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Abstract: Human T-cell Lymphotropic Virus I (HTLV-I) infection
of CD4+ T-Cells is one of the causes of health problems and continues
to be one of the significant health challenges. In this article, a multi-step
differential transform method is implemented to give approximate solu-
tions of fractional modle of HTLV-I infection of CD4+ T-cells. Numerical
results are compared to those obtained by the fourth-order Runge-Kutta
method in the case of intger-order derivatives. The suggested method is
efficient as the Runge-Kutta method. Some plots are presented to show
the reliability and simplicity of the method.
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1 Introduction

Human T-cell lymphotropic virus Type I (HTLV-I) infection is associated with mem-
ber of the exogeneous human retroviruses that have a tropism for T lymphocytes.
HTLV-I belongs to the delta-type retroviruses, which also include bovine leukemia
virus; human T-cell leukemia virus Type II (HTLV-II), and simian T-cell leukemia
virus. Human T-cell lymphotropic virus (HTLV) is a infection with HTLV-I is now a
global epidemic, affecting 10 million to 20 million people. This virus has been linked
to life-threatening, incurable diseases:

a) Adult T-cell leukemia (ATL).
b) HTLV-I-associated myelopathy/tropical spastic paraparesis.
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These syndromes are important causes of mortality and morbidity in the areas
where HTLV-I is endemic, mainly in the tropics and subtropics. Mathematical models
have proven valuable in understanding the dynamics of medical systems. Dynamic of
HTLV-I infection of CD4+ T-cells is examined by [1, 2, 3, 4, 5, 6]. The components of
the basic four-component model are the concentration of healthy CD4+ T-cells at time
t, the concentration of latently infected CD4+ T-cells, the concentration of actively
infected CD4+ T-cells and the concentration of leukemic cells at time t respectively,
they are denoted by T (t), I(t), V (t) and L(t).These quantities satisfy:

dT (t)

dt
= λ− µT T (t)− κ V (t)T (t),

dI(t)

dt
= κ1 V (t)T (t)− (µL + ω)I(t),

dV (t)

dt
= ωI(t)− (µA + ρ)V (t), (1)

dL(t)

dt
= ρV (t) + βL(t)(1 −

L(t)

Lmax
)− µM L(t).

With the initial conditions:

T (0) = T0, I(0) = I0, V (0) = V0, L(0) = L0. (2)

The parameters λ, µT , κ and κ1 are the source of CD4+T-cells from precursors, the
natural death rate of CD4+ T-cells, the rate at which uninfected cells are contacted by
actively infected cells, the rate of infection of T-cells with virus from actively infected
cells, respectively. µL, µA and µM are blanket death terms for latently infected,
actively infected and leukemic cells. ω and ρ represent the rates at which latently in-
fected and actively infected cells become actively infected and leukemic, respectively.
The rate β determines the speed at which the saturation level for leukemia cells is
reached. Tmax is the maximal value that adult T-cell leukemia can reach. All parame-
ters are assumed to be positive constants. In recent years, there has been a great deal
of interest in fractional diffusion equations. These equations arise in viscous flows
[7], biological models [8], evolution equations [9], reaction equations [10] and so on.
Fractional derivatives provide an excellent instrument for the description of memory
and hereditary properties of various materials and processes. Half-order derivatives
and integrals prove to be more useful for the formulation of certain electrochemical
problems than the classical models [11]. A great deal of effort has been expended over
the last 10 years or so in attempting to find robust and stable numerical and analytical
methods for solving fractional differential equations of physical interest. Our moti-
vation for this work is to obtain the approximate solution of the fractional modle of
HTLV-I infection of CD4+ T-Cells using the multi-step differential transform method
(MSDTM). This method is only a simple modification of the differential transform
method (DTM) [12, 13, 14, 15], in which it is treated as an algorithm in a sequence
of small intervals (i.e. time step) for finding accurate approximate solutions to the
corresponding systems. The approximate solutions obtained by using DTM are valid
only for a short time. While the ones obtained by using the MSDTM [16] are more
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valid and accurate during a long time, and are in good agreement with the RK4-5
numerical solution when the order of the derivative (α = 1). The rest of the paper
is organized as follows. Section 2 gives an idea about the fractional calculus theory.
In Section 3, we describe the MSDTM of the fractional order model of HTLV-I infec-
tion of CD4+ T-Cells. Numerical simulations are presented graphically in Section 4.
Finally, the conclusions are given in Section 5.

2 Fractional calculus

Fractional calculus has been extensively applied in different fields. Many mathemati-
cians and applied researchers have tried to model real processes using the fractional
calculus. Jesus, Machado and Cunha [17] analyzed the fractional order dynamics in
botanical electrical impedances. In biology, it has been deduced that the membranes
of cells of biological organism have fractional order electrical conductance [18] and
then are classified in groups of non-integer order models. Fractional order ordinary
differential equations are naturally related to systems with memory which exists in
most biological systems. Also, they are closely related to fractals, which are abundant
in biological systems. We first give the definition of fractional-order integration and
fractional-order differentiation [19, 20, 21]. There are several approaches to the gen-
eralization of the notion of differentiation to fractional orders e.g. Riemann-Liouville,
Caputo and generalized functions approach. For the concept of fractional derivative,
we will adopt Caputo’s definition, which is a modification of the Riemann-Liouville
definition and has the advantage of dealing properly with initial value problems.

Definition 2.1 A real function f(x), x > 0, is said to be in the space Cα, α ∈ R
if it can be written as f(x) = xpf1(x), for some p > α where f1(x) is continous in

[0,∞), and it is said to be in the space Cm
α if f (m) ∈ Cα, m ∈ N.

Definition 2.2 The fractional integral of order α > 0 of a function f : R+ −→ R is

given by

Jαf(x) =
1

Γ(α)

x
∫

0

(x− t)α−1f(t)dt, α > 0, x > 0,

J0f(x) =f(x). (3)

Here we only need the following properties: For f ∈ Cα, α, β > 0, c ∈ R and
γ > −1, we have

(JαJβ) f(x) = Jα+β f(x) = (JβJα) f(x),

Jαxγ =
xγ+α

Γ(α)
Bτ (α, γ + 1), (4)
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where Bτ (α, γ + 1) is the incomplete beta function which is defined as

Bτ (α, γ + 1) =
τ
∫

0

tα−1(1 − t)γdt, (5)

The Riemann–Liouville derivative has certain disadvantages when trying to model real
world phenomena with fractional differential equations. Therefore, we shall introduce
a modified fractional differential operator Dα proposed by Caputo in his work on the
theory of viscoelasticity.

Definition 2.3 The Caputo fractional derivative of f(x) of order α > 0 is defined as

Dαf(x) = (Jm−α)f (m)(x) =
1

Γ(m− α)

x
∫

0

f (m)(t)

(x− t)α+1−m
dt, (6)

for m− 1 < α ≤ m, m ∈ N, x ≥ 0, f(x) ∈ Cm
−1.The Caputo fractional derivative

was investigated by many authors, for m − 1 < α ≤ m, f(x) ∈ Cm
α and α ≥ −1, we

have

(JαDα)f(x) = JmDmf(x) = f(x)−

m−1
∑

k=0

f (k)(0)
xk

k!
. (7)

For more mathematical properties of fractional derivatives and integrals one can
back to the mentioned references.

3 MSDTM Algorithm

This paper attempts to find numerical solution for a general class of fractional order
model of HTLV-I infection of CD4+ T-cells. Therefor, the paper summarizes specific
techniques for MSDTM, as well as the applications of Caputo fractional calculus. The
fractional order differential equations (FOD) are used becuace it are naturally related
to systems with memory since the definition of fractional derivative involves an in-
tegration which is non local operator (as it is defined on an interval), so fractional
derivative is a non local operator. Also, they are closely related to fractals which are
abundant in biological systems. It has been shown that the approximated solutions
obtained using DTM are not valid for large t for some systems [12, 13, 14, 15]. There-
fore, we use the MSDTM to solve the following fractional order model of HTLV-I
infection of CD4+ T-Cells of order 0 < α ≤ 1 :

DαT (t) = λ− µT T (t)− κ V (t)T (t),

DαI(t) = κ1 V (t)T (t)− (µL + ω)I(t),

DαV (t) = ωI(t)− (µA + ρ)V (t), (8)

DαL(t) = ρV (t) + βL(t)(1−
L(t)

Lmax
)− µM L(t).
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With the initial conditions:

T (0) = 1000, I(0) = 250, V (0) = 1.5, L(0) = 0. (9)

The method is a simple modification of the DTM, in which it is treated
as an algorithm in a sequence of small intervals (i.e. time step) for finding accurate
approximate solutions to the corresponding systems (8). This MSDTM offers accurate
solutions over a longer time frame (more stable) compared to the standard DTM.
Using the theorems given in [12] and taking the differential transform for the system
(8) with respect to time t gives

T
∗(k + 1) =

Γ(αk + 1)

Γ(α(k + 1) + 1)

[

λ δ(k)− µ
T
T

∗(k)− κ

k
∑

l=0

V
∗(l)T ∗(k − l)

]

,

I
∗(k + 1) =

Γ(αk + 1)

Γ(α(k + 1) + 1)

[

κ1

k
∑

l=0

V
∗(l)T ∗(k − l)− (µ

L
+ ω)I∗(k)

]

,

V
∗(k + 1) =

Γ(αk + 1)

Γ(α(k + 1) + 1)
[ωI∗(k)− (µ

A
+ ρ)V ∗(k)] , (10)

L
∗(k + 1) =

Γ(αk + 1)

Γ(α(k + 1) + 1)

[

ρV
∗(k) + βL

∗(k)−
β

Lmax

k
∑

l=0

L
∗(l)L∗(k − l)− µ

M
L

∗(k)

]

.

where T ∗(k), I∗(k), V ∗(k) and L∗(k) are the differential transformations of
T (t), I(t), V (t) and L(t), respectively. The differential transform of the initial con-
ditions are given by T ∗(0) = 1000, I∗(0) = 250, V ∗(0) = 1.5 and L∗(0) = 0. In
view of the differential inverse transform, the differential transform series solution for
System (8) can be obtained as

T (t) =
N
∑

n=0

T ∗(n) tαn, I(t) =
N
∑

n=0

I∗(n) tαn,

V (t) =

N
∑

n=0

V ∗(n) tαn, L(t) =

N
∑

n=0

L∗(n) tαn. (11)

Now, according to the MSDTM, the series solution for the system (8) is suggested to
be

T (t) =























































K
∑

n=0

T ∗

1 (n) t
αn, t ∈ [0, t1],

K
∑

n=0

T ∗

2 (n) (t− t1)
αn, t ∈ [t1, t2],

...
K
∑

n=0

T ∗

m(n) (t− tm−1)
αn, t ∈ [tm−1, tm],

(12)
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I(t) =























































K
∑

n=0

I∗1 (n) t
αn, t ∈ [0, t1],

K
∑

n=0

I∗2 (n) (t− t1)
αn, t ∈ [t1, t2],

...
K
∑

n=0

I∗m(n) (t− tm−1)
αn, t ∈ [tm−1, tm],

(13)

V (t) =




























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























K
∑

n=0

V ∗

1 (n) t
αn, t ∈ [0, t1],

K
∑

n=0

V ∗

2 (n) (t− t1)
αn, t ∈ [t1, t2],

...
K
∑

n=0

V ∗

m(n) (t− tm−1)
αn, t ∈ [tm−1, tm],

(14)

L(t) =




























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
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



















K
∑

n=0

L∗

1(n) t
αn, t ∈ [0, t1],

K
∑

n=0

L∗

2(n) (t− t1)
αn, t ∈ [t1, t2],

...
K
∑

n=0

L∗

m(n) (t− tm−1)
αn, t ∈ [tm−1, tm],

(15)

where T ∗

i (n), I∗i (n), V ∗

i (n) and L∗

i (n) for i = 1, 2, ...,m satisfy the following recur-
rence relations

T
∗

i (k + 1) =
Γ(αk + 1)

Γ(α(k + 1) + 1)

[

λ δ(k)− µT T
∗

i (k)− κ

k
∑

l=0

V
∗

i (l)T ∗

i (k − l)

]

,

I
∗

i (k + 1) =
Γ(αk + 1)

Γ(α(k + 1) + 1)

[

κ1

k
∑

l=0

V
∗

i (l)T ∗

i (k − l)− (µL + ω)I∗i (k)

]

,

V
∗

i (k + 1) =
Γ(αk + 1)

Γ(α(k + 1) + 1)
[ωI∗i (k)− (µA + ρ)V ∗

i (k)] , (16)

L
∗

i (k + 1) =
Γ(αk + 1)

Γ(α(k + 1) + 1)

[

ρV
∗

i (k) + βL
∗

i (k)−
β

Lmax

k
∑

l=0

L
∗

i (l)L
∗

i (k − l)− µML
∗

i (k)

]

,

such that T ∗

i (0) = T ∗

i−1(0), I∗i (0) = I∗i−1(0), V ∗

i (0) = V ∗

i−1(0) and L∗

i (0) = L∗

i−1(0).
Finally, if we start with T ∗

o (0) = 1000, I∗0 (0) = 250, V ∗

0 (0) = 1.5 and L∗

0(0) = 0,
using the recurrence relation given in System (16) then we can obtain the multi-step
solution given in Systems (12)-(15).
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Figure 1: Plots of the components of lymphotropic virus I (HTLV) infection of CD4+

T-cells model. Solid line: MSDTM solution, Dotted line: Runge-Kutta method solu-
tion

4 Numerical results

In this work, we propose the MSDTM, a reliable modification of the DTM that
improves the convergence of the series solution. The method provides immediate
and visible symbolic terms of analytic solutions, as well as numerical approximate
solutions to both linear and nonlinear differential equations. Figure 1 shows the
approximate solutions obtained using the MSDTM and the fourth-order Runge–Kutta
method of the concentration of healthy CD4+ T-cells at time t, the concentration of
latently infected CD4+ T-cells, the concentration of actively infected CD4+ T-cells
and the concentration of leukemic cells when α = 1 and the step size ∆t = 0.1.
We assumed that all parameters are positive in mm3/day as follows: λ = 6, µT =
0.6, µL = 0.006, µA = 0.05, µM = 0.0005, ω = 0.0004, ρ = 0.00004, β = 0.0003,
Tmax = 2200 and κ = κ1 = 0.1. It can be seen that the results obtained based on
MSDTM match the results of the Runge–Kutta method very well, which implies that
the MSDTM can predict the behaviour of these variables accurately for the region
under consideration. Next, interset to show how the concentrations of healthy CD4+

T-cells, latently infected CD4+ T-cells, actively infected CD4+ T-cells and leukemic
cells depend upon the magnitude of the order of fractional derivatives. We fix the
parameters and perform a numerical simulation for different values of α. Simulation
results are presented in Figure 2. It it is clear that these solutions continuously depend
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on the fractional derivatives.

Figure 2: Plots of the components of lymphotropic virus I (HTLV) infection of CD4+

T-cells model using MSDTM. Solid line: (α = 1), Dotted line: (α = 0.99), Dashed
dotted line: (α = 0.95), Dashed line: (α = 0.9).

5 Conclusions

In this paper we employed the multi-step differential transform method in order to
solve the fractional model of human T-cell lymphotropic virus I (HTLV-I) infec-
tion of CD4+ T-cells. Comparisons of the results obtained by using the MSDTM
with that obtained by the classical Runge–Kutta method in the integer case reveal
that the approximate solutions obtained by DTM are only valid for a small time,
while the ones obtained by MSDTM are highly accurate and valid for a long time
to nonlinear systems of differential equations. The reliability of the method and
the reduction in the size of the computational domain give this method a wider
applicability. It is of interest to note here that time fractional derivatives change
the solutions, also we usually get in standard System (1). The concentration of
healthy CD4+ T-cells T (t), the concentration of latently infected CD4+ T-cells I(T ),
the concentration of actively infected CD4+ T-cells V (t) and the concentration of
leukemic cells L(t) have been obtained, therefore when α −→ 1 the solution of the
fractional model (8) DαT (t), DαI(t), DαV (t), DαL(t) reduce to the standard solu-
tion T (t), I(t), V (t), L(t) (see fig. 2). The recent appearance of nonlinear fractional
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differential equations as models in science and engineering makes it necessary to in-
vestigate the method of solutions for such equations. Consequently, the proposed
method for the considered model verifes that it is a useful tool for these kind of mod-
els. The obtained results demonstrate the reliability of the algorithm and its wider
applicability to fractional nonlinear evolution equations.
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