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1. Introduction

Nonlinear functional-integral equations are often applicable in medicine, engineering,
mathematical physics, radiative transfer, kinetic theory of gases and so on (cf. [3, 13,
14, 15, 16, 17, 20, 21], for example).

The purpose of the paper is to study the solvability of nonlinear quadratic inte-
gral equation of fractional order in the Banach algebra BC(R+) consisting of real,
continuous and bounded functions defined on an unbounded interval. The equation
considered in this paper can be written as

x(t) = (U1x)(t)(U2x)(t),

where

(Uix)(t) = mi(t) + fi(t, x(t))

∫ t

0

vi(t, s, x(s))

(t− s)αi
ds

for t ∈ R+, αi ∈ (0, 1), i = 1, 2. Moreover, mi, fi, vi are functions satisfying certain
conditions for i = 1, 2.
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Notice that differential and integral equations of fractional order create an impor-
tant and significant branch of nonlinear analysis and the theory of integral equations
(cf. [7, 8, 10, 16]).

Functional integral equations considered in Banach algebras have rather compli-
cated form and the study of such equations requires of the use of sophisticated tools
(cf. [6, 7, 11, 12, 18, 19]). We will use the technique associated with measures of
noncompactness and some fixed point theorems [5]. The so-called condition (m) (in-
troduced in [7]) related to the operation of multiplication in the algebra will be crucial
in our considerations.

Measure of noncompactness used here allows us not only to obtain the existence
of solutions of functional integral equation but also to characterize those solutions in
terms of asymptotic stability and ultimate monotonicity.

The paper is a corrected and improved version of [4].

2. Notation, definitions and auxiliary results

In this section we collect some basic definitions and facts which will be used further
on. At the beginning we introduce some notation.

Denote by R the set of real numbers and put R+ = [0,∞). Let (E, ‖ · ‖) be a
Banach space with zero element θ. Then by B(x, r) we denote the closed ball centered
at x and with radius r. The symbol Br stands for the ball B(θ, r). If X is a subset of
E, we use X and ConvX to denote the closure and convex closure of X, respectively.
Apart from this the symbol diamX will denote the diameter of a bounded set X while
‖X‖ denotes the norm of X i.e., ‖X‖ = sup{‖x‖ : x ∈ X}.

Next, let us denote by ME the family of all nonempty and bounded subsets of E
and by NE its subfamily consisting all relatively compact sets. We use the following
definition of the measure of noncompactness given in [5].

Definition 2.1. A mapping µ : ME → R+ will be called a measure of noncompact-
ness in E if it satisfies the following conditions:

1◦ The family kerµ = {X∈ME : µ(X) = 0} is nonempty and kerµ ⊂ NE .

2◦ X ⊂ Y ⇒ µ(X) ≤ µ(Y ).

3◦ µ(X) = µ(ConvX) = µ(X).

4◦ µ(λX + (1− λ)Y ) ≤ λµ(X) + (1− λ)µ(Y ) for λ ∈ [0, 1].

5◦ If (Xn) is a sequence of closed sets from ME such thatXn+1 ⊂ Xn for n = 1, 2, ...
and if limn→∞ µ(Xn) = 0, then the set X∞ =

⋂∞
n=1Xn is nonempty.

The family kerµ described in 1◦ is said to be the kernel of the measure of non-
compactness µ.

It is easy to show that the set X∞ from the axiom 5◦ is a member of the family
kerµ. Indeed, from the inequality µ(X∞) ≤ µ(Xn) being satisfied for all n = 1, 2, ...
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we derive that µ(X∞) = 0 which means that X∞ ∈ kerµ. This fact will play a key
role in our further considerations.

In the sequel we will usually assume that the space E has the structure of Banach
algebra. Then we write xy in order to denote the product of elements x, y ∈ E.
Similarly, we will write XY to denote the product of subsets X,Y of E i.e., XY =
{xy : x ∈ X, y ∈ Y }.

Now, we recall a useful concept (see [7]).

Definition 2.2. We say that the measure of noncompactness µ defined on the Ba-
nach algebra E satisfies condition (m) if for arbitrary sets X,Y ∈ME the following
inequality is satisfied:

µ(XY ) ≤ ‖X‖µ(Y ) + ‖Y ‖µ(X).

It turns out that the above defined condition (m) is very convenient in consi-
derations connected with the use of the technique of measures of noncompactness in
Banach algebras.

For our purposes we will need a fixed point theorem for operators acting in a
Banach algebra and satisfying some conditions expressed with help of a measure of
noncompactness. To this end we first recall a concept parallel to the concept of
Lipschitz continuity (cf. [5]).

Definition 2.3. Let Ω be a nonempty subset of a Banach space E and let F : Ω→ E
be a continuous operator which transforms bounded subsets of Ω onto bounded ones.
We say that F satisfies the Darbo condition with a constant k with respect to a
measure of noncompactness µ if µ(FX) ≤ kµ(X) for each X ∈ME such that X ⊂ Ω.
If k < 1, then F is called a contraction with respect to µ.

Now, assume that E is a Banach algebra and µ is a measure of noncompactness
on E satisfying condition (m). Then we have the following theorem announced above
[7].

Theorem 2.4. Assume that Ω is nonempty, bounded, closed and convex subset of
the Banach algebra E, and the operators P and T transform continuously the set Ω
into E in such a way that P (Ω) and T (Ω) are bounded. Moreover, we assume that
the operator F = P · T transforms Ω into itself. If the operators P and T satisfy on
the set Ω the Darbo condition with respect to the measure of noncompactness µ with
the constants k1 and k2 respectively, then the operator F satisfies on Ω the Darbo
condition with the constant

‖P (Ω)‖k2 + ‖T (Ω)‖k1.

Particularly, if ‖P (Ω)‖k2 + ‖T (Ω)‖k1 < 1, then F is a contraction with respect to the
measure of noncompactness µ and has at least one fixed point in the set Ω.

Remark 2.5. It can be shown [5] that the set FixF of all fixed points of the operator
F on the set Ω is a member of the kernel kerµ.
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3. Some measure of noncompactness in the Banach
algebra BC (R+)

In this section we present some measures of noncompactness in the Banach algebra
BC(R+) consisting of all real functions defined, continuous and bounded on the half
axis R+. The algebra BC(R+) is endowed with the usual supremum norm

‖x‖ = sup{|x(t)| : t ∈ R+}

for x ∈ BC(R+). Obviously, the multiplication in BC(R+) is understood as the usual
product of real functions. Let us mention that measures of noncompactness which we
intend to present here, were considered in details in [7].

In what follows let us assume that X is an arbitrarily fixed nonempty and bounded
subset of the Banach algebra BC(R+) i.e., X ∈ MBC(R+). Choose arbitrary ε > 0

and T > 0. For x ∈ X denote by ωT (x, ε) the modulus of continuity of the function
x on the interval [0, T ] i.e.,

ωT (x, ε) = sup{|x(t)− x(s)| : t, s ∈ [0, T ], |t− s| ≤ ε}.

Next, let us put:
ωT (X, ε) = sup{ωT (x, ε) : x ∈ X},

ωT0 (X) = lim
ε→0

ωT (X, ε),

ω∞0 (X) = lim
T→∞

ωT0 (X).

In our considerations we will also need another set quantities. In order to define
this quantities, let us fix t ∈ R+ and denote by X(t) the cross-section of the set X
at the point t i.e., X(t) = {x(t) : x ∈ X}. Denote by diamX(t) the diameter of
X(t). Further, for a fixed T > 0 and x ∈ X denote by dT (x) the so-called modulus of
decrease of the function x on the interval [T,∞), defined by the formula

dT (x) = sup{|x(t)− x(s)| − [x(t)− x(s)] : T ≤ s < t}.

Further, let us put
dT (X) = sup{dT (x) : x ∈ X},

d∞(X) = lim
T→∞

dT (X).

In a similar way we may define the modulus of increase of function x and the set X
(cf. [1]).

Finally, let us define the set quantity µd in the following way

µd(X) = ω∞0 (X) + d∞(X) + lim sup
t→∞

diamX(t). (3.1)

It can be shown (see [7]) that µd is the measure of noncompactness in the algebra
BC(R+). The kernel kerµd of this measure consists of all sets X ∈ MBC(R+) such
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that functions belonging to X are locally equicontinuous on R+ and the thickness of
the bundle X(t) formed by functions from X tends to zero at infinity. Moreover, all
functions from X are ultimately nondecreasing on R+ (cf. [1] for details).

Now we recall that the measure µd has following property.

Theorem 3.1. The measure of noncompactness µd defined by (3.1) satisfies condition
(m) on the family of all nonempty and bounded subsets X of Banach algebra BC(R+)
such that functions belonging to X are nonnegative on R+.

The proof of above theorem may be found in [4].
Further, let us assume that Ω is a nonempty subset of the Banach algebra BC(R+)

and F : Ω→ BC(R+) is an operator. Consider the operator equation

x(t) = (Fx)(t), t ∈ R+, (3.2)

where x ∈ Ω.

Definition 3.2. [1] We say that solutions of Eq. (3.2) are asymptotically stable if
there exists a ball B(x0, r) in BC(R+) such that B(x0, r)∩Ω 6= φ and for each ε > 0
there exists T > 0 such that |x(t) − y(t)| ≤ ε for all solutions x, y ∈ B(x0, r) ∩ Ω of
Eq. (3.2) and for t ≥ T .

Let us mention that the measure of noncompactness µd defined by formula (3.1)
allows us to characterize solutions of considered operator equations in terms of the
concept of asymptotic stability. Namely, if solutions of an operator equation con-
sidered in the algebra BC(R+) belong to a bounded subset being a member of the
family kerµd, then from the previously given description of the kernel kerµd we infer
that those solutions are asymptotically stable in the sense of Definition 3.2 (cf. also
Remark 2.5).

4. The existence of asymtotically stable and ulti-
mately nondecreasing solutions of a quadratic
fractional integral equation in the Banach algebra
BC(R+)

In this section we will consider the solvability of some functional integral equation in
the Banach algebra BC(R+). Using the technique of measures of noncompactness we
will prove that this equation has solutions on an unbounded interval. Moreover, we
will also obtain some characterization of those solutions. Obviously, we will apply the
measure of noncompactness described in the previous section.

In our considerations we will often use the so-called superposition operator. In
order to define that operator we assume that J ⊂ R is an interval and consider a
set XJ consisting of all functions x : R+ → J . Moreover, f : R+ × J → R is a given
function. Then, for every function x ∈ XJ we may assign the function Fx defined by
the formula

(Fx)(t) = f(t, x(t))
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for t ∈ R+. The operator F defined in such a way is called the superposition operator
generated by the function f (cf. [2]).

The below quoted lemma [1] presents a useful property of the superposition ope-
rator which is considered in the Banach space B(R+) consisting of all real functions
defined and bounded on R+. Obviously, the space B(R+) is equipped with the clas-
sical supremum norm. Since B(R+) has the structure of a Banach algebra, we can
consider the Banach algebra BC(R+) as a subalgebra of B(R+).

Lemma 4.1. Assume that the following hypotheses are satisfied:

(α) The function f is continuous on the set R+ × J .

(β) The function t 7→ f(t, u) is ultimately nondecreasing uniformly with respect to
u belonging to bounded subintervals of J , i.e.,

lim
T→∞

{
sup{|f(t, u)− f(s, u)| − [f(t, u)− f(s, u)] : t > s ≥ T, u ∈ J1}

}
= 0

for any bounded subinterval J1 ⊆ J .

(γ) For any fixed t ∈ R+ the function u 7→ f(t, u) is nondecreasing on J .

(δ) The function u 7→ f(t, u) satisfies a Lipschitz condition, i.e., there exist
a constant k > 0 such that

|f(t, u)− f(t, v)| ≤ k|u− v|

for all t ≥ 0 and all u, v ∈ J .

Then the inequality
d∞(Fx) ≤ kd∞(x)

holds for any function x ∈ XJ ∩ B(R+), where k is the Lipschitz constant from
assumption (δ).

Observe that in view of the remark mentioned previously the above lemma is also
valid in the Banach algebra BC(R+).

As we announced before, in this section we will investigate the existence of solu-
tions of the quadratic fractional integral equation having the form

x(t) = (U1x)(t)(U2x)(t), (4.1)

where

(Uix)(t) = mi(t) + fi(t, x(t))

∫ t

0

vi(t, s, x(s))

(t− s)αi
ds (4.2)

for t ∈ R+ and i = 1, 2. Here we assume that αi ∈ (0, 1) is a fixed number for i = 1, 2.
Our investigations will be conducted in the Banach algebra BC(R+). For further
purposes we define the few operators on the space BC(R+) by putting:

(Fix)(t) = fi(t, x(t)),
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(Vix)(t) =

∫ t

0

vi(t, s, x(s))

(t− s)αi
ds

for i = 1, 2. Obviously, we have

(Uix)(t) = mi(t) + (Fix)(t)(Vix)(t)

for i = 1, 2 and for t ∈ R+. Moreover, let us introduce the following sets:

∆ := {(t, s) ∈ R+ × R+ : s ≤ t},

A := {(t, s, x) ∈ R+ × R+ × R : s ≤ t},
A+ := {(t, s, x) ∈ R+ × R+ × R+ : s ≤ t}.

We will study Eq. (4.1) under following assumptions.

(i) The function mi is nonnegative, bounded, continuous and ultimately nonde-
creasing (i = 1, 2).

(ii) The function fi : R+ × R+ → R+ satisfies the conditions (α) − (γ) of Lemma
4.1. Moreover, the function t 7→ fi(t, 0) is bounded for i = 1, 2.

(iii) The function fi (i = 1, 2) satisfies the Lipschitz condition with respect to the
second variable, i.e., there exists a constant ki > 0 such that

|fi(t, x)− fi(t, y)| ≤ ki|x− y|

for x, y, t ∈ R+ (i = 1, 2).

(iv) vi : A → R is a continuous function such that vi : A+ → R+ (i = 1, 2).
Moreover, there exists a continuous and nondecreasing function Gi : R+ → R+

and a bounded and continuous function gi : ∆ → R+ such that vi(t, s, x) =
gi(t, s)Gi(|x|) for t, s ∈ R+ (s ≤ t), x ∈ R and i = 1, 2.

(v) The following property holds

lim
t→∞

∫ t

0

gi(t, s)

(t− s)αi
ds = 0

for i = 1, 2.

In view of above assumptions we may define following constants (i = 1, 2):

F i = sup{|fi(t, 0)| : t ∈ R+},

Gi = sup

{∫ t

0

gi(t, s)

(t− s)αi
ds : t ∈ R+

}
,

gi = sup{gi(t, s) : t, s ∈ R+},
F = max{F 1, F 2},
k = max{k1, k2},

m = max{‖m1‖, ‖m2‖}.
The last assumption has the form:
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(vi) There exists a solution r0 > 0 of the inequality

[m+ kG1rG1(r) + F G1G1(r)][m+ kG2rG2(r) + F G2G2(r)] ≤ r

such that

mk(G1G1(r0) +G2G2(r0)) + 2kF G1G1(r0)G2G2(r0)

+ 2k2r0G1G1(r0)G2G2(r0) < 1.

The existence result concerning the functional integral equation (4.1) is contained
in the below given theorem.

Theorem 4.2. Under assumptions (i)-(vi) Eq. (4.1) has at least one solution
x = x(t) in the space BC(R+) which is nonnegative, asymptotically stable and ul-
timately nondecreasing.

Proof. Let us assume that Ω is the subset of the Banach algebra BC(R+) consisting
of all functions being nonnegative on R+. We will consider operators Vi (i = 1, 2) on
the set Ω. Now, fix an arbitrary function x ∈ Ω. Then, in virtue of assumptions (i),
(ii) and (iv) we derive that the function Uix is nonnegative on R+ (i = 1, 2).

Next, in view of (4.2) and the imposed assumptions, we obtain:

(Uix)(t) ≤ mi(t) + [kix(t) + fi(t, 0)]

∫ t

0

vi(t, s, x(s))

(t− s)αi
ds

≤ mi(t) + [kix(t) + fi(t, 0)]Gi(‖x‖)
∫ t

0

gi(t, s)

(t− s)αi
ds

≤ ‖mi‖+ kiGi‖x‖Gi(‖x‖) + F GiGi(‖x‖) (4.3)

for t ∈ R+, i = 1, 2.
This estimate yields that the function Uix is bounded on R+ (i = 1, 2).

Next, let us observe that in view of the properties of the superposition operator
[2] and assumption (ii) we infer that the function Fix is continuous on R+ (i = 1, 2).
Therefore, in order to show that Uix is continuous on the interval R+ it is sufficient
to show that the function Vix is continuous on R+.

To this end let us fix T > 0 and ε > 0 and choose arbitrarily t, s ∈ [0, T ] such that
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|t− s| ≤ ε. Without loss of generality we may assume that s < t. Then we obtain

|(Vix)(t)− (Vix)(s)| ≤
∣∣∣ ∫ t

0

vi(t, τ, x(τ))

(t− τ)αi
dτ −

∫ t

0

vi(s, τ, x(τ))

(t− τ)αi
dτ
∣∣∣

+
∣∣∣ ∫ t

0

vi(s, τ, x(τ))

(t− τ)αi
dτ −

∫ s

0

vi(s, τ, x(τ))

(t− τ)αi
dτ
∣∣∣

+
∣∣∣ ∫ s

0

vi(s, τ, x(τ))

(t− τ)αi
dτ −

∫ s

0

vi(s, τ, x(τ))

(s− τ)αi
dτ
∣∣∣

≤
∫ t

0

|vi(t, τ, x(τ))− vi(s, τ, x(τ))|
(t− τ)αi

dτ +

∫ t

s

vi(s, τ, x(τ))

(t− τ)αi
dτ

+

∫ s

0

vi(s, τ, x(τ))

[
1

(s− τ)αi
− 1

(t− τ)αi

]
dτ

≤ ωT‖x‖(vi, ε)

∫ t

0

1

(t− τ)αi
dτ +Gi(‖x‖)gi

∫ t

s

1

(t− τ)αi
dτ

+ Gi(‖x‖)gi
∫ s

0

[
1

(s− τ)αi
− 1

(t− τ)αi

]
dτ

≤ ωT‖x‖(vi, ε)
t1−αi

1− αi
+Gi(‖x‖)gi

(t− s)1−αi

1− αi

+ Gi(‖x‖)gi
[
s1−αi

1− αi
− t1−αi

1− αi
+

(t− s)1−αi

1− αi

]
≤ ωT‖x‖(vi, ε)

T 1−αi

1− αi
+ 2Gi(‖x‖)gi

ε1−αi

1− αi
, (4.4)

where we denoted

ωTd (vi, ε) = sup{|vi(t, τ, x)− vi(s, τ, x)| : t, s, τ ∈ [0, T ], |t− s| ≤ ε, x ∈ [−d, d]}.
From the above estimate and the fact that function vi is uniformly continuous on

the set {(t, s, y) ∈ R3 : 0 ≤ s ≤ t ≤ T, y ∈ [−‖x‖, ‖x‖]} we have that the last part of
above estimate tends to zero as ε→ 0 and this implies the continuity of the function
Vix. Gathering the above established facts and estimate (4.4) we conclude that the
operator Ui (i = 1, 2) transforms the set Ω into itself.

Apart from this, in view of (4.3) and assumption (vi) we infer that there exists
a number r0 > 0 such that the operator S = U1U2 transforms into itself the set Ωr0
defined in the following way

Ωr0 = {x ∈ BC(R+) : 0 ≤ x(t) ≤ r0 for t ∈ R+}.

Moreover, the following inequality is satisfied

‖UiΩr0‖ ≤ m+ kiGr0Gi(r0) + F GGi(r0).

In the sequel we will work with the measure of noncompactness µd. Thus, let us
fix a nonempty subset X of the set Ωr0 and choose arbitrary numbers T > 0 and
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ε > 0. Then, for x ∈ X and for t, s ∈ [0, T ] such that |t− s| ≤ ε and t ≥ s we have

|(Uix)(t)− (Uix)(s)| ≤ ωT (mi, ε) + |(Fix)(t)(Vix)(t)− (Fix)(s)(Vix)(s)|
≤ ωT (mi, ε) + |(Fix)(t)(Vix)(t)− (Fix)(s)(Vix)(t)|
+ |(Fix)(s)(Vix)(t)− (Fix)(s)(Vix)(s)|
≤ ωT (mi, ε) + |(Fix)(t)− (Fix)(s)||(Vix)(t)|
+ |(Fix)(s)||(Vix)(t)− (Vix)(s)|. (4.5)

Reasoning similarly we derive the estimate

|(Fix)(t)− (Fix)(s)| ≤ |fi(t, x(t))− fi(t, x(s))|+ |fi(t, x(s))− fi(s, x(s))|
≤ ki|x(t)− x(s)|+ |fi(t, x(s))− fi(s, x(s))|
≤ kiω

T (x, ε) + ωT‖x‖(fi, ε), (4.6)

where we denoted

ωTd (fi, ε) = sup{|fi(t, x)− fi(s, x)| : t, s ∈ [0, T ], |t− s| ≤ ε, x ∈ [−d, d]}.
Moreover, we have the following evaluations

|(Vix)(t)| ≤ Gi(‖x‖)
∫ t

0

gi(t, τ)

(t− τ)αi
dτ ≤ Gi(‖x‖)Gi,

|(Fix)(s)| ≤ ki|x(s)|+ |fi(s, 0)| ≤ kir0 + F i,

which hold for arbitrary t, s ∈ R+ and i = 1, 2.

Further, linking (4.5), (4.6) with the above obtained evaluations, we infer that the
following estimate holds

|(Uix)(t)− (Uix)(s)| ≤ ωT (mi, ε) +
[
kiω

T (x, ε) + ωT‖x‖(fi, ε)
]
Gi(‖x‖)Gi

+
[
kir0 + F i

][
ωT‖x‖(vi, ε)

T 1−αi

1− αi
+ 2Gi(‖x‖)gi

ε1−αi

1− αi

]
.

Observe that the terms ωT (mi, ε), ω
T
‖x‖(fi, ε) and ωT‖x‖(vi, ε) tend to zero as ε → 0

since the functions mi, fi and vi are uniformly continuous on the sets [0, T ], [0, T ]×
[−‖x‖, ‖x‖] and {(t, s, y) ∈ R3 : 0 ≤ s ≤ t ≤ T, y ∈ [−‖x‖, ‖x‖]}, respectively. Hence
we obtain

ωT0 (UiX) ≤ kiGiGi(r0)ωT0 (X)

and consequently

ω∞0 (UiX) ≤ kiGiGi(r0)ω∞0 (X). (4.7)

In what follows, let us choose arbitrarily x, y ∈ X and t ∈ R+. Then, applying
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our assumptions, we derive

|(Uix)(t)− (Uiy)(t)|

≤ |fi(t, x(t))− fi(t, y(t))|
∫ t

0

vi(t, τ, x(τ))

(t− τ)αi
dτ

+fi(t, y(t))

∫ t

0

|vi(t, τ, x(τ))− vi(t, τ, y(τ))|
(t− τ)αi

dτ

≤ ki|x(t)− y(t)|Gi(‖x‖)
∫ t

0

gi(t, τ)

(t− τ)αi
dτ

+[kiy(t) + fi(t, 0)]

∫ t

0

gi(t, τ)[Gi(x(τ))−Gi(y(τ))]

(t− τ)αi
dτ

≤ ki|x(t)− y(t)|Gi(r0)

∫ t

0

gi(t, τ)

(t− τ)αi
dτ + [kir0 + F i]2Gi(r0)

∫ t

0

gi(t, τ)

(t− τ)αi
dτ.

Hence, keeping in mind of assumption (v), we obtain the following equality

lim sup
t→∞

diam(UiX)(t) = 0. (4.8)

Now, we show that Ui is continuous on the set Ωr0 . To this end fix ε > 0 and
take x, y ∈ Ωr0 such that ‖x − y‖ ≤ δ. In view of (4.8) we know that we may find a
number T > 0 such that for arbitrary t ≥ T we get |(Uix)(t)− (Uiy)(t)| ≤ ε. On the
other hand, if we take t ∈ [0, T ], we have

|(Uix)(t)− (Uiy)(t)| ≤ |fi(t, x(t))− fi(t, y(t))|
∫ t

0

vi(t, τ, x(τ))

(t− τ)αi
dτ

+ fi(t, x(t))

∫ t

0

|vi(t, τ, x(τ))− vi(t, τ, y(τ))|
(t− τ)αi

dτ

≤ ki|x(t)− y(t)|Gi(‖x‖)
∫ t

0

gi(t, τ)

(t− τ)αi
dτ

+ [ki|y(t)|+ fi(t, 0)]ξTr0(vi, δ)

∫ t

0

dτ

(t− τ)αi

≤ kδGiGi(r0) + (kr0 + F )
T 1−αi

1− αi
ξTr0(vi, δ),

where we denoted
ξTd (vi, δ) = sup{|vi(t, s, x)− vi(t, s, y)| : t, s ∈ [0, T ], x, y ∈ [−d, d], |x− y| ≤ δ}.

In view of the uniform continuity of the function vi on the set {(t, s, y) ∈ R3 : 0 ≤
s ≤ t ≤ T, y ∈ [−r0, r0]} we have that ξTr0(vi, δ) → 0 as δ → 0. This yields that the
last term in the above estimate is sufficiently small for i = 1, 2.

Next, fix arbitrarily T > 0 and choose t, s such that t > s ≥ T . Then we have

0 ≤
∣∣∣∣ gi(t, τ)

(t− τ)αi
− gi(s, τ)

(s− τ)αi

∣∣∣∣− [ gi(t, τ)

(t− τ)αi
− gi(s, τ)

(s− τ)αi

]
≤ 2

gi(s, τ)

(s− τ)αi
.
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Using (v) we obtain

lim
T→∞

{
sup

{∫ s

0

{∣∣∣∣ gi(t, τ)

(t− τ)αi
− gi(s, τ)

(s− τ)αi

∣∣∣∣−[ gi(t, τ)

(t− τ)αi
− gi(s, τ)

(s− τ)αi

]}
dτ : T ≤ s < t

}}
= 0.

(4.9)

Then, for an arbitrary x ∈ X we obtain

|(Uix)(t)− (Uix)(s)| − [(Uix)(t)− (Uix)(s)]

≤ |mi(t)−mi(s)| − [mi(t)−mi(s)] + |(Fix)(t)(Vix)(t)− (Fix)(s)(Vix)(t)|
+|(Fix)(s)(Vix)(t)− (Fix)(s)(Vix)(s)| − [(Fix)(t)(Vix)(t)− (Fix)(s)(Vix)(t)]

−[(Fix)(s)(Vix)(t)− (Fix)(s)(Vix)(s)]

≤ dT (mi) + dT (Fix)(Vix)(t)

+(Fix)(s)
{
|(Vix)(t)− (Vix)(s)| − [(Vix)(t)− (Vix)(s)]

}
. (4.10)

On the other hand we get

|(Vix)(t)− (Vix)(s)| − [(Vix)(t)− (Vix)(s)]

≤
∣∣∣∣ ∫ s

0

gi(t, τ)Gi(x(τ))

(t− τ)αi
dτ −

∫ s

0

gi(s, τ)Gi(x(τ))

(s− τ)αi
dτ

∣∣∣∣+

∣∣∣∣ ∫ t

s

gi(t, τ)Gi(x(τ))

(t− τ)αi
dτ

∣∣∣∣
−
[ ∫ s

0

gi(t, τ)Gi(x(τ))

(t− τ)αi
dτ −

∫ s

0

gi(s, τ)Gi(x(τ))

(s− τ)αi
dτ

]
−
∫ t

s

gi(t, τ)Gi(x(τ))

(t− τ)αi
dτ

≤
∫ s

0

∣∣∣∣gi(t, τ)Gi(x(τ))

(t− τ)αi
dτ − gi(s, τ)Gi(x(τ))

(s− τ)αi

∣∣∣∣dτ
−
∫ s

0

[
gi(t, τ)Gi(x(τ))

(t− τ)αi
dτ − gi(s, τ)Gi(x(τ))

(s− τ)αi

]
dτ

≤ Gi(‖x‖)
∫ s

0

{∣∣∣∣ gi(t, τ)

(t− τ)αi
− gi(s, τ)

(s− τ)αi

∣∣∣∣− [ gi(t, τ)

(t− τ)αi
− gi(s, τ)

(s− τ)αi

]}
dτ.

Now, taking into account assumptions (i), (iv) and estimates (4.9), (4.10), we derive

d∞(Uix) ≤ d∞(Fix)Gi(r0)Gi

for i = 1, 2. Hence, in view of Lemma 4.1, we derive the following inequality

d∞(Uix) ≤ kiGiGi(r0)d∞(x)

for i = 1, 2. Further, combining the above inequality an (4.6), (4.7), (4.10), we obtain

µd(UiX) ≤ kiGiGi(r0)µd(X)

for i = 1, 2.
Therefore, applying Theorem 2.4 we derive that the operator S = U1U2 is a

contraction with respect to the measure of noncompactness µd with the constant L
given by the formula

L = mk(G1G1(r0) +G2G2(r0)) + 2kF G1G1(r0)G2G2(r0) + 2k2r0G1G1(r0)G2G2(r0).
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Observe that assumption (vi) implies that L < 1. Thus, taking into account Theorem
2.4 we infer that the operator S has at least one fixed point x = x(t) belonging to the
set Ωr0 . Moreover, in view of Remark 2.5 we conclude that x is nonnegative on R+,
asymptotically stable and ultimately nondecreasing.
This completes the proof.

Now we provide an example illustrating Theorem 4.2.

Example 4.3. Consider the quadratic fractional integral equation having form (4.1)
with the operators U1, U2 defined by the following formulas

(U1x)(t) =
t

3t+ 1
+ arctan(t2 + x(t))

∫ t

0

e−(t+s)
√
|x(t)|

(t− s)1/3
ds,

(U2x)(t) =
1− e−t

4
+

1

2
ln(x(t) + 1)

∫ t

0

8x4(t)

5(t+ s+ 2)3(t− s)1/5
ds

for t ∈ R+.
Observe that in this case the functions involved in Eq. (4.1) have the form:

m1(t) =
t

3t+ 1
, m2(t) =

1− e−t

4
,

f1(t, x) = arctan(t2 + x), f2(t, x) =
1

2
ln(x+ 1),

v1(t, s, x) = e−(t+s)
√
|x|,

v2(t, s, x) =
8x4

5(t+ s+ 2)3
.

Moreover, α1 = 1
3 , α2 = 1

5 .
It is easy to check that for the above functions there are satisfied assumptions of

Theorem 4.2. Indeed, we have that the function mi = mi(t) is nonnegative, bounded
and continuous on R+ (i = 1, 2). Since m1 and m2 are increasing on R+ we derive that
they are also ultimately nondecreasing on R+. Moreover, ‖m1‖ = 1

3 and ‖m2‖ = 1
4 .

Thus, there is satisfied assumption (i). Further notice that the functions fi (i = 1, 2)
transform continuously the set R+×R+ into R+. Moreover, f1 is nondecreasing with
respect to both variables and satisfies the Lipschitz condition (with respect to the
second variable) with the constant k1 = 1. Similarly, the function f2 = f2(t, x) is
increasing with respect to x and satisfies the Lipschitz condition with the constant
k2 = 1

2 . Apart from this it is easily seen that F 1 = π
2 , F 2 = 0. Summing up, we see

that functions f1 and f2 satisfy assumptions (ii) and (iii).
Next, let us note that the function vi is continuous on the set A and transforms

the set A+ into R+ for i = 1, 2. Apart from this the function vi can be represented in
the form vi(t, s, x) = gi(t, s)Gi(|x|) (i = 1, 2), where g1(t, s) = e−(t+s), G1(x) =

√
|x|,

g2(t, s) = 8
5(t+s+2)3 , G2(x) = x4. It is easily seen that assumption (iv) is satisfied for

the functions v1 and v2.
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Further on, we have∫ t

0

g1(t, s)

(t− s)α1
ds =

∫ t

0

e−t−s

(t− s)1/3
ds ≤ e−t

∫ t

0

ds

(t− s)1/3
=

3

2
e−t t2/3.

Hence we see that

lim
t→∞

∫ t

0

g1(t, s)

(t− s)α1
ds = 0.

Moreover, we get∫ t

0

g2(t, s)

(t− s)α2
ds =

∫ t

0

8

5(t+ s+ 2)3(t− s)1/5
ds ≤ 8

5(t+ 2)3

∫ t

0

ds

(t− s)1/5
=

2t4/5

(t+ 2)3
.

Thus, we have

lim
t→∞

∫ t

0

g2(t, s)

(t− s)α2
ds = 0.

This shows that assumption (v) is satisfied.
Finally, let us notice that taking into account the above estabilished facts we have

that m = max{‖m1‖, ‖m2‖} = 1
3 , k = max{k1, k2} = 1 and F = max{F 1, F 2} = π

2 .
Thus, the first inequality from assumption (vi) has the form

[
1

3
+G1(r

√
r +

π

2
r)][

1

3
+G2(r5 +

π

2
r4)] ≤ r.

It can be shown that the number r0 = 1
2 is a solution of the above inequality such

that it satisfies also the second inequality from assumption (vi).
Applying Theorem 4.2 we infer that the quadratic fractional integral equation

considered in this example has a solution belonging to the set

Ω 1
2

= {x ∈ BC(R+) : 0 ≤ x(t) ≤ 1

2
for t ∈ R+},

which is asymtotically stable and ultimately nondecreasing.
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