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Functions of two variables with bounded
p—variation in the sense of Riesz

W. Aziz, H. Leiva, N. Merentes, J. L. Sanchez

Submitted by: Jozef Banas

ABSTRACT: In this paper we introduce the concept of bounded -
variation function, in the sense of Riesz, defined in a rectangle I%[a,b] x
[a,b] € R?. We prove that the linear space BV/(I?) generated by the
class V(1)) of all p-bounded variation functions is a Banach algebra.
Moreover, we give necessary and sufficient conditions for the Nemytskii
operator acting in the space BV F(I}) to be globally Lipschitz.

AMS Subject Classification: 26B30, 26B35
Key Words and Phrases: Bounded variation in the sense of Riesz, variation space,
Banach algebra

1. Introduction

In 1881, C. Jordan in [9], introduced the notion of bounded variation function such
as it is known today. With the years this concept was generalized in several ways,
depending on its usefulness in the context of some theories. In 1910, F. Riesz in

[16], defined the concept of p— bounded variation function, with 1 < p < oo, to show
1 1

that the dual space of Lyla,b] is Lg[a, D] (]; + p = 1). Moreover, he proved that
these functions are absolutely continuous with derivatives in the space Ly[a, b] (Riesz
lemma).

In 1937 L. C. Young [19] considered the set ® of all nondecreasing and continues
functions ¢ : [0,400) — [0, +00) with ¢(0) = 0 and ¢(t) — +o0 if t — +00 and
generalized the work of Wiener [18].

In 1953 Yu. Medved’ev (see [13]), generalized the concept of bounded variation in
the Riesz sense to a class of ¢-bounded variation functions.

Subsequently, V.V. Chistyakov reconsidered in [4] the works of Vitali (1904) and
Hardy (1905) presenting the total bounded variation in a rectangle I? of R2. Also,
he proved that the class of total bounded variation functions BV (I’;R) is a Banach

COPYRIGHT (© by Publishing Department Rzeszé6w University of Technology
P.O. Box 85, 35-959 Rzeszow, Poland



6 W. Aziz, H. Leiva, N. Merentes, J. L. Sinchez

algebra endowed with the norm ||f|| = |f(a)| + TV (f;I?), for f € BV(I’R) and
1 - gll < 11~ gl with F(a) = f(a1,a2) and TV(I%R) = Vigy o) () + Viewsa) () +
Vo (f). Furthermore, he characterized the composition operator (Nemytskii) on these
spaces satisfying the global Lipschitz condition.

In this paper we introduce the concept of bounded ¢-variation function in the
sense of Riesz, defined on the rectangle I® = [a,b] x [a,b] C R? and we prove that
the linear space BV (I, ) generated by the class VE(I, ) of all p-bounded variation
functions is a Banach algebra. Moreover, we give necessary and sufficient conditions
for the Nemytskii operator acting in the space BV.2(I?) to be globally Lipschitz.

2. ¢—total bounded variation in the sense of Riesz

In this section we introduce the concept of p-total bounded variation in the sense of
Riesz, and we prove that the class of such functions is a linear space.
Following the definition of ¢—bounded variation in the sense of Riesz given in [13]
and the generalization the total bounded variation in the Hardy spaces given in [4],
we introduce the notion of ¢-bounded variation in the sense of Riesz for functions f
defined on the rectangle I C R2.

Let us introduce the following notation: As; = s; — s;-1, At; =t; —t;—1 and

Avof(ts,sj) = f(tiys;) — f(tiz1,s5),
Do1f(ti,s5) = f(tiys5) — f(ts, s5-1),

A1 f(tiys5) = f(tiz1, sj-1) + f(ti, 85) — f(tim1,85) — f(tis5-1)-
Assume that ¢ is a fixed function in the class ® (see Introduction).

Definition 2.1. The ¢-total bounded variation in the sense of Riesz is defined as
follows:

(a) Let x2 € [ag, ba]. Consider the function f(-,z2) : [a1, b1] X {x2a} — R. The
p—variation in the sense of Riesz of the function f(-,z2) of one variable defined
by f(-,x2)(t) = f(t,z2), t € [a1, b1], on the interval [x1,y1], is the quantity

Ao f(t;,
Vf[m g (f(22)) o= SUPZ {W] |At;], (1)

where the supremum is taken over all partitions II; = {¢;}", (m € N) of the
interval [z1, y1].

(b) A similar applies to the variation V,, 15, 4,1 if 21 € [a1,b1] is fixed and [z2,y2] is
a subinterval of [as, by]. That is, for the function f(z1,-) : {1} X [az, bo] — R
we define p—variation in the sense Riesz, as the quantity

R |Ao1 f(x1,55)]
v [902,U2](f 1‘1, _SUF;SO{ |A j| |A5j|7 (2)
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where the supremum is taken over the set of all partitions Ilo = {s;}"7_, (n € N)
of the interval [z, ya].

(c) The p-bidimensional variation in the sense of Riesz is defined by the formula

m n A " .
V)= s 3o [ janas), ®

Tz 5= =1

where the supremum is taken over the set of all partitions (II, IT5) of the rect-
angle I? C R2.

(d) The ¢-total bounded variation in the sense of Riesz of the function f : I — R
is denoted by TV E(f) and is defined as follows:

TVS(f) = TVE(f, 1g) = Ve, 50 (F (5 a2)) + Vg, o (F(ar,) + VE(S),  (4)
provided TVE(f) < oo.

The class of all the functions f : I? — R having ¢-total bounded variation in the
sense of Riesz is denoted by V/(I%). Other words, we have:

VI =VEIL R) == {f: I, — R: TV(f) < oo}. (5)

Example 1. Let f: I’ — R be defined by the formula f(z1,22) = (az1 + bx2)?,
where a,b € R. Then, it is easily seen that f € VF(1}).

Now, we give the definition allowing us to characterize @-functions.

©(t)

Definition 2.2. Let ¢ € ®. If tlim sup —— = 0o, then we say that ¢ satisfies the
— 00

condition coq.

Theorem 2.3. Assume that ¢ € ® and f: It — R. Then:
(a) TVf(f) > 0 for all functions f € Vf([};).
(b) The function TVE(-) : VE(IY) — R is even, that is TVE(f) = TVE(—f).
(c) If f € Vf([g), then f is bounded in I°.
(d) TVf(f) =0 if and only if f = const.
(e) o is convex if and only if TVS(,R(J is conver.

(f) VF(12) € BV(L).

(9) If tlggo @ is finite then VE(IY) = BV (I?).
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Proof. In order to verify part (a), it is sufficient to use the definition of bounded
variation. To prove part (b) we used the properties of the function ¢ and the fact
that the absolute value function | - | is even.

(c) It can be done by contradiction.

(d) The first implication can be easily verified by contradiction, while the converse
one is trivial.

(e) Suppose that ¢ is convex and f,g: I® — R, a, 8 € [0, 1] are such that o+ = 1.
Given the partitions IT; : a1 =tg < - < t,, = by and Iy : ag = 59 < -+ < 8, = by
of the intervals [a1, b1] and [aa, bs], respectively. Then we have:

oTVE(f) + BTVE(g)
= aV} s, ba] () +aV} Jlaz, bz](f)‘*‘avf(f) + BV olar, 0] (9)

BV s 02 (9) + BV (9)

‘A ftlax )‘ |A g(thz )|
= o3 [oe [ o [P s

|Ao1 f( x1783)|:| |Ao1g(w1, 5;5)]
+sup {oap[ + B | ————1 | |As;
Z As,] o kel

+supzz[ [mtnAg + 8 | REE a1

e 5y 5o
Hence, taking into account that ¢ is convex and nondecreasing, we get

aTVE(f) + BTV (g)

> supZ [Aw (of &fﬁ?“”’“”} At

|Ao1(af + Bg)(x1,s5)]
”352_:1@[ s \Asj e ]'AS”

- |Avi(af + Bg) (i, s))
- |At;]|As;
w323 .

i=1 j=1

= TV[E(af + Bg).

Therefore,
TV (af + Bg) < aTVI(f) + BTVg).
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Now, suppose that TVf(-) is convex and let z,y € [0,+00). Further, let f, g
I? — R be functions defined by the formulas:

f(t78> = (t - S) and g(t,S) =Y (t - 8)7 te [ala bl]a s € [a27 bQ]
Take «, 8 € [0, 1] such that a+ § = 1. Then we obtain:

|Aro(af + Bg)(ti, x2)|
|At;]

Barnor 00 -3

- ax + By)|At;

- | At

Hence we get
Vilar by (@f + Bg) = p(az + By) - by — aa.
In a similar way, we obtain

V(p}?[ag,bg](af + Bg) = So(ax + /By) : |b2 - a2|-

Next, we have the following equality:

Aqi(af + Bg)(ti,s;))]
Vi oy(af + Bg) = sup [| | At |As| = 0.
[a2. ba] JIFN DY ;]21 |Atl||A J| !

In addition, we obtain

A ti,x
Vf[al’bl = supz ['10]02)'} At = @(x) by — ay].

Further observe that, VR[a2 b (f) = ©(y)|b2 — az| and VE(f) = 0. Similarly,

V@ [al,bl]( 9) = ¢(@)[br — a1, V, ©, [ag,b2]< ) = ¢(y)|b2 — az| and V@R(g) = 0. Taking into
account the convexity of TVS(,R we obtain:

p(az + By) [|b1 —az| + [bz — a2|}TV@R(Off + B9)
< (ap(@)+Be®)) - [1b1 = ar] + b2 — asl -
Since b; — a; # 0; fori = 1,2 we have

plax + By) < ap(z) + Pely) o,Be(0,1], a+ =1

Therefore, ¢(-) is convex.
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(f) Consider f € Vf([ab) and take the partitions II; : a3 = tp < ... < t,,, = by,
Iy : ay = sp < ... < 8, = by of the intervals [aq, b1] and [az, bs], respectively. Let us

put:
)
- ()
o o (R
Then, we get the following estimate

m m A ”
Z | Avof(tix2) | Z (W) | At |

IN

=1 =1
1« | Avof(ts, x2) |
< b —ar|+ @[ | At; | .
e(1) ; | At; |

Hence we get

1
Viar, b (f) b1 —an| + wvf[al,bl](f) < 00.

This allows us to deduce that VR[a b ](f) is finite. Proceeding in a similar way we
obtain that VR[a b, (f) s also finite. So, we only have to verify that VE(S, %) is
finite to conclude that VwR(IS) C BV(I?). In fact, we have:

ZZ A11f tus] |

A f(ti,s
< X ranlias i+ X o (L) 1an ) as

1,jE03 i,j¢o3

A

by, L R
A(Ia> + QO(]-) th (f)a

where A(I?) is the area of the rectangle I°. Hence, we infer that

V() = Viog() + Viag, o) (f) + Vi (f)

Vi (f)

a

A

1 1
< by —ag| + mvﬁ[al,bl](f) + [b2 — az| + @Vf[ag,bﬂ(f)

1
+A(IY) + @Vf(f, I%) < 0.

Thus, VF(1}) € BV(I2).
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(g) Suppose that
t
0 < lim supM:r<oo.
t—o0 t
Then, for a fixed € > 0 we can find ¢y such that

t
supﬁ—r<5 for T > tg.
t>T

Consequently, we obtain:

t
sup@<6—|—7“ for T >ty
t>T

or equivalently
p(t) < (e+m)t for ¢ > .

Other words, there are tg > 0 and k£ > 0 such that
o(t) < kt for t > t. (6)

Now, take f € V{(I?) and let IIy, IIy be partitions of [a1, b1] and [az, as], respec-
tively. Consider the following sets:

(A f(ti ao) |
Cto L= {Z : (| Atl | ) Z to}a

oo (A f(z,85) |
o= s (MR e

"o, _ N ‘Allf(tivs’)|
e = A6 (Tl ).

A}
|

Then, we get

ST Af(t,
S {W] | Aty [< kViay, 00 () + 0(t0) (b1 — ar).
1=1

Therefore, V% oo () < EViay,5)(f) + 9(te) (b1 — a1) < oo. Similarly, we obtain
that th,[ag,bg](f) < kViag, b,)(f) + 9(to) (b2 — az). Further, we prove that VF(f) <
kVis (f) + ¢(to) A(1L). Indeed, we have

m n A N
2> ¢ <||A1;f|(|tas])||> | Aty || Asj |< kVin (f) + @(to) A(IL) < 0.
]

i=1 j=1

Hence VE(f) < kVio (f) + @(to)A(I2). This implies

TVE(f) < kTV(f) + ¢(to) [(bl —a1) + (by —ag) + A(I])| < o0
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and consequently

BV (1)) c VE(ID).
Oun the other hand by (e) we conclude that

BV (1)) = VE(ID).

This completes the proof. |

Keeping in mind Definition 2.2 from now on we will assume that ¢ is a convex
function such that
t
i 28 _

t—oo ¢

Remark 2.4. From Theorem 2.3 (b) and (d) follows that V.(1?) is a symmetric and
convex subset of the linear space X consisting of all functions f : I? — R. Then

the linear space <Vf([3)> generated by VF(I?) may be written in the form
<V§(1§)> = {f €X: thereis A > 0 such that \f € Vf(Ig)}.

Denote by BVf(I 5:R) the space of functions of p-bounded variation in the sense
of Riesz. Thus

BVR(ILR) = {f L 0 — R: TV(Af) < +o00 for some A > o}
R(b
= (Viab).
Remark 2.5. Observe that the set BV(I) is an algebra with usual operations on

functions.

Moreover the set
A:{f:Ii’—>R:TV¢R(f)§1} (7)

is absorbent and balanced, so the Minkowski functional associated to the set A is a
semi-norm.

Remark 2.6. Since the set {s >0: TVE(u/e) < 1} is nonempty, therefore the

following definition has sense.

Definition 2.7. Let ¢ € ® be a convex function and let, | - ||,0 : BV (Ih) — R,
be defined by the formula

| fllgo =inf {e >0 TVE(1/2) <1},
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with BV (1h) := {f € BVI(I}) : =0}.

Then, BVf(I 5. R) has Banach space structure with respect to the norm

IAIE = 1F@] +inf {e > 0: TVE(f/e) <1} for [ e BVE(ILR),

Theorem 2.8. Let p € ® be conver. Then (BVf(Ig), Il - Hff) is @ Banach space.

3. The Banach algebra BV(/,R(IS)

The techniques and methods used in this section are similar to those used by V.V.
Chistyakov in [4].
The first main result of this section is contained in the following theorem:

Theorem 3.1. The space (BVf([g;]R), Il - ||5) is a Banach algebra. In addition,
1f - gll G < NFIE gl F for f.g € BVIH(IR).

Proof. We know that: ||f||Z := [f(a)| +|If — f(a)| & and || f[|5E, := inf {5 >0:
TVE(f/e) < 1}. Hence we obtain

1 - gllS = 1(F9) @) + 1 (fg) = (Fa)@)IZo

= 1f(a) - g(@)|+ I -9+ F - gla) — f - gla) — F(a) - g(a)|,

= |f(@)- g(a)| + Ilflg — 9(a)] + [f — F(@]g(@)l|%,

< 1£(@)] - 19(@)] + 1 £lg = g@IIEo + lIf - F@]g(@)]1Z

< 1f@)] - lg(@] + I F1E - g — g(@)|1Fo + 11f = F@)IE, - lg(a)]

= f@I g@] +1f — £a) + F@I - llg - 9@l + 1f — F@)IEy - lgta)]
< 1@ lg@)] + [If = F@I g + 15 @] lg — 9(@)|1Eo + 15 = F(@)]12q - lota)]

= @I+ = F@IZo] - |l9@] + llg = gla)|1E,]
= IFIE - gl E.

Thus, the proof is complete. |

4. The composition operator on BV (I};R)

The objective of this section is to characterize the composition (Nemystkii) operator
on the space BV (IZ;R) of functions of ¢-total bounded variation in the sense of
Riesz BVF(I}). The main result in this section (Theorem 5.1) will be proved without
the notion of left-left regularization and left-left continuity of two variable functions.
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Let us define the Luxemburg functional on the linear space B V¢R(I 5 R) by putting:
Po(f) = inf {r >0: TVE(f/r) < 1}7 f e BVIIY), ¢ €. ®)

Since the mapping Py is the Minkowski functional of a convex set E, = { f e
BVIIL) : TVE(f) < 1}, the zero mapping is contained in Ker(E,) and AE, C E,
for all A such that |A\| < 1.
Next, we shall give the lemma which will be used in the proof of our main result.

Lemma 4.1. Assume that ¢ € ® is conver and f € BVf(I(ZL’;R). Then

(a) If Py(f) > 0 then TV¢R(f/7>¢(f)) <1.

(b) If r > 0, then TV¢R(f/7") <1 if and only if Py(f) <.

(c) If r > 0 and TVS(f/Py(f)) = 1 then Py(f) = 7.
Proof. (a) The definition of Py(f) implies that TVf(f/r) < 1 for all > Py(f).

Let us choose a sequence 1, > Py(f), n € N, which converges to Py(f) when n — oo.
Then f/r, — f/Py(f) uniformly in I? since I? is closed. Hence we obtain

TV (f/Po(f)) < lim inf TV(f/ra) < 1.

Consequently we deduce that Py(f) € {r > 0: TVE(f/r) <1} := A and Py(f) =
min A.

(b) If TVf(f/’r) < 1 then from the definition given by (8) we obtain that Py(f) < r.
Conversely, if Py(f) = r, then TV, (f/r) <1 by (b). Now, we shall show that

If Py(f) <, then TV (f/r) < 1. (9)

Indeed, if P,(f) = 0, then f is a constant mapping and TVf(f/r) = 0 (see Theorem

2.3 (d)). Suppose that Py(f) > 0. From the convexity of TVf() (see Theorem 2.3
(e)) and from (a) we get:

R B

7D"’:f).:m/f( ! ) 1—P¢Qf))TV¢R(c)

IN

_|_
= PNV (5 7)
< (Po)r) < 1.

(c) Assume that TV (f/r) = 1. From part (b), if Py(f) > r then TVE(f/r) > 1,

which contradicts the assumption. If Py(f) < r, then from (8) we obtain TVf(f/r) <
1. Therefore, Py(f) = r. This ends the proof. |
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5. Characterization of globally Lipschitzian composi-
tion operators

The following theorem is the main result of this work which extends the results
of Matkowski in the case when the composition operator is defined on the space
BVf(Iab;R).

Theorem 5.1. Let ¢ € ® be a convex function satisfying the condition oo and let
H: R — RI be the composition operator generated by the function h: I' xR — R
and defined by the formula

(Hf)(t,s) = h(t,s, f(t,s)),

for f € R, (t,s) € I. If H maps BVf(Ig; R) into itself and is globally Lipschitzian,
then the following condition is satisfied

|h(z,u1) — h(x7u2)| < 5}u1 — uz|, (10)

for each x € I and all uy,us € R. Moreover, there ewist two functions ho,h; €
BV, (I%;R) such that
h(z,u) = ho(z) + hi(z)u, (11)

for x € I? and u € R. Conversely, if ho,h1 € BV, (IS, R) and h(z,u) = ho(z) +
hi(z)u, for x € I and for u € R, then H maps the space BV (I2) into itself and is
globally Lipschitzian.

Proof. Notice that in the proof we apply the technique similar to those from [3, 4].
At the beginning, for arbitrarily fixed o, 5 € R, o < 3, let us put

0 for t<a
t—«

Mas(t) = g—g for asts<s (12)
1 for t> .

Observe that 7, , : R — R and is Lipschitzian.

asf

We divide the proof into three steps.

Step 1. We prove inequality (10). To this end we show first an auxiliary inequality
which will be frequently used in our reasoning.

Since H : BV(1}) — BV(I?) is Lipschitzian, there exists a constant > 0 such
that [|[Hfi — Hfo||F < pllfi = follgvr for fi, fo € BVJ(IY). The definition of the
norm |- ||BV§ implies that P, (H fi — H f2) < || f1 —f2||BV§. From Lemma 4.1 (¢) we
infer that if ||f1 — fa| pvz > 0, then the last inequality is equivalent to the following

one
va M <1.
U”fl _fQHBVq@
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From the definitions of the operators TVR and H we deduce that for all z =
(r1,22), y = (y1,92) € R%, 21 < 91, T2 < y2 we have that

o H(Hfl*Hfz)(xlil’z)*(Hfl:Hf2)(yl,y2)H ly— o <1.
Wlfi= Fal,, ol =]

Hence, taking the inverse function, we get

[0, fr(@)) = bz, fo(@)) = Ry, 1) + By, F2(9))] <
il = foll slly = @lle™ (1 /ly = 2. (13)

Now, we consider the following four cases: (i) a1 < z1 <b; and as < a9 < bo,
(i1) a1 <21 <by and my = ag, (4i1) 1 = a; and as < 29 < by, (W) 21 = @y
and 29 = as9.

Thus, assume that ui, us are arbitrarily fixed real numbers and H = H f; — H f5.
Case (i). Define two functions f1, fo on the space BVf(Ig;R) by putting
Fr(y152) 1= [y, (1) + Ty, (2)] (01 = w2) /2,
a; <y; <bj, j=1,2
f2(y1,92) == [nal \ Ty (y1) — Na,,x, (y2)} (u1 —u2)/2,

(14)
fora; <y; <b; (=1,2).
Since f;(a) =0 (j = 1,2) we have that
Vf[al,bl] (fl ; /2 ('7a2)) =0= Vf (fl ;f2,lg>
. (i~ f2) s — )
f1 f2 Up — U2
vE . _ — asl.
S (P00 ) o (2 o -
If we choose r» > 0 such that
fi—fo fi—fo R fi—f2
<P < r Vgp la1,b1] r ('7a2) + V@,[ame] , (alv')
s (BB (el g 1,
r r|ze — as
then from Lemma 4.1 we obtain
lur — us|
_ - — —r = . 15
Hfl f2||BVf PLP(fl f2) r $2—a2|3071 (1/|x2—a2|) ( )
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Next, putting (14) into (13), for all a1 < 1 < y1 < by, a2 < 22 < y2 < by and
Uy, ug € BVwR(Ig) we get:

h(zy,x2,u1) — h($1,$27uz)‘

< i = Follyploz = aslie™ (122 — aal)
Uy —u —
=yl o2 — aslp™ (1/[z2 — aa])
w2 — azle~! (1/|$2 - a2|)

= plur — usl.
Hence we have that h is a Lipschitzian function.
Case (ii). We define the functions
Filyiy2) =m, . (u; for a; <y; <b; (j=1,2). (16)

Observe that f;(a) =0 (j =1,2) and

R fi—fo ) |U1*U2| _
V‘Pv[ahbl] < r ( 7a2)> ® (T|1‘1 — a1|> |2131 CL1|,

VE oo <f1 ; f2(a1,~)> —0=VF (fl ; fz,IZ) '

If we choose r > 0 such that

rvp (PR (el g -, a7)

r rlzy — aq

then from Lemma 4.1 we obtain
_ |U1 — ’LLQ‘
|71 — a1~ (1/]21 — a1])

Hf17f2||,3véa =Po(fr—fa) =7 (18)

Now, linking (17) and (13), for all a; < x1 < by, as < @2 < by and uy,us € BVf’(If;)
we get:

h(z1, a2, fi(z1,a2)) — h(z1, as, fa(z1,a2))| < plur — usl. (19)
Case (iii). This case can be done in a similar way as case (ii). We only have to
define the functions fy, fo € BV(I), by putting

i, y2) =m, . (y2)u; for a; <y; <b; (j=1,2).

ag Ty

Case (iv). Consider the functions fy, f, € BV(I?) defined by the formula

fityr,y2) =L =n, , (y1)]u;/2 for a; <y; <b; (j=1,2).
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Then we have that f;(a) =u; (j =1,2), f;(b) =0 (j = 1,2) and we obtain #(b) = 0.

Moreover,
R fi—fo _ |u1 — us|
V%[al,bl] ( r ("GQ)) = (2|b1 — a1| |b1 - al'a

VR (f1 = 12 (a1, _)) —r <f1 —fo zg) .

r

If we take r > 0 such that

fi—fr |ur — ua|
TVR( ) = (T2l =1
@ r ’ a) 14 2|b1 —a1| | ! al' ’

then from Lemma 4.1 we get

lug — uy|

- .
by — N
b1 =l (|b1—a1|>

|h(ar, az, ur) — hay, ag,ug)| < plug — ui

Ifi—flE = P(h—fo)=r

Thus, from estimate (13) we deduce that

and therefore h is Lipschitzian.

Step 2. We shall prove estimate (11). To this end, let us fix 1 € (a1,b1] and
x2 € (ag,bs]. Put & = (21, x2). Further, for each m € N we consider the partitions:

<o <Pr<as<fBo<-<ay<Bm<a,
ay <01 < By <p < By <-or <A < B, < Ta

Next, consider two auxiliary functions: 7, , : [a1,b1] = [0,1] and 7] : [a2, b2] — [0, 1]
defined in the following way:

0 for a1 <t<oy
N, .8, (t) for a; <t<p;, i=12--,m
()= - (20)
_nﬂi’o‘i-u(t) for ﬂigtgaﬂ_l’ 1—172,"'7771—1
1 for B, <t <b,
0 for ap <s<m
_ na,,ﬁ(s) for algséiz’ i:172a"'7m
77m(3) = e — . ) (21)
17773@“(5) for B, <s<@y1, i=1,2,---,m—1
1 for Bmgsng.

Now, observe that the following inequality holds:

Vo) < | Hfy = Hf2| B < pllfr = fall 2.
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The above inequality can be expressed equivalently in the following way:

m H(ti,az) —rH(ti—laa2)
i=1

In particular, we have

= " (Bi, Bi) — H(wi, %)
Z@( |Bi —

)51—%‘ < pllfr = f2llE (22)

=1

Further on, for arbitrary numbers ui,us € R, we define the functions f;, fo by
putting:

1 _ . .
Fis92) = 5 [ 0) + T (92) Jus + 2= Pz, a5 <y <b; (G =1,2).
Observe, that
filai, @q) — fa(Bi, Bi) = u2 —wa
and consequently
11— f2ll & = lur — ugl.

Since H = H f1 — H f, from (23) we get

- \(H f1 — H f2) (B, Bi) — (H fy — H f2) (cvi, @) |
ECP( |Bi — vl

>|ﬂi — i < pllfr = foll

i=1

Consequently, we obtain

|Bi — ail
+h(a, @, f2(041‘,ai))|>

i . ( \h(By, Biy £1(Bi: Bi)) — 1(Bi, Bis f2(Bis Bi)) — e, @, fi(c, @)

i=1

18 — aii| < pll fr — fall E.

Thus, from the definition of f; and fo, we deduce that f1(8;, 8,) = ui+us, f2(534,5;) =
u1, f1(oy, @;) = ug and fo(ay,@;) = 0. This yields

|5i - Oéi|
1B — ai| < plug — . (23)

i@ <|h(ﬂ’b7517’u/1 + UQ) - h(ﬁ’hE?ul) - h(OZhOTi, UQ) + h(a%aii? O)‘) .

i=1

Since all constant functions of two variables defined on I’ belong to the space
BVE(IY;R) and H maps this space into itself, we infer that the functions h(-,u)[z
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h(z,u)] belong to BVf(Iab; R) for all uw € R. Taking into account the absolute conti-
nuity of this function and passing to limit in (24) as (a;,@;) — (B; — 0, 8; — 0), we
obtain

m ‘h($1,9€27u1 +ug) — h(z1, 22, u1) — h(x1, T2, u2) + h(x1, 22,0)

Z:(P 1Bi — il

1Bi — il < plug —ugl.

Hence

‘h(zaul + UZ) - h(l‘vul) - h(z7u2) + h(l‘,O)’ ‘u|u2 — u1|
|Bi — aul =Bl

¥

From the above estimate we infer the following one

’h(z,ul +ug) — h(z,u1) — h(z,us) + h(z, 0)‘
|8i — v
lug — uy|

< lm (Bi—a)e! (> :

a;—B3;—0 |B: — Oéil

0<

Consequently, we get
h(z,u1 + u2) — h(z,ur) — h(z,uz) + h(:v,O)’ =0
or, equivalently
Mz, uy +uz) — h(z,uy) — h(z,uz) + h(z,0) = 0.
Finally, we obtain the equality
h(z,u1 +u2) + h(z,0) = h(x,ur) + h(x, usz), (24)

being valid for all x; € (a1,b1], z2 € (az,bs], and u;, us € R.

Now, let 1 € (a1, b1] and o = ba. Consider the partitions a1 < a1 < 51 < ag <
Bo < o <m<Bm<zianday <@y < By <A < By < < Qpm < B, < ba.
Similarly as before we obtain (24). Then passing to the limit when (a4, 3,,) —
(1 — 0,22 4+ 0) in equation (24) we obtain again equality (25).

The cases 1 = a; and x5 € (ag,bs] or 1 = a; and x5 = ag can be treated in a
similar way. Thus, we have

h(z,u1 + u2) + h(z,0) = h(z,u1) + h(z, uz), (25)



Functions of two variables with bounded p—variation in the sense of Riesz 21

for all = (x1,22) € I” and f1, f» € R.
To complete the proof of (11), for a fixed z € I” we define the function T}, : R — R,
by putting
T, (u) = h(z,u) — h(x,0).

Now, let us write equality (26) in the form
Top(uy +ug) = Tp(uy) + Tp(uz), where wup,us €R.

This proves that T, is an additive operator. From inequality (10) and the definition
of h(-,u), we get:

Tp(u1) — Tp(uz)| < plug —ug| for wg, ug € R. (26)

Thus T, is a Lipschitzian mapping on R.
In what follows let us define the mapping ho : I’ — R by the formula ho(x) =
h(z,0) for x € I?. Next, let hy : I — R be defined as

hi(z)u =Ty(u) for z €I’ ueR.

Then we have
h(z,u) = Tp(u) + h(z,0) = hy(z)u + ho(x).

Since ho() = h(,O) and h1() = h(, 1) — h(,O) then hg, hy € BVf(Ig,R)
Therefore
h(z,u) = ho(z) + hi(x)u

for all z € I® and u € R, with hq, hy € BVf(Ig).
Step 3. Conversely, suppose that the composition operator H is given by the formula
(Hf)(z) = ho(z) + ha(2) f(z) for z eIy, fe BVII).
Since BV(I}) is an algebra we deduce that
TVSH(HS) < |Hflly < .
Thus, Hf € BVf(Ig). Other words, H maps BVcPR(Ig) into itself. Hence we obtain
1H(f) = HIE < IhalElf - £ (27)

This shows that H is Lipschitzian and completes the proof. |
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1. Introduction

Let A denote the class of functions f analytic in the unit disk & = {z € C: |z| < 1}

o0
of the form f(z) = 2+ > a,2". Given a sequence T' = {T},} ~_, consisting of positive
n=2

numbers, the Ts-neighborhood (6 > 0) of the function f is defined as

TNs(f) = {g(z) = Z+ibnz" € A:iTnmn —by| < 5},

n=2 n=2

If T = {n},_, then Ts-neighborhood becomes the J-neighborhood Ns(f) introduced
by St. Ruscheweyh [13]. He proved that if f € C then Ny,4(f) C S*, where C, S*
denote the well known classes of convex and starlike functions, respectively. In this
way he generalized the earlier result that N;(z) C S*. Some results of this type one
can find in [16], [8], [9], [10]. The Ts-neighborhood was introduced in [15], where the
authors considered the problem of finding a sufficient condition f € A that implies
the existence of T'Ns(f) being contained in a given subclass. They proved a number
of theorems showing the importance of convolutions in the study of T5-neighborhoods

o0
and considered for an arbitrary normal family 7 C A of functions #(z) = z + > t32"
k=2

the sequence T = {73} —, such that

T =sup{|ty| :t€T}>0 (n=2,3,...).

o0 o0
For f(z) = z+ Y. axz® and g(2) = 2+ Y brz* the convolution or Hadamard product
k=2 k=2

of fand gis (f*g)(z) =z + Y apbr2®.
k=2

An interesting problem of stability of convolution on certain classes by using the
0- neighborhoods was considered in [12], [11]. For work on this problem see also the
papers [5], [6], [4]. Let S denote the subclass of A of functions univalent in ¢. Let us
consider the following sequence of nonnegative reals

In this paper we will use the above sequence to obtain the results about Ts-neighbor-
hoods. The motivation of choice the sequence (1.1) is the convergence of the series
Yoo o Thlan — byl for |a,| < n,|b,| <n'.

2. Main results

Theorem 1. If f(z) = 2+ > anz™, g(z) = z+ > bp2" and |ay| < n,|bs| < n,
n=2 n=2

n=2,3,4,..., then g € TNa(f), where T is given in (1.1).



On T-neighborhoods of analytic functions 27

Proof. We have

;TnMn _bn‘ < 7;712(71* 1) :nz::zn(’ﬂ* 1) = 2a

so g € TNa(f).
O
It is well known that if S, §*, C and K denote the well-known classes of univalent,
starlike, convex and close-to-convex functions respectively then C C S* C X C S and
if f € 8* then |a,| < n while if f € C then |a,| < 1. As a direct application of
Theorem 1 we obtain Ts-neighborhood information for S* and K.

Corollary 1. If f belongs to one of the classes S*,K,S, then TNa(f) O S.
The result will change if we consider the class of convex functions C.

Corollary 2. If f € C then TN,(f) D S , where x =3 — %2 =1,355... .

Proof. If f(z) = z4+ > anz™ € C, then |a,| < 1,n > 2. Thusif g(z) = z+ > b2" €
n=2 n=2
S, then we have

n|Un — Un S —— =2 N 5
R e DE T g
n=2 n=2 n=2 n=2
7T2 7T2
= 2-(=——-1)=3-"-=1,35....

O
An interesting problem is to find the smallest number §* such that TNy (f) D S
for each f € S. Let us denote for A, B C S

5*(A,B) =inf {5 : TNs(f) > BYf € A} .

Theorem 2. The following inequalities are valid

1,386... =2In2 < §*(S,8) < 2.

Proof. It is well-known that Koebe function and its rotations belong to the class S.

Thus the functions
z

f(z) = TSE = z—i—nZ::an",
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P o0
— _ _1n+1
9 = T =2+ LY
are in S and
(o) o0
2.2k
T — =
D Talan —bul > @Rk (2k)2(2k — 1)
n=2 :1
> 1 1 1 1
= 2 —_ =2l - =4+ - — =+ ...
;2k(2k—1) 2+3 4+
e ( 1)k+1
= 2 ———— =2In2=1,386... .

Therefore §*(S,S) cannot be smaller than 21n2 and by Corollary 1 the number
0%(S, S) is less or equal to 2.

O
The functions f and ¢ in the proof of Theorem 2 are starlike and close-to-convex

so as a direct application of Theorem 2 we obtain the following corollary.
Corollary 3. The following inequalities are valid

2In2 < §*(A,B) <2
where A and B is one of the classes S, S* or K.

Theorem 3. The following inequalities are valid

w2 2
1,20876... = 75 +Ind — 1 < 6°(C.8) <3 - - = 1,355....
Proof. Let
flz) = 1j_2:z—22+z — 24 7Z+HZ:2b"Zn’

g(z) = - —z—i—an —z—i—Zan

n=2
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Then f €C and g € S and

== 2k+1 = (2k+1)—1

B kZ:l 2k)2 2k:—1)+kzzl(2k+1)2((2k+1)—1)
o -2 O 1

R 2O AP St cTEy:

_ i 2 +§: 1 +°° 1

T (2R2(2k—1) A (202 A (2k+1)°

oo

2 9 1.2
—n 21@71]{;

T
= —14+—+2In2.
+12+ n

The upper bound we obtain from Corollary 2.
O
In [3] the authors considered functions f that are meromorphic and univalent in
the open unit disk & = {z : |z| < 1} holomorphic at zero and have the expansion
f(2) = 2+ az2? + a3z + ... . If, in addition, the complement of f (/) with respect to
C is convex, then f is called a concave univalent function. The class of such functions
is denoted by Co. The main result of the paper [2] is that if f € Co, then |a,| > 1
for all n > 1 and equality holds if and only if f(z) = z/(1 — nz),|n| = 1. This result
was conjectured earlier in [3]. In [2] the authors considered the class Co(p) of concave
functions that have a pole at the point p. The same authors proved in [1] a stronger
result that if f € Co(1) that is f is analytic in U with f(1) = oo, then

ap, — for n>2 (1.2)

2 2

n+1‘<n—1

and equality holds only for the function

2z — (1 —e'9)22

Jolz) = =512
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It is easy to see that if f € Co(1), then the complement of f(U) can be represented
as the union of a set of mutually disjoint half-lines (the endpoint of one half-line can lie
on the another half-line) so f(Uf) is a linearly accessible domain in the strict sense. For
example see Fig.1 below. It is known, see [7], [14], that the set of all functions that are
regular in I/ with the usual normalization and such that f(U/) is a linearly accessible
domain in the strict sense is identical with the set of close-to convex functions K.
Therefore we obtain the next corollary.

Corollary 4. Co(1) C K.

Let us consider the ”central” function with respect to coefficient in the class Co(1)

1] =z z S 14n ,

In order to prove that f. € Co(1) notice that for z = exp(ip), ¢ € [0, 27), we have

£(e) = 2e'¥ — 2 cosp —2+ising I

2(1 —ei?)2  4(1 —cos )

Therefore the complement of f.(U) with respect to C is a convex region bounded by
the parabola v : y*> = -1z — 3 2z € (—o00,—2). Moreover f.(1) = oo and f.(U) is
a linearly accessible domain in the strict sense so it is univalent and close-to-convex,
Fig.1.

Im

Fig.1. f.(e'%) = %
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