifi = k,

−
1

4(2i+ 1)(2i+ 3)(2i+ 5)
ifi = k − 2,

0otherwise

(20)

Using (20) we have

(βi, βk) =






3

8(2i− 1)(2i+ 1)(2i+ 3)(2i+ 5)(2i+ 7)
ifi = k,

−
1

4(2i+ 1)(2i+ 3)(2i+ 5)(2i+ 7)(2i+ 9)
ifi = k − 2,

1

16(2i+ 3)(2i+ 5)(2i+ 7)(2i+ 9)(2i+ 11)
ifi = k − 4,

0otherwise

(21)
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We also used (20) to deduce (φi, βk), i.e.

(φi, βk) =






−
3

8(2i− 1)(2i+ 1)(2i+ 3)(2i+ 5)
ifi = k,

3

8(2i− 3)(2i− 1)(2i+ 1)(2i+ 3)
ifi = k + 2,

1

8(2i+ 1)(2i+ 3)(2i+ 5)(2i+ 7)
ifi = k − 2,

−
1

8(2i− 5)(2i− 3)(2i− 1)(2i+ 1)
ifi = k + 4,

0otherwise

(22)

Let us remark that (βi, φk) = (φk, βi).

The computation of (D2φi, φk) was simplified by the expressions of the φi func-
tions. We have

(D2φi, φk) = −(Qi, Qk) =






−
1

2i+ 1
ifi = k,

0otherwise

. (23)

All the obtained expressions (18) - (24) are based on the orthogonality relationship be-
tween the SLP. In deducing the expression below we also used the recurrence relation
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(17)

(zβi, φk) =






−
i+ 4

16(2i+ 3)(2i+ 5)(2i+ 7)(2i+ 9)(2i+ 11)
ifi = k − 5,

−
1

16(2i+ 3)(2i+ 5)(2i+ 7)(2i+ 9)
ifi = k − 4,

1

16(2i+ 1)(2i+ 3)(2i+ 5)(2i+ 9)
ifi = k − 3,

3

16(2i+ 1)(2i+ 3)(2i+ 5)(2i+ 7)
ifi = k − 2,

−
3

16(2i− 1)(2i+ 1)(2i+ 3)(2i+ 5)(2i+ 7)
ifi = k − 1,

−
3

16(2i− 1)(2i+ 1)(2i+ 3)(2i+ 5)
ifi = k,

−
1

16(2i− 3)(2i+ 1)(2i+ 3)(2i+ 5)
ifi = k + 1,

1

16(2i− 3)(2i− 1)(2i+ 1)(2i+ 3)
ifi = k + 2,

i+ 1

16(2i− 5)(2i− 3)(2i− 1)(2i+ 1)(2i+ 3)
ifi = k + 3

0otherwise

(24)

6. Conclusions

In this paper we performed an analytical study of the eigenvalue problem correspond-
ing to a convection problem with uniform internal heat source. We pointed out some
aspects of the spectral methods that we employed concerning the sets of the expansion
functions that can be used to an analytical study of this problem. As in this case the
expansion sets of Chandrasekhar functions introduced an extraparity they were not
appropriate. However, for some other problems [3] their use proved to be successful.
The method based on SLP lead to good numerical approximations. All numerical
results obtained with this method are compared with the existing ones. The effect of
the heating (cooling) rate on the values of the Rayleigh number is pointed out.
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1. Introduction

Let A denote the class of functions which are analytic in U := U(1), where

U(r) := {z : z ∈ C and |z| < r}.

By A0 we denote class of functions f ∈ A of the form:

f(z) = z +
∞∑

n=2

anz
n, (1)

We say that a function f ∈ A is subordinate to a function F ∈ A, and write
f(z) ≺ F (z), if and only if there exists a function ω ∈ A,

ω(0) = 0, |ω(z)| < 1 (z ∈U) ,

such that
f(z) = F (ω(z)) (z ∈ U) .

Moreover, we say that f is subordinate to F in U(r), if f(r z) ≺ F (r z). We shall
write

f(z) ≺r F (z)
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in this case. In particular, if F is univalent in U we have the following equivalence
(cf. [8]):

f(z) ≺ F (z) ⇐⇒ f(0) = F (0) and f(U) ⊂ F (U).

A function f belonging to the class A is said to be convex in U(r) if and only if

R

(
1 +

zf ′′(z)

f ′(z)

)
> 0 (z ∈ U(r); 0 < r ≦ 1). (2)

By f ∗ g denote the Hadamard product (or convolution) of f, g ∈ A, defined by

(f ∗ g) (z) =

(
∞∑

n=1

anz
n

)

∗

(
∞∑

n=1

bnz
n

)

:=
∞∑

n=1

anbnz
n.

Let λ be complex number. We consider the linear operator Dλ : A → A defined
by (see [3])

Dλf(z) = (f ∗ hλ) (z),

where

hλ(z) =
∞∑

n=0

nλzn (z ∈ U) .

For a function f ∈ A0 of the form (1) we have

Dλf(z) = z +
∞∑

n=2

nλanz
n

and
Dλ+1f(z) = z

[
Dλf(z)

]′
. (3)

Let h be a function convex in U with h(0) = 1 and let t be complex number.
We denote by V (t, λ;h) the class of functions f ∈ A0 satisfying the following

condition:
z−1

[
(1− t)Dλf(z) + tDλ+1f(z)

]
≺ h(z), (4)

in terms of subordination.
Moreover we define class W(t, λ;h) of functions f ∈ A0 satisfying the following

condition:
(1− t)Dλ+1f(z) + tDλ+2f(z)

(1− t)Dλf(z) + tDλ+1f(z)
≺ h(z). (5)

In particular for

h(z) =
1 +Az

1 +Bz
(z ∈ U ; 0 ≦ B ≦ 1, −B ≦ A < B)

we obtain the class

V(t, λ;A,B) = V

(
t, λ;

1 +Az

1 +Bz

)
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which was studied by Dziok [3]. Moreover we denote

W(t, λ;A,B) =W

(
t, λ;

1 +Az

1 +Bz

)
.

For suitable chosen parameters t, λ,A,B classes defined above was investigated among
overs by Stankiewicz et al. ([7], [11], [9] and [10]).

In the paper we present some inclusion relations for defined classes.

2. Main results

We shall need the following lemmas.
Lemma 1. [6] Let w be a nonconstant function analytic in U(r) with w(0) = 0. If

|w(z0)| = max {|w(z)| ; |z| ≤ |z0|} (z0 ∈ U(r)) ,

then there exists a real number k (k ≥ 1), such that

z0w
′(z0) = kw(z0).

Lemma 2. [5] Let h be a convex function in U with h(0) = 1. If q is an analytic

function in U , q(0) = 1 and

q(z) + zq′(z) ≺ h(z),

then

q(z) ≺ h(z).

Lemma 3. [4] Let h be a convex function in U(r) with h(0) = 1. If q is an analytic

function in U(r), q(0) = 1 and

q(z) +
zq′(z)

q(z)
≺r

1 +Az

1 +Bz
,

then

q(z) ≺r
1 +Az

1 +Bz
.

Making use of above lemmas , we get the following two theorem.
Theorem 1.

V(t, λ+m;h) ⊂ V(t, λ;h) (m ∈ N).

Proof. It is clear that it is sufficient to prove the theorem for m = 1. Let a function
f belong to the class V(t, λ+ 1;h) or equivalently

z−1
[
(1− t)Dλ+1f(z) + tDλ+2f(z)

]
≺ h(z), (6)
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It is sufficient to verify the condition (4). The function

q(z) = z−1
[
(1− t)Dλf(z) + tDλ+1f(z)

]
(7)

is analytic in U and q(0) = 1. Taking the derivative of (7) we get

z−1
[
(1− t)Dλ+1f(z) + tDλ+2f(z)

]
= q(z) + zq′(z) (z ∈ U) . (8)

Thus by (6) we have
q(z) + zq′(z) ≺ h(z).

Lemma 2 now yields
q(z) ≺ h(z). (9)

Thus by (7) f ∈ V(t, λ;h) and this proves Theorem 1.

Putting h(z) = 1+Az
1+Bz in Theorem 1 we obtain the following two corollary.

Corollary 1.
V(t, λ+m;A,B) ⊂ V(t, λ;A,B) (m ∈N).

Theorem 2.
W(t, λ+m;A,B) ⊂ W(t, λ;A,B) (m ∈ N).

Proof. It is clear that it is sufficient to prove the theorem for m = 1. Let a function
f belong to the class V(a+ 1;A,B) or equivalently

(1− t)Dλ+2f(z) + tDλ+3f(z)

(1− t)Dλ+1f(z) + tDλ+2f(z)
≺
1 +Az

1 +Bz
(10)

It is sufficient to verify condition (5). If we put

R = sup
{
r : (1− t)Dλf(z) + tDλ+1f(z) �= 0, z ∈ U(r)

}
,

then the function

q(z) =
(1− t)Dλ+1f(z) + tDλ+2f(z)

(1− t)Dλf(z) + tDλ+1f(z)
(11)

is analytic in U(R) and q(0) = 1. Taking the logarithmic derivative of (11) and
applying (3) we get

(1− t)Dλ+2f(z) + tDλ+3f(z)

(1− t)Dλ+1f(z) + tDλ+2f(z)
= q(z) +

zq′(z)

q(z)
(z ∈ U(R)) . (12)

Thus by (10) we have

q(z) +
zq′(z)

q(z)
≺R

1 +Az

1 +Bz
.

Lemma 3 now yields

q(z) ≺R
1 +Az

1 +Bz
. (13)
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By (11) it suffices to verify that R = 1. From (3), (11) and (13) we conclude that the
function H(z) = (1− t)Dλf(z) + tDλ+1f(z) is starlike in U(R) and consequently it
is univalent in U(R). Thus we see that H(z) cannot vanish on |z| = R if R < 1. Hence
R = 1 and this proves Theorem 1.

Using Lemma 1 we show the following sufficient conditions for the classW(t, λ;A,B).

Theorem 3. Let t, λ,A,B be real numbers 0 ≦ B ≦ 1, −B ≦ A < 2AB − B. If a

function f ∈ A0 satisfies the following inequality:
∣∣∣∣
(1− t)Dλ+2f(z) + tDλ+3f(z)

(1− t)Dλ+1f(z) + tDλ+2f(z)
− 1

∣∣∣∣ <
2 (B −A) +A2 − 3AB

(1 +B) (1−A)
(z ∈ U) , (14)

then f belongs to the class W(t, λ;A,B).

Proof. Let a function f belong to the class A0. Putting

q(z) =
1 +Aw(z)

1 +Bw(z)
(z ∈ U(R)) (15)

in (12), we obtain

(1− t)Dλ+2f(z) + tDλ+3f(z)

(1− t)Dλ+1f(z) + tDλ+2f(z)
=
1 +Aw(z)

1 +Bw(z)
+

Azw′(z)

1 +Aw(z)
−

Bzw′(z)

1 +Bw(z)
.

Consequently, we have

F (z) = w(z)

{
zw′(z)

w(z)

(
A

1 +Aw(z)
−

B

1 +Bw(z)

)
−

B −A

1 +Bw(z)

}
, (16)

where

F (z) =
(1− t)Dλ+2f(z) + tDλ+3f(z)

(1− t)Dλ+1f(z) + tDλ+2f(z)
− 1.

By (5), (11) and (15) it is sufficient to verify that w is analytic in U and

|w(z)| < 1 (z ∈ U).

Now, suppose that there exists a point z0 ∈ U(R), such that

|w(z0)| = 1, |w(z)| < 1 (|z| < |z0|).

Then, applying Lemma 1, we can write

z0w
′(z0) = kw(z0), w(z0) = e

iθ (k ≥ 1).

Combining these with (16) , we obtain

|F (z0)| =

∣∣∣∣k
(

−A

1 +Aeiθ
+

B

1 +Beiθ

)
+

B −A

1 +Beiθ

∣∣∣∣

≥ kRe

(
−A

1 +Aeiθ
+

B

1 +Beiθ

)
+
B −A

1 +B

≥ k

(
−A

1−A
+

B

1 +B

)
+
B −A

1 +B
≥
2 (B −A) +A2 − 3AB

(1 +B) (1−A)
.
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Since this result contradicts (14) we conclude that w is the analytic function in
U(R) and |w(z)| < 1 (z ∈ U (R)). Applying the same methods as in the proof of
Theorem 2 we obtain R = 1, which completes the proof of Theorem 3.

Putting t = 0, A = 2α− 1 and B = 1 in Theorem 2 and 3 we obtain the following
two corollaries.

Corollary 2. Let 0 ≤ α < 1, m ∈ N. If a function f ∈ A0 satisfies the following

inequality:

Re

{
Dλ+m+1f(z)

Dλ+mf(z)

}
> α (z ∈ U) ,

then

Re

{
Dλ+1f(z)

Dλf(z)

}
> α (z ∈ U) .

Corollary 3. Let m ∈ N, 0 ≤ α < 2/3. If a function f ∈ A0 satisfies the following

inequality: ∣∣∣∣
Dλ+2f(z)

Dλ+1f(z)
− 1

∣∣∣∣ <
4− 7α+ 2α2

2(1− α)
(z ∈ U) ,

then

Re

{
Dλ+1f(z)

Dλf(z)

}
> α (z ∈ U) .

Remark 2. Putting λ = 0 or λ = 1 and m = 1 in Corollary 2 and 3 we obtain the
sufficient conditions for starlikeness of order α and convexity of order α, respectively.
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1. Preliminaries and introduction

Let C denote the space whose elements are finite sets of distinct positive integers.
Given any element σ of C, we denote by c(σ) the sequence {cn(σ)} which is such that
cn(σ) = 1 if n ∈ σ, cn(σ) = 0 otherwise. Further

Cs :=

{

σ ∈ C :
∞∑

n=1

cn(σ) ≤ s

}

(cf [9]),

the set of those σ whose support has cardinality at most s, and

Φ :=

{
φ = (φn) ∈ ω : φ1 > 0,∆φk ≥ 0 and ∆

(
φk

k

)
≤ 0 (k = 1, 2, . . .)

}
,

where ∆φn = φn − φn−1; and ω is the set of all real or complex sequences x = (xk).

For φ ∈ Φ, we define the following sequence space, introduced by Sargent[14],and
further studied by Malkowsky and mursaleen [8] and Mursaleen [9].

m(φ) :=

{

x = (xn) ∈ ω : sup
s≥1

sup
σ∈Cs

(
1

φs

∑

k∈σ

| xk |

)

<∞

}

.



62 V. A. Khan

Recently the space m(φ) was extended to m(φ, p) by Tripathy and Sen[16] as
follows:

m(φ, p) :=

{

x = (xk) ∈ ω : sup
s≥1

sup
σ∈Cs

1

φs

∑

k∈σ

| xk |
p<∞

}

.

A map M : R→ [0,+∞] is said to be an Orlicz function if M is even, convex, left
continuous on R+, continuous at zero, M(0) = 0 and M(u) → ∞ as u → ∞. If M
takes value zero only at zero we will write M > 0 and if M takes only finite values
we will write M <∞. [1,4,6,7,10,13].

W.Orlicz [11] used the idea of orlicz function to construct the space (LM ) . Lin-
dendstrauss and Tzafriri [5] used the idea of Orlicz function to define orlicz sequence
space

ℓM :=

{

x ∈ ω :
∞∑

k=1

M

(
|xk|

ρ

)
<∞ for some ρ > 0

}

in more detail . ℓM is a Banach space with the norm

||x|| := inf{ρ > 0 :
∞∑

k=1

M

(
|xk|

ρ

)
≤ 1}

The space lM is closely related to the space lp , which is an Orlicz sequence space
with M(x) = xp for 1 ≤ p <∞.

The △2 - condition is equivalent to

M(Lx) ≤ KLM(x), for all values of x ≥ 0, and for L > 1.

An Orlicz functionM can always be represented in the following integral formM(x) =∫ x
0 η(t)dt, where η is known as the kernel of M , is right differentiable for t ≥ 0
,η(0) = 0 , η(t) > 0, η is non-decreasing and η(t)→∞ as t→∞.

Note that an Orlicz function satisfies the inequality

M(λx) ≤ λM(x) for all λ with 0 < λ < 1.

The study of Orlicz sequence spaces have been made recently by various authors
(cf [2],[3],[12],[15]). In this paper we defined the following sequence space

m(M,φ) :=

{

x ∈ ω : sup
s≥1

sup
σ∈Cs

1

φs

∑

k∈σ

M

(
|xk|

ρ

)
<∞ for some ρ > 0

}

m(M,φ, p) :=

{

x ∈ ω : sup
s≥1

sup
σ∈Cs

1

φs

∑

k∈σ

M

(
|xk|p

ρ

)
<∞ for some ρ > 0

}
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Remark 1. (i) If φn = 1 for all n = 1, 2, · · · ; then m(M,φ) = lM and
m(M,φ, p) = lp(M).

(ii) If φn = n (n = 1, 2, · · · ), then m(M,φ, p) = m(M,φ) = l∞(M).

2. Topological Properties

Let E be a sequence space . Then E is called

(i) A sequence space E is said to be symmetric if (xn) ∈ E implies (xπ(n)) ∈ E,
where π(n) is a permutation of the elements of the elements of N.

(ii) Solid (or normal), if (αkxk) ∈ E, whenever (xk) ∈ E for all sequences of scalars
(αk) with |αk| ≤ 1 for all k ∈ N.

Lemma. A sequence space E is solid implies E is monotone.

Theorem 2.1. m(M,φ, p) is a linear space.

Routine verification.
Theorem 2.2. The space m(M,φ, p) is a complete space.
Proof. To show the completeness, suppose that (xi) be a cauchy sequence inm(M,φ, p),
where xi = (xik) = (xi1, x

i
2, x

i
3, · · · ) ∈ m(M,φ, p) for all i ∈ N. Let r > 0 and x0 be

fixed . Then for each ǫ
rx0

> 0, there exists a positive integer n0 such that

g(xi − xj) <
ǫ

rx0
, for all i, j ≥ n0

implies that

(2.2.1) inf

{

ρ : sup
s≥1

sup
σ∈Cs

1

φs

∑

k∈σ

M

(
|xik − x

j
k|
p

ρ

)

≤ 1

}

< ǫ, for all i, j ≥ n0.

By (2.2.1) for all i, j ≥ n0, we have

sup
s≥1

sup
σ∈Cs

1

φs

∑

k∈σ

M

(
|xik − x

j
k|
p

g(xi − xj)

)

≤ 1

which implies that

1

φ1
M

(
|xik − x

j
k|
p

g(xi − xj)

)

≤ 1
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⇒ M

(
|xik − x

j
k|
p

g(xi − xj)

)

≤ φ1 for all i, j ≥ n0, and k ∈ N.

For r > 0 we have rx0
2 η(x02 ) ≥ φ1, where η is the kernel associated with M, such

that

M

(
|xik − x

j
k|
p

g(xi − xj)

)

≤
rx0

2
η(
x0

2
)

⇒ |xin − x
j
k| <

rx0

2
.
ǫ

rx0
=

ǫ

2
.

Hence (xik)
∞
i=1 is a Cauchy sequence in R, which is complete. For each k ∈ N, there

exists xk ∈ R such that |xik − xk| → 0 as i→∞. By the continuity of M , we have

sup
s≥1

sup
σ∈Cs

1

φs

∑

k∈σ

M




|xik − lim

j→∞
x
j
k|
p

ρ



 ≤ 1

sup
s≥1

sup
σ∈Cs

1

φs

∑

k∈σ

M

(
|xik − xk|

p

ρ

)
≤ 1 for some ρ > 0.

Taking the infimum of such ρ′s, by (2.2.1) we get

inf

{

ρ : sup
s≥1

sup
σ∈Cs

1

φs

∑

k∈σ

M

(
|xik − xk|

p

ρ

)
≤ 1

}

< ǫ, for all i, j ≥ n0.

Since m(M,φ, p) is a linear space and (x(i)) and (x− xi) are in m(M,φ, p) , then we
have

(x) = (xi) + (x− xi) ∈ m(M,φ, p)

Thus m(M,φ, p) is complete .
medskip
Theorem 2.3. The space m(M,φ, p) is solid, symmetric and monotone.

Proof. Let x ∈ m(M,φ, p). Then we have

(2.3.1) sup
s≥1

sup
σ∈Cs

1

φs

∑

k∈σ

M

(
|xk|

p

ρ

)
<∞.

Now let (λk) be a sequence of scalars with |λk| ≤ 1 for all k ∈ N. Then from (2.3.1)
we have ∑

k∈σ

M

(
|λkxk|

p

ρ

)
≤
∑

k∈σ

|λk|M

(
|xk|

p

ρ

)

≤
∑

k∈σ

M

(
|xk|p

ρ

)
.
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Hence m(M,φ, p) is solid.
The symmetricity of the space follows from the definition of the space m(M,φ, p).

By the Lemma it follows that the space m(M,φ, p) is monotone.

3. Inclusions Relations

Theorem 3.1. m(M,φ, p) ⊆ m(M,ψ, p) if and only if sup
s≥1

(
φs
ψs

)
<∞.

Proof. Let sup
s≥1

(
φs
ψs

)
<∞ and x ∈ m(M,φ, p). Then

sup
s≥1

sup
σ∈Cs

1

φs

∑

k∈σ

M

(
|xk|

p

ρ

)
<∞, for some ρ > 0

This implies that

sup
s≥1

sup
σ∈Cs

1

ψs

∑

k∈σ

M

(
|xk|

p

ρ

)
≤ sup

s≥1

(
φs

ψs

)
sup
s≥1

sup
σ∈Cs

1

φs

∑

k∈σ

M

(
|xk|

p

ρ

)

<∞.

Therefore x ∈ m(M,ψ, p).

Conversely, let m(M,φ, p) ⊆ m(M,ψ, p) and suppose that sup
s≥1

(
φs
ψs

)
= ∞. Then

there exists a sequence (si) of naturals number such that

lim
i→∞

(
φsi
ψsi

)
=∞.

Let x ∈ m(M,φ, p). Then there exists ρ > 0 such that

sup
s≥1

sup
σ∈Cs

1

φs

∑

k∈σ

M

(
|xk|

p

ρ

)
<∞.

Now we have

sup
s≥1

sup
σ∈Cs

1

ψs

∑

k∈σ

M

(
|xk|

p

ρ

)
≥ sup

i≥1

(
φsi
ψsi

)
sup
s≥1

sup
σ∈Cs

1

φs

∑

k∈σ

M

(
|xk|

p

ρ

)
=∞.

Therefore x �∈ m(M,ψ, p). This contradict to m(M,φ, p) ⊆ m(M,ψ, p). Hence

sup
s≥1

(
φs
ψs

)
<∞.

Theorem 3.2. lp(M) ⊆ m(M,φ, p) ⊆ l∞(M) for all φ ∈ Φ; where

lp(M) :=

{

x ∈ ω :
∞∑

k=1

M

(
|xk|

p

ρ

)
<∞ for some ρ > 0

}
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and

l∞(M) :=

{
x ∈ ω : sup

k≥1
M

(
|xk|

ρ

)
<∞ for some ρ > 0

}
.

Proof. Since φ1 ≤ φs ≤ sφ1 for all for all φ ∈ Φ, that is φ−1s ≤ φ−11 and
φs
s
≤ φ1, it follows that sup

s≥1
φ−1s < ∞ and sup

s≥1
(φs
s
) < ∞. Hence from Theorem 3.1

and Remark 1, it follows that lp(M) ⊆ m(M,φ, p) ⊆ l∞(M) for all φ ∈ Φ.

Theorem 3.3.(a) m(M,φ, p) = lp(M) iff lim
s→∞

φs <∞.

(b) m(M,φ, p) = l∞(M) iff lim
s→∞

(φs
s
) > 0.

Proof. (a) If ψs = 1 for all s in Theorem 3.1, then we get m(M,φ, p) ⊆
lp(M) iff sup

s≥1
φs <∞ Hence by Theorem 3.2, we have (a), since (φs) is monotonic.

(b) Similarly, by Theorem 3.1 , we get l∞(M) ⊆ m(M,φ, p) iff sups≥1(
s
φs
) <∞.

Hence by Theorem 3.2, we have (b), since ( s
φs
) is monotonic.

Corollary 3.4. m(M,φ) = lM iff lim
s→∞

φs <∞.

Theorem 3.5. Let M,M1,M2 be Orlicz functions each satisfy △2 - condition. Then
(i) m(M1, φ, p) ⊆m(M ◦M1, φ, p),
(ii)m(M1, φ, p) ∩m(M2, φ, p) =m(M1 +M2, φ, p).
Proof . (i) Suppose that x ∈ m(M1, φ, p). Then there exists ρ > 0 such that

sup
s≥1

sup
σ∈Cs

1

φs

∑

k∈σ

M1

(
|xk|

p

ρ

)
<∞.

Now if we take 0 < ǫ < 1 and δ with 0 < δ < 1 then M(t) < ǫ for 0 ≤ t < δ. Put

yk =M
(
|xk|

p

ρ

)
and for any σ ∈ Cs consider

∑

k∈σ

M(yk) =
∑

1

M(yk) +
∑

2

M(yk),

where the first supremum is over yk ≤ δ and second is over yk > δ . We know that
an Orlicz function satisfies the inequalityM(λx) ≤ λM(x) for all λ with 0 < λ < 1.

By above inequality we have

(3.5.1)
∑

1

M(yk) ≤M(1)
∑

1

yk ≤M(2)
∑

1

yk.

For yk > δ we use the fact that

yk <
yk

δ
< 1 +

(yk
δ

)
,
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since M is convex, so

M(yk) < M
(
1 +

yk

δ

)
<

1

2
M(2) +

1

2
M

(
2yk
δ

)
.

Since M satisfies △2− condition, so we have

M(yk) <
1

2
K
yk

δ
M(2) +

1

2
K
yk

δ
M(2)

= K
yk

δ
M(2).

Hence ,

(3.5.2)
∑

2

M(yk) ≤ max(1,Kδ−1M(2)
∑

2

yk.

From (3.5.1) and (3.5.2) we have (xk) ∈ m(M ◦M1, φ, p).
Thus m(M1, φ, p) ⊆m(M ◦M1, φ, p).

(ii) Let (xk) ∈ m(M1, φ, p) ∩m(M2, φ, p). Then there exists ρ > 0 such that

sup
s≥1

sup
σ∈Cs

1

φs

∑

k∈σ

M1

(
|xk|

p

ρ

)
<∞

and

sup
s≥1

sup
σ∈Cs

1

φs

∑

k∈σ

M2

(
|xk|

p

ρ

)
<∞.

The remaining part of the proof follows from the equality

∑

k∈σ

(M1 +M2)

[(
|xk|

p

ρ

)]
=
∑

k∈σ

M1

[(
|xk|

p

ρ

)]∑

k∈σ

M2

[(
|xk|

p

ρ

)]
.

Put M1(x) = x in Theorem 3.5(i) We have the following result.
Corollary 3.6. Let M be an Orlicz function satisfying △2− condition. Then
m(φ, p) ⊆m(M,φ, p).
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1. Introduction

By a graph G we mean a finite undirected graph without loops and multiple edges
with the vertex set V (G) and the edge set E(G). A set D ⊆ V (G) of vertices is a
dominating set in G if every vertex not in D is adjacent to at least one vertex in
D. A domatic partition of the graph G is a partition of V (G) into pairwise disjoint
dominating sets. The domatic number d(G) of G is the maximum cardinality of a
domatic partition of G. The domatic number was introduced by E. J. Cockayne
and S. T. Hedetniemi in [3]. If G is not connected, then d(G) equals the minimum
of domatic numbers of its connected components. Because of this, throughout the
paper G will always denote a connected graph. As usual, the minimum degree of G is
denoted by δ(G), the maximum degree of G by ∆(G) and the domination number of
G by γ(G) (the minimum cardinality of a dominating set in G). Then the following
simple relationships between these numbers hold.

Proposition 1 For any graph G of order n ≥ 1,

a) [3] d(G) ≥ 2 if and only if G has no isolated vertex,
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b) [3] d(G) ≤ δ(G) + 1,

c) d(G) ≤ n/γ(G),

d) if H is a spanning subgraph of G, then d(H) ≤ d(G).

The last two results follow from the definition of the domatic number of a graph.

Moreover, note that if d(G) = δ(G) + 1, then G is called domatically full. For
example, in the literature it is known that

• every regular graph whose the domatic number divides its number of vertices

• every domatically 3-critical graph

• every block-cactus graph with the minimum degree at least 4

• every strongly chordal graph

• every graph with the minimum degree 1

is domatically full.

We recall here one of results which will be used in our investigations.

Theorem 1 [7] A regular domatically full graph G of order n and d(G) = d exists if

and only if d divides n. Its structure is the following: The vertex set V (G) =
⋃d
i=1 Vi,

Vi ∩ Vj = ∅, |Vi| = n/d and the subgraph Gij of G induced by Vi ∪ Vj is regular of

degree 1 (for i = 1, . . . , d; j = 1, . . . , d; i 	= j).

The cartesian product of the graphs G1 and G2 is the graph G1�G2 such that
V (G1�G2) = V (G1) × V (G2) and (x1, y1)(x2, y2) ∈ E(G1�G2) whenever x1 = x2
and y1y2 ∈ E(G2) or y1 = y2 and x1x2 ∈ E(G1).

Instead of K1�G2 we will write xG2, where {x} = V (K1), similarly we put G1y
instead of G1�K1.

The strong product of the graphs G1 and G2 is the graph G1 ⊠ G2 such that
V (G1 ⊠G2) = V (G1)× V (G2) and (x1, y1)(x2, y2) ∈ E(G1 ⊠G2) whenever x1 = x2
and y1y2 ∈ E(G2) or y1 = y2 and x1x2 ∈ E(G1) or x1x2 ∈ E(G1) and y1y2 ∈ E(G2).

The join of two graphs G1 and G2 is the graph G1 + G2 defined as the disjoint
union of graphs G1 and G2 with additional edges linking each vertex of G1 with each
vertex of G2.

Standard notation is applied for the particular types of graphs, too, such as Kn

(the complete graph on n vertices), Pn (the path on n vertices), Cn (the cycle on n
vertices), Km,n (the complete bipartite graph), Sn (the star with n leaves).

It is immediately seen that

Proposition 2 [3],[4]
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a) d(Pn) = 2 and Pn is domatically full, for n ≥ 2,

b) For n ≥ 3, d(Cn) =

{
2, if n 	≡ 0(mod 3);
3, otherwise

and Cn is domatically full if n ≡ 0(mod 3),

c) d(Kn) = n and Kn is domatically full, for n ≥ 2,

d) d(Km,n) = min{m,n}, for m,n ≥ 2,

e) d(Sn) = 2 and Sn is domatically full, for n ≥ 1.

For general concepts, not defined terms and symbols we refer the reader to [1], [4],
[5] and [6].

Our aim is to determine upper and lower bounds for d(G1�G2), d(G1 ⊠G2) and
d(G1+G2). We also calculate these numbers for special graphs G1 and G2 mentioned
above.

2. Domatic number of the cartesian product G1�G2

In [2] it was calculated the domatic number of the cartesian product Pn�Pm, for
m,n ≥ 2.

Proposition 3 [2] For n,m ≥ 2,

d(Pn�Pm) =






2, if m = n = 2 or n = 4 and m = 2 or

n = 2 and m = 4, or

3, otherwise.

We calculate this number for the cartesian product of two special graphs. Before
proceeding we make a useful simple observation to help to do it.

Proposition 4 For any two graphs G1, G2 we have

max {d(G1), d(G2)} ≤ d(G1�G2) ≤ δ(G1) + δ(G2) + 1.

Corollary 1 If δ(G1) = 1 and G2 is domatically full, then

d(G2) ≤ d(G1�G2) ≤ d(G2) + 1.

From Corollary 1 and Theorem 1 it follows

Corollary 2 Let G1 be a graph with δ(G1) = 1 and let G2 be regular domatically full.

Then d(G1�G2) = d(G2).

Theorem 2 Let G1 be a graph with a spanning tree such that the distance between

its each two leaves is even and G2 be domatically full. If δ(Gi) = 1, for i = 1, 2, then
G1�G2 is domatically full.
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Proof. To prove that the graph G1�G2 is domatically full we must find its do-
matic partition of cardinality three, say {W1,W2,W3}, because δ(G1�G2) = δ(G1)+
δ(G2) = 2. Since δ(G2) = 1 and G2 is domatically full, then the existance of a do-
matic partition {D1,D2} of the graph G2 is assured. Let y ∈ V (G2). Let T be a
spanning tree of G1 such that the distance between its each two leaves is even. Pick
a leave r ∈ T . Put (r, y) ∈ W1 whenever y ∈ D1; otherwise (r, y) ∈ W2. Now, let
u ∈ T, u 	= r. If dT (u, r) ≡ 2(mod 4) and y ∈ D1, then (u, y) ∈ W2; if dT (u, r) ≡ 2
(mod 4) and y ∈ D2, then (u, y) ∈ W1. If dT (u, r) ≡ 0(mod 4) and y ∈ Di, then
(u, y) ∈Wi, for i = 1, 2. In other cases (u, y) ∈W3. It is not difficult to see that the
sets W1,W2,W3 create a domatic partition of the graph G1�G2 and the assertion
holds.

Corollary 3 a) For n,m ≥ 1, d(Sn�Sm) =

{
2, if n = m = 1, or

3, otherwise,

b) d(Pn�Sm) = 3, for n ≥ 2, m ≥ 1.

The proof of the next result is based on the following lemma.

Lemma 1 Let G be of order m, m ≥ 2. If D is a dominating set in Kn�G, then

|D| ≥ m, n ≥m.

Proof. We exhibit any graph G of order m, m ≥ 2. Suppose on the contrary that
there is a dominating set D in Kn�G such that |D| = k < m. Then there would be a
vertex x ∈ V (Kn) such that A = {(x, yj) ∈ V (Kn�G) : j = 1, . . . ,m} and A∩D = ∅.
Moreover, there would be also a vertex y ∈ V (G) such that B = {(xi, y) ∈ V (Kn�G) :
i = 1, . . . , n} and B ∩D = ∅. Therefore there is a vertex (x, y) ∈ A∩B ⊆ V (Kn�G)
which is adjacent to no vertex inD. This contradicts the fact thatD is the dominating
set in Kn�G and the assertion follows.

Theorem 3 If G is of order m, then d(Kn�G) = n, for n ≥ m ≥ 2.

Proof. Applying Proposition 4 and Proposition 2c), we conclude that d(Kn�G)
≥ max{n, d(G)} = n, with n ≥ m ≥ d(G). It remains to prove that d(Kn�G) ≤ n.
Note that the setD = {(x1, yj) ∈ V (Kn�G) : j = 1, . . . ,m} is a dominating set in the
graph Kn�G. Indeed: Knyj is a complete subgraph of Kn�G, for every yj ∈ V (G).
Then every vertex (xi, yj) ∈ V (Kn�G)−D, for i ∈ {2, 3, . . . , n}, j ∈ {1, 2, . . . ,m}, is
adjacent to the vertex (x1, yj) ∈ D. Since |D| = m, hence γ(Kn�G) ≤ m. Suppose
γ(Kn�G) < m. This is certainly that there exists the dominating set D1 in Kn�G,
for which |D1| = m − 1. On the other hand, according to Lemma 1, it must be
|D1| ≥ m, a contradiction. Hence γ(Kn�G) = m. Therefore, from Proposition 1c),
it follows that d(Kn�G) ≤ n. Consequently, d(Kn�G) = n and the theorem holds.

Corollary 4 For n,m ≥ 2, d(Kn�Km) = max{n,m}.

Corollary 5 For n,m ≥ 2,

d(Pn�Km) =

{
3, if m = 2 and n ∈ {3, 5, 6, 7, 8, . . .};
m, otherwise.
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Proof. From Theorem 3 we obtain that d(Pn�Km) = m, for m ≥ n ≥ 2. Fur-
thermore, by Proposition 3 we get d(P4�K2) = 2 and d(Pn�K2) = 3, if n ∈
{3, 5, 6, 7, 8, . . .}.

Now, let n > m ≥ 3. By Corollary 1 and Proposition 2c), we observe that m ≤
d(Pn�Km) ≤m+1. Suppose first d(Pn�Km) = m+1 and let {W1, . . . ,Wm+1} be a
domatic partition of the graph Pn�Km. Without loss of generality let us assume that
(x1, y1) ∈W1. Since degPn�Km

((x1, y1)) = m, so we may suppose that (x1, yj) ∈Wj ,
for j = 2, . . . ,m and (x2, y1) ∈ Wm+1. Moreover, degPn�Km

((x1, yj)) = m, for j =
2, . . . ,m, then it must be (x2, yj) ∈Wm+1. This guarantees that (x3, y1) ∈

⋂m
j=2Wj ,

otherwise the vertex (x2, y1) would not have any neighbour in at least one of the
sets W2, . . . ,Wm and then such the set would not be a dominating set in Pn�Km, a
contradiction with the assumption. On the other hand, since Wp ∩Wr = ∅, for all
p 	= r, hence (x3, y1) ∈ ∅, a contradiction.

Now we investigate the cartesian product of the path Pn and the cycle Cm.

Proposition 5 Let n ≥ 2, m ≥ 3. If m ≡ 0(mod 4), then d(Pn�Cm) = 4.

Proof. By Proposition 4 we obtain d(Pn�Cm) ≤ δ(Pn) + δ(Cm) + 1 = 4. Let m ≡ 0
(mod 4). It turns out that V (Pn�Cm) can be partitioned into four subsets:

D1 = {(xi, yj) : i ≡ 1(mod 2) and j ≡ 1(mod 4), 1 ≤ i ≤ n, 1 ≤ j ≤ m}∪
{(xi, yj) : i ≡ 0(mod 2) and j ≡ 3(mod 4) 1 ≤ i ≤ n, 1 ≤ j ≤ m},

D2 = {(xi, yj) : i ≡ 1(mod 2) and j ≡ 3(mod 4), 1 ≤ i ≤ n, 1 ≤ j ≤m}∪ {(xi, yj) :
i ≡ 0(mod 2) and j ≡ 1(mod 4), 1 ≤ i ≤ n, 1 ≤ j ≤m},

D3 = {(xi, yj) : i ≡ 1(mod 2) and j ≡ 2(mod 4), 1 ≤ i ≤ n, 1 ≤ j ≤ m}∪ {(xi, yj) :
i ≡ 0(mod 2) and j ≡ 0(mod 4), 1 ≤ i ≤ n, 1 ≤ j ≤ m},

D4 = {(xi, yj) : i ≡ 1(mod 2) and j ≡ 0(mod 4), 1 ≤ i ≤ n, 1 ≤ j ≤ m}∪ {(xi, yj) :
i ≡ 0(mod 2) and j ≡ 2(mod 4), 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

Evidently the setsD1,D2,D3,D4 are pairwise disjoint,
⋃4
i=1Di = V (Pn�Cm) and

each of them is a dominating set in the graph Pn�Cm. In conclusion, {D1,D2,D3,D4}
is a domatic partition of Pn�Cm.

Proposition 6 Let m ≥ 3. Then d(P2�Cm) = 4 if and only if m ≡ 0(mod 4);
otherwise d(P2�Cm) = 3.

Proof. According to Proposition 5 we shall only prove the necessity of the first part of
the proposition. Suppose that d(P2�Cm) = 4. Then there exists a domatic partition
{D1,D2,D3,D4} of P2�Cm. Without loss of generality suppose that (x1, y1) ∈ D1.
Then exactly one of the vertices (x1, y2), (x1, ym), (x2, y1) is in D2, exactly one in
D3 and exactly one in D4. This follows from the fact that P2�Cm is a cubic graph.
Supposing that (x1, y2) ∈ D2, (x2, y1) ∈ D3, it must be (x1, y3) ∈ D3, (x2, y2) ∈ D4,
(x1, y4) ∈ D4, (x2, y3) ∈ D1, (x2, y4) ∈ D2. Generally, we may prove that:
(xi, yj) ∈ D1 if and and only if i = 1 and j ≡ 1(mod 4) or i = 2 and j ≡ 3(mod 4);
(xi, yj) ∈ D2 if and only if i = 1 and j ≡ 2(mod 4) or i = 2 and j ≡ 0(mod 4);
(xi, yj) ∈ D3 if and only if i = 1 and j ≡ 3(mod 4) or i = 2 and j ≡ 1(mod 4);
(xi, yj) ∈ D4 if and only if i = 1 and j ≡ 0(mod 4) or i = 2 and j ≡ 2(mod 4). Since
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(x1, ym) ∈ D4, hence m ≡ 0(mod 4). This means that m must be divisible by 4 and
the necessity follows.

Now, we shall show that if m 	≡ 0(mod 4), then d(P2�Cm) = 3. First, let us
suppose that m 	≡ 0(mod 4) and m is odd number. Construct a domatic partition
{D1,D2,D3} of P2�Cm as follows:

D1 = {(xi, yj) : i = 1 and j ≡ 1(mod 4) or i = 2 and j ≡ 3(mod 4), 1 ≤ j ≤m},
D2 = {(xi, yj) : i = 1 and j ≡ 3(mod 4) or i = 2 and j ≡ 1(mod 4), 1 ≤ j ≤m},
D3 = {(xi, yj) : i ∈ {1, 2} and j ≡ 0(mod 2), 1 ≤ j ≤m}.
Let m 	≡ 0(mod 4) and m be even number, then we can also construct a domatic

partition of P2�Cm in the following way. Namely,
D1 = {(xi, yj) : i = 1 and j ≡ 1(mod 4) and 1 ≤ j ≤ m/2 or i = 1 and j ≡ 0

(mod 4) and m/2 < j ≤ m or i = 2 and j ≡ 3(mod 4) and 1 ≤ j ≤ m/2 or i = 2 and
j ≡ 2(mod 4) and m/2 < j ≤ m},

D2 = {(xi, yj) : i = 1 and j ≡ 3(mod 4) and 1 ≤ j ≤ m/2 or i = 1 and j ≡ 2
(mod 4) and m/2 < j ≤ m or i = 2 and j ≡ 1(mod 4) and 1 ≤ j ≤ m/2 or i = 2 and
 ≡ 0(mod 4) and m/2 < j ≤m},

D3 = {(xi, yj) : i ∈ {1, 2} and (j ≡ 0(mod 2) and 1 ≤ j ≤ m/2 or j ≡ 1(mod 2)
and m/2 < j ≤ m)}.

Now, we consider the cartesian product of two complete bipartite graphs.

Proposition 7 Let n ≥ 2. Then d(Kn,n�Kn,n) = 2n.

Proof. First observe that the minimum degree of the graphKn,n�Kn,n is equal to 2n.
Further, using Proposition 1b), we conclude that d(Kn,n�Kn,n) ≤ δ(Kn,n�Kn,n) +
1 = 2n+ 1.

By Theorem 1 we know that a regular graph G is domatically full if and only if
d(G) divides the number of vertices of this graph. Since the graphKn,n�Kn,n has 4n

2

vertices and it is regular of degree 2n, its domatic number could be equal to 2n + 1
if and only if 2n + 1 divides 4n2. Unfortunately, it is not possible. Consequently,
d(Kn,n�Kn,n) ≤ 2n. To complete the proof we construct a domatic partition of the
graph Kn,n�Kn,n using partite sets, say A11, A12 of the first copy of the graph Kn,n

and A21, A22 of the second copy of Kn,n. We can observe that V (Kn,n�Kn,n) =
A11×A21 ∪A11×A22 ∪A12×A21 ∪A12×A22. For convenience, let B1 = A11×A21,
B2 = A11 × A22, B3 = A12 × A21, B4 = A12 × A22 and vkij denotes the vertex
(xi, yj) ∈ V (Kn,n�Kn,n), which belongs to the set Bk, for k = 1, 2, 3, 4 and i, j =
1, . . . , n. Let F1 = {vkij : k ∈ {1, 3} and 1 ≤ i ≤ n and j = i}, F2 = {vkij : k ∈ {2, 4}

and 1 ≤ i ≤ n and j = i}, Mp = {vkij : k ∈ {1, 3} and 1 ≤ i ≤ n and j ≡ (i + p)

(mod n) + 1}, for p = 0, 1, . . . , n − 2 and Dp = {vkij : k ∈ {2, 4} and 1 ≤ i ≤ n
and j ≡ (i + p)(mod n) + 1}, for p = 0, 1, . . . , n − 2. The form of the sets F1, F2,
Mp, Dp, for p = 0, 1, . . . , n − 2, guarantees that they are pairwise disjoint and F1∪

F2 ∪
⋃n−2
i=0 (Mi ∪Di) = V (Kn,n�Kn,n). Moreover, the sets are dominating sets in the

graph Kn,n�Kn,n. Finally, {F1, F2, M0, M1, . . . ,Mn−2, D0, D1, . . . ,Dn−2} is the
domatic partition of Kn,n�Kn,n. Thus, the proposition follows.
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3. Domatic number of the strong productG1 ⊠G2

In this section we estimate the domatic number of the strong product of two graphs.
In particular, for some special factors of the product, its domatic number is calculated.

Proposition 8 For any two graphs G1, G2 we have

max{d(G1), d(G2)} ≤ d(G1 ⊠G2) ≤ δ(G1) + δ(G2) + δ(G1)δ(G2) + 1.

Proof. By the definition of the strong product G1 ⊠G2 it follows immediately that
δ(G1 ⊠ G2) = δ(G1) + δ(G2) + δ(G1)δ(G2). Hence, by Proposition 1b), we have
d(G1 ⊠ G2) ≤ δ(G1)+ δ(G2) + δ(G1)δ(G2) + 1, as required. Furthermore, it knows
that G1�G2 is the spanning subgraph of G1⊠G2. For this sake, from Proposition 1d)
and Proposition 4 the lower bound follows.

Now, we use this result to allow us to obtain some exact domatic numbers of the
strong product.

Theorem 4 Let G1 be a graph with δ(G1) = 1 and let G2 be domatically full. Then

G1 ⊠G2 is domatically full.

Proof. From Proposition 8 and by the assumption it is clear that d(G1 ⊠ G2) ≤
2d(G2). We create a domatic partition of the graph G1 ⊠ G2 with 2d(G2) classes.
Let {D1, . . . ,Dd(G2)} be a domatic partition of the graph G2. Take y ∈ Di, for
some 1 ≤ i ≤ d(G2). Let T be a spanning tree in G1 and pick a leave r ∈ T .
Put d = dG1

(r, x), where x ∈ V (G1). If d ≡ 0(mod 2), then (x, y) ∈ Wi; otherwise
(x, y) ∈ Wi+d(G2). It is not difficult to see that {W1, . . . ,W2d(G2)} is a domatic
partition of G1 ⊠G2. Consequently, the result is true.

Corollary 6 a) For n,m ≥ 2, d(Pn ⊠ Pm) = 4,

b) For n ≥ 2, m ≥ 1, d(Pn ⊠ Sm) = 4,

c) For n,m ≥ 1, d(Sn ⊠ Sm) = 4.

Theorem 5 If G is domatically full, then d(G⊠Km) = m · d(G), for m ≥ 2.

Proof. By Proposition 8 we obtain that d(G ⊠ Km) ≤ m(δ(G) + 1). Note, by
Proposition 1d), that δ(G) = d(G)− 1. This is certainly since G is domatically full.
Then in a consequence d(G⊠Km) ≤ m · d(G). Let V (G) = {x1, . . . , xn}, V (Km) =
{y1, . . . , ym}. Recall thatGyi denotes the subgraph ofG⊠Km induced by V (G)×{yi},
for 1 ≤ i ≤ m. Since Gyi ∼= G, then d(Gyi) = d(G). Therefore let {V i

1 , V
i
2 , . . . , V

i
d(G)}

be the domatic partition of Gyi. Put P = {V 1
1 , V

1
2 , . . . , V

1
d(G), V

2
1 , V

2
2 , . . . , V

2
d(G), . . . ,

V m
1 , V m

2 , . . . , V m
d(G)}. We shall prove that P is the domatic partition of G ⊠ Km.

Since {V i
1 , V

i
2 , . . . , V

i
d(G)} is a domatic partition of Gyi, for i = 1, . . . ,m and V (Gyi)∩

V (Gyj) = ∅, for each i, j ∈ {1, . . . ,m}, i 	= j, then V i
k ∩ V j

l = ∅, for i 	= j or k 	= l,

where i, j = 1, . . . ,m; k, l = 1, . . . , d(G). Moreover,
⋃m
i=1

⋃d(G)
k=1 V i

k = V (G ⊠ Km).
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Hence P is the partition of G⊠Km. It remains to prove that V i
k is a dominating set

in G⊠Km. To do it, consider the vertices belonging to the set V (G⊠Km)\V i
k , for a

fixed i, 1 ≤ i ≤ m and k, 1 ≤ k ≤ d(G). Let (xp, yq) ∈ V (G⊠Km)\V
i
k , p ∈ {1, . . . , n},

q ∈ {1, . . . ,m}. There are three cases to discuss.
Case 1: Let q = i and (xp, yi) ∈ V (Gyi)\V

i
k . Evidently, the vertex (xp, yi) is

dominated by a vertex from V i
k .

Case 2: If q 	= i and (xp, yq) ∈ V q
k , where q ∈ {1, . . . ,m}, then the vertex (xp, yi) ∈

V i
k dominates the vertex (xp, yq), since yiyq ∈ E(Km) and the edge (xp, yi)(xp, yq)

exists in G⊠Km.
Case 3: Let (xp, yq) ∈ V q

z , z 	= k and q 	= i. Then the vertex (xp, yi) ∈ V i
z ⊂

V (Gyi) ⊂ V (G⊠Km) is dominated by a vertex of V i
k say, by a vertex (xr, yi) (recall V

i
k

is a dominating set in Gyi). Moreover, (xp, yi) ∈ V (Gyi) is adjacent to (xp, yq) ∈ V q
z ,

because of yqyi ∈ E(Km). Since xrxp ∈ E(G) and yqyi ∈ E(Km), then by the
definition of the strong product it follows that the vertex (xp, yq) is dominated by
vertex (xr, yi) from V i

k . Hence the set V i
k , for i = 1, . . . ,m and k = 1, . . . , d(G) is

a dominating set in G ⊠ Km. Finally, the partition P is the domatic partition of
G⊠Km. Moreover, its cardinality is equal to m ·d(G). Hence, d(G⊠Km) ≥m ·d(G),
This completes the proof of the theorem.

The above result in particular enables us to calculate domatic numbers of G⊠Km,
for special domatically full graphs G. By Proposition 2 we may check easily that

Corollary 7 a) For n,m ≥ 2, d(Pn ⊠Km) = 2m,

b) For n ≥ 1, m ≥ 2, d(Sn ⊠Km) = 2m,

c) Let n ≥ 3, m ≥ 2. Then d(Cn ⊠Km) = 3m if and only if n ≡ 0(mod 3),

d) For n,m ≥ 2, d(Kn ⊠Km) = nm.

4. Domatic number of the join G1 +G2

Theorem 6 For any two graphs G1, G2 we have

max{d(G1) + d(G2),min{|V (G1)|, |V (G2)|}} ≤ d(G1 +G2) ≤

min{δ(G1) + |V (G2)|, δ(G2) + |V (G1)|}+ 1.

Proof. We put V (G1) = {x1, . . . , xn}, V (G2) = {y1, . . . , ym} and assume without
loss of generality that the minimum degrees δ(G1), δ(G2) are realized by vertices xk,
yl respectively. By the definition of the join G1 + G2, degG1+G2

(xk) = δ(G1) +
|V (G2)| and degG1+G2

(yl) = δ(G2) + |V (G1)|. Evidently, δ(G1 +G2) = min{δ(G1) +
|V (G2)|, δ(G2) + |V (G1)|}. By Proposition 1b), we have d(G1 +G2) ≤ min{δ(G1) +
|V (G2)|, δ(G2) + |V (G1)|}+ 1. Consequently, the upper bound follows.

Now, we shall prove the lower bound. Let {V1, . . . , Vd(G1)} be a domatic partition
ofG1 and {U1, . . . , Ud(G2)} be a domatic partition ofG2. The partition {V1, . . . , Vd(G1),
U1, . . . , Ud(G2)} is the domatic partition of the join G1 +G2, where d(G1) + d(G2) ≤
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d(G1+G2). Indeed: each set Vi, for i = 1, . . . , d(G1) dominates the vertex set V (G2)
of G2 and simultaneously each set Uj , for j = 1, . . . , d(G2) dominates the vertex set
V (G1) of G1.

Moreover, the sets Vi, Uj , for i = 1, . . . , d(G1) and j = 1, . . . , d(G2) are pairwise

disjoint and
⋃d(G1)
i=1 Vi ∪

⋃d(G2)
j=1 Uj = V (G1 +G2). Therefore

d(G1 +G2) ≥ d(G1) + d(G2). (1)

On the other hand, each subset {x, y} ⊆ V (G1 + G2), where x ∈ V (G1), y ∈
V (G2) is the dominating set in the join G1 + G2. Without loss of generality, let
|V (G1)| ≥ |V (G2)|. First, we claim that |V (G1)| = |V (G2)|. Then certainly there
exists the domatic partition {{xi, yi} : i = 1, . . . , |V (G2)|} of the graph G1 + G2. If
|V (G1)| > |V (G2)|, then there exists the domatic partition

{
{x1, y1}, . . . , {x|V (G2)|−1, y|V (G2)|−1}, V (G1 +G2)\

⋃|V (G2)|−1

i=1
{xi, yi}

}

of G1 + G2. Hence d(G1 + G2) ≥ |V (G2)|. Therefore, by the commutativity of the
join,

d(G1 +G2) ≥ min{|V (G1)|, |V (G2)|}. (2)

Consequently, according to (1) and (2) we obtain the lower bound.

Some pairs of factors in G1+G2 for which the bounds in Theorem 6 are attained
are given below.

By Theorem 6 it follows immediately.

Corollary 8 Let G be domatically full and let m ≥ 1. Then d(G+Km) = d(G)+m.

Theorem 7 Let G1, G2 be given. If |V (G1)| = |V (G2)| and ∆(Gi) < |V (Gi)| − 1,
for i = 1, 2, then d(G1 +G2) = |V (G1)|.

Proof. Our assumption |V (G1)| = |V (G2)| and Theorem 6 imply that

d(G1 +G2) ≥ max{d(G1) + d(G2), |V (G1)|}. (3)

Since ∆(Gi) < |V (Gi)| − 1, this means that there exists no dominating set Di in
Gi such that |Di| = 1, for i = 1, 2. Namely, if it would be, say D1 = {xp}, then
by the assumption degG1

(xp) ≤ ∆(G1) < |V (G1)| − 1. Furthermore it would be at
least one vertex in V (G1)\{xp} which could not be dominated by the set D1. But this
contradicts the fact that D1 is a dominating set in G1. Hence |Di| ≥ 2 and γ(Gi) ≥ 2,
for i = 1, 2, by commutativity of G1 +G2. From this fact and Proposition 1c) we see
that d(Gi) ≤ |V (Gi)|/2, for i = 1, 2. Moreover,

d(G1) + d(G2) ≤ |V (G1)|. (4)

By (3) and (4) it follows that d(G1+G2) ≥ max{d(G1)+ d(G2), |V (G1)| } ≥ |V (G1)|.
On the other hand, because of γ(Gi) ≥ 2, for i = 1, 2, then γ(G1+G2) ≥ 2. Therefore
by Proposition 1c), we have d(G1+G2) ≤ |V (G1+G2)|/γ(G1+G2) ≤ 2|V (G1)|/2 =
|V (G1)|. Consequently, the assertion holds.
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Corollary 9 For n ≥ 4, d(Pn + Pn) = n.

The following observation we use to help to partite the vertex set of the join of
two stars Sn, Sm.

Proposition 9 Let n,m ≥ 2 and put V (Sn) = {x0} ∪A, V (Sm) = {y0} ∪B, where

A = {x1, . . . , xn}, B = {y1, . . . , ym} with x0, y0 of degree n and m, respectively. Then

{x0}, {y0}, {xi, yj}i=1,...,n;j=1,...,m,A,B are all possible minimal dominating sets in

Sn + Sm.

Corollary 10 For n,m ≥ 2, d(Sn + Sm) = 2 +min{n,m}.

Proof. By Theorem 7 we obtain d(Sn + Sm) ≤ min{n,m} + 3. Let us suppose
that n ≥ m. Then d(Sn + Sm) ≤ m + 3. First, we claim that d(Sn + Sm) =
m + 3. Without loss of generality we may assume that x0 ∈ D1 and y0 ∈ D2,
where {D1,D2, . . . ,Dm+3} is the domatic partition of Sn+Sm (the proof in the case
x0, y0 ∈ D1 is analogous). Furthermore by Proposition 9, we may suppose D1 = {x0}
and D2 = {y0}. Since |B| = m ≥ 2, there exists k ∈ {3, . . . ,m + 3} such that
Dk ∩ B = ∅. Hence Dk is a subset of A. But by Proposition 9 it must be Dk = A.
From this and by Proposition 9 we get Dl = B, for l = 3, . . . ,m + 3 with l 	= k, a
contradiction (because the sets D3, . . . ,Dm+3 are pairwise disjoint). All this together
leads to a conclusion that d(Sn + Sm) ≤ m + 2. To complete the proof we create a
partition with m + 2 dominating sets in G1 + G2 in the following way: D1 = {x0},
D2 = {y0},Di+2 = {xi, yi}, for i = 1, . . . ,m−1 and Dm+2 = {xm, xm+1, . . . , xn, ym}.

References

[1] C. Berge, Graphs and Hypergraphs (North-Holland, Amsterdam, 1973).

[2] G.J. Chang, The domatic number problem, Discrete Mathematics 125 (1994) 115-
122.

[3] E.J. Cockayne, S.T. Hedetniemi, Towards a theory of domination in graphs, Net-
works 7 (1977) 247-261.

[4] E.J. Cockayne, Domination of undirected graphs — a survey. In: Theory and Appli-
cations of Graphs, Proc. Michigan 1976, ed. By Y.Alavi and D. R. Lick (Springer
— Verlag Berlin-Heldelberg-New York 1978) 141-147.

[5] R. Diestel, Graph Theory, Springer-Verlang (1996).

[6] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundaments of domination in graphs,
New York, Basel, Hong Kong, Marcel Dekker, Inc. (1998).

[7] B. Zelinka, Domatically critical graphs, Czech. Math. J. 30 (1980) 468-489.



Domatic number of graph products 81

Monika Kijewska
email: domena@prz.rzeszow.pl

Institute of Mathematics, Physics and Chemistry
Department of Mathematics Maritime University of Szczecin
St.WaMly Chrobrego 1/2, 70-500 Szczecin, Poland

Received 8 XI 2007



J o u r n a l of
Mathematics
and Applications

No 30, pp 83-90 (2008)

COPYRIGHT @ by Publishing Department Rzeszów University of Technology

P.O. Box 85, 35-959 Rzeszów, Poland

On certain properties of neighborhoods of
analytic functions of complex order

Dr. S.Latha and N. Poornima

Submitted by: Jan Stankiewicz

Abstract: Let A(n) denote the class of functions of the form

f(z) = z −
∞∑

k=n+1

akz
k, (ak ≥ 0, k ∈ N\{1}, n ∈ N = {1, 2, ...} )

which are analytic in the open unit disk U = {z : |z| < 1}. In this note,
the subclasses Sn(β, γ, a, c), Rn(β, γ, a, c;µ), Sαn (β, γ, a, c) and Rαn(β, γ, a, c;µ)
of A(n) are defined and some properties of neighborhoods are studied for
functions of complex order in these classes

AMS Subject Classification: 30C45
Key Words and Phrases: Univalent functions, neighborhoods, linear operator, convex
functions and starlike functions

1. Introduction

Let A(n) denote the class of functions of the form

f(z) = z −
∞∑

k=n+1

akz
k, (ak ≥ 0, k ∈ N\{1}, n ∈ N = {1, 2, ...}) (1)

which are analytic in the open unit disk U = {z : |z| < 1}.
For any function f(z) ∈ A(n) and δ ≥ 0, we define,

Nn,δ(f) =

{

g ∈ A(n) : g(z) = z −
∞∑

k=n+1

bkz
k and

∞∑

k=n+1

k|ak − bk| ≤ δ

}

(2)
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which is the (n, δ) - neighborhood of f(z) .
For e(z) = z, we see that,

Nn,δ(e) =

{

g ∈ A(n) : g(z) = z −
∞∑

k=n+1

bkz
k and

∞∑

k=n+1

k|bk| ≤ δ

}

. (3)

The concept of neighborhoods was first introduced by Goodman and then generalized
by Ruscheweyh [8] .
In this paper, we discuss certain properties of (n, δ) - neighborhood for analytic
functions of complex order in U .
The subclass S∗n(γ) of A(n), is the class of functions of complex order γ satisfying,

ℜ

{
1 +

1

γ

[
zf ′(z)

f(z)
− 1

]}
> 0, (z ∈ U , γ ∈ C\{0}). (4)

The subclass Cn(γ) of A(n), is the class of functions of complex order γ satisfying,

ℜ

{
1 +

1

γ

zf ′′(z)

f ′(z)

}
> 0, (z ∈ U , γ ∈ C\{0}). (5)

The Hadamard product of two power series

f(z) = z +
∞∑

k=2

akz
k and g(z) = z +

∞∑

k=2

bkz
k

is defined as (f ∗ g)(z) = z +
∞∑

k=2

akbkz
k.

In particular, we consider the convolution with the function φ(a, c) defined by

φ(a, c; z) = z +
∞∑

n=2

(a)n−1
(c)n−1

zn, z ∈ U , c �= 0,−1,−2, ...

where,

(a)n =
Γ(a+ n)

Γ(a)
.

That is, (a)0 = 1, (a)n = a(a+ 1)...(a+ n− 1), n > 1.
The function φ(a, c) is an incomplete beta function related to the Gauss Hypergeo-
metric function by

φ(a, c; z) = z2F1(1, a, c; z).

It has an analytic continuation in the z-plane cut along the positive real line from 1 to

∞. We note that φ(a, 1; z) =
z

(1− z)a
and φ(2, 1; z) is the Koebe function. Carlson

and Shaffer defined a convolution operator involving an incomplete beta function as

L(a, c)f(z) = φ(a, c; z) ∗ f(z) = z −
∞∑

n=2

(a)n−1
(c)n−1

anz
n. (6)
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for a function f(z) ∈ A(n). Clearly, L(a, c) maps onto itself and L(c, c) is the
identity operator. If a = 0,−1,−2, ..., then L(c, a) is an inverse of L(a, c).
In particular, we have,

L(n+ 1, 1)f(z) =
z(zn−1f(z))(n)

n!
, (n ∈ N0 = N ∪ {0}).

The subclass Sn(β, γ, a, c), of A(n) is the class of functions f(z) such that
∣∣∣∣
1

γ

(
z(L(a, c)f(z))′

L(a, c)f(z)
− 1

)∣∣∣∣ < β, (7)

where, γ ∈ C\{0}, 0 < β ≤ 1, a > 0 and z ∈ U .
And let the subclass Rn(β, γ, a, c;µ), of A(n) be the class of functions f(z) such
that ∣∣∣∣

1

γ

(
(1− µ)

L(a, c)f(z)

z
+ µ(L(a, c)f(z))′ − 1

)∣∣∣∣ < β, (8)

where, γ ∈ C\{0}, 0 < β ≤ 1, a > 0 and z ∈ U .

2. Neighborhoods for classes Sn(β, γ, a, c)
and Rn(β, γ, a, c;µ)

In this section, we obtain inclusion relations involving Nn,δ for functions in the classes
Sn(β, γ, a, c) and Rn(β, γ, a, c;µ) .

Lemma 1 A function f(z) ∈ Sn(β, γ, a, c) if and only if

∞∑

k=n+1

(a)k−1
(c)k−1

(β|γ|+ k − 1)ak ≤ β|γ|. (9)

Proof. Let f(z) ∈ Sn(β, γ, a, c). Then by ( 6) we can write,

ℜ

{
z(L(a, c)f(z))′

L(a, c)f(z)
− 1

}
> −β|γ|, (z ∈ U). (10)

Using ( 1) and ( 6), we have,

ℜ






−
∞∑

k=n+1

(a)k−1
(c)k−1

(k − 1)akz
k

z −
∞∑

k=n+1

(a)k−1
(c)k−1

akz
k






> −β|γ|, (z ∈ U). (11)

Letting z → 1, through the real values, the inequality ( 11) yields the desired condi-
tion ( 9).
Conversely, by applying the hypothesis ( 9) and letting |z| = 1, we obtain,
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∣∣∣∣
z(L(a, c)f(z))′

L(a, c)f(z)
− 1

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣

∞∑

k=n+1

(a)k−1
(c)k−1

(k − 1)akz
k

z −
∞∑

k=n+1

(a)k−1
(c)k−1

akz
k

∣∣∣∣∣∣∣∣∣∣

≤

β|γ|

(

1−
∞∑

k=n+1

(a)k−1
(c)k−1

(k − 1)ak

)

1−
∞∑

k=n+1

(a)k−1
(c)k−1

ak

≤ β|γ|.

Hence, by the maximum modulus theorem, we have f(z) ∈ Sn(β, γ, a, c). Thus the
proof is complete. On similar lines, we prove the following lemma.

Lemma 2 A function f(z) ∈ Rn(β, γ, a, c;µ) if and only if

∞∑

k=n+1

(a)k−1
(c)k−1

[µ(k − 1) + 1] ak ≤ β|γ|. (12)

Theorem 1 If

δ =
(n+ 1)β|γ|

(β|γ|+ n)
(a)n
(c)n

, (|γ| < 1), (13)

then, Sn(β, γ, a, c) ⊂ Nn,δ(e).

Proof. Let f(z) ∈ Sn(β, γ, a, c). By Lemma 1, we have,

(β|γ|+ n)
(a)n
(c)n

∞∑

k=n+1

ak ≤ β|γ|.

which implies,

∞∑

k=n+1

ak ≤
β|γ|

(β|γ|+ n)
(a)n
(c)n

. (14)

Using ( 9) and( 14) , we have,
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(a)n
(c)n

∞∑

k=n+1

kak ≤ β|γ|+ (1− β|γ|)
(a)n
(c)n

∞∑

k=n+1

ak

≤ β|γ|+ (1− β|γ|)
(a)n
(c)n

β|γ|

(β|γ|+ n)
(a)n
(c)n

≤
(n+ 1)β|γ|

(β|γ|+ n)
(a)n
(c)n

= δ.

That is,
∞∑

k=n+1

kak ≤
(n+ 1)β|γ|

(β|γ|+ n)
(a)n
(c)n

= δ.

Thus, by the definition given by ( 3), f(z) ∈ Nn,δ(e). This completes the proof.

Theorem 2 If

δ =
(n+ 1)β|γ|

(µn+ 1)
(a)n
(c)n

, (15)

then, Rn(β, γ, a, c;µ) ⊂ Nn,δ(e).

Proof. Let f(z) ∈ Rn(β, γ, a, c;µ). Then, by Lemma 2, we have,

(a)n
(c)n

(µn+ 1)
∞∑

k=n+1

ak ≤ β|γ|,

which gives the following coefficient inequality:
∞∑

k=n+1

ak ≤
β|γ|

(µn+ 1)
(a)n
(c)n

. (16)

Using ( 12) and ( 16), we also have,

µ
(a)n
(c)n

∞∑

k=n+1

kak ≤ β|γ|+ (µ− 1)
(a)n
(c)n

∞∑

k=n+1

ak

≤ β|γ|+ (µ− 1)
(a)n
(c)n

β|γ|

(µn+ 1)
(a)n
(c)n

.

That is,
∞∑

k=n+1

kak ≤
(n+ 1)β|γ|

(µn+ 1)
(a)n
(c)n

= δ.

Thus, by the definition given by ( 3), f(z) ∈ Nn,δ(e). This completes the proof .
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3. Neighborhoods for classes Sαn (β, γ, a, c)
and Rα

n(β, γ, a, c;µ)

In this section, we define the subclasses Sαn (β, γ, a, c) and Rαn(β, γ, a, c;µ) of A(n) and
neighborhoods of these classes are obtained.
For 0 ≤ α < 1 and z ∈ U , a function f(z) ∈ Sαn (β, γ, a, c) if there exists a function
g(z) ∈ Sn(β, γ, a, c) such that

∣∣∣∣
f(z)

g(z)
− 1

∣∣∣∣ < 1− α. (17)

For 0 ≤ α < 1 and z ∈ U , a function f(z) ∈ Rα
n(β, γ, a, c;µ) if there exists a

function g(z) ∈ Rn(β, γ, a, c;µ) such that the inequality ( 17) holds true.

Theorem 3 If g(z) ∈ Sn(β, γ, a, c) and

α = 1−

(β|γ|+ n) δ
(a)n
(c)n

(n+ 1)

[
(β|γ|+ n)

(a)n
(c)n

− β|γ|

] , (18)

then, Nn,δ(g) ⊂ Sαn (β, γ, a, c).

Proof. Let f(z) ∈ Nn,δ(g). Then,

∞∑

k=n+1

k|ak − bk| ≤ δ, (19)

which yields the coefficient inequality,

∞∑

k=n+1

|ak − bk| ≤
δ

n+ 1
, (n ∈ N). (20)

Since g(z) ∈ Sn(β, γ, a, c) by ( 14), we have,

∞∑

k=n+1

bk ≤
β|γ|

(β|γ|+ n)
(a)n
(c)n

, (21)

so that,
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∣∣∣∣
f(z)

g(z)
− 1

∣∣∣∣ <

∞∑

k=n+1

|ak − bk|

1−
∞∑

k=n+1

bk

≤
δ

n+ 1

(β|γ|+ n)
(a)n
(c)n[

(β|γ|+ n)
(a)n
(c)n

− β|γ|

]

= 1− α.

Thus, by definition, f(z) ∈ Sαn (β, γ, a, c) for α given by ( 22). Thus the proof is
complete. On similar lines, we can prove the following theorem.

Theorem 4 If g(z) ∈ Rn(β, γ, a, c;µ) and

α = 1−

(µn+ 1) δ
(a)n
(c)n

(n+ 1)

[
(µn+ 1)

(a)n
(c)n

− β|γ|

] , (22)

then, Nn,δ(g) ⊂ Rαn(β, γ, a, c;µ).
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1. Introduction

Let A denote the class of normalized univalent functions of the form

f(z) = z +
∞∑

n=2

anz
n (1)

that are analytic in the open disc U = {z ∋ |z| < 1}.
Define S to be the subclass of A consisting of all univalent functions f ∈ U. Suppose
T as the subclass of functions of S of the form

f(z) = z −
∞∑

n=2

anz
n, an ≥ 0. (2)

Let Ω be the class of functions ω(z) analytic in U such that
ω(0) = 0, |ω(z)| < 1.
For f(z) and g(z) in A, f(z) is said to be subordinate to g(z) ∈ U if there exists
an analytic function ω(z) ∈ Ω such that f(z) = g(ω(z)). This subordination [1] is
denoted by

f(z) ≺ g(z). (3)
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Let P1(A,B) be the class of functions in U which are of the form

1 +Aω(z)

1 +Bω(z)
,−1 ≤ A < B ≤ 1, ω(z) ∈ Ω.

Define

S⋆1(A,B) = {f(z)|f(z) ∈ S and
zf ′(z)

f(z)
∈ P1(A,B)}

K1(A,B) = {f(z)|f(z) ∈ S and
(zf ′(z))′

f ′(z)
∈ P1(A,B)}

We further define,

T ⋆(A,B) = {f(z)|f(z) ∈ T and
zf ′(z)

f(z)
∈ P1(A,B)}

C(A,B) = {f(z)|f(z) ∈ T and
(zf ′(z))′

f ′(z)
∈ P1(A,B)}

We note that f(z) ∈ C(A,B) if and only if zf ′(z) ∈ T ⋆(A,B).
For A = 2α− 1, B = 1 the class T ⋆(A,B) reduces to T ⋆(α) introduced by Schild and
Silverman [5] . Lakshma Reddy and Padmanabhan established the following results
for the classes T ⋆(A,B) and C(A,B) [4].

Lemma 1 A function

f(z) = z −
∞∑

n=2

anz
n, an ≥ 0

is in T ⋆(A,B) if and only if

∞∑

m=2

m(B + 1)− (A+ 1)

B −A
am ≤ 1. (4)

Lemma 2 A function

f(z) = z −
∞∑

n=2

anz
n, an ≥ 0

is in C(A,B) if and only if

∞∑

m=2

m

[
m(B + 1)− (A+ 1)

B −A

]
am ≤ 1. (5)

Extreme points of the classes T ⋆(A,B) and C(A,B) are

f1(z) = z and fn(z) = z −
(B −A)

n(B + 1)− (A+ 1)
zn (n ≥ 2),

f1(z) = z and fn(z) = z −
(B −A)

n[n(B + 1)− (A+ 1)]
zn (n ≥ 2)

respectively. For subordinations, Littlewood [2] has given the following integral mean.
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Theorem 1 If f(z) and g(z) are analytic in U with f(z) ≺ g(z) then for λ > 0 and
|z| = r (0 < r < 1), ∫ 2π

0

|f(reiθ)|λdθ ≤

∫ 2π

0

|g(reiθ)|λdθ. (6)

Applying Theorem 1 Owa, Pascu and Nishiwaki [3] proved the following results.

Theorem 2 Let f(z) ∈ T ⋆, λ > 0 and

fk(z) = z −
zk

k
(k ≥ 2).

If f(z) satisfies

k−3∑

j=0

j + 1

k
(a2k+j−1 + ak+j+1 − ak−j−1) ≥ 0, for k ≥ 3 (7)

and if there exists an analytic function ω(z) ∈ U given by

(ω(z))k−1 = k(
∞∑

n=2

anz
n−1)

then, for z = reiθ(0 < r < 1),

∫ 2π

0

|f(z)|λdθ ≤

∫ 2π

0

|fk(z)|
λdθ (8)

Corollary 1 Let f(z) ∈ T ⋆, 0 < λ ≤ 2 and

fk(z) = z −
zk

k
(k ≥ 2).

If f(z) satisfies the conditions in Theorem 2,
then for z = reiθ(0 < r < 1),

∫ 2π

0

|f(z)λdθ

≤ 2πrλ
(
1 +

1

k2
r2(k−1)

)λ

2

< 2π

(
1 +

1

k2

)λ

2

.

(9)

Theorem 3 Let f(z) ∈ T ⋆, λ > 0 and

fk(z) = z −
zk

k
(k ≥ 2).
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If there exists an analytic function ω(z) ∈ U given by

(ω(z))k−1 =
∞∑

n=2

nanz
n−1

then, for z = reiθ(0 < r < 1),

∫ 2π

0

|f ′(z)|λdθ ≤

∫ 2π

0

|f ′k(z)|
λdθ. (10)

Corollary 2 Let f(z) ∈ T ⋆, 0 < λ ≤ 2 and

fk(z) = z −
zk

k
(k ≥ 2).

If f(z) satisfies the conditions in Theorem 3,
then for z = reiθ (0 < r < 1),

∫ 2π

0

|f ′(z)λdθ

≤ 2π(1 + r2(k−1))
λ

2

< 2
2+λ
2 π.

Theorem 4 Let f(z) ∈ C, λ > 0 and

fk(z) = z −
zk

k2
(k ≥ 2).

If f(z) satisfies
k−1∑

j=2

(k + j)(k − j)

k2
(a2k−j − aj) ≥ 0 for k ≥ 3, (11)

and if there exists an analytic function ω(z) ∈ U given by

(ω(z))k−1 = k2
∞∑

n=2

anz
n−1

then for z = reiθ(0 < r < 1),

∫ 2π

0

|f(z)|λdθ ≤

∫ 2π

0

|fk(z)|
λdθ. (12)

Corollary 3 Let f(z) ∈ C, 0 < λ ≤ 2 and

fk(z) = z −
zk

k
(k ≥ 2).
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If f(z) satisfies the conditions in Theorem 4,
then for z = reiθ(0 < r < 1),

∫ 2π

0

|f(z)λdθ

≤ 2πrλ
(
1 +

1

k4
r2(k−1)

)λ

2

< 2π

(
1 +

1

k4

)λ

2

.

Theorem 5 Let f(z) ∈ C,λ > 0 and

fk(z) = z −
zk

k2
(k ≥ 2).

If f(z) satisfies
2k−2∑

j=2

j(k − j)aj ≤ 0 (13)

and if there exists an analytic function ω(z) ∈ U given by

(ω(z))k−1 = k
∞∑

n=2

nanz
n−1,

then, for z = reiθ (0 < r < 1),

∫ 2π

0

|f ′(z)|λdθ ≤

∫ 2π

0

|f ′k(z)|
λdθ. (14)

Corollary 4 Let f(z) ∈ C, 0 < λ ≤ 2 and

fk(z) = z −
zk

k
(k ≥ 2).

If f(z) satisfies the conditions in Theorem 3,
then for z = reiθ (0 < r < 1),

∫ 2π

0

|f ′(z)λdθ

≤ 2π(1 +
1

k
r2(k−1))

λ

2

< 2π(1 +
1

k
)
λ

2 .
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2. Generalization Results

We prove the following results for integral means for the classes T ⋆(A,B) and C(A,B)
which generalize the above results.

Theorem 6 Let f(z) ∈ T ⋆(A,B), λ > 0 and

fk(z) = z −
(B −A)zk

[k(B + 1)]− (A+ 1)
(k ≥ 2).

If f(z) satisfies
k−3∑

j=0

j + 1

k
(a2k+j−1 + ak+j+1 − ak−j−1) ≥ 0 (15)

for k ≥ 3, and if there exists an analytic function

(ω(z))k−1 =
k(B + 1)− (A+ 1)

B −A

∞∑

n=2

anz
n−1

then, for z = reiθ (0 < r < 1),

∫ 2π

0

|f(z)|λdθ ≤

∫ 2π

0

|fk(z)|
λdθ (16)

Proof. For f(z) ∈ T ⋆(A,B), we have to show that

∫ 2π

0

∣∣∣∣∣
1−

∞∑

n=2

anz
n−1

∣∣∣∣∣
≤

∫ 2π

0

∣∣∣∣1−
(B −A)zk−1

k(B + 1)− (A+ 1)

∣∣∣∣ dθ

By Theorem 1, it suffices to prove that

1−
∞∑

n=2

anz
n−1 ≺ 1−

(B −A)

k(B + 1)− (A+ 1)
zk−1

Let us define the function ω(z) by

1−
∞∑

n=2

anz
n−1 = 1−

(B −A)

k(B + 1)− (A+ 1)
(ω(z))k−1 (17)

It follows from ( 17) that

|ω(z)|k−1 =

∣∣∣∣∣
k(B + 1)− (A+ 1)

B −A

∞∑

n=2

anz
n−1

∣∣∣∣∣

≤ |z|

(
∞∑

n=2

k(B + 1)− (A+ 1)

B −A
an

)
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Thus, we need to show that

∞∑

n=2

k(B + 1)− (A+ 1)

B −A
an ≤

∞∑

n=2

n(B + 1)− (A+ 1)

B −A
an

Equivalently, we only show that

∞∑

n=2

kan ≤
∞∑

n=2

nan

∞∑

n=2

an ≤
1

k

∞∑

n=2

nan

Consider,

1

k

∞∑

n=2

nan =

(
1−

k − 2

k

)
a2 +

(
1−

k − 3

k

)
a3 + ...+

(
1−

2

k

)
ak−2

+

(
1−

1

k

)
ak−1 + ak +

(
1 +

1

k

)
ak+1 +

(
1 +

2

k

)
ak+2

+ ...+

(
1 +

k + 1

k

)
a2k+1 +

(
1 +

k + 2

k

)
a2k+2 + ...

=
k − 2

k
(a2k−2 − a2) +

k − 3

k
(a2k−3 − a3) + ...

+
2

k
(ak+2 − ak−2) +

1

k
(ak+1 − ak−1) +

(
1 +

k − 1

k

)
a2k−1

+

(
1 +

k

k

)
a2k +

(
1 +

k + 1

k

)
a2k+1 + ...+

2k−2∑

n=2

an.

Since

1 +
k + j

k
≥ 1 +

2 + j

k
, (j = −1, 0, 1....)



98 Dr. S.Latha and D.S.Raju

we have

1

k

∞∑

n=2

nan ≥
k − 2

k
(a2k−2 − a2) +

k − 3

k
(a2k−3 − a3) + ...

+
2

k
(ak+2 − ak−2) +

1

k
(ak+1 − ak−1)

+

(
1 +

1

k

)
a2k−1 +

(
1 +

2

k

)
a2k + ...

+

(
1 +

k − 3

k

)
a3k−5 +

(
1 +

k − 2

k

)
a3k−4 + ...+

2k−2∑

n=2

an

≥
1

k
(a2k−1 + ak+1 − ak−1) +

2

k
(a2k + ak+2 − ak−2) + ...

+
k − 2

k
(a3k−4 + a2k−2 − a2) +

∞∑

n=2

an

=
k−3∑

j=0

j + 1

k
(a2k+j−1 + ak+j+1 − ak−j−1) +

∞∑

n=2

an

≥
∞∑

n=2

an

(18)

since

k−3∑

j=0

j + 1

k
(a2k+j−1 + ak+j+1 − ak−j−1) ≥ 0.

Hence, we observe that the function ω(z) defined by ( 17) is analytic in U with
ω(0) = 0, |ω(z)| < 1, (z ∈ U). Thus we have proved the theorem.

Remark 1 For the parametric values A = −1, B = 1
we get Theorem 2.
Taking A = −1, B = 1, k = 2 we have the following result by
Silverman [6]:

Suppose that f(z) ∈ T ⋆, λ > 0 and f2(z) = z −
z2

2
.

Then for z = reiθ (0 < r < 1),

∫ 2π

0

|f(z)|λdθ ≤

∫ 2π

0

|f2(z)|
λdθ (19)

Corollary 5 Let f(z) ∈ T ⋆(A,B), 0 < λ ≤ 2 and

fk(z) = z −
(B −A)

k(B + 1)− (A+ 1)
zk (k ≥ 2).
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If f(z) satisfies the conditions in Theorem 6,
then for z = reiθ (0 < r < 1),

∫ 2π

0

|f(z)|λdθ ≤

[

1 +

(
B −A

k(B + 1)− (A+ 1)

)2
r2(k−1)

]λ

2

<

[

1 +

(
B −A

k(B + 1)− (A+ 1)

)2]λ

2

(20)

Proof. We have

∫ 2π

0

|fk(z)|
λdθ =

∫ 2π

0

|z|k
∣∣∣∣

B −A

k(B + 1)− (A+ 1)
zk−1

∣∣∣∣
λ

dθ

Applying Hölder’s Inequality for 0 < λ < 2, we obtain

∫ 2π

0

|z|λ
∣∣∣∣

B −A

k(B + 1)− (A+ 1)
zk−1

∣∣∣∣
λ

dθ

≤

(∫ 2π

0

(|z|λ)
2

2−λ dθ

) 2λ
2




∫ 2π

0

(∣∣∣∣1−
(B −A)

k(B + 1)− (A+ 1)
zk−1

∣∣∣∣
λ
) 2

λ

dθ





λ

2

=

(∫ 2π

0

|z|
2λ
2−λ dθ

) 2−λ
2

(∫ 2π

0

∣∣∣∣1−
B −A

k(B + 1)− (A+ 1)
zk−1

∣∣∣∣
2

dθ

)λ

2

= 2πr
2λ
2−λ

(

2π

(
B −A

k(B + 1)− (A+ 1)

)2
r2(k−1)

)λ

2

= 2πrλ
(
1 +

(
B −A

k(B + 1)− (A+ 1)

)
r2(k−1)

)λ

2

< 2π

(

1 +

(
B −A

k(B + 1)− (A+ 1)

)2)λ

2

Further, it is clear for λ = 2.

Theorem 7 Let f(z) ∈ T ⋆(A,B), λ > 0 and

fk(z) = z −
(B −A)

k(B + 1)− (A+ 1)
zk (k ≥ 2).

If there exists an analytic function ω(z) ∈ U given by

(ω(z))k−1 =
∞∑

n=2

n(B + 1)− (A+ 1)

B −A
anz

n−1,
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then, for z = reiθ (0 < r < 1),
∫ 2π

0

|f ′(z)|λdθ ≤

∫ 2π

0

|f ′k(z)|
λdθ. (21)

Proof. For f(z) ∈ T ⋆(A,B), it is sufficient to show that

1−
∞∑

n=2

n(B + 1)− (A+ 1)

B −A
anz

n−1 ≺ 1− zk−1 (22)

Let the function ω(z) be defined by

1−
∞∑

n=2

n(B + 1)− (A+ 1)

B −A
anz

n−1 = 1− (ω(z))k−1 (23)

Equivalently ω(z) is defined by

(ω(z))k−1 =
∞∑

n=2

n(B + 1)− (A+ 1)

B −A
anz

n−1

Since f(z) satisfies

∞∑

n=2

n(B + 1)− (A+ 1)

B −A
≤ 1,

the function ω(z) is analytic in U, ω(0) = 0
and |ω(z)| < 1 (z ∈ U).

Remark 2 Parametric values A = −1, B = 1 yield Theorem 3.
For A = −1, B = 1, k = 2 we obtain the following result by
Silverman [6] :

If f(z) ∈ T ⋆, λ > 0 and f2(z) = z −
z2

2
,

then , for z = reiθ (0 < r < 1)
∫ 2π

0

|f ′(z)|λdθ ≤

∫ 2π

0

|f ′2(z)|
λdθ (24)

Using Holder’s inequality for Theorem 7 we have

Corollary 6 Let f(z) ∈ T ⋆(A,B), 0 < λ ≤ 2 and

fk(z) = z −
B −A

k(B + 1)− (A+ 1)
zk (k ≥ 2).

If f(z) satisfies conditions of Theorem 7, then for
z = reiθ (0 < r < 1)

∫ 2π

0

|f ′(z)|λdθ < 2π
(
1 + r2(

k(B+1)−(A+1)
B−A

−1)
)λ

2

< 2
2+λ
2 π
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Now we discuss the integral means for functions in the class C(A,B)

Theorem 8 Let f(z) ∈ C(A,B), λ > 0 and

fk(z) = z −
(B −A)zk

k[k(B + 1)− (A+ 1)]
(k ≥ 2)

If f(z) satisfies
k−1∑

j=2

(k + j)(k − j)

k2
(a2k−j − aj) ≥ 0 for k ≥ 0, (25)

and if there exists an analytic function ω(z) ∈ U given by

(ω(z))k−1 =
k[k(B + 1)− (A+ 1)]

B −A

∞∑

n=2

anz
n−1

then, for z = reiθ (0 < r < 1),
∫ 2π

0

|f(z)|λdθ ≤

∫ 2π

0

|fk(z)|
λθ (26)

Proof. It is sufficient to show that

1−
∞∑

n=2

anz
n−1 ≺ 1−

(B −A)

k[k(B + 1)− (A+ 1)]
zk−1

by theorem 1, define the function ω(z) by

1−
∞∑

n=2

anz
n−1 = 1−

B −A

k[k(B + 1)− (A+ 1)]
(ω(z))k−1 (27)

or by

(ω(z))k−1 =
k[k(B + 1)− (A+ 1)]

B −A

∞∑

n=2

anz
n−1

We need to show that

∞∑

n=2

an ≤
B −A

k[k(B + 1)− (A+ 1)]

(
∞∑

n=2

(n(B + 1)− (A+ 1))

B −A

)

an

Using the same technique as in the proof of Theorem 6 we see that

B −A

k[k(B + 1)− (A+ 1)]

∞∑

n=2

n[n(B + 1)− (A+ 1)]

B −A
an

≥
k−1∑

j=2

(k + j)(k − j)

k2
(a2k−j − aj) +

∞∑

n=2

an

≥
∞∑

n=2

an
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Remark 3 For A = −1, B = 1 we get Theorem 3

Corollary 7 Let f(z) ∈ C(A,B), 0 < λ ≤ 2 and

fk(z) = z −
(B −A)

k[k(B + 1)− (A+ 1)]
zk (k ≥ 2)

If f(z) satisfies the condition in Theorem 8, then for k ≥ 3 and z = reiθ (0 < r < 1)

∫ 2π

0

|f(z)|λdθ

≤ 2πrλ

(

1 +

(
B −A

k[k(B + 1)− (A+ 1)]

)4
r2(k−1)

)λ

2

< 2π

(

1 +

(
B −A

k[k(B + 1)− (A+ 1)]

)4)λ

2

∫ 2π

0

|f(z)|λdθ

≤ 2πrλ

(

1 +

(
B −A

k[k(B + 1)− (A+ 1)]
r2(k−1)

)4)λ

2

< 2π

(

1 +

(
B −A

k[k(B + 1)− (A+ 1)]

)4)λ

2

Theorem 9 Let f(z) ∈ C(A,B), λ > 0 and

fk(z) = z −
B −A

k[k(B + 1)− (A+ 1)]
zk (k ≥ 2)

If f(z) satisfies
2k−2∑

j=2

j(k − j)aj ≤ 0, (28)

and if there exists an analytic function

(ω(z))k−1 =
k(B + 1)− (A+ 1)

B −A

∞∑

n=2

n(B + 1)− (A+ 1)

B −A
anz

n−1,

then for z = reiθ (0 < r < 1),

∫ 2π

0

|f ′(z)|λdθ ≤

∫ 2π

0

|f ′k(z)|
λdθ. (29)
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Remark 4 Taking A = −1, B = 1 we obtain Theorem 5

Corollary 8 Let f(z) ∈ C(A,B), 0 < λ ≤ 2, and

fk(z) = z −
B −A

k[k(B + 1)− (A+ 1)]
zk (k ≥ 2).

If f(z) satisfies the condition in Theorem 9,
then for k ≥ 2, and z = reiθ (0 < r < 1),

∫ 2π

0

|f ′(z)|λθ

≤ 2π

(
1 +

B −A

k(B + 1)− (A+ 1)
r2(k−1)

)λ

2

< 2π

(
1 +

B −A

k(B + 1)− (A+ 1)

)λ

2
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1. Introduction

Let A denote the class of functions of the form

f(z) = z +
∞∑

k=2

akz
k (1)

analytic in the open unit disk

U = {z : |z| < 1}.

For a function f(z) in A, due to Al-Oboudi [1]we define the following generalized
Sâlâgean differential operator

D0f(z) = f(z) (2)

D1f(z) = (1− λ)f(z) + λzf ′(z) = Dλf(z), λ ≥ 0 (3)
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Dnf(z) = Dλ(D
n−1f(z)). (4)

From (3) and (4) we note that

Dnf(z) = z +
∞∑

k=2

(1 + (k − 1)λ)nakz
k, (5)

when λ = 1, we have Sâlâgean’s operator [7].
Denote by T [9] , the subclass of A consisting of functions of the form

f(z) = z −
∞∑

k=2

akz
k (ak ≥ 0). (6)

Let P (A,B,α) be the subclass A satisfying the condition

f(z) ≺
1 + ((1− α)A+ αB)z

1 +Bz
, (7)

where −1 ≤ A < B ≤ 1, 0 ≤ α < 1 and “≺” stands for subordination.
Denote by T ∗2 the subclass of T consisting of functions of the form

f(z) = z −
∞∑

k=2

a2kz
2k. (8)

Motivated by the works of Joshi [3] and Naik [5] and using the tecniques of Sil-
verman and Berman [8], Padmanabhan and Ganeshan [6] and others [2,4], we define
new subclasses of T and T ∗2 as

A(n,m, γ, λ,A,B,α) =
{
f : f ∈ T : (1−γ)z(D

nf(z))′+γz(Dn+mf(z))′

(1−γ)Dnf(z)+γDn+mf(z) ∈ P (A,B,α)
}
(9)

T ∗2 (n,m, γ, λ,A,B, α)=
{
f : f ∈ T ∗2 :

(1−γ)z(Dn

∗
f(z))′+γz(Dn+m

∗
f(z))′

(1−γ)Dn
∗
f(z)+γDn+m

∗ f(z)
∈ P (A,B,α)

}
(10)

where n,m ∈ IN ∪ {0}, 0 ≤ γ ≤ 1, λ ≥ 0,−1 ≤ A < B ≤ 1, 0 ≤ α < 1,Dnf(z) is

defined by (5) and Dn
∗
f(z) = z +

∞∑

k=2

(1 + (2k − 1)λ)na2kz
2k.

Specializing the parameter γ we can define the following subclasses as a particular
case of our new class

S(n,m, λ,A,B, α) = A(n,m, 0, λ,A,B, α) (11)

K(n,m, λ,A,B, α) = A(n,m, 1, λ,A,B, α) (12)

S∗2(n,m, λ,A,B, α) = T ∗2 (n,m, 0, λ,A,B,α) (13)

and
K∗

2 (n,m, λ,A,B,α) = T ∗2 (n,m, 1, λ,A,B, α) (14)

We remark that by specializing the parameters n,m, γ, α and λ,
(i) T ∗2 (0, 0, 0, 1, A,B, 0) = T ∗2 (A,B) and (ii) T

∗

2 (0, 1, 1, 1, A,B, 0) = C2(A,B) our new
subclasses reduce to the subclasses studied in [5].
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In this paper, we obtain the coefficient inequalities and convolution properties for
univalent functions with negative coefficients of the form (8) in our new class. Further
we state some interesting results as corollaries which are new and not found in the
literature.

2. Main Results

Let f(z) = z −
∞∑

k=2

a2kz
2k and g(z) = z −

∞∑

k=2

b2kz
2k, with a2k ≥ 0, b2k ≥ 0 then the

convolution is defined by

f(z) ∗ g(z) = z −
∞∑

k=2

a2kb2kz
2k. (15)

For proving our convolution results ,first we shall prove the following Lemma.
Lemma Let f(z) be of the form (8), then f(z) belongs to T ∗2 (n,m, γ, λ,A,B, α) if
and only if

∞∑

k=2

[(2k − 1) + (2k − α)B − (1− α)A](1 + (2k − 1)λ)n[1− γ + γ(1 + (2k − 1)λ)m]

(B −A)(1− α)
a2k ≤ 1

(16)

where a2k ≥ 0, n ≥ 0,m ≥ 0, 0 ≤ γ ≤ 1,−1 ≤ A < B ≤ 1, 0 ≤ α < 1, λ ≥ 0.
Proof. Since f(z) ∈ T ∗2 (n,m, γ, λ,A,B, α), then by (10) we have

(1− γ)z(Dn
∗
f(z))′ + γz(Dn+m

∗
f(z))′

(1− γ)Dn
∗
f(z) + γDn+m

∗ f(z)

=

z −
∞∑

k=2

2kXn(1− γ + γXm)a2kz
2k

z −
∞∑

k=2

Xn(1− γ + γXm)a2kz2k
≺
1 + ((1− α)A+ αB)z

1 +Bz

where X = 1 + (2k − 1)λ.
Now, by definition of subordination, there exists w(z) which is analytic function

in U with w(0) = 0, |w(z)| < 1 in U such that

z −
∞∑

k=2

2kXn(1− γ + γXm)a2kz
2k

z −
∞∑

k=2

Xn(1− γ + γXm)a2kz2k
=
1+ ((1− α)A+ αB)w(z)

1 +Bw(z)

then by simple calculations we obtain

w(z) =

∞∑

k=2

(2k − 1)Xn(1− γ + γXm)a2kz
2k−1

B − (1− α)A− αB −
∞∑

k=2

((2k − α)B − (1− α)A)Xn(1− γ + γXm)a2kz2k−1
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then by noting |w(z)| < 1, we get

∣∣∣∣∣∣∣∣

∞∑

k=2

(2k − 1)Xn(1− γ + γXm)a2kz
2k−1

(B −A)(1− α)A−
∞∑

k=2

((2k − α)B − (1− α)A)Xn(1− γ + γXm)a2kz2k−1

∣∣∣∣∣∣∣∣
< 1.

Letting z → 1−, we have

∞∑

k=2

((2k − 1)+(2k − α)B−(1−α)A)(1+(2k−1)λ)n(1−γ+γ(1+(2k−1)λ)m)

(B −A)(1− α)
a2k ≤ 1.

Which completes the proof of Lemma.

Theorem 1 If f(z) = z−
∞∑

k=2

a2kz2k and g(z) = z−
∞∑

k=2

b2kz2k where a2k ≥ 0, b2k ≥ 0

such that f(z), g(z) ∈ T ∗2 (n,m, γ, λ,A,B, α), then q(z) = z−
∞∑

k=2

a2kb2kz
2k belongs to

T ∗2 (n,m, γ, λ,A1, B1, α) with −1 ≤ A < B ≤ 1, where A1 ≤ 1− 2j,B1 ≥
j+A1
1−j ,

j =
3(1− α)(B −A)2

(3 + (4− α)B − (1− α)A)2(1 + 3λ)n(1− γ + γ(1− 3λ)m)− (B −A)2(1− α)2

and n ≥ 0,m ≥ 0, 0 ≤ γ ≤ 1, λ ≥ 0, 0 ≤ α < 1.

Proof. We have by Lemma

∞∑

k=2

[(2k−1)+(2k−α)B− (1−α)A]Xn(1−γ+γXm)[(B−A)(1−α)]−1a2k ≤ 1 (17)

and

∞∑

k=2

[(2k−1)+(2k−α)B− (1−α)A]Xn(1−γ+γXm)[(B−A)(1−α)]−1b2k ≤ 1 (18)

where X = 1 + (2k − 1)λ.

We want to find A1,B1 such that

−1 ≤ A1 < B1 ≤ 1 for q(z) ∈ T ∗2 (n,m, γ, λ,A1, B1, α, )

that is

∞∑

k=2

[(2k−1)+(2k−α)B1−(1−α)A1]X
n(1−γ+γXm)[(B1−A1)(1−α)]−1a2kb2k ≤ 1.

(19)
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By using Cauchy-Schwarz inequality, we get

∞∑

k=2

V (a2kb2k)
1/2 ≤ (

∞∑

k=2

V a2k)
1/2(

∞∑

k=2

V b2k)
1/2 ≤ 1 (20)

where

V = [(2k − 1) + (2k − α)B − (1− α)A]Xn(1− γ + γXm)[(B −A)(1− α)]−1. (21)

If V1a2kb2k ≤ V (a2kb2k)
1/2, then (19) is true, where

V1 = [(2k− 1)+ (2k−α)B1− (1−α)A1]X
n(1−γ+γXm)[(B1−A1)(1−α)]−1 (22)

therefore, V1(a2kb2k)
1/2 ≤ V, k = 2, 3, 4, · · · .

In view of (20), we obtain

(a2kb2k)
1/2 ≤ V −1. (23)

Thus, we must find V1, such that
V1 = V 2, (24)

that is,

((2k− 1)+ (2k−α)B1 − (1−α)A1)X
n(1− γ + γXm) ≤ V 2((B1 −A1)(1−α)) (25)

then

A1 =
V 2(1− α)B1 − ((2k − 1) + (2k − α)B1)X

n(1− γ + γXm)

(1− α)(V 2 −Xn(1− γ + γXm))
. (26)

It is clear that V 2 ≥ Xn(1− γ + γXm) for k ≥ 1.
From (26) we can get

B1 −A1
B1 + 1

≥
(2k − 1)Xn(1− γ + γXm)

(1− α)(V 2 −Xn(1− γ + γXm))
for k ≥ 2. (27)

The right hand side of (27) is decreasing as k is increasing, then it has maximum for
k = 2, thus (27) is true if

B1 −A1
B1 + 1

≥
3(1− α)(B −A)2

(3 + (4− α)B − (1− α)A)2(1 + 3λ)n(1− γ + γ(1 + 3λ)m)− (B −A)2(1− α)2

= j (28)

We can see that j < 1. Fixing A1 in (28), we have

B1 ≥
j +A1
1− j

(29)

and −1 ≤ A1 < B1 ≤ 1. Which completes the proof of theorem
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Corollary 1 If f(z) = z −
∞∑

k=2

a2kz
2k and g(z) = z −

∞∑

k=2

b2kz
2k, where a2k ≥

0, b2k ≥ 0 and f(z), g(z) ∈ S∗2(n, λ,A,B, α), then q(z) = z −
∞∑

k=2

a2kb2kz
2k belongs to

S∗2(n, λ,A1, B1, α) with −1 ≤ A1 < B1 ≤ 1 and A1 ≤ 1− 2j1, B1 ≥
A1+j1
1−j1

,

j1 =
3(1− α)(B −A)2

(3 + (4− α)B − (1− α)A)2(1 + 3λ)n − (B −A)2(1− α)2
.

Theorem 2 Let f(z) ∈ T ∗2 (n,m, γ, λ,A,B, α) and g(z) ∈ T ∗2 (n,m, γ, λ,C,D, α),
then f(z) ∗ g(z) ∈ T ∗2 (n,m, γ, λ,E, F, α), where E ≤ 1− 2j and F ≥ E+j

1−j with

j=[3(1− α)(B −A)(D −C)]/[(3 + (4− α)B − (1− α)A)(3 + (4− α)D − (1− α)C)

(1 + 3λ)n(1− γ + γ(1 + 3λ)m)− (B −A)(D −C)(1− α)2].

Proof. By virtue of Theorem 1, we require that

(2k(F + 1)− (1− αF + (1− α)E)Xn(1− γ + γXm)

(F −E)(1− α)

≤
(2k(B + 1)− (1 + αB + (1− α)A)Xn(1− γ + γXm)

(B −A)(1− α)
×

2k(D + 1)− (1 + αD + (1− α)C)Xn(1− γ + γXm)

(D −C)(1− α)
= d (30)

where X = (1 + (2k − 1)λ), λ ≥ 0, then by simple calculations, we have

F −E

F + 1
≥

(2k − 1)Xn(1− γ + γXm)

(1− α)(d−Xn(1− γ + γXm))
. (31)

The right hand side of (31) is decreasing as k is increasing and it has maximum for
k = 2, then we obtain

F −E

F + 1
≥ [3(1− α)(B −A)(D −C)]/[(3 + (4− α)B − (1− α)A)×

(3 + (4− α)D − (1− α)C)(1 + 3λ)n(1− γ + γ(1 + 3λ)m)

− (1− α)2(B −A)(D −C)] = j.

It’s clear that j < 1. Now fixing E in the last expression, we get F ≥ E+j
1−j , so F ≤ 1

and E ≤ 1− 2j.

Corollary 2 Let f(z) ∈ S∗2(n, λ,A,B, α) and g(z) ∈ S∗2(n, λ,C,D, α), then
f(z) ∗ g(z) ∈ S∗2(n, λ,E, F, α) where E ≤ 1− 2j1 and F ≥ E+j1

1−j1
with

j1 = [3(1− α)(B −A)(D −C)]/[(3 + (4− α)B − (1− α)A)×

(3 + (4− α)D − (1− α)C)(1 + 3λ)n − (1− α)2(B −A)(D −C)].
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Corollary 3 Let f(z) ∈ K∗

2 (n,m, λ,A,B, α) and g(z) ∈ K∗

2 (n,m, λ,C,D, α), then
f(z) ∗ g(z) ∈ K∗

2 (n,m, λ,E,F, α) where E ≤ 1− 2j3 and F ≥ E+j3
1−j3

with

j3 = [3(1− α)(B −A)(D −C)]/[(3 + (4− α)B − (1− α)A)×

(3 + (4− α)D − (1− α)C)(1 + 3λ)m+n − (1− α)2(B −A)(D −C)].

Theorem 3 Let f(z) = z −
∞∑

k=2

a2kz
2k, a2k ≥ 0 belong to T ∗2 (n,m, γ, λ,A,B, α) and

g(z) = z −
∞∑

k=2

b2kz
2k with |b2i| ≤ 1 for i ≥ 1, then f ∗ g ∈ T (n,m, γ, λ,A,B, α).

Proof. By assumption we have

∞∑

k=2

[(2k−1)+(2k−α)B−(1−α)A](1+(2k−1)λ)n[1−γ+γ(1+(2k−1)λ)m]
(B−A)(1−α) a2k ≤ 1

and since |b2i| ≤ 1 for i ≥ 1, then

∞∑

k=2

[(2k−1)+(2k−α)B−(1−α)A](1+(2k−1)λ)n[1−γ+γ(1+(2k−1)λ)m]
(B−A)(1−α) a2kb2k ≤ 1

∞∑

k=2

[(2k−1)+(2k−α)B−(1−α)A](1+(2k−1)λ)n[1−γ+γ(1+(2k−1)λ)m]
(B−A)(1−α) a2k|b2k| ≤ 1.

That is f(z) ∗ g(z) = z −
∞∑

k=2

a2kb2kz
2k ∈ T (n,m, γ, λ,A,B, α).

Corollary 4 Let f(z) = z −
∞∑

k=2

a2kz
2k, a2k ≥ 0 belongs to S∗2(n, λ,A,B, α) and

g(z) = z −
∞∑

k=2

b2kz
2k with |b2i| ≤ 1 for i ≥ 1, then f ∗ g ∈ S(n, λ,A,B, α).

Corollary 5 Let f(z) = z −
∞∑

k=2

a2kz
2k, a2k ≥ 0 belongs to K∗

2 (n,m, λ,A,B,α) and

g(z) = z −
∞∑

k=2

b2kz
2k with |b2i| ≤ 1 for i ≥ 1, then f ∗ g ∈ K(n,m, λ,A,B, α).

Theorem 4 Let f, g ∈ T ∗2 (n,m, γ, λ,A,B, α), then

q(z) = z−
∞∑

k=2

(a22k+b
2
2k) ∈ T ∗2 (n,m, γ, λ,A1, B1, α), where A1 ≤ 1−2j and B1 ≥

A1+j
1−j

with

j =
6(1− α)(B −A)2

(3 + (4− α)B − (1− α)A)2(1 + 3λ)n(1− γ + γ(1 + 3λ)m)− 2(B −A)2(1− α)2
.

Proof. By assumption, we have

∞∑

k=2

[(2k − 1) + (2k − α)B − (1− α)A]Xn(1− γ + γXm)

(B −A)(1− α)
a2k ≤ 1
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∞∑

k=2

[(2k − 1) + (2k − α)B − (1− α)A]Xn(1− γ + γXm)

(B −A)(1− α)
b2k ≤ 1

where X = 1 + (2k − 1)λ. Thus

∞∑

k=2

(
[(2k − 1) + (2k − α)B − (1− α)A]Xn(1− γ + γXm)

(B −A)(1− α)
a2k

)2

≤

(
∞∑

k=2

[(2k − 1) + (2k − α)B − (1− α)A]Xn(1− γ + γXm)

(B −A)(1− α)
a2k

)2
≤ 1

and so,

∞∑

k=2

(
[(2k − 1) + (2k − α)B − (1− α)A]Xn(1− γ + γXm)

(B −A)(1− α)
b2k

)2
≤ 1 (32)

then we may write

∞∑

k=2

1

2

(
[(2k − 1) + (2k − α)B − (1− α)A]Xn(1− γ + γXm)

(B −A)(1− α)

)2
(a22k+ b22k) ≤ 1 (33)

Therefore, in view of (32) the inequality (33) holds if

[(2k − 1) + (2k − α)B1 − (1− α)A1]X
n(1− γ + γXm)

(B1 −A1)(1− α)

≤
1

2

(
[(2k − 1) + (2k − α)B − (1− α)A]Xn(1− γ + γXm)

(B −A)(1− α)

)2
=

V 2

2

and by simplification, the last inequality gives

B1 −A1
B1 + 1

≥
2(2k − 1)Xn(1− γ + γXm)

(1− α)(V 2 − 2Xn(1− γ + γXm)
. (34)

The right hand side of (34) is decreasing as k is increasing and if we put k = 2, we
obtain

B1 −A1
B1 + 1

≥ [6(1− α)(B −A)2]/[(3 + (4− α)B − (1− α)A)2(1 + 3λ)n

(1− γ + γ(1 + 3λ)m)− 2(B −A)2(1− α)2] = j.

Now fixing A1, we have B1 ≥
A1+j
1−j and B1 ≤ 1 gives us A1 ≤ 1− 2j.

Corollary 6 Let f, g ∈ S∗2(n, λ,A,B, α), then q(z) = z −
∞∑

k=2

(a2k + b2k)
2z2k ∈

S∗2(n, λ,A1, B1, α), where A1 ≤ 1− 2j1, and B1 ≥
A1+j1
1−j1

with

j1 =
6(1− α)(B −A)2

(3 + (4− α)B − (1− α)A)2(1 + 3λ)n − 2(B −A)2(1− α)2
.
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1. Introduction

A continuous function f = u+iv is a complex- valued harmonic function in a complex
domain Ω if both u and v are real and harmonic in Ω. In any simply connected domain
D ⊂ Ω we can write f = h+g where h and g are analytic in D. We call h the analytic
part and g the co-analytic part of f. A necessary and sufficient condition for f to be
locally univalent and orientation preserving in D is that |h′(z)| > |g′(z)| in D (see
[2]).

Denote by H the family of functions

f = h+ g (1)

which are harmonic univalent and orientation preserving in the open unit disc U =
{z : |z| < 1} so that f is normalized by f(0) = h(0) = fz(0) − 1 = 0. Thus , for
f = h + g ∈ H, we may express the analytic functions h and g in the forms

h(z) = z +
∞∑

n=2

anz
n, g(z) =

∞∑

n=1

bnz
n, (0 ≤ b1 < 1).
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Hence

f(z) = z +
∞∑

n=2

anz
n +

∞∑

n=1

bnzn, |b1| < 1. (2)

We note that the family H of orientation preserving,normalized harmonic univalent
functions reduces to the well known class S of normalized univalent functions if the
co-analytic part of f = h + g is identically zero that is g ≡ 0. Due to Silverman[11]
we denote H the subclass of H consists harmonic functions f = h+ g of the form

f(z) = z −
∞∑

n=2

anz
n +

∞∑

n=1

bnzn, |b1| < 1. (3)

Let the hadamard product (or convolution ) of two power series φ(z) = z+
∞∑

n=2
φnz

n

and ψ(z) = z +
∞∑

n=2
ψnz

n be defined by

(φ ∗ ψ)(z) = φ(z) ∗ ψ(z) = z +
∞∑

n=2

φnψnz
n.

For complex parameters α1, . . . , αl and β1, . . . , βm (βj �= 0,−1, . . . ; j = 1, 2, . . . ,m)
the generalized hypergeometric function lFm(z) is defined by

lFm(z) ≡ lFm(α1, . . . αl;β1, . . . , βm; z) :=
∞∑

n=0

(α1)n . . . (αl)n
(β1)n . . . (βm)n

zn

n!
(4)

(l ≤ m+ 1; l,m ∈ N0 := N ∪ {0}; z ∈ U)

where N denotes the set of all positive integers and (a)n is the Pochhammer symbol
defined by

(a)n =

{
1, n = 0
a(a + 1)(a+ 2) . . . (a+ n− 1), n ∈ N.

(5)

For positive real values of α1, . . . , αl and β1, . . . , βm (βj �= 0,−1, . . . ; j = 1, 2, . . . ,m)
, let

H(α1, . . . αl;β1, . . . , βm) : S → S

be a linear operator defined by

[(H(α1, . . . αl;β1, . . . , βm))(φ)](z) = z lFm(α1, α2, . . . αl;β1, β2 . . . , βm; z) ∗ φ(z)

= z +
∞∑

n=2

Γ(α1, n) φn zn (6)

where

Γ(α1, n) = |
(α1)n−1 . . . (αl)n−1
(β1)n−1 . . . (βm)n−1

1

(n− 1)!
| (7)
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αi > 0, (i = 1, 2, ...l), βj > 0, (j = 1, 2, ...m), l ≤m + 1; l,m ∈ N0 = N ∪ {0}.
For notational simplicity, we use a shorter notation H l

m[α1] for H(α1, . . . αl;β1,
. . . , βm) in the sequel. It follows from (6) that

H1
0 [1]φ(z) = φ(z),H1

0 [2]φ(z) = zφ′(z)

The linear operator H l
m[α1] is called Dziok-Srivastava operator (see [5]),which

contains such well known operators as the Hohlov linear operator, Saitho general-
ized linear operator, the Carlson-Shaffer linear operator, the Ruscheweyh derivative
operator as well as its generalized versions, the Bernardi-Libera-Livingston opera-
tor, and the Srivastave-Owa fractional derivative operator. One may refer to [4], [5]
and [12] for more details concerning these operators(see[3, 8, 9, 10]. Applying the
Dziok-Srivastava operator to the harmonic functions f = h+ g given by (1) we get

H l
m[α1]f(z) = H l

m[α1]h(z) +Hl
m[α1]g(z) (8)

Motivated by Jahangiri etal.[6, 7]and Ahujha and Jahangiri[1], we define a new
subclass HSs([α1], γ) of H that are starlike with respect to other points .

For 0 ≤ γ < 1, we let HSs([α1], γ) a subclass of H of the form f = h+ g given by
(2) and satisfying the analytic criteria

Re

{
2z(H l

m[α1]f(z))′

z′[H l
m[α1]f(z)−H l

m[α1]f(−z)]

}
> γ (9)

where H l
m[α1]f(z) as given in (8),z′ = ∂

∂θ
(z = reiθ) and z ∈ U.

We also let HSs([α1], γ) = HSs([α1], γ)
⋂
H.

The family HSs([α1], γ) is of special interest because for suitable choices of l,m
and [α1] we can state the following. From (8) we note that

(i) H1
0 ([1])f(z) = f(z) hence we define a class HSs(γ) satisfying the criteria

Re

{
2z(f(z))′

z′[f(z)− f(−z)]

}
> γ, (0 ≤ γ < 1).

(ii) H2
1 ([a, 1; c]) = L(a, c)f(z), hence we define a class HSs(a, c; γ)satisfying the

criteria

Re

{
2z(L(a, c)f(z))′

z′[L(a, c)f(z)−L(a, c)f(−z)]

}
> γ, (0 ≤ γ < 1).

where L(a, c) is the Carlson - Shaffer operator[4] .
(iii) H2

1 ([λ + 1, 1; 1]) = Dλf(z), hence we define a class HSs(λ, γ) satisfying the
criteria

Re

{
2z(Dλf(z))′

z′[Dλf(z)−Dλf(−z)]

}
> γ, (0 ≤ γ < 1).

where Dλ(λ > −1) is the Ruscheweyh derivative operator[10] .
(iv) H2

1([2, 1; 2 − µ]) = Ωµz f(z) we define another class HSs(µ, γ) satisfying the
condition

Re

{
2z(Ωµz f(z))′

z′[Ωµz f(z)−Ωµzf(−z)]

}
> γ (0 ≤ γ < 1).
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given by

Ωµzf(z) = Γ(2− µ)zµDµ
z f(z)(0 ≤ µ < 1) ,

where Ωµz is the Srivastava-Owa fractional derivative operator [12].

In this paper, we obtained coefficient conditions for the classes HSs([α1], γ) and
HSs([α1], γ). A representation theorem, inclusion properties and distortion bounds
for the class HSs([α1], γ) are also established.

2. Coefficient Bounds

In our first theorem, we obtain a sufficient coefficient bound for harmonic functions
in HSs([α1], γ).

Theorem 1 Let f = h + g be given by (2).If

∞∑

n=2

[2n− γ(1− (−1)n)]Γ(α1, n)

2(1− γ)
|an|+

∞∑

n=1

[2n+ γ(1− (−1)n)]Γ(α1, n)

2(1− γ)
|bn| ≤ 1 (10)

where a1 = 1, 0 ≤ γ < 1 and z ∈ U. Then f(z) ∈ HSs([α1], γ).

Proof. According the condition (9), we only need to show that if (10) holds, then

Re

{
2z(H l

m[α1]f(z))′

z′[Hl
m[α1]f(z)−H l

m[α1]f(−z)]

}
= Re

A(z)

B(z)
≥ γ,

where

A(z) = 2z(Hl
m[α1]f(z))′ = 2[z +

∞∑

n=2

nΓ(α1, n)anz
n −

∞∑

n=1

nΓ(α1, n)bnz
n]

and

B(z) = z′[H l
m[α1]f(z)−H l

m[α1]f(−z)]

= 2z +
∞∑

n=2

[1− (−1)n]Γ(α1, n)anz
n +

∞∑

n=1

[1− (−1)n]Γ(α1, n)bnz
n.

Using the fact that Re {w(z)} ≥ γ if and only if |1− γ +w| ≥ |1 + γ −w|.
That is,

|A(z) + (1− γ)B(z)| − |A(z)− (1 + γ)B(z)| ≥ 0.
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Substituting for A(z) and B(z) we get

|A(z) + (1− γ)B(z)| − |A(z)− (1 + γ)B(z)|

= | [2 + 2(1− γ)]z +
∞∑

n=2

{2n+ (1− γ)[1− (−1)n]}Γ(α1, n)anz
n

−
∞∑

n=1

{2n− (1− γ)[1− (−1)n]}Γ(α1, n)bn zn |

− | [2− 2(1 + γ)]z +
∞∑

n=2

{2n− (1 + γ)[1− (−1)n]}Γ(α1, n)anz
n

−
∞∑

n=1

{2n+ (1 + γ)[1− (−1)n]}Γ(α1, n)bnz
n |

≥ [2 + 2(1− γ)]|z| −
∞∑

n=2

{2n+ (1− γ)[1− (−1)n]}Γ(α1, n)|an||z|
n

−
∞∑

n=1

{2n− (1− γ)[1− (−1)n]}Γ(α1, n)|bn| |z|
n

−2γ|z| −
∞∑

n=2

{2n− (1 + γ)[1− (−1)n]}Γ(α1, n)|an| |z|
n

−
∞∑

n=1

{2n+ (1 + γ)[1− (−1)n]Γ(α1, n)|bn| |z|
n

≥ 4(1− γ)|z|

{

1−
∞∑

n=1

Γ(α1, n)

[
2n− γ[1− (−1)n]

2(1− γ)
|an|

−
2n + γ[1− (−1)n]

2(1− γ)
|bn|

]
|z|n−1

}

≥ 0,

by (10). The harmonic functions

f(z) = z+
∞∑

n=2

2(1− γ)

Γ(α1, n){2n− γ[1− (−1)n]}
xnz

n+
∞∑

n=1

2(1− γ)

Γ(α1, n){2n+ γ[1− (−1)n]}
ynz

n,
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where
∞∑

n=2
|xn|+

∞∑

n=1
|yn| = 1, shows that the coefficient bound given by (10) is sharp.

The functions of the form (2) are in HSs([α1], γ) because

∞∑

n=2

{2n− γ[1− (−1)n]}

2(1− γ)
Γ(α1, n)|an| +

∞∑

n=1

{2n + γ[1− (−1)n]}

2(1− γ)
Γ(α1, n)|bn| |z|

n

=
∞∑

n=2

|xn|+
∞∑

n=1

|yn| = 1.

The following theorem establishes that such coefficient bounds cannot be improved
further .

Theorem 2 Let f = h + g be given by (3).Then f ∈ HSs([α1], γ) if and only if

∞∑

n=2

[2n− γ − (1− (−1)n)]

2(1− γ)
Γ(α1, n)|an|+

∞∑

n=1

[2n+ γ(1− (−1)n)]

2(1− γ)
Γ(α1, n)|bn| ≤ 1.

(11)

where a1 = 1, 0 ≤ γ < 1 and z ∈ U. Proof. Since HSs([α1], γ) ⊂ HSs([α1], γ),
we only need to prove the ”only if” part of the theorem. For the only if part, we
assume that f(z) ∈ HSs([α1], γ). For functions f(z) of the form (3) we notice that
the condition (9) is equivalent to

Re

{
2[z(H l

m[α1]h(z))′ − z(H l
m[α1]g(z))′]

H l
m[α1]h(z) +Hl

m[α1]g(z)−H l
m[α1]h(z)−Hl

m[α1]g(−z)
− γ

}

= Re

{[

2(1− γ)−
∞∑

n=2

[2n− γ(1− (−1)n)]Γ(α1, n)|an|z
n−1

−
z

z

∞∑

n=1

[2n + γ(1− (−1)n)]Γ(α1, n)|bn|z
n−1

]/

[

2−
∞∑

n=2

(1− (−1)n)Γ(α1, n)|an|z
n−1 +

z

z

∞∑

n=1

(1− (−1)n)Γ(α1, n)|bn|z
n−1

]}

≥ 0.

The above required condition must hold for all values of z in U. Upon choosing
the values of z on the positive real axis where 0 ≤ z = r < 1, we have

{[

2(1− γ)−
∞∑

n=2

[2n− γ(1− (−1)n)]Γ(α1, n)|an|r
n−1

−
∞∑

n=1

[2n+ γ(1− (−1)n)]Γ(α1, n)|bn|r
n−1

]/

[

2−
∞∑

n=2

(1− (−1)n)Γ(α1, n)|an|r
n−1 +

∞∑

n=1

(1− (−1)n)Γ(α1, n)|bn|r
n−1

]}

≥ 0.
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If the condition (11) does not hold, then the numerator in (??) is negative for r
sufficiently close to 1. Hence, there exist z0 = r0 in (0,1) for which the quotient of
(??) is negative. This contradicts the required condition for f(z) ∈ HSs([α1], γ).

From the above theorem ,for suitable choices of l,m and [α1] we state the necessary
and sufficient conditions for the various subclasses as corollaries.

Corollary 1 For a1 = 1, 0 ≤ γ < 1, f = h + g ∈ HSs(γ) if and only if

∞∑

n=2

[2n− γ − (1− (−1)n)]

2(1− γ)
|an|+

∞∑

n=1

[2n+ γ(1− (−1)n)]

2(1− γ)
|bn| ≤ 1. (12)

Corollary 2 For a1 = 1, 0 ≤ γ < 1, f = h + g ∈ HSs(a, c; γ) if and only if

∞∑

n=2

[2n− γ − (1− (−1)n)]

2(1− γ)

(a)n
(b)n

|an|+
∞∑

n=1

[2n+ γ(1− (−1)n)]

2(1− γ)

(a)n
(b)n

|bn| ≤ 1. (13)

where (a)n is given by (5)

Corollary 3 For a1 = 1, 0 ≤ γ < 1, f = h + g ∈ HSs(λ, γ) if and only if

∞∑

n=2

[2n− γ − (1− (−1)n)]

2(1− γ)
C(λ, n)|an|+

∞∑

n=1

[2n + γ(1− (−1)n)]

2(1− γ)
C(λ, n)|bn| ≤ 1

(14)

where C(λ, n) =

(
λ + n− 1
n− 1

)

Corollary 4 For a1 = 1, 0 ≤ γ < 1, f = h + g ∈ HSs(µ, γ) if and only if

∞∑

n=2

[2n− γ − (1− (−1)n)]

2(1− γ)
ψ(n)|an|+

∞∑

n=1

[2n+ γ(1− (−1)n)]

2(1− γ)
ψ(n)|bn| ≤ 1. (15)

where ψ(n) = Γ(n+1)Γ(2−µ)
Γ(n+1−µ)

3. Distortion Bounds and extreme points

Now we obtain the growth result for functions in HSs([α1], γ).

Theorem 3 Let f ∈ HSs([α1], γ), then

|f(z)| ≤ (1 + b1)r +
1

Γ(α1, n)

(
1− γ

2
−

1 + γ

2
|b1|

)
r2, |z| = r < 1,

and

|f(z)| ≥ (1− b1)r −
1

Γ(α1, n)

(
1− γ

2
−

1 + γ

2
|b1|

)
r2, |z| = r < 1.
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Proof. We prove only the left hand inequality, let f(z) ∈ HSs([α1], γ). Taking the
absolute value of f(z), we have

|f(z)| ≥ (1− |b1|)r −
∞∑

n=2

(|an|+ |bn|)r
n

≥ (1− |b1|)r −
∞∑

n=2

(|an|+ |bn|)r
2

= (1− |b1|)r −
1− γ

2Γ(α1, 2)

∞∑

n=2

(
2Γ(α1, n)

1− γ
|an|+

2Γ(α1, n)

1− γ
|bn|

)
r2

≥ (1− |b1|)r −

(1− γ)r2

2Γ(α1, 2)

∞∑

n=2

(
2n− γ(1− (−1)n)

2(1− γ)
|an|+

2n+ γ(1− (−1)n)

2(1− γ)
|bn|

)
Γ(α1, n)

≥ (1− |b1|)r −
1

Γ(α1, 2)

(
1− γ

2
−

1 + γ

2
|b1|

)
r2.

The proof of the right hand inequality follows on lines similar to that of the left hand
inequality.Which completes the proof of Theorem 3.

Now we determine the extreme points of closed convex hulls of HSs([α1], γ) de-
noted clcoHSs([α1], γ).

Theorem 4 A function f = h + g ∈ clcoHSs([α1], γ) if and only if f(z) can be

expressed in the form f(z) =
∞∑

n=1
(Xnhn(z) + Yngn(z))where

h1(z) = z, hn(z) = z −
2(1− γ)

Γ(α1, n)[2n− γ(1− (−1)n)]
zn, (n = 2, 3, . . . );

gn(z) = z +
(1− γ)

Γ(α1, n)[2n+ γ(1− (−1)n)]
zn, (n = 1, 2, . . . );

∞∑

n=1

(Xn + Yn) = 1, Xn ≥ 0 and Yn ≥ 0.

Proof. For functions f(z) as in Theorem 4, we have

f(z) =
∞∑

n=1

(Xnhn(z) + Yngn(z))

= z −
∞∑

n=2

2(1− γ)

Γ(α1, n)[2n− γ(1− (−1)n)]
Xnz

n

+
∞∑

n=1

2(1− γ)

Γ(α1, n)[2n+ γ(1− (−1)n)]
Ynz

n
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Then by Theorem 2

∞∑

n=2

[2n− γ(1− (−1)n)]

2(1− γ)
Γ(α1, n)|an|+

∞∑

n=1

[2n+ γ(1− (−1)n)]

2(1− γ)
Γ(α1, n)|bn|

=
∞∑

n=2

Γ(α1, n)[2n− γ(1− (−1)n)]

2(1− γ)

(
2(1− γ)

Γ(α1, n)[2n− γ(1− (−1)n)]
Xn

)

+
∞∑

n=1

Γ(α1, n)[2n+ γ(1− (−1)n)]

2(1− γ)

(
2(1− γ)

Γ(α1, n)[2n + γ(1− (−1)n)]
Yn

)

=
∞∑

n=2

Xn +
∞∑

n=1

Yn = 1−X1 ≤ 1.

Therefore, f(z) ∈ clcoHSs([α1], γ).Conversely, suppose that f(z) ∈ clcoHSs([α1], γ).
Set

Xn =
[2n− γ(1− (−1)n)]

2(1− γ)
Γ(α1, n)|an|, n = 2, 3, . . . ,

and

Yn =
[2n+ γ(1− (−1)n)]

2(1− γ)
Γ(α1, n)|bn|, n = 1, 2, . . . ,

where
∞∑

n=1
(Xn + Yn) = 1. Then

f(z) = z −
∞∑

n=2

anz
n +

∞∑

n=1

bnz
n

= z −
∞∑

n=2

2(1− γ)

Γ(α1, n)[2n− γ(1− (−1)n)]
Xnz

n

+
∞∑

n=1

2(1− γ)

Γ(α1, n)[2n+ γ(1− (−1)n)]
Ynz

n

= z −
∞∑

n=2

[Xn(hn(z)− z)] +
∞∑

n=1

[Yn(gn(z)− z)]

=
∞∑

n=1

(Xnhn(z) + Yngn(z))

as required.

4. Inclusion results

Now we show that HSs([α1], γ) is closed under convex combinations of its member
and also closed under the convolution product .



122 G. Murugusundaramoorthy, K. Vijaya, M.K.Auof

Theorem 5 For 0 ≤ ν ≤ γ < 1, let f(z) ∈ HSs([α1], γ) and F (z) ∈ HSs([α1], ν).
Then (f ∗ F ) ∈ HSs([α1], γ) ⊂ HSs([α1], ν).

Proof. Let

f(z) = z −
∞∑

n=2

|an|z
n +

∞∑

n=1

|bn|z
n ∈ HSs([α1], γ)

and

F (z) = z −
∞∑

n=2

|An|z
n +

∞∑

n=1

|Bn|z
n ∈ HSs([α1], ν).

Then the convolution of f(z) and F (z) is given by

f(z) ∗ F (z) = z −
∞∑

n=2

|anAn|z
n +

∞∑

n=1

|bnBn|z
n.

Note that |An| ≤ 1 and |Bn| ≤ 1, since F ∈ HSs([α1], ν). Then we have

∞∑

n=2

[2n− γ(1− (−1)n)]Γ(α1, n)|an| |An|+
∞∑

n=1

[2n+ γ(1− (−1)n)]Γ(α1, n)|bn| |Bn|

≤
∞∑

n=2

[2n− γ(1− (−1)n)]Γ(α1, n)|an| +
∞∑

n=1

[2n + γ(1− (−1)n)]Γ(α1, n)|bn| .

Therefore f(z) ∗ F (z) ∈ HSs([α1], γ) ⊂ HSs([α1], ν), since the above inequality
bounded by 2(1− γ) while 2(1− γ) ≤ 2(1− ν).

Theorem 6 The class HSs([α1], γ) is closed under convex combination.

Proof. For i = 1, 2, . . . , suppose that fi(z) ∈ HSs([α1], γ) where fi(z) is given by

fi(z) = z −
∞∑

n=2

|an,i|z
n +

∞∑

n=2

|bn,i|z
n.

For
∞∑

i=1
ti = 1, 0 ≤ ti ≤ 1, the convex combination of fi(z) may be written as

∞∑

i=1

tifi(z) = z

∞∑

i=1

ti −
∞∑

n=2

(
∞∑

i=1

ti|an,i|

)

zn +
∞∑

n=1

(
∞∑

i=1

ti|bn,i|

)

zn

= z −
∞∑

n=2

(
∞∑

i=1

ti|an,i|

)

zn +
∞∑

n=1

(
∞∑

i=1

ti|bn,i|

)

zn.
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By Theorem 2,

∞∑

n=2

[2n− γ(1− (−1)n)]Γ(α1, n)

(
∞∑

i=1

ti|an,i|

)

+
∞∑

n=1

[2n+ γ(1− (−1)n)]Γ(α1, n)

(
∞∑

i=1

ti|bn,i|

)

=
∞∑

i=1

ti

(
∞∑

n=2

[2n− γ(1− (−1)n)]Γ(α1, n)|an,i|+
∞∑

n=1

[2n+ γ(1− (−1)n)]Γ(α1, n)|bn,i|

)

.

Hence,

≤ 2(1− γ)

∞∑

i=1

ti = 2(1− γ).

Hence
∞∑

i=1

tifi ∈ HSs([α1], γ).

Now, we will examine the closure properties of the class HSs([α1], γ) under the
generalized Bernardi-Libera -Livingston integral operatorLc(f) which is defined by

Lc(f) =
c + 1

zc

z∫

0

tc−1f(t) dt, c > −1.

Theorem 7 Let f(z) ∈ HSs([α1], γ) Then Lc(f(z)) ∈ HSs([α1], γ)

Proof. From the representation of Lc(f(z)), it follows that

Lc(f) =
c+ 1

zc

z∫

0

tc−1
[
h(t) + g(t)

]
dt

=
c + 1

zc




z∫

0

tc−1

(

t−
∞∑

n=2

ant
n

)

dt +

z∫

0

tc−1

(
∞∑

n=1

bntn

)

dt





= z −
∞∑

n=2

Anz
n +

∞∑

n=1

Bnz
n

where

An =
c + 1

c + n
an;Bn =

c + 1

c+ n
bn.

Therefore,

∞∑

n=1

(
2n− γ(1− (−1)n)

2(1− γ)
[
c+ 1

c + n
|an| ] +

2n + γ(1− (−1)n)

2(1− γ)
[
c+ 1

c+ n
|bn| ]

)
Γ(α1, n)

≤
∞∑

n=1

(
2n− γ(1− (−1)n)

2(1− γ)
|an|+

2n+ γ(1− (−1)n)]

2(1− γ)
|bn|

)
Γ(α1, n) ≤ 1,

since f(z) ∈ HSs([α1], γ). Hence by Theorem 2, Lc(f(z)) ∈ HSs([α1], γ)
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Abstract: We investigate the family LPα (α ∈ (−π, π]) of functions

f(z) = z +
∞∑

n=2
anz

n that are analytic in the unit disk with the property

that the domain of values f ′(z) + 1+eiα

2 zf ′′(z) is the parabolic region
(Imw)2 < 2Rew − 1. We give inclusion theorems and bounds of Ref ′(z)
for this class
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1. Introduction and definitions

LetA be the class of functions of the form f(z) = z+
∞∑

n=2
anz

n analytic in the unit disk

∆ = {z ∈ C : |z| < 1} and let S, K be the subclasses ofA consisting of functions which
are univalent and convex in ∆ respectively. Let R = {f ∈ S : Ref ′(z) > 0, z ∈ ∆}.
In 1988 St. Ruscheweyh [6] introduced the class

D = {f ∈ A : |zf ′′(z)| < Ref ′(z), z ∈ ∆}

which is convex subset of K. The alternative definition of D is the following

f ∈ D ⇔ Re
{
f ′(z) + eiαzf ′′(z)

}
> 0 for z ∈ ∆ and for all α ∈ (−π, π].

In 1998 Silverman and Silvia [7] introduced and investigated the class

Lα =

{
f ∈ A : Re

(
f ′(z) +

1 + eiα

2
zf ′′(z)

)
> 0, z ∈ ∆

}

where α ∈ (−π, π] is fixed. Let L =
⋂
−π<α≤π Lα.
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Let

Q(z) = 1 +
2

π2

(
log

1 +
√

z

1−√z

)2
, z ∈ ∆,

where the branch of square root is chosen such that Im
√

z ≥ 0. The function Q is
analytic and univalent in ∆ with the following power series expansion [3]

Q(z) = 1 +
8

π2

∞∑

n=1

(
1

n

n−1∑

k=0

1

2k + 1

)

zn = 1 +
∞∑

n=1

Bnz
n

and it maps ∆ onto the set

Q(∆) = {w ∈ C : |w − 1| < Rew} =
{
w ∈ C : (Imw)2 < 2Rew − 1

}
.

For functions g and h, analytic in ∆, a function g is called subordinate to h,
written g ≺ h (or g(z) ≺ h(z)) if h is univalent in ∆, g(0) = h(0) and g(∆) ⊂ h(∆).

In [8] author investigated the class LPα defined as follows:

(1) LPα =

{
f ∈ A : f ′(z) +

1 + eiα

2
zf ′′(z) ≺ Q(z), z ∈ ∆

}
,

where α ∈ (−π, π] is fixed.

2. Inclusion relations

First, we recall the following

Lemma 1 (Noshiro [5]) If the function f(z) is analytic in |z| < R and Ref ′(z) > 0
for |z| < R, then f(z) is univalent in |z| < R.

Notice that the parabola ∂Q(∆) is symmetric w.r.t. the real axis and its vertex
is in the point w = 1

2 . Therefore for f ∈ LPπ we have Ref ′(z) > 1
2 . Consequently, by

Lemma 1, the class LPπ consists of univalent functions.
Now, we will show that for each α ∈ (−π, π) the inclusion LPα ⊂ LPπ holds. We

need the following result

Lemma 2 [4] Let β and γ be complex constants, and let h be convex (univalent) in
∆, with h(0) = 1 and Re(βh(z) + γ) > 0. If p(z) = 1 + p1z + . . . is analytic in ∆,
then

p(z) +
zp′(z)

βp(z) + γ
≺ h(z) ⇒ p(z) ≺ h(z).

Theorem 1 For each α ∈ (−π, π) we have

LPα ⊂ LPπ.
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Proof. Observe that for all α ∈ (−π, π)

Re
2

1 + eiα
=

2(1 + cosα)

|1 + eiα|2 > 0.

Thus for f ∈ LPα it is sufficient to take p = f ′, β = 0 and γ = 2
1+eiα in Lemma 2.

This completes the proof.
Basing on that result we can conclude that each LPα consists of univalent func-

tions and that
⋃
−π<α≤π LPα = LPπ.

Let LP =
⋂
−π<α≤π LPα.

Theorem 2 The class LP is nonempty.

Proof. It is easy to check that the function f 1
4
(z) := −4 log(1− z

4) belongs to LP.
Let

g 1
4
(z, α) = Re

{
f ′1
4

(z) +
1 + eiα

2
zf ′′1

4

(z)

}
−
∣∣∣∣f
′
1
4

(z) +
1 + eiα

2
zf ′′1

4

(z)− 1

∣∣∣∣ .

It is enough to show that the condition g 1
4
(z, α) > 0 holds for all |z| = 1 and for all

α ∈ (−π, π]. From

g 1
4
(z, α) = Re

{
4

4− z
+

2z

(4− z)2
+

2zeiα

(4− z)2

}
−
∣∣∣∣
z(6− z) + 2zeiα

(4− z)2

∣∣∣∣ ≥

≥ 2Re
8− z

(4− z)2
− |z|[4 + |6− z|]

|4− z|2

it follows that

g 1
4
(eiθ, α) ≥ 2Re

8− eiθ

(4− eiθ)2
− 4 + |6− eiθ|

|4− eiθ|2 =

=
32 cos2 θ − 130 cos θ + 188− (17− 8 cos θ)

√
37− 12 cos θ

(17− 8 cos θ)2
.

Direct computation leads to the conclusion that for all θ ∈ [0, 2π) the function
φ(θ) = 32 cos2 θ−130 cos θ+188− (17−8 cos θ)

√
37− 12 cos θ has the positive values.

Therefore g 1
4
(eiθ, α) > 0 for all θ ∈ [0, 2π) and for all α ∈ (−π, π]. Consequently f 1

4

is in LP. The proof is completed.
Silverman and Silvia proved in 1999 [7] that the inclusion D ⊂ L ⊂ K holds. Note

that for each α ∈ (−π, π] we have LPα ⊂ Lα, therefore LP ⊂ L. Consequently, LP
consists of convex functions. We have LP ⊂ L and D ⊂ L. It will be interesting to
answering to the question what are the inclusion relationships between LP and D.
The next theorem presents the partial solution of this problem.

Theorem 3 We have

(i) LP ∩D is nonempty,

(ii) D \ LP is nonempty .
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Proof. It is known [1] that the function fr(z) = − log(1−rz)
r

belongs to the class D if
and only if 0 < r ≤ 1

2 . On the other hand, as we showed in the proof of Theorem 2,
f 1
4
(z) ∈ LP. Consequently, LP ∩D is nonempty.

To show that (ii) holds it is sufficient to prove that f 1
2
(z) /∈ LP0. We observe that

f 1
2
(z) ∈ LP0 if and only if

g 1
2
(z) := Re

{
f ′1
2

(z) + zf ′′1
2

(z)
}
−
∣∣∣f ′1

2

(z) + zf ′′1
2

(z)− 1
∣∣∣ > 0

for all z ∈ ∆. Note that

g 1
2
(z) = Re

4

(2− z)2
− |4z − z2|
|2− z|2 .

It is sufficient to look at z = eiθ, θ ∈ (0, 2π]. A straightforward computation leads to
the observation that

g 1
2
(eiθ) =

8 cos2 θ − 16 cos θ + 12− (5− 4 cos θ)
√

17− 8 cos θ

|2− eiθ|4 =:
ζ(θ)

|2− eiθ|4 .

It is easy to check that ζ(π2 ) = 12 − 5
√

17 < 0. Therefore f 1
2
(z) /∈ LP0 and conse-

quently f 1
2
(z) /∈ LP. The proof is completed.

3. Bounds of the real part of derivative

For f ∈ LPπ =
⋃
−π<α≤π LPα we have Ref ′(z) > 1

2 . In this section we give an
answer to the question how large is Ref ′(z) for f ∈ LPα, α ∈ (−π, π) fixed. We will
use the following result of Hallenbeck and Ruscheweyh.

Lemma 3 [2] Let h(z) be convex in ∆ with h(0) = a, γ �= 0 and Reγ ≥ 0. If
p(z) = a + anz

n + an+1z
n+1 + . . . is analytic in ∆ and

(2) p(z) +
zp′(z)

γ
≺ h(z)

then

p(z) ≺ q(z) =
γ

nz
γ

n

∫ z

0

h(t)t
γ

n
−1dt

and q is convex and this is the best dominant of (2).

Theorem 4 Let α ∈ (−π, π) and let γ := 2
1+eiα . If f ∈ LPα, then

f ′(z) ≺ qγ(z) = 1 +
2γ

π2
z−γ

∫ log 1+
√
z

1−
√
z

0

u2
(tanh u

2 )
2γ−1

(cosh u
2 )
2

du, z ∈ ∆

and q is the best dominant. Furthermore

Ref ′(z) > qγ(−1).
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Proof. Let α ∈ (−π, π) and f ∈ LPα. Note that Re1+e
iα

2 = 1
2(1 + cosα) ≥ 0 for all

α ∈ (−π, π). Setting n = 1, γ = 2
1+eiα , p = f ′and h = Q in Lemma 3 we obtain

f ′(z) ≺ γz−γ
∫ z

0

tγ−1
[

1 +
2

π2

(
log

1 +
√

t

1−
√

t

)2]

dt =

= 1 +
2γ

π2
z−γ

∫ z

0

tγ−1
(

log
1 +

√
t

1−
√

t

)2
dt.

Substituting u = log 1+
√
t

1−
√
t

and dt = 4eu(eu−1)
(eu+1)3 du we obtain

f ′(z) ≺ 1 +
8γ

π2
z−γ

∫ log 1+
√
z

1−
√
z

0

u2eu
(eu − 1)2γ−1

(eu + 1)2γ+1
du =

= 1 +
2γ

π2
z−γ

∫ 1+
√
z

1−
√
z

0

u2
(tanh u

2 )
2γ−1

(cosh u
2 )
2

du =: qγ(z).

Since f ′ is subordinate to the convex function, hence

Ref ′(z) > min
|z|=1

qγ(z) = qγ(−1).

This completes the proof.
Setting α = 0 in Theorem 3 we obtain the following result:

Corollary 1 If f ∈ LP0 then

Ref ′(z) >
4

π

(
1− 2

π
ln 2

)
≈ 0.711395603.

Proof. For α = 0 we have γ = 2
1+eiα = 1, so making use of Theorem 4 we immediately

obtain

Ref ′(z) > q1(−1) = 1− 2

π2

∫ iπ
2

0

u2
sinh u

2

(cosh u
2 )
3
du.

Integrating by parts we get

∫
u2

sinh u
2

cosh3 u2
du = − u2

cosh2 u2
+ 4u tanh

u

2
− 8 log(cosh

u

2
).

Therefore

Ref ′(z) >
4

π

(
1− 2

π
ln 2

)
.

The proof has been completed.



130 K. Piejko, L. Trojnar-Spelina

References

[1] V. Gruenberg, F. Rønning and St. Ruscheweyh, On a multiplier conjecture for
univalent functions, Trans. Amer. Math. Soc., 322(1990), 377-393.

[2] D. J. Hallenbeck, St. Ruscheweyh, Subordination by convex functions, Proc.
Amer. Math. Soc. 52 (1975) , 191-195.

[3] W. Ma, D. Minda, Uniformly convex functions II, Ann. Polon. Math.
58(3)(1993), 275-285.

[4] P. Eenigenburg, S.S. Miller, P.T.Mocanu, M.O. Reade, On a Briot-Bouquet dif-
ferential subordination, Rev. Roumaine Math. Pures Appl. 29(1984), 567-573.

[5] K. Noshiro, On the univalency of certain analytic functions, J. Fac. Sci. Hokkaida
Imp. Univ. 2 (1934), 89-101.
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1. Introduction and Preliminaries

LetH be a real Hilbert space, C a nonempty closed convex subset ofE, and T : C → C
a mapping. Recall that T is nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖ ∀x, y ∈ C.

A point x ∈ C is a fixed point of T provided Tx = x. Denote by F (T ) the set of fixed
points of T ; that is, F (T ) = {x ∈ C : Tx = x}.
Some iteration processes are often used to approximate a fixed point of a non-

expansive mapping T . The first iteration process is now known as Mann’s iteration
process [7] which is defined as

xn+1 = αnxn + (1− αn)Txn, n ≥ 0, (1.1)
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where the initial guess x0 is taken in C arbitrarily and the sequence {αn}∞n=0 is in
the interval [0, 1].

The second iteration process is referred to as Ishikawa’s [4] iteration process which
is defined recursively by

{
yn = βnxn + (1− βn)Txn,

xn+1 = αnxn + (1− αn)Tyn, n ≥ 0,
(1.2)

where the initial guess x0 is taken in C arbitrarily, {αn} and {βn} are sequences in
the interval [0, 1].

But both (1.1) and (1.2) have only weak convergence, in general (see [2] for an
example). For example, Reich [15], shows that if E is a uniformly convex and has a
Frehét differentiable norm and if the sequence {αn} is such that αn(1−αn) =∞, then
the sequence {xn} generated by processes (1.1) converges weakly to a point in F (T ).
(An extension of this result to processes (1.2) can be found in [21].) On the other
hand, process (1.1) may fail to converge while process (1.2) can still converge for a
Lipschitz pseudo-contractive mapping in a Hilbert space [1]. Therefore, many authors
attempt to modify (1.1) and (1.2) to have strong convergence in Hilbert spaces and
Banach spaces, respectively, see [10,12-14,18] for more details.

Attempts to modify the Mann iteration method (1.1) so that strong convergence
is guaranteed have recently been made. Nakajo and Takahashi [11] proposed the
following modification of the Mann iteration (1.1) for a single nonexpansive mapping
T in a Hilbert space. To be more precise, They proved the following result.

Theorem NT. Let C be a closed convex subset of a Hilbert space H and let T :
C → C be a nonexpansive mapping such that F (T ) �= ∅. Assume that {αn}

∞

n=0 is a
sequence in [0, 1] such that αn ≤ 1−δ for some δ ∈ (0, 1]. Define a sequence {xn}∞n=0
in C by the algorithm:






x0 ∈ C chosen arbitrarily,

yn = αnxn + (1− αn)Txn,

Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖},

Qn = {z ∈ C : 〈x0 − xn, xn − z〉 ≥ 0},

xn+1 = PCn∩Qn
x0.

(1.3)

Then {xn} converges in norm to PF (T )x0.

Recently, Kim and Xu [5] has adapted the iteration (1.1) in Hilbert spaces. They
extended the recent one of Nakajo an Takahashi [11] from nonexpansive mappings to
asymptotically nonexpansive mappings. To be more precise, they gave the following
results.

Theorem KX. Let C be a nonempty bounded closed convex subset of a Hilbert space
H and let T : C → C be an asymptotically nonexpansive mapping with a sequence
{kn} such that kn → 1 as n→ ∞. Assume that {αn}

∞

n=0 is a sequence in [0,1] such
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that lim supn→∞ αn < 1. Define a sequence {xn} in C by the following algorithm:






x0 ∈ C chosen arbitrarily,

yn = αnxn + (1− αn)Tnzn,

Cn = {z ∈ C : ‖yn − z‖
2 ≤ ‖xn − z‖

2 + θn},

Qn = {z ∈ C : 〈x0 − xn, xn − z〉 ≥ 0},

xn+1 = PCn∩Qn
x0,

(1.4)

where

θn = (1− αn)(k
2
n − 1)(diamC)

2 → 0, as n→∞.

Then {xn} defined by (1.4) converges strongly to PF (T )x0.

Very recently, Marino and Xu [9] adapted the iteration (1.1) in Hilbert spaces.
They extended the recent one of Nakajo an Takahashi [11] from nonexpansive map-
pings to strict pseudo-contractions. To be more precise, they proved the following
results.

Theorem MX. Let C be a closed convex subset of a Hilbert space H and let T :
C → C be a k-strict pseudo-contraction for some 0 ≤ k < 1 and assume that the fixed
point set F (T ) of T is nonempty. Define a sequence {xn}∞n=0 in C by the algorithm:






x0 ∈ C chosen arbitrarily,

yn = αnxn + (1− αn)Txn,

Cn = {z ∈ C : ‖yn − z‖
2 ≤ ‖xn − z‖

2

−(k − αn)(1− αn)‖xn − Txn‖2},

Qn = {z ∈ C : 〈x0 − xn, xn − z〉 ≥ 0},

xn+1 = PCn∩Qn
x0.

(1.5)

Assume that the control sequence {αn}∞n=0 is such that 0 ≤ αn < 1 for all n. Then
{xn} converges in norm to PF (T )x0.

On the other hand, Attempts to modify the Ishikawa iteration method (1.2) so
that strong convergence is guaranteed have recently been made. Martinez-Yanes and
Xu [8] adapted the iteration (1.2) in Hilbert space to have strong convergence. To be
more precise, they obtained the following convergence theorem.

Theorem MYX1. Let C be a nonempty closed convex subset of a Hilbert space
H and let T : C → C be a nonexpansive mapping such that F (T ) �= ∅. Assume
that {αn}

∞

n=0 and {βn}
∞

n=0 are sequences in (0,1) such that limn→∞ αn ≤ 1 − δ for
some δ ∈ (0, 1] and limn→∞ βn = 1. Define a sequence {xn} in C by the following
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algorithm






x0 ∈ C chosen arbitrarily,

zn = βnxn + (1− βn)Txn,

yn = αnxn + (1− αn)Tzn,

Cn = {v ∈ C : ‖yn − v‖2 ≤ ‖xn − v‖2 + (1− αn)(‖zn‖2

−‖xn‖
2 + 2〈xn − zn, v〉)},

Qn = {v ∈ C : 〈x0 − xn, xn − v〉 ≥ 0},

xn+1 = PCn∩Qn
x0,

(1.6)

then {xn} converges in norm to q = PF (T )x0.
It is well know that Halpern iterations process [3] which is defined as

xn+1 = αnx0 + (1− αn)Txn, n ≥ 0, (1.7)

where {αn}
∞

n=0 is a sequence in the interval [0,1] is also usually used to approximate
a fixed point of nonexpansive. The iteration process (1.7) has been proved to be
strongly convergent in both Hilbert spaces [3,6,19] and uniformly smooth Banach
spaces [16,17,20] unless the sequence {αn} satisfies the conditions

(C1) limn→∞ αn = 0;

(C2)
∑
∞

n=1 αn =∞;

(C3) either
∑
∞

n=0 |αn − αn+1| <∞ or limn→∞
αn
αn+1

= 1.

It is well know that process (1.7) is widely believed to have slow convergence
because the restriction of condition C2. Moreover, Halpern [3] proved that condition
(C1) and (C2) are indeed necessary in the sense that if the iterative process (1.7)
is strongly convergent for all closed convex subsets C of a Hilbert space H and all
nonexpansive mappings T on C, then the sequence {αn} must satisfy conditions (C1)
and (C2). (However, It is unknown whether these two conditions are also sufficient;
see [20] for more detail.) Thus to improve the rate of convergence of the iterative
process (1.7), one cannot rely only on the process itself. In [8], Martinez-Yanes and
Xu studied the following iteration process:

Theorem MYX2. Let H be a real Hilbert space, C a closed convex subset of H and
T : C → C a nonexpansive mapping such that F (T ) �= ∅. Assume that αn ⊂ (0, 1) is
chosen such that limn→∞ αn = 0. Then the sequence {xn}∞n=0 generated by






x0 ∈ C arbitrarily,

yn = αnx0 + (1− αn)Txn,

Cn = {z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2 + αn(‖x0‖2 + 2〈xn − x0, z〉)},

Qn = {z ∈ C : 〈x0 − xn, xn − z〉 ≥ 0},

xn+1 = PCn∩Qn
x0.

(1.8)
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converges strongly in norm to PF (T )x0.
The purpose of this paper is to employ Nakajo and Takahashi’s [11] idea to modify

process (1.2) and (1.7) to have strong convergence for strict pseudo-contractions. Our
results improve and extend the ones announced by Martinez-Yanes and Xu [8] from
nonexpansive mappings to strict pseudo-contractions.
Let C be a nonempty subset of a Hilbert space H. Recall that A mapping T :

C → C is said to be k-strictly pseudo-contractive if

(1.9) ‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖(I − T )x− (I − T )y‖2,

for some k ∈ [0, 1), for all x, y ∈ C.
Note that the class of k-strict pseudo-contractions strictly includes the class of

nonexpansive mappings. That is, T is nonexpansive if and only if T is 0-strictly
pseudo-contractive.
In order to prove our main results, we shall make use of the following lemmas,

[8,9].

Lemma 1.1. Let H be a real Hilbert space. there hold the following identities:

(i) ‖x− y‖2 = ‖x‖2 − ‖y‖2 − 2〈x− y, y〉, ∀x, y ∈ H;

(ii) ‖tx+(1− t)y‖2 = t‖x‖2+(1− t)‖y‖2− t(1− t)‖x−y‖2, ∀t ∈ [0, 1],∀x, y ∈ H.

Lemma 1.2. Let C be a closed convex subset of real Hilbert space H and let PC be
the metric projection from H onto C(i.e., for x ∈ H, PC is the only point in C such
that ‖x− PCx‖ = inf{‖x− z‖ : z ∈ C}). Given x ∈ H and z ∈ C. Then z = PCx if
and only if there holds the relations:

〈x− z, y − z〉 ≤ 0 ∀y ∈ C. (1.9)

Lemma 1.3. Let H be a real Hilbert space. Let C be a nonempty closed convex
subset of E and T : C → C a k-strict pseudo-contraction with a nonempty fixed point
set. Then (I − T ) is demi-closed at zero.

Lemma 1.4. Let E be a real Banach space, C a nonempty subset of E and T : C → C
a k-strict pseudo-contraction. Then T is L-Lipschitzian.

Lemma 1.5. LetH be a real Hilbert space, C a nonempty subset ofH and T : C → C
a k-strict pseudo-contraction. Then the fixed points set F (T ) of T is closed and convex
so that the projection PF (T ) is well defined.

Lemma 1.6. Let H be a real Hilbert space. Given a closed convex subset C ⊂ H
and points x, y, z ∈ H. Given also a real number a ∈ R. The set

D = {v ∈ C : ‖y − v‖2 ≤ ‖x− v‖2 + 〈w, v〉+ a}

is closed (and convex).
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2. Main Results

2.1 The hybrid projection method for Ishikawa’s iteration process

Theorem 2.1. Let C be a closed convex subset of a Hilbert space H, T : C → C a k-
strict pseudo-contraction. Assume that the fixed point set F (T ) of T is nonempty and
{αn}, {βn} are sequences in (0,1) such that αn < 1 for all n ≥ 0 and limn→∞ βn = 1.
Define a sequence {xn} in C by the following algorithm:






x0 ∈ C choen arbitrarily,

zn = βnxn + (1− βn)Txn,

yn = αnxn + (1− αn)Tzn,

Cn = {v ∈ C : ‖yn − v‖
2 ≤ ‖xn − v‖

2

+(1− αn)(1− βn)(k − βn)‖Txn − xn‖2

+(1− αn)(k‖zn − Tzn‖
2 − αn‖Tzn − xn‖

2)},

Qn = {v ∈ C : 〈x0 − xn, xn − v〉 ≥ 0},

xn+1 = PCn∩Qn
x0,

then {xn} converges strongly to PF (T )x0.

Proof. First observe that Cn is convex by Lemma 1.6. Next, we show that F (T ) ⊂ Cn
for all n. Indeed, we have, for all p ∈ F (T ),

‖yn − p‖
2 = ‖αn(xn − p) + (1− αn)(Tzn − p)‖

2

≤ αn‖xn − p‖
2 + (1− αn)‖Tzn − p‖

2 − αn(1− αn)‖Tzn − xn‖
2

≤ αn‖xn − p‖
2 + (1− αn)(‖zn − p‖

2 + k‖zn − Tzn‖
2)

− αn(1− αn)‖Tzn − xn‖
2

≤ αn‖xn − p‖
2 + (1− αn)‖zn − p‖

2 + (1− αn)(k‖zn − Tzn‖
2

− αn‖Tzn − xn‖
2).

(2.1)

On the other hand, we also have

‖zn − p‖
2 = ‖βn(xn − p) + (1− βn)(Txn − p)‖

2

≤ βn‖xn − p‖
2 + (1− βn)‖Txn − p‖

2 − βn(1− βn)‖Txn − xn‖
2

≤ βn‖xn − p‖
2 + (1− βn)(‖xn − p‖

2 + k‖Txn − xn‖
2)

− βn(1− βn)‖Txn − xn‖
2

= ‖xn − p‖
2 + (1− βn)(k − βn)‖Txn − xn‖

2

(2.2)

Substitute (2.2) into (2.1) yields that

‖yn − p‖
2 ≤ ‖xn − p‖

2 + (1− αn)(1− βn)(k − βn)‖Txn − xn‖
2

+ (1− αn)(k‖zn − Tzn‖
2 − αn‖Tzn − xn‖

2).
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So p ∈ Cn for all n. Next we show that

F (T ) ⊂ Qn, ∀n ≥ 0. (2.3)

We prove this by induction. For n = 0, we have F (T ) ⊂ C = Q0. Assume that
F (T ) ⊂ Qn. Since xn+1 is the projection of x0 onto Cn ∩Qn, by Lemma 1.2 we have

〈x0 − xn+1, xn+1 − z〉 ≥ 0, ∀ z ∈ Cn ∩Qn.

As F (T ) ⊂ Cn ∩ Qn by the induction assumptions, the last inequality holds, in
particular, for all z ∈ F (T ). This together with the definition of Qn+1 implies that
F (T ) ⊂ Qn+1. Hence (2.3) holds for all n ≥ 0. In order to prove

lim
n→∞

‖xn+1 − xn‖ = 0,

from the definition of Qn we have xn = PQn
x0 which together with the fact that

xn+1 ∈ Cn ∩Qn ⊂ Qn implies that

‖x0 − xn‖ ≤ ‖x0 − xn+1‖.

This shows that the sequence {‖xn−x0‖} is nondecreasing. On the other hand, since
xn = PQn

x0 (by the definition of Qn) and since F (T ) ⊂ Qn, we have

‖xn − x0‖ ≤ ‖p− x0‖, ∀p ∈ F (T ).

In particular, {xn} is bounded and

‖xn − x0‖ ≤ ‖PF (T )x0 − x0‖, (2.4)

We obtain that limn→∞ ‖xn − x0‖ exists. Noticing again that xn = PQn
x0 and

xn+1 ∈ Qn which give that 〈xn+1 − xn, xn − x0〉 ≥ 0. Therefore, we have

‖xn+1 − xn‖
2 = ‖(xn+1 − x0)− (xn − x0)‖

2

= ‖xn+1 − x0‖
2 − ‖xn − x0‖

2 − 2〈xn+1 − xn, xn − x0〉

≤ ‖xn+1 − x0‖
2 − ‖xn − x0‖

2.

It follows that
lim
n→∞

‖xn − xn+1‖ = 0. (2.5)

On the other hand, It follows from the definition of Cn that xn+1 ∈ Cn, Therefore,
we have

‖yn − xn+1‖
2 ≤ ‖xn − xn+1‖

2 + (1− αn)(1− βn)(k − βn)‖Txn − xn‖
2

+ (1− αn)(k‖zn − Tzn‖
2 − αn‖Tzn − xn‖

2).
(2.6)

Moreover, since yn = αnxn + (1− αn)Tzn, we obtain

‖yn − xn+1‖
2

= ‖αn(xn − xn+1) + (1− αn)(Tzn − xn+1)‖
2

= αn‖xn − xn+1‖
2 + (1− αn)‖Tzn − xn+1‖

2

− αn(1− αn)‖Tzn − xn‖
2.

(2.7)
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Substituting (2.7) into (2.6), we arrive at

(1− αn)‖xn+1 − Tzn‖
2

≤ (1− αn)‖xn − xn+1‖
2 + (1− αn)k‖Tzn − zn‖

2

+ (1− αn)(1− βn)(k − βn)‖Txn − xn‖
2.

Since αn < 1 for all n ≥ 0, the last inequality becomes

‖xn+1 − Tzn‖
2 ≤‖xn − xn+1‖

2 + k‖Tzn − zn‖
2

+ (1− βn)(k − βn)‖Txn − xn‖
2.

(2.8)

On the other hand, we have

‖xn+1 − Tzn‖
2

= ‖xn+1 − xn + xn − Tzn‖
2

= ‖xn+1 − xn‖
2 + ‖xn − Tzn‖

2 + 2〈xn+1 − xn, xn − Tzn〉.

(2.9)

Combining (2.8) with (2.9), we obtain

‖xn − Tzn‖
2 + 2〈xn+1 − xn, xn − Tzn〉

≤ k‖Tzn − zn‖
2 + (1− βn)(k − βn)‖Txn − xn‖

2.

That is,

‖xn − Txn‖
2 + ‖Txn − Tzn‖

2 + 2〈xn − Txn, Txn − Tzn〉

+ 2〈xn+1 − xn, xn − Tzn〉

≤ k‖Tzn − Txn‖
2 + k‖Txn − xn‖

2 + k‖xn − zn‖
2

+ 2k〈Txn − xn, xn − zn〉+ 2k〈Tzn − Txn, Txn − zn〉+ δn,

where δn = (1 − βn)(k − βn)‖Txn − xn‖2. It follows from limn→∞ βn = 1 and the
boundness of {xn} that δn → 0, as n→∞. Therefore, we obtain

(1− k)‖xn − Txn‖
2 ≤ k‖xn − zn‖

2 + 2k‖Txn − xn‖‖xn − zn‖

+ 2‖Tzn − Txn‖(‖Txn − zn‖+ ‖xn − Txn‖)

+ 2‖xn+1 − xn‖‖xn − Tzn‖+ δn.

On the hand, we have

‖xn − zn‖ = (1− βn)‖xn − Txn‖.

It follows from limn→∞ βn = 1 and the boundness of {xn} that

lim
n→∞

‖xn − zn‖ = 0. (2.10)

Noticing that T is L-Lipschitzian, (2.5) and (2.10), we obtain

lim
n→∞

‖xn − Txn‖ = 0.
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Assume that {xni} is a subsequence of {xn} such that xni ⇀ x̃. by Lemma 1.3 we
have x̃ ∈ F (T ). Next we show that x̃ = PF (T )x0 and convergence is strong. Put
x̄ = PF (T )x0 and consider the sequence {x0 − xni}. Then we have x0− xni ⇀ x0 − x̃
and by the weak lower semicontinuity of the norm and by the fact that ‖x0−xn+1‖ ≤
‖x0 − x̄‖ for all n ≥ 0 which is implied by the fact that xn+1 = PCn∩Qn

x0, we have

‖x0 − x̄‖ ≤ ‖x0 − x̃‖ ≤ lim inf
i→∞

‖x0 − xni‖ ≤ lim sup
i→∞

‖x0 − xni‖ ≤ ‖x0 − x̄‖.

This gives that

‖x0 − x̄‖ = ‖x0 − x̃‖ and ‖x0 − xni‖ → ‖x0 − x̄‖

It follows that x0 − xni → x0 − x̄; hence, xni → x̄. Since {xni} is an arbitrary
subsequence of {xn}, we conclude that xn → x̄ as n→∞. The proof is completed.

2.2 The hybrid method for Halpern’s iteration process

Theorem 2.2. Let C be a closed convex subset of a Hilbert space H and let T : C →
C be a k-strict pseudo-contraction and assume that the fixed point set F (T ) of T is
nonempty. Define a sequence {xn}

∞

n=0 in C by the algorithm:






x0 ∈ C choesn arbitrarily,

yn = αnx0 + (1− αn)Txn,

Cn = {z ∈ C : ‖yn − z‖
2 ≤ ‖xn − z‖

2

+αn(‖x0‖2 − ‖xn‖2 + 2〈xn − x0, z〉)

+(1− αn)[k‖Txn − xn‖
2 − αn‖Txn − x0‖

2]},

Qn = {z ∈ C : 〈x0 − xn, xn − z〉 ≥ 0},

xn+1 = PCn∩Qn
x0.

Assume that the control sequence {αn}∞n=0 is chosen such that limn→∞ αn = 0. Then
{xn} converges in norm to PF (T )x0.

Proof. We first show that Cn is convex. Since

‖yn − z‖
2 ≤‖xn − z‖

2 + αn(‖x0‖
2 − ‖xn‖

2 + 2〈xn − x0, z〉)

+ (1− αn)[k‖Txn − xn‖
2 − αn‖Txn − x0‖

2]

is equivalent to

2〈x0 − yn, z〉 ≤ (1− αn)‖xn‖
2 − ‖yn‖

2 + αn‖x0‖
2

+ (1− αn)[k‖Txn − xn‖
2 − αn‖Txn − x0‖

2].
(2.11)

It is easy to get Cn is convex. Next, we show that F (T ) ⊂ Cn for all n. Indeed, we
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have, for all p ∈ F (T )

‖yn − p‖
2 = ‖α(x0 − p) + (1− αn)(Txn − p)‖

2

≤ α‖x0 − p‖
2 + (1− αn)‖Txn − p‖

2 − αn(1− αn)‖Txn − x0‖

≤ α‖x0 − p‖
2 + (1− αn)(‖xn − p‖

2 + k‖Txn − xn‖
2)

− αn(1− αn)‖Txn − x0‖

≤ ‖xn − p‖
2 + αn(‖x0‖

2 − ‖xn‖
2 + 2〈xn − x0, p〉)

+ (1− αn)[k‖Txn − xn‖
2 − αn‖Txn − x0‖

2].

So p ∈ Cn for all n. It follows from the methods of Theorem 2.1 that

F (T ) ⊂ Qn for all n ≥ 0. (2.12)

In order to prove limn→∞ ‖xn+1 − xn‖ = 0, from the definition of Qn we have xn =
PQn

x0 which together with the fact that xn+1 ∈ Cn ∩Qn ⊂ Qn implies that

‖x0 − xn‖ ≤ ‖x0 − xn+1‖.

This shows that the sequence {‖xn − x0‖} is nondecreasing. On the other hand,
we have {xn} is bounded. Indeed, the definition of Qn and Lemma 1.2 imply that
xn = PQn

x0 which in turn implies that ‖xn − x0‖ ≤ ‖p − x0‖ for all p ∈ F (T ). In
particular, one has

‖xn − x0‖ ≤ ‖PF (T )x0 − x0‖.

This shows that {xn} is bounded. Therefore, we obtain that limn→∞ ‖xn−x0‖ exists.
Noticing again that xn = PQn

x0 and xn+1 ∈ Qn which give that 〈xn+1−xn, xn−x0〉 ≥
0. Therefore, we have

‖xn+1 − xn‖
2 = ‖(xn+1 − x0)− (xn − x0)‖

2

≤ ‖xn+1 − x0‖
2 − ‖xn − x0‖

2 − 2〈xn+1 − xn, xn − x0〉

≤ ‖xn+1 − x0‖
2 − ‖xn − x0‖

2.

It follows that
lim
n→∞

‖xn − xn+1‖ = 0. (2.13)

On the other hand, it follows from xn+1 ∈ Cn that

‖yn − xn+1‖
2 ≤ ‖xn − xn+1‖

2 + αn(‖x0‖
2 − ‖xn‖

2 + 2〈xn − x0, xn+1〉)

+ (1− αn)[k‖Txn − xn‖
2 − αn‖Txn − x0‖

2].
(2.14)

Moreover, since yn = αnx0 + (1− αn)Txn, we obtain

‖yn − xn+1‖
2

= ‖αn(x0 − xn+1) + (1− αn)(Txn − xn+1)‖
2

= αn‖x0 − xn+1‖
2 + (1− αn)‖Txn − xn+1‖

2 − αn(1− αn)‖Txn − x0‖
2.

(2.15)
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On the other hand, we have

‖xn+1 − Txn‖
2

= ‖xn+1 − xn + xn − Txn‖
2

= ‖xn+1 − xn‖
2 + ‖xn − Txn‖

2 + 2〈xn+1 − xn, xn − Txn〉.

(2.16)

Combine (2.14), (2.15) with (2.16) yields that

(1− αn)(1− k)‖Txn − xn‖
2

≤ 2(1− αn)‖xn+1 − xn‖‖xn − Txn‖

+ ‖xn − xn+1‖+ αn(‖x0‖
2 − ‖xn‖

2 + 2〈xn − x0, xn+1〉).

Since (2.13) and limn→∞ αn = 0, we obtain

lim
n→∞

‖Txn − xn‖ = 0.

Next, we can obtain the desired conclusion easily by following the method of Theorem
2.1. The proof is completed.

As some applications of our main results, we have the following results.

If βn = 1 for all n ≥ 0 in Theorem 2.1, then Theorem 2.1 includes the correspond-
ing result of Marino and Xu [9] as a special case.
Note that the class of k-strict pseudo-contractions strictly includes the class of

nonexpansive mappings. That is, T is nonexpansive if and only if T is 0-strict pseudo-
contraction. by using Theorem 2.1 and Theorem 2.2, we can obtain the following
desired conclusions easily.

Corollary 2.3 (Martinez-Yanes and Xu [8]). Let C be a nonempty closed convex
subset of a Hilbert space H and let T : C → C be a nonexpansive mapping such
that F (T ) �= ∅. Assume that {αn}∞n=0 and {βn}∞n=0 are sequences in (0,1) such that
limn→∞ αn ≤ 1− δ for some δ ∈ (0, 1] and limn→∞ βn = 1. Define a sequence {xn}
in C by the following algorithm:






x0 ∈ C choesn arbitrarily,

zn = βnxn + (1− βn)Txn,

yn = αnxn + (1− αn)Tzn,

Cn = {v ∈ C : ‖yn − v‖2 ≤ ‖xn − v‖2 + (1− αn)(‖zn‖2

−‖xn‖
2 + 2〈xn − zn, v〉)},

Qn = {v ∈ C : 〈x0 − xn, xn − v〉 ≥ 0},

xn+1 = PCn∩Qn
x0,

then {xn} converges strongly to q = PF (T )x0.

Corollary 2.4 (Martinez-Yanes and Xu [8]). LetH be a real Hilbert space, C a closed
convex subset of H and T : C → C a nonexpansive mapping such that F (T ) �= ∅.
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Assume that αn ⊂ (0, 1) is chosen such that limn→∞ = 0. Then the sequence {xn}∞n=0
generated by






x0 ∈ C chosen arbitrarily,

yn = αnx0 + (1− αn)Txn,

Cn = {z ∈ C : ‖yn − z‖
2 ≤ ‖xn − z‖

2 + αn(‖x0‖
2 + 2〈xn − x0, z〉)},

Qn = {z ∈ C : 〈x0 − xn, xn − z〉 ≥ 0},

xn+1 = PCn∩Qn
x0.

converges strongly to PF (T )x0.
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1. Introduction

Let H denote the class of analytic functions in the unit disc U = {z : |z| < 1}
on the complex plane C. Let A denote the subclass of H consisting of functions
normalized by f(0) = 0, f ′(0) = 1. We say that f ∈ H is subordinate to g ∈ H in
U , written f ≺ g, if and only if there exists a function ω ∈ H with ω(0) = 0 and
|ω(z)| < 1 in U such that f(z) = g(ω(z)) for z ∈ U. If f ≺ g in U , then f(U) ⊆ g(U).
Many classes of functions studied in geometric function theory can be described in
terms of subordination. Let us denote pα(z) = (1 + (1− 2α)z) /(1 − z), z ∈ U , and
let

S∗(α) :=

{
f ∈ A :

zf ′(z)

f(z)
≺ pα(z) in U

}
=

{
f ∈ A : Re

[
zf ′(z)

f(z)

]
> α for z ∈ U

}

be the class of α-starlike functions, α ∈ [0, 1). S∗(0) is the class of starlike functions
which map U onto a starlike domain with respect to the origin. We say that the
function f ∈ H is convex when f(U) is a convex set. It is easy to see that pα is a
convex univalent function.

Robertson [4] obtained the following theorem.

Theorem A([4]). If f ∈ A, with f(z)/z �= 0 and if there exists a k ∈ (0, 2], then

∣∣∣∣
zf ′′(z)

f ′(z)

∣∣∣∣ ≤ k

∣∣∣∣
zf ′(z)

f(z)

∣∣∣∣ ⇒ zf ′(z)

f(z)
≺ 2

2 + kz
. (1)
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In particular f ∈ S∗(α), with α = 2/(2 + k).

In this paper we consider a condition similar to (1). We shall use the Jack’s Lemma
given below.

Lemma A(see [2]). If a function ω is analytic for |z| ≤ |z0| < 1, ω(0) = 0 and

|ω(z0)| = max{|ω(z)| : |z| ≤ |z0|}, then

z0ω
′(z0)

ω(z0)
≥ 1.

2. Main results

Theorem 1. If f ∈ A, then

Re

[
zf ′′(z)

f ′(z)

]
< Re

[
zf ′(z)

f(z)

]
− 3

4
⇒ zf ′(z)

f(z)
≺ q0(z) :=

√
1 + z,

where the branch of the square root is chosen in order to q0(0) = 1.

Proof. Let us denote Q(f, z) = zf ′(z)/f(z). Suppose that Q(f, z) �≺ q0(z). The
function q0 is univalent in U so there exist z0, ζ0 such that |z0| = r0 < 1, |ζ0| =
1, Q(f, z)({|z| < r0}) ⊂ q0(U) and Q(f, z0) = q0(ζ0). Then the function ω(z) =
q−10 (Q(f, z)) is analytic in |z| < r0 and ω(0) = 0, ω(z0) = ζ0. Thus |ω(z)| assumes
at z0 its maximum in |z| ≤ |z0| and by Lemma A z0ω

′(z0) = mω(z0), m ≥ 1.
Logarithmic differentiating q0(ω(z)) = Q(f, z) we obtain

zω′(z)

ω(z)

ω(z)

2(1 + ω(z))
= 1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)
.

Then we have

Re

[
1 +

z0f
′′(z0)

f ′(z0)
− z0f

′(z0)

f(z0)

]
= Re

[
z0ω

′(z0)

ω(z0)

ω(z0)

2(1 + ω(z0))

]
=
m

4
≥ 1

4
,

which contradicts the hypothesis of the theorem so Q(f, z) ≺ q0(z) =
√

1 + z. �

For the function

f0(z) :=
4z exp(2

√
1 + z − 2)

(1 +
√

1 + z)2
= z +

1

2
z2 +

1

16
z3 +

1

96
z4 − 1

128
z5 + · · · (2)

we have zf ′0(z)/f0(z) = q0(z) and 1 + zf ′′0 (z)/f ′0(z) = q0(z) + z

2(1+z) , hence

zf ′′0 (z)

f0(z)
− zf ′0(z)

f0(z)
= − z + 2

2(z + 1)
.

Note that the function g(z) = − z+2
2(z+1) maps U onto the half-plane {w : Re w <

−3/4}.
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Let us still denote Q(f, z) = zf ′(z)/f(z). Kanas and Wísniowska introduced in
[3] the concept of a k—starlike functions

k − ST := {f ∈ A : Re[Q(f, z)] > k|Q(f, z)− 1|}, k ≥ 0.

In this way they obtained a continuous passage from starlike functions (k = 0) to the
class S∗p considered by Rønning [5], where S∗p = (1 − ST ). Moreover for 0 < k < 1
the quantity Q(f, z) takes its values in a convex domain on the right of a hyperbola
while for k > 1 inside an ellipse. Now, let us consider the class SL∗:

SL∗ = {f ∈ A : |Q2(f, z)− 1| < 1}. (3)

It is easy to see that f ∈ SL∗ if and only if Q(f, z) ≺ q0(z) =
√

1 + z, q0(0) = 1.
Therefore by Theorem 1 we obtain the following corollary.

Corollary 1. If f ∈ A and

Re

[
zf ′′(z)

f ′(z)

]
< Re

[
zf ′(z)

f(z)

]
− 3

4
, (4)

then f ∈ SL∗.

Notice that L := {w ∈ C : Re w > 0, |w2−1| < 1} is the interior of the right half
of the lemniscate of Bernoulli γ2 : (x2 + y2)2− 2(x2 − y2) = 0. It can be verified that
L ⊂ {w : |w −

√
2/2| <

√
2/2} (see Fig. 1). Moreover L ⊂ {w : |Arg w| < π/4}, thus

SL∗ ⊂ SS∗(1/2) ⊂ S∗, where SS∗(β) denotes the class of strongly starlike functions
of order β

SS∗(β) := {f ∈ A : |Arg Q(f, z)| < βπ/2}, 0 < β ≤ 1

which was introduced in [6] and [1]. Let us consider the conic region P (k) = {w ∈
C : Re w > k|w − 1|} connected with the class k − ST described above. For k > 1
the curve ∂P (k) is the ellipse γ1 : x2 = k2(x− 1)2 + k2y2. For k ≥ 2 +

√
2 this ellipse

lies entirely inside L. Therefore k − ST ⊂ SL∗, for k ≥ 2 +
√

2.
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√

2)(x− 1)2

+(6 + 4
√
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A = 4+
√
2

7

Re B = Re C = 4
√
2−2
7

Im B = −Im C = 1√
5+4

√
2

γ2 : (x2 + y2)2 − 2(x2 − y2) = 0

Re D = Re E =
√
3
2

Im D = −Im E = 1
2

γ3 : (x−
√

2/2)2 + y2 = 1/2,

r =
√

2/2Fig.1

A simple calculation shows that the function g(z) = z exp(az) satisfy (4) when
|a| < 1/3. Thus g ∈ SL∗ for |a| < 1/3. The condition (3) gives after much more
intricate calculation the sharp bound |a| <

√
2− 1. Moreover by (3) we obtain

z

(1− az)2
∈ SL∗ ⇐⇒ |a| < 3− 2

√
2 = 0.17 . . . .
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1. Introduction

In this paper we study the minimization problem

f(x)→ min, x ∈ C (P f )

and the convergence of solutions of the problems

f(x)→ min, x ∈ Ci, i = 1, 2, . . .

to a solution of the problem (P f ), where

C = ∩∞i=1Ci,

Ci, i = 1, 2, . . . is a decreasing sequence of convex closed subsets of a reflexive Banach
space X, and f is a convex lower semicontinuous function defined on X. Such conver-
gence properties for minimization problems on reflexive Banach spaces and Hilbert
spaces were studied in [2-5].

In the present paper we will prove two main results. The first of them stated in
Section 2 and proved in Section 3 establishes that if a function f satisfies a strict
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convexity condition, then for all sufficiently large natural numbers i all approximate
solutions of the problem

f(x)→ min, x ∈ Ci

are close to a unique solution of the problem (P f ).
Our second main result stated in Section 4 and proved in Section 5 establishes the

existence of an open everywhere dense subset F of a space of convex lower semicon-
tinuous functions on X equipped with a natural complete metric such that for each
f ∈ F the following property holds:

If a function g belongs to a small neighborhood of f and a natural number i is
large enough, then approximate solutions of the problem

g(x)→ min, x ∈ Ci

are close to a unique solution of the problem (P f ).

2. The first main result

We use the convention that ∞−∞ = 0 and ∞/∞ = 1. Let X be a reflexive Banach
space with the norm || · || and let

C∞ = ∩∞i=1Ci 	= ∅, (2.1)

Ci+1 ⊂ Ci, i = 1, 2, . . . ,

where for all natural numbers i, Ci is a closed convex subset of X.
Let f : C1 → R1 ∪ {∞} be a convex lower semicontinuous function which is not

identically infinity on C∞ and satisfy

lim
||x||→∞

f(x) =∞. (2.2)

For each nonempy set C ⊂ C1 put

inf(f ;C) = inf{f(x) : x ∈ C}. (2.3)

Since the space X is reflexive and the convex lower semicontinuous function f satisfies
(2.2) for each i ∈ {1, 2, . . . } ∪ {∞} the following minimization problem

f(x)→ min, x ∈ Ci

has a solution.
In this section we assume that f possesses the following property:
(P1) For each natural number n ≥ 1 there is a number δ > 0 such that for each

x, y ∈ C1 satisfying ||x||, ||y|| ≤ n and ||x−y|| ≥ 1/n and each α ∈ [(2n)−1, 1−(2n)−1],

f(αx+ (1− α)y) + δ ≤ αf(x) + (1− α)f(y).
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Property (P1) implies that for each i ∈ {1, 2, . . . }∪{∞} there is a unique xi ∈ Ci
such that

f(xi) = inf(f ;Ci). (2.4)

The following theorem is our first main result.
Theorem 2.1.

1. limi→∞ inf(f ;Ci) = inf(f ;C∞).
2. Let ǫ > 0. Then there exist δ > 0 and a natural number i0 such that for each

integer i ≥ i0 and each x ∈ Ci satisfying f(x) ≤ inf(f ;Ci) + δ,

||x− x∞|| ≤ ǫ.

Theorem 2.1 will be proved in Section 3.
Note that if C1 = X where X is a Hilbert space with the inner product < ·, · >

and if f(x) =< x, x >, x ∈ X, then the function f is convex and the property (P1)
holds. The minimization problem (Pf ) with the function f(x) =< x, x > was studied
in [5].

It was shown in [1] that if in a complete metric space of convex lower semicon-
tinuous functions there is a function which possesses the property (P1) then most
functions of the space (in the sense of Baire category) have this property.

3. Proof of Theorem 2.1

It is not difficult to see that assertion 1 holds (see also Lemma 2.1 of [2] or Lemma
3.3 of [3]).

Let us prove assertion 2. Let ǫ > 0. Choose c0 > 0 such that

c0 > | inf(f ;C∞)|+ | inf(f ;C1)|+ 4. (3.1)

Let γ be an arbitrary positive number such that

γ < 4−1ǫ. (3.2)

By (2.2) there is a natural number k such that

if z ∈ C1 and f(z) ≤ c0, then ||z|| ≤ k, (3.3)

k−1 < γ/8, k ≥ 4. (3.4)

By property (P1) there is ∆ ∈ (0, 2−1) such that the following property holds:
(P2) For each x, y ∈ C1 satisfying

||x||, |y|| ≤ k, ||x− y|| ≥ 1/k

we have
f(2−1x+ 2−1y) + 8∆ ≤ 2−1f(x) + 2−1f(y). (3.5)
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By assertion 1 there is a natural number i0 such that for each integer i ≥ i0

| inf(f ;C∞)− inf(f ;Ci)| ≤ ∆/2. (3.6)

Let integers i, j satisfy
i, j ≥ i0,

x ∈ Ci, f(x) ≤ inf(f ;Ci) + ∆, y ∈ Cj , f(y) ≤ inf(f ;Cj) + ∆. (3.7)

We show that ||x− y|| ≤ γ. Assume the contrary. Then by (3.4)

||x− y|| > γ > 8/k. (3.8)

We may assume that j ≥ i. In view of (3.7), the inequality ∆ < 1/2, (2.1) and (3.1)

f(y), f(x) ≤ inf(f ;C∞) + 1 < c0. (3.9)

It follows from (3.3) and (3.9) that

||x||, ||y|| ≤ k. (3.10)

Clearly,
2−1(x+ y) ∈ Ci. (3.11)

By (P2), (3.7), (3.8) and (3.10)

f(2−1(x+ y)) ≤ 2−1f(x) + 2−1f(y)− 8∆. (3.12)

In view (3.6), (3.7) and (3.12),

f(2−1(x+ y)) ≤ 2−1(inf(f ;Ci) + ∆) + 2−1(inf(f ;Cj) + ∆)− 8∆

≤ 2−1(inf(f ;Ci) + ∆) + 2−1(inf(f ;Ci) + ∆)− 8δ = inf(f ;Ci) + 2∆− 8∆.

This contradicts (3.11). The contradiction we have reached shows that ||x− y|| ≤ γ.
We have shown that the following property holds:
(P3) For each pair of integers i, j ≥ i0 and each x, y ∈ X satisfying (3.7) the

inequality ||x− y|| ≤ γ holds.
Since γ is an arbitrary positive number satisfying (3.2) it follows from (P3) that

{xi}
∞
i=1 is a Cauchy sequence (see (2.4)). Since f is lower semicontinuous we obtain

that
f( lim
i→∞

xi) ≤ lim
i→∞

f(xi). (3.13)

Clearly,
lim
i→∞

xi ∈ C∞. (3.14)

In view of (3.13), assertion 1, (2.4) and (3.14),

f( lim
i→∞

xi) ≤ f(x∞).
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Since x∞ is a unique minimizer of f on C∞ the relation above and (3.14) imply that

x∞ = lim
i→∞

xi in the norm topology. (3.15)

By (P3) and (2.4) for each pair of integers i, j ≥ i0

||xi − xj || ≤ γ.

Together with (3.15) this implies that

||x∞ − xi|| ≤ γ for all integers i ≥ i0. (3.16)

Let an integer i ≥ i0 and let x ∈ Ci satisfy

f(x) ≤ inf(f ;Ci) = ∆.

By (P3) ||x− xi|| ≤ γ. Combined with (3.2) and (3.16) this inequality implies that

||x− x∞|| ≤ 2γ < ǫ.

Assertion 2 is proved. This completes the proof of Theorem 2.1.

4. The second main result

We again use the convention that ∞−∞ = 0 and ∞/∞ = 1. Let X be a reflexive
Banach space with the norm || · || and let

C∞ = ∩∞i=1Ci 	= ∅,

where for all natural numbers i, Ci is a closed convex subset ofX such that Ci+1 ⊂ Ci,
i = 1, 2, . . . .

For each function g : C1 → R1 ∪ {∞} put

dom(g) = {z ∈ C1 : g(z) <∞}.

Let φ : C1 → R1 be such that

φ(x)→∞ as ||x|| → ∞. (4.1)

Denote by M the set of all convex lower semicontinuous functions f : C1 →
R1 ∪ {∞} which are not identically ∞ such that

f(x) ≥ φ(x) for all x ∈ C1. (4.2)

Denote by Mv the set of all finite valued functions f ∈ M, by Mc the set of all
continuous functions f ∈Mv, byMlL the set of all locally Lipschitz functions f ∈Mv

and by ML the set of all Lipschitz on bounded subsets of C1 functions f ∈Mv.
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For each integer n ≥ 1 set

E(n) = {(f, g) ∈M×M : |f(x)− g(x)| ≤ 1/n for all x ∈ C1 such that ||x|| ≤ n}

∩{(f, g) ∈M×M : |(f − g)(x)− (f − g)(y)| ≤ n−1||x− y||

for all x, y ∈ C1 ∩ dom(f) such that ||x||, ||y|| ≤ n}. (4.3)

We equip the spaceM with the uniformity determined by the base E(n), n = 1, 2, . . . .
It is clear that the uniform spaceM is metrizable and complete. We equip the space
M with the topology generated by this uniformity. Clearly,Mv,Mc,MlL and ML

are closed subsets of M.
Note that for each i ∈ {1, 2, . . . } ∪ {∞}, inf(f ;Ci) is finite.
In the following theorem which is our second main result we assume that A is one

of the following subspaces of M with the relative topology:
M; Mv; Mc; MlL; ML.

Theorem 4.1. There exists an open everywhere dense set F ⊂ A such that for each

f ∈ F there exist xf ∈ C∞ and an open neighborhood V ⊂ F of f such that:

f(xf ) = inf(f ;C∞);

For each ǫ > 0 there exist δ > 0 and an integer i0 ≥ 1 such that for each integer

i ≥ i0, each g ∈ V and each x ∈ Ci satisfying g(x) ≤ inf(g;Ci) + δ,

||x− xf || ≤ ǫ.

5. Proof of Theorem 4.1

Lemma 5.1. Let f ∈M. Then inf(f ;C∞) = limi→∞ inf(f ;Ci).

Proof Clearly,
inf(f ;C) ≥ lim

i→∞
inf(f ;Ci)

and for each i ∈ {1, 2, . . . } ∪ {∞}, inf(f ;Ci) is finite.
For each integer i ≥ 1 set

Di = {z ∈ Ci : fi(z) ≤ lim
j→∞

inf(f ;Cj)}.

Clearly for any integer i ≥ 1 Di 	= ∅ and the set Di is closed convex and bounded
and therefore it is weakly compact. Hence

∩∞i=1Di 	= ∅.

Let
z ∈ ∩∞i=1Di.
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Then
f(z) ≤ lim

i→∞
inf(f ;Ci), z ∈ C∞

and
inf(f ;C) ≤ lim

i→∞
inf(f ;Ci).

Lemma 5.1 is proved.

Let A be M or Mv or Mc or MlL or ML,

f ∈ A, γ ∈ (0, 1), xf ∈ C∞, f(xf ) = inf(f ;C∞). (5.1)

Set
fγ(x) = f(x) + γ||x− xf ||, x ∈ C1. (5.2)

Clearly, fγ ∈ A and
fγ → f as γ → 0+ in A. (5.3)

Lemma 5.2. Let

f ∈ A, γ ∈ (0, 1), xf ∈ C∞, f(xf ) = inf(f ;C∞) (5.4)

and let ǫ > 0. Then there exist an integer i0 and δ > 0 such that if an integer i ≥ i0
and if x ∈ Ci satisfies fγ(x) ≤ inf(fγ;Ci) + δ, then ||x− xf || ≤ ǫ.

Proof By (5.1) and (5.2),

fγ(xf ) = f(xf ) = inf(f ;C∞) = inf(fγ;C∞). (5.5)

Choose δ ∈ (0, 1) such that
4δ/γ < ǫ. (5.6)

By Lemma 5.1 there is an integer i0 ≥ 1 such that

| inf(f ;C∞)− inf(f ;Ci)| ≤ δ for all integers i ≥ i0. (5.7)

Let an integer i satisfy

i ≥ i0, x ∈ Ci, fγ(x) ≤ inf(fγ;Ci) + δ. (5.8)

In view of (2.1), (5.3), (5.5), (5.7) and (5.8)

f(x) + γ||x− xf || = fγ(x) ≤ inf(fγ ;Ci) + δ ≤ inf(fγ;C∞) + δ = inf(f ;C∞) + δ

≤ inf(f ;Ci) + 2δ ≤ f(xf ) + 2δ.

These relations imply that
γ||x− xf || ≤ 2δ.

Together with (5.6) this inequality implies that

||x− xf || ≤ 2δγ−1 < ǫ.
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Lemma 5.2 is proved.

Lemma 5.3. Let

f ∈ A, γ ∈ (0, 1), xf ∈ C∞ and f(xf ) = inf(f ;C∞). (5.9)

Then there exists a natural number n such that the following assertion holds.

For each ǫ > 0 there is δ > 0 and an integer i0 ≥ 1 such that if an integer i ≥ i0,
if g ∈ A satisfies (g, fγ) ∈ E(n) and if x ∈ Ci satisfies

g(x) ≤ inf(g;Ci) + δ,

then ||x− xf || ≤ ǫ.

Proof By (5.1), (5.2) and (5.9),

fγ(xf ) = f(xf ) = inf(f ;C∞) = inf(fγ;C∞). (5.10)

In view of (4.1) there is a natural number n such that

n > ||xf ||+ 4 and 1/n < γ/4 (5.11)

and

if x ∈ C1 satisfies φ(x) ≤ | inf(f ;C1)|+ | inf(f ;C∞)|+ 8, then ||x|| ≤ n. (5.12)

Let ǫ > 0. Choose δ ∈ (0, 1) such that

8δγ−1 < ǫ. (5.13)

By Lemma 5.1 there is a natural number i0 such that for each integer i ≥ i0

| inf(f ;Ci)− inf(f ;C∞)| ≤ δ/4. (5.14)

Assume that

g ∈ A, (g, fγ) ∈ E(n), an integer i ≥ i0, x ∈ Ci, g(x) ≤ inf(g;Ci) + δ. (5.15)

In view of (5.11), (5.15), (2.1) and (5.9)

|g(xf )− fγ(xf )| ≤ 1/n. (5.16)

It follows from (5.15) that

g(x) ≤ inf(g;Ci) + δ ≤ inf(g;C∞) + δ ≤ g(xf ) + δ. (5.17)

By (4.2), (5.16) and (5.10),

φ(x) ≤ g(x) ≤ f(xf ) + 1. (5.18)
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By (5.18), (5.12) and (5.15),

||x|| ≤ n, |g(x)− fγ(x)| ≤ 1/n. (5.19)

By (5.15), (4.3), (5.19), (5.11) and (5.3),

g(x) = fγ(x) + g(x)− fγ(x)

= fγ(x) + ((g − fγ)(x)− (g − fγ)(xf )) + (g − fγ)(xf )

≥ fγ(x)− n
−1||x− xf ||+ (g − fγ)(xf )

= f(x) + γ||x− xf || − n
−1||x− xf ||+ (g − fγ)(xf )

≥ f(x) + (γ/2)||x− xf ||+ g(xf )− fγ(xf ).

Combined with (5.10) and (5.17) this implies that

δ ≥ f(x) + (γ/2)||x− xf || − f(xf ). (5.20)

By (5.20), (5.15), (5.14) and (5.9),

f(xf ) + δ ≥ f(x) + (γ/2)||x− xf || ≥ inf(f ;Ci) + (γ/2)||x− xf ||

≥ inf(f ;C∞)− δ/4 + (γ/2)||x− xf ||

= f(xf )− δ/4 + (γ/2)||x− xf ||

and

4δγ−1 ≥ ||x− xf ||.

Combined with (5.13) this inequality implies that

||x− xf || < ǫ.

Lemma 5.3 is proved.

Completion of the proof of Theorem 4.1.

Let f ∈ A, xf ∈ C∞, f(xf ) = inf(f ;C∞), γ ∈ (0, 1). By Lemma 5.3 there exists
an open neighborhood V (f, γ) of fγ in A such that the following property holds:

For each ǫ > 0 there exist δ > 0 and an integer i0 ≥ 1 such that if an integer
i ≥ i0, g ∈ V (f, γ) and if x ∈ Ci satisfies

g(x) ≤ inf(g;Ci) + δ,

then ||x− xf || ≤ ǫ.
Put

F = ∪{V (f, γ) : f ∈ A, γ ∈ (0, 1)}.

By (5.3), F is an open everywhere dense subset of A. It is not difficult to see that
Theorem 4.1 holds by the definition of V (f, γ) (f ∈ A, γ ∈ (0, 1)).
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1. Introduction

Let Ap denote the class of functions of the following form:

f(z) = zp +
∞∑

n=1

an+pz
n+p (p ∈ N := {1, 2, 3, . . .}), (1)

which are analytic in the open unit disk

U := {z : z ∈ C and |z| < 1}.

For simplicity, we write
A1 =: A.

Also let P denote the class of functions of the form:

p(z) = 1 +
∞∑

n=1

pnz
n (z ∈ U),
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which are analytic and convex in U and satisfy the following inequality:

ℜ(p(z)) > 0.

Let f, g ∈ Ap , where f is given by (1.1) and g is defined by

g(z) = zp +
∞∑

n=1

bn+pz
n+p.

Then the Hadamard product (or convolution) f ∗g of the functions f and g is defined
by

(f ∗ g)(z) := zp +
∞∑

n=1

an+pbn+pz
n+p =: (g ∗ f)(z).

For parameters

a ∈ R, c ∈ R \ Z−0 (Z−0 := {0,−1,−2, . . .}),

Saitoh [5] introduced a linear operator:

Lp(a, c) : Ap −→ Ap

defined by
Lp(a, c)f(z) = φp(a, c; z) ∗ f(z) (z ∈ U; f ∈ Ap)

where

φp(a, c; z) =
∞∑

n=0

(a)n
(c)n

zn+p (2)

and (λ)n is the Pochhammer symbol defined by

(λ)n :=






1, (n = 0),

λ(λ+ 1) · · · (λ+ n− 1), (n ∈ N).

In a recent paper, Cho et al. [2] introduced the following family of linear operators
Iλp (a, c) analogous to Lp(a, c):

Iλp (a, c) : Ap −→ Ap,

which is defined as

Iλp (a, c)f(z) := φ
†
p(a, c; z) ∗ f(z) (a, c ∈ R \ Z−0 ; λ > −p; z ∈ U; f ∈ Ap), (3)

where φ†p(a, c; z) is the function defined in terms of the Hadamard product (or con-
volution) by the following condition:

φp(a, c; z) ∗ φ
†
p(a, c; z) =

zp

(1− z)λ+p
. (4)



Certain subclass of multivalent functions ... 163

We can easily find from (2), (3) and (4) that

Iλp (a, c)f(z) =
∞∑

n=0

(λ+ p)n(c)n
n!(a)n

an+pz
n+p (z ∈ U; λ > −p). (5)

It is also readily verified from (5) that

z
(
Iλp (a, c)f

)(j+1)
(z) = (p− j − c)

(
Iλp (a, c)f

)(j)
(z) + c

(
Iλp (a, c+ 1)f

)(j)
(z) (6)

(z ∈ U; j ∈ {0, 1, . . . , p− 1}).

For two functions f and g, analytic in U, we say that the function f is subordinate
to g in U, and write

f(z) ≺ g(z) (z ∈ U),

if there exists a Schwarz function ω(z), which is analytic in U with

ω(0) = 0 and |ω(z)| < 1 (z ∈ U)

such that
f(z) = g

(
ω(z)

)
(z ∈ U).

Indeed it is known that

f(z) ≺ g(z) (z ∈ U) =⇒ f(0) = g(0) and f(U) ⊂ g(U).

Furthermore, if the function g is univalent in U, then we have the following equiva-
lence:

f(z) ≺ g(z) (z ∈ U)⇐⇒ f(0) = g(0) and f(U) ⊂ g(U).

In recent years, several authors obtained many interesting results involving the
Cho-Kwon-Srivastava operator (see, for details, [1, 4, 6]). In the present paper, by
making use of the operator Iλp (a, c) and the above-mentioned principle of subordina-
tion between analytic functions, we introduce and investigate the following subclass
of the class Ap of p-valent analytic functions.

Definition 1 A function f ∈ Ap is said to be in the class S
(j)
p,λ(α;a, c;φ) if it satisfies

the following subordination condition:

z
[
(1− α)

(
Iλp (a, c)f

)(j+1)
(z) + α

(
Iλp (a, c+ 1)f

)(j+1)
(z)
]

(1− α)
(
Iλp (a, c)f

)(j)
(z) + α

(
Iλp (a, c+ 1)f

)(j)
(z)

≺ (p− j)φ(z) (z ∈ U)

(7)
for some α (α ≧ 0) and j (j ∈ {0, 1, . . . , p− 1}), where φ ∈ P.

For simplicity, we write

S
(j)
p,λ(0; a, c;φ) =: S

(j)
p,λ(a, c;φ).
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Remark 1 If we set

α = j = 0 and φ(z) =
1 +Az

1 +Bz
(−1 ≦ B < A ≦ 1)

in the class S
(j)
p,λ(α; a, c;φ), then it reduces to the class Sp,λ(a, c;A,B) which was

studied recently by Aghalary [1].

In order to establish our main results, we shall also make use of the following
lemma.

Lemma 1 (see [3]) Let β, γ ∈ C. Suppose also that φ(z) is convex and univalent in
U with

φ(0) = 1 and ℜ(βφ(z) + γ) > 0 (z ∈ U).

If p(z) is analytic in U with p(0) = 1, then the following subordination:

p(z) +
zp′(z)

βp(z) + γ
≺ φ(z) (z ∈ U)

implies that
p(z) ≺ φ(z) (z ∈ U).

In the present paper, we aim at proving such results as inclusion relationships,

coefficient estimates and convolution properties for the class S
(j)
p,λ(α; a, c;φ). The

results presented here would provide extensions of those given in earlier works.

2. A set of inclusion relationships

At first, we prove some inclusion relationships for the class S
(j)
p,λ(α;a, c;φ), which was

defined in the preceding section.

Theorem 1 Let φ ∈ P with

ℜ
(
(p− j)φ(z) +

c

α
− p+ j

)
> 0 (α > 0; j ∈ {0, 1, . . . , p− 1}; z ∈ U).

Then
S
(j)
p,λ(α; a, c;φ) ⊂ S

(j)
p,λ(a, c;φ).

Proof. Let f ∈ S
(j)
p,λ(α;a, c;φ) and suppose that

ψ(z) =
z
(
Iλp (a, c)f

)(j+1)
(z)

(p− j)
(
Iλp (a, c)f

)(j)
(z)

(z ∈ U). (8)

Then ψ is analytic in U and ψ(0) = 1. It follows from (6) and (8) that

c− p+ j + (p− j)ψ(z) =
c
(
Iλp (a, c+ 1)f

)(j)
(z)

(
Iλp (a, c)f

)(j)
(z)

. (9)



Certain subclass of multivalent functions ... 165

We can easily find from (8) and (9) that

z
(
Iλp (a, c+ 1)f

)(j+1)
(z)

=
p− j

c
{zψ′(z) + [c− p+ j + (p− j)ψ(z)]ψ(z)}

(
Iλp (a, c)f

)(j)
(z). (10)

It now follows from (6), (8), (9) and (10) that

z
[
(1− α)

(
Iλp (a, c)f

)(j+1)
(z) + α

(
Iλp (a, c+ 1)f

)(j+1)
(z)
]

(p− j)
[
(1− α)

(
Iλp (a, c)f

)(j)
(z) + α

(
Iλp (a, c+ 1)f

)(j)
(z)
]

=
(1− α)ψ(z) + α

c
{zψ′(z) + [c− p+ j + (p− j)ψ(z)]ψ(z)}

(1− α) + α
c
[c− p+ j + (p− j)ψ(z)]

=
α
c
zψ′(z) +

{
(1− α) + α

c
[c− p+ j + (p− j)ψ(z)]

}
ψ(z)

(1− α) + α
c
[c− p+ j + (p− j)ψ(z)]

= ψ(z) +
zψ′(z)

c
α
− p+ j + (p− j)ψ(z)

≺ φ(z) (z ∈ U).

(11)

Moreover, since

ℜ
(
(p− j)φ(z) +

c

α
− p+ j

)
> 0 (α > 0; z ∈ U),

by Lemma 1 and (11), we know that

ψ(z) =
z
(
Iλp (a, c)f

)(j+1)
(z)

(p− j)
(
Iλp (a, c)f

)(j)
(z)

≺ φ(z) (z ∈ U),

that is, that f ∈ S
(j)
p,λ(a, c;φ). This implies that

S
(j)
p,λ(α; a, c;φ) ⊂ S

(j)
p,λ(a, c;φ).

Hence the proof of Theorem 1 is complete.

Theorem 2 Let φ ∈ P with

ℜ ((p− j)φ(z) + c− p+ j) > 0 (j ∈ {0, 1, . . . , p− 1}; z ∈ U).

Then
S
(j)
p,λ(a, c+ 1;φ) ⊂ S

(j)
p,λ(a, c;φ).

Proof. Suppose that f ∈ S
(j)
p,λ(a, c+ 1;φ). Then we have

z
(
Iλp (a, c+ 1)f

)(j+1)
(z)

(p− j)
(
Iλp (a, c+ 1)f

)(j)
(z)

≺ φ(z) (z ∈ U). (12)
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Differentiating both sides of (9) with respect to z logarithmically and using (8), we
have

ψ(z) +
zψ′(z)

c− p+ j + (p− j)ψ(z)
=

z
(
Iλp (a, c+ 1)f

)(j+1)
(z)

(p− j)
(
Iλp (a, c+ 1)f

)(j)
(z)

(z ∈ U). (13)

It now follows from (12) and (13) that

ψ(z) +
zψ′(z)

c− p+ j + (p− j)ψ(z)
≺ φ(z) (z ∈ U). (14)

Moreover, since
ℜ ((p− j)φ(z) + c− p+ j) > 0 (z ∈ U),

by (14) and Lemma 1, we know that

ψ(z) =
z
(
Iλp (a, c)f

)(j+1)
(z)

(p− j)
(
Iλp (a, c)f

)(j)
(z)

≺ φ(z) (z ∈ U),

that is, that f ∈ S
(j)
p,λ(a, c;φ). This implies that

S
(j)
p,λ(a, c+ 1;φ) ⊂ S

(j)
p,λ(a, c;φ).

The proof of Theorem 2 is thus completed.

3. Coefficient estimates

In this section, we give the coefficient estimates of functions belonging to the class

S
(j)
p,λ(α; a, c;φ).

Theorem 3 If f ∈ S
(j)
p,λ

(
α;a, c; 1+z1−z

)
, then

|an+p| ≦
2n!(p− j)(p− j + 1)n(2p− 3j + 1)n−1(a)n
(1− j)n(λ+ p)n(p+ 1)n(c+ 1)n−1(c+ nα)

(15)

(j ∈ {0, 1, . . . , p− 1}; n, p ∈ N).

Proof. Suppose that f ∈ S
(j)
p,λ

(
α; a, c; 1+z1−z

)
. It follows that

z
[
(1− α)

(
Iλp (a, c)f

)(j+1)
(z) + α

(
Iλp (a, c+ 1)f

)(j+1)
(z)
]

(p− j)
[
(1− α)

(
Iλp (a, c)f

)(j)
(z) + α

(
Iλp (a, c+ 1)f

)(j)
(z)
] =: p(z), (16)

where

p(z) = 1 + p1z + p2z
2 + · · · ≺

1 + z

1− z
(z ∈ U).
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Upon substituting the series expansion of f(z) and p(z) in (16) and equating the
coefficients of zn+p−j on both sides of the resulting equation, we obtain

(n− j) [(1− α)kc,n + αkc+1,n]

= p1(p− j) [(1− α)kc,n−1 + αkc+1,n−1] + p2(p− j) [(1− α)kc,n−2 + αkc+1,n−2]

+ · · ·+ pn(p− j) [(1− α)kc,0 + αkc+1,0] (n ∈ N),

(17)

where
k0 := p0 := 1,

and

kc,n :=
(λ+ p)n(c)n
n!(a)n

(n+ p) · · · (n+ p− j + 1)an+p.

Using the well known coefficient estimates:

|pn| ≦ 2 (n ∈ N)

in (17), we get the required result (15) asserted by Theorem 3.

Remark 2 If we set α = j = 0 in Theorem 3, we can get the corresponding result
obtained by Aghalary [1].

4. Convolution properties

In this section, we provide some convolution properties for the class S
(j)
p,λ(a, c;φ).

Theorem 4 Let f ∈ S
(j)
p,λ(a, c;φ). Then

f (j)(z) =

[
zp−j exp

(
(p− j)

∫ z

0

φ(ω(z))− 1

ξ
dξ

)]
∗

(
∞∑

n=0

n!(a)n
(λ+ p)n(c)n

zn+p−j

)

, (18)

(j ∈ {0, 1, . . . , p− 1}) where ω is analytic in U with

ω(0) = 0 and |ω(z)| < 1 (z ∈ U).

Proof. Suppose that f ∈ S
(j)
p,λ(a, c;φ). We know from (7) (with α = 0) that

z
(
Iλp (a, c)f

)(j+1)
(z)

(p− j)
(
Iλp (a, c)f

)(j)
(z)

= φ(ω(z)) (z ∈ U), (19)

where ω is analytic in U with

ω(0) = 0 and |ω(z)| < 1 (z ∈ U).



168 T. Zeng, C-Y Gao, Z-G Wang, R. Aghalary

We next find from (19) that

(
Iλp (a, c)f

)(j+1)
(z)

(
Iλp (a, c)f

)(j)
(z)

−
p− j

z
= (p− j)

φ(ω(z))− 1

z
(z ∈ U). (20)

Upon integrating (20), we have

log

((
Iλp (a, c)f

)(j)
(z)

zp−j

)

= (p− j)

∫ z

0

φ(ω(ξ))− 1

ξ
dξ,

or equivalently,

(
Iλp (a, c)f

)(j)
(z) = zp−j · exp

(
(p− j)

∫ z

0

φ(ω(ξ))− 1

ξ
dξ

)
. (21)

On the other hand, we know from (5) that

(
Iλp (a, c)f

)(j)
(z) =

(
∞∑

n=0

(λ+ p)n(c)n
n!(a)n

zn+p−j

)

∗ f (j)(z). (22)

The assertion (18) of Theorem 4 can now easily be derived from (21) and (22).

Theorem 5 Let
f ∈ Ap and φ ∈ P.

Then f ∈ S
(j)
p,λ(a, c;φ) if and only if

1

z

[

f (j)(z) ∗

(
∞∑

n=0

(λ+ p)n(c)n
n!(a)n

(
n+ p− j − (p− j)φ(eiθ)

)
zn+p−j

)]

�= 0 (23)

(z ∈ U; 0 ≦ θ < 2π).

Proof. Suppose that f ∈ S
(j)
p,λ(a, c;φ). Since the following subordination condition:

z
(
Iλp (a, c)f

)(j+1)
(z)

(p− j)
(
Iλp (a, c)f

)(j)
(z)

≺ φ(z)

is equivalent to

z
(
Iλp (a, c)f

)(j+1)
(z)

(p− j)
(
Iλp (a, c)f

)(j)
(z)

�= φ(eiθ) (z ∈ U; 0 ≦ θ < 2π). (24)

It is easy to see that the condition (24) can be written as follows:
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1

z

[
z
(
Iλp (a, c)f

)(j+1)
(z)− (p− j)

(
Iλp (a, c)f

)(j)
(z)φ(eiθ)

]
�= 0 (25)

(z ∈ U; 0 ≦ θ < 2π) .

On the other hand, we know from (5) that

z
(
Iλp (a, c)f

)(j+1)
(z) =

(
∞∑

n=0

(λ+ p)n(c)n
n!(a)n

(n+ p− j)zn+p−j

)

∗ f (j)(z). (26)

Upon substituting (22) and (26) into (25), we can easily get the convolution property
(23) asserted by Theorem 5.
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