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9. İ. Özdemir, Ü. Çakan: On the solutions of a class of nonlinear functional
integral quations in space C [0, a] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

10. K. Raj, S. K. Sharma: Some seminormed difference sequence spaces
defined by a Musielak-Orlicz function over n-normed spaces . . . . . . . . . . . . . . 115

11. N. Subramanian, R. Babu, P. Thirunavukkarasu: The random
of lacunary statistical on χ2 over p-metric spaces defined by Musielak . . . . 133

12. A. J. Zaslavski: Structure of solutions of nonautonomous optimal
control problems in metric spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

13. M. Zurigat, M. Ababneh: Application of the multi-step differential
transform method to solve a fractional human T-cell lymphotropic
virus I (HTLV-I) infection of CD4+ T-cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171



J o u r n a l of
Mathematics
and Applications

JMA No 38, pp 5-13 (2015)

COPYRIGHT c© by Publishing Department Rzeszów University of Technology
P.O. Box 85, 35-959 Rzeszów, Poland

Starlikeness and convexity of certain

integral operators defined by convolution

Jyoti Aggarwal and Rachana Mathur

Abstract: We define two new general integral operators for certain
analytic functions in the unit disc U and give some sufficient conditions
for these integral operators on some subclasses of analytic functions.
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1 Introduction

Let Ap(n) denote the class of all functions of the form

f(z) = zp +

∞∑
k=p+n

akz
k (p, n ∈ N = {1, 2, 3...}) . (1.1)

which is analytic in open unit disc U = {z ∈ C||z| < 1}.
In particular, we set

Ap(1) = Ap,A1(1) = A1 := A.

If f ∈ Ap(n) is given by (1.1) and g ∈ Ap(n) is given by

g(z) = zp +

∞∑
k=p+n

bkz
k (p, n ∈ N = {1, 2, 3...}) . (1.2)

then the Hadamard product (or convolution) f ∗ g of f and g is given by

(f ∗ g)(z) = zp +

∞∑
k=p+n

akbkz
k = (g ∗ f)(z). (1.3)
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We observe that several known operators are deducible from the convolutions. That
is, for various choices of g in (1.3), we obtain some interesting operators. For example,
for functions f ∈ Ap(n) and the function g is defined by

g(z) = zp +

∞∑
k=p+n

ψk,m(α, λ, l, p)zk (m ∈ N0 = N ∪ {0}) (1.4)

where

ψk,m(α, λ, l, p) =

[
Γ(k + 1)Γ(p− α+ 1)

Γ(p+ 1)Γ(k − α+ 1)
.
p+ λ(k − p) + l

p+ l

]m
.

The convolution (1.3) with the function g is defined by (1.4) gives an operator studied
by Bulut ([1]).

(f ∗ g)(z) = Dm,α
λ,l,pf(z)

Using convolution we introduce the new classes USpg(δ, β, b) and UKpg(δ, β, b) as follows

Definition 1.1 A functions f ∈ Ap(n) is in the class USpg(δ, β, b) if and only if f
satisfies

Re

{
p+

1

b

(
z(f ∗ g)′(z)

(f ∗ g)(z)
− p
)}

> δ

∣∣∣∣1b
(
z(f ∗ g)′(z)

(f ∗ g)(z)
− p
)∣∣∣∣+ β, (1.5)

where z ∈ U , b ∈ C− {0}, δ ≥ 0, 0 ≤ β < p.

Definition 1.2 A functions f ∈ Ap(n) is in the class USpg(δ, β, b) if and only if f
satisfies

Re

{
p+

1

b

(
1 +

z(f ∗ g)′′(z)

(f ∗ g)′(z)
− p
)}

> δ

∣∣∣∣1b
(

1 +
z(f ∗ g)′′(z)

(f ∗ g)′(z)
− p
)∣∣∣∣+ β, (1.6)

where z ∈ U , b ∈ C− {0}, δ ≥ 0, 0 ≤ β < p.

Note that

f ∈ UKpg(δ, β, b)⇐⇒
zf ′(z)

p
∈ USpg(δ, β, b).

Remark 1.1 (i) For δ = 0, we have

UKpg(0, β, b) = Kpg(β, b)
USpg (0, β, b) = Spg (β, b)

(ii) For δ = 0 and β = 0
UKpg(0, 0, b) = Kpg(b)
USpg (0, 0, b) = Spg (b)

(iii) For δ = 0, β = 0 and b = 1

UKpg(0, 0, b) = Kpg
USpg (0, 0, b) = Spg

(iv) For (fj ∗ g)(z) = Dm,α
λ,l,pfj(z), we have two classes UKm,j,p,nα,λ,l (δj , βj , b) and

USm,j,p,nα,λ,l (δj , βj , b) which is introduced by Guney and Bulut [1].
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Definition 1.3 Let η ∈ N,m = (m1, ...,mη) ∈ Nη
0 and k = (k1, ..., kη) ∈ Rη+. One

defines the following general integral operators:

Ip,η,m,kg : Ap(n)η → Ap(n)
Gp,η,m,kg : Ap(n)η → Ap(n) (1.7)

such that

Ip,η,m,kg (z) =
z∫
0

ptp−1
η∏
j=1

(
(fj∗g)(t)

tp

)kj
dt,

Gp,η,m,kg (z) =
z∫
0

ptp−1
η∏
j=1

(
(fj∗g)′(t)
ptp−1

)kj
dt,

(1.8)

where z ∈ U , fj , g ∈ Ap(n), 1 ≤ j ≤ η.

Remark 1.2 (i) For η = 1,m1 = m, k1 = k, and f1 = f , we have the new two new
integral operators

Ip,η,m,kg (z) =
z∫
0

ptp−1
(

(fj∗g)(t)
tp

)kj
dt,

Gp,η,m,kg (z) =
z∫
0

ptp−1
(

(fj∗g)′(t)
ptp−1

)kj
dt,

(1.9)

(ii) For (fj ∗ g)(z) = Dm,α
λ,l,pfj(z), we have

Ip,η,m,kg (z) =
z∫
0

ptp−1
η∏
j=1

(
Dm,αλ,l,pfj(t)

tp

)kj
dt,

Gp,η,m,kg (z) =
z∫
0

ptp−1
η∏
j=1

(
Dm,αλ,l,pfj(t)

′(t)

ptp−1

)kj
dt,

(1.10)

These operator were introduced by Bulut [].
(iii) If we take g(z) = zp/(1− z), the we have

Ip,η,m,kg (z) =
z∫
0

ptp−1
η∏
j=1

(
(fj)(t)
tp

)kj
dt,

Gp,η,m,kg (z) =
z∫
0

ptp−1
η∏
j=1

(
(fj)

′(t)
ptp−1

)kj
dt,

(1.11)

These two operators were introduced by Frasin [3].

2 Sufficient Conditions for Ip,η,m,kg (z)

Theorem 2.1 Let η ∈ N,m = (m1, ...,mη) ∈ Nη
0 and k = (k1, ..., kη) ∈ Rη+. Also let

b ∈ C− {0}, δ ≥ 0, 0 ≤ β < p, and fj ∈ USpg(δ, β, b) for 1 ≤ j ≤ η. If

0 ≤ p+

η∑
j=1

kj(βj − p) < p, (2.1)
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then the integral operator Ip,η,m,kg (z) , defined by (1.8) , is in the class Kpg(τ, b) where

τ = p+

η∑
j=1

kj(βj − p).

Proof. From the definition (1.8), we observe that Ip,η,m,kg (z) ∈ Ap(n). We can easy
to see that (

Ip,η,m,k(z)
)′

= pzp−1
η∏
j=1

(
(fj ∗ g)(z)

zp

)kj
. (2.2)

Differentiating (2.2) logarithmically and multiplying by ’z’, we obtain

z
(
Ip,η,m,k(z)

)′′
(Ip,η,m,k(z))

′ = p− 1 +

η∑
j=1

kj

(
z ((fj ∗ g)(z))

′

(fj ∗ g)(z)
− p
)

(2.3)

or equivalently

1 +
z
(
Ip,η,m,k(z)

)′′
(Ip,η,m,k(z))

′ − p =

η∑
j=1

kj

(
z ((fj ∗ g)(z))

′

(fj ∗ g)(z)
− p
)

(2.4)

Then, by multiplying (2.4) with ’1/b’, we have

1

b

(
1 +

z
(
Ip,η,m,k(z)

)′′
(Ip,η,m,k(z))

′ − p

)
=

η∑
j=1

kj
1

b

(
z ((fj ∗ g)(z))

′

(fj ∗ g)(z)
− p
)

(2.5)

or

p+
1

b

(
1 +

z
(
Ip,η,m,k(z)

)′′
(Ip,η,m,k(z))

′ − p

)
(2.6)

= p+

η∑
j=1

kj
1

b

z ((fj ∗ g)(z))
′

(fj ∗ g)(z)
− p+ p− p

η∑
j=1

kj


Since fj ∈ USpg(δj , βj , b) (1 ≤ j ≤ η), we get

Re

{
p+

1

b

(
1 +

z
(
Ip,η,m,k(z)

)′′
(Ip,η,m,k(z))

′ − p

)}
(2.7)

= p+

η∑
j=1

kjRe

{
1

b

(
z ((fj ∗ g)(z))

′

(fj ∗ g)(z)
− p
)}

+ p−
η∑
j=1

pkj

>

η∑
j=1

kjδj

∣∣∣∣1b
(
z((fj ∗ g)(z))

′

(fj ∗ g)(z)
− p
)∣∣∣∣+ p+

η∑
j=1

kj(βj − p).
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Since
η∑
j=1

kjδj

∣∣∣∣1b
(
z((fj ∗ g)(z))

′

(fj ∗ g)(z)
− p
)∣∣∣∣ > 0

because the integral operator Ip,η,m,kg (z) , defined by (1.8) , is in the class Kpg(τ, b)
with

τ = p+

η∑
j=1

kj(βj − p).

3 Sufficient Conditions for Gp,η,m,kg (z)

Theorem 3.1 Let η ∈ N,m = (m1, ...,mη) ∈ Nη
0 and k = (k1, ..., kη) ∈ Rη+. Also let

b ∈ C− {0}, δ ≥ 0, 0 ≤ β < p, and fj ∈ USpg(δ, β, b) for 1 ≤ j ≤ η. If

0 ≤ p+

η∑
j=1

kj(βj − p) < p, (3.1)

then the integral operator Gp,η,m,kg (z) , defined by (1.8) , is in the class Kpg(τ, b) where

τ = p+

η∑
j=1

kj(βj − p).

Proof. From the definition (1.8), we observe that Ip,η,m,kg (z) ∈ Ap(n). We can easy
to see that (

Gp,η,m,k(z)
)′

= pzp−1
η∏
j=1

(
(fj ∗ g)′(z)

pzp−1

)kj
. (3.2)

Differentiating (3.2) logarithmically and multiplying by ’z’, we obtain

z
(
Gp,η,m,k(z)

)′′
(Gp,η,m,k(z))

′ = p− 1 +

η∑
j=1

kj

(
z ((fj ∗ g)(z))

′′

(fj ∗ g)′(z)
+ 1− p

)
(3.3)

or equivalently

1 +
z
(
Gp,η,m,k(z)

)′′
(Gp,η,m,k(z))

′ − p =

η∑
j=1

kj

(
z ((fj ∗ g)(z))

′′

((fj ∗ g)(z))′
+ 1− p

)
(3.4)

Then, by multiplying (3.4) with ’1/b’, we have

1

b

(
1 +

z
(
Gp,η,m,k(z)

)′′
(Gp,η,m,k(z))

′ − p

)
=

η∑
j=1

kj
1

b

(
z ((fj ∗ g)(z))

′′

(fj ∗ g)′(z)
+ 1− p

)
(3.5)
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or

p+
1

b

(
z
(
Gp,η,m,k(z)

)′′
(Gp,η,m,k(z))

′ + 1− p

)
= p+

η∑
j=1

kj
1

b

z ((fj ∗ g)(z))
′′

(fj ∗ g)′(z)
+ 1− p+ p− p

η∑
j=1

kj


(3.6)

Since fj ∈ UKpg(δj , βj , b) (1 ≤ j ≤ η), we get

Re

{
p+

1

b

(
1 +

z
(
Gp,η,m,k(z)

)′′
(Gp,η,m,k(z))

′ − p

)}
(3.7)

= p+

η∑
j=1

kjRe

{
1

b

(
z((fj ∗ g)(z))

′′

(fj ∗ g)
′
(z)

+ 1− p
)}

+ p−
η∑
j=1

pkj + p+

η∑
j=1

kj(βj − p).

>

η∑
j=1

kjδj

∣∣∣∣1b
(
z((fj ∗ g)(z))

′′

(fj ∗ g)′(z)
+ 1− p

)∣∣∣∣+ p+

η∑
j=1

kj(βj − p).

Since
η∑
j=1

kjδj

∣∣∣∣1b
(
z((fj ∗ g)(z))”

(fj ∗ g)′(z)
+ 1− p

)∣∣∣∣ > 0

because the integral operator Gp,η,m,kg (z) , defined by (1.8) , is in the class Kpg(τ, b)
with

τ = p+

η∑
j=1

kj(βj − p).

4 Corollaries and Consequences

For η = 1,m1 = m, k1 = k, and f1 = f , we have

Corollary 4.1 Let η ∈ N,m ∈ Nη
0 and k ∈ Rη+. Also let b ∈ C− {0}, δ ≥ 0, 0 ≤ β <

p, and f ∈ USpg(δ, β, b) for 1 ≤ j ≤ η. If

0 ≤ p+ k(β − p) < p, (4.1)

then the integral operator Ip,η,m,kg (z) is in the class Kpg(τ, b) where

τ = p+ k(β − p).

Corollary 4.2 Let η ∈ N,m ∈ Nη
0 and k ∈ Rη+. Also let b ∈ C− {0}, δ ≥ 0, 0 ≤ β <

p, and f ∈ USpg(δ, β, b) for 1 ≤ j ≤ η. If

0 ≤ p+ k(β − p) < p, (4.2)

then the integral operator Gp,η,m,kg (z) is in the class Kpg(τ, b) where

τ = p+ k(β − p).
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For (fj ∗ g)(z) = Dm,α
λ,l,pfj(z), we have

Corollary 4.3 Let η ∈ N,m = (m1, ...,mη) ∈ Nη
0 and k = (k1, ..., kη) ∈ Rη+. Also

let b ∈ C− {0}, δ ≥ 0, 0 ≤ β < p, and fj ∈ USm,j,p,nα,λ,l (δj , βj , b) for 1 ≤ j ≤ η. If

0 ≤ p+

η∑
j=1

kj(βj − p) < p, (4.3)

then the integral operator Ip,η,m,k(z) is in the class Kp,n(τ, b) where

τ = p+

η∑
j=1

kj(βj − p).

Corollary 4.4 Let η ∈ N,m = (m1, ...,mη) ∈ Nη
0 and k = (k1, ..., kη) ∈ Rη+. Also

let b ∈ C− {0}, δ ≥ 0, 0 ≤ β < p, and UKm,j,p,nα,λ,l (δj , βj , b) for 1 ≤ j ≤ η. If

0 ≤ p+

η∑
j=1

kj(βj − p) < p, (4.4)

then the integral operator Gp,η,m,k(z) is in the class Kp,n(τ, b) where

τ = p+

η∑
j=1

kj(βj − p).

which are known results obtained by Guney and Bulut [2].
Further, if put p = 1, we have

Corollary 4.5 Let η ∈ N,m = (m1, ...,mη) ∈ Nη
0 and k = (k1, ..., kη) ∈ Rη+. Also

let b ∈ C− {0}, δ ≥ 0, 0 ≤ β < 1, and fj ∈ USpg(δ, β, b) for 1 ≤ j ≤ η. If

0 ≤ 1 +

η∑
j=1

kj(βj − 1) < 1, (4.5)

then the integral operator I1,η,m,kg (z) is in the class K1
g(τ, b) where

τ = 1 +

η∑
j=1

kj(βj − 1).

Corollary 4.6 Let η ∈ N,m = (m1, ...,mη) ∈ Nη
0 and k = (k1, ..., kη) ∈ Rη+. Also

let b ∈ C− {0}, δ ≥ 0, 0 ≤ β < 1, and fj ∈ US1g(δ, β, b) for 1 ≤ j ≤ η. If

0 ≤ 1 +

η∑
j=1

kj(βj − 1) < 1, (4.6)
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then the integral operator G1,η,m,kg (z) is in the class K1
g(τ, b) where

τ = 1 +

η∑
j=1

kj(βj − 1).

Upon setting g(z) = zp/(1− z), we have

Corollary 4.7 Let η ∈ N,m = (m1, ...,mη) ∈ Nη
0 and k = (k1, ..., kη) ∈ Rη+. Also

let b ∈ C− {0}, δ ≥ 0, 0 ≤ β < p, and fj ∈ USp(δ, β, b) for 1 ≤ j ≤ η. If

0 ≤ p+

η∑
j=1

kj(βj − p) < p, (4.7)

then the integral operator Gp,η,m,k(z) is in the class Kp(τ, b) where

τ = p+

η∑
j=1

kj(βj − p).

Corollary 4.8 Let η ∈ N,m = (m1, ...,mη) ∈ Nη
0 and k = (k1, ..., kη) ∈ Rη+. Also

let b ∈ C− {0}, δ ≥ 0, 0 ≤ β < p, and fj ∈ USp(δ, β, b) for 1 ≤ j ≤ η. If

0 ≤ p+

η∑
j=1

kj(βj − p) < p, (4.8)

then the integral operator Gp,η,m,k(z) is in the class Kp(τ, b) where

τ = p+

η∑
j=1

kj(βj − p).

Upon setting g(z) = zp/(1− z) and δ = 0, we have

Corollary 4.9 Let η ∈ N,m = (m1, ...,mη) ∈ Nη
0 and k = (k1, ..., kη) ∈ Rη+. Also

let b ∈ C− {0}, 0 ≤ β < p, and fj ∈ USp(0, β, b) for 1 ≤ j ≤ η. If

0 ≤ p+

η∑
j=1

kj(βj − p) < p, (4.9)

then the integral operator Gp,η,m,k(z) is in the class Kp(τ, b) where

τ = p+

η∑
j=1

kj(βj − p).
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Corollary 4.10 Let η ∈ N,m = (m1, ...,mη) ∈ Nη
0 and k = (k1, ..., kη) ∈ Rη+. Also

let b ∈ C− {0}, δ ≥ 0, 0 ≤ β < p, and fj ∈ USp(0, β, b) for 1 ≤ j ≤ η. If

0 ≤ p+

η∑
j=1

kj(βj − p) < p, (4.10)

then the integral operator Gp,η,m,k(z) is in the class Kp(τ, b) where

τ = p+

η∑
j=1

kj(βj − p).
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1 Introduction and Preliminaries

The subject of ideals in topological spaces has been studied by Kuratowski [12] and
Vaidyanathaswamy [25]. Jankovic and Hamlett [11] investigated further properties of
ideal space. The importance of continuity and generalized continuity is significant in
various areas of mathematics and related sciences. One of them, which has been in
recent years of interest to general topologists, is its decomposition. The decomposition
of continuity has been studied by many authors. The class of e-open sets is contains all
δ-preopen [15] sets and δ-semiopen [14] sets. In this paper, we introduce the notation
of e-I-open sets which is a generalization of semi∗-I-open sets [8] and pre∗-I-open
[5] sets is introduced, and strong B∗I -set to obtain a decomposition of continuing via
idealization. Additionally, we investigate properties of e-I-open sets and strong B∗I -
set. Also we studied some more properties of e-I-open sets and obtained several
characterizations of e-I-continuous functions and investigate their relationship with
other types of functions.
A subset A of a space (X, τ) is said to be regular open (resp. regular closed) [23] if
A = Int(Cl(A)) (resp.A = Cl(Int(A))). A is called δ-open [26] if for each x ∈ A,
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there exist a regular open set G such that x ∈ G ⊂ A. The complement of δ-open set
is called δ-closed. A point x ∈ X is called a δ-cluster point of A if Int(Cl(U))∩A 6= ∅
for each open set U containing x. The set of all δ-cluster points of A is called the
δ-closure of A and is denoted by Clδ(A) [26]. The set δ-interior of A [26] is the union
of all regular open sets of X contained in A and its denoted by Intδ(A). A is δ-open
if Intδ(A) = A. The collection of all δ-open sets of (X, τ) is denoted by δO(X) and
forms a topology τ δ. The topology τ δ is called the semi regularization of τ and is
denoted by τs.

An ideal I on a topological space (X, τ) is a nonempty collection of subsets of X
which satisfies the following conditions:
A ∈ I and B ⊂ A implies B ∈ I; A ∈ I and B ∈ I implies A∪B ∈ I. Applications
to various fields were further investigated by Jankovic and Hamlett [11] Dontchev et
al. [3]; Mukherjee et al. [13]; Arenas et al. [2]; et al. Nasef and Mahmoud [18], etc.
Given a topological space (X, τ) with an ideal I on X and if ℘(X) is the set of all
subsets of X, a set operator (.)

∗
: ℘(X)→ ℘(X), called a local function [24, 11] of A

with respect to τ and I is defined as follows: for A ⊆ X,

A∗(I, τ) = {x ∈ X | U ∩A /∈ I for every U ∈ τ(x)}

where τ(x) = {U ∈ τ | x ∈ U}. A Kuratowski closure operator Cl∗(x) = A∪A∗(I, τ).
When there is no chance for confusion, we will simply write A∗ for A∗(I, τ). X∗ is
often a proper subset of X.

A subset A of an ideal space (X, τ) is said to be R-I-open (resp. R-I-closed) [28]
if A = Int(Cl∗(A)) (resp.A = Cl∗(Int(A)). A point x ∈ X is called δ − I-cluster
point of A if Int(Cl∗(U)) ∩ A 6= ∅ for each open set U containing x. The family of
all δ-I-cluster points of A is called the δ-I-closure of A and is denoted by δClI(A).
The set δ-I-interior of A is the union of all R-I-open sets of X contained in A and
its denoted by δIntI(A). A is said to be δ-I-closed if δClI(A) = A [28].

Definition 1.1. A subset A of a topological space X is called

1. β-open [1] if A ⊂ Cl(Int(Cl(A))).

2. α-open [19] if A ⊂ Int(Cl(Int(A))).

3. t-set [22] if Int(A) = Int(Cl(A)).

4. e-open set [7] if A ⊂ Int(δCl(A)) ∪ Cl(δInt(A)).

5. strongly B-set [7] if A = U ∩ V where U is an open set and V is a t-set and
Int(Cl(A)) = Cl(Int(A)).

6. δ-preopen [15] if A ⊂ Int(δCl(A)).

7. δ-semiopen [14] if A ⊂ Cl(δInt(A)).

8. a-open [4] if A ⊂ Int(Cl(δInt(A))).
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The class of all δ-preopen (resp. δ-semiopen, a-open) sets of (X, τ) is denoted by
δPO(X) (resp. δSO(X), aO(X)).

Definition 1.2. A subset A of an ideal topological space (X, τ, I) is called

1. δα-I-open [8] if A ⊂ Int(Cl(δIntI(A))).

2. semi∗-I-open [8] if A ⊂ Cl(δIntI(A)).

3. pre∗-I-open [5] if A ⊆ Int(δClI(A)).

4. Strongly t-I-set [5] if Int(A) = Int(δClI(A)).

5. Strongly B-I-set [5] if A = U ∩ V where U is an open set and V is a Strongly
t-I-set.

6. δβI-open [8] if A ⊂ Int(Cl(δIntI(A))).

7. BI-set [9] if A = U ∩ V where U is an open set and V is a t-I-set.

The class of all semi∗-I-open (resp. pre∗-I-open, δβI -open, δα-I-open) sets of
(X, τ, I) is denoted by S∗IO(X) (resp. P ∗IO(X), δβIO(X), δαIO(X)). [8, 5].

2 e-I-open
Definition 2.1. A subset A of an ideal topological space (X, τ, I) is said to be e-I-
open if A ⊂ Cl(δIntI(A)) ∪ Int(δClI(A)).

The class of all e-I-open sets in X will be denoted by EIO(X, τ).

Proposition 2.2. Let A be an e-I-open such that δIntI(A) = ∅, then A is pre∗-I-
open. For a subset of an ideal topological space the following hold:

1. Every semi∗-I-open is e-I-open,

2. Every pre∗-I-open is e-I-open,

3. Every e-I-open is δβI-open.

Proof. (1) Obvious.
(2) Obvious.
(3) Let A be e-I-open. Then we have

A ⊂ Cl(δIntI(A)) ∪ Int(δClI(A))

⊂ Cl(Int(δIntI(A))) ∪ Int(Int(δClI(A)))

⊂ Cl(Int(δIntI(A)) ∪ Int(δClI(A)))

⊂ Cl[Int(δIntI(A)) ∪ δClI(A)]

⊂ Cl[Int(δClI(A ∪A))]

= Cl(Int(δClI(A))).

This show that A is an δβI -open set.
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Remark 2.3. From above the following implication and none of these implications
is reversible as shown by examples given below

δI open //

��

δα-I-open // semi∗-I-open

��

open

��
pre∗-I-open //

''

e-I-open

ww
δβI-open

Example 2.4. Let X = {a, b, c, d} with a topology τ = {∅, X, {b}, {a, d}, {a, b, d}} and
an ideal I = {∅, {b}}. Then the set A = {b, d} is e-I-open, but is not semi∗-I-open.
Because Cl(δIntI(A))∪ Int(δClI(A)) = Cl(∅)∪ Int(X) = ∅∪X = X ⊃ A and hence
A is e-I-open. Since Cl(δIntI(A)) = Cl(∅) = ∅ + A. So A is not semi∗-I-open.

Example 2.5. Let X = {a, b, c} with a topology τ = {∅, X, {a}, {b}, {a, b}} and an
ideal I = {∅, {b}}. Then the set A = {a, c} is e-I-open, but is not pre∗-I-open. For
Cl(δIntI(A)) ∪ Int(δClI(A)) = Cl({a, b}) ∪ Int({a, c}) = {a, b, c} ∪ {a} = X ⊃ A
and hence A is e-I-open. Since Int(δClI(A)) = Int({a, c}) = {a} + A. Hence A is
not Pre∗-I-open.

Example 2.6. Let X = {a, b, c, d} with a topology τ = {∅, X, {b}, {a, d}, {a, b, d}} and
an ideal I = {∅, {b}}. Then the set A = {a, c} is δβI-open, but is not e-I-open. Since
Cl(δIntI(A))∪Int(δClI(A)) = Cl(∅)∪Int({a, c, d}) = {a, d} + A and hence A is not
e-I-open. For Cl(Int(δClI(A))) = Cl(Int({a, c, d})) = Cl({a, d}) = {a, c, d} ⊇ A.
Hence A is δβI-open.

Proposition 2.7. Let (X, τ, I) be an ideal topological space and let A, U ⊆ X. If A
is e-I-open set and U ∈ τ . Then A ∩ U is an e-I-open.

Proof. By assumption A ⊂ Cl(δIntI(A)) ∪ Int(δClI(A)) and U ⊆ Int(U). Then

A ∩ U ⊂(Cl(δIntI(A)) ∪ Int(δClI(A))) ∩ Int(U)

⊂ (Cl(δIntI(A)) ∩ Int(U)) ∪ (Int(δClI(A)) ∩ Int(U))

⊂ (Cl(δIntI(A)) ∩ Cl(Int(U))) ∪ (Int(δClI(A)) ∩ Cl(Int(U)))

⊂ (Cl(δIntI(A)) ∩ Int(U)) ∪ (Int(Cl(δClI(A)) ∩ Cl(Cl(Int(U)))))

⊂ Cl(δIntI(A ∩ U) ∪ (Int(Cl(δClI(A)) ∩ Cl(Int(U))))

⊂ Cl(δIntI(A ∩ U)) ∪ (Int(Cl(δClI(A)) ∩ Int(U)))

⊂ Cl(δIntI(A ∩ U)) ∪ (Int(δClI(A ∩ U))).

Thus A ∩ U is e-I-open.
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Definition 2.8. A subset A of an ideal topological space (X, τ, I) is said to be e-I-
closed if its complement is e-I-open.

Theorem 2.9. A subset A of an ideal topological space (X, τ, I) is e-I-closed, then
Cl(δIntI(A)) ∩ Int(δClI(A)) ⊂ A.

Proof. Since A is e-I-closed, X − A is e-I-open, from the fact τ∗ finer than τ , and
the fact τ δ ⊂ τ δI we have,

X −A ⊂ Cl(δIntI(X −A)) ∪ Int(δClI(X −A))

⊂ Cl(δInt(X −A)) ∪ Int(δCl(X −A))

= [X − [Cl(δInt(A))]] ∪ [X − [Int(δCl(A))]]

⊂ [X − [Cl(δIntI(A))]] ∪ [X − [Int(δClI(A))]]

= X − [[Cl(δIntI(A))] ∩ [Int(δClI(A))]].

Therefore we obtain [Cl(δIntI(A)) ∩ Int(δClI(A))] ⊂ A.

Corollary 2.10. A subset A of an ideal topological space (X, τ, I) such that X −
[Cl(δIntI(A))] = Int(δClI(X − A)) and X − [Int(δClI(A))] = Cl(δIntI(X − A)).
Then A is e-I-closed if and only if [Cl(δIntI(A)) ∩ Int(δClI(A))] ⊂ A.

Proof. Necessity : This is immediate consequence of Theorem 2.9
Sufficiency : Let [Cl(δIntI(A)) ∩ Int(δClI(A))] ⊂ A. Then

X −A ⊂ X − [Cl(δIntI(A)) ∩ Int(δClI(A))]

⊂ [X − [Cl(δIntI(A))]] ∪ [X − [Int(δClI(A))]]

= Cl(δIntI(X −A)) ∪ Int(δClI(X −A))

Thus X −A is e-I-open and hence A is e-I-closed.

If (X, τ, I) is an ideal topological space and A is a subset of X, we denote by I|A.
If (X, τ, I) relative ideal on A and I|A = {A ∩ I : I ∈ I} is obviously an ideal on A.

Lemma 2.11. [11] Let (X, τ, I) be an ideal topological space and A, B subsets of X
such that B ⊂ A. Then B∗(τ |A, I|A) = B∗(τ, I) ∩A.

Proposition 2.12. Let (X, τ, I) be ideal topological space and let A, U ⊆ X. If A is
an e-I-open set and U ∈ τ . Then A ∩ U ∈ EIO(U, τ |U , I|U ).

Proof. Straight forward from Proposition 2.7

Theorem 2.13. If A ∈ EIO(X, τ, I) and B ⊂ τ , then A ∩B ∈ EIO(X, τ, I).
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Proof. Let A ∈ EIO(X, τ, I) and B ⊂ τ then A ⊂ Cl(δIntI(A)) ∪ Int(δClI(A)) and

A ∩B ⊂ [Cl(δIntI(A)) ∪ Int(δClI(A))] ∩B
⊂ [Cl(δIntI(A)) ∩B] ∪ [Int(δClI(A)) ∩B]

⊂ [Cl(δIntI(A ∩B))] ∪ [Int(δClI(A ∩B))].

This proof come from the fact δIntI(A) is the union of all R-I-open of X contained
in A. Then

A = Int(Cl∗(A))⇒ A ∩B = Int(Cl∗(A)) ∩B
= Int(A∗ ∪A) ∩B
= Int[(A ∩B) ∪ (A∗ ∩B)]

⊂ Int[Cl∗(A ∩B)] = A ∩B

Hence Cl(δIntI(A)) ∩B ⊂ Cl(δIntI(A ∩B)), and other part is obvious.

Proposition 2.14. for any ideal topological space (X, τ, I) and A ⊂ X we have:

1. If I = ∅, then A is e-I-open if and only if A is e-open.

2. If I = ℘(X), then A is e-I-open if and only if A ∈ τ .

3. If I = N , then A is e-I-open if and only if A is e-open.

Proof. (1) Let I = ∅ and A ⊂ X. We have δClI(A)) = δCl(A)), δIntI(A)) =
δInt(A)) and A∗ = Cl(A). on other hand, Cl∗(A) = A∗ ∪ A = Cl(A). Hence
A∗ = Cl(A) = Cl∗(A). Since A is e-I-open

A ⊂ Cl(δIntI(A)) ∪ Int(δClI(A))=Cl(δInt(A)) ∪ Int(δCl(A))

Thus, A is e-open.
Conversely, let A is e-open. Since I = ∅, then

A ⊂ Cl(δInt(A)) ∪ Int(δCl(A))=Cl(δIntI(A)) ∪ Int(δClI(A))

Thus A is e-I-open.
(2) Let I = P (X) and A ⊂ X. We have A∗ = ∅. Since δIntI(A)) is the union of all
R-I-open contained in A, since A∗ = ∅, then Int(A) = A, and δClI(A) is the family
of all δ-I- cluster points of A, since A∗ = ∅, then Int(A) ∩A 6= ∅ On other hand

A ⊂ Cl(δIntI(A)) ∪ Int(δClI(A))

= Cl(Int(A)) ∪ Int(Cl(A))

⊂ Int(Cl(Int(A))) ∪ Int(Cl(A))

= Int(Cl(Int(A)) ∪ Int(Cl(A)))

⊂ Int(Cl(Int(A) ∪ Cl(A)))

⊂ Int(Cl(Cl(A ∪A)

⊂ Int(Cl(A ∪A) = Int(Cl(A)).
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This show A ∈ τ .
Conversely, It is shown in Remark 2.3 .
(3) Every e-I-open is e-open.
Let A be e-I-open then, A ⊂ Cl(δIntI(A)) ∪ Int(δClI(A)). by using this fact A∗ =
Cl(A) = Cl∗(A), we have δClI(A) = δCl(A), δIntI(A) = δInt(A), since δClI(A) is
the familly of all δ-I-cluster point of A, and δIntI(A) the union of all R-I-open set
of X we have respectively,

∅ 6= Int(Cl∗(U)) ∩A = Int(U∗ ∪ U) ∩A = Int(Cl(U) ∪ U) ∩A
= Int(Cl(U)) ∩A 6= ∅

From this we get δClI(A) = δCl(A), and

A = Int(Cl∗(A)) = Int(A∗ ∪A) = Int[Cl(A) ∪A]

= Int(Cl(A)) = A

From this we get δIntI(A) = δInt(A). This show that

A ⊂ Cl(δIntI(A)) ∪ Int(δClI(A)) ⊂ Cl(δInt(A)) ∪ Int(δCl(A))

Hence (3) is proved
Let us consider I = N and A is e-open
If I = N then A∗ = Cl∗(Int(Cl∗A)).
Since A is e-open then A ⊂ Cl(δInt(A)) ∪ Int(δCl(A)). Then

∅ 6= Int(Cl(U)) ∩A = Int(U ∪ U) ∩A = Int(Cl(Int(Cl(U)) ∪ U) ∩A
⊂ Int(Cl∗(Int(Cl∗(U))) ∪ U) ∩A = Int(U∗ ∪ U) ∩A = Int(Cl∗(U)) ∩A 6= ∅

From this we get δCl(A) ⊂ δClI(A), and

A = Int(Cl(A)) = Int(A ∪A) = Int[Cl(Int(Cl(A))) ∪A]

⊂ Int[Cl∗(Int(Cl∗(A))) ∪A] = Int(A∗ ∪A) = Int(Cl∗(A)) = A

From this we get δInt(A) ⊂ δIntI(A).
A is e-I-open. Hence the proof.

Proposition 2.15. 1. The union of any family of e-I-open sets is an e-I-open
set.

2. The intersection of even two e-I-open open sets need not to be e-I-open as
shown in the following example.

Proof. (1) Let {Aα/α ∈ ∆} be a family of e-I-open set,
Aα ⊂ Cl(δIntI(Aα)) ∪ Int(δClI(Aα))
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Hence

∪αAα ⊂ ∪α[Cl(δIntI(Aα)) ∪ Int(δClI(Aα))]

⊂ ∪α[Cl(δIntI(Aα))] ∪ ∪α[Int(δClI(Aα))]

⊂ [Cl(∪α(δIntI(Aα))] ∪ [Int(∪α(δClI(Aα))]

⊂ [Cl(∪α(δIntI(Aα))] ∪ [Int(∪α(δClI(Aα))]

⊂ [Cl(δIntI(∪αAα))] ∪ [Int(δClI(∪αAα))].

∪αAα is e-I-open.

Example 2.16. Let X = {a, b, c, d} with a topology τ = {∅, X, {a}, {b, d}, {a, b, d}}
and I = {Ø, {c}, {d}, {c, d}}. Then the set A = {a, c} and A = {b, c} are e-I-
open, but A ∩ B = {c} is not e-I-open. Since {b, c} and {b, c} ⊂ Cl(δIntI(A)) ∪
Int(δClI(A)). For Cl(δIntI(A)) ∪ Int(δClI(A)) = Cl(∅) ∪ Int({c, d}) = Cl(∅) ∪ ∅ =
∅ + {c}. So A ∩B * Cl(δIntI(A ∩B)) ∪ Int(δClI(A ∩B)).

Definition 2.17. Let A be a subset of X.

1. The intersection of all e-I-closed containing A is called the e-I-closure of A and
its denoted by Cl∗e(A),

2. The e-I-interior of A, denoted by Int∗e(A), is defined by the union of all e-I-open
sets contained in A.

Proposition 2.18. Let (X, τ, I) be an ideal topological space. Then if A ∈ EIO(X, τ)
and B ∈ τa, then A ∩B ∈ eO(X, τ).

Proof. Let A ∈ EIO(X, τ), i.e., A ⊂ Cl(δIntI(A)) ∪ Int(δClI(A)) and B ∈ τa, i.e.,
B ⊂ Int(Cl(δInt(B))). Then

A ∩B ⊂ Cl(δIntI(A)) ∪ Int(δClI(A)) ∩ Int(Cl(δInt(B)))

= [Cl(δIntI(A)) ∩ Int(Cl(δInt(B)))] ∪ [Int(δClI(A)) ∩ Int(Cl(δInt(B)))]

⊂ [Cl(Cl(δIntI(A))) ∩ Cl(Cl(δInt(B)))] ∪ [Int(δClI(A)) ∩ Cl(δInt(B))]

⊂ [Cl(Cl(δIntI(A)) ∩ Cl(δInt(B)))] ∪ [Int(Cl(δClI(A)) ∩ Cl(δInt(B)))]

⊂ [Cl(Cl(δIntI(A) ∩ δInt(B))] ∪ [Int(Cl(δClI(A) ∩ δInt(B)))]

⊂ [Cl(δIntI(A ∩ δInt(B)))] ∪ [Int(δClI(δClI(A ∩B)))]

⊂ [Cl(δInt(A ∩B))] ∪ [Int(δCl(A ∩B))].

Then A ∩B ∈ eO(X, τ) .

Remark 2.19. 1. Let A be a subset of an ideal topological space (X, τ, I). Then
A is e-I-closed if and only if Cl∗e(A) = A,

2. Let B be a subset of an ideal topological space (X, τ, I). Then B is e-I-open if
and only if Int∗e(B) = B,
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Proposition 2.20. Let A, B be a subsets of an ideal topological space (X, τ, I) such
that A is e-I-open and B is e-I-closed in X. Then there exist e-I-open set H and
e-I-closed set K such that A ∩B ⊂ H and K ⊂ A ∪B.

Proof. Let K = Cl∗e(A) ∩ B and H = A ∪ Int∗e(B). Then, K is e-I-closed and H is
e-I-open. A ⊂ Cl∗e(A) implies A ∩ B ⊂ Cl∗e(A) ∩ B = K and Int∗e(B) ⊂ B implies
A ∪ Int∗e(B) = H ⊂ A ∪B.

Definition 2.21. 1. A subset S of an ideal topological space (X, τ, I) is called e-
dense if Cle(S) = X, where Cle(S) [7] (Def 2.9) is the smallest e-closed sets
containing S,

2. A subset S of an ideal topological space (X, τ, I) is called e-I-dense if Cl∗e(S) =
X.

3 strong B∗I-set
Definition 3.1. Let (X, τ, I) be an ideal topological space. A subset A of X is
called strong B∗I -set if A = U ∩ V , where U ∈ τ and V is a strongly t-I-set and
Int(δClI(V )) = Cl(δIntI(V )).

Proposition 3.2. Let (X, τ, I) be an ideal topological space and A be a subset of X.
The following hold:

1. If A is strong B∗I -set, then A is a BI-set,

2. If A is strongly t-I-set, then A is a t-I-set.

Proof. 1. It follows from the fact every strongly t-I-set is t-I-set, the proof is
obvious.

2. It follows from ([5] Theorem 21 (3)).

Remark 3.3. The following diagram holds for a subset A of a space X:

open // strong B∗I -set // BI-set

strongly tI-set //

OO

tI-set

OO

Remark 3.4. The converses of proposition 3.2 (1), (2) need not to be true as the
following examples show.
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Example 3.5. Let X = {a, b, c, d} with a topology τ = {∅, X, {a} , {a, c} , {a, b, c}}
and an ideal I = {Ø, {c} , {a, c}}. Then the set A = {a, c} is BI-set, but not a
strong B∗I -set and hence A is a tI-set but not strongly t-I-set. For Int(Cl∗(A)) =
Int({a, c}) = {a} = Int(A) and hence A is a tI-set. It is obvious that A is a BI-
set. But Int(δClI(A)) = Int({X}) = X and Cl(δIntI(A)) = Cl({a}) = {a, d} i.e
Int(δClI(A)) 6= Cl(δIntI(A)). So A is not strong B∗I -set.

Example 3.6. Let X = {a, b, c, d} with a topology τ = {∅, X, {b} , {b, c} , {b, c, d}}
and an ideal I = {Ø, {b} , {c} , {b, c}}. Then the set A = {b, c} is strong B∗I -set,
but not a strongly t-I-set. Int(δClI(A)) = Int({X}) = X and Cl(δIntI(A)) =
Cl({b, c}) = {X} i.e Int(δClI(A)) = Cl(δIntI(A)). So A is strong B∗I -set. But,
Int(δClI(A)) = Int({X}) = X 6= Int(A). Therefor A is not a strongly t-I-set.

Proposition 3.7. Let A be subset of an ideal topological space (X, τ, I). Then the
following condition are equivalent:

1. A is open.

2. A is e-I-open and strong B∗I -set.

Proof. (1)⇒(2): By Remark 2.3 and Remark 3.3, every open set is e-I-open. On
other hand every open set is strongly B∗I -set.
(2)⇒(1): Let A is e-I-open and strong B∗I -set. Then A ⊂ Cl(δIntI(A))∪Int(δClI(A))
= Cl(δIntI(U ∩ V )) ∪ Int(δClI(U ∩ V )), where U is open and V is strongly t-I-set
and Int(δClI(V )) = Int(V ), Int(δClI(V )) = Cl(δIntI(V )). Hence

A ⊂ [Int(δClI(U)) ∩ Int(δClI(V ))] ∪ [Cl(δIntI(U)) ∩ Cl(δIntI(V ))]

= [U ∩ Int(δClI(V ))] ∪ [U ∩ Cl(δIntI(V ))]

⊂ [U ] ∩ [Int(δClI(V )) ∪ Cl(δIntI(V ))]

⊂ [U ] ∪ [Int(δClI(V )) ∩ Int(δIntI(V ))]

⊂ [U ] ∪ [Int(δClI(V ))]

⊂ U ∪ Int(V ) = Int(A).

On other hand, we have U ∩ Int(V ) ⊂ U ∩ V = A. Thus, A = U ∩ Int(V ) and A is
open.

4 decomposition of continuity

Definition 4.1. [7] A function f : (X, τ) −→ (Y, σ) is said to be e-continuous if for
each open set V of (Y, σ), f−1(V ) is e-open.

Definition 4.2. A function f : (X, τ, I) −→ (Y, σ) is said to be e-I-continuous (resp.
pre∗-I-continuous [5], strong B∗I -continuous ) if for each open set V of (Y, σ), f−1(V )
is e-I-open (resp. pre∗-I-open, strong B∗I -set) in (X, τ, I).

Definition 4.3. A function f : (X, τ, I) −→ (Y, σ) is said to be semi∗-I-continuous
if for each open set V of (Y, σ), f−1(V ) is semi∗-I-open in (X, τ, I).
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Proposition 4.4. If a function f : (X, τ, I) −→ (Y, σ) is semi∗-I-continuous (pre∗-
I-continuous), then f is e-I-continuous.

Proof. This is immediate consequence of Proposition 2.2 (2) and (3).

Proposition 4.5. If a function f : (X, τ, I) −→ (Y, σ) is strong B∗I -continuous, then
f is BI-continuous

Proof. This is immediate consequence of Proposition 3.2 (1).

Theorem 4.6. For a function f : (X, τ, I) → (Y, σ). Then the following properties
are equivalent,

1. f is continuous.

2. f is e-I-continuous and strong B∗I -continuous.

Proof. This is immediate consequence of Proposition 3.7.

5 e-I- continuous mappings

Definition 5.1. 1. A function f : (X, τ) −→ (Y, σ) is called δ-almost-continuous
if the inverse image of each open set in Y is δ-preopen set in X [15].

2. A function f : (X, τ, I) −→ (Y, σ) is called δ-semicontinuous if the inverse
image of each open set in Y is δ-semiopen set in X [6].

3. A function f : (X, τ, I) −→ (Y, σ) is called be a-continuous if for each open set
V of (Y, σ), f−1(V ) is a-open [4].

4. A function f : (X, τ, I) −→ (Y, σ) is called δα-I-continuous if for each δI-open
set V of (Y, σ), f−1(V ) is δα-I-open [8].

Definition 5.2. [16] Let (X, τ) be topological space and A ⊆ X. Then the set
∩{U ∈ τ : A ⊂ U} is called the kernel of A and denoted by Ker(A).

Lemma 5.3. [10] Let (X, τ) be topological space and A ⊆ X.

1. x ∈ Ker(A) if and only if A ∩ F 6= ∅ for any closed subset of X with x ∈ F ,

2. A ⊂ Ker(A) and A = Ker(A) if A is open in X,

3. if A ⊂ B, then Ker(A) ⊂ Ker(B).

Definition 5.4. Let N be a subset of a space (X, τ, I), and let x ∈ X. Then N
is called e-I-neighborhood of x, if there exist e-I-open set U containing x such that
U ⊂ N .

Theorem 5.5. The following statement are equivalent for a function f : (X, τ, I) −→
(Y, σ):
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1. f is e-I-continuous,

2. for each x ∈ X and each open set V in Y with f(x) ∈ V , there exist e-I-open
set U containing x such that f(U) ⊂ V ,

3. for each x ∈ X and each open set V in Y with f(x) ∈ V , f−1(V ) is e-I-
neighborhood of x,

4. for every subset A of X, f(Int∗e(A)) ⊂ Ker(f(A)),

5. for every subset B of Y , Int∗e(f
−1(B)) ⊂ f−1(Ker(B)).

Proof. (1)⇒(2): Let x ∈ X and let V be an open set in Y such that f(x) ∈ V . Since
f is e-I-continuous, f−1(V ) is e-I-open. By butting U = f−1(V ) which is containing
x, we have f(U) ⊂ V .
(2)⇒(3): Let V be an open set in Y such that f(x) ∈ V . Then by (2) there exists
a e-I-open set U containing x such that f(U) ⊂ V . So x ∈ U ⊂ f−1(V ). Hence
f−1(V ) is e-I-neighborhood of x.
(3)⇒(1): Let V be an open set in Y such that f(x) ∈ V . Then by (3), f−1(V ) is
e-I–neighborhood of x. Thus for each x ∈ f−1(V ), there exists a e-I-open set Ux
containing x such that x ∈ Ux ⊂ f−1(V ). Hence f−1(V ) ⊂

⋃
x∈f−1(V ) Ux and so

f−1(V ) ∈ EIO(X, τ).
(1)⇒(5): Let A be any subset of X. Suppose that y /∈ Ker(A). Then, by Lemma 5.3,
there exists a closed subset F of Y such that y ∈ F and f(A) ∩ F = ∅. Thus we have
A∩f−1(F ) = ∅ and (Int∗e(A))∩f−1(F ) = ∅. Therefore, we obtain f(Int∗e(A))∩(F ) =
∅ and y /∈ f(Int∗e(A)). This implies that f(Int∗e(A)) ⊂ Ker(f(A))
(5)⇒(6): Let B be any subset of Y . By (5) and Lemma 5.3, we have f(Int∗e(f

−1(B)))
⊂ Ker(f(f−1(B))) ⊂ Ker(B) and Int∗e(f

−1(B)) ⊂ f−1(Ker(B)).
(6)⇒(1): Let V be any subset of Y . By (6) and Lemma 5.3, we have Int∗e(f

−1(V ))
⊂ f−1(Ker(V ))=f−1(V ) and Int∗e(f

−1(V ))=f−1(V ). This shows that f−1(V ) is
e-I-open.

The following examples show that e-I-continuous functions do not need to be
semi∗-I-continuous and pre∗-I-continuous, and e-continuous function does not need
to be e-I-continuous.

Example 5.6. Let X = Y = {a, b, c, d} be a topology space by setting τ = σ =
{∅, X, {a} , {d} , {a, d}} and I = {∅, {c}} on X. Define a function f : (X, τ, I) −→
(Y, σ) as follows f(a) = f(c) = d and f(b) = f(d) = b. Then f is e-I-continuous but
it is not pre∗-I-continuous.

Example 5.7. Let X = Y = {a, b, c} be a topology space by setting τ = σ =
{∅, X, {a, b}} and I = {∅, {c}} on X. Define a function f : (X, τ, I) −→ (Y, σ)
as follows f(a) = a, f(b) = c, f(c) = b. Then f is e-I-continuous but it is not
semi∗-I-continuous.

Example 5.8. Let (X, τ) be the real line with the indiscrete topology and (Y, τ)
the real line with the usual topology and I = {∅}. Then the identity function f :
(X, τ, I) −→ (Y, σ) is e-continuous but not e-I-continuous.
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Proposition 5.9. Let f : (X, τ, I) −→ (Y, σ,J ) and g : (Y, σ,J ) −→ (Z, ρ) be
two functions, where I and J are ideals on X and Y , respectively. Then g ◦ f is
e-I-continuous if f is e-I-continuous and g is continuous.

Proof. The proof is clear.

Proposition 5.10. Let f : (X, τ, I) −→ (Y, σ) be e-I-continuous and U ∈ τ . Then
the restriction f|U : (X, τ|U , I|U ) −→ (Y, σ) is e-I-continuous.

Proof. Let V be any open set of (Y, σ). Since f is e-I-continuous, f−1(V ) ∈
EIO(X, τ) and by Lemma 2.11, f−1|U (V ) = f−1(V ) ∩ U ∈ EIO(U, I|U ). This shows

that f|U : (X, τ|U , I|U ) −→ (Y, σ) is e-I-continuous.

Theorem 5.11. Let f : (X, τ, I) −→ (Y, σ) be a function and let {Uα : α ∈ ∆} be
an open cover of X. If the the restriction function f |Uα is e-I-continuous for each
α ∈ ∆, then f is e-I-continuous.

Proof. The proof is similar to that of Theorem 5.10

Lemma 5.12. [20] For any function f : (X, τ, I) −→ (Y, σ,J ), f(I) is an ideal on
Y .

Definition 5.13. [20, 21] A subset A of an ideal topological space (X, τ, I) is said to
be I-compact if for every τ -open cover {ωα : α ∈ ∆} of A, there exists a finite subset
∆o of ∆ such that (X − ∪{ωα : α ∈ ∆}) ∈ I.

Definition 5.14. An ideal topological space (X, τ, I) is said to be e-I-compact if for
every e-I-open cover {ωα : α ∈ ∆} of X, there exists a finite subset ∆o of ∆ such
that (X − ∪{ωα : α ∈ ∆}) ∈ I.

Theorem 5.15. The image of e-I-compact space under e-I-continuous surjective
function is f(I)-compact.

Proof. Let f : (X, τ, I) −→ (Y, σ) be a e-I-continuous surjection and {Vα : α ∈ ∆}
be an open cover of Y . Then

{
f−1(Vα) : α ∈ ∆

}
is a e-I-open cover of X due to our

assumption on f . Since X is e-I-compact, then there exists a finite subset ∆o of ∆
such that (X −∪

{
f−1(Vα) : α ∈ ∆o

}
) ∈ I. Therefore (Y −∪{Vα : α ∈ ∆o}) ∈ f(I),

which shows that (Y, σ, f(I)) is f(I)-compact.

Theorem 5.16. A e-I-continuous image of an e-I-connected space is connected.

Proof. Let f : (X, τ, I) −→ (Y, σ) is e-I-continuous function of e-I–connected space
X onto a topological space Y . If possible, let Y be disconnected. Let A and B form
a disconnected set of Y . Then A and B are clopen and Y = A∪B, where A∩B = ∅
. Since f is e-I-continuous, X = f−1(Y ) = f−1(A ∪ B) = ∅, where f−1(A) and
f−1(B) are nonempty e-I-open sets in X. Also f−1(A) ∩ f−1(B) = ∅. Hence X is
non e-I-connected, which is contradiction. Therefore, Y is connected.
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Definition 5.17. A function f : (X, τ, I) −→ (Y, σ,J ) is called e-J -open (resp.,
e-J -closed) if for each U ∈ τ (resp., closed set M in X), f(U) (resp., f(M)) is e-
J -open (resp., e-J -closed)

Remark 5.18. Every e-I-open (resp., e-I-closed) function is e-open (resp., e-closed)
and the converses are false in general.

Example 5.19. Let X = {a, b, c} be a topology space by setting τ1 = {∅, X, {b, c}}
and τ2 = {∅, X, {a, b}, {b}, {a}} and an ideal I = {∅, {a}}. Then the identity function
f : (X, τ1) −→ (X, τ2, I) is e-open but not e-I-open.

Example 5.20. Let X = {a, b, c} be a topology space by setting τ1 = {∅, X, {a}} and
τ2 = {∅, X, {b, c}, {b}, {c}} and an ideal I = {∅, {c}}. Defined function f : (X, τ1) −→
(X, τ2, I) as follows:f(a) = a, f(b) = f(c) = b. Then f is e-closed but not e-I-closed.

Theorem 5.21. A function f : (X, τ, I) −→ (Y, σ,J ) is e-J -open if and only if for
each x ∈ X and each neighborhood U of x, there exists V ∈ EJO(Y, σ) containing
f(x) such that V ⊂ f(U).

Proof. Suppose that f is a e-J -open function. For each x ∈ X and each neighborhood
U of x, there exists Uo ∈ τ such that x ∈ Uo ⊂ U . Since f is e-J -open, V = f(Uo) ∈
EJO(Y, σ) and f(x) ∈ V ⊂ f(U). Conversely, let U be an open set of (X, τ). For
each x ∈ U , there exists Vx ∈ EJO(Y, σ) such that f(x) ∈ Vx ⊂ f(U). Therefore
we obtain f(U) =

⋃
{Vx : x ∈ U} and hence by Proposition 2.7, f(U) ∈ EJO(Y, σ).

This shows that f is e-J -open.

Theorem 5.22. A function f : (X, τ, I) −→ (Y, σ,J ) be e-J -open (resp., e-J -
closed). If W is any subset of Y and F is a closed (resp., open) set of X containing
f−1(W ), then there exists e-J -closed (resp., e-J -open) subset H of Y containing W
such that f−1(W ) ⊂ F .

Proof. Suppose that f is e-J -open function. Let W be any subset of Y and F a
closed subset of X containing f−1(W ). Then X − F is open and since f is e-J -
open, f(X − F ) e-J -open. Hence H = Y − f(X − F ) is e-J -closed. It follows from
f−1(W ) ⊂ F that W ⊂ H. Moreover, we obtain f−1(H) ⊂ F . For e-J -closed
function.

Theorem 5.23. For any objective function f : (X, τ) −→ (Y, σ,J ), the following are
equivalent:

1. f−1 : (Y, σ,J ) −→ (X, τ) is e-J -continuous,

2. f is e-J -open,

3. f is e-J -closed,

Proof. It is straightforward.

Definition 5.24. A space (X, τ) is called
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1. e-space if every e-open set of X is open in X.

2. submaximal if every dense subset of X is open in X [17].

3. extremely disconnected if the closure of every open set of X is open in X [27].

Corollary 5.25. If a function f : (X, τ, I) −→ (Y, σ) is continuous, then f is e-I-
continuous.

Corollary 5.26. If (X, τ) is extremely disconnected and submaximal, then for any
ideal I on X, P ∗IO(X, τ) = S∗IO(X, τ) = δSO(X, τ) = δPO(X, τ) = δαIO(X, τ) =
aO(X, τ) = τ .

Corollary 5.27. If (X, τ) is e-space, then for any ideal I on X, EIO(X, τ) =
eO(X, τ) = P ∗IO(X, τ) = S∗IO(X, τ) = δSO(X, τ) = δPO(X, τ) = δαIO(X, τ) =
aO(X, τ) = τ .

Corollary 5.28. Let f : (X, τ, I) −→ (Y, σ) be a function and let (X, τ) be e-space,
then the following are equivalent:

1. f is e-I-continuous,

2. f is e-continuous,

3. f is pre∗-I-continuous,

4. f is δ-almostcontinuous,

5. f is semi∗-I-continuous,

6. f is δ-semicontinuous,

7. f is δα-I-continuous,

8. f is δα-continuous,

9. f is continuous,
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On some differential sandwich

theorems using an extended

generalized Sălăgean operator and

extended Ruscheweyh operator

Loriana Andrei

Abstract: In this work we define a new operator using the ex-
tended generalized Sălăgean operator and extended Ruscheweyh oper-
ator. Denote by DR

m,n
λ the Hadamard product of the extended gen-

eralized Sălăgean operator Dm
λ and extended Ruscheweyh operator Rn,

given by DR
m,n
λ : A∗

ζ → A∗

ζ , DR
m,n
λ f (z, ζ) = (Dm

λ ∗Rn) f (z, ζ) and

A∗

nζ = {f ∈ H(U ×U), f(z, ζ) = z+an+1 (ζ) z
n+1+ . . . , z ∈ U, ζ ∈ U} is

the class of normalized analytic functions with A∗

1ζ = A∗

ζ . The purpose of
this paper is to introduce sufficient conditions for strong differential sub-
ordination and strong differential superordination involving the operator
DR

m,n
λ and also to obtain sandwich-type results.

AMS Subject Classification: 30C45
Keywords and Phrases: analytic functions, differential operator, differential subordi-
nation, differential superordination.

1 Introduction

Denote by U the unit disc of the complex plane U = {z ∈ C : |z| < 1}, U = {z ∈
C : |z| ≤ 1} the closed unit disc of the complex plane and H(U × U) the class of
analytic functions in U × U .

Let

A∗

nζ = {f ∈ H(U × U), f(z, ζ) = z + an+1 (ζ) z
n+1 + . . . , z ∈ U, ζ ∈ U},

with A∗

1ζ = A∗

ζ , where ak (ζ) are holomorphic functions in U for k ≥ 2, and

H∗[a, n, ζ] = {f ∈ H(U × U), f(z, ζ) = a + an (ζ) z
n + an+1 (ζ) z

n+1 + . . . , z ∈ U,

ζ ∈ U}, for a ∈ C and n ∈ N, ak (ζ) are holomorphic functions in U for k ≥ n.
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Generalizing the notion of differential subordinations, J.A. Antonino and S. Roma-
guera have introduced in [17] the notion of strong differential subordinations, which
was developed by G.I. Oros and Gh. Oros in [18].

Definition 1.1 [18] Let f (z, ζ), H (z, ζ) analytic in U × U. The function f (z, ζ) is
said to be strongly subordinate to H (z, ζ) if there exists a function w analytic in U ,
with w (0) = 0 and |w (z)| < 1 such that f (z, ζ) = H (w (z) , ζ) for all ζ ∈ U . In such
a case we write f (z, ζ) ≺≺ H (z, ζ) , z ∈ U, ζ ∈ U.

Remark 1.1 [18] (i) Since f (z, ζ) is analytic in U ×U , for all ζ ∈ U, and univalent
in U, for all ζ ∈ U , Definition 1.1 is equivalent to f (0, ζ) = H (0, ζ) , for all ζ ∈ U,

and f
(

U × U
)

⊂ H
(

U × U
)

.

(ii) If H (z, ζ) ≡ H (z) and f (z, ζ) ≡ f (z) , the strong subordination becomes the
usual notion of subordination.

As a dual notion of strong differential subordination G.I. Oros has introduced and
developed the notion of strong differential superordinations in [19].

Definition 1.2 [19] Let f (z, ζ), H (z, ζ) analytic in U × U. The function f (z, ζ) is
said to be strongly superordinate to H (z, ζ) if there exists a function w analytic in U ,
with w (0) = 0 and |w (z)| < 1, such that H (z, ζ) = f (w (z) , ζ) , for all ζ ∈ U . In
such a case we write H (z, ζ) ≺≺ f (z, ζ) , z ∈ U, ζ ∈ U.

Remark 1.2 [19] (i) Since f (z, ζ) is analytic in U ×U , for all ζ ∈ U, and univalent
in U, for all ζ ∈ U , Definition 1.2 is equivalent to H (0, ζ) = f (0, ζ) , for all ζ ∈ U,

and H
(

U × U
)

⊂ f
(

U × U
)

.

(ii) If H (z, ζ) ≡ H (z) and f (z, ζ) ≡ f (z) , the strong superordination becomes
the usual notion of superordination.

Definition 1.3 [1] We denote by Q∗ the set of functions that are analytic and injec-
tive on U × U\E (f, ζ), where E (f, ζ) = {y ∈ ∂U : lim

z→y
f (z, ζ) = ∞}, and are such

that f ′

z (y, ζ) 6= 0 for y ∈ ∂U × U\E (f, ζ). The subclass of Q∗ for which f (0, ζ) = a

is denoted by Q∗ (a).

For two functions f(z, ζ) = z +
∑

∞

j=2 aj (ζ) z
j and g(z, ζ) = z +

∑

∞

j=2 bj (ζ) z
j

analytic in U × U , the Hadamard product (or convolution) of f (z, ζ) and g (z, ζ),
written as (f ∗ g) (z, ζ) is defined by

f (z, ζ) ∗ g (z, ζ) = (f ∗ g) (z, ζ) = z +
∞
∑

j=2

aj (ζ) bj (ζ) z
j.

Definition 1.4 ([2]) For f ∈ A∗

ζ , λ ≥ 0 and m ∈ N, the extended generalized
Sălăgean operator Dm

λ is defined by Dm
λ : A∗

ζ → A∗

ζ ,

D0
λf (z, ζ) = f (z, ζ)

D1
λf (z, ζ) = (1− λ) f (z, ζ) + λzf ′

z(z, ζ) = Dλf (z, ζ)

...

Dm+1
λ f(z, ζ) = (1− λ)Dm

λ f (z, ζ) + λz (Dm
λ f (z, ζ))

′

z =Dλ (D
m
λ f (z, ζ)) ,
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for z ∈ U, ζ ∈ U.

Remark 1.3 If f ∈ A∗

ζ and f(z, ζ) = z +
∑

∞

j=2 aj (ζ) z
j, then

Dm
λ f (z, ζ) = z +

∑

∞

j=2 [1 + (j − 1)λ]
m
aj (ζ) z

j, for z ∈ U, ζ ∈ U .

Definition 1.5 ([3]) For f ∈ A∗

ζ , m ∈ N, the extended Ruscheweyh derivative Rm is
defined by Rm : A∗

ζ → A∗

ζ ,

R0f (z, ζ) = f (z, ζ)

R1f (z, ζ) = zf ′

z (z, ζ)

...

(m+ 1)Rm+1f (z, ζ) = z (Rmf (z, ζ))′z +mRmf (z, ζ) ,

z ∈ U, ζ ∈ U.

Remark 1.4 If f ∈ A∗

ζ , f(z, ζ) = z +
∑

∞

j=2 aj (ζ) z
j, then Rmf (z, ζ) = z +

∑

∞

j=2
(m+j−1)!
m!(j−1)! aj (ζ) z

j, z ∈ U, ζ ∈ U.

In order to prove our strong subordination and strong superordination results, we
make use of the following known results.

Lemma 1.1 Let the function q be univalent in U × U and θ and φ be analytic in a
domain D containing q

(

U × U
)

with φ (w) 6= 0 when w ∈ q
(

U × U
)

. Set Q (z, ζ) =
zq′z (z, ζ)φ (q (z, ζ)) and h (z, ζ) = θ (q (z, ζ)) +Q (z, ζ). Suppose that

1. Q is starlike univalent in U × U and

2. Re
(

zh′

z(z,ζ)
Q(z,ζ)

)

> 0 for z ∈ U , ζ ∈ U .

If p is analytic with p (0, ζ) = q (0, ζ), p
(

U × U
)

⊆ D and

θ (p (z, ζ)) + zp′z (z, ζ)φ (p (z, ζ)) ≺≺ θ (q (z, ζ)) + zq′z (z, ζ)φ (q (z, ζ)) ,

then p (z, ζ) ≺≺ q (z, ζ) and q is the best dominant.

Lemma 1.2 Let the function q be convex univalent in U ×U and ν and φ be analytic
in a domain D containing q

(

U × U
)

. Suppose that

1. Re
(

ν′

z(q(z,ζ))
φ(q(z,ζ))

)

> 0 for z ∈ U, ζ ∈ U and

2. ψ (z, ζ) = zq′z (z, ζ)φ (q (z, ζ)) is starlike univalent in U × U .

If p (z, ζ) ∈ H∗ [q (0, ζ) , 1, ζ] ∩Q∗, with p
(

U × U
)

⊆ D and

ν (p (z, ζ)) + zp′z (z)φ (p (z, ζ)) is univalent in U × U and

ν (q (z, ζ)) + zq′z (z, ζ)φ (q (z, ζ)) ≺≺ ν (p (z, ζ)) + zp′z (z, ζ)φ (p (z, ζ)) ,

then q (z, ζ) ≺≺ p (z, ζ) and q is the best subordinant.
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2 Main results

Extending the results from [11] to the class A∗

ζ we obtain:

Definition 2.1 ([12]) Let λ ≥ 0 and n,m ∈ N. Denote by DRm,n
λ : A∗

ζ → A∗

ζ the
operator given by the Hadamard product of the extended generalized Sălăgean operator
Dm

λ and the extended Ruscheweyh operator Rn,

DR
m,n
λ f (z, ζ) = (Dm

λ ∗Rn) f (z, ζ) ,

for any z ∈ U, ζ ∈ U, and each nonnegative integers m,n.

Remark 2.1 If f ∈ A∗

ζ and f(z, ζ) = z +
∑

∞

j=2 aj (ζ) z
j, then

DR
m,n
λ f (z, ζ) = z +

∑

∞

j=2 [1 + (j − 1)λ]m (n+j−1)!
n!(j−1)! a

2
j (ζ) z

j, for z ∈ U, ζ ∈ U .

Remark 2.2 For m = n we obtain the operator DRm
λ studied in [13], [14], [15], [16],

[4], [5], [6].

For λ = 1, m = n, we obtain the Hadamard product SRn [7] of the Sălăgean
operator Sn and Ruscheweyh derivative Rn, which was studied in [8], [9], [10].

Using simple computation one obtains the next result.

Proposition 2.1 For m,n ∈ N and λ ≥ 0 we have For m,n ∈ N and λ ≥ 0 we have

DR
m+1,n
λ f (z, ζ) = (1− λ)DRm,n

λ f (z, ζ) + λz (DRm,n
λ f (z, ζ))

′

z
(2.1)

and

z (DRm,n
λ f (z, ζ))

′

z
= (n+ 1)DRm,n+1

λ f (z, ζ)− nDR
m,n
λ f (z, ζ) . (2.2)

Proof. We have

DR
m+1,n
λ f (z, ζ) = z +

∞
∑

j=2

[1 + (j − 1)λ]m+1 (n+ j − 1)!

n! (j − 1)!
a2j (ζ) z

j

= z +
∞
∑

j=2

[(1− λ) + λj] [1 + (j − 1)λ]m
(n+ j − 1)!

n! (j − 1)!
a2j (ζ) z

j

= z + (1− λ)

∞
∑

j=2

[1 + (j − 1)λ]
m (n+ j − 1)!

n! (j − 1)!
a2j (ζ) z

j

+λ

∞
∑

j=2

[1 + (j − 1)λ]
m (n+ j − 1)!

n! (j − 1)!
ja2j (ζ) z

j

= (1− λ)DRm,n
λ f (z, ζ) + λz (DRm,n

λ f (z, ζ))
′

z
,
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and

(n+ 1)DRm,n+1
λ f (z, ζ)− nDR

m,n
λ f (z, ζ)

= (n+ 1) z + (n+ 1)

∞
∑

j=2

[1 + (j − 1)λ]
m (n+ j)!

(n+ 1)! (j − 1)!
a2j (ζ) z

j

−nz − n

∞
∑

j=2

[1 + (j − 1)λ]
m (n+ j − 1)!

n! (j − 1)!
a2j (ζ) z

j

= z + (n+ 1)

∞
∑

j=2

[1 + (j − 1)λ]
m n+ j

n+ 1

(n+ j − 1)!

n! (j − 1)!
a2j (ζ) z

j

−n

∞
∑

j=2

[1 + (j − 1)λ]
m (n+ j − 1)!

n! (j − 1)!
a2j (ζ) z

j

= z +

∞
∑

j=2

[1 + (j − 1)λ]
m (n+ j − 1)!

n! (j − 1)!
ja2j (z) z

j

= z (DRm,n
λ f (z, ζ))

′

z
.

We begin with the following

Theorem 2.2 Let
DR

m+1,n

λ
f(z,ζ)

DR
m,n

λ
f(z,ζ)

∈ H
(

U × U
)

, z ∈ U, ζ ∈ U , f ∈ A∗

ζ , m,n ∈ N, λ ≥

0 and let the function q (z, ζ) be convex and univalent in U ×U such that q (0, ζ) = 1.
Assume that

Re

(

1 +
α

µ
+

2β

µ
q (z, ζ) +

zq′′
z2 (z, ζ)

q′z (z, ζ)

)

> 0, z ∈ U, ζ ∈ U, (2.3)

for α, β, µ,∈ C,µ 6= 0, z ∈ U, ζ ∈ U, and

ψ
m,n
λ (α, β, µ; z, ζ) :=

(

1− λ(n+ 1)

λ
µ+ α

)

DR
m+1,n
λ f (z, ζ)

DR
m,n
λ f (z, ζ)

(2.4)

+µ(n+ 1) [1− λ(n+ 2)]
DR

m,n+1
λ f (z, ζ)

DR
m,n
λ f (z, ζ)

+λµ(n+ 1)(n+ 2)
DR

m,n+2
λ f (z, ζ)

DR
m,n
λ f (z, ζ)

+ (β −
µ

λ
)

(

DR
m+1,n
λ f (z, ζ)

DR
m,n
λ f (z, ζ)

)2

.

If q satisfies the following strong differential subordination

ψ
m,n
λ (α, β, µ; z, ζ) ≺≺ αq (z, ζ) + β (q (z, ζ))2 + µzq′z (z, ζ) , (2.5)

for, α, β, µ ∈ C, µ 6= 0 then

DR
m+1,n
λ f (z, ζ)

DR
m,n
λ f (z, ζ)

≺≺ q (z, ζ) , z ∈ U, ζ ∈ U, (2.6)



38 L. Andrei

and q is the best dominant.

Proof. Let the function p be defined by p (z, ζ) :=
DR

m+1,n

λ
f(z,ζ)

DR
m,n

λ
f(z,ζ)

, z ∈ U , z 6= 0, ζ ∈ U,

f ∈ A∗

ζ . The function p is analytic in U and p (0, ζ) = 1.
Differentiating with respect to z this function, we get

zp′z (z, ζ) =
z(DR

m+1,n

λ
f(z,ζ))

′

z

DR
m,n

λ
f(z,ζ)

−
DR

m+1,n

λ
f(z,ζ)

DR
m,n

λ
f(z,ζ)

z(DR
m,n

λ
f(z,ζ))

′

z

DR
m,n

λ
f(z,ζ)

By using the identity (2.1) and (2.2), we obtain

zp′z (z, ζ) =
1− λ(n+ 1)

λ

DR
m+1,n
λ f (z, ζ)

DR
m,n
λ f (z, ζ)

+(n+ 1) [1− λ(n+ 2)]
DR

m,n+1
λ f (z, ζ)

DR
m,n
λ f (z, ζ)

+λ(n+ 1)(n+ 2)
DR

m,n+2
λ f (z, ζ)

DR
m,n
λ f (z, ζ)

−
1

λ

(

DR
m+1,n
λ f (z, ζ)

DR
m,n
λ f (z, ζ)

)2

+λ(n+ 1)(n+ 2)
DR

m,n+2
λ f (z, ζ)

DR
m,n
λ f (z, ζ)

−
1

λ

(

DR
m+1,n
λ f (z, ζ)

DR
m,n
λ f (z, ζ)

)2

.(2.7)

By setting θ (w) := αw + βw2 and φ (w) := µ, α, β, µ ∈ C, µ 6= 0 it can be easily
verified that θ is analytic in C, φ is analytic in C\{0} and that φ (w) 6= 0, w ∈ C\{0}.

Also, by letting Q (z, ζ) = zq′z (z, ζ)φ (q (z, ζ)) = µzq′z (z, ζ) ,we find that Q (z, ζ)
is starlike univalent in U × U.

Let h (z, ζ) = θ (q (z, ζ)) + Q (z, ζ) = αq (z, ζ) + β (q (z, ζ))
2
+ µzq′z (z, ζ), z ∈ U,

ζ ∈ U.

If we derive the function Q, with respect to z, perform calculations, we have

Re
(

zh′

z(z,ζ)
Q(z,ζ)

)

= Re
(

1 + α
µ
+ 2β

µ
q (z, ζ) +

zq′′
z2

(z,ζ)

q′z(z,ζ)

)

> 0.

By using (2.7), we obtain αp (z, ζ) + β (p (z, ζ))2 + µzp′z (z, ζ) =
(

1−λ(n+1)
λ

µ+ α
)

DR
m+1,n

λ
f(z,ζ)

DR
m,n

λ
f(z,ζ)

+.µ(n+1) [1− λ(n+ 2)]
DR

m,n+1

λ
f(z,ζ)

DR
m,n

λ
f(z,ζ)

+λµ(n+1)(n+

2)
DR

m,n+2

λ
f(z,ζ)

DR
m,n

λ
f(z,ζ)

+ (β − µ
λ
)
(

DR
m+1,n

λ
f(z,ζ)

DR
m,n

λ
f(z,ζ)

)2

.

By using (2.5), we have αp (z, ζ) + β (p (z, ζ))
2
+ µzp′z (z, ζ) ≺≺ αq (z, ζ) +

β (q (z, ζ))
2
+ µzq′z (z, ζ) .

Therefore, the conditions of Lemma 1.1 are met, so we have p (z, ζ) ≺≺ q (z, ζ),

z ∈ U, ζ ∈ U, i.e.
DR

m+1,n

λ
f(z,ζ)

DR
m,n

λ
f(z,ζ)

≺≺ q (z, ζ), z ∈ U, ζ ∈ U, and q is the best dominant.

Corollary 2.3 Let q (z, ζ) = ζ+Az
ζ+Bz

, −1 ≤ B < A ≤ 1, m, n ∈ N, λ ≥ 0, z ∈ U ,

ζ ∈ U. Assume that (2.3) holds. If f ∈ A∗

ζ and

ψ
m,n
λ (α, β, µ; z, ζ) ≺≺ α

ζ +Az

ζ +Bz
+ β

(

ζ +Az

ζ +Bz

)2

+ µ
ζ (A−B) z

(ζ +Bz)
2 ,
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for α, β, µ ∈ C, µ 6= 0, −1 ≤ B < A ≤ 1, where ψm,n
λ is defined in (2.4), then

DR
m+1,n
λ f (z, ζ)

DR
m,n
λ f (z, ζ)

≺≺
ζ +Az

ζ +Bz

and ζ+Az
ζ+Bz

is the best dominant.

Proof. For q (z, ζ) = ζ+Az
ζ+Bz

, −1 ≤ B < A ≤ 1, in Theorem 2.2 we get the corollary.

Corollary 2.4 Let q (z, ζ) =
(

ζ+z
ζ−z

)γ

,m, n ∈ N, λ ≥ 0, z ∈ U. Assume that (2.3)

holds. If f ∈ A∗

ζ and

ψ
m,n
λ (α, β, µ; z, ζ) ≺ α

(

ζ + z

ζ − z

)γ

+ β

(

ζ + z

ζ − z

)2γ

+ µ
2ζγz

(ζ − z)2

(

ζ + z

ζ − z

)γ−1

for α, µ, β ∈ C, 0 < γ ≤ 1, µ 6= 0, where ψm,n
λ is defined in (2.4), then

DR
m+1,n
λ f (z, ζ)

DR
m,n
λ f (z, ζ)

≺≺

(

ζ + z

ζ − z

)γ

,

and
(

ζ+z
ζ−z

)γ

is the best dominant.

Proof. Corollary follows by using Theorem 2.2 for q (z, ζ) =
(

ζ+z
ζ−z

)γ

, 0 < γ ≤ 1.

Theorem 2.5 Let q be convex and univalent in U ×U, such that q (0, ζ) = 1, m, n ∈
N, λ ≥ 0. Assume that

Re

(

q′z (z, ζ)

µ
(α+ 2βq (z, ζ))

)

> 0, for α, µ, β ∈ C, µ 6= 0, (2.8)

z ∈ U , ζ ∈ U.

If f ∈ A∗

ζ ,
DR

m+1,n

λ
f(z,ζ)

DR
m,n

λ
f(z,ζ)

∈ H∗ [q (0, ζ) , 1, ζ] ∩ Q∗ and ψm,n
λ (α, β, µ; z, ζ) is univalent

in U × U , where ψm,n
λ (α, β, µ; z, ζ) is as defined in (2.4), then

αq (z, ζ) + β (q (z, ζ))
2
+ µzq′z (z, ζ) ≺≺ ψ

m,n
λ (α, β, µ; z, ζ) , (2.9)

z ∈ U, ζ ∈ U, implies

q (z, ζ) ≺≺
DR

m+1,n
λ f (z, ζ)

DR
m,n
λ f (z, ζ)

, z ∈ U, ζ ∈ U, (2.10)

and q is the best subordinant.
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Proof. Let the function p be defined by p (z, ζ) :=
DR

m+1,n

λ
f(z,ζ)

DR
m,n

λ
f(z,ζ)

, z ∈ U , z 6= 0,

ζ ∈ U, f ∈ A∗

ζ .

By setting ν (w) := αw + βw2 and φ (w) := µ it can be easily verified that ν is
analytic in C, φ is analytic in C\{0} and that φ (w) 6= 0, w ∈ C\{0}.

Since
ν′

z(q(z,ζ))
φ(q(z,ζ)) =

q′z(z,ζ)
µ

(α+ 2βq (z, ζ)), it follows that

Re

(

ν′z (q (z, ζ))

φ (q (z, ζ))

)

= Re

(

q′z (z, ζ)

µ
(α+ 2βq (z, ζ))

)

> 0,

for µ, ξ, β ∈ C, µ 6= 0.
By using (2.9) we obtain

αq (z, ζ) + β (q (z, ζ))
2
+ µzq′z (z, ζ) ≺≺

αq (z, ζ) + β (q (z, ζ))
2
+ µzq′z (z, ζ) .

Using Lemma 1.2, we have

q (z, ζ) ≺≺ p (z, ζ) =
DR

m+1,n
λ f (z, ζ)

DR
m,n
λ f (z, ζ)

, z ∈ U, ζ ∈ U,

and q is the best subordinant.

Corollary 2.6 Let q (z, ζ) = ζ+Az
ζ+Bz

, −1 ≤ B < A ≤ 1, m, n ∈ N, λ ≥ 0. Assume that

(2.8) holds.

If f ∈ A∗

ζ ,
DR

m+1,n

λ
f(z,ζ)

DR
m,n

λ
f(z,ζ)

∈ H∗ [q (0, ζ) , 1, ζ] ∩Q∗ and

α
ζ +Az

ζ +Bz
+ β

(

ζ +Az

ζ +Bz

)2

+ µ
ζ (A−B) z

(ζ +Bz)
2 ≺≺ ψ

m,n
λ (α, β, µ; z, ζ) ,

for α, µ, β ∈ C, µ 6= 0, −1 ≤ B < A ≤ 1, where ψm,n
λ is defined in (2.4), then

ζ +Az

ζ +Bz
≺≺

DR
m+1,n
λ f (z, ζ)

DR
m,n
λ f (z, ζ)

and ζ+Az
ζ+Bz

is the best subordinant.

Proof. For q (z, ζ) = ζ+Az
ζ+Bz

, −1 ≤ B < A ≤ 1 in Theorem 2.5 we get the corollary.

Corollary 2.7 Let q (z, ζ) =
(

ζ+z
ζ−z

)γ

,m, n ∈ N, λ ≥ 0. Assume that (2.8) holds.

If f ∈ A∗

ζ ,
DR

m+1,n

λ
f(z,ζ)

DR
m,n

λ
f(z,ζ)

∈ H∗ [q (0, ζ) , 1, ζ] ∩Q∗ and

α

(

ζ + z

ζ − z

)γ

+ β

(

ζ + z

ζ − z

)2γ

+ µ
2ζγz

(ζ − z)
2

(

ζ + z

ζ − z

)γ−1

≺≺ ψ
m,n
λ (α, β, µ; z, ζ) ,
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for α, µ, β ∈ C, 0 < γ ≤ 1, µ 6= 0, where ψm,n
λ is defined in (2.4), then

(

ζ + z

ζ − z

)γ

≺≺
DR

m+1,n
λ f (z, ζ)

DR
m,n
λ f (z, ζ)

and
(

ζ+z
ζ−z

)γ

is the best subordinant.

Proof. Corollary follows by using Theorem 2.5 for q (z, ζ) =
(

ζ+z
ζ−z

)γ

, 0 < γ ≤ 1.

Combining Theorem 2.2 and Theorem 2.5, we state the following sandwich theo-
rem.

Theorem 2.8 Let q1 and q2 be analytic and univalent in U×U such that q1 (z, ζ) 6= 0
and q2 (z, ζ) 6= 0, for all z ∈ U , ζ ∈ U , with z (q1)

′

z (z, ζ) and z (q2)
′

z (z, ζ) being
starlike univalent. Suppose that q1 satisfies (2.3) and q2 satisfies (2.8). If f ∈ A∗

ζ ,
DR

m+1,n

λ
f(z,ζ)

DR
m,n

λ
f(z,ζ)

∈ H∗ [q (0, ζ) , 1, ζ] ∩ Q∗ and ψ
m,n
λ (α, β, µ; z, ζ) is as defined in (2.4)

univalent in U × U , then

αq1 (z, ζ) + β (q1 (z, ζ))
2
+ µz (q1)

′

z (z, ζ) ≺≺ ψ
m,n
λ (α, β, µ; z, ζ)

≺≺ αq2 (z, ζ) + β (q2 (z, ζ))
2
+ µz (q2)

′

z (z, ζ) ,

for α, µ, β ∈ C, µ 6= 0, implies

q1 (z, ζ) ≺≺
DR

m+1,n
λ f (z, ζ)

DR
m,n
λ f (z, ζ)

≺≺ q2 (z, ζ) , δ ∈ C, δ 6= 0,

and q1 and q2 are respectively the best subordinant and the best dominant.

For q1 (z, ζ) =
ζ+A1z
ζ+B1z

, q2 (z, ζ) =
ζ+A2z
ζ+B2z

, where −1 ≤ B2 < B1 < A1 < A2 ≤ 1, we
have the following corollary.

Corollary 2.9 Let m,n ∈ N, λ ≥ 0. Assume that (2.3) and (2.8) hold for

q1 (z, ζ) = ζ+A1z
ζ+B1z

and q2 (z, ζ) = ζ+A2z
ζ+B2z

, respectively. If f ∈ A∗

ζ ,
DR

m+1,n

λ
f(z,ζ)

DR
m,n

λ
f(z,ζ)

∈

H∗ [q (0, ζ) , 1, ζ] ∩Q∗ and

α
ζ +A1z

ζ +B1z
+ β

(

ζ +A1z

ζ +B1z

)2

+ µ
(A1 −B1) ζz

(ζ +B1z)
2 ≺≺ ψ

m,n
λ (α, β, µ; z, ζ)

≺≺ α
ζ +A2z

ζ +B2z
+ β

(

ζ +A2z

ζ +B2z

)2

+ µ
(A2 −B2) ζz

(ζ +B2z)
2 ,

for α, µ, β ∈ C, µ 6= 0, −1 ≤ B2 ≤ B1 < A1 ≤ A2 ≤ 1, where ψm,n
λ is defined in

(2.4), then

ζ + A1z

ζ +B1z
≺≺

DR
m+1,n
λ f (z, ζ)

DR
m,n
λ f (z, ζ)

≺≺
ζ + A2z

ζ +B2z
,

hence ζ+A1z
ζ+B1z

and ζ+A2z
ζ+B2z

are the best subordinant and the best dominant, respectively.



42 L. Andrei

Theorem 2.10 Let
(

DR
m+1,n

λ
f(z,ζ)

DR
m,n

λ
f(z,ζ)

)δ

∈ H
(

U × U
)

, f ∈ A∗

ζ , z ∈ U , ζ ∈ U, δ ∈ C,

δ 6= 0, m, n ∈ N, λ ≥ 0 and let the function q (z, ζ) be convex and univalent in U ×U

such that q (0, ζ) = 1, ζ ∈ U . Assume that

Re

(

α+ β

β
+
zq′′z2 (z, ζ)

q′z (z, ζ)

)

> 0, (2.11)

for α, β ∈ C, β 6= 0, z ∈ U, ζ ∈ U, and

ψ
m,n
λ (α, β; z, ζ) :=

(

DR
m+1,n
λ f (z, ζ)

DR
m,n
λ f (z, ζ)

)δ

·

[

α+ δβ
1− λ(n+ 1)

λ
+ δβ(n+ 1) [1− λ(n+ 2)]

DR
m,n+1
λ f (z, ζ)

DR
m+1,n
λ f (z, ζ)

+δβλ(n+ 1)(n+ 2)
DR

m,n+2
λ f (z, ζ)

DR
m+1,n
λ f (z, ζ)

−
δβ

λ

DR
m+1,n
λ f (z, ζ)

DR
m,n
λ f (z, ζ)

]

(2.12)

If q satisfies the following strong differential subordination

ψ
m,n
λ (α, β; z, ζ) ≺≺ αq (z, ζ) + βzq′z (z, ζ) , (2.13)

for α, β ∈ C, β 6= 0, z ∈ U, ζ ∈ U, then

(

DR
m+1,n
λ f (z, ζ)

DR
m,n
λ f (z, ζ)

)δ

≺≺ q (z, ζ) , z ∈ U, ζ ∈ U, δ ∈ C, δ 6= 0, (2.14)

and q is the best dominant.

Proof. Let the function p be defined by p (z, ζ) :=
(

DR
m+1,n

λ
f(z,ζ)

DR
m,n

λ
f(z,ζ)

)δ

, z ∈ U ,

z 6= 0, ζ ∈ U, f ∈ A∗

ζ . The function p is analytic in U × U and p (0, ζ) = 1.

We have

zp′z (z, ζ) = δz

(

DR
m+1,n
λ f (z, ζ)

DR
m,n
λ f (z, ζ)

)δ
DR

m,n
λ f (z, ζ)

DR
m+1,n
λ f (z, ζ)

(

DR
m+1,n
λ f (z, ζ)

DR
m,n
λ f (z, ζ)

)

′

z

= δ

(

DR
m+1,n
λ f (z, ζ)

DR
m,n
λ f (z, ζ)

)δ
DR

m,n
λ f (z, ζ)

DR
m+1,n
λ f (z, ζ)

·







z
(

DR
m+1,n
λ f (z, ζ)

)

′

z

DR
m,n
λ f (z, ζ)

−
DR

m+1,n
λ f (z, ζ)

DR
m,n
λ f (z, ζ)

z (DRm,n
λ f (z, ζ))

′

z

DR
m,n
λ f (z, ζ)






.
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By using the identity (2.1) and (2.2), we obtain

zp′z (z, ζ) = δ

(

DR
m+1,n
λ f (z, ζ)

DR
m,n
λ f (z, ζ)

)δ
DR

m,n
λ f (z, ζ)

DR
m+1,n
λ f (z, ζ)

·

[

(

1− λ(n+ 1)

λ

)

DR
m+1,n
λ f (z, ζ)

DR
m,n
λ f (z, ζ)

+ n+ 1)

· [1− λ(n+ 2)]
DR

m,n+1
λ f (z, ζ)

DR
m,n
λ f (z, ζ)

+ λ(n+ 1)(n+ 2)
DR

m,n+2
λ f (z, ζ)

DR
m,n
λ f (z, ζ)

−
1

λ

(

DR
m+1,n
λ f (z, ζ)

DR
m,n
λ f (z, ζ)

)2


 (2.15)

so, we obtain

zp′z (z, ζ) = δ

(

DR
m+1,n
λ f (z, ζ)

DR
m,n
λ f (z, ζ)

)δ
[

1− λ(n+ 1)

λ
+

(n+ 1) [1− λ(n+ 2)]
DR

m,n+1
λ f (z, ζ)

DR
m+1,n
λ f (z, ζ)

+

λ(n+ 1)(n+ 2)
DR

m,n+2
λ f (z, ζ)

DR
m+1,n
λ f (z, ζ)

−
1

λ

DR
m+1,n
λ f (z, ζ)

DR
m,n
λ f (z, ζ)

]

(2.16)

By setting θ (w) := αw and φ (w) := β, it can be easily verified that θ is analytic
in C, φ is analytic in C\{0} and that φ (w) 6= 0, w ∈ C\{0}.

Also, by letting Q (z, ζ) = zq′z (z, ζ)φ (q (z, ζ)) = βzq′z (z, ζ) , we find that Q (z, ζ)
is starlike univalent in U × U.

Let h (z, ζ) = θ (q (z, ζ)) +Q (z, ζ) = αq (z, ζ) + βzq′z (z, ζ).

We have Re
(

zh′

z(z,ζ)
Q(z,ζ)

)

= Re
(

α+β
β

+
zq′′

z2
(z,ζ)

q′z(z,ζ)

)

> 0.

By using (2.16), we obtain

αp (z, ζ) + βzp′z (z, ζ) =

(

DR
m+1,n
λ f (z, ζ)

DR
m,n
λ f (z, ζ)

)δ

·

[

α+ δβ
1− λ(n+ 1)

λ
+ δβ(n+ 1) [1− λ(n+ 2)]

DR
m,n+1
λ f (z, ζ)

DR
m+1,n
λ f (z, ζ)

+δβλ(n+ 1)(n+ 2)
DR

m,n+2
λ f (z, ζ)

DR
m+1,n
λ f (z, ζ)

−
δβ

λ

DR
m+1,n
λ f (z, ζ)

DR
m,n
λ f (z, ζ)

]

.

By using (2.13), we have αp (z, ζ) + βzp′z (z, ζ) ≺≺ αq (z, ζ) + βzq′z (z, ζ) .

From Lemma 1.1, we have p (z, ζ) ≺≺ q (z, ζ), z ∈ U, ζ ∈ U, i.e.
(

DR
m+1,n

λ
f(z,ζ)

DR
m,n

λ
f(z,ζ)

)δ

≺≺

q (z, ζ), z ∈ U, ζ ∈ U, δ ∈ C, δ 6= 0 and q is the best dominant.
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Corollary 2.11 Let q (z, ζ) = ζ+Az
ζ+Bz

, z ∈ U, ζ ∈ U, −1 ≤ B < A ≤ 1, m, n ∈ N,

λ ≥ 0. Assume that (2.11) holds. If f ∈ A∗

ζ and

ψ
m,n
λ (α, β; z, ζ) ≺≺ α

ζ +Az

ζ +Bz
+ β

(A−B) ζz

(ζ +Bz)2
,

for α, β ∈ C, β 6= 0, −1 ≤ B < A ≤ 1, where ψm,n
λ is defined in (2.12), then

(

DR
m+1,n
λ f (z, ζ)

DR
m,n
λ f (z, ζ)

)δ

≺≺
ζ +Az

ζ +Bz
, δ ∈ C, δ 6= 0,

and ζ+Az
ζ+Bz

is the best dominant.

Proof. For q (z, ζ) = ζ+Az
ζ+Bz

, −1 ≤ B < A ≤ 1, in Theorem 2.10 we get the
corollary.

Corollary 2.12 Let q (z, ζ) =
(

ζ+z
ζ−z

)γ

,m, n ∈ N, λ ≥ 0. Assume that (2.11) holds.

If f ∈ A∗

ζ and

ψ
m,n
λ (α, β, µ; z, ζ) ≺≺ α

(

ζ + z

ζ − z

)γ

+ β
2γζz

(ζ − z)
2

(

ζ + z

ζ − z

)γ−1

,

for α, β ∈ C, 0 < γ ≤ 1, β 6= 0, where ψm,n
λ is defined in (2.12), then

(

DR
m+1,n
λ f (z, ζ)

DR
m,n
λ f (z, ζ)

)δ

≺≺

(

ζ + z

ζ − z

)γ

, δ ∈ C, δ 6= 0,

and
(

ζ+z
ζ−z

)γ

is the best dominant.

Proof. Corollary follows by using Theorem 2.10 for q (z, ζ) =
(

ζ+z
ζ−z

)γ

, 0 < γ ≤ 1.

Theorem 2.13 Let q be convex and univalent in U×U such that q (0, ζ) = 1. Assume
that

Re

(

α

β
q′z (z, ζ)

)

> 0, for α, β ∈ C, β 6= 0. (2.17)

If f ∈ A∗

ζ ,
(

DR
m+1,n

λ
f(z,ζ)

DR
m,n

λ
f(z,ζ)

)δ

∈ H∗ [q (0, ζ) , 1, ζ] ∩Q∗ and ψm,n
λ (α, β; z, ζ) is univalent

in U × U , where ψm,n
λ (α, β; z, ζ) is as defined in (2.12), then

αq (z, ζ) + βzq′z (z, ζ) ≺≺ ψ
m,n
λ (α, β; z, ζ) (2.18)

implies

q (z, ζ) ≺≺

(

DR
m+1,n
λ f (z, ζ)

DR
m,n
λ f (z, ζ)

)δ

, δ ∈ C, δ 6= 0, z ∈ U, ζ ∈ U, (2.19)

and q is the best subordinant.
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Proof. Let the function p be defined by p (z, ζ) :=
(

DR
m+1,n

λ
f(z,ζ)

DR
m,n

λ
f(z,ζ)

)δ

, z ∈ U ,

z 6= 0, ζ ∈ U, δ ∈ C, δ 6= 0, f ∈ A∗

ζ . The function p is analytic in U × U and
p (0, ζ) = 1.

By setting ν (w) := αw and φ (w) := β it can be easily verified that ν is analytic
in C, φ is analytic in C\{0} and that φ (w) 6= 0, w ∈ C\{0}.

Since
ν′

z(q(z,ζ))
φ(q(z,ζ)) = α

β
q′z (z, ζ), it follows that

Re
(

ν′

z(q(z,ζ))
φ(q(z,ζ))

)

= Re
(

α
β
q′z (z, ζ)

)

> 0, for α, β ∈ C, β 6= 0.

Now, by using (2.18) we obtain

αq (z, ζ) + βzq′z (z, ζ) ≺≺ αq (z, ζ) + βzq′z (z, ζ) , z ∈ U, ζ ∈ U.

From Lemma 1.2, we have

q (z, ζ) ≺≺ p (z, ζ) =

(

DR
m+1,n
λ f (z, ζ)

DR
m,n
λ f (z, ζ)

)δ

,

z ∈ U, ζ ∈ U, δ ∈ C, δ 6= 0, and q is the best subordinant.

Corollary 2.14 Let q (z, ζ) = ζ+Az
ζ+Bz

, −1 ≤ B < A ≤ 1, z ∈ U, ζ ∈ U, m, n ∈ N,

λ ≥ 0. Assume that (2.17) holds. If f ∈ A∗

ζ ,
(

DR
m+1,n

λ
f(z,ζ)

DR
m,n

λ
f(z,ζ)

)δ

∈ H∗ [q (0, ζ) , 1, ζ]∩Q∗,

δ ∈ C, δ 6= 0 and

α
ζ +Az

ζ +Bz
+ β

(A−B) ζz

(ζ +Bz)
2 ≺≺ ψ

m,n
λ (α, β; z, ζ) ,

for α, β ∈ C, β 6= 0, −1 ≤ B < A ≤ 1, where ψm,n
λ is defined in (2.12), then

ζ +Az

ζ +Bz
≺≺

(

DR
m+1,n
λ f (z, ζ)

DR
m,n
λ f (z, ζ)

)δ

, δ ∈ C, δ 6= 0,

and ζ+Az
ζ+Bz

is the best subordinant.

Proof. For q (z, ζ) = ζ+Az
ζ+Bz

, −1 ≤ B < A ≤ 1, in Theorem 2.13 we get the
corollary.

Corollary 2.15 Let q (z, ζ) =
(

ζ+z
ζ−z

)γ

,m, n ∈ N, λ ≥ 0. Assume that (2.17) holds.

If f ∈ A∗

ζ ,
(

DR
m+1,n

λ
f(z,ζ)

DR
m,n

λ
f(z,ζ)

)δ

∈ H∗ [q (0, ζ) , 1, ζ] ∩Q∗ and

α

(

ζ + z

ζ − z

)γ

+ β
2γζz

(ζ − z)
2

(

ζ + z

ζ − z

)γ−1

≺≺ ψ
m,n
λ (α, β, µ; z, ζ) ,
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for α, β ∈ C, 0 < γ ≤ 1, β 6= 0, where ψm,n
λ is defined in (2.12), then

(

ζ + z

ζ − z

)γ

≺≺

(

DR
m+1,n
λ f (z, ζ)

DR
m,n
λ f (z, ζ)

)δ

, δ ∈ C, δ 6= 0,

and
(

ζ+z
ζ−z

)γ

is the best subordinant.

Proof. Corollary follows by using Theorem 2.13 for q (z, ζ) =
(

ζ+z
ζ−z

)γ

, 0 < γ ≤ 1.

Combining Theorem 2.10 and Theorem 2.13, we state the following sandwich
theorem.

Theorem 2.16 Let q1 and q2 be convex and univalent in U×U such that q1 (z, ζ) 6= 0
and q2 (z, ζ) 6= 0, for all z ∈ U, ζ ∈ U . Suppose that q1 satisfies (2.11) and q2 satisfies

(2.17). If f ∈ A∗

ζ ,
(

DR
m+1,n

λ
f(z,ζ)

DR
m,n

λ
f(z,ζ)

)δ

∈ H∗ [q (0, ζ) , 1, ζ] ∩ Q∗ , δ ∈ C, δ 6= 0 and

ψ
m,n
λ (α, β; z, ζ) is as defined in (2.12) univalent in U × U , then

αq1 (z, ζ) + βz (q1)
′

z (z, ζ) ≺≺ ψ
m,n
λ (α, β; z, ζ)

≺≺ αq2 (z, ζ) + βz (q2)
′

z (z, ζ) ,

for α, β ∈ C, β 6= 0, implies

q1 (z, ζ) ≺≺

(

DR
m+1,n
λ f (z, ζ)

DR
m,n
λ f (z, ζ)

)δ

≺≺ q2 (z, ζ) ,

z ∈ U, ζ ∈ U, δ ∈ C, δ 6= 0, and q1 and q2 are respectively the best subordinant and
the best dominant.

For q1 (z, ζ) =
ζ+A1z
ζ+B1z

, q2 (z, ζ) =
ζ+A2z
ζ+B2z

, where −1 ≤ B2 < B1 < A1 < A2 ≤ 1, we
have the following corollary.

Corollary 2.17 Let m,n ∈ N, λ ≥ 0. Assume that (2.11) and (2.17) hold for

q1 (z, ζ) =
ζ+A1z
ζ+B1z

and q2 (z, ζ) =
ζ+A2z
ζ+B2z

, respectively. If f ∈ A∗

ζ ,
(

DR
m+1,n

λ
f(z,ζ)

DR
m,n

λ
f(z,ζ)

)δ

∈

H∗ [q (0, ζ) , 1, ζ] ∩Q∗ and

α
ζ +A1z

ζ +B1z
+ β

(A1 −B1) ζz

(ζ +B1z)
2 ≺≺ ψ

m,n
λ (α, β, µ; z, ζ)

≺≺ α
ζ +A2z

ζ +B2z
+ β

(A2 −B2) ζz

(ζ +B2z)
2 , z ∈ U, ζ ∈ U,

for α, β ∈ C, β 6= 0, −1 ≤ B2 ≤ B1 < A1 ≤ A2 ≤ 1, where ψm,n
λ is defined in (2.4),

then

ζ +A1z

ζ +B1z
≺≺

(

DR
m+1,n
λ f (z, ζ)

DR
m,n
λ f (z, ζ)

)δ

≺≺
ζ +A2z

ζ +B2z
,

z ∈ U, ζ ∈ U, δ ∈ C, δ 6= 0, hence ζ+A1z
ζ+B1z

and ζ+A2z
ζ+B2z

are the best subordinant and the
best dominant, respectively.
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[2] A. Alb Lupaş, On special strong differential subordinations using a generalized
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Abstract: The main object of the present paper is to investigate
problems of majorization for certain classes of analytic functions of com-
plex order defined by an operator related to the modified Bessel functions
of first kind. These results are obtained by investigating appropriate class
of admissible functions. Various known or new special cases of our results
are-
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1 Introduction

Let A be the class of functions of the form

f(z) = z +

∞∑
n=2

anz
n, (1.1)

which are analytic in the open unit disk U = {z ∈ C : |z| < 1}.
For given g(z) = z +

∞∑
n=2

bnz
n ∈ A the Hadamard product of f and g is denoted

by

(f ∗ g)(z) = z +

∞∑
n=2

anbnz
n, z ∈ U. (1.2)

Note that f ∗ g ∈ A which are analytic in the open disc U.
We say that f ∈ A is subordinate to g ∈ A denoted by f ≺ g if there exists a

Schwarz function ω which is analytic in U with ω(0) = 0 and |ω(z)| < 1 for all z ∈ U,
such that f(z) = g(ω(z)) for z ∈ U.
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Note that, if the function g is univalent in U, due to Miller and Mocanu [9], we
have

f(z) ≺ g(z)⇐⇒ [f(0) = g(0) and f(U) ⊂ g(U)] .

If f and g are analytic functions in U, following MacGregor [8], we say that f is
majorized by g in U that is f(z) � g(z) if there exists a function φ, analytic in U,
such that

|φ(z)| < 1 and f(z) = φ(z)g(z), z ∈ U.

It is of interest to note that the notation of majorization is closely related to the
concept of quasi-subordination between analytic functions.

Let C∗(γ) denote the class of starlike functions of complex order γ (γ ∈ C \ {0}),
satisfying the following condition

f(z)

z
6= 0 and <

(
1 +

1

γ

[
zf ′(z)

f(z)
− 1

])
> 0, z ∈ U.

In particular, the class

S∗(α, λ) := C∗((1− α)cosλ e−iλ), |λ| < π

2
; 0 ≤ α ≤ 1

denotes the class of λ-spiral function of order α investigated by Libera [6]. Moreover,
the classes

Ŝ∗(λ) := S∗(0, λ), S∗(α) := S∗(α, 0)

are the class of spiral functions introduced by S̆paček [12] (see also [13]) and the class
of starlike functions of order α, respectively. For α = 0, we obtain the familiar class
S∗ := S∗(0) of starlike functions.

We recall here a generalized Bessel function of first kind of order p denoted by
ωp,b,c =: ω defined in [1] and given by

ω(z) = ωp,b,c(z) =

∞∑
n=0

(−1)n cn

n! Γ(p+ n+ (b+ 1)/2)

(z
2

)2n+p
, z ∈ C (1.3)

which is the particular solution of the second order linear homogeneous differential
equation

z2ω′′(z) + bzω′2 − [p2 + (1− b)]ω(z) = 0, (1.4)

where b, p, c ∈ C, which is natural generalization of Bessel’s equation.
The differential equation (1.4) permits the study of Bessel function, modified

Bessel function, spherical Bessel function and modified spherical Bessel functions all
together. Solutions of (1.4) are referred to as the generalized Bessel function of order
p. The particular solution given by (1.3) is called the generalized Bessel function of
the first kind of order p. Although the series defined in (1.3) is convergent everywhere,
the function ωp,b,c is generally not univalent in U.

It is of interest to note that when b = c = 1, we reobtain the Bessel function of
the first kind ωp,1,1 = jp, and for b = 1, c = −1 the function ωp,1,−1 becomes the
modified Bessel function Ip. Further note that b = 2 and c = 1 the function wp,2,1(z)
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reduces to
√

2
π Jp(z) becomes the spherical Bessel function of the first kind of order

p. Now, we consider the function up,b,c(z) defined by the transformation

up,b,c(z) = 2pΓ

(
p+

b+ 1

2

)
z1−

p
2 ωp,b,c (

√
z).

By using well known Pochhammer symbol (or the shifted factorial) defined, in terms
of the familiar Gamma function, by

(a)n :=
Γ(a+ n)

Γ(a)
=


1 (n = 0),

a(a+ 1)(a+ 2) · · · (a+ n− 1) (n = 1, 2, . . .).

we can express up,b,c(z) as

up,b,c(z) = z +

∞∑
n=1

(−c/4)n

(m)n

zn+1

n!
, (1.5)

where m = p+ b+1
2 /∈ Z−0 . This function is analytic on C and satisfies the second-order

linear differential equation

4z2u′′(z) + 2(2p+ b+ 1)zu′(z) + czu(z) = 0.

Now, we consider the linear operator

Bc
mf : A → A

defined by

Bc
mf(z) := up,b,c(z) ∗ f(z) = z +

∞∑
n=1

(−c/4)n

(m)n (n)!
an+1 z

n+1, z ∈ U, (1.6)

where m = p+ b+1
2 /∈ Z−0 . It is easy to verify from the definition (1.6) that

z(Bc
m+1f(z))′ = mBc

mf(z)− (m− 1)Bc
m+1f(z). (1.7)

We recall the special cases of Bcm− operator due to Baricz et al [3].

• Setting b = c = 1 in (1.6) or (1.7), we obtain the operator Jp : A → A related
with Bessel function, given by

Jpf(z) = zup,1,1(z) ∗ f(z) = z +

∞∑
n=1

(−1/4)n

(p+ 1)n (n)!
an+1 z

n+1, z ∈ U (1.8)

and its recursive relation

z(Jp+1f(z))′ = (p+ 1)Jpf(z)− pJp+1f(z), z ∈ U.
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• Setting b = 1 and c = −1 in (1.6) or (1.7), we obtain the operator Ip : A → A
related with modified Bessel function, given by

Ipf(z) = zup,1,−1(z) ∗ f(z) = z +

∞∑
n=1

(1/4)n

(p+ 1)n (n)!
an+1 z

n+1, z ∈ U (1.9)

and its recursive relation

z(Ip+1f(z))′ = (p+ 1)Ipf(z)− pIp+1f(z), z ∈ U.

• Setting b = 2 and c = 1 in (1.6) or (1.7), we obtain the operator Kp : A → A
related with spherical Bessel function, given by

Kpf(z) = zup,2,1(z) ∗ f(z) = z +

∞∑
n=1

(−1/4)n

(p+ 3
2 )n (n)!

an+1 z
n+1, z ∈ U (1.10)

and its recursive relation

z(Kp+1f(z))′ = (p+
3

2
)Kpf(z)− (p+

1

2
)Kp+1f(z), z ∈ U.

It is of interest to note that the function Bcm given by (1.6) is an elementary
transformation of the generalized hypergeometric function, i.e it is easy to see that
Bcmf(z) = z 0F1

(
m; −c4 z

)
∗ f(z) and also up,b,c(

−4
c z) ∗ f(z) = z 0F1(m; z).

The generalized Bessel function is a recent topic of study in Geometric Function
Theory (e.g. see the work of [1, 2, 3]). Using the Bcm− linear operator due to Baricz
et al [3] given by (1.6), we now define the following new subclass of A.

Definition 1 A function f(z) ∈ A is said to be in the class Scm(A,B; γ), if

1 +
1

γ

[
z(Bc

m+1f(z))′

Bc
m+1f(z)

− 1

]
≺ 1 +Az

1 +Bz
, (1.11)

where −1 ≤ B < A ≤ 1; γ, c,m ∈ C, γ 6= 0, m 6= 0,−1,−2, . . . .

In particular, the class
Scm(γ) := Scm(1,−1; γ),

denote the class of functions f ∈ A satisfying the following condition:

<
(

1 +
1

γ

[
z(Bc

m+1f(z))′

Bc
m+1f(z)

− 1

])
> 0, z ∈ U. (1.12)

Moreover, let us denote

Scm(α, λ) := Scm((1− α)cosλ e−iλ), Scm(α) := Scm(α, 0), |λ| < π

2
; 0 ≤ α ≤ 1.

Majorization problems for the class S∗ had been studied by MacGregor [8]. Re-
cently Altintas et al. [4] investigated a majorization problem for the class C∗(γ) and
Goyal and Goswami [5] generalized these results for the class of analytic functions
involving fractional operator. In this paper we investigated a majorization problem
for the class Scm(A,B; γ) associated with Bessel functions and point out some special
cases of our result.
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2 The main results

First we show that the class Scm(A,B; γ) is not empty.

Theorem 1 A function f ∈ A of the form (1.1) belongs to the class Scm(A,B; γ) if
it satisfies the condition

∞∑
n=2

dn |an| ≤ (B −A) |γ| , (2.1)

where

dn =
(|c| /4)n−1 {(B + 1) (n− 1) + (B −A) |γ|}

|(m)n−1| (n− 1)!
, n = 2, 3 . . . .

Proof. A function f of the form (1.1) belongs to the class Scm(A,B; γ) if and only
if there exists a function ω, |ω(z)| ≤ |z| (z ∈ U) , such that for z ∈ U we have

1 +
1

γ

[
z(Bc

m+1f(z))′

Bc
m+1f(z)

− 1

]
=

1 +Aω(z)

1 +Bω(z)

or equivalently

z(Bc
m+1f(z))′ −Bc

m+1f(z) = ω (z)
{
Bz(Bc

m+1f(z))′ + [(B −A) γ −B]Bc
m+1f(z)

}
.

Thus, it is sufficient to prove that for z ∈ U we have∣∣z(Bc
m+1f(z))′ −Bc

m+1f(z)
∣∣− ∣∣Bz(Bc

m+1f(z))′ + [(B −A) γ −B]Bc
m+1f(z)

∣∣ ≤ 0.

Indeed, letting |z| = r (0 ≤ r < 1) and αn = (−c/4)n−1

(m)n−1 (n−1)! we have∣∣z(Bc
m+1f(z))′ −Bc

m+1f(z)
∣∣− ∣∣Bz(Bc

m+1f(z))′ + [(B −A) γ −B]Bc
m+1f(z)

∣∣
=

∣∣∣∣∣
∞∑
n=2

(n− 1)αnanz
n

∣∣∣∣∣−
∣∣∣∣∣(B −A) γz −

∞∑
n=2

(Bn+ (B −A) γ −B)αnanz
n

∣∣∣∣∣
≤
∞∑
n=2

(n− 1) |αn| |an| rn−1 − (B −A) |γ|+
∞∑
n=2

(Bn+ (B −A) |γ| −B) |αn| |an| rn−1

≤
∞∑
n=2

dn |an| rn−1 − (B −A) |γ| ≤ 0,

whence f ∈ Scm(A,B; γ).

Remark 1 By Theorem 1 we see that a function f of the form (1.1) belongs to the
class Scm(A,B; γ) if it has ”sufficiently small” coefficients. In particular, the functions

f (z) = z + azn, z ∈ U,

where

|a| ≤ (|c| /4)n {(B + 1) (n− 1) + (B −A) |γ|}
|(m)n| (n)! (B −A) |γ|

belong to the class Scm(A,B; γ). The convex combinations of these functions belong to
the class Scm(A,B; γ) too.
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Theorem 2 Let f ∈ A and suppose that g ∈ Scm(A,B; γ) with |m| ≥ |γ(A−B)+mB|.
If Bc

m+1f(z) is majorized by Bc
m+1g(z), then

|Bc
mf(z)| ≤ |Bc

mg(z)|, |z| ≤ r1, (2.2)

where r1 is the smallest positive root of the equation

|γ(A−B) +mB|r3 − (|m|+ 2|B|) r2 − (|γ(A−B) +mB|+ 2) r + |m| = 0. (2.3)

Proof. Since g ∈ Scm(A,B; γ), we find from (1.11) that

1 +
1

γ

(
z(Bc

m+1g(z))′

Bc
m+1g(z)

− 1

)
=

1 +Aw(z)

1 +Bw(z)
, (2.4)

where w is analytic in U, with w(0) and |w(z)| ≤ |z| for all z ∈ U.
From (2.4), we get

z(Bc
m+1g(z))′

Bc
m+1g(z)

=
1 + [γ(A−B) +B]w(z)

1 +Bw(z)
. (2.5)

Now, by applying the relation (1.7) in (2.5), we get

mBc
mg(z)

Bc
m+1g(z)

=
m+ [γ(A−B) +mB]w(z)

1 +Bw(z)
(2.6)

which yields that,

∣∣Bc
m+1g(z)

∣∣ ≤ |m| [1 + |B| |z|]
|m| − |γ(A−B) +mB| |z|

|Bc
mg(z)| . (2.7)

Since Bc
m+1f(z) is majorized by Bc

m+1g(z), then there exist a function φ analytic in
U, with φ(0) and |φ(z)| ≤ |z| for all z ∈ U, such that

Bc
m+1f(z) = φ(z)Bc

m+1g(z).

By differentiating with respect to z we get

z(Bc
m+1f(z))′ = zφ′(z)Bc

m+1g(z) + zφ(z)(Bc
m+1g(z))′. (2.8)

Noting that the Schwarz function φ satisfies (cf. [10])∣∣∣φ′(z)∣∣∣ ≤ 1− |φ(z)|2

1− |z|2
(2.9)

and using (1.7), (2.7) and (2.9) in (2.8), we have

|Bc
mf(z)| ≤

(
|φ(z)|+ 1− |φ(z)|2

1− |z|2
(1 + |B||z|) |z|

|m| − |γ(A−B) +mB||z|

)
|Bc

mg(z)|,
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Setting |z| = r and |φ(z)| = ρ, 0 ≤ ρ ≤ 1 the above inequality leads us to the
inequality

|Bc
mf(z)| ≤ F (ρ, r) |Bc

mg(z)|, (2.10)

where

F (ρ, r) =
Φ(ρ)

(1− r2) (|m| − |γ(A−B) +mB|r)
,

with

Φ(ρ) = −ρ2(1 + |B| r)r + ρ(1− r2) (|m| − |mB + γ(A−B)|r) + r(1 + |B| r).

It is clear that if
(1− r2) (|m| − |mB + γ(A−B)|r)

2(1 + |B| r)r
≥ 1,

then the function Φ takes its maximum value in the interval 〈0, 1〉 at ρ = 1. Since the
above inequality holds for 0 ≤ r ≤ r1 = r1(γ,A,B), where r1 is the smallest positive
root of the equation (2.3), then there is 0 < F (ρ, r) ≤ F (ρ, 1) = 1 for r ∈ 〈0, r1〉 and
ρ ∈ 〈0, 1〉. This gives (2.2) and completes the proof.

Putting A = 1, B = −1 in Theorem 2, we have the following corollary:

Corollary 1 Let f ∈ A and suppose that g ∈ Scm(γ) with |m| ≥ |2γ − m|. If
Bc
m+1f (z) is majorized by Bc

m+1g(z), then

|Bc
mf(z)| ≤ |Bc

mg(z)|, |z| ≤ r2, (2.11)

where r2 is the smallest positive root of the equation

|2γ −m|r3 − (|m|+ 2) r2 − (|2γ −m|+ 2) r + |m| = 0, (2.12)

given by

r2 =
κ−

√
κ2 − 4|m| |2γ −m|

2|2γ −m|
, κ = (|m|+ 2) + |2γ −m|.

Putting γ = (1 − α)cosλe−iλ, |λ| < π
2 ; 0 ≤ α ≤ 1, in corollary 1, we have the

following corollary.

Corollary 2 Let f ∈ A and suppose that g ∈ Scm(α, λ) with |m| ≥ |2(1−α)cosλe−iλ−
m|. If Bc

m+1f(z) is majorized by Bc
m+1g(z), then∣∣Bc

m+1f(z)
∣∣ ≤ |Bc

m+1g(z)|, |z| ≤ r3, (2.13)

where r3 is the smallest positive root of the equation

|2(1− α)cosλe−iλ −m|r3 − (|m|+ 2) r2 −
(
|2(1− α)cosλe−iλ −m|+ 2

)
r + |m| = 0,

(2.14)
given by

r3 =
δ −

√
δ2 − 4|m| |2(1− α)cosλe−iλ −m|

2|2(1− α)cosλe−iλ −m|
(2.15)
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and
δ = (|m|+ 2) + |2(1− α)cosλe−iλ −m|.

Further, by taking λ = 0 we obtain the next corollary.

Corollary 3 Let f ∈ A and suppose that g ∈ Scm(α) with Rem ≥ 1−α. If Bc
m+1f(z)

is majorized by Bc
m+1g(z), then

|Bc
mf(z)| ≤ |Bc

mg(z)|, |z| ≤ r4, (2.16)

where

r4 =
δ −

√
δ2 − 4|m| |2(1− α)−m|

2|2(1− α)−m|
and

δ = (|m|+ 2) + |2(1− α)−m|.

For α = 0 and m = 1 Corollary 3 reduces to the following result.

Corollary 4 [8] Let f ∈ A and suppose that g ∈ Sc1 (0). If Bc
2f(z) is majorized by

Bc
2g(z), then

|Bc
1f(z)| ≤ |Bc

1g(z)|, |z| ≤ r5, (2.17)

where r5 := 2−
√

3.

Concluding Remarks: Further specializing the parameters b, c one can define
the various other interesting subclasses of Scm(A,B; γ), involving the types of Bessel
functions as stated in equations (1.8) to (1.10), and one can easily derive the result
as in Theorem 2 and the corresponding corollaries as mentioned above. The details
involved may be left as an exercise for the interested reader.
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1 Introduction

Let M̃ denote the class of functions which are analytic in D = D(1), where

D(r) = {z ∈ C : 0 < |z| < r} (r ∈ (0, 1])

and let Mk (k ∈ N0 := {0, 1, 2, ...}) denote the class of functions f ∈ M̃ of the form

f(z) =
1

z
+

∞∑
n=k

anz
n (z ∈ D). (1)

Moreover, letM :=M0. Also, by Tθ (θ ∈ R) we denote the class of functions f ∈M
of the form

f(z) =
1

z
+ eiθ

∞∑
n=0

|an|zn (z ∈ D) . (2)

The class Tθ is called the class of meromorphic functions with fixed argument of
coefficients. For θ = π we obtain the class Tπ of meromorphic functions with negative
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coefficients. Classes of functions with fixed argument of coefficients were considered
in [1, 2, 3, 4].

A function f ∈M is said to be convex in D(r) if

Re

(
1 +

zf ′′(z)

f ′(z)

)
< 0 (z ∈ D(r)).

A function f ∈M is said to be starlike in D(r) if

Re
zf ′(z)

f(z)
< 0 (z ∈ D(r)). (3)

Let B be a subclass of the class M. We define the radius of starlikeness of order
α and the radius of convexity of order α for the class B by

R∗α(B) = inf
f∈B
{sup {r ∈ (0, 1] : f is starlike in D(r)}} ,

Rcα(B) = inf
f∈B
{sup {r ∈ (0, 1] : f is convex in D(r)}} ,

respectively.
Let functions f, F be analytic in U := D∪{0} . We say that f is subordinate to

F , and write f(z) ≺ F (z) (or simply f ≺ F ), if and only if there exists a function ω
analytic in U , |ω(z)| ≤ |z| (z ∈ U) , such that

f(z) = F (ω(z)) (z ∈ U) .

In particular, if F is univalent in U , we have the following equivalence:

f(z) ≺ F (z)⇐⇒ f(0) = F (0) and f(U) ⊂ F (U).

For functions f, g ∈ M̃ of the form

f(z) =

∞∑
n=−1

anz
n and g(z) =

∞∑
n=−1

bnz
n,

by f ∗ g we denote the Hadamard product (or convolution) of f and g, defined by

(f ∗ g) (z) =

∞∑
n=−1

anbnz
n (z ∈ D) .

Let ϕ ∈Mk be a given function of the form

ϕ(z) =
1

z
+

∞∑
n=k

αnz
n (z ∈ D; αn > 0, n = k, k + 1, ...). (4)

Assume that A,B are real parameters, −1 ≤ A < B ≤ 1, (cos θ < 0 or B 6= 1).
By Mk (ϕ;A,B) we denote the class of functions f ∈Mk such that

z (ϕ ∗ f) (z) ≺ 1 +Az

1 +Bz
. (5)
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Now, we define the classes of functions with fixed argument of coefficients related
to the class Mk (ϕ;A,B). Let us denote

Mk
θ (ϕ;A,B) := Tθ ∩Mk (ϕ;A,B) , M (ϕ;A,B) :=M0 (ϕ;A,B) .

In the present paper we obtain coefficient estimates, distortion theorems, inte-
gral means inequalities, and the radii of convexity and starlikeness for the class
Mk

θ (ϕ;A,B). We also derive convolution properties for the class of functions.

2 Coefficient estimates

Before stating and proving coefficient estimates in the class M (ϕ;A,B) we need the
following lemma.

Lemma 1 [6] Let f be a function of the form

f(z) =

∞∑
n=0

anz
n,

which is analytic in D. If f ≺ g and g is convex univalent in U , then

|an| ≤ 1 (n ∈ N) .

Theorem 1 If a function f of the form (1) belongs to the class M (ϕ;A,B), then

|an| ≤
B −A
αn

(n = 0, 1, . . .), (6)

The result is sharp.

Proof. Let a function f of the form (1) belong to the class M (ϕ;A,B) and let us
put

g(z) =
z (ϕ ∗ f) (z)− 1

A−B
and h(z) =

z

1 +Bz
.

Then, by (5), we have g ≺ h. Since the function g is given by

g(z) =

∞∑
n=0

αn
A−B

anz
n+1

and the function h is convex univalent in U , by Lemma 1 we obtain

αn
B −A

|an| ≤ 1 (n ∈ N0). (7)

Thus we have (6). The Equality in (7) holds for the functions gn of the form

gn(z) = h(zn+1) = zn+1 +

∞∑
j=n+2

bjz
j (n = 0, 1, . . .),
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for some bj (j = n+ 2, n+ 3, . . .). Consequently, the equality in (6) holds true for the
functions fn of the form

fn(z) =
1

z
+
A−B
αn

zn +

∞∑
j=n+1

A−B
αj

bj+1z
j (n = 0, 1, . . .).

Theorem 2 If a function f of the form (2) belongs to the class Mk
θ (ϕ;A,B), then

∞∑
n=k

αn |an| ≤ δ(θ;A,B), (8)

where

δ(θ;A,B) :=
B −A√

1−B2 sin2 θ −B cos θ
. (9)

Proof. Let a function f belong to the class Mk
θ (ϕ;A,B) . Then, by (5) and the

definition of subordination, we have

z (ϕ ∗ f) (z) =
1 +Aω(z)

1 +Bω(z)
,

where ω(0) = 0 and |ω(z)| < 1 for z ∈ U . Thus we obtain

|z (ϕ ∗ f) (z)− 1| < |Bz (ϕ ∗ f) (z)−A| (z ∈ D).

Hence, by (2), we have∣∣∣∣∣
∞∑
n=k

αn|an|zn+1

∣∣∣∣∣ <
∣∣∣∣∣B −A+Beiθ

∞∑
n=k

αn|an|zn+1

∣∣∣∣∣ (z ∈ D). (10)

Putting z = r (0 ≤ r < 1), we find that

|w| < |B −A+Bweiθ|, (11)

where, for convenience,

w =

∞∑
n=k

αn|an|rn+1.

Since w is a real number, by (11) we have

(1−B2)w2 − [2B (B −A) cos θ]w − (B −A)
2
< 0.

Solving this inequality with respect to w, we obtain

∞∑
n=k

αn|an|rn+1 < δ(θ;A,B),

which, upon letting r → 1−, readily yields the assertion (8) of Theorem 1.
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Theorem 3 A function f of the form (2) belongs to the class Mk
π (ϕ;A,B) if and

only if
∞∑
n=k

αn |an| ≤
B −A
1 +B

. (12)

Proof. By virtue of Theorem 1, we only need to show that the condition (12) is
the sufficient condition. Let a function f of the form (2) satisfy the condition (12).
Then, in view of (10), it is sufficient to prove that∣∣∣∣∣

∞∑
n=k

αn|an|zn+1

∣∣∣∣∣−
∣∣∣∣∣B −A−B

∞∑
n=k

αn|an|zn+1

∣∣∣∣∣ < 0 (z ∈ D).

Indeed, letting |z| = r (0 < r < 1), we have∣∣∣∣∣
∞∑
n=k

αn|an|zn+1

∣∣∣∣∣−
∣∣∣∣∣B −A−B

∞∑
n=k

αn|an|zn+1

∣∣∣∣∣
≤

( ∞∑
n=k

αn|an|rn+1

)
−

(
B −A−B

∞∑
n=k

αn|an|rn+1

)

< (1 +B)

∞∑
n=k

αn|an| − (B −A) ≤ 0,

which implies that f ∈Mk
π (ϕ;A,B) .

Theorem 2 readily yields

Corollary 1 If a function f of the form (2) belongs to the class Mk
θ (ϕ;A,B) , then

|an| ≤
δ(θ;A,B)

αn
(n = k, k + 1, . . .), (13)

where δ(θ;A,B) is defined by (9). The result is sharp for θ = π. Then the functions
fn of the form

fn(z) =
1

z
− B −A

(1 +B)αn
zn (z ∈ D; n = k, k + 1, . . .) (14)

are the extremal functions.

3 Distortion theorems

From Theorem 2 we have the following lemma.

Lemma 2 Let a function f of the form (2) belong to the class Mk
θ (ϕ;A,B) . If the

sequence {αn} defined by (4) satisfies the inequality

αk ≤ αn (n = k, k + 1, . . .) , (15)
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then
∞∑
n=k

|an| ≤
δ(θ;A,B)

αk
.

Moreover, if

nαk ≤ αn (k ≥ 1, n = k, k + 1, . . .) , (16)

then
∞∑
n=k

n |an| ≤
kδ(θ;A,B)

αk
.

Theorem 4 Let a function f belong to the class Mk
θ (ϕ;A,B) . If the sequence {αn}

defined by (4) satisfies (15), then

1

r
− δ(θ;A,B)

αk
rk ≤ |f(z)| ≤ 1

r
+
δ(θ;A,B)

αk
rk (|z| = r < 1) . (17)

Moreover, if (16) holds, then

1

r2
− kδ(θ;A,B)

αk
rk−1 ≤ |f ′(z)| ≤ 1

r2
+
kδ(θ;A,B)

αk
rk−1 (|z| = r < 1) . (18)

The result is sharp for θ = π, with the extremal function fk of the form (14).

Proof. Let a function f of the form (2) belong to the classMk
θ (ϕ;A,B) , |z| = r <

1. Since

|f(z)| =

∣∣∣∣∣1z + eiθ
∞∑
n=k

anz
n

∣∣∣∣∣ ≤ 1

r
+

∞∑
n=k

|an| rn ≤
1

r
+

∞∑
n=k

|an|

and

|f(z)| =

∣∣∣∣∣1z + eiθ
∞∑
n=k

anz
n

∣∣∣∣∣ ≥ 1

r
−
∞∑
n=k

|an| rn ≥
1

r
−
∞∑
n=k

|an| ,

then by Lemma 2 we have (17). Analogously we prove (18).

4 Integral means inequalities

Due to Littlewood [7] we obtain integral means inequalities for the functions from the
class Mk

θ (ϕ;A,B) .

Lemma 3 [7]. Let function f , g be analytic in U . If f ≺ g, then

2π∫
0

∣∣f(reit)
∣∣λ dt ≤

2π∫
0

∣∣g(reit)
∣∣λ dt (0 < r < 1, λ > 0) . (19)
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Silverman [8] found that the function

g(z) = z − z2

2
(z ∈ D) ,

is often extremal over the family of functions with negative coefficients. He applied
this function to resolve integral means inequality, conjectured in [9] and settled in
[10], that (19) holds true for all functions f with negative coefficients. In [10] he also
proved his conjecture for some subclasses of Tπ.

Applying Lemma 3 and Theorem 2 we prove the following result.

Theorem 5 Let the sequence {αn} defined by (4) satisfy the inequality (15). If f ∈
M0

θ (ϕ;A,B) , then

2π∫
0

∣∣f(reit)
∣∣λ dt ≤

2π∫
0

∣∣g(reit)
∣∣λ dt (0 < r < 1, λ > 0) , (20)

where

g(z) =
1

z
+ eiθ

δ(θ;A,B)

α0
(z ∈ D).

Proof. For function f of the form (2), the inequality (20) is equivalent to the
following:

2π∫
0

∣∣∣∣∣1 + eiθ
∞∑
n=0

|an|zn+1

∣∣∣∣∣
λ

dt ≤
2π∫
0

∣∣∣∣1 + eiθ
δ(θ;A,B)

α0
z

∣∣∣∣λ dt.

By Lemma 3, it suffices to show that

∞∑
n=0

|an| zn+1 ≺ δ(θ;A,B)

α0
z. (21)

Setting

w(z) =

∞∑
n=0

α0

δ(θ;A,B)
anz

n+1 (z ∈ D)

and using (15) and Theorem 2 we obtain

|w(z)| =

∣∣∣∣∣
∞∑
n=0

α0

δ(θ;A,B)
an z

n+1

∣∣∣∣∣ ≤ |z|
∞∑
n=0

αn
δ(θ;A,B)

|an| ≤ |z| (z ∈ D) .

Since
∞∑
n=0

anz
n+1 =

δ(θ;A,B)

α0
w(z) (z ∈ D) ,

by definition od subordination we have (21) and this completes the proof.
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5 The radii of convexity and starlikeness

Theorem 6 If a function f belongs to the class Mk
θ (ϕ;A,B), k ≥ 1, then f is

starlike in the disk D(r∗), where

r∗ := inf
n≥k

(
αn

nδ(θ,A,B)

) 1
n+1

(22)

and δ(θ,A,B), {αn} are defined by (9) and (4), respectively. For θ = π, the result is
sharp, that is

R∗
(
Mk

π (ϕ;A,B)
)

= r∗.

Proof. A function f ∈Mk of the form (2) is starlike in the disk D(r) if and only if
it satisfies the condition (3) or if∣∣∣∣zf ′(z) + f(z)

zf ′(z)− f(z)

∣∣∣∣ < 1 (z ∈ D (r)) . (23)

Since

∣∣∣∣zf ′(z) + f(z)

zf ′(z)− f(z)

∣∣∣∣ =

∣∣∣∣∣∣∣∣
eiθ

∞∑
n=k

(n+ 1) |an| zn

2
z − eiθ

∞∑
n=k

(n− 1) |an| zn

∣∣∣∣∣∣∣∣ ≤
∞∑
n=k

(n+ 1) |an| |z|n+1

2−
∞∑
n=k

(n− 1) |an| |z|n+1
,

putting |z| = r the condition (23) be true if

∞∑
n=k

n |an| rn+1 ≤ 1. (24)

By Theorem 2, we have
∞∑
n=k

αn
δ(θ,A,B)

|an| ≤ 1,

Thus, the condition (24) be true if

nrn+1 ≤ αn
δ(θ,A,B)

(n = k, k + 1, ...),

that is, if

r ≤
(

αn
nδ(θ,A,B)

) 1
n+1

(n = k, k + 1, ...).

It follows that each function f ∈Mk
θ (ϕ;A,B) is starlike in the disk D (r∗), where r∗

is defined by (22). For θ = π the functions fn of the form (14) are extremal functions.
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Theorem 7 If a function f belongs to the class Mk
θ (ϕ;A,B), then f is convex in

the disk D(rc), where

rc := inf
n≥k

(
αn

n2δ(θ,A,B)

) 1
n+1

and δ(θ,A,B), {αn} are defined by (9) and (4), respectively. For θ = π, the result is
sharp, that is,

Rc
(
Mk

π (ϕ;A,B)
)

= rc.

Proof. The proof is analogous to that of Theorem 4, and we omit the details.

6 Cnonvolution properties

Let

f(z) =
1

z
+eiα

∞∑
n=k

|an|zn, g(z) =
1

z
+ eiβ

∞∑
n=k

|bn|zn (z ∈ D) . (25)

We define modified Hadamard product for the functions f, g as follows:

f ~ g(z) =
1

z
−
∞∑
n=k

|an||bn|zn (z ∈ D) .

Theorem 8 Let f ∈ Mk
α (ϕ;A,B) and g ∈ Mk

β (ψ;C,D) . Then f ~ g ∈
Mk

π (ϕ ∗ ψ;E,F ) , whenever

δ(π,E, F ) ≥ δ(α,A,B)δ(β,C,D). (26)

Proof. Let

ψ(z) =
1

z
+

∞∑
n=k

βnz
n (z ∈ D; βn > 0, n = k, k + 1, ...)

and let functions f, g of the form (25) belong to the classes Mk
α (ϕ;A,B) and

Mk
β (ψ;C,D) , respectively. From Theorem 2 we have

∞∑
n=k

αn
δ(α;A,B)

|an| ≤ 1,

∞∑
n=k

βn
δ(β;C,D)

|bn| ≤ 1.

Thus, by (26) we obtain

∞∑
n=k

αnβn
δ(π,E, F )

|anbn| ≤
∞∑
n=k

αnβn
δ(α;A,B)δ(β;C,D)

|an| |bn|

≤
∞∑
n=k

αn
δ(α;A,B)

|an|
∞∑
n=k

βn
δ(β;C,D)

|bn| ≤ 1.

Applying Theorem 3 we get f ~ g ∈Mk
π (ϕ ∗ ψ;E,F ) .
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Theorem 9 Let the sequence {αn} defined by (4) satisfy the inequalities (15). If
f, g ∈Mk

θ (ϕ;A,B) , then f ~ g ∈Mk
π (ϕ;C,D) , whenever

(D − C)α0 ≥ (1 +D) [δ(θ,A,B)]
2
. (27)

Proof. Let a functions f, g of the form (25) belong to the classMk
α (ϕ;A,B). Then

by Theorem 2 we have

∞∑
n=k

αn
δ(α;A,B)

|an| ≤ 1,

∞∑
n=k

αn
δ(α;A,B)

|bn| ≤ 1.

Thus, by the Cauchy-Schwarz inequality we obtain

∞∑
n=k

αn
δ(θ,A,B)

√
|anbn| ≤ 1 . (28)

We have to prove that
∞∑
k=2

αn
1 +D

D − C
|anbn| ≤ 1 .

Therefore, by (28) it is sufficient to show that

1 +D

D − C
|anbn| ≤

1

δ(θ,A,B)

√
|anbn| (n ≥ 2)

or equivalently √
|anbn| ≤

D − C
(1 +D) δ(θ,A,B)

(n ≥ 2).

From (28) we have √
|anbn| ≤

δ(θ,A,B)

αn
(n ≥ 2).

Consequently, we need only to prove that

D − C
(1 +D) δ(θ,A,B)

≥ δ(θ,A,B)

αn
(n ≥ 2),

and this inequality follows from (27) and (15).
We note that for functions f ∈ Mk

α (ϕ;A,B) and g ∈ Mk
π−α (ψ;C,D) we have

f ∗ g = f ~ g. Thus from Theorem 8 obtain following corollary.

Corollary 2 If f ∈ Mk
α (ϕ;A,B) and g ∈ Mk

π−α (ψ;C,D) , then f ∗ g ∈
Mk

π (ϕ ∗ ψ;E,F ) , whenever

δ(π,E, F ) ≥ δ(α,A,B)δ(π − α,C,D).

Putting θ = π in Theorem 9 we obtain following corollary.
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Corollary 3 Let the sequence {αn} defined by (4) satisfy (15). If f, g ∈Mk
π (ϕ;A,B) ,

then f ~ g ∈Mk
π (ϕ;C,D) , whenever

(D − C) (1 +B)
2
α0 ≥ (1 +D) (B −A)

2
.

Putting C = A and D = B in Corollary 3 we obtain following corollary.

Corollary 4 Let the sequence {αn} defined by (4) satisfy (15). If f, g ∈Mk
π (ϕ;A,B) ,

then f ~ g ∈Mk
π (ϕ;A,B) , whenever

α0 ≥
B −A
1 +B

.

Since for α = β = π, E = A and F = B the condition (26) is true, then from
Theorem 8 we have following corollary.

Corollary 5 If f ∈Mk
π (ϕ;A,B) and g ∈Mk

π (ψ;C,D) , then

f ~ g ∈Mk
π (ϕ ∗ ψ;A,B) ∩Mk

π (ϕ ∗ ψ;C,D) .
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Problem with integral condition
for evolution equation

P.I.Kalenyuk, G.Kuduk, I.V.Kohut, Z.M.Nytrebych

Abstract: We propose a method of solving the problem with non-
homogeneous integral condition for homogeneous evolution equation with
abstract operator in a linear space H. For right-hand side of the integral
condition which belongs to the special subspace L ⊆ H, in which the vec-
tors are represented using Stieltjes integrals over a certain measure, the
solution of the problem is represented in the form of Stieltjes integral over
the same measure.

AMS Subject Classification: 35M10, 35M20
Keywords and Phrases: differential-symbol method, evolution equation, problem with
integral condition

1. Statement of the problem.

The significant place in the research on problems for evolution equations in Banach
spaces is taken by the semigroup theory (see, e.g., [2, 1, 3, 4]).

In the recent years, problems with integral conditions have been intensively studied
while investigating the process of diffusion of particles in a turbulent medium, pro-
cesses of heat conduction, moisture transfer in capillary-porous media, problems of
describing the dynamics of population abundance as well as problems of demography
(see, e. g., works [8, 9, 5, 6, 7, 10]).

Let A be a given linear operator acting in the linear space H and, for this operator,
arbitrary powers An, n = 2, 3, . . ., be also defined in H. We consider the problem[

d

dt
− a(A)

]
U(t) = 0, t ∈ (0; h), (1)

h∫
0

U(t)dt = ϕ, (2)
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where ϕ ∈ H, (0, h) ⊂ R, h > 0, U : (0, h)→ H is an unknown vector-function, a(A)
is an abstract operator with analytical on Λ ⊆ C symbol a(λ) 6= const.

Let η(λ) be the entire function

η(λ) =
exp[a(λ)h]− 1

a(λ)
(3)

and P be the set of zeros of function (3). If a(λ0) = 0, then we assume that η(λ0) = h.
Hence, λ0 /∈ P .

Denote by x(λ) the eigenvector of the operator A, which corresponds to its eigen-
value λ ∈ Λ ⊆ C, i.e. nonzero solutions in H of the equations

Ax(λ) = λx(λ) , λ ∈ Λ.

If λ is not an eigenvalue of the operator A, then we assume x(λ) = 0.
Consider an analytical on Λ function

a(λ) =

∞∑
n=0

anλ
n,

which would be a symbol of the abstract operator

a(A) =

∞∑
n=0

anA
n,

in general, of infinite order, assuming that

a(A)x(λ) = a(λ)x(λ).

2. Constructing the formal solution of the problem.

In this section, we propose a method of solving the problem (1), (2).

Definition 1. We shall say that vector ϕ from H belongs L ⊆ H, if on Λ there exist
depending on ϕ linear operator Rϕ(λ) : H → H, λ ∈ Λ, and measure µϕ(λ) such that

ϕ =

∫
Λ

Rϕ(λ)x(λ)dµϕ(λ). (4)

Lemma 1. On the set Λ∗ × (0, h), Λ∗ = Λ\P , the following identity holds:[
d

dt
− a(A)

]{
exp[a(λ)t]

η(λ)
x(λ)

}
≡ 0. (5)

Proof. As supposed, for the operator A, arbitrary powers An, for n = 2, 3, . . ., are
defined in H. Then for any λ ∈ Λ∗ and t ∈ (0, h) we have
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[
d

dt
− a(A)

]{
exp[a(λ)t]

η(λ)
x(λ)

}
=

d

dt

{
exp[a(λ)t]

η(λ)
x(λ)

}
− a(A)

{
exp[a(λ)t]

η(λ)
x(λ)

}
=
a(λ) exp [a(λ)t]

η(λ)
x(λ)− exp[a(λ)t]

η(λ)
a(λ)x(λ) ≡ 0.

This completes our proof.

Theorem 1. Let in the problem (1), (2), the vector ϕ belong L, i.e. ϕ can be
represented in the form (4). Then the formula

U(t) =

∫
Λ∗

Rϕ(λ)

{
exp[a(λ)t]

η(λ)
x(λ)

}
dµϕ(λ) (6)

defines a formal solution of the problem (1), (2).

Proof. According to the formulas (6), we have:

[
d

dt
− a(A)

]
U(t) =

[
d

dt
− a(A)

] ∫
Λ∗

Rϕ(λ)

{
exp[a(λ)t]

η(λ)
x(λ)

}
dµϕ(λ)

=

∫
Λ∗

Rϕ(λ)

[
d

dt
− a(A)

]{
exp[a(λ)t]

η(λ)
x(λ)

}
dµϕ(λ).

From the identity (5) we obtain[
d

dt
− a(A)

]
U(t) =

∫
Λ∗

Rϕ(λ) {0} dµϕ(λ).

Since the operator Rϕ(λ) is linear, the last integral is equal to zero, i.e. U(t)
formally satisfies the equality (1).

We shall prove the realization of integral condition (2) using fomula (4):

h∫
0

U(t)dt =

h∫
0

∫
Λ∗

Rϕ(λ)

{
exp[a(λ)t]

η(λ)
x(λ)

}
dµϕ(λ)

 dt

=

∫
Λ∗

Rϕ(λ)


h∫

0

exp[a(λ)t]

η(λ)
x(λ)dt

 dµϕ(λ)

=

∫
Λ∗

Rϕ(λ)

{
η(λ)

η(λ)
x(λ)

}
dµϕ(λ) =

∫
Λ∗

Rϕ(λ)x(λ) dµϕ(λ) = ϕ.

This completes our proof.
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Remark. The formula (6) defines a solutions of the problem (1), (2) just formally,
since the following equalities are not justified:[

d

dt
− a(A)

] ∫
Λ∗

Rϕ(λ)

{
exp[a(λ)t]

η(λ)
x(λ)

}
dµϕ(λ) =

=

∫
Λ∗

Rϕ(λ)

[
d

dt
− a(A)

]{
exp[a(λ)t]

η(λ)
x(λ)

}
dµϕ(λ), (7)

h∫
0

∫
Λ∗

Rϕ(λ)

{
exp[a(λ)t]

η(λ)
x(λ)

}
dµϕ(λ)

 dt =

=

∫
Λ∗

Rϕ(λ)

{∫ h

0

exp[a(λ)t]

η(λ)
x(λ)dt

}
dµϕ(λ). (8)

We do not prove the existence of the Stieltjes integrals in the equalities (7) and
(8) as well.

3. Problem with integral condition for partial differ-
ential equation.

In this section, we shall give the example of using an abstract approach to solving the
problem for the partial differential equation[

∂

∂t
− a

(
∂

∂x

)]
U(t, x) = 0, t ∈ (0; h), x ∈ R, (9)

h∫
0

U(t, x)dt = ϕ(x), x ∈ R, (10)

where a( ∂
∂x ) is an operator generally of infinite order with entire symbol a(λ) 6= const.

The problem (9), (10) has been studied in the work [11] by means of the
differential-symbol method [12, 13]. We shall represent this problem as problem (1),
(2), in which A = d

dx , exp[λx] is an eigenfunction of the operator A, H is a class of
entire functions, L = KM is a class of quasipolynomials

ϕ(x) =

m∑
j=1

Qj(x) exp[αjx], (11)

where αj ∈ M ⊆ C, αj 6= αk for j 6= k, x ∈ R, m ∈ N; Qj(x), j = 1,m, are
polynomials with complex coefficients.

As a measure µ(λ), take the Dirac measure. From the representation (4) we obtain

ϕ(x) = Rϕ(λ) exp[λx]
∣∣∣
λ=0

,
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from which it follows that

Rϕ(λ) = ϕ

(
d

dλ

)
.

Each quasipolynomial ϕ(x) of the form (11) defines a differential operation ϕ
(
d
dλ

)
of finite order on the class of entire functions Φ(λ), namely

ϕ

(
d

dλ

)
Φ(λ) =

m∑
j=1

Qj

(
d

dλ

)
Φ(λ+ αj),

in particular,

ϕ

(
d

dλ

)
Φ(λ)

∣∣∣∣
λ=0

=

m∑
j=1

Qj

(
d

dλ

)
Φ(λ)

∣∣∣∣
λ=αj

.

From formula (6), we obtain the representation of the solution of problem (9),
(10) in the form

U(t, x) = ϕ

(
d

dλ

) {
exp[a(λ)t+ λx]

η(λ)

}∣∣∣∣
λ=0

,

moreover, this solution exists and is unique in appropriate class of quasipolynomials
of variables t, x, if at that ϕ ∈ KM , where M = C\P , P is the set of zeros of function
(3).

Conclusions. In this work, we propose a method of solving a problem with non-
homogeneous integral condition for homogeneous evolution equation with abstract
operator in a linear space. The solution of the problem is represented in the form of
Stieltjes integral over a certain measure. We give the example of applying this method
to solving the problem with integral condition for partial differential equation.

In the future research, the subject of interest is the development of analogous
method of solving the problem for nonhomogeneous evolution equation.
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Abstract: In this paper, we study the concepts of 2-absorbing and
weakly 2-absorbing ideals in a commutative semiring with non-zero iden-
tity which is a generalization of prime ideals of a commutative semiring
and prove number of results related to the same. We also use these con-
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1 Introduction

The semiring is an important algebraic structure which plays a prominent role in
various branches of mathematics as well as in diverse areas of applied science. The
concepts of semiring was first introduced by H. S. Vandiver [14] in 1934. After that
several authors have apllied this concept in various disciplines in many ways. The
structure of prime ideals in semiring theory has gained importance and many math-
ematicians have exploited its usefulness in algebraic systems over the decades. An-
derson and Smith[3] introduced the notion of weakly prime ideals in commutative
ring. The concept of 2-absorbing and weakly 2-absorbing ideals of commutative ring
with non-zero unity have been introduced by Badawi [5] and Badawi and Darani[6]
respectively which are generalizations of prime and weakly prime ideals in a com-
mutative ring. Darani[8] has explored these concepts in commutative semiring and
characterized several results in terms of 2-absorbing and weakly 2-absorbing ideals
in commutative semiring. Chaudhary and Bonde[7] have introduced the notion of
subtractive extension of an ideal to study the ideal theory in quotient semiring.

A commutative semiring is a commutative semigroup (S, ·) and a commutative
monoid (S,+, 0S) in which 0S is the additive identity and 0S · x = x · 0S = 0S for
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all x ∈ S, both are connected by ring like distributivity. A nonempty subset I of a
semiring S is called an ideal of S if a, b ∈ I, r ∈ S, a + b ∈ I and ra, ar ∈ I. An ideal
I of a semiring S is called subtractive if a, a+ b ∈ I, b ∈ S then b ∈ I. An ideal (I : r)
is defined as (I : r) = {x ∈ S : rx ∈ I}. It is easy to see that if I is a subtractive
ideal of S, then (I : r) is a subtractive ideal of S. Radical of an ideal I is defined
as Rad(I) =

√
I ={a ∈ S : an ∈ I for some positive integer n}. An element s in

a semiring S is said to be nilpotent if there exists a positive integer n(depending on
s) such that sn = 0. Nil(S) denotes the set of all nilpotent element of S. A proper
ideal I of a semiring S is said to be prime (respectively, weakly prime) if ab ∈ I
(respectively, 0 6= ab ∈ I) implies a ∈ I or b ∈ I for some a, b ∈ S. An ideal I of a
semiring S is said to be irreducible if for ideals H and K of S, I = H ∩ K implies
that I = H or I = K. A semiring S is said to be regular if for each a ∈ S there exists
x ∈ S such that a = axa. In [11], it is proved that a semiring S is regular if and only
if HK = H ∩K for all left ideals K and right ideals H of S.

Throughout this paper, S will always denote a commutative semiring with identity
1 6= 0.

2 2-absorbing and weakly 2-absorbing ideals

In this section, we prove number of results correspond to 2-absorbing and weakly
2-absorbing ideals in commutative semirings. Recall [8] the following definitions.

Definition 2.1. A proper ideal I of a commutative semiring S is said to be a 2-
absorbing ideal of S if whenever a, b, c ∈ S and abc ∈ I, then ab ∈ I or ac ∈ I or
bc ∈ I.

Definition 2.2. A proper ideal I of S is said to be a weakly 2-absorbing ideal of S if
whenever a, b, c ∈ S and 0 6= abc ∈ I, then ab ∈ I or ac ∈ I or bc ∈ I.

It is easy to see that every 2-absorbing ideal of a semiring S is a weakly 2-absorbing
ideal of S but converse need not be true. For further understanding properties of 2-
absorbing and weakly 2-absorbing ideals in commutative semirings, refer [8].

Theorem 2.3. Let I be a 2-absorbing ideal of S. Then (I : r) is a 2-absorbing ideal
of S for all r ∈ S \ I.

Proof. Let r ∈ S \ I and let a, b, c ∈ S be such that abc ∈ (I : r). Then rabc ∈ I.
So ra ∈ I or rbc ∈ I or abc ∈ I, since I is a 2-absorbing ideal of S. If either ra ∈ I
or rbc ∈ I, we are done. If abc ∈ I, then ab ∈ I or ac ∈ I or bc ∈ I, which implies
rab ∈ I or rac ∈ I or rbc ∈ I. Hence (I : r) is a 2-absorbing ideal of S.

Theorem 2.4. Let I be a 2-absorbing subtractive ideal of S with
√
I = J and J2 ⊆ I.

If I 6= J and for all r ∈ J \ I, then (I : r) is a prime ideal of S containing I with
J ⊆ (I : r).

Proof. Let uv ∈ (I : r) for some u, v ∈ S. Then ruv ∈ I. Since I is a 2-absorbing
ideal of S, therefore ru ∈ I or rv ∈ I or uv ∈ I. If ru ∈ I and rv ∈ I, then u ∈ (I : r)
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or v ∈ (I : r), therefore nothing to prove. If uv ∈ I and also, r2 ∈ J2 ⊆ I. This gives
rv ∈ (I : r) for particular v ∈ S. We have (r+u)v ∈ (I : r), that is, r(r+u)v ∈ I and
since I is a 2-absorbing ideal of S, therefore rv ∈ I or (r + u)v ∈ I or r(r + u) ∈ I. If
rv ∈ I then v ∈ (I : r), which is required. If (r + u)v ∈ I and uv ∈ I, then rv ∈ I (as
I is a subtractive). This gives v ∈ (I : r), so (I : r) is prime. Finally, if r(r + u) ∈ I
and since r2 ∈ J2 ⊆ I. This gives ru ∈ I implies u ∈ (I : r). Hence (I : r) is a prime
ideal of S.

Corollary 2.5. Let I be a 2-absorbing subtractive ideal of S with
√
I = J and J2 ⊆ I.

If I 6= J and for all r ∈ J \ I, then (I : r) is a 2-absorbing ideal of S with J ⊆ (I : r).

Theorem 2.6. If I is a subtractive ideal of S such that I 6=
√
I and

√
I is a prime

ideal of S with (
√
I)2 ⊂ I. Then I is a 2-absorbing ideal of S if and only if (I : r) =

{x ∈ S : rx ∈ I} is a prime ideal of S for each r ∈
√
I \ I.

Proof. (⇒) One way is straight forward by above theorem.

(⇐) Conversely, let abc ∈ I for some a, b, c ∈ S. Then, we may assume that a ∈
√
I

(as I ⊆
√
I and

√
I is a prime ideal of S). If a ∈ I, then ab ∈ I, which gives I is a

2-absorbing ideal of S. Assume that a ∈
√
I \ I. Also, bc ∈ (I : a) and by assumption

(I : a) is a prime ideal of S, therefore we have either b ∈ (I : a) or c ∈ (I : a). This
implies that either ab ∈ I or ac ∈ I. Thus, I is a 2-absorbing ideal of S.

The following result is used to prove the next theorem.

Result 2.7. [12] Let I and J be two subtractive ideals in S. Then I∪J is a subtractive
ideal of S if and only if I ∪ J = I or I ∪ J = J .

Theorem 2.8. Let I be a 2-absorbing subtractive ideal of S with
√
I = J . If I 6= J ,

J is a prime ideal of S and for all r ∈ S \ J , then Ω = {(I : r) : r ∈ S} is a totally
ordered set.

Proof. Let r, s ∈ S\J. Since J is a prime ideal of S therefore rs ∈ S\J. Clearly, rs /∈ I
and (I : r) ⊆ (I : rs) and (I : s) ⊆ (I : rs) which implies (I : r) ∪ (I : s) ⊆ (I : rs).
Again, let t ∈ (I : rs). Then, rst ∈ I which implies that either rt ∈ I or st ∈ I,
as rs /∈ I. Thus, (I : rs) ⊆ (I : r) ∪ (I : s). Hence by Result 2.7, we have either
(I : rs) = (I : r) or (I : rs) = (I : s). This implies that either (I : r) ⊆ (I : s) or
(I : s) ⊆ (I : r). Therefore Ω = {(I : r) : r ∈ S \ J} is a totally ordered set.

Again, we show that (I : s) ⊆ (I : r) for r, s ∈ J \ I. Let r, s ∈ J \ I. Then
for any p ∈ (I : r) \ (I : s) we may assume that p ∈ (I : r) \ J , since J ⊆ (I : s).
Similarly, for any q ∈ (I : s) \ (I : r) we may assume that q ∈ (I : s) \ J . Since
p /∈ J and q /∈ J therefore pq /∈ J . Also, p(r + s)q ∈ I and pq /∈ I, therefore we
have p(r + s) ∈ I or (r + s)q ∈ I, which gives either ps ∈ I or rq ∈ I. This implies
p ∈ (I : s) or q ∈ (I : r). Therefore, in each case we get a contradiction. Hence either
(I : r) ⊆ (I : s) or (I : s) ⊆ (I : r) for r, s ∈ J \ I. Thus, Ω = {(I : r) : r ∈ S} is a
totally ordered set.
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Theorem 2.9. Let I be an irreducible subtractive ideal of S and let J be an ideal of
S such that

√
I = J and J2 ⊆ I. Then I is 2-absorbing if and only if (I : r) = (I : r2)

for all r ∈ S \ J.

Proof. Let I be a 2-absorbing ideal of S. For r ∈ S \ J , r2 /∈ I because if r2 ∈ I,
then r ∈

√
I = J , which is a contradiction and also (I : r) ⊆ (I : r2) is obvious. So,

for any s ∈ (I : r2) we have r2s ∈ I. Since I is a 2- absorbing ideal of S, we have
either rs ∈ I or r2 ∈ I. Since r2 /∈ I, therefore rs ∈ I, that is, s ∈ (I : r) and thus
(I : r) = (I : r2).

Conversely, let rst ∈ I for some r, s, t ∈ S and rs /∈ I. We show that either rt ∈ I
or st ∈ I. From rs /∈ I, we have r /∈ J or s /∈ J. Because, if r ∈ J and s ∈ J , then
rs ∈ J2 ⊆ I, a contradiction. Now, by assumption, we have either (I : r) = (I : r2)
or (I : s) = (I : s2). If (I : r) = (I : r2) and also assume that rt /∈ I and st /∈ I,
then we prove the result by way of contradiction. Let p ∈ (I + (rt)) ∩ (I + (st)).
Then there are p1, p2 ∈ I and r1, r2 ∈ S such that p = p1 + r1rt = p2 + r2st.
Thus, pr = p1r + r1r

2t = p2r + r2rst ∈ I. Since rst ∈ I, therefore r1r
2t ∈ I(as I

is a subtractive ideal of S). This implies r1rt ∈ I because (I : r) = (I : r2). Hence
p = p1+r1rt ∈ I. This shows that (I+rt)∩(I+st) ⊆ I and thus (I+rt)∩(I+st) = I,
a contradiction because I is an irreducible. Thus, we have rt ∈ I or st ∈ I and
consequently, I is a 2−absorbing ideal of S.

Theorem 2.10. Let S be a regular semiring. Then every irreducible ideal I of S is
2-absorbing ideal of S.

Proof. Let S be a regular semiring and I be an irreducible ideal of S. If rst ∈ I
and rs /∈ I, then we have to show that rt ∈ I or st ∈ I. On contrary, we assume
that rt /∈ I and st /∈ I. Then, H = (I + (rt)) and K = (I + (st)) be two ideals of
S properly contain I. Since I is an irreducible, therefore I 6= H ∩ K. Thus, there
exists p ∈ S such that p ∈ (I + (rt))∩ (I + (st)) \ I. Also, by regularity of S, we have
H ∩ K = HK, therefore p ∈ (I + (rt)(I + (st) \ I. Then, there are p1, p2 ∈ I and
r1, r2 ∈ S such that p = (p1 + r1rt)(p2 + r2st) = p1p2 + p1r2st + r1rtp2 + rsr1r2t

2.
This implies that p ∈ I, which is a contradiction. Hence I is a 2-absorbing ideal of
S.

Proposition 2.11. Let a ∈ S and I be an ideal of S. Then the following holds:

(i) If Sa is a subtractive ideal of S and (0 : a) ⊆ Sa, then the ideal Sa is 2-absorbing
if and only if it is weakly 2-absorbing.

(ii) If I is a subtractive ideal of S and (0 : a) ⊆ Ia, then the ideal Ia is 2-absorbing
if and only if it is weakly 2-absorbing.

Proof. (i). Let Sa be weakly 2-absorbing ideal of S and rst ∈ Sa for some r, s, t ∈ S.
If rst 6= 0, then rs ∈ Sa or st ∈ Sa or rt ∈ Sa. Then we have done. Assume that
rst = 0. Clearly, r(s + a)t = rst + rat ∈ Sa. If r(s + a)t 6= 0, then r(s + a) ∈ Sa or
rt ∈ Sa or (s+ a)t ∈ Sa (as Sa is a weakly 2-absorbing ideal of S). Hence rs ∈ Sa or
st ∈ Sa or rt ∈ Sa, since Sa is a subtractive ideal of S. So, assume that r(s+a)t = 0.
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Since rst = 0, therefore we have rat = 0 and so rt ∈ (0 : a) ⊆ Sa. Thus, rt ∈ Sa.
Hence Sa is a 2-absorbing ideal of S.

(ii). The proof is similar to (i)

Theorem 2.12. ([8], Theorem 2.6) Let S be a commutative semiring. If I is a weakly
2-absorbing subtractive ideal of S, then either I3 = 0 or I is 2-absorbing.

The above theorem is used to prove the next theorem which is a generalization of
([6], Theorem 2.7).

Theorem 2.13. Let I be a weakly 2-absorbing subtractive ideal of S but not a 2-
absorbing ideal of S. Then

(i) if r ∈ Nil(S), then either r2 ∈ I or r2I = rI2 = {0}.

(ii) Nil(S)2I2 = {0}.

Proof. (i). Let r ∈Nil(S). We claim that if r2I 6= {0}. Then r2 ∈ I. Suppose that
r2I 6= {0}. Let n be the least positive integer such that rn = 0, then for n ≥ 3 and
for some s ∈ I, we have 0 6= r2s = r2(s + rn−2) ∈ I. Since I is a weakly 2-absorbing
ideal of S, we have either r2 ∈ I or (rs + rn−1) ∈ I. If r2 ∈ I, we have nothing
to prove. Let r2 /∈ I. Then (rs + rn−1) ∈ I, which gives rn−1 ∈ I and rn−1 6= 0,
and thus r2 ∈ I. Hence for each r ∈ Nil(S) we have either r2 ∈ I or r2I = {0}.
If s2 /∈ I for some s ∈ Nil(S), then by previous argument, we have s2I = {0}. We
claim that sI2 = {0}. Suppose that si1i2 6= 0 for some i1, i2 ∈ I. Let m ≥ 3 be the
least positive integer such that sm = 0. Since s2 /∈ I,m ≥ 3 and s2I = {0}, therefore
s(s+ i1)(sm−2 + i2) = si1i2 6= 0. Since 0 6= s(s+ i1)(sm−2 + i2) ∈ I and I is a weakly
2-absorbing ideal of S, we have either s2 ∈ I or 0 6= sm−1 ∈ I (as I is a subtractive
ideal of S). Therefore, we have s2 ∈ I, a contradiction. Hence sI2 = {0}.

(ii). Let a, b ∈Nil(S). If either a2 /∈ I or b2 /∈ I, then by part (i), we have
abI2 = {0} and hence the result. For a2 ∈ I and b2 ∈ I, then ab(a + b) ∈ I. If
0 6= ab(a + b) ∈ I and since I is a subtractive weakly 2-absorbing ideal of S, we have
ab ∈ I. So by Theorem 2.12, we have abI2 = {0}. Again, if 0 = ab(a + b) ∈ I and
0 6= abi ∈ I for some i ∈ I, then 0 6= ab(a+ b+ i) ∈ I implies either a(a+ b+ i) ∈ I or
b(a + b + i) ∈ I or ab ∈ I. In each case, we have ab ∈ I, which is a contradiction, as
I is a weakly 2-absorbing and not a 2-absorbing ideal of S. Thus, we have abI = {0}
and hence abI2 = {0}.

Definition 2.14 ( [4], Definition 1(i) ). A proper ideal I of S is called strong ideal,
if for each a ∈ I there exists b ∈ I such that a + b = 0.

Proposition 2.15. Let S and S′ be semirings, f : S 7→ S′ be an epimorphism such
that f(0) = 0 and I be a subtractive strong ideal of S. Then the following holds:

(i). If I is a weakly 2-absorbing ideal of S such that kerf ⊆ I, then f(I) is a weakly
2-absorbing ideal of S′.

(ii). If I is a 2-absorbing ideal of S such that kerf ⊆ I, then f(I) is a 2-absorbing
ideal of S′.
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Proof. (i). Let a, b, c ∈ S′ be such that 0 6= abc ∈ f(I). Then there exists n ∈ I such
that 0 6= abc = f(n). Since f is an epimorphism, therefore there exist p, q, r ∈ S such
that f(p) = a, f(q) = b, f(r) = c. Also, since I is a strong ideal of S and n ∈ I,
then there exists m ∈ I such that n + m = 0. This implies f(n + m) = 0, that is,
f(pqr + m) = 0, implies, pqr + m ∈ kerf ⊆ I. So, 0 6= pqr ∈ I (as I is subtractive)
because if pqr = 0, then f(n) = 0, a contradiction. Since I is a weakly 2-absorbing
ideal of S, therefore either pq ∈ I or qr ∈ I or rp ∈ I. Thus, ab ∈ f(I) or bc ∈ f(I)
or ca ∈ f(I). Therefore, f(I) is a weakly 2-absorbing ideal of S′.

(ii). It follows from (i).

Consider S = S1×S2 where each Si is a commutative semiring with unity, i = 1, 2
with (a1, a2)(b1, b2) = (a1b1, a2b2) for all a1, b1 ∈ S1 and a2, b2 ∈ S2.

Proposition 2.16. If I is a proper ideal of a semiring S1. Then the following state-
ments are equivalent:

(i). I is a 2-absorbing ideal of S1.

(ii). I × S2 is a 2-absorbing ideal of S = S1 × S2.

(iii). I × S2 is a weakly 2-absorbing ideal of S = S1 × S2.

Proof. (i)⇒ (ii). Let (a1, a2), (b1, b2), (c1, c2) ∈ S be such that (a1, a2)(b1, b2)(c1, c2) ∈
I × S2. Then (a1b1c1, a2b2c2) ∈ I × S2. Therefore, a1b1c1 ∈ I. This gives either
a1b1 ∈ I or b1c1 ∈ I or c1a1 ∈ I, since I is a 2-absorbing ideal of S1. If a1b1 ∈ I, then
(a1, a2)(b1, b2) ∈ I × S2. Similarly, we can prove the other cases. Hence, I × S2 is a
2-absorbing ideal of S.

(ii)⇒ (iii). It is obvious.
(iii) ⇒ (i). Let abc ∈ I for some a, b, c ∈ S1. Then for each 0 6= r ∈ S2, we

have (0, 0) 6= (a, 1)(b, 1)(c, r) ∈ I × S2. This gives, either (a, 1)(b, 1) ∈ I × S2 or
(b, 1)(c, r) ∈ I × S2 or (c, r)(a, 1) ∈ I × S2, since I × S2 is a weakly 2-absorbing ideal
of S. That is, either ab ∈ I or bc ∈ I or ca ∈ I. This shows that I is a 2-absorbing
ideal of S1.

Definition 2.17 ([1], Definition(4)). An ideal I of a semiring S is called a Q-ideal
(partitioning ideal) if there exists a subset Q of S such that

(i) S = ∪{q + I : q ∈ Q}

(ii) If q1, q2 ∈ Q, then ( q1 + I) ∩ (q2 + I) 6= ∅ ⇔ q1 = q2.

Let I be a Q- ideal of a semiring S. Then S/I(Q) = {q+I : q ∈ Q} forms a semiring
under the following addition ‘⊕’ and multiplication ‘� ’, ( q1 + I)⊕ (q2 + I) = q3 + I
where q3 ∈ Q is unique such that q1+q2+I ⊆ q3+I, and ( q1+I)� (q2+I) = q4+I
where q4 ∈ Q is unique such that q1q2 + I ⊆ q4 + I. This semiring S/I(Q) is called
the quotient semiring of S by I and denoted by ( S/I(Q),⊕,�) or just S/I(Q). By
definition of Q-ideal, there exists a unique q0 ∈ Q such that 0 + I ⊆ q0 + I. Then
q0 + I is a zero element of S/I(Q). Clearly, if S is commutative then so is S/I(Q).
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Definition 2.18 ([7], Definition(2.4)). Let I be an ideal of a semiring S. An ideal
A of S with I ⊆ A is said to be subtractive extension of I if x ∈ I, x + y ∈ A, y ∈ S,
then y ∈ A.

Further, we give some characterizations of 2-absorbing and weakly 2-absorbing
ideals in terms of subtractive extension of an ideal of a semiring S, which are derived
from generalizations of [7].

Theorem 2.19. Let S be a semiring, I be a Q-ideal of S and P a subtractive extension
of I. Then P is 2-absorbing ideal of S if and only if P/I(Q∩P ) is a 2-absorbing ideal
of S/I(Q).

Proof. Let P be a 2-absorbing ideal of S. Suppose that q1 + I, q2 + I, q3 + I ∈ S/I(Q)

are such that ( q1 + I)� (q2 + I)� (q3 + I) = q4 + I ∈ P/I(Q∩P ) where q4 ∈ Q∩P
is a unique element such that q1q2q3 + I ⊆ q4 + I ∈ P/I(Q∩P ). So q1q2q3 = q4 + i for
some i ∈ I. Since P is a 2-absorbing ideal of S and q1q2q3 ∈ P , therefore q1q2 ∈ P
or q2q3 ∈ P or q3q1 ∈ P . Consider the case q1q2 ∈ P . If (q1 + I)� (q2 + I) = i1 + I
where i1 ∈ Q is a unique element such that q1q2 + I ⊆ i1 + I. So i1 + f = q1q2 + e
for some e, f ∈ I. Since P is a subtractive extension of I, we have i1 ∈ P , therefore
i1 ∈ Q ∩ P . Hence P/I(Q∩P ) is a 2-absorbing ideal of S/I(Q).
Conversely, if P/I(Q∩P ) is a 2-absorbing ideal of S/I(Q). Let abc ∈ P for some
a, b, c ∈ S. Since I is a Q-ideal of S, therefore there exist q1, q2, q3, q4 ∈ Q such that
a ∈ q1 + I, b ∈ q2 + I, c ∈ q3 + I and abc ∈ ( q1 + I)� (q2 + I)� (q3 + I) = q4 + I.
So, abc = q4 + i2 ∈ P for some i2 ∈ I. Since P is a subtractive extension of I, we
have q4 ∈ P . So ( q1 + I) � (q2 + I) � (q3 + I) = q4 + I ∈ P/I(Q∩P ), which
gives ( q1 + I) � (q2 + I) ∈ P/I(Q∩P ) or ( q2 + I) � (q3 + I) ∈ P/I(Q∩P ) or
( q3 + I) � (q1 + I) ∈ P/I(Q∩P ), since P/I(Q∩P ) is a 2-absorbing ideal of S/I(Q).
If ( q1 + I) � (q2 + I) ∈ P/I(Q∩P ), then there exists q5 ∈ Q ∩ P such that ab ∈
( q1 + I) � (q2 + I) = q5 + I. This gives ab = q5 + i3 for some i3 ∈ I. This implies
ab ∈ P . Thus, P is a 2-absorbing ideal of S.

.

Corollary 2.20. Let S be a semiring, I be a Q-ideal of S and P be subtractive ideal
of S such that I ⊆ P . Then P is a 2-absorbing ideal of S if and only if P/I(Q∩P ) is
a 2-absorbing ideal of S/I(Q).

Note that, if ( q1 + I)� (q2 + I)� (q3 + I) 6= 0 in S/I(Q), then q1q2q3 6= 0 in S.
Now one can easily prove the next theorem, adopting the proof of the last theorem.

Theorem 2.21. Let S be a semiring, I a Q-ideal of S and P a subtractive extension
of I. Then

(i) f P is a weakly 2-absorbing ideal of S, then P/I(Q∩P ) is a weakly 2-absorbing
ideal of S/I(Q).

(ii) if I and P/I(Q∩P ) is a weakly 2-absorbing ideal of S and S/I(Q) respectively,
then P is a weakly 2-absorbing ideal of S.
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Approximate ontrollability of the

impulsive semilinear heat equation

1

Hugo Leiva and Nelson Merentes

Abstrat: In this paper we apply Rothe's Fixed Point Theorem to

prove the interior approximate ontrollability of the following semilinear

impulsive Heat Equation















zt = ∆z + 1ωu(t, x) + f(t, z, u(t, x)), in (0, τ ]× Ω, t 6= tk
z = 0, on (0, τ)× ∂Ω,
z(0, x) = z0(x), x ∈ Ω,
z(t+k , x) = z(t−k , x) + Ik(tk, z(tk, x), u(tk, x)), x ∈ Ω,

where k = 1, 2, . . . , p, Ω is a bounded domain in R
N (N ≥ 1), z0 ∈ L2(Ω), ω

is an open nonempty subset of Ω, 1ω denotes the harateristi funtion of

the set ω,the distributed ontrol u belongs to C([0, τ ];L2(Ω)) and f, Ik ∈
C([0, τ ]× R× R;R), k = 1, 2, 3, . . . , p, suh that

|f(t, z, u)| ≤ a0|z|
α0 + b0|u|

β0 + c0, u ∈ R, z ∈ R.

|Ik(t, z, u)| ≤ ak|z|
αk + bk|u|

βk + ck, k = 1, 2, 3, . . . , p, u ∈ R, z ∈ R.

with

1
2 ≤ αk < 1, 1

2 ≤ βk < 1, k = 0, 1, 2, 3, . . . , p. Under this ondition
we prove the following statement: For all open nonempty subsets ω of

Ω the system is approximately ontrollable on [0, τ ]. Moreover, we ould

exhibit a sequene of ontrols steering the nonlinear system from an initial

state z0 to an ǫ neighborhood of the �nal state z1 at time τ > 0.

AMS Subjet Classi�ation: primary: 93B05; seondary: 93C10.

Keywords and Phrases: impulsive semilinear heat equation, approximate ontrolla-

bility, Rothe's �xed point Theorem.
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1 Introdution

There are many pratial examples of impulsive ontrol systems, a hemial reator

system with the quantities of di�erent hemials serve as the states, a �nanial system

with two state variables of the amount of money in a market and the saving rates

of a entral bank and the growth of a population di�using throughout its habitat is

often modeled by reation-di�usion equation, for whih muh has been done under the

assumption that the system parameters related to the population environment, either

are onstant or hange ontinuously.However, one may easily visualize situations in

nature where abrupt hanges suh as harvesting, disasters and instantaneous stoking

may our. This observation motivates us to study the approximate ontrollability of

the following Semilinear Impulsive Heat Equation















zt = ∆z + 1ωu(t, x) + f(t, z, u(t, x)), in (0, τ ]× Ω, t 6= tk
z = 0, on (0, τ)× ∂Ω,
z(0, x) = z0(x), x ∈ Ω,
z(t+k , x) = z(t−k , x) + Ik(tk, z(tk, x), u(tk, x)), x ∈ Ω,

(1.1)

where k = 1, 2, . . . , p, Ω is a bounded domain in R
N (N ≥ 1), z0 ∈ L2(Ω), ω is an

open nonempty subset of Ω, 1ω denotes the harateristi funtion of the set ω,the

distributed ontrol u belongs to C([0, τ ];L2(Ω)) and f, Ik ∈ C([0, τ ] × R × R;R),
k = 1, 2, 3, . . . , p, suh that

|f(t, z, u)| ≤ a0|z|
α0 + b0|u|

β0 + c0, u, z ∈ R. (1.2)

|Ik(t, z, u)| ≤ ak|z|
αk + bk|u|

βk + ck, k = 1, 2, 3, . . . , p, u, z ∈ R. (1.3)

1

2
≤ αk < 1,

1

2
≤ βk < 1, k = 0, 1, 2, 3, . . . , p, (1.4)

and

z(tk, x) = z(t+k , x) = lim
t→t+

k

z(t, x), z(t−k , x) = lim
t→t−

k

z(t, x).

In almost all referene on impulsive di�erential equations the natural spae to work

in is the Banah spae

PC([0, τ ];Z)

= {z : J = [0, τ ] → Z : z ∈ C(J ′;Z), ∃z(t+k , ·), z(t
−
k , ·) and z(tk, ·) = z(t+k , ·)},

where Z = L2(Ω) and J ′ = [0, τ ]\{t1, t2, . . . , tp}, endowed with the norm

‖z‖ = sup
t∈[0,τ ]

|z(t, ·)|Z ,

with

‖z‖Z =

√

∫

Ω

‖z(x)‖2dx, ∀z ∈ Z = L2(Ω).
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De�nition 1.1 (Approximate Controllability) The system (1.1) is said to be

approximately ontrollable on [0, τ ] if for every z0, z1 ∈ Z = U = L2(Ω), ε > 0 there

exists u ∈ C([0, τ ];U) suh that the solution z(t) of (1.1) orresponding to u veri�es:

z(0) = z0 and ‖z(τ)− z1‖Z < ε, (Fig.2),

where

‖z(τ)− z1‖Z =

(
∫

Ω

|z(τ, x)− z1(x)|
2dx

)
1
2

.

b

b

z(0) = z0

z(τ) = z1

b

b

b

z(0) = z0

z(τ)

z1

ǫ

Fig.1 Fig.2

De�nition 1.2 (Controllability to Trajetories) The system (1.1) is said to be

ontrollable to trajetories on [0, τ ] if for every z0, ẑ0 ∈ Z = U = L2(Ω) and û ∈
C([0, τ ];U) there exists u ∈ C([0, τ ];U) suh that the mild solution z(t) of (1.1)

orresponding to u veri�es:

z(τ, z0, u) = z(τ, ẑ0, û), (Fig.3).

ẑ0

z0

ẑ(τ, ẑ0, û) = z(τ, z0, u)

Fig.3

De�nition 1.3 (Null Controllability) The system (1.1) is said to be null ontrol-

lable on [0, τ ] if for every z0 ∈ Z = U = L2(Ω) there exists C([0, τ ];U) suh that the

mild solution z(t) of (1.1) orresponding to u veri�es:

z(0) = z0 and z(τ) = 0, (Fig.4).



88 H. Leiva, N. Merentes

z0

z(τ ) = 0

Fig.4

Remark 1.1 It is lear that exat ontrollability of the system(1.1) implies approx-

imate ontrollability, null ontrollability and ontrollability to trajetories of the sys-

tem.But, it is well known ([2℄) that due to the di�usion e�et or the ompatness

of the semigroup generated by −∆, the heat equation an never be exatly ontrol-

lable. We observe also that in the linear ase ontrollability to trajetories and null

ontrollability are equivalent. Nevertheless, the approximate ontrollability and the

null ontrollability are in general independent. Therefore, in this paper we will be

onentrated only on the study of the approximate ontrollability of the system(1.1).

Reently the interior ontrollability of the semilinear heat equation (1.1) without

impulses has been proved in [13℄, [14℄ and [15℄ under the following ondition:

sup
(t,z,u)∈Qτ

|f(t, z, u)− az − cu| < ∞, (1.5)

where a, c ∈ IR, with c 6= −1 and Qτ = [0, τ ]× IR × IR.

More reently, in [14℄, the approximate ontrollability of the semilinear heat equation

(1.1) without impulses has been proved under the following non linear perturbation:

|f(t, z, u)− az| ≤ c|u|β + b, ∀u, z ∈ IR, |u|, |z| ≥ R, (1.6)

where a, b, c ∈ IR, R > 0 and

1
2 ≤ β < 1. We note that, the interior approximate

ontrollability of the linear heat equation







zt(t, x) = ∆z(t, x) + 1ωu(t, x) in (0, τ ]× Ω,
z = 0, on (0, τ) × ∂Ω,
z(0, x) = z0(x), x ∈ Ω,

(1.7)

has been study by several authors, partiularly by [22℄,[23℄,[24℄; and in a general fash-

ion in [12℄.

The ontrollability of Impulsive Evolution Equations has been studied reently for

several authors, but most them study the exat ontrollability only, to mention:

D.N. Chalishajar([4℄), studied the exat ontrollability of impulsive partial neu-

tral funtional di�erential equations with in�nite delay, B. Radhakrishnan and K.

Balahandran([19℄) studied the exat ontrollability of semilinear impulsive inte-

grodi�erential evolution systems with nonloal onditions and S. Selvi, M. Mallika

Arjunan([20℄) studied the exat ontrollability for impulsive di�erential systems with

�nite delay. To our knowledge, there are a few works on approximate ontrollability of

impulsive semilinear evolution equations, to mention: Lizhen Chen and Gang Li([5℄)
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studied the Approximate ontrollability of impulsive di�erential equations with non-

loal onditions, using measure of nonompatness and Monh �xed point theorem,

and assuming that the nonlinear term f(t, z) does not depend on the ontrol variable.

Finally, the approximate ontrollability of the system (1.1) follows from the ap-

proximate ontrollability of (1.7), the ompatness of the semigroup generated by the

Laplaian operator −∆, the onditions (1.2) and (1.5) satis�ed by the nonlinear term

f, Ik and the following results:

Proposition 1.1 Let (X,Σ, µ) be a measure spae with µ(X) < ∞ and 1 ≤ q < r <

∞. Then Lr(µ) ⊂ Lq(µ) and

‖f‖q ≤ µ(X)
r−q
rq ‖f‖r, f ∈ Lr(µ). (1.8)

Proof The proof of this proposition follows from Theorem I.V.6 from [3℄ by putting

p = r
q > 1 and onsidering the relation

∫

X

(|f |q)pdµ =

∫

X

|f |rdµ, ∀f ∈ Lr(µ).

Theorem 1.1 (Rothe's Fixed Theorem, [1℄,[9℄, [21℄) Let E be a Banah spae. Let

B ⊂ E be a losed onvex subset suh that the zero of E is ontained in the interior

of B. Let Φ : B → E be a ontinuous mapping with Φ(B) relatively ompat in E

and Φ(∂B) ⊂ B. Then there is a point x∗ ∈ B suh that Φ(x∗) = x∗
.

The tehnique we use here to prove the approximate ontrollability of the linear part

of equation (1.7) is based on the lassial Unique Continuation for Ellipti Equations

(see [18℄) and the following lemma:

Lemma 1.1 (see Lemma 3.14 from [6℄, pg. 62) Let {αj}j≥1 and {βi,j : i =
1, 2, . . . ,m}j≥1 be two sequenes of real numbers suh that: α1 > α2 > α3 · · · . Then

∞
∑

j=1

eαjtβi,j = 0, ∀t ∈ [0, τ ], i = 1, 2, · · · ,m

i�

βi,j = 0, i = 1, 2, · · · ,m; j = 1, 2, · · · ,∞.

2 Abstrat Formulation of the Problem

In this setion we hoose a Hilbert spae where system (1.1) an be written as an

abstrat di�erential equation; to this end, we onsider the following results appearing

in [6℄ pg.46, [8℄ pg.335 and [10℄ pg.147:

Let us onsider the Hilbert spae Z = L2(Ω) and 0 < λ1 < λ2 < ... < λj −→ ∞ the

eigenvalues of −∆ with the Dirihlet homogeneous onditions, eah one with �nite
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multipliity γj equal to the dimension of the orresponding eigenspae. Then we have

the following well known properties

(i) There exists a omplete orthonormal set {φj,k} of eigenvetors of A = −∆.

(ii) For all z ∈ D(A) we have

Az =

∞
∑

j=1

λj

γj
∑

k=1

< z, φj,k > φj,k =

∞
∑

j=1

λjEjz, (2.1)

where < ·, · > is the inner produt in Z and

Ejz =

γj
∑

k=1

< z, φj,k > φj,k. (2.2)

So, {Ej} is a family of omplete orthogonal projetions in Z and z =
∑∞

j=1 Ejz, z ∈
Z.

(iii) −A generates an analyti semigroup {T (t)} given by

T (t)z =
∞
∑

j=1

e−λjtEjz and ‖T (t)‖ ≤ e−λ1t, t ≥ 0. (2.3)

Consequently, system (1.1) an be written as an abstrat impulsive di�erential

equations in Z:






z′ = −Az +Bωu+ fe(t, z, u), t ∈ (0, τ ], t 6= tk, z ∈ Z

z(0) = z0,

z(t+k ) = z(t−k ) + Iek(tk, z(tk), u(tk)), k = 1, 2, 3, . . . , p.
(2.4)

where u ∈ C([0, τ ];U), U = Z, Bω : U −→ Z, Bωu = 1ωu is a bounded linear

operator,Iek, f
e : [0, τ ]× Z × U → Z, are de�ned by

Iek(t, z, u)(x) = Ik(t, z(x), u(x)), fe(t, z, u)(x) = f(t, z(x), u(x)), ∀x ∈ Ω, k = 1, 2, . . . , p.

On the other hand, from onditions (1.2) and (1.5) we get the following estimates.

Proposition 2.1 Under the onditions (1.2)-(1.5) the funtions fe, Iek : [0, τ ]× Z ×
U → Z,k = 1, 2, 3, . . . , p, de�ned above satisfy ∀u, z ∈ Z = L2(Ω):

‖fe(t, z, u)‖Z ≤ ã0‖z‖
α0

Z + b̃0‖u‖
β0

Z + c̃0 (2.5)

‖Iek(t, z, u)‖Z ≤ ãk‖z‖
αk

Z + b̃k‖u‖
βk

Z + c̃k, k = 1, 2, 3, . . . , p. (2.6)

Proof.

‖fe(t, z, u)‖2Z =

∫

Ω

|f(t, z(x), u(x))|2dx

≤

∫

Ω

(

a0|z(x)|
α0 + b0|u(x)|

β0 + c0
)2

dx

≤

∫

Ω

(4a20|z(x)|
2α0 + 42b20|u(x)|

2β0 + 42c20)dx

≤ 4a20

∫

Ω

|z(x)|2α0dx + 42b20

∫

Ω

|u(x)|2β0dx + 42c20µ(Ω).
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Then

‖fe(t, z, u)‖Z ≤ 2a0

(
∫

Ω

|z(x)|2α0dx

)
1
2

+ 4b0

(
∫

Ω

|u(x)|2β0dx

)
1
2

+ 4c0
√

µ(Ω)

= 2a0‖z‖
α0

L2α0

+ 4b0‖z‖
β0

L2β0

+ 4c0
√

µ(Ω)

Now, sine

1
2 ≤ α0 < 1 ⇔ 1 ≤ 2α0 < 2 and

1
2 ≤ β0 < 1 ⇔ 1 ≤ 2β0 < 2 applying

proposition 1.1, we obtain that:

‖fe(t, z, u)‖Z ≤ 2a0µ(Ω)
1−α0
α0 ‖z‖α0

Z + 2b0µ(Ω)
1−β0
β0 ‖u‖β0

Z + 4c0
√

µ(Ω).

Analogously, we obtain the following estimate for k = 1, 2, 3, . . . , p

‖Iek(t, z, u)‖Z ≤ 2akµ(Ω)
1−αk
αk ‖z‖αk

Z + 2bkµ(Ω)
1−βk
βk ‖u‖βk

Z + 4ck
√

µ(Ω),

whih ompletes the proof.

3 Controllability of the Linear Equation without Im-

pulses

In this setion we shall present some haraterization of the interior approximate

ontrollability of the linear heat equations without impulses. To this end, we note

that, for all z0 ∈ Z and u ∈ L2(0, τ ;U) the initial value problem
{

z′ = −Az +Bωu(t), z ∈ Z,

z(0) = z0,
(3.1)

where the ontrol funtion u belongs to L2(0, τ ;U), admits only one mild solution

given by

z(t) = T (t)z0 +

∫ t

0

T (t− s)Bωu(s)ds, t ∈ [0, τ ]. (3.2)

De�nition 3.1 For system (3.1) we de�ne the following onept: The ontrollability

map (for τ > 0) G : L2(0, τ ;U) −→ Z is given by

Gu =

∫ τ

0

T (τ − s)Bωu(s)ds. (3.3)

whose adjoint operator G∗ : Z −→ L2(0, τ ;Z) is given by

(G∗z)(s) = B∗
ωT

∗(τ − s)z, ∀s ∈ [0, τ ], ∀z ∈ Z. (3.4)

Therefore, the Grammian operator W : Z → Z is given

Wz = GG∗z =

∫ τ

0

T (τ − s)BωB
∗
ωT

∗(τ − s)ds. (3.5)

The following lemma holds in general for a linear bounded operator G : W → Z

between Hilbert spaes W and Z.
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Lemma 3.1 (see [6℄, [7℄ and [12℄) The equation (3.1) is approximately ontrollable

on [0, τ ] if, and only if, one of the following statements holds:

a) Rang(G) = Z.

b) Ker(G∗) = {0}.

) 〈GG∗z, z〉 > 0, z 6= 0 in Z.

d) limα→0+ α(αI +GG∗)−1z = 0.

e) B∗
ωT

∗(t)z = 0, ∀t ∈ [0, τ ], ⇒ z = 0.

f ) For all z ∈ Z we have Guα = z − α(αI +GG∗)−1z, where

uα = G∗(αI +GG∗)−1z, α ∈ (0, 1].

So, limα→0 Guα = z and the error Eαz of this approximation is given by

Eαz = α(αI +GG∗)−1z, α ∈ (0, 1].

Remark 3.1 The Lemma 3.1 implies that the family of linear operators

Γα : Z → L2(0, τ ;U), de�ned for 0 < α ≤ 1 by

Γαz = B∗
ωT

∗(·)(αI +GG∗)−1z = G∗(αI +GG∗)−1z, (3.6)

is an approximate inverse for the right of the operator G in the sense that

lim
α→0

GΓα = I, (3.7)

in the strong topology.

Proposition 3.1 (See [15℄) If Rang(G) = Z, then

sup
α>0

‖α(αI +GG∗)−1‖ ≤ 1. (3.8)

Remark 3.2 The proof of the following theorem follows from foregoing harateriza-

tion of dense range linear operators and the lassial Unique Continuation for Ellipti

Equations (see [18℄), and it is similar to the one given in Theorem 4.1 in [14℄.

Theorem 3.1 System (3.1) is approximately ontrollable on [0, τ ]. Moreover, a se-

quene of ontrols steering the system (3.1) from initial state z0 to an ǫ neighborhood

of the �nal state z1 at time τ > 0 is given by

uα(t) = B∗
ωT

∗(τ − t)(αI +GG∗)−1(z1 − T (τ)z0),

and the error of this approximation Eα is given by

Eα = α(αI +GG∗)−1(z1 − T (τ)z0).
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Proof . It is enough to show that Rang(G) = Z or Ker(G∗) = {0}. To this end, we

observe that Bω = B∗
ω and T ∗(t) = T (t). Suppose that

B∗
ωT

∗(t)z = 0, ∀t ∈ [0, τ ].

Then,

B∗
ωT

∗(t)z =
∞
∑

j=1

e−λjtB∗
ωEjz =

∞
∑

j=1

e−λjt

γj
∑

k=1

< z, φj,k > 1ωφj,k = 0.

⇐⇒
∞
∑

j=1

e−λjt

γj
∑

k=1

< z, φj,k > 1ωφj,k(x) = 0, ∀x ∈ ω.

Hene, from Lemma 1.1, we obtain that

Ejz(x) =

γj
∑

k=1

< z, φj,k > φj,k(x) = 0, ∀x ∈ ω, j = 1, 2, 3, . . . .

Now, putting f(x) =
∑γj

k=1 < z, φj,k > φj,k(x), ∀x ∈ Ω, we obtain that

{

(∆ + λjI)f ≡ 0 in Ω,
f(x) = 0 ∀x ∈ ω.

Then, from the lassial Unique Continuation for Ellipti Equations (see [18℄), it

follows that f(x) = 0, ∀x ∈ Ω. So,

γj
∑

k=1

< z, φj,k > φj,k(x) = 0, ∀x ∈ Ω.

On the other hand, {φj,k}is a omplete orthonormal set in Z = L2(Ω), whih implies

that < z, φj,k >= 0.

Therefore, Ejz = 0, j = 1, 2, 3, . . . , whih implies that z = 0. So, Rang(G) = Z.

Hene, the system (3.1) is approximately ontrollable on [0, τ ], and the remainder of

the proof follows from Lemma 3.1.

Lemma 3.2 Let S be any dense subspae of L2(0, τ ;U). Then, system (3.1) is ap-

proximately ontrollable with ontrol u ∈ L2(0, τ ;U) if, and only if, it is approximately

ontrollable with ontrol u ∈ S. i.e.,

Rang(G) = Z ⇐⇒ Rang(G|S) = Z,

where G|S is the restrition of G to S.

Proof (⇒) Suppose Rang(G) = Z and S = L2(0, τ ;U). Then, for a given ǫ > 0 and

z ∈ Z there exits u ∈ L2(0, τ ;U) and a sequene {un}n≥1 ⊂ S suh that

‖Gu− z‖ <
ǫ

2
and lim

n→∞
un = u.

Therefore, limn→∞ Gun = Gu and ‖Gun − z‖ < ǫ for n big enough. Hene,

Rang(G|S) = Z.

(⇐) This side is trivial.
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Remark 3.3 Aording to the previous lemma, if the system is ontrollable, it is

approximately ontrollable with ontrol funtions in the following dense spaes of

L2(0, τ ;U):

S = C([0, τ ];U), S = C∞(0, τ ;U), S = PC(J).

Moreover, the operators G, W and Γ are well de�ne in the spae of ontinuous fun-

tions: G : C([0, τ ];U) −→ Z by

Gu =

∫ τ

0

T (τ − s)Bωu(s)ds, (3.9)

and G∗ : Z −→ C([0, τ ];U) by

(G∗z)(s) = B∗(s)T ∗(τ − s)z, ∀s ∈ [0, τ ]. ∀z ∈ Z. (3.10)

Also, the Controllability Grammian operator still the same W : Z → Z

Wz = GG∗z =

∫ τ

0

T (τ − s)BωB
∗
ω(s)T

∗(τ − s)zds. (3.11)

Finally, the operators Γα : Z → C([0, τ ];U) de�ned for 0 < α ≤ 1 by

Γαz = B∗
ωT

∗(τ − ·)(αI +W)−1z = G∗(αI +GG∗)−1z, (3.12)

is an approximate inverse for the right of the operator G in the sense that

lim
α→0

GΓα = I. (3.13)

4 Controllability of the Semilinear System

In this setion we shall prove the main result of this paper, the interior approximate

ontrollability of the Semilinear Impulsive Heat Equation given by (1.1), whih is

equivalent to prove the approximate ontrollability of the system (2.4). To this end,

for all z0 ∈ Z and u ∈ C([0, τ ];U) the initial value problem






z′ = −Az +Bωu+ fe(t, z, u), t ∈ (0, τ ], t 6= tk, z ∈ Z

z(0) = z0,

z(t+k ) = z(t−k ) + Iek(t, z(tk), u(tk)), k = 1, 2, 3, . . . , p.
(4.1)

admits only one mild solution given by

zu(t) = T (t)z0 +

∫ t

0

T (t− s)Bωu(s)ds (4.2)

+

∫ t

0

T (t− s)fe(s, zu(s), u(s))ds (4.3)

+
∑

0<tk<t

T (t− tk)I
e
k(tk, z(tk), u(tk)), t ∈ [0, τ ].
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Now, we are ready to present and prove the main result of this paper, whih is the

interior approximate ontrollability of the semilinear impulsive heat equation (1.1).

We shall de�ne the operator Kα : PC([0, τ ];Z) × C([0, τ ];U) → PC([0, τ ];Z) ×
C([0, τ ];U) by the following formula:

(y, v) = (Kα
1 (z, u),K

α
2 (z, u)) = Kα(z, u)

where

y(t) = Kα
1 (z, u)(t) = T (t)z0 +

∫ t

0

T (t− s)Bω(ΓαL(z, u))(s)ds (4.4)

+

∫ t

0

T (t− s)fe(s, z(s), u(s))ds+
∑

0<tk<t

T (t− tk)I
e
k(tk, z(tk), u(tk)),

and

v(t) = Kα
2 (z, u)(t) = (ΓαL(z, u))(t) = B∗

ωT
∗(τ − t)(αI +W)−1L(z, u), (4.5)

with L : PC([0, τ ];Z)× C([0, τ ];U) → Z is given by

L(z, u) = z1 − T (τ)z0 −

∫ τ

0

T (τ − s)fe(s, z(s), u(s))ds (4.6)

−
∑

0<tk<τ

T (τ − tk)I
e
k(tk, z(tk), u(tk)).

Theorem 4.1 The nonlinear system (1.1) is approximately ontrollable on [0, τ ].
Moreover, a sequene of ontrols steering the system (1.1) from initial state z0 to

an ǫ-neighborhood of the �nal state z1 at time τ > 0 is given by

uα(t) = B∗
ωT

∗(τ − t)(αI +W)−1L(zα, uα),

and the error of this approximation Eαz is given by

Eαz = α(αI +W)−1L(zα, uα),

where

zα(t) = T (t)z0 +

∫ t

0

T (t− s)Bωuα(s)ds

+

∫ t

0

T (t− s)fe(s, zα(s), uα(s))ds

+
∑

0<tk<t

T (t− tk)I
e
k(tk, zα(tk), uα(tk)), t ∈ [0, τ ].

Proof We shall prove this Theorem by laims. Before we note that ‖Bω‖ = 1 and

‖T (t)‖ ≤ e−λ1t, t ≥ 0.
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Claim 1. The operator Kα
is ontinuous. In fat, it is enough to prove that the

operators:

Kα
1 : PC([0, τ ];Z)× C([0, τ ];U) → PC([0, τ ];Z)

and

Kα
2 : PC([0, τ ];Z)× C([0, τ ];U) → C([0, τ ];U),

de�ne above are ontinuous. The ontinuity of Kα
1 follows from the ontinuity of the

nonlinear funtions fα(t, z, u), Iek(t, z, u) and the following estimate

‖Kα
1 (z, u)(t)−Kα

1 (w, v)(t)‖ ≤

∫ t

0

e−λ1(t−s)‖(αI +W)−1‖‖L(z, u)− L(w, v)‖ds

+

∫ t

0

e−λ1(t−s)‖fe(s, z(s), u(s))− fe(s, w(s), v(s))‖ds

+
∑

0<tk<t

e−λ1(t−tk)‖Iek(tk, z(tk), u(tk))− Iek(tk, w(tk), v(tk))‖.

On the other hand,

‖L(z, u)− L(w, v)‖ ≤ τ sup
s∈[0,τ ]

‖fe(s, z(s), u(s))− fe(s, w(s), v(s))‖

+
∑

0<tk<τ

e−λ1(t−tk)‖Iek(tk, z(tk), u(tk))− Iek(tk, w(tk), v(tk))‖.

Therefore,

‖Kα
1 (z, u)−Kα

1 (w, v)‖ ≤ L1 sup
s∈[0,τ ]

‖fe(s, z(s), u(s))− fe(s, w(s), v(s))‖

+ L2

∑

0<tk<τ

‖Iek(tk, z(tk), u(tk))− Iek(tk, w(tk), v(tk))‖.

where L1 = τ(τ‖(αI +W)−1‖+ 1) and L2 = (1 + τ‖(αI +W)−1‖).
The ontinuity of the operator Kα

2 follows from the ontinuity of the operators L and

Γα de�ne above.

Claim 2. The operator Kα
is ompat. In fat, let D be a bounded subset of

PC(J ;Z)× C(J ;U). It follows that ∀(z, u) ∈ D,we have

‖fe(·, z, u)‖ ≤ L3, ‖(αI +W)−1L(z, u)‖ ≤ L4,

‖L(z, u)‖ ≤ L5, ‖Iek(·, z, u)‖ ≤ lk, k = 1, 2, . . . , p.

Therefore , K(D) is uniformly bounded.

Now, onsider the following estimate:

‖|Kα(z, u)(t2)−Kα(z, u)(t1)‖| = ‖Kα
1 (z, u)(t2)−Kα

1 (z, u)(t1)‖

+ ‖Kα
2 (z, u)(t2)−Kα

2 (z, u)(t1)‖.
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Without lose of generality we assume that 0 < t1 < t2. On the other hand we have:

‖Kα
1 (z, u)(t2)−Kα

1 (z, u)(t1)‖ ≤ ‖T (t2)− T (t1)‖‖z0‖

+

∫ t1

0

‖T (t2 − s)− T (t1 − s)‖‖L(z, u)(s)‖ds

+

∫ t2

t1

‖T (t2 − s)‖‖L(z, u)(s)‖ds

+

∫ t1

0

‖T (t2 − s)− T (t1 − s)‖‖fe(s, z(s), u(s))‖ds

+

∫ t2

t1

‖T (t2 − s)‖‖fe(s, z(s), u(s))‖ds

+
∑

0<tk<t1

‖T (t2 − tk)− T (t1 − tk)‖‖I
e
k(tk, z(tk), u(tk))‖

+
∑

t1<tk<t2

‖T (t2 − tk)I
e
k(tk, z(tk), u(tk))‖,

and

‖Kα
2 (z, u)(t2)−Kα

2 (z, u)(t1)‖ ≤ ‖T ∗(τ − t2)− T ∗(τ − t1)‖‖(αI +W)−1L(z, u)‖.

On the other hand, sine T (t) is a ompat operator for t > 0, then from [17℄ we know

that the funtion 0 < t → T (t) is uniformly ontinuous. So,

lim
|t2−t1|→0

‖T (t2)− T (t1)‖ = 0.

Consequently, if we take a sequene {φj : j = 1, 2, . . . } on Kα(D), this sequene is

uniformly bounded and equiontinuous on the interval [0, t1] and, by Arzela theorem,

there is a subsequene {φ1
j : j = 1, 2, . . . } of {φj : j = 1, 2, . . .}, whih is uniformly

onvergent on [0, t1].
Consider the sequene {φ1

j : j = 1, 2, . . .} on the interval (t1, t2]. On this interval the

sequene {φ1
j : j = 1, 2, . . .} is uniformly bounded and equiontinuous, and for the

same reason, it has a subsequene {φ2
j} uniformly onvergent on [0, t2].

Continuing this proess for the intervals (t2, t3], (t3, t4], . . . , (tp, τ ], we see that the

sequene {φp+1
j : j = 1, 2, . . .} onverges uniformly on the interval [0, τ ]. This means

that Kα(D) is ompat, whih implies that the operator Kα
is ompat.

Claim 3.

lim
‖|(z,u)‖|→∞

‖|Kα(z, u)‖|

‖|(z, u)‖|
= 0,

where ‖|(z, u)‖| = ‖z‖ + ‖u‖ is the norm in the spae PC([0, τ ];Z) × C(0, τ ;Z). In

fat, onsider the following estimates:

‖L(z, u)‖ ≤ M1+M2{a0‖z‖
α0 + b0‖u‖

β0 + c0}+M3

∑

0<tk<τ

{ak‖z‖
αk + bk‖u‖

βk + ck},
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where

M1 = ‖z1‖+ e−λ1τ‖z0‖, M2 =
1

−λ1
(e−λ1τ − 1) and M3 = e−λ1τ .

‖Kα
2 (z, u)‖ ≤ M3M1‖(αI +W)−1‖+M3M2‖(αI +W)−1‖{a0‖z‖

α0 + b0‖u‖
β0 + c0}

+ M3M2‖(αI +W)−1‖
∑

0<tk<τ

{ak‖z‖
αk + bk‖u‖

βk + ck}.

and

‖Kα
1 (z, u)‖ ≤ M3{‖z0‖+M1M2‖(αI +W)−1‖}

+M2{1 +M2M3‖(αI +W)−1‖}{a0‖z‖
α0 + b0‖u‖

β0 + c0}

+M3{1 +M2M3‖(αI +W)−1‖}
∑

0<tk<τ

{ak‖z‖
αk + bk‖u‖

βk + ck}.

Therefore,

‖|Kα(z, u)‖| = ‖Kα
1 (z, u)‖+ ‖Kα

2 (z, u)‖ ≤ M4

+ {M3M2‖(αI +W)−1‖{1 + 2M2}{a0‖z‖
α0 + b0‖u‖

β0 + c0}

+ {M3M2‖(αI +W)−1‖{1 +M3}+M3}
∑

0<tk<τ

{ak‖z‖
αk + bk‖u‖

βk + ck},

where M4 is given by:

M4 = M3{‖z0‖+ (M2 + 1)M1‖(αI +W)−1‖}.

Hene

‖|Kα(z, u)‖|

‖|(z, u)‖|
≤

M4

‖z‖+ ‖u‖

+ {M3M2‖(αI +W)−1‖{1 +M2}}

×{a0‖z‖
α0−1 + b0‖u‖

β0−1 +
c0

‖z‖+ ‖u‖
}

+ {M3M2‖(αI +W)−1‖{1 +M3}+M3} ×
∑

0<tk<τ

{ak‖z‖
αk−1 + bk‖u‖

βk−1 +
ck

‖z‖+ ‖u‖
},

and

lim
‖|(z,u)‖|→∞

‖|Kα(z, u)‖|

‖|(z, u)‖|
= 0. (4.7)

Claim 4.The operator Kα
has a �xed point. In fat, for a �xed 0 < ρ < 1, there

exists R > 0 big enough suh that

‖|Kα(z, u)‖| ≤ ρ‖|(z, u)‖|, ‖|(z, u)‖| = R.
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Hene, if we denote by B(0, R) the ball of enter zero and radius R > 0, we get that
Kα(∂B(0, R)) ⊂ B(0, R). Sine Kα

is ompat and maps the sphere ∂B(0, R) into the
interior of the ball B(0, R), we an apply Rothe's �xed point Theorem 1.1 to ensure

the existene of a �xed point (zα, uα) ∈ B(0, R) ⊂ PC([0, τ ];Z) × C([0, τ ];U) suh
that

(zα, uα) = Kα(zα, uα). (4.8)

Claim 5. The sequene {(zα, uα)}α∈(0,1] is bounded. In fat, for the purpose of

ontradition, let us assume that {(zα, uα)}α∈(0,1] is unbounded. Then, there exits a

subsequene {(zαn
, uαn

)}α∈(0,1] ⊂ {(zα, uα)}α∈(0,1] suh that

lim
n→∞

‖|(zαn
, uαn

)‖| = ∞.

On the other hand, from (4.7) we know for all α ∈ (0, 1] that

lim
n→∞

‖|Kα(zαn
, uαn

)‖|

‖|(zαn
, uαn

)‖|
= 0.

Partiularly, we have the following situation:

‖|Kα1(zα1
,uα1

)‖|

‖|(zα1
,uα1

)‖|

‖|Kα1(zα2
,uα2

)‖|

‖|(zα2
,uα2

)‖|

‖|Kα1(zα3
,uα3

)‖|

‖|(zα3
,uα3

)‖| . . . . . .
‖|Kα1(zαn ,uαn )‖|

‖|(zαn ,uαn)‖| → 0.

‖|Kα2(zα1
,uα1

)‖|

‖|(zα1
,uα1

)‖|

‖|Kα2(zα2
,uα2

)‖|

‖|(zα2
,uα2

)‖|

‖|Kα2(zα3
,uα3

)‖|

‖|(zα3
,uα3

)‖| . . . . . .
‖|Kα2(zαn ,uαn )‖|

‖|(zαn ,uαn)‖| → 0.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

‖|Kαk(zα1
,uα1

)‖|

‖|(zα1
,uα1

)‖|

‖|Kαk(zα2
,uα2

)‖|

‖|(zα2
,uα2

)‖|

‖|Kαk(zα3
,uα3

)‖|

‖|(zα3
,uα3

)‖| . . . . . .
‖|Kαk (zαn ,uαn )‖|

‖|(zαn ,uαn)‖| → 0.

Now, applying Cantor's diagonalization proess, we obtain that

lim
n→∞

‖|Kαn(zαn
, uαn

)‖|

‖|(zαn
, uαn

)‖|
= 0,

and from (4.8) we have that

‖|Kαn(zαn
, uαn

)‖|

‖|(zαn
, uαn

)‖|
= 1,

whih is evidently a ontradition. Then, the laim is true and there exists γ > 0
suh that

‖|(zαn
, uαn

)‖| ≤ γ, (0 < α ≤ 1).

Therefore, without loss of generality, we an assume that the sequene L(zα, uα)
onverges to y ∈ Z. So, if

uα = ΓαL(zα, uα) = G∗(αI +GG∗)−1L(zα, uα).
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Then,

Guα = GΓαL(zα, uα) = GG∗(αI +GG∗)−1L(zα, uα)

= (αI +GG∗ − αI)(αI +GG∗)−1L(zα, uα)

= L(zα, uα)− α(αI +GG∗)−1L(zα, uα).

Hene,

Guα − L(zα, uα) = −α(αI +GG∗)−1L(zα, uα).

To onlude the proof of this Theorem, it enough to prove that

lim
α→0

{−α(αI +GG∗)−1}L(zα, uα) = 0.

From Lemma 3.1.d) we get that

lim
α→0

{α(αI +GG∗)−1L(zα, uα)} = lim
α→0

α(αI +GG∗)−1y

+ lim
α→0

α(αI +GG∗)−1(L(zα, uα)− y)

= lim
α→0

−α(αI +GG∗)−1(L(zα, uα)− y)

On the other hand, from Proposition 3.1, we get that

‖α(αI +GG∗)−1(L(zα, uα)− y)‖ ≤ ‖L(zα, uα)− y)‖.

Therefore, sine L(zα, uα) onverges to y, we get that

lim
α→0

{−α(αI +GG∗)−1(L(zα, uα)− y)} = 0.

Consequently,

lim
α→0

{−α(αI +GG∗)−1L(zα, uα)} = 0.

Then,

lim
α→0

{Guα − L(zα, uα)} = 0.

Therefore,

lim
α→0

{T (τ)z0 +

∫ τ

0

T (τ − s)Bωuα(s)ds +

∫ τ

0

T (τ − s)fe(s, zα(s), uα(s))ds

+
∑

0<tk<τ

T (τ − tk)I
e
k(zα(tk), uα(tk))} = z1,

and the proof of the theorem is ompleted.

As a onsequene of the foregoing theorem we an prove the following harateri-

zation:

Theorem 4.2 The Impulsive Semilinear System (1.1) is approximately ontrollable if

for all states z0 and a �nal state z1 and α ∈ (0, 1] the operator Kα
given by (4.4)-(4.6)

has a �xed point and the sequene {L(zα, uα)}α∈(0,1] onverges. i.e.,

(zα, uα) = Kα(zα, uα),

lim
α→0

L(zα, uα) = y ∈ Z.
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5 Final Remark

Our tehnique is simple and an be apply to those system involving ompat semi-

groups like some ontrol system governed by di�usion proesses. For example, the

Benjamin -Bona-Mohany Equation, the strongly damped wave equations, beam equa-

tions, et.

Example 5.1 The original Benjamin -Bona-Mohany Equation is a non-linear one,

in [16℄ the authors proved the approximate ontrollability of the linear part of this

equation, whih is the fundamental base for the study of the ontrollability of the non

linear BBM equation. So, our next work is onerned with the ontrollability of non

linear BBM equation















zt − a∆zt − b∆z = 1ωu(t, x) + f(t, z, u(t)), t ∈ (0, τ), x ∈ Ω,
z(t, x) = 0, t ≥ 0, x ∈ ∂Ω,
z(0, x) = z0(x), x ∈ Ω,
z(t+k , x) = z(t−k , x) + Ik(t, z(tk, x), u(tk, x)), x ∈ Ω,

where a ≥ 0 and b > 0 are onstants, k = 1, 2, . . . , p, Ω is a bounded domain in

R
N (N ≥ 1), z0 ∈ L2(Ω), ω is an open nonempty subset of Ω, 1ω denotes the hara-

teristi funtion of the set ω,the distributed ontrol u belongs to C([0, τ ];L2(Ω; )) and
f, Ik ∈ C([0, τ ]× R× R;R), k = 1, 2, 3, . . . , p.

Example 5.2 We believe that this tehnique an be applied to prove the interior on-

trollability of the strongly damped wave equation with Dirihlet boundary onditions























wtt + η(−∆)1/2wt + γ(−∆)w = 1ωu(t, x) + f(t, w, wt, u(t)), in (0, τ)× Ω,
w = 0, in (0, τ)× ∂Ω,
w(0, x) = w0(x), wt(0, x) = w1(x), in Ω,
w(t+k , x) = w(t−k , x) + I1k(t, w(tk, x), wt(tk, x), u(tk, x)), x ∈ Ω,
wt(t

+
k , x) = wt(t

−
k , x) + I2k(t, w(tk, x), wt(tk, x), u(tk, x)), x ∈ Ω,

in the spae Z1/2 = D((−∆)1/2) × L2(Ω), k = 1, 2, . . . , p, Ω is a bounded domain

in R
N (N ≥ 1), , ω is an open nonempty subset of Ω, 1ω denotes the harateristi

funtion of the set ω,the distributed ontrol u ∈ C([0, τ ];L2(Ω)), η, γ are positive

numbers and f, I1k , I
2
k ∈ C([0, τ ]× R× R;R), k = 1, 2, 3, . . . , p.

Example 5.3 Another example where this tehnique may be applied is a partial dif-

ferential equations modeling the strutural damped vibrations of a string or a beam:























ytt − 2β∆yt +∆2y = 1ωu(t, x) + f(t, y, yt, u(t)), on (0, τ)× Ω,
y = ∆y = 0, on (0, τ)× ∂Ω,
y(0, x) = y0(x), yt(0, x) = y1(x), in Ω,
y(t+k , x) = y(t−k , x) + I1k(t, y(tk, x), yt(tk, x), u(tk, x)), x ∈ Ω,
yt(t

+
k , x) = yt(t

−
k , x) + I2k (t, y(tk, x), yt(tk, x), u(tk, x)), x ∈ Ω,

where Ω is a bounded domain in IRn
, ω is an open nonempty subset of Ω, 1ω denotes

the harateristi funtion of the set ω, the distributed ontrol u ∈ C([0, τ ];L2(Ω))
and y0 ∈ H2(Ω) ∩H1

0 , y1 ∈ L2(Ω).
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Moreover, our result an be formulated in a more general setting. Indeed, we an

onsider the following semilinear evolution equation in a general Hilbert spae Z






ź = −Az +Bu(t) + fe(t, z, u), z ∈ Z, t ∈ (0, τ ],
z(0) = z0,

z(t+k ) = z(t−k ) + Iek(tk, z(tk), u(tk)), k = 1, 2, 3, . . . , p.
(5.1)

where u ∈ C([0, τ ];U), U = Z, Bω : U −→ Z, Bωu = 1ωu is a bounded linear

operator,Iek, f
e : [0, τ ] × Z × U → Z, A : D(A) ⊂ Z → Z is an unbounded linear

operator in Z with the following spetral deomposition:

Az =

∞
∑

j=1

λj

γj
∑

k=1

< z, φj,k > φj,k,

with the eigenvalues 0 < λ1 < λ2 < · · · < · · ·λn → ∞ of A having �nite multipliity

γj equal to the dimension of the orresponding eigenspaes, and {φj,k} is a om-

plete orthonormal set of eigenfuntions of A. The operator −A generates a strongly

ontinuous ompat semigroup {TA(t)}t≥0 given by

TA(t)z =
∞
∑

j=1

e−λjt

γj
∑

k=1

< z, φj,k > φj,k.

The ontrol u ∈ C([0, τ ];U), with U = Z, B : Z → Z is a linear and bounded

operator(linear and ontinuous) and the funtions fe, Iek : [0, τ ] × Z × U → Z are

smooth enough and

‖fe(t, z, u)‖Z ≤ ã0‖z‖
α0

Z + b̃0‖u‖
β0

Z + c̃0 (5.2)

‖Iek(t, z, u)‖Z ≤ ãk‖z‖
αk

Z + b̃k‖u‖
βk

Z + c̃k, k = 1, 2, 3, . . . , p. (5.3)

In this ase the harateristi funtion set is a partiular operator B, and the following

theorem is a generalization of Theorem 4.1.

Theorem 5.1 If vetors B∗φj,k are linearly independent in Z, then the system (5.1)

is approximately ontrollable on [0, τ ].
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Abstract: The principal aim of this paper is to give sufficient condi-
tions for solvability of a class of some nonlinear functional integral equa-
tions in the space of continuous functions defined on interval [0, a]. The
main tool used in our study is associated with the technique of measures
of noncompactness. We give also some examples satisfying the conditions
of our main theorem but not satisfying the conditions in [8].
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1 Introduction

Nonlinear integral equations are an important part of nonlinear analysis. It
is caused by the fact that this theory is frequently applicable in other branches of
mathematics and mathemathical physics, engineering, economics, biology as well in
describing problems connected with real world, [5]. The measure of noncompactness
and theory of integral equations are rapidly developing with the help of tools in
functional analysis, topology and fixed-point theory. Many articles in the field of
functional integral equations give different conditions for the existence of the solutions
of some nonlinear functional integral equations. A. Aghajani and Y. Jalilian in [1],
J. Banaś and K. Sadarangani in [3], Zeqing Liu et al. in [11] and so on are some of
these. The following equation has been considered in [6] :

x(t) = f(t, x(α(t)))

∫ 1

0

u(t, s, x(s))ds,

for t ∈ [0, 1] . K. Maleknejad et al. in [7] and [8] studied the existence of the solutions
of the following equations

x(t) = f(t, x(α(t)))

∫ t

0

u(t, s, x(s))ds, t ∈ [0, 1]
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and

x(t) = g(t, x(t)) + f

(

t,

∫ t

0

u(t, s, x(s))ds, x (α(t))

)

, t ∈ [0, a] ,

respectively. Then, İ. Özdemir et al. dealt with the following equation in [9] and [10]

x(t) = g(t, x(β(t))) + f(t, x(α(t)))

∫ ϕ(t)

0

u(t, s, x(γ(s)))ds, t ∈ [0, a] .

In this paper, we consider the following nonlinear functional integral equation:

x(t) = g(t, x(α(t))) + f

(

t,

∫ ϕ(t)

0

u(t, s, x(γ(s)))ds, x(β(t))

)

(1)

for t ∈ [0, a] . Note that the mentioned equation has rather general form and contains
as particular cases a lot of nonlinear integral equations of Volterra type.

In next section, we present some definitions and preliminaries results about the
concept of measure of noncompactness. In final section, we give our main result
concerning with the solvability of the integral equation (1) by applying Darbo fixed
point theorem associated with the measure of noncompactness defined by J. Banaś
and K. Goebel [2] and finally we present some examples to show that our result is
applicable.

2 Notations, definitions and auxiliary facts

In this section, we give some notations, definitions and results which will be
needed further on. Assume that (E, ‖.‖) is an infinite Banach space with zero element
θ. We write B (x, r) to denote the closed ball centered at x with radius r and especially,
we write Br instead of B(θ, r). If X is a subset of E then the symbols X and Conv
X stand for the closure and the convex closure of X, respectively. Moreover, let ME

indicates the family of all nonempty bounded subsets of E and NE indicates the its
subfamily of all relatively compact sets. Finally, the standard algebraic operations on
sets are denoted by λX and X + Y , respectively.

We use the following definition of the measure of noncompactness, given in [2].

Definition 1 A mapping µ : ME → R+ = [0,+∞) is said to be a measure of non-

compactness in E if it satisfies the following conditions:

1. The family kerµ = {X ∈ ME : µ(X) = 0} is nonempty and kerµ ⊂ NE .

2. X ⊂ Y ⇒ µ(X) ≤ µ(Y ).

3. µ(X) = µ(X) = µ(Conv X).
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4. µ(λX + (1− λ)Y ) ≤ λµ(X) + (1− λ)µ(Y ) for λ ∈ [0, 1] .

5. If (Xn) is a sequence of closed sets from ME such that Xn+1 ⊂ Xn (n = 1, 2, ...)
and if limn→∞ µ(Xn) = 0, then the intersection set ∩∞

n=1Xn is nonempty.

Now, let us suppose that M is nonempty subset of a Banach space E and T :
M → E is a continuous operator which transforms bounded sets onto bounded ones.
We say that T satisfies the Darbo condition (with a constant k ≥ 0) with respect to
measure of noncompactness µ if for any bounded subset X of M the inequality

µ(TX) ≤ kµ(X)

holds. If T satisfies the Darbo condition with k < 1, then it is said to be a contraction
with respect to µ, [4]. Now, we introduce the following Darbo type fixed point theorem.

Theorem 2 Let C be a nonempty, closed, bounded and convex subset of the Banach

space E, µ be a measure of noncompactness defined in E and let F : C → C be a

continuous mapping. Assume that there exists a constant k ∈ [0, 1) such that

µ(FX) ≤ kµ(X) (2)

for any nonempty subset X of C. Then F has a fixed point in set C, [2].

As is known the family of all real valued and continuous functions defined on
interval [0, a] is a Banach space with the standart norm

‖x‖ = max {|x(t)| : t ∈ [0, a]} .

Let X be a fixed subset of MC[0,a]. For ε > 0 and x ∈ X, by ω(x, ε) we denote the
modulus of continuity of function x, i.e.,

ω(x, ε) = sup {|x(t1)− x(t2)| : t1, t2 ∈ [0, a] and |t1 − t2| ≤ ε} .

Furthermore let ω(X, ε) and ω0(X) are defined by

ω(X, ε) = sup {ω(x, ε) : x ∈ X} ,

and

ω0(X) = lim
ε→0

ω(X, ε). (3)

The authors have shown in [2] that function ω0 is a measure of noncompactness in
space C [0, a] .
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3 The main result

First of all we write I to denote interval [0, a] throughout this section. We
study functional integral equation (1) with the following hypotheses.

(a) Functions α, β : I → I, ϕ : I → R+ and γ : [0, C] → I are continuous.

(b) g : I × R → R is continuous and there exists nonnegative constant k such that

|g(t, x1)− g(t, x2)| ≤ k |x1 − x2|

for all t ∈ I and x1, x2 ∈ R.

(c) f : I × R× R → R is continuous and there exist nonnegative constants l and q

such that

|f(t, x1, y)− f(t, x2, y)| ≤ l |x1 − x2| ,
|f(t, x, y1)− f(t, x, y2)| ≤ q |y1 − y2|

for all t ∈ I and x1, x2, y1, y2, x, y ∈ R.

(d) u : I × [0, C]×R → R is continuous and there exist positive constants m,n and
p such that

|u(t, s, x)| ≤ m+ n |x|p

for all t ∈ I and s ∈ [0, C] , x ∈ R.

(e) The inequality

M +N + Cl(m+ n) + k + q < 1

holds, where C,M and N are the positive constants such that ϕ(t) ≤ C,

|g(t, 0)| ≤ M and |f(t, 0, 0)| ≤ N for all t ∈ I.

Theorem 3 Under assumptions (a) − (e) Eq.(1) has at least one solution in space

C [0, a] .

Proof. We define the continuous function h : [0, 1] → R such that

h(r) = (k + q − 1)r + Cnlrp + Clm+M +N,

where p is the constant given in assumption (d). Then h(0) > 0 and h(1) < 0 by
assumption (e). Continuity of h guarantees that there exists number r0 ∈ (0, 1) such
that h(r0) = 0. Now, we will prove that Eq.(1) has at least one solution x = x(t)
belonging to Br0 ⊂ C [0, a] . We define operator T by

(Tx)(t) = g(t, x(α(t))) + f

(

t,

∫ ϕ(t)

0

u(t, s, x(γ(s)))ds, x (β(t))

)

, x ∈ C [0, a] .



On the solutions of a class of nonlinear functional integral ... 109

Using the conditions of Theorem 3, we infer that Tx is continuous on I. For any
x ∈ Br0 , we have

|(Tx)(t)| =

∣

∣

∣

∣

∣

g(t, x(α(t))) + f

(

t,

∫ ϕ(t)

0

u(t, s, x(γ(s)))ds, x (β(t))

)∣

∣

∣

∣

∣

≤ |g(t, x(α(t))) − g(t, 0)|+ |g(t, 0)|

+

∣

∣

∣

∣

∣

f

(

t,

∫ ϕ(t)

0

u(t, s, x(γ(s)))ds, x (β(t))

)

− f(t, 0, x (β(t)))

∣

∣

∣

∣

∣

+ |f(t, 0, x (β(t))))− f(t, 0, 0)|+ |f(t, 0, 0)|

≤ k |x(α(t))| +M + l

∣

∣

∣

∣

∣

∫ ϕ(t)

0

u(t, s, x(γ(s)))ds

∣

∣

∣

∣

∣

+ q |x (β(t))|+N

≤ k ‖x‖ +M + Cl (m+ n ‖x‖p) + q ‖x‖+N

≤ kr0 +M + Cl (m+ n (r0)
p
) + qr0 +N

= h(r0) + r0

= r0.

This result shows that operator T transforms ball Br0 into itself. Now, we will prove
that operator T : Br0 → Br0 is continuous. To do this, consider ε > 0 and any
x, y ∈ Br0 such that ‖x− y‖ ≤ ε. Then, we obtain the following inequalities by
taking into account the assumptions of Theorem 3.

|(Tx)(t)− (Ty)(t)|

=

∣

∣

∣

∣

∣

g(t, x(α(t))) + f

(

t,

∫ ϕ(t)

0

u(t, s, x(γ(s)))ds, x (β(t))

)

−g(t, y(α(t)))− f

(

t,

∫ ϕ(t)

0

u(t, s, y(γ(s)))ds, y (β(t))

)∣

∣

∣

∣

∣

≤ |g(t, x(α(t))) − g(t, y(α(t)))|

+

∣

∣

∣

∣

∣

f

(

t,

∫ ϕ(t)

0

u(t, s, x(γ(s)))ds, x (β(t))

)

− f

(

t,

∫ ϕ(t)

0

u(t, s, y(γ(s)))ds, x (β(t))

)
∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

f

(

t,

∫ ϕ(t)

0

u(t, s, y(γ(s)))ds, x (β(t))

)

− f

(

t,

∫ ϕ(t)

0

u(t, s, y(γ(s)))ds, y (β(t))

)∣

∣

∣

∣

∣

≤ k |x(α(t)) − y(α(t))| + l

∫ ϕ(t)

0

|u(t, s, x(γ(s)))− u(t, s, y(γ(s)))| ds

+q |x (β(t))− y (β(t))|
≤ (k + q) ‖x− y‖+ Clωu3

(I, ε)

≤ (k + q) ε+ Clωu3
(I, ε), (4)



110 İ. Özdemir, Ü. Çakan

where

ωu3
(I, ε) = sup {|u(t, s, x)− u(t, s, y)| : t ∈ I, s ∈ [0, C] , x, y ∈ [−r0, r0] and |x− y| ≤ ε} .

On the other hand, from the uniform continuity of function u = u(t, s, x) on set
I×[0, C]×[−r0, r0] , we derive that ωu3

(I, ε) → 0 as ε → 0. Hence, estimate (4) proves
that operator T is continuous on Br0 . Moreover, we show that operator T satisfies (2)
with respect to measure of noncompactness ω0 given by (3). To do this, we choose a
fixed arbitrary ε > 0. Let us consider x ∈ X and t1, t2 ∈ I with |t1 − t2| ≤ ε, for any
nonempty subset X of Br0 . Then,

|(Tx)(t1)− (Tx)(t2)|

=

∣

∣

∣

∣

∣

g(t1, x(α(t1))) + f

(

t1,

∫ ϕ(t1)

0

u(t1, s, x(γ(s)))ds, x(β(t1))

)

−g(t2, x(α(t2)))− f

(

t2,

∫ ϕ(t2)

0

u(t2, s, x(γ(s)))ds, x(β(t2))

)
∣

∣

∣

∣

∣

≤ |g(t1, x(α(t1))) − g(t2, x(α(t1)))| + |g(t2, x(α(t1))) − g(t2, x(α(t2)))|

+

∣

∣

∣

∣

∣

f

(

t1,

∫ ϕ(t1)

0

u(t1, s, x(γ(s)))ds, x(β(t1))

)

−f

(

t1,

∫ ϕ(t2)

0

u(t1, s, x(γ(s)))ds, x(β(t1))

)
∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

f

(

t1,

∫ ϕ(t2)

0

u(t1, s, x(γ(s)))ds, x(β(t1))

)

−f

(

t1,

∫ ϕ(t2)

0

u(t2, s, x(γ(s)))ds, x(β(t1))

)∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

f

(

t1,

∫ ϕ(t2)

0

u(t2, s, x(γ(s)))ds, x(β(t1))

)

−f

(

t1,

∫ ϕ(t2)

0

u(t2, s, x(γ(s)))ds, x(β(t2))

)
∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

f

(

t1,

∫ ϕ(t2)

0

u(t2, s, x(γ(s)))ds, x(β(t2))

)

−f

(

t2,

∫ ϕ(t2)

0

u(t2, s, x(γ(s)))ds, x(β(t2))

)∣

∣

∣

∣

∣
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≤ ωg(I, ε) + k |x(α(t1))− x(α(t2))|

+l

∣

∣

∣

∣

∣

∫ ϕ(t1)

0

u(t1, s, x(γ(s)))ds −
∫ ϕ(t2)

0

u(t1, s, x(γ(s)))ds

∣

∣

∣

∣

∣

+l

∫ ϕ(t2)

0

|u(t1, s, x(γ(s)))− u(t2, s, x(γ(s)))| ds+ q |x(β(t1))− x(β(t2))| (5)

+ωf(I, ε)

≤ ωg(I, ε) + kω(x, ω(α, ε)) + l

∣

∣

∣

∣

∣

−
∫ ϕ(t2)

ϕ(t1)

u(t1, s, x(γ(s)))ds

∣

∣

∣

∣

∣

+ Clωu1
(I, ε)

+qω(x, ω(β, ε)) + ωf(I, ε)

≤ ωg(I, ε) + kω(x, ω(α, ε)) + lω(ϕ, ε) (m+ n (r0)
p
)

+Clωu1
(I, ε) + qω(x, ω(β, ε)) + ωf(I, ε), (6)

where

ωg(I, ε) = sup {|g(t, x)− g(t′, x)| : t, t′ ∈ I, x ∈ [−r0, r0] and |t− t′| ≤ ε} ,
ωu1

(I, ε) = sup {|u(t, s, x)− u(t′, s, x)| :
t, t′ ∈ I, s ∈ [0, C] , x ∈ [−r0, r0] and |t− t′| ≤ ε} ,

ωf(I, ε) = sup {|f(t, s, x)− f(t′, s, x)| :
t, t′ ∈ I, s ∈ [−A,A] , x ∈ [−r0, r0] and |t− t′| ≤ ε}

and A = C(m+ n (r0)
p
). Also,

ω(αi, ε) = sup {|αi(t)− αi(t
′)| : t, t′ ∈ I and |t− t′| ≤ ε} ,

for i = 1, 2, 3, 4 such that α1 = α, α2 = β, α3 = ϕ and α4 = x. Thus, by using
estimate (6) we get

ω(TX, ε) ≤ ωg(I, ε) + kω(X,ω(α, ε)) + lω(ϕ, ε)(m+ n (r0)
p
)

+Clωu1
(I, ε) + qω(X,ω(β, ε)) + ωf (I, ε). (7)

Since functions α, β and ϕ are uniformly continuous on set I by condition (a), we
deduce that ω(α, ε) → 0, ω(β, ε) → 0 and ω(ϕ, ε) → 0 as ε → 0. Similarly, we
have ωg(I, ε) → 0, ωf (I, ε) → 0 and ωu1

(I, ε) → 0 as ε → 0 since the functions g,

f and u are uniformly continuous on sets I × [−r0, r0] , I × [−A,A] × [−r0, r0] and
I × [0, C]× [−r0, r0] , respectively. Hence, (7) yields that

ω0(TX) ≤ (k + q)ω0(X).

Thus, since k + q < 1 from condition (e), we get that operator T is a contraction on
ball Br0 with respect to measure of noncompactness ω0. Therefore, Theorem 2 gives
that operator T has at least one fixed point in Br0 . Consequently, nonlinear functional
integral equation (1) has at least one continuous solution in Br0 ⊂ C [0, a] . This step
completes the proof of Theorem 3.
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4 Examples

In this section, we shall discuss some examples to illustrate the applicability of
Theorem 3.

Example 4 We examine the nonlinear functional integral equation having the form

x(t) =
2 + x(t2)

56 + t3
+

2t + t2

21
+

x(
√
t) + 1

9 + t4
+

2

10 + t

∫ t

0

cos t+
√

|x(s2)|
2 + ln(t+ 1) + s2t3

ds, (8)

for t ∈ I = [0, 1] . Put

β(t) =
√
t, ϕ(t) = t, α(t) = t2, γ(s) = s2,

g(t, x) =
2 + x

56 + t3
, u(t, s, x) =

cos t+
√

|x|
2 + ln(t+ 1) + s2t3

,

f(t, v, z) =
2t + t2

21
+

z + 1

9 + t4
+

2v

10 + t

and

k =
1

56
, M =

1

28
, l =

1

5
, q =

1

9
, N =

17

70
, C = 1, m = n = p =

1

2
.

It can be easily seen that conditions (d) and (e) are verified. On the other hand, it is

easy to verify that the other assumptions of Theorem 3 hold. Therefore, Theorem 3
guarantees that Eq.(8) has at least one solution x = x(t) ∈ C [0, 1].

Example 5 Let us consider the nonlinear functional integral equation of the form

x(t) = g(t, x(t)) + f

(

t,

∫ t

0

u(t, s, x(s))ds, x (β(t))

)

, (9)

where g, f, u and β are the functions in Example 4. Since the conditions of Theorem

3 hold, Eq.(9) has at least one solution x = x(t) ∈ C [0, 1] from Theorem 3.
Since

|u(t, s, x)| =
∣

∣

∣

∣

∣

cos t+
√

|x|
2 + ln(t+ 1) + s2t3

∣

∣

∣

∣

∣

≤ 1

2
+

1

2
|x|

1

2

for all t, s ∈ [0, 1] and x ∈ R, condition (H3) in [8] doesn’t hold. Hence, the result

presented in [8] is inapplicable to integral Eq.(9).

Example 6 Consider the following nonlinear functional integral equation:

x(t) =
1 + x(

√
t)

32 + t
+

cos(
√
1 + t2)

8
+

x(t2)

8 + t2

+
4

16 + t

∫ t2

0

exp(−t) + x(s2)

1 + t2 + s sin2(1 + x2(s2))
ds. (10)
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We will look for solvability of this equation in space C [0, 1] . Put

α(t) =
√
t, ϕ(t) = β(t) = t2, γ(s) = s2,

g(t, x) =
1 + x

32 + t
, u(t, s, x) =

exp(−t) + x

1 + t2 + s sin2(1 + x2)
,

f(t, v, z) =
cos(

√
1 + t2)

8
+

z

8 + t2
+

4v

16 + t

and

k = M =
1

32
, l =

1

4
, q = N =

1

8
, C = m = n = p = 1.

One can see easily that conditions (d) and (e) of Theorem 3 are verified. On the other

hand, it is easy to verify that the other assumptions of Theorem 3 hold. Therefore,

Theorem 3 guarantees that Eq.(10) has at least one solution x = x(t) ∈ C [0, 1].

Example 7 Let us consider the nonlinear functional integral equation given as

x(t) = g(t, x(t)) + f

(

t,

∫ t

0

u(t, s, x(s))ds, x (β(t))

)

, (11)

where g, f, u and β are the functions in Example 6. It is clear that the conditions

of Theorem 3 satisfy. So, Eq.(11) has at least one solution x = x(t) ∈ C [0, 1] by
Theorem 3.

Since

κ =
1

4
, λ =

1

8
, a = n = 1

and κ > 1−λ
2+2an in condition (H4), the result in [8] is inapplicable to integral Eq.(11) .
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1 Introduction and preliminaries

The concept of 2-normed spaces was initially developed by Gähler [6] in the mid
of 1960’s, while that of n-normed spaces one can see in Misiak [17]. Since then, many
others have studied this concept and obtained various results, see Gunawan ([7], [8])
and Gunawan and Mashadi [9] and many others. Let n ∈ N and X be a linear space
over the field K, where K is field of real or complex numbers of dimension d, where
d ≥ n ≥ 2. A real valued function ||·, · · · , ·|| on Xn satisfying the following four
conditions:

1. ||x1, x2, · · · , xn|| = 0 if and only if x1, x2, · · · , xn are linearly dependent in X ;

2. ||x1, x2, · · · , xn|| is invariant under permutation;

3. ||αx1, x2, · · · , xn|| = |α| ||x1, x2, · · · , xn|| for any α ∈ K, and

4. ||x+ x′, x2, · · · , xn|| ≤ ||x, x2, · · · , xn||+ ||x′, x2, · · · , xn||

is called a n-norm on X , and the pair (X, ||·, · · · , ·||) is called a n-normed space over
the field K.
For example, we may take X = Rn being equipped with the Euclidean n-norm
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||x1, x2, · · · , xn||E = the volume of the n-dimensional parallelopiped spanned by the
vectors x1, x2, · · · , xn which may be given explicitly by the formula

||x1, x2, · · · , xn||E = | det(xij)|,

where xi = (xi1, xi2, · · · , xin) ∈ Rn for each i = 1, 2, · · · , n. Let (X, ||·, · · · , ·||) be an
n-normed space of dimension d ≥ n ≥ 2 and {a1, a2, · · · , an} be linearly independent
set in X . Then the following function ||·, · · · , ·||∞ on Xn−1 defined by

||x1, x2, · · · , xn−1||∞ = max{||x1, x2, · · · , xn−1, ai|| : i = 1, 2, · · · , n}

defines an (n− 1)-norm on X with respect to {a1, a2, · · · , an}.
A sequence (xk) in a n-normed space (X, ||·, · · · , ·||) is said to converge to some L ∈ X
if

lim
k→∞

||xk − L, z1, · · · , zn−1|| = 0 for every z1, · · · , zn−1 ∈ X.

A sequence (xk) in a n-normed space (X, ||·, · · · , ·||) is said to be Cauchy if

lim
k,i→∞

||xk − xi, z1, · · · , zn−1|| = 0 for every z1, · · · , zn−1 ∈ X.

If every Cauchy sequence inX converges to some L ∈ X , then X is said to be complete
with respect to the n-norm. Any complete n-normed space is said to be n-Banach
space.
An Orlicz function M is a function, which is continuous, non-decreasing and convex
with M(0) = 0, M(x) > 0 for x > 0 and M(x) −→ ∞ as x −→ ∞.
Lindenstrauss and Tzafriri [12] used the idea of Orlicz function to define the following
sequence space. Let w be the space of all real or complex sequences x = (xk), then

ℓM =
{

x ∈ w :

∞
∑

k=1

M
( |xk|

ρ

)

< ∞
}

which is called as an Orlicz sequence space. The space ℓM is a Banach space with the
norm

||x|| = inf
{

ρ > 0 :

∞
∑

k=1

M
( |xk|

ρ

)

≤ 1
}

.

It is shown in [12] that every Orlicz sequence space ℓM contains a subspace isomorphic
to ℓp(p ≥ 1). The ∆2−condition is equivalent to M(Lx) ≤ kLM(x) for all values of
x ≥ 0, and for L > 1. A sequence M = (Mk) of Orlicz functions is called a Musielak-
Orlicz function see ([16], [20]). A sequence N = (Nk) is defined by

Nk(v) = sup{|v|u− (Mk) : u ≥ 0}, k = 1, 2, · · ·

is called the complementary function of a Musielak-Orlicz function M. For a given
Musielak-Orlicz function M, the Musielak-Orlicz sequence space tM and its subspace
hM are defined as follows

tM =
{

x ∈ w : IM(cx) < ∞ for some c > 0
}

,
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hM =
{

x ∈ w : IM(cx) < ∞ for all c > 0
}

,

where IM is a convex modular defined by

IM(x) =
∞
∑

k=1

(Mk)(xk), x = (xk) ∈ tM.

We consider tM equipped with the Luxemburg norm

||x|| = inf
{

k > 0 : IM

(x

k

)

≤ 1
}

or equipped with the Orlicz norm

||x||0 = inf
{1

k

(

1 + IM(kx)
)

: k > 0
}

.

Let ℓ∞, c and c0 denotes the sequence spaces of bounded, convergent and null se-
quences x = (xk) respectively. A sequence x = (xk) ∈ ℓ∞ is said to be almost
convergent if all Banach limits of x = (xk) coincide. In [13], it was shown that

ĉ =
{

x = (xk) : lim
n→∞

1

n

n
∑

k=1

xk+s exists, uniformly in s
}

.

In ([14], [15]) Maddox defined strongly almost convergent sequences. Recall that a
sequence x = (xk) is strongly almost convergent if there is a number L such that

lim
n→∞

1

n

n
∑

k=1

|xk+s − L| = 0, uniformly in s.

By a lacunary sequence θ = (ir), r = 0, 1, 2, · · · , where i0 = 0, we shall mean an
increasing sequence of non-negative integers gr = (ir − ir−1) → ∞ (r → ∞). The
intervals determined by θ are denoted by Ir = (ir−1, ir] and the ratio ir/ir−1 will be
denoted by qr. The space of lacunary strongly convergent sequences Nθ was defined
by Freedman et. al [5] as follows:

Nθ =
{

x = (xk) : lim
r→∞

1

gr

∑

k∈Ir

|xk − L| = 0 for some L
}

.

The notion of difference sequence spaces was introduced by Kızmaz [11], who studied
the difference sequence spaces l∞(∆), c(∆) and c0(∆). The notion was further gen-
eralized by Et and Çolak [4] by introducing the spaces l∞(∆n), c(∆n) and c0(∆

n).
Let m,n be non-negative integers, then for Z = c, c0 and l∞, we have sequence spaces

Z(∆m
n ) = {x = (xk) ∈ w : (∆m

n xk) ∈ Z}

for Z = c, c0 and l∞ where ∆m
n x = (∆m

n xk) = (∆m−1
n xk −∆m−1

n xk) and ∆0xk = xk

for all k ∈ N, which is equivalent to the following binomial representation

∆m
n xk =

m
∑

v=0

(−1)v
(

m
v

)

xk+nv.
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Taking n = 1, we get the spaces l∞(∆m), c(∆m) and c0(∆
m) studied by Et and

Çolak [4]. Taking m = 1, n = 1, we get the spaces l∞(∆), c(∆) and c0(∆) studied
by Kızmaz [11]. Let X be a linear metric space. A function p : X → R is called
paranorm, if

1. p(x) ≥ 0 for all x ∈ X ,

2. p(−x) = p(x) for all x ∈ X ,

3. p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X ,

4. if (λn) is a sequence of scalars with λn → λ as n → ∞ and (xn) is a sequence
of vectors with p(xn − x) → 0 as n → ∞, then p(λnxn − λx) → 0 as n → ∞.

A paranorm p for which p(x) = 0 implies x = 0 is called total paranorm and the pair
(X, p) is called a total paranormed space. It is well known that the metric of any
linear metric space is given by some total paranorm (see [26], Theorem 10.4.2, pp.
183). For more details about sequence spaces see ([1], [2], [3], [18], [19], [21], [22], [23],
[24], [25]) and references therein.
Let M be an Orlicz function and p = (pk) be any sequence of strictly positive real
numbers. Güngor and Et [10] defined the following sequence spaces:

[c,M, p](∆m) =
{

x = (xk) : lim
n→∞

1

n

n
∑

k=1

[

M
( |∆mxk+s − L|

ρ

)]pk

= 0,

uniformly in s, for some ρ > 0 and L > 0
}

,

[c,M, p]0(∆
m) =

{

x = (xk) : lim
n→∞

1

n

n
∑

k=1

[

M
( |∆mxk+s|

ρ

)]pk

= 0,

uniformly in s, for some ρ > 0
}

,

[c,M, p]∞(∆m) =
{

x = (xk) : sup
n,s

1

n

n
∑

k=1

[

M
( |∆mxk+s|

ρ

)]pk

< ∞ for some ρ > 0
}

.

Let M = (Mk) be a Musielak-Orlicz function and X be a seminormed space, semi-
normed by q = (qk). Let p = (pk) be any bounded sequence of positive real numbers
and u = (uk) be any sequence of strictly positive real numbers. In this paper we
define the following sequence spaces:
[ c,M, p, ||·, · · · , ·|| ]θ(∆m

n , u, q) =

{

x = (xk) ∈ w(n−X) : lim
r→∞

1

gr

∑

k∈Ir

[

Mk

(

qk

(

||
uk∆

m
n xk+s − L

ρ
, z1, · · · , zn−1||

))]pk

= 0,

uniformly in s, z1, · · · , zn−1 ∈ X for some L and ρ > 0
}

,



Some seminormed difference sequence spaces ... 119

[ c,M, p, ||·, · · · , ·|| ]θ0(∆
m
n , u, q) =

{

x = (xk) ∈ w(n−X) : lim
r→∞

1

gr

∑

k∈Ir

[

Mk

(

qk

(

||
uk∆

m
n xk+s

ρ
, z1, · · · , zn−1||

))]pk

= 0,

uniformly in s, z1, · · · , zn−1 ∈ X for some ρ > 0
}

,

[ c,M, p, ||·, · · · , ·|| ]θ∞(∆m
n , u, q) =

{

x = (xk) ∈ w(n−X) : sup
r,s

1

gr

n
∑

k=1

[

Mk

(

qk

(

||
uk∆

m
n xk+s

ρ
, z1, · · · , zn−1||

))]pk

< ∞,

uniformly in s, z1, · · · , zn−1 ∈ X for some ρ > 0
}

.

When, M(x) = x, we get
[ c, p, ||·, · · · , ·|| ]θ(∆m

n , u, q) =

{

x = (xk) ∈ w(n−X) : lim
r→∞

1

gr

∑

k∈Ir

(

qk

(

||
uk∆

m
n xk+s − L

ρ
, z1, · · · , zn−1||

))pk

= 0,

uniformly in s, z1, · · · , zn−1 ∈ X for some L and ρ > 0
}

,

[ c, p, ||·, · · · , ·|| ]θ0(∆
m
n , u, q) =

{

x = (xk) ∈ w(n−X) : lim
r→∞

1

gr

∑

k∈Ir

(

qk

(

||uk

∆m
n xk+s

ρ
, z1, · · · , zn−1||

))pk

= 0,

uniformly in s, z1, · · · , zn−1 ∈ X for some ρ > 0
}

,

[ c, p, ||·, · · · , ·|| ]θ∞(∆m
n , u, q) =

{

x = (xk) ∈ w(n−X) : sup
r,s

1

gr

n
∑

k=1

(

qk

(

||
uk∆

m
n xk+s

ρ
, z1, · · · , zn−1||

))pk

< ∞,

z1, · · · , zn−1 ∈ X for some ρ > 0
}

.

If we take pk = 1 for all k, then we get
[ c,M, ||·, · · · , ·|| ]θ(∆m

n , u, q) =

{

x = (xk) ∈ w(n−X) : lim
r→∞

1

gr

∑

k∈Ir

[

Mk

(

qk

(

||
uk∆

m
n xk+s − L

ρ
, z1, · · · , zn−1||

))]

= 0,

uniformly in s, z1, · · · , zn−1 ∈ X for some L and ρ > 0
}

,
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[ c,M, ||·, · · · , ·|| ]θ0(∆
m
n , u, q) =

{

x = (xk) ∈ w(n−X) : lim
r→∞

1

gr

∑

k∈Ir

[

Mk

(

qk

(

||
uk∆

m
n xk+s

ρ
, z1, · · · , zn−1||

))]

= 0,

uniformly in s, z1, · · · , zn−1 ∈ X for some ρ > 0
}

,

[ c,M, ||·, · · · , ·|| ]θ∞(∆m
n , u, q) =

{

x = (xk) ∈ w(n−X) : sup
r,s

1

gr

n
∑

k=1

[

Mk

(

qk

(

||
uk∆

m
n xk+s

ρ
, z1, · · · , zn−1||

))]

< ∞,

z1, · · · , zn−1 ∈ X for some ρ > 0
}

.

The following inequality will be used throughout the paper. If 0 ≤ pk ≤ sup pk = H ,
D = max(1, 2H−1) then

|ak + bk|
pk ≤ D{|ak|

pk + |bk|
pk} (1.1)

for all k and ak, bk ∈ C. Also |a|pk ≤ max(1, |a|H) for all a ∈ C.
The main aim of this paper is to study some seminormed difference sequence spaces
defined by a Musielak-Orlicz function over n-normed space. We also make an effort to
study some topological properties and prove some inclusion relations between these
spaces.

2 Main Results

Theorem 2.1 Let M = (Mk) be a Musielak-Orlicz function, p = (pk) be a
bounded sequence of positive real numbers and u = (uk) be any sequence of
strictly positive real numbers. Then the spaces [ c,M, p, ||·, · · · , ·|| ]θ(∆m

n , u, q),
[ c,M, p, ||·, · · · , ·|| ]θ0(∆

m
n , u, q) and [ c,M, p, ||·, · · · , ·|| ]θ∞(∆m

n , u, q) are linear over
the field of complex numbers C.

Proof. Let x = (xk), y = (yk)∈[ c,M, p, ||·, · · · , ·|| ]θ0(∆
m
n , u, q) and α, β ∈ C. Then

there exists positive numbers ρ1 and ρ2 such that

lim
r−→∞

1

gr

∑

k∈Ir

[

Mk

(

qk

(

||
uk∆

m
n xk+s

ρ1
, z1, · · · , zn−1||

))]pk

= 0, uniformly in s,

and

lim
r−→∞

1

gr

∑

k∈Ir

[

Mk

(

qk

(

||
uk∆

m
n xk+s

ρ2
, z1, · · · , zn−1||

))]pk

= 0, uniformly in s.



Some seminormed difference sequence spaces ... 121

Let ρ3 = max(2|α|ρ1, 2|β|ρ2). Since M = (Mk) is non-decreasing convex function, by
using inequality (1.1), we have

1

gr

∑

k∈Ir

[

Mk

(

qk

(

||
uk∆

m
n (αxk+s + βyk+s)

ρ3
, z1, · · · , zn−1||

))]pk

≤ D
1

gr

∑

k∈Ir

1

2pk

[

Mk

(

qk

(

||
uk∆

m
n (xk+s)

ρ1
, z1, · · · , zn−1||

))]pk

+D
1

gr

∑

k∈Ir

1

2pk

[

Mk

(

qk

(

||
uk∆

m
n (yk+s)

ρ2
, z1, · · · , zn−1||

))]pk

≤ D
1

gr

∑

k∈Ir

[

Mk

(

qk

(

||
uk∆

m
n (xk+s)

ρ1
, z1, · · · , zn−1||

))]pk

+D
1

gr

∑

k∈Ir

[

Mk

(

qk

(

||
uk∆

m
n (yk+s)

ρ1
, z1, · · · , zn−1||

))]pk

−→ 0 as r −→ ∞, uniformly in s.

Thus, we have αx+ βy ∈ [ c,M, p, ||·, · · · , ·|| ]θ0(∆
m
n , u, q).

Hence [ c,M, p, ||·, · · · , ·|| ]θ0(∆
m
n , u, q) is a linear space. Similarly, we can prove

that [ c,M, p, ||·, · · · , ·|| ]θ(∆m
n , u, q) and

[ c,M, p, ||·, · · · , ·|| ]θ∞(∆m
n , u, q) are linear spaces.

Theorem 2.2 For any Musielak-Orlicz function M = (Mk), p = (pk) be a bounded
sequence of positive real numbers and u = (uk) be any sequence of strictly positive
real numbers, the space [ c,M, p, ||·, · · · , ·|| ]θ0(∆

m
n , u, q) is a topological linear space

paranormed by

g(x) = inf
{

ρ
pr
K :

( 1

gr

∑

k∈Ir

[

Mk

(

qk

(

||
uk∆

m
n xk+s

ρ
, z1, · · · , zn−1||

))]pk
)

1
K

≤ 1, r, s ∈ N

}

,

where K = max(1, supk pk < ∞).

Proof. Clearly g(x) ≥ 0 for x = (xk) ∈ [ c,M, ||·, · · · , ·|| ]θ0(∆
m
n , u, q). Since Mk(0) =

0, we get g(0) = 0. Again, if g(x) = 0, then

inf
{

ρ
pr
K :

( 1

gr

∑

k∈Ir

[

Mk

(

qk

(

||
uk∆

m
n xk+s

ρ
, z1, · · · , zn−1||

))]pk
)

1
K

≤ 1, r, s ∈ N

}

= 0.

This implies that for a given ǫ > 0, there exists some ρǫ(0 < ρǫ < ǫ) such that

( 1

gr

∑

k∈Ir

[

Mk

(

qk

(

||
uk∆

m
n xk+s

ρǫ
, z1, · · · , zn−1||

))]pk
)

1
K

≤ 1.

Thus
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(

1
gr

∑

k∈Ir

[

Mk

(

qk

(

||
uk∆

m
n xk+s

ǫ
, z1, · · · , zn−1||

))]pk
)

1
K

≤
( 1

gr

∑

k∈Ir

[

Mk

(

qk

(

||
∆mxk+s

ρǫ
, z1, · · · , zn−1||

))]pk
)

1
K

≤ 1,

for each r and s. Suppose that xk 6= 0 for each k ∈ N . This implies that ∆m
n xk+s 6= 0,

for each k, s ∈ N. Let ǫ −→ 0, then qk

(

||uk∆
m
n xk+s

ǫ
, z1, · · · , zn−1||

)

−→ ∞. It follows

that
( 1

gr

∑

k∈Ir

[

Mk

(

qk

(

||
uk∆

m
n xk+s

ǫ
, z1, · · · , zn−1||

))]pk
)

1
K

−→ ∞,

which is a contradiction. Therefore, ∆m
n xk+s = 0 for each k and s and thus xk = 0

for each k ∈ N . Let ρ1 > 0 and ρ2 > 0 be such that

( 1

gr

∑

k∈Ir

[

Mk

(

qk

(

||
uk∆

m
n xk+s

ρ1
, z1, · · · , zn−1||

))]pk
)

1
K

≤ 1

and
( 1

gr

∑

k∈Ir

[

Mk

(

qk

(

||
uk∆

m
n xk+s

ρ2
, z1, · · · , zn−1||

))]pk
)

1
K

≤ 1

for each r and s. Let ρ = ρ1 + ρ2. Then, by Minkowski’s inequality, we have

( 1

gr

∑

k∈Ir

[

Mk

(

qk

(

||
uk∆

m
n (xk+s + yk+s)

ρ
, z1, · · · , zn−1||

))]pk
)

1
K

≤
(

∑

k∈Ir

[ ρ1
ρ1 + ρ2

Mk

(

qk

(

||
uk∆

m
n (xk+s)

ρ1
, z1, · · · , zn−1||

))

+
ρ2

ρ1 + ρ2
Mk

(

qk

(

||
uk∆

m
n (yk+s)

ρ2
, z1, · · · , zn−1||

))]pk
)

1
K

≤
( ρ1
ρ1 + ρ2

)( 1

gr

∑

k∈Ir

[

Mk

(

qk

(

||
uk∆

m
n (xk+s)

ρ1
, z1, · · · , zn−1||

))]pk
)

1
K

+
( ρ2
ρ1 + ρ2

)( 1

gr

∑

k∈Ir

[

Mk

(

qk

(

||
uk∆

m
n (yk+s)

ρ2
, z1, · · · , zn−1||

))]pk
)

1
K

≤ 1

Since ρ′s are non-negative, so we have
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g(x+ y)

= inf
{

ρ
pr
K :

( 1

gr

∑

k∈Ir

[

Mk

(

qk

(

||
uk∆

m
n (xk+s + yk+s)

ρ
, z1, · · · , zn−1||

))]pk
)

1
K

≤ 1, r, s ∈ N

}

,

≤ inf
{

ρ
pr
K

1 :
( 1

gr

∑

k∈Ir

[

Mk

(

qk

(

||
uk∆

m
n (xk+s)

ρ1
, z1, · · · , zn−1||

))]pk
)

1
K

≤ 1, r, s ∈ N

}

+ inf
{

ρ
pr
K

2 :
( 1

gr

∑

k∈Ir

[

Mk

(

qk

(

||
∆m(yk+s)

ρ2
, z1, · · · , zn−1||

))]pk
)

1
K

≤ 1, r, s ∈ N

}

.

Therefore,

g(x+ y) ≤ g(x) + g(y).

Finally, we prove that the scalar multiplication is continuous. Let λ be any complex
number. By definition,

g(λx) = inf
{

ρ
pr
K :

( 1

gr

∑

k∈Ir

[

Mk

(

qk

(

||
uk∆

m
n λxk+s

ρ
, z1, · · · , zn−1||

))]pk
)

1
K

≤ 1, r, s ∈ N

}

.

Then

g(λx) = inf
{

(|λ|t)
pr
K :

( 1

gr

∑

k∈Ir

[

Mk

(

qk

(

||
∆mxk+s

t
, z1, · · · , zn−1||

))]pk
)

1
K

≤ 1, r, s ∈ N

}

,

where t = ρ
|λ| . Since |λ|pr ≤ max(1, |λ|sup pr ), we have

g(λx) ≤ max(1, |λ|sup pr)

inf
{

t
pr
K :

( 1

gr

∑

k∈Ir

[

Mk

(

qk

(

||
uk∆

m
n xk+s

t
, z1, · · · , zn−1||

))]pk
)

1
K

≤ 1, r, s ∈ N

}

.

So, the fact that scalar multiplication is continuous follows from the above inequality.
This completes the proof of the theorem.

Theorem 2.3 Let M = (Mk) be a Musielak-Orlicz function. If sup
k

[Mk(x)]
pk < ∞ for

all fixed x > 0, then [ c,M, p, ||·, · · · , ·|| ]θ0(∆
m
n , u, q) ⊂ [ c,M, p, ||·, · · · , ·|| ]θ∞(∆m

n , u, q).

Proof. Let x = (xk) ∈ [ c,M, p, ||·, · · · , ·|| ]θ0(∆
m
n , u, q). There exists some positive ρ1

such that

lim
r→∞

1

gr

∑

k∈Ir

[

Mk

(

qk

(

||
∆m

n xk+s

ρ1
, z1, · · · , zn−1||

))]pk

= 0, uniformly in s.

Define ρ = 2ρ1. Since M = (Mk) is non-decreasing and convex, by using inequal-
ity(1.1), we have
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sup
r,s

1

gr

∑

k∈Ir

[

Mk

(

qk

(

||
uk∆

m
n xk+s

ρ
, z1, · · · , zn−1||

))]pk

≤ D sup
r,s

1

gr

∑

k∈Ir

[ 1

2pk
Mk

(

qk

(

||
uk∆

m
n xk+s − L

ρ1
, z1, · · · , zn−1||

))]pk

+D sup
r,s

1

gr

∑

k∈Ir

[ 1

2pk
Mk

(

qk

(

||
L

ρ1
, z1, · · · , zn−1||

))]pk

≤ D sup
r,s

1

gr

∑

k∈Ir

[

Mk

(

qk

(

||
uk∆

m
n xk+s − L

ρ1
, z1, · · · , zn−1||

)]pk

+D sup
r,s

1

gr

∑

k∈Ir

[

Mk

(

qk

(

||
L

ρ1
, z1, · · · , zn−1||

))]pk

< ∞.

Hence x = (xk) ∈ [ c,M, p, ||·, · · · , ·|| ]θ∞(∆m
n , u, q).

Theorem 2.4 If 0 < inf pk = h ≤ pk ≤ sup pk = H < ∞ and M = (Mk), M′ = (M ′
k)

be two Musielak-Orlicz functions satisfying ∆2−condition, then we have

(i)[ c,M
′

, p, ||·, · · · , ·|| ]θ0(∆
m
n , u, q) ⊂ [ c,M◦M′, p, ||·, · · · , ·|| ]θ0(∆

m
n , u, q),

(ii)[ c,M′, p, ||·, · · · , ·|| ]θ(∆m
n , u, q) ⊂ [ c,M◦M′, p, ||·, · · · , ·|| ]θ(∆m

n , u, q),

(iii)[ c,M′, p, ||·, · · · , ·|| ]θ∞(∆m
n , u, q) ⊂ [ c,M◦M′, p, ||·, · · · , ·|| ]θ∞(∆m

n , u, q).

Proof. Let x = (xk) ∈ [c,M′, p, ||·, · · · , ·||]θ(∆m
n , u, q). Then we have

lim
r→∞

1

gr

∑

k∈Ir

[

M ′
k

(

qk

(

||
uk∆

m
n xk+s − L

ρ
, z1, · · · , zn−1||

))]pk

= 0,

uniformly in s for some L.

Let ǫ > 0 and choose δ with 0 < δ < 1 such that Mk(t) < ǫ for 0 ≤ t ≤ δ. Let

yk,s = M ′
k

(

qk

(

||
uk∆

m
n xk+s − L

ρ
, z1, · · · , zn−1||

))

for all k, s ∈ N.

We can write

1

gr

∑

k∈Ir

[Mk(yk,s)]
pk =

1

gr

∑

k∈Ir ,yk,s≤δ

[Mk(yk,s)]
pk +

1

gr

∑

k∈Ir ,yk,s>δ

[Mk(yk,s)]
pk .

Since M = (Mk) satisfies ∆2-condition, we have

1

gr

∑

k∈Ir ,yk,s≤δ

[Mk(yk,s)]
pk ≤ [Mk(1)]

H 1

gr

∑

k∈Ir ,yk,s≤δ

[Mk(yk,s)]
pk

≤ [Mk(2)]
H 1

gr

∑

k∈Ir ,yk,s≤δ

[Mk(yk,s)]
pk (2.1)
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For yk,s > δ

yk,s <
yk,s
δ

< 1 +
yk,s
δ

.

Since M = (Mk) is non-decreasing and convex, it follows that

Mk(yk,s) < Mk

(

1 +
yk,s
δ

)

<
1

2
Mk(2) +

1

2
Mk

(2yk,s
δ

)

.

Since (Mk) satisfies ∆2-condition, we can write

Mk(yk,s) <
1

2
T
yk,s
δ

Mk(2) +
1

2
T
yk,s
δ

Mk(2) = T
yk,s
δ

Mk(2).

Hence,

1gr
∑

k∈Ir ,yk,s>δ

[Mk(yk,s)]
pk ≤ max

(

1,
(TMk(2)

δ

)H) 1

gr

∑

k∈Ir ,yk,s>δ

[(yk,s)]
pk (2.2)

from equations (2.1) and (2.2), we have

x = (xk) ∈ [ c,M◦M′, p, ||·, · · · , ·||]θ0(∆
m
n , u, q).

This completes the proof of (i). Similarly, we can prove that

[ c,M′, p, ||·, · · · , ·||]θ0(∆
m
n , u, q) ⊂ [ c,M◦M′, ||·, · · · , ·|| ]θ0(∆

m
n , u, q)

and

[ c,M′, p, ||·, · · · , ·|| ]θ∞(∆m
n , u, q) ⊂ [ c,M◦M′, p, ||·, · · · , ·|| ]θ∞(∆m

n , u, q).

Corollary 2.5 If 0 < inf pk = h ≤ pk ≤ sup pk = H < ∞ and M = (Mk) be Musielak-
Orlicz function satisfying ∆2- condition, then we have

[ c, p, ||·, · · · , ·|| ]θ0(∆
m
n , u, q) ⊂ [ c,M, p, ||·, · · · , ·|| ]θ0(∆

m
n , u, q)

and
[ c, p, ||·, · · · , ·|| ]θ∞(∆m

n , u, q) ⊂ [ c,M, p, ||·, · · · , ·|| ]θ∞(∆m
n , u, q).

Proof. Taking M′(x) = x in the above theorem, we get the required result.

Theorem 2.6 If M = (Mk) be the Musielak-Orlicz function, then the following state-
ments are equivalent:
(i) [ c, p, ||·, · · · , ·|| ]θ∞(∆m

n , u, q) ⊂ [c,M, p, ||·, · · · , ·|| ]θ∞(∆m
n , u, q),

(ii) [c, p, ||·, · · · , ·|| ]θ0(∆
m
n , u, q) ⊂ [ c,M, p, ||·, · · · , ·|| ]θ∞(∆m

n , u, q),

(iii) sup
r

1

gr

∑

k∈Ir

[Mk(
t

ρ
)]pk < ∞ (t, ρ > 0).
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Proof. (i) ⇒ (ii) The proof is obvious in view of the fact that

[ c, p, ||·, · · · , ·|| ]θ0(∆
m
n , u, q) ⊂ [ c, p, ||·, · · · , ·|| ]θ∞(∆m

n , u, q).

(ii) ⇒(iii) Let [ c, p, ||·, · · · , ·|| ]θ0(∆
m
n , u, q) ⊂ [ c,M, p, ||·, · · · , ·|| ]θ∞(∆m

n , u, q)· Sup-
pose that (iii) does not hold. Then for some t, ρ > 0

sup
r

1

gr

∑

k∈Ir

[Mk(
t

ρ
)]pk = ∞

and therefore we can find a subinterval Ir(j) of the set of interval Ir such that

1gr(j)
∑

k∈Ir(j)

[

Mk

(j−1

ρ

)]pk

> j, j = 1, 2, (2.3)

Define the sequence x = (xk) by

∆mxk+s =

{

j−1, k ∈ Ir(j)
0, k 6∈ Ir(j) for all s ∈ N.

Then x = (xk) ∈ [c, p, ||·, · · · , ·||]θ0(∆
m
n , u, q) but by equation(2.3),

x = (xk) 6∈ [c,M, p, ||·, · · · , ·|| ]θ∞(∆m
n , u, q), which contradicts (ii). Hence (iii) must

hold.
(iii) ⇒ (i) Let (iii) hold and x = (xk) ∈ [c, p, ||·, · · · , ·|| ]θ∞(∆m

n , u, q). Suppose that
x = (xk) 6∈ [c,M, p, ||·, · · · , ·|| ]θ∞(∆m

n , u, q). Then

sup
r,s

1

gr

∑

k∈Ir

[

Mk

(

||
∆mxk+s

ρ
, z1, · · · , zn−1||

)]pk

= ∞. (2.4)

Let t = qk

(

||uk∆
m
n xk+s, z1, · · · , zn−1||

)

for each k and fixed s, then by equations(2.4)

sup
r

1

gr

∑

k∈Ir

[

Mk

( t

ρ

)]

= ∞,

which contradicts (iii). Hence (i) must hold.

Theorem 2.7 Let 1 ≤ pk ≤ sup pk < ∞ and M = (Mk) be a Musielak Orlicz func-
tion. Then the following statements are equivalent:
(i) [ c,M, p, ||·, · · · , ·|| ]θ0(∆

m
n , u, q) ⊂ [c, p, ||·, · · · , ·||]θ0(∆

m
n , u, q),

(ii) [ c,M, p, ||·, · · · , ·|| ]θ0(∆
m
n , u, q) ⊂ [ c, p, ||·, · · · , ·|| ]θ∞(∆m

n , u, q),

(iii) inf
r

1

gr

∑

k∈Ir

[

Mk

( t

ρ

)]pk

> 0 (t, ρ > 0).

Proof. (i) ⇒ (ii) It is trivial.
(ii) ⇒ (iii) Let (ii) hold. Suppose that (iii) does not hold. Then

inf
r

1

gr

∑

k∈Ir

[

Mk

( t

ρ

)]pk

= 0 (t, ρ > 0),
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so we can find a subinterval Ir(j) of the set of interval Ir such that

1

gr(j)

∑

k∈Ir(j)

[

Mk

( j

ρ

)]pk

< j−1, j = 1, 2, (2.5)

Define the sequence x = (xk) by

∆mxk+s =

{

j, k ∈ Ir(j)
0, k 6∈ Ir(j) for all s ∈ N.

Thus by equation(2.5), x = (xk) ∈ [ c,M, p, ||·, · · · , ·||]θ0(∆
m
n , u, q), hence

x = (xk) 6∈ [c, p, ||·, · · · , ·|| ]θ∞(∆m
n , u, q), which contradicts (ii). Hence (iii) must hold.

(iii) ⇒ (i) Let (iii) hold and suppose that x = (xk) ∈ [ c,M, p, ||·, · · · , ·|| ]θ0(∆
m
n , u, q),

i.e,

lim
r→∞

1

gr

∑

k∈Ir

[

Mk

(

qk

(

||
uk∆

m
n xk+s

ρ
, z1, · · · , zn−1||

))]pk

= 0, (2.6)

uniformly in s, for some ρ > 0 .

Again, suppose that x = (xk) 6∈ [ c, p, ||·, · · · , ·|| ]θ0(∆
m
n , u, q). Then, for some num-

ber ǫ > 0 and a subinterval Ir(j) of the set of interval Ir, we have

||uk∆
m
n xk+s, z1, · · · , zn−1|| ≥ ǫ

for all k ∈ N and some s ≥ s0. Then, from the properties of the Orlicz function, we
can write

Mk

(

qk

(

||
uk∆

m
n xk+s

ρ
, z1, · · · , zn−1||

))pk

≥ Mk

( ǫ

ρ

)pk

and consequently by (2.6)

lim
r→∞

1

gr

∑

k∈Ir

[

Mk

( ǫ

ρ

)]pk

= 0,

which contradicts (iii). Hence (i) must hold.

Theorem 2.8 Let 0 < pk ≤ qk for all k ∈ N and
(

qk
pk

)

be bounded. Then,

[ c,M, q, ||·, · · · , ·|| ]θ(∆m
n , u, q) ⊂ [ c,M, p, ||·, · · · , ·|| ]θ(∆m

n , u, q).

Proof. Let x ∈ [ c,M, q, ||·, · · · , ·|| ]θ(∆m
n , u, q). Write

tk =
[

Mk

(

qk

(

||uk

∆m
n xk+s − L

ρ
, z1, · · · , zn−1||

))]qk
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and µk = pk

qk
for all k ∈ N. Then 0 < µk ≤ 1 for k ∈ N. Take 0 < µ < µk for k ∈ N.

Define the sequences (uk) and (vk) as follows: For tk ≥ 1, let uk = tk and vk = 0 and
for tk < 1, let uk = 0 and vk = tk. Then clearly for all k ∈ N, we have

tk = uk + vk, tµk

k = uµk

k + vµk

k

Now it follows that uµk

k ≤ uk ≤ tk and vµk

k ≤ vµk . Therefore,

1

gr

∑

k∈Ir

tµk

k =
1

gr

∑

k∈Ir

(uµk

k + vµk

k )

≤
1

gr

∑

k∈Ir

tk +
1

gr

∑

k∈Ir

vµk .

Now for each k,

1

gr

∑

k∈Ir

vµk =
∑

k∈Ir

( 1

gr
vk

)µ( 1

gr

)1−µ

≤
(

∑

k∈Ir

[( 1

gr
vk

)µ] 1
µ
)µ( ∑

k∈Ir

[( 1

gr

)1−µ] 1
1−µ

)1−µ

=
( 1

gr

∑

k∈Ir

vk

)µ

and so
1

gr

∑

k∈Ir

tµk

k ≤
1

gr

∑

k∈Ir

tk +
( 1

gr

∑

k∈Ir

vk

)µ

.

Hence x ∈ [ c,M, p, ||·, · · · , ·|| ]θ(∆m
n , u, q).

Theorem 2.9 (a) If 0 < inf pk ≤ pk ≤ 1 for all k ∈ N, then

[ c,M, p, ||·, · · · , ·|| ]θ(∆m
n , u, q) ⊂ [ c,M, ||·, · · · , ·|| ]θ(∆m

n , u, q).

(b) If 1 ≤ pk ≤ sup pk < ∞ for all k ∈ N. Then

[ c,M, ||·, · · · , ·|| ]θ(∆m
n , u, q) ⊂ [ c,M, p, ||·, · · · , ·|| ]θ(∆m

n , u, q).

Proof. (a) Let x ∈ [ c,M, p, ||·, · · · , ·|| ]θ(∆m
n , u, q), then

lim
r→∞

1

gr

∑

k∈Ir

[

Mk

(

qk

(

||
uk∆

m
n xk+s − L

ρ
, z1, · · · , zn−1||

)]pk

= 0.
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Since 0 < inf pk ≤ pk ≤ 1. This implies that

lim
r→∞

1

gr

∑

k∈Ir

[

Mk

(

qk

(

||
uk∆

m
n xk+s − L

ρ
, z1, · · · , zn−1||

))]

≤ lim
r→∞

1

gr

∑

k∈Ir

[

Mk

(

qk

(

||
uk∆

m
n xk+s − L

ρ
, z1, · · · , zn−1||

))]pk

,

therefore, lim
r→∞

1

gr

∑

k∈Ir

[

Mk

(

qk

(

||
uk∆

m
n xk+s − L

ρ
, z1, · · · , zn−1||

))]

= 0. This shows

that x ∈ [ c,M, ||·, · · · , ·|| ]θ(∆m
n , u, q)· Therefore,

[ c,M, p, ||·, · · · , ·|| ]θ(∆m
n , u, q) ⊂ [ c,M, ||·, · · · , ·|| ]θ(∆m

n , u, q).

This completes the proof.

(b) Let pk ≥ 1for each k and sup pk < ∞. Let x ∈ [ c, p, ||·, · · · , ·|| ]θ(∆m
n , u, q). Then

for each ǫ > 0 there exists a positive integer N such that

lim
r→∞

1

gr

∑

k∈Ir

[

Mk

(

qk

(

||
uk∆

m
n xk+s − L

ρ
, z1, · · · , zn−1||

))]pk

= 0 < 1.

Since 1 ≤ pk ≤ sup pk < ∞, we have

lim
r→∞

1

gr

∑

k∈Ir

[

Mk

(

qk

(

||
uk∆

m
n xk+s − L

ρ
, z1, · · · , zn−1||

))]pk

≤ lim
r→∞

1

gr

∑

k∈Ir

[

Mk

(

qk

(

||
uk∆

mxk+s − L

ρ
, z1, · · · , zn−1||

))]

= 0

< 1.

Therefore x ∈ [ c,M, p, ||·, · · · , ·|| ]θ(∆m
n , u, q).
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[24] E. Savaş, Some sequence spaces defined by Orlicz functions, Arch. Math., 40
(2004), 33–40.
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The random of lacunary statistical on χ
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over p-metric spaces defined by Musielak

N. Subramanian, R. Babu, P. Thirunavukkarasu

Abstract: Mursaleen introduced the concepts of statistical conver-
gence in random 2-normed spaces. Recently Mohiuddine and Aiyup de-
fined the notion of lacunary statistical convergence and lacunary statis-
tical Cauchy in random 2-normed spaces. In this paper, we define and
study the notion of lacunary statistical convergence and lacunary of sta-
tistical Cauchy sequences in random on χ2 over p− metric spaces defined
by Musielak and prove some theorems which generalizes Mohiuddine and
Aiyup results.

AMS Subject Classification: analytic sequence, double sequences, χ2 space, Musielak

- modulus function, Random p− metric space, Lacunary sequence, Statistical conver-

gence

Keywords and Phrases: 40A05,40C05,40D05

1 Introduction

The concept of statistical convergence play a vital role not only in pure math-
ematics but also in other branches of science involving mathematics, especially in
information theory, computer science, biological science, dynamical systems, geo-
graphic information systems, population modeling, and motion planning in robotics.

The notion of statistical convergence was introduced by Fast and Schoenberg inde-
pendently. Over the years and under different names statistical convergence has been
discussed in the theory of fourier analysis, ergodic theory and number the- ory. Later
on it was further investigated by Fridy , S̆alát , Çakalli , Maio and Kocinac , Miller ,
Maddox , Leindler , Mursaleen and Alotaibi , Mursaleen and Edely , and many oth-
ers. In the recent years, generalizations of statistical convergence have appeared in
the study of strong integral summability and the structure of ideals of bounded con-
tinuous func- tions on Stone-C̆ech compactification of the natural numbers. Moreover
statistical convergence is closely related to the concept of convergence in probability.

Throughout w, χ and Λ denote the classes of all, gai and analytic scalar valued
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single sequences, respectively.
We write w2 for the set of all complex sequences (xmn), where m,n ∈ N, the set of
positive integers. Then, w2 is a linear space under the coordinate wise addition and
scalar multiplication.

Some initial works on double sequence spaces is found in Bromwich [2]. Later on,
they were investigated by Hardy [3], Moricz [6], Moricz and Rhoades [7], Basarir and
Solankan [1], Tripathy [8], Turkmenoglu [9], and many others.

We procure the following sets of double sequences:

Mu (t) :=
{

(xmn) ∈ w2 : supm,n∈N |xmn|
tmn < ∞

}

,

Cp (t) :=
{

(xmn) ∈ w2 : p− limm,n→∞ |xmn − l|
tmn = 1 for some l ∈ C

}

,

C0p (t) :=
{

(xmn) ∈ w2 : p− limm,n→∞ |xmn|
tmn = 1

}

,

Lu (t) :=
{

(xmn) ∈ w2 :
∑∞

m=1

∑∞
n=1 |xmn|

tmn < ∞
}

,

Cbp (t) := Cp (t)
⋂

Mu (t) and C0bp (t) = C0p (t)
⋂

Mu (t);

where t = (tmn) is the sequence of strictly positive reals tmn for all m,n ∈ N and
p − limm,n→∞ denotes the limit in the Pringsheim’s sense. In the case tmn = 1
for all m,n ∈ N;Mu (t) ,Cp (t) ,C0p (t) ,Lu (t) ,Cbp (t) and C0bp (t) reduce to the sets
Mu,Cp,C0p,Lu,Cbp and C0bp, respectively. Now, we may summarize the knowledge
given in some document related to the double sequence spaces. Gökhan and Colak
[11,12] have proved that Mu (t) and Cp (t) ,Cbp (t) are complete paranormed spaces
of double sequences and gave the α−, β−, γ− duals of the spaces Mu (t) and Cbp (t) .
Quite recently, in her PhD thesis, Zelter [13] has essentially studied both the theory of
topological double sequence spaces and the theory of summability of double sequences.
Mursaleen and Edely [14] have independently introduced the statistical convergence
and Cauchy for double sequences and given the relation between statistical convergent
and strongly Cesàro summable double sequences. Altay and Basar [15] have defined
the spaces BS,BS (t) ,CSp,CSbp,CSr and BV of double sequences consisting of all dou-
ble series whose sequence of partial sums are in the spaces Mu,Mu (t) ,Cp,Cbp,Cr and
Lu, respectively, and also examined some properties of those sequence spaces and de-
termined the α− duals of the spaces BS,BV,CSbp and the β (ϑ)− duals of the spaces
CSbp and CSr of double series. Basar and Sever [16] have introduced the Banach space
Lq of double sequences corresponding to the well-known space ℓq of single sequences
and examined some properties of the space Lq. Quite recently Subramanian and Misra
[17] have studied the space χ2

M (p, q, u) of double sequences and gave some inclusion
relations.

The class of sequences which are strongly Cesàro summable with respect to a
modulus was introduced by Maddox [5] as an extension of the definition of strongly
Cesàro summable sequences. Cannor [18] further extended this definition to a def-
inition of strong A− summability with respect to a modulus where A = (an,k) is
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a nonnegative regular matrix and established some connections between strong A−
summability, strong A− summability with respect to a modulus, and A− statistical
convergence. In [19] the notion of convergence of double sequences was presented by
A. Pringsheim. Also, in [20]-[21], and [22] the four dimensional matrix transformation
(Ax)k,ℓ =

∑∞
m=1

∑∞
n=1 a

mn
kℓ xmn was studied extensively by Robison and Hamilton.

We need the following inequality in the sequel of the paper. For a, b,≥ 0 and
0 < p < 1, we have

(a+ b)p ≤ ap + bp (1.1)

The double series
∑∞

m,n=1 xmn is called convergent if and only if the double sequence

(smn) is convergent, where smn =
∑m,n

i,j=1 xij(m,n ∈ N).

A sequence x = (xmn)is said to be double analytic if supmn |xmn|
1/m+n

< ∞. The
vector space of all double analytic sequences will be denoted by Λ2. A sequence

x = (xmn) is called double gai sequence if ((m+ n)! |xmn|)
1/m+n

→ 0 as m,n → ∞.
The double gai sequences will be denoted by χ2. Let φ = {allfinitesequences} .

Consider a double sequence x = (xij). The (m,n)th section x[m,n] of the sequence
is defined by x[m,n] =

∑m,n
i,j=0xijℑij for all m,n ∈ N ; where ℑij denotes the double

sequence whose only non zero term is a 1
(i+j)! in the (i, j)th place for each i, j ∈ N.

Let M and Φ are mutually complementary modulus functions. Then, we have:
(i) For all u, y ≥ 0,

uy ≤ M (u) + Φ (y) , (Y oung′s inequality)[See[10]] (1.2)

(ii) For all u ≥ 0,
uη (u) = M (u) + Φ (η (u)) . (1.3)

(iii) For all u ≥ 0, and 0 < λ < 1,

M (λu) ≤ λM (u) (1.4)

Lindenstrauss and Tzafriri [4] used the idea of Orlicz function to construct Orlicz
sequence space

ℓM =
{

x ∈ w :
∑∞

k=1 M
(

|xk|
ρ

)

< ∞, for someρ > 0
}

,

The space ℓM with the norm

‖x‖ = inf
{

ρ > 0 :
∑∞

k=1 M
(

|xk|
ρ

)

≤ 1
}

,

becomes a Banach space which is called an Orlicz sequence space. For M (t) =
tp (1 ≤ p < ∞) , the spaces ℓM coincide with the classical sequence space ℓp.

A sequence f = (fmn) of modulus function is called a Musielak-modulus function.
A sequence g = (gmn) defined by
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gmn (v) = sup {|v|u− (fmn) (u) : u ≥ 0} ,m, n = 1, 2, · · ·

is called the complementary function of a Musielak-modulus function f . For a given
Musielak modulus function f, the Musielak-modulus sequence space tf is defined as
follows

tf =
{

x ∈ w2 : If (|xmn|)
1/m+n → 0asm, n → ∞

}

,

where If is a convex modular defined by

If (x) =
∑∞

m=1

∑∞
n=1 fmn (|xmn|)

1/m+n
, x = (xmn) ∈ tf .

We consider tf equipped with the Luxemburg metric

d (x, y) = supmn

{

inf
(

∑∞
m=1

∑∞
n=1 fmn

(

|xmn|
1/m+n

mn

))

≤ 1
}

If X is a sequence space, we give the following definitions:

(i)X
′

= the continuous dual of X ;

(ii)Xα =
{

a = (amn) :
∑

∞
m,n=1 |amnxmn| < ∞, for eachx ∈ X

}

;

(iii)Xβ =
{

a = (amn) :
∑

∞
m,n=1amnxmn is convegent, foreachx ∈ X

}

;

(iv)Xγ =
{

a = (amn) : supmn ≥ 1
∣

∣

∣

∑M,N
m,n=1 amnxmn

∣

∣

∣ < ∞, foreachx ∈ X
}

;

(v)letX beanFK − space ⊃ φ; thenXf =
{

f(ℑmn) : f ∈ X
′

}

;

(vi)Xδ =
{

a = (amn) : supmn |amnxmn|
1/m+n

< ∞, foreachx ∈ X
}

;

Xα.Xβ, Xγ are called α − (orKöthe − Toeplitz)dual of X, β − (or generalized −
Köthe− Toeplitz)dual ofX, γ− dual of X, δ − dual ofX respectively.Xα is defined
by Gupta and Kamptan [10]. It is clear that Xα ⊂ Xβ and Xα ⊂ Xγ , but Xβ ⊂ Xγ

does not hold, since the sequence of partial sums of a double convergent series need
not to be bounded.

The notion of difference sequence spaces (for single sequences) was introduced by
Kizmaz as follows

Z (∆) = {x = (xk) ∈ w : (∆xk) ∈ Z}

for Z = c, c0 and ℓ∞, where ∆xk = xk − xk+1 for all k ∈ N.
Here c, c0 and ℓ∞ denote the classes of convergent,null and bounded sclar valued single
sequences respectively. The difference sequence space bvp of the classical space ℓp is
introduced and studied in the case 1 ≤ p ≤ ∞ by Başar and Altay and in the case
0 < p < 1 by Altay and Başar in [15]. The spaces c (∆) , c0 (∆) , ℓ∞ (∆) and bvp are
Banach spaces normed by

‖x‖ = |x1|+ supk≥1 |∆xk| and ‖x‖bvp = (
∑∞

k=1 |xk|
p)

1/p
, (1 ≤ p < ∞) .
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Later on the notion was further investigated by many others. We now introduce the
following difference double sequence spaces defined by

Z (∆) =
{

x = (xmn) ∈ w2 : (∆xmn) ∈ Z
}

where Z = Λ2, χ2 and ∆xmn = (xmn − xmn+1) − (xm+1n − xm+1n+1) = xmn −
xmn+1 − xm+1n + xm+1n+1 for all m,n ∈ N. The generalized difference double notion
has the following representation: ∆mxmn = ∆m−1xmn−∆m−1xmn+1−∆m−1xm+1n+
∆m−1xm+1n+1, and also this generalized difference double notion has the following
binomial representation:

∆mxmn =

m
∑

i=0

m
∑

j=0

(−1)
i+j
(m
i
)

(

m
j

)

xm+i,n+j .

2 Definition and Preliminaries

Let n ∈ N and X be a real vector space of dimension w, where n ≤ w. A real val-
ued function dp(x1, . . . , xn) = ‖(d1(x1), . . . , dn(xn))‖p on X satisfying the following
four conditions:
(i) ‖(d1(x1), . . . , dn(xn))‖p = 0 if and and only if d1(x1), . . . , dn(xn) are linearly de-
pendent,
(ii) ‖(d1(x1), . . . , dn(xn))‖p is invariant under permutation,
(iii) ‖(αd1(x1), . . . , dn(xn))‖p = |α| ‖(d1(x1), . . . , dn(xn))‖p, α ∈ R

(iv) dp ((x1, y1), (x2, y2) · · · (xn, yn)) = (dX(x1, x2, · · ·xn)
p + dY (y1, y2, · · · yn)

p)
1/p

for
1 ≤ p < ∞; (or)
(v) d ((x1, y1), (x2, y2), · · · (xn, yn)) := sup {dX(x1, x2, · · ·xn), dY (y1, y2, · · · yn)} ,
for x1, x2, · · ·xn ∈ X, y1, y2, · · · yn ∈ Y is called the p product metric of the Cartesian
product of n metric spaces is the p norm of the n-vector of the norms of the n sub-
spaces.

A trivial example of p product metric of n metric space is the p norm space is
X = R equipped with the following Euclidean metric in the product space is the p
norm:

‖(d1(x1), . . . , dn(xn))‖E = sup (|det(dmn (xmn))|)

= sup
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∣

∣

∣

∣

















where xi = (xi1, · · ·xin) ∈ R
n for each i = 1, 2, · · ·n.

If every Cauchy sequence in X converges to some L ∈ X, then X is said to be com-
plete with respect to the p− metric. Any complete p− metric space is said to be p−
Banach metric space.
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Let X be a linear metric space. A function w : X → R is called paranorm, if
(1) w (x) ≥ 0, for all x ∈ X ;
(2) w (−x) = w (x) , for all x ∈ X ;
(3) w (x+ y) ≤ w (x) + w (y) , for all x, y ∈ X ;
(4) If (σmn) is a sequence of scalars with σmn → σ as m,n → ∞ and (xmn) is a
sequence of vectors with w (xmn − x) → 0 as m,n → ∞, then w (σmnxmn − σx) → 0
as m,n → ∞.
A paranorm w for which w (x) = 0 implies x = 0 is called total paranorm and the
pair (X,w) is called a total paranormed space. It is well known that the metric of
any linear metric space is given by some total paranorm (see [23], Theorem 10.4.2,
p.183).

By the convergence of a double sequence we mean the convergence on the Pring-
sheim sense that is, a double sequence x = (xmn) has Prinsheim limit L (denoted by
P − limx = L) provided that given ǫ > 0 there exists n ∈ N such that |xmn − L| < ǫ.
We shall write more briefly as P− convergent.

The double sequence θrs = {(mr, ns)} is called double lacunary sequence if there
exist two increasing of integers such that

m0 = 0, ϕr = mr −mr−1 → ∞ as r → ∞ and

n0 = 0, ϕs = ns − ns−1 → ∞ as s → ∞.

Notations: mrs = mrns, hrs = ϕrϕ̄s, θrs is determined by

Irs = {(m,n) : mr−1 < m ≤ mr andns−1 < n ≤ ns} ,

qr = mr

mr−1
, q̄s =

ns

ns−1
and qrs = qr q̄s.

The notion of λ− double gai and double analytic sequences as follows: Let λ =
(λmn)

∞
m,n=0 be a strictly increasing sequences of positive real numbers tending to

infinity, that is

0 < λ00 < λ11 < · · · and λmn → ∞asm, n → ∞

and said that a sequence x = (xmn) ∈ w2 is λ− convergent to 0, called a the λ− limit
of x, if µmn (x) → 0asm, n → ∞, where

µmn (x) =
1

ϕrs

∑

m∈Irs

∑

n∈Irs

(∆m−1λm,n −∆m−1λm,n+1 −

∆m−1λm+1,n +∆m−1λm+1,n+1) |xmn|
1/m+n

.

The sequence x = (xmn) ∈ w2 is λ− double analytic if supuv |µmn (x)| < ∞. If
limmn xmn = 0 in the ordinary sense of convergence, then

lim
mn

(

1

ϕrs

∑

m∈Irs

∑

n∈Irs

(

∆m−1λm,n −∆m−1λm,n+1 −∆m−1λm+1,n +∆m−1λm+1,n+1

)

((m+ n)! |xmn − 0|)
1/m+n

)

= 0.



The random of lacunary statistical on χ2 over p− metric ... 139

This implies that

lim
mn

|µmn (x)− 0| = lim
mn

∣

∣

∣

∣

∣

(

1

ϕrs

∑

m∈Irs

∑

n∈Irs

(

∆m−1λm,n −∆m−1λm,n+1

−∆m−1λm+1,n +∆m−1λm+1,n+1

)

((m+ n)! ‖xmn − 0‖)
1/m+n

)∣

∣

∣ = 0.

which yields that limuv µmn (x) = 0 and hence x = (xmn) ∈ w2 is λ− convergent to
0.

Let I2− be an admissible ideal of 2N×N, θrs be a double lacunary sequence,

f = (fmn) be a Musielak-modulus function and
(

X, ‖(d (x1) , d (x2) , · · · , d (xn−1))‖p

)

be a p−metric space, q = (qmn) be double analytic sequence of strictly positive real
numbers. By w2 (p−X) we denote the space of all sequences defined over
(

X, ‖(d (x1) , d (x2) , · · · , d (xn−1))‖p

)

. The following inequality will be used through-

out the paper. If 0 ≤ qmn ≤ supqmn = H,K = max
(

1, 2H−1
)

then

|amn + bmn|
qmn ≤ K {|amn|

qmn + |bmn|
qmn} (2.1)

for all m,n and amn, bmn ∈ C. Also |a|qmn ≤ max
(

1, |a|H
)

for all a ∈ C.

In the present paper we define the following sequence spaces:

[

χ2q
fµ, ‖(d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ
p

]I2

θrs

=
{

r, s ∈ Irs :
[

fmn

(

‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖p

)]qmn

≥ ǫ
}

∈ I2

[

Λ2q
fµ, ‖(d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ
p

]I2

θrs

=
{

r, s ∈ Irs :
[

fmn

(

‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖p

)]qmn

≥ K
}

∈ I2,

If we take fmn (x) = x, we get

[

χ2q
fµ, ‖(d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ
p

]I2

θrs

=
{

r, s ∈ Irs :
[(

‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖p

)]qmn

≥ ǫ
}

∈ I2,

[

Λ2q
fµ, ‖(d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ
p

]I2

θrs

=
{

r, s ∈ Irs :
[(

‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖p

)]qmn

≥ K
}

∈ I2,
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If we take q = (qmn) = 1, we get

[

χ2
fµ, ‖(d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ
p

]I

θrs

=
{

r, s ∈ Irs :
[

fmn

(

‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖p

)]

≥ ǫ
}

∈ I2

,
[

Λ2
fµ, ‖(d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ
p

]I2

θrs
|

=
{

r, s ∈ Irs :
[

fmn

(

‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖p

)]

≥ K
}

∈ I2,

In the present paper we plan to study some topological properties and inclusion
relation between the above defined sequence spaces.

[

χ2q
fµ, ‖(d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ
p

]I2

θrs

and
[

Λ2q
fµ, ‖(d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ
p

]I2

θrs

which we shall discuss in this paper.

3 Main Results

3.1 Theorem

Let f = (fmn) be a Musielak-modulus function, q = (qmn) be a double analytic
sequence of strictly positive real numbers, the sequence spaces

[

χ2q
fµ, ‖(d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ
p

]I2

θrs

and
[

Λ2q
fµ, ‖(d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ
p

]I2

θrs
are linear spaces.

Proof: It is routine verification. Therefore the proof is omitted.

3.2 Theorem

Let f = (fmn) be a Musielak-modulus function, q = (qmn) be a double analytic
sequence of strictly positive real numbers, the sequence space

[

χ2q
fµ, ‖(d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ
p

]I2

θrs
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is a paranormed space with respect to the paranorm defined by
g (x) = inf
{[

fmn

(

‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖p

)]qmn

≤ 1
}

.

Proof: Clearly g (x) ≥ 0 for

x = (xmn) ∈
[

χ2q
fµ, ‖(d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ
p

]I2

θrs

Since fmn (0) = 0, we get g (0) = 0.
Conversely, suppose that g (x) = 0, then

inf
{[

fmn

(

‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖p

)]qmn

≤ 1
}

= 0.

Suppose that µmn (x) 6= 0 for each m,n ∈ N. Then

‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖
ϕ
p → ∞.

It follows that

([

fmn

(

‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖p

)]qmn
)1/H

→ ∞

which is a contradiction. Therefore µmn (x) = 0. Let

([

fmn

(

‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖p

)]qmn
)1/H

≤ 1

and
([

fmn

(

‖µmn (y) , (d (x1) , d (x2) , · · · , d (xn−1))‖p

)]qmn
)1/H

≤ 1

Then by using Minkowski’s inequality, we have

([

fmn

(

‖µmn (x+ y) , (d (x1) , d (x2) , · · · , d (xn−1))‖p

)]qmn
)1/H

≤
([

fmn

(

‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖p

)]qmn
)1/H

+
([

fmn

(

‖µmn (y) , (d (x1) , d (x2) , · · · , d (xn−1))‖p

)]qmn
)1/H

.

So we have

g (x+ y) = inf
{[

fmn

(

‖µmn (x+ y) , (d (x1) , d (x2) , · · · , d (xn−1))‖p

)]qmn

≤ 1
}

≤ inf
{[

fmn

(

‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖p

)]qmn

≤ 1
}

+ inf
{[

fmn

(

‖µmn (y) , (d (x1) , d (x2) , · · · , d (xn−1))‖p

)]qmn

≤ 1
}

Therefore,
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g (x+ y) ≤ g (x) + g (y) .

Finally, to prove that the scalar multiplication is continuous. Let λ be any complex
number. By definition,

g (λx) = inf
{[

fmn

(

‖µmn (λx) , (d (x1) , d (x2) , · · · , d (xn−1))‖p

)]qmn

≤ 1
}

.

Then

g (λx) = inf
{

((|λ| t)qmn/H :
[

fmn

(

‖µmn (λx) , (d (x1) , d (x2) , · · · , d (xn−1))‖p

)]qmn

≤ 1
}

where t = 1
|λ| . Since |λ|

qmn ≤ max (1, |λ|
supqmn) , we have

g (λx) ≤ max (1, |λ|
supqmn)

inf
{

tqmn/H :
[

fmn

(

‖µmn (λx) , (d (x1) , d (x2) , · · · , d (xn−1))‖p

)]qmn

≤ 1
}

This completes the proof.

3.3 Theorem

(i) If the Musielak modulus function (fmn) satisfies ∆2− condition, then

[

χ2q
fµ, ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ
p

]I2α

θrs

=
[

χ2qµ
g , ‖µuv (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ
p

]I2

θrs
.

(ii) If the Musielak modulus function (gmn) satisfies ∆2− condition, then

[

χ2qµ
g , ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ
p

]I2α

θrs

=
[

χ2q
fµ, ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ
p

]I2

θrs

Proof: Let the Musielak modulus function (fmn) satisfies ∆2− condition, we get

[

χ2qµ
g , ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ
p

]I2

θrs
⊂ (3.1)

[

χ2q
fµ, ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ
p

]I2α

θrs

To prove the inclusion

[

χ2q
fµ, ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ
p

]I2α

θrs

⊂
[

χ2qµ
g , ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ
p

]I2

θrs
,
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let

a ∈
[

χ2q
fµ, ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ
p

]I2α

θrs
.

Then for all {xmn} with

(xmn) ∈
[

χ2q
fµ, ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ
p

]I2

θrs

we have
∞
∑

m=1

∞
∑

n=1

|xmnamn| < ∞. (3.2)

Since the Musielak modulus function (fmn) satisfies ∆2− condition, then

(ymn) ∈
[

χ2q
fµ, ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ
p

]I2

θrs
,

we get
∞
∑

m=1

∞
∑

n=1

∣

∣

∣

∣

ϕrsymnamn

∆mλmn (m+ n)!

∣

∣

∣

∣

< ∞.

by (3.2). Thus

(ϕrsamn) ∈
[

χ2q
fµ, ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ
p

]I2

θrs

=
[

χ2qµ
g , ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ
p

]I2

θrs

and hence

(amn) ∈
[

χ2qµ
g , ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ
p

]I2

θrs
.

This gives that

[

χ2q
fµ, ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ
p

]I2α

θrs

⊂
[

χ2qµ
g , ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ
p

]I2

θrs

we are granted with (3.1) and (3.3)

[

χ2q
fµ, ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ
p

]I2α

θrs

=
[

χ2qµ
g , ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ
p

]I2

θrs
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(ii) Similarly, one can prove that

[

χ2qµ
g , ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ
p

]I2α

θrs

⊂
[

χ2q
fµ, ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ
p

]I2

θrs

if the Musielak modulus function (gmn) satisfies ∆2− condition.

3.4 Proposition

If 0 < qmn < pmn < ∞ for each m and m, then

[

Λ2q
fµ, ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ
p

]I2

θrs

⊆
[

Λ2p
fµ, ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ
p

]I2

θrs

Proof: The proof is standard, so we omit it.

3.5 Proposition

(i) If 0 < infqmn ≤ qmn < 1 then

[

Λ2q
fµ, ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ
p

]I2

θrs

⊂
[

Λ2
fµ, ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ
p

]I2

θrs
.

(ii) If 1 ≤ qmn ≤ supqmn < ∞, then

[

Λ2
fµ, ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ
p

]I2

θrs

⊂
[

Λ2q
fµ, ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ
p

]I2

θrs

Proof: The proof is standard, so we omit it.
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3.6 Proposition

Let f
′

=
(

f
′

mn

)

and f
′′

=
(

f
′′

mn

)

are sequences of Musielak functions, we have

[

Λ2q

f ′µ
, ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ
p

]I2

θrs

⋂

[

Λ2q

f ′′µ
, ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ
p

]I2

θrs

⊆
[

Λ2q

f ′+f ′′µ
, ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ
p

]I2

θrs

Proof: The proof is easy so we omit it.

3.7 Proposition

For any sequence of Musielak functions f = (fmn) and q = (qmn) be double
analytic sequence of strictly positive real numbers. Then

[

χ2q
fµ, ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ
p

]I2

θrs

⊂
[

Λ2q
fµ, ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ
p

]I2

θrs
.

Proof: The proof is easy so we omit it.

3.8 Proposition

The sequence space
[

Λ2q
fµ, ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ
p

]I2

θrs
is solid

Proof: Let x = (xmn) ∈
[

Λ2q
fµ, ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ
p

]I2

θrs
, (i.e)

supmn

[

Λ2q
fµ, ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ
p

]I2

θrs
< ∞.

Let (αmn) be double sequence of scalars such that |αmn| ≤ 1 for all m,n ∈ N × N.
Then we get

sup
mn

[

Λ2q
fµ, ‖µmn (αx) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ
p

]I2

θrs

≤ sup
mn

[

Λ2q
fµ, ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ
p

]I2

θrs
.

This completes the proof.
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3.9 Proposition

The sequence space
[

Λ2q
fµ, ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ
p

]I2

θrs
is mono-

tone
Proof: The proof follows from Proposition 3.8.

3.10 Proposition

If f = (fmn) be any Musielak function. Then

[

Λ2q
fµ, ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ∗

p

]I2

θrs

⊂
[

Λ2q
fµ, ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ∗∗

p

]I2

θrs

if and only if supr,s≥1
ϕ∗

rs

ϕ∗∗

rs
< ∞.

Proof: Let

x ∈
[

Λ2q
fµ, ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ∗

p

]I2

θrs

and

N = supr,s≥1
ϕ∗
rs

ϕ∗∗
rs

< ∞.

Then we get

[

Λ2q
fµ, ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ∗∗

rs
p

]I2

θrs

= N

[

Λ2q
fµ, ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ∗

rs
p

]I2

θrs
= 0.

Thus x ∈
[

Λ2q
fµ, ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ∗∗

p

]I2

θrs
.

Conversely, suppose that

[

Λ2q
fµ, ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ∗

p

]I

Nθ

⊂
[

Λ2qu
fµ , ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ∗∗

p

]I2

θrs

and

x ∈
[

Λ2q
fµ, ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ∗

p

]I2

θrs
.

Then
[

Λ2q
fµ, ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ∗

p

]I2

θrs
< ǫ,
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for every ǫ > 0. Suppose that supr,s≥1
ϕ∗

rs

ϕ∗∗

rs
= ∞, then there exists a sequence of

members (rsjk) such that limj,k→∞
ϕ∗

jk

ϕ∗∗

jk
= ∞. Hence, we have

[

Λ2q
fµ, ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ∗

rs
p

]I2

θrs
= ∞.

Therefore

x /∈
[

Λ2q
fµ, ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ∗∗

p

]I2

θrs
,

which is a contradiction. This completes the proof.

3.11 Proposition

If f = (fmn) be any Musielak function. Then

[

Λ2q
fµ, ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ∗

p

]I2

θrs

=
[

Λ2q
fµ, ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ∗∗

p

]I2

θrs

if and only if

sup
r,s≥1

ϕ∗
rs

ϕ∗∗
rs

< ∞, sup
r,s≥1

ϕ∗∗
rs

ϕ∗
rs

> ∞.

Proof: It is easy to prove so we omit.

3.12 Proposition

The sequence space

[

χ2q
fµ, ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ
p

]I2

θrs

is not solid

Proof: The result follows from the following example.

Example: Consider

x = (xmn) =

















1 1 ... 1
1 1 ... 1
.
.
.
1 1 ... 1

















∈
[

χ2q
fµ, ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ
p

]I2

θrs
.
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Let

αmn =

















−1m+n −1m+n ... −1m+n

−1m+n −1m+n ... −1m+n

.

.

.
−1m+n −1m+n ... −1m+n

















,

for all m,n ∈ N. Then

αmnxmn /∈
[

χ2q
fµ, ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ
p

]I2

θrs
.

Hence
[

χ2q
fµ, ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ
p

]I2

θrs

is not solid.

3.13 Proposition

The sequence space
[

χ2q
fµ, ‖µmn (x) , (d (x1) , d (x2) , · · · , d (xn−1))‖

ϕ
p

]I2

θrs
is not

monotone
Proof: The proof follows from Proposition 3.12.
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1 Introduction

The study of the existence, the structure and properties of (approximate) solu-
tions of optimal control problems defined on infinite intervals and on sufficiently large
intervals has recently been a rapidly growing area of research [4-8, 10, 11, 14, 15,
16, 18-20, 22, 23, 27, 30]. These problems arise in engineering [1, 32], in models of
economic growth [2, 9, 12, 17, 21, 24, 25, 27-29, 31], in infinite discrete models of
solid-state physics related to dislocations in one-dimensional crystals [3, 26] and in
the theory of thermodynamical equilibrium for materials [13, 16].

In this paper we study the structure of approximate solutions of nonautonomous
discrete-time optimal control systems arising in economic dynamics which are deter-
mined by sequences of lower semicontinuous objective functions.

For each nonempty set Y denote by B(Y ) the set of all bounded functions f : Y →
R1 and for each f ∈ B(Y ) set

‖f‖ = sup{|f(y)| : y ∈ Y }.

For each nonempty compact metric space Y denote by C(Y ) the set of all continuous
functions f : Y → R1.
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Let (X, ρ) be a compact metric space with the metric ρ. The set X×X is equipped
with the metric ρ1 defined by

ρ1((x1, x2), (y1, y2)) = ρ(x1, y1) + ρ(x2, y2), (x1, x2), (y1, y2) ∈ X ×X.

For each integer t ≥ 0 let Ωt be a nonempty closed subset of the metric space
X ×X .

Let T ≥ 0 be an integer. A sequence {xt}
∞

t=T ⊂ X is called a program if
(xt, xt+1) ∈ Ωt for all integers t ≥ T .

Let T1, T2 be integers such that 0 ≤ T1 < T2. A sequence {xt}
T2

t=T1
⊂ X is called

a program if (xt, xt+1) ∈ Ωt for all integers t satisfying T1 ≤ t < T2.
We assume that there exists a program {xt}

∞

t=0. Denote by M the set of all
sequences of functions {ft}

∞

t=0 such that for each integer t ≥ 0

ft ∈ B(Ωt) (1.1)

and that

sup{‖ft‖ : t = 0, 1, . . .} < ∞. (1.2)

For each pair of sequences {ft}
∞

t=0, {gt}
∞

t=0 ∈ M set

d({ft}
∞

t=0, {gt}
∞

t=0) = sup{‖ft − gt‖ : t = 0, 1, . . . }. (1.3)

It is easy to see that d : M×M → [0,∞) is a metric on M and that the metric space
(M, d) is complete.

Let {ft}
∞

t=0 ∈ M. We consider the following optimization problems

T2−1∑

t=T1

ft(xt, xt+1) → min s. t. {xt}
T2

t=T1
is a program,

T2−1∑

t=T1

ft(xt, xt+1) → min s. t. {xt}
T2

t=T1
is a program and xT1

= y,

T2−1∑

t=T1

ft(xt, xt+1) → min s. t. {xt}
T2

t=T1
is a program and xT1

= y, xT2
= z,

where y, z ∈ X and integers T1, T2 satisfy 0 ≤ T1 < T2.
The interest in these discrete-time optimal problems stems from the study of vari-

ous optimization problems which can be reduced to this framework, e. g., continuous-
time control systems which are represented by ordinary differential equations whose
cost integrand contains a discounting factor [12], the study of the discrete Frenkel-
Kontorova model related to dislocations in one-dimensional crystals [3, 26] and the
analysis of a long slender bar of a polymeric material under tension in [13, 16]. Similar
optimization problems are also considered in mathematical economics [9, 17, 24, 28,
29, 31].
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For each y, z ∈ X and each pair of integers T1, T2 satisfying 0 ≤ T1 < T2 set

U({ft}
∞

t=0, T1, T2) = inf{

T2−1∑

t=T1

ft(xt, xt+1) : {xt}
T2

t=T1
is a program}, (1.4)

U({ft}
∞

t=0, T1, T2, y) = inf{

T2−1∑

t=T1

ft(xt, xt+1) : {xt}
T2

t=T1
is a program and xT1

= y},

(1.5)

U({ft}
∞

t=0, T1, T2, y, z) = inf{

T2−1∑

t=T1

ft(xt, xt+1) :

{xt}
T2

t=T1
is a program and xT1

= y, xT2
= z}. (1.6)

Here we assume that the infimum over empty set is ∞.
Denote by Mreg the set of all sequences of functions {fi}

∞

i=0 ∈ M for which

there exist a program {xf
t }

∞

t=0 and constants cf > 0, γf > 0 such that the following
conditions hold:

(C1) the function ft is lower semicontinuous for all integers t ≥ 0;
(C2) for each pair of integers T1 ≥ 0, T2 > T1,

T2−1∑

t=T1

ft(x
f
t , x

f
t+1) ≤ U({ft}

∞

t=0, T1, T2) + cf ;

(C3) for each ǫ > 0 there exists δ > 0 such that for each integer t ≥ 0 and each

(x, y) ∈ Ωt satisfying ρ(x, xf
t ) ≤ δ, ρ(y, xf

t+1) ≤ δ we have

|ft(x
f
t , x

f
t+1)− ft(x, y)| ≤ ǫ;

(C4) for each integer t ≥ 0, each (xt, xt+1) ∈ Ωt satisfying ρ(xt, x
f
t ) ≤ γf and each

(x′

t+1, x
′

t+2) ∈ Ωt+1 satisfying ρ(x′

t+2, x
f
t+2) ≤ γf there is x ∈ X such that

(xt, x) ∈ Ωt, (x, x
′

t+2) ∈ Ωt+1;

moreover, for each ǫ > 0 there exists δ ∈ (0, γf ) such that for each integer t ≥

0, each (xt, xt+1) ∈ Ωt and each (x′

t+1, x
′

t+2) ∈ Ωt+1 satisfying ρ(xt, x
f
t ) ≤ δ and

ρ(x′

t+2, x
f
t+2) ≤ δ there is x ∈ X such that

(xt, x) ∈ Ωt, (x, x
′

t+2) ∈ Ωt+1, ρ(x, x
f
t+1) ≤ ǫ.

Denote by M̄reg the closure of Mreg in (M, d). Denote by Mc,reg the set of all
sequences {fi}

∞

i=0 ∈ Mreg such that fi ∈ C(Ωi) for all integers i ≥ 0 and by M̄c,reg

the closure of Mc,reg in (M, d).
We study the optimization problems stated above with the sequence of objective

functions {fi}
∞

i=0 ∈ Mreg. Our study is based on the relation between these finite
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horizon problems and the corresponding infinite horizon optimization problem deter-
mined by {fi}

∞

i=0. Note that the condition (C2) means that the program {xf
t }

∞

t=0 is
an approximate solution of this infinite horizon problem.

We are interested in turnpike properties of approximate solutions of our optimiza-
tion problems, which are independent of the length of the interval T2 − T1, for all
sufficiently large intervals. To have these properties means that the approximate so-
lutions of the problems are determined mainly by the objective functions, and are
essentially independent of the choice of interval and endpoint conditions, except in
regions close to the endpoints. Turnpike properties are well known in mathematical
economics. The term was first coined by Samuelson in 1948 (see [26]) where he showed
that an efficient expanding economy would spend most of the time in the vicinity of
a balanced equilibrium path (also called a von Neumann path).

The paper is organized as follows. In Section 2 we present turnpike results and
show the existence of optimal solutions over infinite horizon established in [31]. Our
main results (Theorems 3.1 and 3.2) are stated in Section 3. Section 4 contains an
example. Our auxiliary results are proved in Section 5. Section 6 contains the proof
of Theorem 3.1 while Theorem 3.2 is proved in Section 7.

2 Preliminaries

Let {fi}
∞

i=0 ∈ Mreg, a program {xf
i }

∞

i=0, cf > 0 and γf > 0 be such that (C1)-(C4)
hold.

In [31] we proved the following useful result.

Proposition 2.1Let S ≥ 0 be an integer and {xi}
∞

i=S be a program. Then either the

sequence {
∑T−1

i=S fi(xi, xi+1)−
∑T−1

i=S fi(x
f
i , x

f
i+1)}

∞

T=S+1 is bounded or

lim
T→∞

[

T−1∑

i=S

fi(xi, xi+1)−

T−1∑

i=S

fi(x
f
i , x

f
i+1)] = ∞.

A program {xt}
∞

t=S , where S ≥ 0 is an integer, is called ({fi}
∞

i=0)-good if the
sequence

{

T−1∑

i=S

fi(xi, xi+1)−

T−1∑

i=S

fi(x
f
i , x

f
i+1)}

∞

T=S+1

is bounded [9, 27-29, 31].
We say that the sequence {fi}

∞

i=0 possesses an asymptotic turnpike property (or

briefly (ATP)) [31] with {xf
i }

∞

i=0 being the turnpike if for each integer S ≥ 0 and each
({fi}

∞

i=0)-good program {xi}
∞

i=S ,

lim
i→∞

ρ(xi, x
f
i ) = 0.

We say that the sequence {fi}
∞

i=0 possesses a turnpike property (or briefly (TP))
[31] if for each ǫ > 0 and each M > 0 there exist δ > 0 and a natural number L such
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that for each pair of integers T1 ≥ 0, T2 ≥ T1 +2L and each program {xt}
T2

t=T1
which

satisfies

T2−1∑

i=T1

fi(xi, xi+1) ≤ min{U({fi}
∞

i=0, T1, T2, xT1
, xT2

) + δ, U({fi}
∞

i=0, T1, T2) +M},

the inequality ρ(xi, x
f
i ) ≤ ǫ holds for all integers i = T1 + L, . . . , T2 − L.

The sequence {xf
i }

∞

i=0 is called the turnpike of {fi}
∞

i=0.
In [31] we proved the following results (see Theorems 2.1-2.4).

Theorem 2.1The sequence {fi}
∞

i=0 possesses the turnpike property if and only if
{fi}

∞

i=0 possesses (ATP) and the following property:
(P) For each ǫ > 0 and each M > 0 there exist δ > 0 and a natural number L

such that for each integer T ≥ 0 and each program {xt}
T+L
t=T which satisfies

T+L−1∑

i=T

fi(xi, xi+1)

≤ min{U({fi}
∞

i=0, T, T + L, xT , xT+L) + δ, U({fi}
∞

i=0, T, T + L) +M}

there is an integer j ∈ {T, . . . , T + L} for which ρ(xj , x
f
j ) ≤ ǫ.

The property (P) means that if a natural number L is large enough and a program
{xt}

T+L
t=T is an approximate solution of the corresponding finite horizon problem, then

there is j ∈ {T, . . . , T + L} such that xj is close to x
f
j .

We denote by Card(A) the cardinality of the set A.

Theorem 2.2 Assume that the sequence {fi}
∞

i=0 possesses (ATP) and the property
(P), ǫ > 0 and M > 0. Then there exists a natural number L such that for each pair
of integers T1 ≥ 0, T2 > T1 + L and each program {xt}

T2

t=T1
which satisfies

T2−1∑

t=T1

ft(xt, xt+1) ≤ U({fi}
∞

i=0, T1, T2) +M

the following inequality holds:

Card({t ∈ {T1, . . . , T2} : ρ(xt, x
f
t ) > ǫ}) ≤ L.

Let S ≥ 0 be an integer. A program {xt}
∞

t=S is called ({fi}
∞

i=0)-minimal [3, 26,
31] if for each integer T > S,

T−1∑

t=S

ft(xt, xt+1) = U({fi}
∞

i=0, S, T, xS , xT ).
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A program {xt}
∞

t=S is called ({fi}
∞

i=0)-overtaking optimal [12, 27, 31] if for each
program {x′

t}
∞

t=S satisfying xS = x′

S ,

lim sup
T→∞

(

T−1∑

t=S

ft(xt, xt+1)−

T−1∑

t=S

ft(x
′

t, x
′

t+1)) ≤ 0.

Theorem 2.3 Assume that the sequence {fi}
∞

i=0 possesses (ATP), z ∈ X , S ≥ 0 is
an integer and that there exists an ({fi}

∞

i=0)-good program {xt}
∞

t=S satisfying xS = z.
Then there exists an ({fi}

∞

i=0)-overtaking optimal program {x∗

t }
∞

t=S satisfying x∗

S = z.

Theorem 2.4 Assume that the sequence {fi}
∞

i=0 possesses (ATP), z ∈ X , S ≥ 0 is
an integer and that there exists an ({fi}

∞

i=0)-good program {x̄t}
∞

t=S satisfying x̄S = z.
Let a program {xt}

∞

t=S satisfy xS = z. Then the following properties are equivalent.
(i) {xt}

∞

t=S is an ({fi}
∞

i=0)-overtaking optimal program;
(ii) the program {xt}

∞

t=S is ({fi}
∞

i=0)-minimal and ({fi}
∞

i=0)-good;

(iii) the program {xt}
∞

t=S is ({fi}
∞

i=0)-minimal and satisfies limt→∞ ρ(xt, x
f
t ) = 0.

3 Main results

Let {fi}
∞

i=0 ∈ Mreg, a program {xf
i }

∞

i=0, cf > 0 and γf > 0 be such that (C1)-(C4)
hold.

We say that the sequence {fi}
∞

i=0 possesses a strong asymptotic turnpike property

(or briefly (SATP)) with {xf
i }

∞

i=0 being the turnpike if for each integer S ≥ 0 and
each ({fi}

∞

i=0)-good program {xi}
∞

i=S ,

∞∑

i=0

ρ(xi, x
f
i ) < ∞.

Clearly, (SATP) implies (ATP).
We say that the sequence {fi}

∞

i=0 possesses a a strong turnpike property (or briefly
(STP)) if for each ǫ > 0 and each M > 0 there exist δ > 0 and a natural number L
such that for each pair of integers T1 ≥ 0, T2 ≥ T1 + 2L and each program {xt}

T2

t=T1

which satisfies

T2−1∑

i=T1

fi(xi, xi+1) ≤ min{U({fi}
∞

i=0, T1, T2, xT1
, xT2

) + δ, U({fi}
∞

i=0, T1, T2) +M},

the inequality
∑T2−L

i=T1+L ρ(xi, x
f
i ) ≤ ǫ holds.

The sequence {xf
i }

∞

i=0 is called the turnpike of {fi}
∞

i=0.
Clearly, (STP) implies (TP).
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In this paper we prove the following two results which are extensions of Theorems
2.1 and 2.2 respectively.

Theorem 3.1 The sequence {fi}
∞

i=0 possesses the strong turnpike property if and
only if {fi}

∞

i=0 possesses (SATP) and the property (P).

Theorem 3.2 Assume that the sequence {fi}
∞

i=0 possesses (SATP) and the property
(P), and M > 0. Then there exist a natural number L and M0 > 0 such that for each
pair of integers T1 ≥ 0, T2 > T1 + L and each program {xt}

T2

t=T1
which satisfies

T2−1∑

t=T1

ft(xt, xt+1) ≤ U({fi}
∞

i=0, T1, T2) +M

the following inequality holds:

T2∑

i=T1

ρ(xi, x
f
i ) ≤ M0.

4 An example

Let {fi}
∞

i=0 ∈ Mreg, a program {xf
i }

∞

i=0, cf > 0 and γf > 0 be such that (C1)-(C4)
hold.

Now we show that {fi}
∞

i=0 is approximated by elements ofMreg possessing (STP).
For each r ∈ (0, 1) and all integers i ≥ 0 set

f
(r)
i (x, y) = fi(x, y) + rρ(x, xf

i ), (x, y) ∈ Ωi. (4.1)

Clearly, {f
(r)
i }∞i=0 ∈ Mreg for all r ∈ (0, 1) and limr→0+ d({f

(r)
i }∞i=0, {fi}

∞

i=0) = 0.

Proposition 4.1 Let r ∈ (0, 1). Then {f
(r)
i }∞i=0 possesses (STP) with {xf

i }
∞

i=0 being
the turnpike.

Proof. By Proposition 2.6 of [31], {f
(r)
i }∞i=0 possesses (TP) with {xf

i }
∞

i=0 being

the turnpike. It follows from Theorem 2.1 that {f
(r)
i }∞i=0 has the property (P). In

view of Theorem 3.1 it is sufficient to show that {f
(r)
i }∞i=0 possesses (SATP).

Assume that S ≥ 0 is an integer and that a program {xi}
∞

i=S is ({f
(r)
i }∞i=0)-good.

Then there is c1 > 0 such that

|
T−1∑

t=S

f
(r)
t (xt, xt+1)−

T−1∑

t=S

f
(r)
t (xf

t , x
f
t+1)| ≤ c1forallintegersT > S. (4.2)

By Proposition 2.1, (4.1) and (4.2),
∑

∞

t=S ρ(xt, x
f
t ) < ∞. Thus (SATP) holds. Propo-

sition 4.1 is proved.
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5 Auxiliary results

We use the notation, definitions and assumptions introduced in Sections 1-3.
The following two results were obtained in [31].

Lemma 5.1 Let an integer S ≥ 0 and a program {xi}
∞

i=S be ({fi}
∞

t=0)-good. Then
there is a number c > 0 such that for each pair of integers T1 ≥ S and T2 > T1,

T2−1∑

i=T1

fi(xi, xi+1) ≤ U({fi}
∞

i=0, T1, T2) + c

and the following property holds:
for each ǫ > 0 there exists a natural number L such that for each integer T1 ≥ L

and each integer T2 > T1,

T2−1∑

i=T1

fi(xi, xi+1) ≤ U({fi}
∞

i=0, T1, T2, xT1
, xT2

) + ǫ.

Lemma 5.2 Let ǫ > 0. Then there exists δ > 0 such that for each pair of integers
T1 > 0, T2 > T1 + 2 and each program {xi}

T2

i=T1
satisfying

ρ(xT1+1, x
f
T1+1) ≤ δ, ρ(xT2−1, x

f
T2−1) ≤ δ,

T2−2∑

i=T1+1

fi(xi, xi+1) ≤ U({fi}
∞

i=0, T1 + 1, T2 − 1, xT1+1, xT2−1) + δ

there exists a program {x̃i}
T2+1
i=T1−1 such that

x̃T1−1 = x
f
T1−1, x̃T2+1 = x

f
T2+1, x̃i = xi, i = T1 + 1, . . . .T2 − 1

and that the following inequality holds:

T2∑

i=T1−1

fi(x̃i, x̃i+1) ≤

T2∑

i=T1−1

fi(x
f
i , x

f
i+1) + ǫ.

Lemma 5.3 Assume that {fi}
∞

i=0 possesses (SATP) and let ǫ > 0. Then there exist
δ > 0 and a natural number L such that for each pair of integers T2 > T1 ≥ L and
each program {xi}

T2

i=T1
satisfying

xT1
= x

f
T1
, xT2

= x
f
T2
,

T2−1∑

i=T1

fi(xi, xi+1) ≤

T2−1∑

i=T1

fi(x
f
i , x

f
i+1) + δ

the inequality
∑T2

t=T1
ρ(xt, x

f
t ) ≤ ǫ holds.
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Proof. Assume that the lemma is not true. Then there exist sequences of natural
numbers {Tk}

∞

k=1, {Sk}
∞

k=1 such that for each natural number k,

Tk < Sk < Tk+1

and there exists a program {x
(k)
i }Sk

i=Tk
such that

x
(k)
Tk

= x
f
Tk
, x

(k)
Sk

= x
f
Sk
, (5.1)

Sk−1∑

i=Tk

fi(x
(k)
i , x

(k)
i+1) ≤

Sk−1∑

i=Tk

fi(x
f
i , x

f
i+1) + 2−k, (5.2)

Sk∑

i=Tk

ρ(x
(k)
i , x

f
i ) > ǫ. (5.3)

Define a sequence {xi}
∞

i=0 ⊂ X as follows: for each integer k ≥ 1,

xi = x
(k)
i , i = Tk, . . . , Sk, (5.4)

xi = x
f
i for all integers i ≥ 0 such that i 6∈ ∪∞

k=1{Tk, . . . , Sk}. (5.5)

By (5.1), (5.4) and (5.5) {xi}
∞

i=0 is a well-defined program. By (5.2), (5.4) and (5.5)
for each integer p ≥ 1,

Sp∑

i=0

fi(xi, xi+1) ≤

Sp∑

i=0

fi(x
f
i , x

f
i+1) +

p∑

i=1

2−i.

Combined with Proposition 2.1 this implies that the program {xi}
∞

i=0 is ({fi}
∞

i=0)-
good. In view of (SATP),

∞∑

i=0

ρ(xi, x
f
i ) < ∞.

On the other hand, it follows from (5.3), (5.4) and (5.5) that

∞∑

i=0

ρ(xi, x
f
i ) ≥

∞∑

k=0

(

Sk∑

i=Tk

ρ(x
(k)
i , x

f
i )) ≥

∞∑

k=0

ǫ = ∞.

The contradiction we have reached completes the proof of Lemma 5.3.

Lemma 5.4 Assume that {fi}
∞

i=0 possesses (SATP) and let ǫ > 0. Then there exist
δ > 0 and a natural number L such that for each pair of integers T1, T2 satisfying
T1 > L, T2 > T1 + 2 and each program {xi}

T2

i=T1
satisfying

ρ(xT1+1, x
f
T1+1) ≤ δ, ρ(xT2−1, x

f
T2−1) ≤ δ, (5.6)
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T2−2∑

i=T1+1

fi(xi, xi+1) ≤ U({fi}
∞

i=0, T1 + 1, T2 − 1, xT1+1, xT2−1) + δ (5.7)

the following inequality holds:

T2−1∑

t=T1+1

ρ(xt, x
f
t ) ≤ ǫ.

Proof. By Lemma 5.3, there exist δ1 > 0 and a natural number L such that for each
pair of integers S2 > S1 ≥ L and each program {xi}

S2

i=S1
satisfying

xSi
= x

f
Si
, i = 1, 2,

S2−1∑

i=S1

fi(xi, xi+1) ≤

S2−1∑

i=S1

fi(x
f
i , x

f
i+1) + δ1 (5.8)

we have
S2∑

i=S1

ρ(xi, x
f
i ) ≤ ǫ. (5.9)

By Lemma 5.2 there exist δ > 0 such that for each pair of integers T1 > 0, T2 > T1+2
and each program {xi}

T2

i=T1
satisfying

ρ(xT1+1, x
f
T1+1) ≤ δ, ρ(xT2−1, x

f
T2−1) ≤ δ,

T2−2∑

i=T1+1

fi(xi, xi+1) ≤ U({fi}
∞

i=0, T1 + 1, T2 − 1, xT1+1, xT2−1) + δ

there exists a program {x̃i}
T2+1
i=T1−1 such that

x̃T1−1 = x
f
T1−1, x̃T2+1 = x

f
T2+1, x̃i = xi, i = T1 + 1, . . . .T2 − 1, (5.10)

T2∑

i=T1−1

fi(x̃i, x̃i+1) ≤

T2∑

i=T1−1

fi(x
f
i , x

f
i+1) + δ1. (5.11)

Assume that an integer T1 > L, an integer T2 > T1 + 2 and a program {xi}
T2

i=T1

satisfies (5.6) and (5.7). By (5.6), (5.7) and the choice of δ, there exists a program
{x̃i}

T2+1
i=T1−1 which satisfies (5.10), (5.11). By (5.10), (5.11), the choice of δ1 (see (5.8),

(5.9)),
T2+1∑

i=T1−1

ρ(x̃i, x
f
i ) ≤ ǫ.

Together with (5.10) this implies that

T2−1∑

i=T1+1

ρ(xi, x
f
i ) ≤ ǫ.

Lemma 5.4 is proved.
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6 Proof of Theorem 3.1

Assume that (STP) holds. Then (TP) holds and in view of Theorem 2.1, (ATP)
and the the property (P) hold. Therefore

lim
t→∞

ρ(xt, x
f
t ) = 0 (6.1)

for each integer S ≥ 0 and each ({fi}
∞

i=0)-good program {xi}
∞

i=S .
Let us show that (SATP) holds. Assume that S ≥ 0 is an integer and a program

{xi}
∞

i=S is ({fi}
∞

i=0)-good. Then (6.1) is true. By Lemma 5.1, there is c > 0 such that
for all integers T1 ≥ S, T2 > T1,

T2−1∑

i=T1

fi(xi, xi+1) ≤ U({fi}
∞

i=0, T1, T2) + c. (6.2)

By (STP), there exist δ > 0 and a natural number L0 such that for each pair of
integers T1 ≥ 0, T2 ≥ T1 + 2L0 and each program {zt}

T2

t=T1
which satisfies

T2−1∑

i=T1

fi(zi, zi+1) ≤ min{U({fi}
∞

i=0, T1, T2, zT1
, zT2

) + δ, U({fi}
∞

i=0, T1, T2) + c} (6.3)

we have
T2−L0∑

i=T1+L0

ρ(zi, x
f
i ) ≤ 1. (6.4)

By Lemma 5.1, there exists a natural number L1 > S such that for each integer
T1 ≥ L1 and each integer T2 > T1,

T2−1∑

i=T1

fi(xi, xi+1) ≤ U({fi}
∞

i=0, T1, T2, xT1
, xT2

) + δ. (6.5)

Assume that integers
T1 ≥ L1, T2 ≥ T1 + 2L0. (6.6)

Then (6.2) and (6.5) hold. In view of (6.2), (6.5), (6.6) and the choice of δ, L0,

T2−L0∑

i=T1+L0

ρ(xi, x
f
i ) ≤ 1. (6.7)

Since (6.7) holds for any pair of integers T1, T2 satisfying (6.6) we conclude that

∞∑

i=L1+L0

ρ(xi, x
f
i ) ≤ 1.

This implies that
∑

∞

i=0 ρ(xi, x
f
i ) < ∞ and that (SATP) holds. Thus we have shown

that (STP) implies (SATP) and the property (P).
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Assume that (SATP) and the property (P) hold.

Let ǫ > 0 and M > 0. By Lemma 5.4 there exist δ0 > 0 and a natural number
L0 such that for each pair of integers S1, S2 satisfying S1 > L0, S2 > S1 +2 and each
program {xi}

S2

i=S1
satisfying

ρ(xS1+1, x
f
S1+1) ≤ δ0, ρ(xS2−1, x

f
S2−1) ≤ δ0,

S2−2∑

i=S1+1

fi(xi, xi+1) ≤ U({fi}
∞

i=0, S1 + 1, S2 − 1, xS1+1, xS2−1) + δ0 (6.8)

we have
S2−2∑

i=S1+1

ρ(xi, x
f
i ) ≤ ǫ. (6.9)

By the property (P) there exist

δ ∈ (0, δ0) (6.10)

and a natural number L1 such that for each integer T ≥ 0 and each program {xt}
T+L1

t=T

which satisfies
T+L1−1∑

i=T

fi(xi, xi+1)

≤ min{U({fi}
∞

i=0, T, T+L1, xT , xT+L1
)+δ, U({fi}

∞

i=0, T, T+L1)+3cf+M}, (6.11)

there is an integer j such that

j ∈ {T, . . . , T + L1}, ρ(xj , x
f
j ) ≤ δ0. (6.12)

Choose a natural number

L ≥ 4L0 + 4L1. (6.13)

Assume that a pair of integers T1 ≥ 0, T2 ≥ T1 + 2L and that a program {xt}
T2

t=T1

satisfies

T2−1∑

i=T1

fi(xi, xi+1) ≤ min{U({fi}
∞

i=0, T1, T2, xT1
, xT2

) + δ, U({fi}
∞

i=0, T1, T2) +M}.

(6.14)
In order to complete the proof of the theorem it is sufficient to show that

T2−L∑

i=T1+L

ρ(xi, x
f
i ) ≤ ǫ. (6.15)
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Let integers S1, S2 satisfy T1 < S1 < S2 < T2. By (6.14) and (C2),

S2−1∑

i=S1

fi(xi, xi+1) =

T2−1∑

i=T1

fi(xi, xi+1)−

S1−1∑

i=T1

fi(xi, xi+1)−

T2−1∑

i=S2

fi(xi, xi+1)

≤ U({fi}
∞

i=0, T1, T2) +M − U({fi}
∞

i=0, T1, S1)− U({fi}
∞

i=0, S2, T2)

≤

T2−1∑

i=T1

fi(x
f
i , x

f
i+1) +M −

S1−1∑

i=T1

fi(x
f
i , x

f
i+1) + cf −

T2−1∑

i=S2

fi(x
f
i , x

f
i+1) + cf

=

S2−1∑

i=S1

fi(x
f
i , x

f
i+1) + 2cf +M ≤ U({fi}

∞

i=0, S1, S2) + 3cf +M.

Thus
S2−1∑

i=S1

fi(xi, xi+1) ≤ U({fi}
∞

i=0, S1, S2) + 3cf +M (6.16)

for all pairs of integers S1, S2 satisfying T1 < S1 < S2 < T2.
By (6.13), (6.14), (6.16), the choice of δ (see (6.10)-(6.12)) there exist integers

τ1 ∈ {L1 + T1 + 2L0, . . . , T1 + 2L0 + 2L1}, τ2 ∈ {T2 − 2L1, . . . , T2 − L1} (6.17)

such that
ρ(xτ i

, xf
τ i
) ≤ δ0, i = 1, 2. (6.18)

By (6.13) and (6.17),
τ2 − τ1 ≥ 2L0 + L. (6.19)

By (6.14) and (6.17),

τ2−1∑

i=τ1

fi(xi, xi+1) ≤ U({fi}
∞

i=0, τ1, τ2, xτ1
, xτ2

) + δ. (6.20)

By (6.19), (6.20), (6.17), (6.18), (6.10) and the choice of L0 and δ0 (see (6.7)-(6.9)),

τ2∑

i=τ1

ρ(xi, x
f
i ) ≤ ǫ.

Together with (6.13) and (6.17) this implies (6.15). Theorem 3.1 is proved.

7 Proof of Theorem 3.2

Set
D0 = sup{ρ(z1, z2) : z1, z2 ∈ X}. (7.1)

We suppose that the sum over empty set is zero. By (SATP), the property (P) and
Theorem 3.1, {fi}

∞

i=0 possesses (STP). By (STP) there exist δ ∈ (0, 1) and a natural
number L0 such that the following property holds:
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(a) for each pair of integers τ1 ≥ 0, τ2 ≥ τ1 + 2L0 and each program {xt}
τ2

t=τ1

which satisfies

τ2−1∑

t=τ1

ft(xt, xt+1) ≤ min{U({fi}
∞

i=0, τ1, τ2, xτ1
, xτ2

)+δ, U({fi}
∞

i=0, τ1, τ2)+2M+4cf}

the inequality
τ2−L0∑

i=τ1+L0

ρ(xi, x
f
i ) ≤ 1

holds.
Choose a natural number

L > (4L0 + 3)(δ−1M + 1) (7.2)

and

M0 > 1 + (δ−1M + 2)(1 + 2D0(2L0 + 1)). (7.3)

Assume that integers T1 ≥ 0, T2 > T1 + L and that a program {xt}
T2

t=T1
satisfies

T2−1∑

t=T1

ft(xt, xt+1) ≤ U({fi}
∞

i=0, T1, T2) +M. (7.4)

Set
t0 = T1. (7.5)

By induction we define a finite strictly increasing sequence of integers {ti}
q
i=0 ⊂

[T1, T2] where q is a natural number such that:

tq = T2; (7.6)

(b) for each integer i satisfying 0 ≤ i < q − 1,

ti+1−1∑

t=ti

ft(xt, xt+1) > U({fi}
∞

i=0, ti, ti+1, xti , xti+1
) + δ; (7.7)

(c) if an integer i satisfies 0 ≤ i ≤ q − 1 and (7.7), then

ti+1 > ti + 1 and

ti+1−2∑

t=ti

ft(xt, xt+1) ≤ U({fj}
∞

j=0, ti, ti+1 − 1, xti , xti+1−1) + δ. (7.8)

Assume that an integer p ≥ 0 and we have already defined a strictly increasing
sequence of integers {ti}

p
i=0 ⊂ [T1, T2] such that tp < T2 and that for each integer i

satisfying 0 ≤ i < p, (7.7) and (7.8) hold. (Note that for p = 0 our assumption holds.)
We define tp+1.
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There are two cases:

T2−1∑

t=tp

ft(xt, xt+1) ≤ U({fi}
∞

i=0, tp, T2, xtp , xT2
) + δ; (7.9)

T2−1∑

t=tp

ft(xt, xt+1) > U({fi}
∞

i=0, tp, T2, xtp , xT2
) + δ. (7.10)

Assume that (7.9) holds. Then we set q = p+ 1, tq = T2, the construction of the
sequence is completed and the properties (b), (c) hold.

Assume that (7.10) holds. Set

tp+1 = min{S ∈ {tp + 1, . . . , T2} :

S−1∑

t=tp

ft(xt, xt+1) > U({fi}
∞

i=0, tp, S, xtp , xS) + δ}. (7.11)

Clearly, tp+1 is well-defined. If tp+1 = T2, then we set q = p + 1, the construction is
completed and it is not difficult to see that (b) and (c) hold.

Assume that tp+1 < T2. Then it is easy to see that the assumption made for p is
also true for p+ 1.

Clearly our construction is completed after a final number of steps and let tq = T2

be its last element, where q is a natural number. It follows from the construction that
the properties (b) and (c) hold.

By (7.4) and the property (b)

M ≥

T2−1∑

t=T1

ft(xt, xt+1)− U({fi}
∞

i=0, T1, T2)

≥

T2−1∑

t=T1

ft(xt, xt+1)− U({fi}
∞

i=0, T1, T2, xT1
, xT2

)

≥
∑

{

ti+1−1∑

t=ti

ft(xt, xt+1)− U({fj}
∞

j=0, ti, ti+1, xti , xti+1
) :

iis an integer, 0 ≤ i < q − 1} ≥ δ(q − 1),

q ≤ δ−1M + 1. (7.12)

Set

A = {i ∈ {0, . . . , q − 1} : ti+1 − ti > 2L0}. (7.13)

Let

j ∈ A. (7.14)
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By (b), (c) and (7.13) and (7.14),

tj+1−2∑

t=tj

ft(xt, xt+1) ≤ U({fi}
∞

i=0, tj , tj+1 − 1, xtj , xtj+1−1) + δ. (7.15)

By (7.4), (7.13), (7.14) and (C2),

tj+1−2∑

t=tj

ft(xt, xt+1) =

T2−1∑

t=T1

ft(xt, xt+1)

−
∑

{ft(xt, xt+1) : t is an integer, T1 ≤ t < tj} −

T2−1∑

t=tj+1−1

ft(xt, xt+1)

≤

T2−1∑

t=T1

ft(x
f
t , x

f
t+1) +M + cf

−
∑

{ft(x
f
t , x

f
t+1) : t is an integer, T1 ≤ t < tj}+ cf −

T2−1∑

t=tj+1−1

ft(x
f
t , x

f
t+1)

=

tj+1−2∑

t=tj

ft(x
f
t , x

f
t+1) +M + 2cf ≤ U({fi}

∞

i=0, tj , tj+1 − 1) +M + 3cf . (7.16)

By (7.13), (7.14), (7.15), (7.16) and property (a),

tj+1−1−L0∑

t=tj+L0

ρ(xt, x
f
t ) ≤ 1 (7.17)

for all j ∈ A. By (7.5), (7.6), (7.13), (7.1), (7.17), (7.12) and (7.3),

T∑

t=0

ρ(xt, x
f
t ) ≤ D0 +

q−1∑

j=0

(

tj+1−1∑

t=tj

ρ(xt, x
f
t ))

= D0 +
∑

j∈A

(

tj+1−1∑

t=tj

ρ(xt, x
f
t ))

+
∑

{

tj+1−1∑

t=tj

ρ(xt, x
f
t ) : j ∈ {0, . . . , q − 1} \A}

≤ D0 +
∑

j∈A

(L0D0 + 1 +D0(L0 + 1)) + qD0(2L0 + 1)

≤ D0 + q(1 + 2D0(2L0 + 1)) ≤ (δ−1M + 2)(1 + 2D0(2L0 + 1)) < M0.

Theorem 3.2 is proved. *
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Abstract: Human T-cell Lymphotropic Virus I (HTLV-I) infection
of CD4+ T-Cells is one of the causes of health problems and continues
to be one of the significant health challenges. In this article, a multi-step
differential transform method is implemented to give approximate solu-
tions of fractional modle of HTLV-I infection of CD4+ T-cells. Numerical
results are compared to those obtained by the fourth-order Runge-Kutta
method in the case of intger-order derivatives. The suggested method is
efficient as the Runge-Kutta method. Some plots are presented to show
the reliability and simplicity of the method.
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1 Introduction

Human T-cell lymphotropic virus Type I (HTLV-I) infection is associated with mem-
ber of the exogeneous human retroviruses that have a tropism for T lymphocytes.
HTLV-I belongs to the delta-type retroviruses, which also include bovine leukemia
virus; human T-cell leukemia virus Type II (HTLV-II), and simian T-cell leukemia
virus. Human T-cell lymphotropic virus (HTLV) is a infection with HTLV-I is now a
global epidemic, affecting 10 million to 20 million people. This virus has been linked
to life-threatening, incurable diseases:

a) Adult T-cell leukemia (ATL).
b) HTLV-I-associated myelopathy/tropical spastic paraparesis.
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These syndromes are important causes of mortality and morbidity in the areas
where HTLV-I is endemic, mainly in the tropics and subtropics. Mathematical models
have proven valuable in understanding the dynamics of medical systems. Dynamic of
HTLV-I infection of CD4+ T-cells is examined by [1, 2, 3, 4, 5, 6]. The components of
the basic four-component model are the concentration of healthy CD4+ T-cells at time
t, the concentration of latently infected CD4+ T-cells, the concentration of actively
infected CD4+ T-cells and the concentration of leukemic cells at time t respectively,
they are denoted by T (t), I(t), V (t) and L(t).These quantities satisfy:

dT (t)

dt
= λ− µT T (t)− κ V (t)T (t),

dI(t)

dt
= κ1 V (t)T (t)− (µL + ω)I(t),

dV (t)

dt
= ωI(t)− (µA + ρ)V (t), (1)

dL(t)

dt
= ρV (t) + βL(t)(1 −

L(t)

Lmax
)− µM L(t).

With the initial conditions:

T (0) = T0, I(0) = I0, V (0) = V0, L(0) = L0. (2)

The parameters λ, µT , κ and κ1 are the source of CD4+T-cells from precursors, the
natural death rate of CD4+ T-cells, the rate at which uninfected cells are contacted by
actively infected cells, the rate of infection of T-cells with virus from actively infected
cells, respectively. µL, µA and µM are blanket death terms for latently infected,
actively infected and leukemic cells. ω and ρ represent the rates at which latently in-
fected and actively infected cells become actively infected and leukemic, respectively.
The rate β determines the speed at which the saturation level for leukemia cells is
reached. Tmax is the maximal value that adult T-cell leukemia can reach. All parame-
ters are assumed to be positive constants. In recent years, there has been a great deal
of interest in fractional diffusion equations. These equations arise in viscous flows
[7], biological models [8], evolution equations [9], reaction equations [10] and so on.
Fractional derivatives provide an excellent instrument for the description of memory
and hereditary properties of various materials and processes. Half-order derivatives
and integrals prove to be more useful for the formulation of certain electrochemical
problems than the classical models [11]. A great deal of effort has been expended over
the last 10 years or so in attempting to find robust and stable numerical and analytical
methods for solving fractional differential equations of physical interest. Our moti-
vation for this work is to obtain the approximate solution of the fractional modle of
HTLV-I infection of CD4+ T-Cells using the multi-step differential transform method
(MSDTM). This method is only a simple modification of the differential transform
method (DTM) [12, 13, 14, 15], in which it is treated as an algorithm in a sequence
of small intervals (i.e. time step) for finding accurate approximate solutions to the
corresponding systems. The approximate solutions obtained by using DTM are valid
only for a short time. While the ones obtained by using the MSDTM [16] are more
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valid and accurate during a long time, and are in good agreement with the RK4-5
numerical solution when the order of the derivative (α = 1). The rest of the paper
is organized as follows. Section 2 gives an idea about the fractional calculus theory.
In Section 3, we describe the MSDTM of the fractional order model of HTLV-I infec-
tion of CD4+ T-Cells. Numerical simulations are presented graphically in Section 4.
Finally, the conclusions are given in Section 5.

2 Fractional calculus

Fractional calculus has been extensively applied in different fields. Many mathemati-
cians and applied researchers have tried to model real processes using the fractional
calculus. Jesus, Machado and Cunha [17] analyzed the fractional order dynamics in
botanical electrical impedances. In biology, it has been deduced that the membranes
of cells of biological organism have fractional order electrical conductance [18] and
then are classified in groups of non-integer order models. Fractional order ordinary
differential equations are naturally related to systems with memory which exists in
most biological systems. Also, they are closely related to fractals, which are abundant
in biological systems. We first give the definition of fractional-order integration and
fractional-order differentiation [19, 20, 21]. There are several approaches to the gen-
eralization of the notion of differentiation to fractional orders e.g. Riemann-Liouville,
Caputo and generalized functions approach. For the concept of fractional derivative,
we will adopt Caputo’s definition, which is a modification of the Riemann-Liouville
definition and has the advantage of dealing properly with initial value problems.

Definition 2.1 A real function f(x), x > 0, is said to be in the space Cα, α ∈ R
if it can be written as f(x) = xpf1(x), for some p > α where f1(x) is continous in

[0,∞), and it is said to be in the space Cm
α if f (m) ∈ Cα, m ∈ N.

Definition 2.2 The fractional integral of order α > 0 of a function f : R+ −→ R is

given by

Jαf(x) =
1

Γ(α)

x
∫

0

(x− t)α−1f(t)dt, α > 0, x > 0,

J0f(x) =f(x). (3)

Here we only need the following properties: For f ∈ Cα, α, β > 0, c ∈ R and
γ > −1, we have

(JαJβ) f(x) = Jα+β f(x) = (JβJα) f(x),

Jαxγ =
xγ+α

Γ(α)
Bτ (α, γ + 1), (4)
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where Bτ (α, γ + 1) is the incomplete beta function which is defined as

Bτ (α, γ + 1) =
τ
∫

0

tα−1(1 − t)γdt, (5)

The Riemann–Liouville derivative has certain disadvantages when trying to model real
world phenomena with fractional differential equations. Therefore, we shall introduce
a modified fractional differential operator Dα proposed by Caputo in his work on the
theory of viscoelasticity.

Definition 2.3 The Caputo fractional derivative of f(x) of order α > 0 is defined as

Dαf(x) = (Jm−α)f (m)(x) =
1

Γ(m− α)

x
∫

0

f (m)(t)

(x− t)α+1−m
dt, (6)

for m− 1 < α ≤ m, m ∈ N, x ≥ 0, f(x) ∈ Cm
−1.The Caputo fractional derivative

was investigated by many authors, for m − 1 < α ≤ m, f(x) ∈ Cm
α and α ≥ −1, we

have

(JαDα)f(x) = JmDmf(x) = f(x)−

m−1
∑

k=0

f (k)(0)
xk

k!
. (7)

For more mathematical properties of fractional derivatives and integrals one can
back to the mentioned references.

3 MSDTM Algorithm

This paper attempts to find numerical solution for a general class of fractional order
model of HTLV-I infection of CD4+ T-cells. Therefor, the paper summarizes specific
techniques for MSDTM, as well as the applications of Caputo fractional calculus. The
fractional order differential equations (FOD) are used becuace it are naturally related
to systems with memory since the definition of fractional derivative involves an in-
tegration which is non local operator (as it is defined on an interval), so fractional
derivative is a non local operator. Also, they are closely related to fractals which are
abundant in biological systems. It has been shown that the approximated solutions
obtained using DTM are not valid for large t for some systems [12, 13, 14, 15]. There-
fore, we use the MSDTM to solve the following fractional order model of HTLV-I
infection of CD4+ T-Cells of order 0 < α ≤ 1 :

DαT (t) = λ− µT T (t)− κ V (t)T (t),

DαI(t) = κ1 V (t)T (t)− (µL + ω)I(t),

DαV (t) = ωI(t)− (µA + ρ)V (t), (8)

DαL(t) = ρV (t) + βL(t)(1−
L(t)

Lmax
)− µM L(t).
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With the initial conditions:

T (0) = 1000, I(0) = 250, V (0) = 1.5, L(0) = 0. (9)

The method is a simple modification of the DTM, in which it is treated
as an algorithm in a sequence of small intervals (i.e. time step) for finding accurate
approximate solutions to the corresponding systems (8). This MSDTM offers accurate
solutions over a longer time frame (more stable) compared to the standard DTM.
Using the theorems given in [12] and taking the differential transform for the system
(8) with respect to time t gives

T
∗(k + 1) =

Γ(αk + 1)

Γ(α(k + 1) + 1)

[

λ δ(k)− µ
T
T

∗(k)− κ

k
∑

l=0

V
∗(l)T ∗(k − l)

]

,

I
∗(k + 1) =

Γ(αk + 1)

Γ(α(k + 1) + 1)

[

κ1

k
∑

l=0

V
∗(l)T ∗(k − l)− (µ

L
+ ω)I∗(k)

]

,

V
∗(k + 1) =

Γ(αk + 1)

Γ(α(k + 1) + 1)
[ωI∗(k)− (µ

A
+ ρ)V ∗(k)] , (10)

L
∗(k + 1) =

Γ(αk + 1)

Γ(α(k + 1) + 1)

[

ρV
∗(k) + βL

∗(k)−
β

Lmax

k
∑

l=0

L
∗(l)L∗(k − l)− µ

M
L

∗(k)

]

.

where T ∗(k), I∗(k), V ∗(k) and L∗(k) are the differential transformations of
T (t), I(t), V (t) and L(t), respectively. The differential transform of the initial con-
ditions are given by T ∗(0) = 1000, I∗(0) = 250, V ∗(0) = 1.5 and L∗(0) = 0. In
view of the differential inverse transform, the differential transform series solution for
System (8) can be obtained as

T (t) =
N
∑

n=0

T ∗(n) tαn, I(t) =
N
∑

n=0

I∗(n) tαn,

V (t) =

N
∑

n=0

V ∗(n) tαn, L(t) =

N
∑

n=0

L∗(n) tαn. (11)

Now, according to the MSDTM, the series solution for the system (8) is suggested to
be

T (t) =























































K
∑

n=0

T ∗

1 (n) t
αn, t ∈ [0, t1],

K
∑

n=0

T ∗

2 (n) (t− t1)
αn, t ∈ [t1, t2],

...
K
∑

n=0

T ∗

m(n) (t− tm−1)
αn, t ∈ [tm−1, tm],

(12)
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I(t) =























































K
∑

n=0

I∗1 (n) t
αn, t ∈ [0, t1],

K
∑

n=0

I∗2 (n) (t− t1)
αn, t ∈ [t1, t2],

...
K
∑

n=0

I∗m(n) (t− tm−1)
αn, t ∈ [tm−1, tm],

(13)

V (t) =























































K
∑

n=0

V ∗

1 (n) t
αn, t ∈ [0, t1],

K
∑

n=0

V ∗

2 (n) (t− t1)
αn, t ∈ [t1, t2],

...
K
∑

n=0

V ∗

m(n) (t− tm−1)
αn, t ∈ [tm−1, tm],

(14)

L(t) =























































K
∑

n=0

L∗

1(n) t
αn, t ∈ [0, t1],

K
∑

n=0

L∗

2(n) (t− t1)
αn, t ∈ [t1, t2],

...
K
∑

n=0

L∗

m(n) (t− tm−1)
αn, t ∈ [tm−1, tm],

(15)

where T ∗

i (n), I∗i (n), V ∗

i (n) and L∗

i (n) for i = 1, 2, ...,m satisfy the following recur-
rence relations

T
∗

i (k + 1) =
Γ(αk + 1)

Γ(α(k + 1) + 1)

[

λ δ(k)− µT T
∗

i (k)− κ

k
∑

l=0

V
∗

i (l)T ∗

i (k − l)

]

,

I
∗

i (k + 1) =
Γ(αk + 1)

Γ(α(k + 1) + 1)

[

κ1

k
∑

l=0

V
∗

i (l)T ∗

i (k − l)− (µL + ω)I∗i (k)

]

,

V
∗

i (k + 1) =
Γ(αk + 1)

Γ(α(k + 1) + 1)
[ωI∗i (k)− (µA + ρ)V ∗

i (k)] , (16)

L
∗

i (k + 1) =
Γ(αk + 1)

Γ(α(k + 1) + 1)

[

ρV
∗

i (k) + βL
∗

i (k)−
β

Lmax

k
∑

l=0

L
∗

i (l)L
∗

i (k − l)− µML
∗

i (k)

]

,

such that T ∗

i (0) = T ∗

i−1(0), I∗i (0) = I∗i−1(0), V ∗

i (0) = V ∗

i−1(0) and L∗

i (0) = L∗

i−1(0).
Finally, if we start with T ∗

o (0) = 1000, I∗0 (0) = 250, V ∗

0 (0) = 1.5 and L∗

0(0) = 0,
using the recurrence relation given in System (16) then we can obtain the multi-step
solution given in Systems (12)-(15).



Application of the multi-step differential transform... 177

Figure 1: Plots of the components of lymphotropic virus I (HTLV) infection of CD4+

T-cells model. Solid line: MSDTM solution, Dotted line: Runge-Kutta method solu-
tion

4 Numerical results

In this work, we propose the MSDTM, a reliable modification of the DTM that
improves the convergence of the series solution. The method provides immediate
and visible symbolic terms of analytic solutions, as well as numerical approximate
solutions to both linear and nonlinear differential equations. Figure 1 shows the
approximate solutions obtained using the MSDTM and the fourth-order Runge–Kutta
method of the concentration of healthy CD4+ T-cells at time t, the concentration of
latently infected CD4+ T-cells, the concentration of actively infected CD4+ T-cells
and the concentration of leukemic cells when α = 1 and the step size ∆t = 0.1.
We assumed that all parameters are positive in mm3/day as follows: λ = 6, µT =
0.6, µL = 0.006, µA = 0.05, µM = 0.0005, ω = 0.0004, ρ = 0.00004, β = 0.0003,
Tmax = 2200 and κ = κ1 = 0.1. It can be seen that the results obtained based on
MSDTM match the results of the Runge–Kutta method very well, which implies that
the MSDTM can predict the behaviour of these variables accurately for the region
under consideration. Next, interset to show how the concentrations of healthy CD4+

T-cells, latently infected CD4+ T-cells, actively infected CD4+ T-cells and leukemic
cells depend upon the magnitude of the order of fractional derivatives. We fix the
parameters and perform a numerical simulation for different values of α. Simulation
results are presented in Figure 2. It it is clear that these solutions continuously depend
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on the fractional derivatives.

Figure 2: Plots of the components of lymphotropic virus I (HTLV) infection of CD4+

T-cells model using MSDTM. Solid line: (α = 1), Dotted line: (α = 0.99), Dashed
dotted line: (α = 0.95), Dashed line: (α = 0.9).

5 Conclusions

In this paper we employed the multi-step differential transform method in order to
solve the fractional model of human T-cell lymphotropic virus I (HTLV-I) infec-
tion of CD4+ T-cells. Comparisons of the results obtained by using the MSDTM
with that obtained by the classical Runge–Kutta method in the integer case reveal
that the approximate solutions obtained by DTM are only valid for a small time,
while the ones obtained by MSDTM are highly accurate and valid for a long time
to nonlinear systems of differential equations. The reliability of the method and
the reduction in the size of the computational domain give this method a wider
applicability. It is of interest to note here that time fractional derivatives change
the solutions, also we usually get in standard System (1). The concentration of
healthy CD4+ T-cells T (t), the concentration of latently infected CD4+ T-cells I(T ),
the concentration of actively infected CD4+ T-cells V (t) and the concentration of
leukemic cells L(t) have been obtained, therefore when α −→ 1 the solution of the
fractional model (8) DαT (t), DαI(t), DαV (t), DαL(t) reduce to the standard solu-
tion T (t), I(t), V (t), L(t) (see fig. 2). The recent appearance of nonlinear fractional
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differential equations as models in science and engineering makes it necessary to in-
vestigate the method of solutions for such equations. Consequently, the proposed
method for the considered model verifes that it is a useful tool for these kind of mod-
els. The obtained results demonstrate the reliability of the algorithm and its wider
applicability to fractional nonlinear evolution equations.
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