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On Maximum Induced Matching

Numbers of Special Grids

Tayo Charles Adefokun and Deborah Olayide Ajayi

Abstract: A subset M of the edge set of a graph G is an induced
matching of G if given any two edges e1, e2 ∈M , none of the vertices on e1
is adjacent to any of the vertices on e2. Suppose that Max(G), a positive
integer, denotes the maximum size of M in G, then, M is the maximum
induced matching of G and Max(G) is the maximum induced matching
number of G. In this work, we obtain upper bounds for the maximum
induced matching number of grid G = Gn,m, n ≥ 9,m ≡ 3 mod 4,m ≥ 7,
and nm odd.

AMS Subject Classification: 05C70, 05C15.
Keywords and Phrases: Induced matching; Grid; Maximum induced matching number;
Strong matching number.

1. Introduction

For a graph G, let V (G), E(G) be vertex and edge sets respectively and let e ∈ E(G).
We define e = uv, where u, v ∈ V (G) and the respective order and size of V (G) and
E(G) are |V (G)| and |E(G)|. For some M ⊆ E(G), M is an induced matching of G if
for all e1 = uiuj and e2 = vivj in M , ukvl /∈M , where k and l are from {i, j}. Induced
matching, a variant of the matching problem, was introduced in 1982 by Stockmeyer
and Vazirani [10] and has also been studied under the names strong matching [7] and
“risk free” marriage problem [8]. It has found theoretical and practical applications in
a lot of areas including network problems and cryptology [3]. For more on induced
matching and its applications, see [2], [3], [4], [5] and [11].

The size |M | of an induced matching M of G is a positive integer and translates
as the maximum induced matching number Max(G) (or strong matching number) of
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G if |M | is maximum. Obtaining Max(G) is NP−hard, even for regular bipartite
graphs [4]. However, Max(G) of some graphs have been found in polynomial time
such as the cases in [3], [6].

A grid Gn,m is the Cartesian product of two paths Pn and Pm, resulting in n-rows
and m-columns. Marinescu-Ghemaci in [9], obtained the Max(G) for Gn,m, grid
where both n,m are even; either of n and m is even and for quite a number of grids
Gn,m where nm is odd, which is called the odd grid in [1]. Marinescu-Ghemaci [9] also
gave useful lower and upper bounds and conjectured that the Max(G) of grids can be
found in polynomial time and also by combining the maximum induced numbers of
partitions of odd grids, Marinescu-Ghemaci confirmed that for any odd grid G ≡ Gn,m,
Max(G) ≤

⌊
nm+1

4

⌋
. This bound was improved on in [1] for the case where n ≥ 9 and

m ≡ 1 mod 4.
In this paper, the Marinescu-Ghemaci’s bound for the case where n ≥ 9 and m ≡ 3

mod 4 is considered and more compact values are obtained. The results in this work,
combined with some of the results in [9], confirm the maximum induced matching
numbers of certain graphs, whose lower bounds were established in [9].

2. Definitions and Preliminary Results

Grid, Gn,m, as defined in this work, is the Cartesian product of paths Pn and Pm with
V (Pn) = {u1, u2, · · · , un} and V (Pm) = {v1, v2, · · · , vm}. We adopt the following
notations which are similar to those in [1]:

Vi = {u1vi, u2vi, · · · , unvi} ⊂ V (Gn,m), i ∈ [1,m],

Ui = {uiv1, uiv2, · · · , uivm} ⊂ V (Gn,m), i ∈ [1, n].

For edge set E(Gn,m) of Gn,m, if (uivj ukvj) ∈ E(Gn,m) and (uivj uivk) ∈ E(Gn,m),
we write u(i,k)vj ∈ E(Gn,m) and uiv(j,k) ∈ E(Gn,m) respectively.

A saturated vertex v is any vertex on some edge in M , otherwise, v is unsaturated,
cf. [1]. We define v as saturable if it can be saturated relative to the nearest saturated
vertex. Any vertex that is at least distant-2 from the nearest saturated vertex is
saturable. By this definition, therefore, it is clear that a saturated vertex is at first
saturable. However, not every saturable vertex is saturated. The set of all saturable
vertices on a graph G is denoted by Vsb(G) while the set of saturated vertices is Vst(G).
Clearly, |Vst(G)| is even and Vst(G) ⊆ Vsb(G). Free saturable vertex set (FSV ) is the
set of saturable vertices which can not be on any members of M . In other words,
v ∈ FSV is a saturable vertex of graph G, which is not adjacent to some saturable
vertex u ∈ G. Note that FSV = Vsb\Vst. Let G be a Gn,m grid. We define G|k| as a
Gn,k subgraph of G induced by {Vi+1, Vi+2, · · · , Vi+k}. An unsaturated vertex v ∈ G
is unsaturable if v /∈ FSV and v /∈ Vsb(G). Furthermore, for positive integers a and b,
a < b, [a, b] := {a, a + 1, · · · , b}.

The following results from [9] on G, a Gn,m grid, are useful in this work:

Lemma 2.1. Let m,n ≥ 2 be two positive integers and let G be a Gn,m grid. Then,
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(a) If m ≡ 2 mod 4 and n odd then |Vsb(G)| = mn+2
2 ; and |Vsb(G)| = mn

2 otherwise;

(b) for m ≥ 3, m odd, |Vsb(G)| = nm+1
2 , for n ∈ {3, 5}.

Theorem 2.2. Let G be a Gn,m grid with 2 ≤ n ≤ m. Then,

(a) if n even and m even or odd, then Max(G) =
⌈
mn
4

⌉
;

(b) if n ∈ {3, 5} then for

(i) m ≡ 1 mod 4, Max(G) = n(m−1)
4 + 1,

(ii) m ≡ 3 mod 4, Max(G) = n(m−1)+2
4 .

The following theorem is the statement of the bound given by Marinescu-Ghemaci
[9].

Theorem 2.3. Let G be a Gn,m grid, m,n ≥ 2, mn odd. Then Max(G) ≤
⌊
mn+1

4

⌋
.

3. Maximum Induced Matching Number of Odd
Grids

The following lemma and the remark describe the importance of the saturation status
of certain vertices in G5,p grid, where p ≡ 2 mod 4.

Lemma 3.1. Let G be a Gn,m grid and let {Vi+1, Vi+2, · · · , Vi+p} ⊂ G induce G|p|,
a G5,p subgrid of G, where p ≡ 2 mod 4. Suppose that M1, is an induced matching
of G|p| and that for u3vi+1 ∈ Vi+1 ⊂ V (G|p|), u3vi+1 /∈ Vst(G

|p|). Then, Vst(G
|p|) ≤

10k + 4, for positive integer k, where p = 4k + 2 and M1 is not a maximum induced
matching of G|p|.

Proof. For a positive integer k, let p = 4k + 2, G|2| and G|p−2| be partitions of G1,
induced by {Vi+1, Vi+2} and {Vi+3, Vi+4, · · · , Vi+p}, respectively. Since u3vi+1 is not
saturated in G|2|, it easy to check that |Vsb(G|2|)| = 5. From [9], |Vsb(G|p−2|)| =
|Vst(G|p−2|)| = 10k. Thus |Vsb(G|p|)| ≤ |Vsb(G|2|)| + |Vsb(G|p−2|)| ≤ 10k + 5 and
therefore, |Vst(G|p|)| ≤ 10k + 4 since |Vst(G)| is even, for any graph G. This is a
contradiction since by [9], |Vst(G|p|)| = 10k + 6.

Remark 3.2. It should be noted that M1 in Lemma 3.1 will still not be a maximum in-
duced matching of G|p| if for the vertex set A = {u1vi+1, u5vi+1, u1vi+p, u3vi+p, u5vi+p}
⊂ V (G|p|), any member of A is unsaturated.

Lemma 3.3. Suppose u(1,2)vi, u5v(i−1,i) ∈ M or u(1,2)vi, u5v(i,i+1) ∈ M , where M
is an induced matching of G, a G5,m grid, m ≡ 3 mod 4, m ≥ 23 and 1 < i < m,
i /∈ {4,m− 3}. Then M is not a maximum induced matching of G.
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Proof. Let G be partitioned into G|m(1)| and G|m(2)|, which are induced respectively
by A = {V1, V2, · · · , Vi} and B = {Vi+1, Vi+2, · · · , Vm}. Suppose that M is a maximum
induced matching of G.
Case 1: i ≡ 1 mod 4.
Let m = 4k + 3 and set i = 4t + 1, where k ≥ 5 and t > 0. Then, |m(1)| ≡ 1 mod 4
and |m(2)| ≡ 2 mod 4. Since u1vi, u2vi, u5vi and u5vi−1 are saturated vertices in Vi
and Vi−1, then the only FSV member on Vi−1 is u3vi−1. Suppose that u3vi−1 remains
unsaturated. Let G|m(3)| ⊂ G|m(1)| be induced by {V1, V2, · · · , Vi−2}, where |m(3)| ≡ 3
mod 4. By [9], |Vst(G|m(3)|)| = 10t−4. Thus, |Vst(G|m(1)|)| ≤ 10t. Suppose that u3vi−1
is saturated, then, u3v(i−1,i−2) ∈ M . Thus, u3vi−3 ∈ Vi−3 ⊂ G|m(4)| is unsaturable,

where G|m(4)| is G|m(3)|\Vi−2. Note that |m(4)| ≡ 2 mod 4. From Lemma 3.1,
therefore, |Vst(G|m(4)|)| ≤ 10t − 6 and thus, |VstG|m(1)|| ≤ 10t − 6 + 6 = 10t. Now,
since u1vi, u2vi and u5vi are saturated vertices in Vi, then, u3vi+1, u4vi+1 ∈ V (G|m(2)|)
are saturable vertices in G|m(2)|.
Claim: Edge u(3,4)vi+1 belongs to M .
Reason: Suppose that both u3vi+1 and u4vi+1 are not saturated, then Vi+1 contains
no saturable vertices. Let G|m(2)|\ {Vi+1} = G|m(5)|, where |m(5)| ≡ 1 mod 4.
Thus, |Vst(G)| ≤ |VstG|(m(1))|| + |Vst(G|m(5)|)| = 10k + 2, which is less than the
required saturated vertices by 4 and hence the claim. Now, u(3,4)vi+1 belongs to

M . Clearly for G|m(5)| defined above, |Vsb(G|m(5)|)| = 10(k − t) + 3 and suppose
u3vi+1, u4vi+1 ∈ Vst(G), then |Vst(G)| ≤ 10k + 5. In fact, |Vst(G)| = 10k + 4. Thus
establishing the first part of the case that with u(1,2)vi,u5v(i−1,i) ∈M , M 6= Max(G).

For the second part of the case, suppose that u(1,2)vi, u5v(i,i+1) ∈M . Let G|n(1)| =

G|m(1)|\ {Vi} and G|n(2)| = G|m(2)| ∪ {Vi}. Now, |n(1)| ≡ 0 mod 4 and |n(2)| ≡ 3
mod 4. Consequently, |Vst(G|n(2)|)| = 10(k − t) + 6. Now, on Vi−1 ⊂ G|n(1)|, only
vertices u3vi−1 and u4vi−1 are saturable. Suppose they are both not saturated after
all. Let G|n(3)| ⊂ G|n(1)| be induced by {V1, V2, · · · , Vi−2}, where |n(3)| ≡ 3 mod 4.
|Vst(G|n(3)|)| = 10t−4. Thus |Vst(G)| = 10k+2. Therefore, M requires four saturated
vertices to be a maximum induced matching of G. Now, |Vsb(G|n(3)|)| = 10t − 2,
and thus, V (G|n(3)|) contains two extra FSV vertices, say, v1, v2 which are not
adjacent. Thus, the maximum number of saturable vertices from the vertex set
{v1, v2, u3vi−1, u4vi−1} is 2. Therefore, |Vst(G)| ≤ 10k + 4, which is a contradiction.
Case 2: i ≡ 2 mod 4.
Let G|p(1)| and G|p(2)| be partitions of G induced by {V1, V2, · · · , Vi} and {Vi+1, Vi+2,
· · · , Vm}, with m = 4k + 3 and i = 4t + 2. Let u(1,2)vi and u5v(i−1,i) ∈ M . Since

u(1,2)vi belongs in M of G, then u3vi cannot be saturated. Thus, |Vst(G|p(2)|)| ≥
10(k − t) + 2 for M to be maximal. It can be seen that |p(2)| ≡ 1 mod 4. Now,
u3vi+1 and u4vi+1 are saturable vertices in Vi+1. Suppose both of them are not
saturated, then for G|p(3)| induced by {Vi+2, Vi+3, · · · , Vm}, where |p(3)| ≡ 0 mod 4,
|Vst(G|p(3)|)| ≤ 10(k − t). Thus u3vi+1 and v4vi+1 are saturable vertices and in fact,
u(3,4)vi+1 ∈M . On Vi+2, therefore, there exists three saturable vertices u1vi+1, u2vi+2

and u5vi+5. Suppose none of these three vertices are saturated. Then, |Vst(G|p(3)|)| ≤
|Vst(G|p(4)|)|+ 2, with G|p(4)| induced by {Vi+3, · · · , Vm} and |p(4)| ≡ 3 mod 4 and
thus, |Vst(G|p(2)|)| ≤ 10(t− k)− 2. Therefore it requires extra four saturated vertices
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for M to be maximum. There exist two other saturable vertices, v1, v2 ∈ V (G|p(4)|)
(since Vst(G

|p(4)|) = 10(k − t) − 4 and Vsb(G
|p(4)|) = 10(k − t) − 2). Clearly, v1, v2

are not adjacent, else they would have formed an edge in M . Suppose v1, v2 ∈ Vi+3.
For v1 and v2 to be saturated, they have to be u5vi+3 and one of u1vi+3 and u2vi+3.
Thus, u5vi+2,i+3 ∈ M and one of u1v(i+2,i+3) u2v(i+2,i+3) or u(1,2)vi+2 belongs to

M . Let G|p(5)| be induced by {Vi+4, · · · , Vm}, where |p(5)| ≡ 2 mod 4. Now, since
v5v(i+2,i+3) ∈ M , then u5vi+5 ∈ Vi+4 is unsaturable and therefore, by Remark 3.2,

|Vst(G|p(5)|)| = 10(k− t− 1) + 4 and thus, |Vst(G|p(2)|)| = 10(k− t), which is less than
required. The case of u5v(i,i+1) ∈ M is the same as the case of u5v(i−1,i) ∈ M for
i ≡ 2 mod 4.
Case 3: i ≡ 0 mod 4, i ≥ 6 or i ≤ m − 5, with u(1,2)vi, u5v(i−1,i) ∈ M . Let G|r(1)|

and G|r(2)| be partitions of G which are induced respectively by {V1, V2, · · · , Vi} and
{Vi+1, Vi+2, · · · , Vm}. Since i ≡ 0 mod 4, then |r(1)| ≡ 0 mod 4, while |r(2)| ≡ 3
mod 4. Also, u5v(i−1,i) ∈ M , implies u5vi−1 is unsaturable. Since i− 2 ≡ 2 mod 4,

then by Lemma 3.1 and Remark 3.2, |Vst(G|r(1)|)| ≤ 10t − 2, implying that for M
to be maximal, |Vst(G|r(2)|)| ≥ 10(k − t) + 8. It can be seen that Vi+1 has two
only saturable vertices u3vi+1, u4vi+2 left. It should also be noted that if any of
u3vi+1 and u4vi+2 is saturated, then u3vi+3 can not be saturated in G|r(3)|, a subgrid
of G|r(2)| induced by {Vi+2, Vi+3, · · · , Vm}, with |r(3)| ≡ 2 mod 4. Thus suppose
u3vi+1, u4vi+2 ∈ Vst(G), then |Vst(G)| ≤ 10(k − t) + 4. Likewise, if u3vi+1, u4vi+2 /∈
Vst(G), |Vst(G)| ≤ 10t− 2 + 10(k− t) + 6. The case of u5v(i,i+1) ∈M follows the same
argument as the case of u5v(i−1,i) ∈M .

Figure 1: A Grid G ≡ G5,23 with Max(G) = 28, u(1,2)v1, u(1,2)v4 ∈M of G

Remark 3.4.

(a) In the case of i ≡ 0 mod 4 in Lemma 3.3, M remains a maximum induced
matching when i = 4 or when i = m− 3 as seen in Figure 1 of Max(G) = 28 of
G5,23.
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(b) It should be noted that the case of i ≡ 3 mod 4 has been taken care of by the
case of i ≡ 1 mod 4 by ‘flipping’ the grid from right to left or vice versa.

(c) From Lemma 3.3, we note that if for some induced matching M of G5,m, m ≡ 3
mod 4, u(1,2)vi and u5v(i−1,i) (or u5v(i,i+2)) ∈ M , then M is not a maximal
induced matching of G for any 1 < i < m.

Next we investigate some induced matching M of G5,m if it contains u(1,2)vi and
u(4,5)vi.

Lemma 3.5. Suppose G = G5,m, where m ≥ 23 and m ≡ 3 mod 4. Let u(1,2)vi,-
u(4,5)vi ∈M , an induced matching of G and 1 < i < m, i 6≡ 0 mod 4 then M is not
a maximum induced matching of G.

Proof. Let M be an induced matching of G = G5,m. Suppose that i ≡ 2
mod 4. Let G|m(1)| and G|m(2)| be partitions of G induced by {V1, V2, · · · , Vi} and
{Vi+1, Vi+2, · · · , Vm}. Since u(1,2)vi, u(4,5)v1 ∈ M , then, u3vi is unsaturated. Let

i = 4t + 2, for some positive integer t, by Lemma 3.3, |Vst(G|m(1)|)| = 10t + 4. Now,
only u3vi+1 is saturable on Vi+1. Let G|m(3)| ⊂ G|m(2)|, induced by {Vi+2, · · · , Vm}.
Clearly |m(3)| = |m(2)| − 1 = 4(k− t). Therefore, |Vst(G|m(3)| ∪u3vi)| ≤ 10(k− t) + 1,
which, in fact, is 10(k − t). Thus, |Vst(G)| = 10k + 4.

Now, suppose i ≡ 1 mod 4. Let G|n(1)| be induced by {V1, V2, · · · , Vi} and let
G|n(2)| be induced by {Vi+1, Vi+2, · · · , Vm}. Since |n(1)| = 4t+ 1, it is easy to see that
|n(2)| ≡ 2 mod 4 and hence, |n(2)| = 4(k − t) + 2.
Claim: For M to be maximum, both u3vi−1 and u3vi+1 must be saturated.
Reason: Suppose, say u3vi−1 is not saturated. Then, no vertex on Vi−1 is sat-
urable. Now, let {V1, V2, · · · , Vi−2} induce grid G|n(3)|, with |n(3)| ≡ 3 mod 4.
Then, |Vst(G|n(3)|)| = 10t − 4, and thus, G|n(1)| = 10t. Also, let G|n(4)| be in-
duced by {Vi+2, Vi+3, · · · , Vm}. Since |n(4)| = 4(k − t) + 1, then for G|n(4)| + u5vi+1,
|Vsb[(G|n(4)|) ∪ u3vi+1]| = 10(k − t) + 4. Therefore, |Vst(G)| ≤ 10k + 4. Now suppose
u3v(i−2,i−1) ∈ M and let G|n(5)| be induced by {V1, V2, · · · , Vi−3}, with |n(5)| ≡ 2

mod 4. By Lemma 3.1, |Vst(G|n(5)|)| = 10t− 6. Thus, |Vst(G|n(1)|)| = 10t and there-
fore, |Vst(G)| ≤ 10k + 4, which is less than required number by at least 2. Hence,
M 6= Max(G).

Remark 3.6. Like in Remark 3.4, for i ≡ 0 mod 4, it can be seen that
u(1,2)v1, u(1,2)v4 or u(1,2)vm−3, u(1,2)vm can be in M if M is a maximum induced
matching of G. Also given i ≡ 0 mod 4 and 4 < i < m − 3, for at most one i in
[4,m− 3] for which u(1,2)vi can be a member of maximal M .

Next we investigate the maximality of the induced matching of G = G5,m, m ≡ 3
mod 4.

Lemma 3.7. Let u(1,2)vi, u4v(i−1,i) ∈M or u(1,2)vi, u4v(i,i+1) ∈M , where M is an
induced matching of G, a G5,m grid, m ≡ 3 mod 4, m ≥ 23 and 1 < i < m, i 6≡ 0
mod 4. Then M is not a maximum induced matching of G.
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Proof. Case 1: i ≡ 1 mod 4.
Suppose that m = 4k + 3 and i = 4t + 1, t ≥ 1. Let G|m(1)| and G|m(2)| be two
partitions of G, induced by {V1, V2, · · · , Vi} and {Vi+1, Vi+2, · · · , Vm}, respectively.
Since u(1,2)vi, u4v(i−1,i) ∈M , then there is no other saturated vertex on both of Vi−1
and Vi. Let G|m(3)| ⊂ G|m(1)| be a grid induced by {V1, V2, · · · , Vi−2}. Now, n(3) ≡ 3
mod 4. Therefore, |Vst(G|m(3)|)| = 10t − 4 and hence, |Vst(G|m(1)|)| = 10t. Now,
|m(2)| ≡ 2 mod 4, since u(1,2)vi ∈ M , then u1vi+1 ∈ Vi+1 is unsaturable. From

a previous result, |Vst(G|n(2)|)| = 10(k − t) + 4 and thus, |Vst(G)| = 10k + 4. For
u4v(i,i+1) ∈M , let G|n(1)| and G|n(2)| be induced by G|m(1)|\Vi and G|m(2)|∪Vi. Then,
|n(1)| ≡ 0 mod 4 and |n(2)| = 4(k − t) + 3. It can be seen that on Vi−1, only u3vi−1
and u5vi−1 are saturable vertices.
Claim: Vertices u3vi−1 and u5vi−1 are not saturable for M to be maximal.
Reason: Suppose without loss of generality, that any of u3vi−1 and u5vi−1 is satu-
rated, say u5vi−1. Then u5v(i−2,i−1) ∈M . This implies that v5vi−3 is not saturable

in Vi−3. Now {V1, V2, · · · , Vi−3} induces a grid G(|n(4)|) and |n(4)| ≡ 2 mod 4. Then,
|Vst(G|m(4)|)| = 10t−6 and thus, |Vst(G|n(1)|)| = 10t−4. Now, since |n(2)| = 4(k−t)+3,
|Vst(G|m(2)|)| = 10(k − t) + 6 and therefore, |Vst(G)| = 10k + 2.
Case 2: i ≡ 2 mod 4.
Let G|n(1)| and G|n(2)| be two partitions of G, induced by {V1, V2, · · · , Vi} and
{Vi+1, Vi+2, · · · , Vm} respectively. Since u(1,2)vi and u4v(i−1,i) ∈ M , vertex u5vi ∈
Vsb(G

|n(1)|), and therefore, |VstG|n(1)|| = 10t + 4, where |n(1)| = 4t + 2. Also, only
u3vi+1 and u5vi+1 are saturable on Vi+1. Suppose without loss of generality, that
both u3vi+1 and u5vi+1 are saturated and thus, u3v(i+1,i+2), u5v(i+1,i+2) ∈M . Now,

suppose that G|n(4)| is induced by {Vi+3, Vi+4, · · · , Vm}, with |n(4)| = 4(k− t− 1) + 3.
By following the techniques employed earlier, it can be shown that |Vst(G)| ≤
|Vst(G|n(1)|)|+ |Vst(G|n(2)|)| ≤ 10k + 4. The u4v(i,i+4) case, has the same proof as the
u4v(i−1,i) case.

Figure 2: A G ≡ G5,23 Grid with Max(G) = 28, u1,2vi ∈M, i ≡ 0 mod 4
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Remark 3.8.

(a) There can be only one edge u(1,2)vi ∈M for which M is the maximum induced
matching of G5,m, if M contains u(1,2)vi and u4v(i−1,i) (or u4v(i,i+1)), and in
this case, i ≡ 0 mod 4 as shown in Figure 2.

(b) It should be noted that the proof of the case i ≡ 1 mod 4 in Lemma 3.7 will
hold for i ≡ 3 mod 4 by flipping the grid from right to left.

The previous results and remarks yield the following conclusion.

Corollary 3.9. Suppose that m ≥ 23 and M is the maximum induced matching of G,
some G5,m grid. Then, if for at most some positive integer i, 1 < i < m, u(1,2)vi ∈M ,
then, i ≡ 0 mod 4.

Lemma 3.10. Let M be a matching of G5,m with m ≡ 3 mod 4 and let u(1,2)vi,
u(1,2)vj ∈ M , 1 < i < j < m, such that i ≡ 0 mod 4 and j ≡ 0 mod 4, then M is
not a maximum induced matching of G.

The claim in Lemma 3.10 can easily be proved using earlier techniques and Lemma
3.1 and Remark 3.2.

Remark 3.11. It should be noted from the previous results and from Corollary 3.9
that if M is the maximum induced matching of G5,m, m ≡ 3 mod 4, then at most,
M contains two edges of the form u(1,2)vi, u(1,2)vj and j can only be 4 when i = 1 or
i can only be m− 3 when j = m.

Theorem 3.12. Let M be the maximum induced matching of G, a G5,m grid, with
m ≥ 7, m = 4k + 3 and k ≥ 1. Let M contain u(1,2)v1 and u(1,2)v4 (or u(1,2)vm−3
and u(1,2)vm). Then there are at least 2k + 2 saturated vertices on U1 ⊂ G.

Proof. For u(1,2)v1 and u(1,2)v4 to be in M , either u(4,5)v4 ∈ M or u5v(3,4) ∈ M .

Now, let {V6, V7, · · · , Vm} induce G|m(1)| ⊂ G. Clearly, |m(1)| ≡ 2 mod 4 and
|Vst(G|m(1)|)| = 10k − 4.

Let G|m(1)|\ {u1v6, u1v7, · · · , u1vm} induce G|m(2)| ⊂ G|m(1)|. Then, G|m(2)| is
a G4,m−5 subgraph of G|m(1)|. Now, |Vst(G|m(2)|)| ≤ 8k − 4. Thus for V (U1) ⊂
V (G|m(1)|), |V (U)| ≥ 2k. Thus, U1 contains at least 2k + 2 (i.e. m−1

2 ) saturated
vertices.

Next we investigate G3,m, where m ≡ 3 mod 4.

Lemma 3.13. Suppose that G is a G3,m grid with m ≡ 3 mod 4 and M is an induced
matching of G3,m, with

{
u(1,2)vi, u(1,2)vi+2, u(1,2)vj , u(1,2)vj+2

}
∈ M and i + 2 ≥ j.

Then M is not a maximum induced matching of G.

Proof. Suppose i+ 2 ≥ j. Since m = 4k + 3, |Vsb(G)| = 6k + 5 and |Vst(G)| = 6k + 4.
Thus, G contains at most one FSV vertex. Now from the conditions in the hypothesis,
it is clear that u3vi+1 and u3vj+1 are FSV members in G, which is a contradiction.
Same argument hold if i + 2 = j since both u3vi+1 and u3vi+3 are FSV vertexes in
G.
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Remark 3.14. Suppose that Gn is G3,n, a subgrid of G3,m and induced by
{Vi+1, Vi+2, · · · , Vi+n} and G′ is a subgraph of G, with G′ = Gn + {u3vi, u3vi+n+1},
then the following are easy to verify. For

(a) n ≡ 0 mod 4, |Vst(G′)| ≤ |Vsb(Gn)|+ 2.

(b) n ≡ 1 mod 4, |Vst(G′)| ≤ |Vsb(Gn)|+ 2.

(c) n ≡ 2 mod 4, |Vst(G′)| = |Vsb(Gn)|.

(d) n ≡ 3 mod 4, |Vst(G′)| ≤ |Vsb(Gn)|+ 1.

Lemma 3.15. Let u(1,2)vj , u(1,2)vj+3, u(1,2)vk, u(1,2)vk+3, u(1,2)vl, u(1,2)vl+3 be in M
an induced matching of G a G3,m grid and m ≡ 3 mod 4. Then M is not maximum
induced matching of G.

Proof. Case 1: j + 3 = k and l = k + 3.
Suppose m = 4p + 3 and G|m(1)| is a subgraph of G, induced by {Vj−1, Vj , · · · , Vi+4}.
Then |m(1)| = 12 and u3vj−1, u3vi+4 ∈ FSV . For one of u3vj−1 and u3vi+4 to be
relevant for M to be a maximum induced matching of G, say u3vj−1, then for G|m(2)|,
induced by {V1, V2, · · · , Vj−2}, |Vsb(G|m(2)|)|must be odd, which can only be if j−2 ≡ 3
mod 4. Suppose j − 2 ≡ 3 mod 4, then |Vst(G|m(2)|) + u3vj−1| ≤ |Vsb(G|m(2)|)|+ 1 =
6q + 6, where |m(2)| = 4q + 3, for q ≥ 1, since |m(1)| = 12 and |n(2)| ≡ 3 mod 4.
Now let G|m(3)| = G|m(1)| ∪ G|m(2)|, where |m(3)| = |m(1)| + |m(2)| ≡ 3 mod 4
and G|m(4)| ⊂ G be defined as a subgrid of G induced by {Vi+5, Vi+6, · · · , Vm}.
Clearly, |m(4)| ≡ 0 mod 4. Since |Vsb(G|m(4)|)| = |Vst(G|m(4)|)|, which is even,
then |Vst(G|m(4)| ∪ u3vi+4)| = |Vst(G|m(4)|)| = 6p − 6q − 18. It can be seen that
|Vst(G|m(1)|)\ {u3vj−1, u3vl+4} | = 14. Therefore, |Vst(G)| ≤ 6p + 2 instead of 6p + 4,
and hence a contradiction.
Case 2: j + 3 < k and k + 3 < l.
As in Case 1 and without loss of generality, let j−2 ≡ 3 mod 4 and let G|m(2)| still be
induced by {V1, V2, · · · , Vj−2}. Also, let G|m(4)| be induced by {Vl+5, Vl+6, · · · , Vm},
and set |m(4)| ≡ 3 mod 4. Thus, u3vj−1 and u3vi+4 are both relevant for M to be
a maximum induced matching of G, |Vst(G|m(2)| ∪ Vj−1)| = |Vsb(G|m(2)|)| + 1 and

|Vst(G|m(4)| ∪ Vl+4)| = |Vsb(G|m(4)|)|+ 1. Set G|m(2)| ∪ Vj−1 = G|m(2+)| and G|m(4)| ∪
Vi+4 = G|m(4+)| also let {Vj , Vj+1, Vj+2, Vj+3} and {Vi, Vi+1, Vi+2, Vi+3} induce G|m(5)|

and G|m(6)|, respectively. Furthermore, let G|m(5+)| = G|m(5)| ∪ Vj+4 and G|m(6+)|

contain, say, h columns of Vi in all, where h ≡ 2 mod 4. Therefore, for G|(m(7))| =
G\{G|m(2+)| ∪G|m(4+)| ∪G|m(5+)| ∪G|m(6+)|}, |m(7)| = m − h = b ≡ 1 mod 4. Let
b = 4a + 1, for some positive integer a and let G|m(4)| ⊂ G|m(7)|, where G|m(7)| is
induced by {Vk, Vk+1, Vk2 , Vk+3}. Certainly, u3vk−1, u3vk+4, u3vj+4, u3vl−1 ∈ Vsb(G).

Now, let G|(4)| be induced by {Vk, Vk+1, Vk+2, Vk+3} and G|4
++| be induced by G|(4)|∪

{Vk−1, Vk+4}, with |4 + +| = 6. So, b− 6 ≡ 3 mod 4, which is odd and thus can only
be the sum of an even and an odd positive integer. Therefore, let G|m(8)| and G|m(9)|

be induced by {Vj+5, Vj+6, · · · , Vk−2} and {Vj+5, Vj+6, · · · , Vl−2}, respectively, with
|m(8)|+ |m(9)| = b. Suppose thus, that |m(8)| ≡ 0 mod 4, then, |m(9)| ≡ 3 mod 4
and suppose |m(8)| ≡ 1 mod 4, then |m(9)| ≡ 2 mod 4. For |m(8)| ≡ 0 mod 4, let



14 T.C. Adefokun and D.O. Ajayi

G|m(10)| = G|m(2+)|+|m(5+)| be G|m(2+)| ∪G|m(5+)| and G|m(11)| = G|m(6+)|+|m(4+)| be
G|m(6+)|∪G|m(4+)|, where |m(2+)|+ |m(5+)| = 4q+ 9 and |m(4+)|+ |m(6+)| = 4r+ 9,
where |m(4)| = 4r + 3. Therefore, as defined, b = |m(7)| = 4p− 4q − 4r− 15 and thus
b−6 = 4(p−q−r−6)+3. Set p−q−r−6 = f . Now, for |m(8)| and |m(9)|, if |m(8)| = 4g,
for some positive integer g, then |m(9)| = 4(f − g) + 3. The maximal values of the

subgrid of G is: |Vst(G)| ≤ |Vst(G|m(2+)|∪G|m(5)|)|+ |Vst(G|m(8)|+{u3vj+4, u3vk−1})|
+ |Vst(G|m(4)|)|+ |Vst(G|m(9)|+ {u3vk+4, u3vl−1})|+ |Vst(G|m(6)| ∪G|m(4+)|)| ≤ 6p+ 2,
which is less than 6p + 4 and hence a contradiction. For |m(8)| ≡ 1 mod 4, and
|m(9)| ≡ 2 mod 4, we have |m(8)| = 4g + 1 and hence |m(9)| = 4(f − g) + 2 and
|Vst(G|m(9)| ∪ {u3vk+4, u3vl−1})| = 6(f − g) + 4 and thus, |Vst(G)| ≤ 6p + 2.
Case 3: j + 3 = k or k + 3 = i.
Suppose as in Case 2, j − 2 ≡ 3 mod 4 and m − (i + 4) ≡ 3 mod 4. Let G|n(1)| ⊂
G, a G3,9 subgrid of G be induced by {Vj−1, vj , · · · , Vj+7}. Then for G|n(2)| =
G|m(2)| ∪ G|n(1)|, |n(2)| = |m(2)| + |n(1)|, |n(2)| ≡ 0 mod 4. Likewise, suppose
{Vi−1, Vi, · · · , Vm} induces G|n(3)|, for which |n(3)| ≡ 1 mod 4. If |n(2)| and |n(3)|
are 4q and 4r + 1 respectively, then |n(4)| ≡ 2 mod 4. So far, G|n(4)|, is induced
by {Vi+8, Vi+9, · · · , Vl−2} and by Remark 3.14, |Vst(G|n(4)|) + {u3vj+7, u3vl−1} | =
|Vsb(G|n(4)|)|. By a summation similar to the one at the end of Case 2, |Vst(G)| ≤
|VstG|n(2)||+ |Vst(G|n(4)|)|+ |Vst(G|n(3)|)| ≤ 6p + 2.

Remark 3.16.

(a) By following the technique employed in Lemma 3.15, it can be established that
given u(1,2)vi, u(1,2)vi+2 ∈ M and u(1,2)vj , u(1,2)vj+2 ∈ M of G, a G3,m grid,
m ≡ 3 mod 4, i + 2 ≤ j, then M is not a maximum induced matching of G.

(b) Let M be an induced matching of G, a G3,m grid, and i be some fixed positive
integer. Suppose u(12)v, i + 8(n) ∈M , for all non-negative integer n for which
1 ≤ i + 8(n) ≤ m. Let M be the maximum induced matching of G. Then,

(i) if i > 1, then i− 1 is either 2, 3, 4 or 6;

(ii) if i + 8(n) < m, for the maximum value of n, then m− (i + 8(n)) is either
2, 3, 4 or 6.

Based on the results so far, we note that if M is the maximum induced matching
of G, a G3,m grid, m ≡ 3 mod 4,m ≥ 11, the maximum number of edges of the type
u(1,2)vk that is contained in M , k, a positive integer, is k + 2 when m = 8k + 3 and
k + 3 when m = 8k + 7.

It can be easily established that for H that is a Gk,m grid, with k ≡ 0 mod 4 and
m ≡ 3 mod 4, which is induced by {U1, U2, · · · , Uk}, if M1 is a maximum induced
matching of H, then, the least saturated vertices in Uk is m−1

2 . The next result
describes the positions of the members of M1 in E(H) if Uk contains m−1

2 saturated
vertices.

Lemma 3.17. Let H be a Gk,m grid with k ≡ 0 mod 4 and m ≡ 3 mod 4 and let
Uk contain the least possible, m−1

2 , saturated vertices for which N remains maximum
induced matching of H. Then, for any adjacent vertices v′, v′′ ∈ Uk, edge v′v′′ /∈M .
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Proof. Induced by {U1, U2, · · · , Uk−2} and {Uk−1, Uk} respectively, let G
|m|
1 and

G
|m|
2 be partitions of H with k − 2 ≡ 2 mod 4. It can be seen that |Vst(G|m|1 )| =

|Vsb(G|m|1 )| = km−2m+2
2 . Since |Vst(H)| = km

2 , then |Vst(G|m|2 )| ≤ m−1. Now, let G
|m|
3

be a G1,m subgrid (a Pm path) of H, induced by Uk. By the hypothesis, Uk contains
maximum of m−1

2 saturated vertices. Now, let ukvi, ukvi+1 be adjacent and saturated

vertices of G
|m|
3 . Then there are m−5

2 other saturated vertices on G
|m|
3 . Without loss

of generality, suppose that each of the remaining m−5
2 saturated vertices in G

|m|
3 is

adjacent to some saturated vertex in Uk−1. Now, suppose uk−1vj is a saturable vertex
in Uk−1 and that v ∈ V (H), such that uk−1vj v ∈ M1. Now, v /∈ Uk, since all the
saturable vertices in Uk is saturated. Likewise, suppose v ∈ Uk−1 and then uk−1vj v ∈
E(G

|m|
4 ), where G

|m|
4 is a G1,m subgraph of H induced by Uk−1. Then, clearly, at least

one of uk−1vj and v is adjacent to a saturated vertex in Vst(G
|m|
1 ). Also, suppose that

v ∈ Uk−2, since |Vsb(G|m|1 )| = |Vst(G|m|1 )|, then |Vst(G|m|1 )| = |Vst(G|m|1 + uk−1uj)|.
Hence v ∈ FSV in G

|m|
1 . Therefore, |VstH| ≤ |VstG|m|1 |+ |VstG

|m|
2 | ≤ km−4

2 , which is

a contradiction since |Vst(H)| = km
2 , by [9].

Remark 3.18. The implication of Lemma 3.17 is that for a grid H ′ ⊂ H, which is
induced by {U1, U2, · · · , Uk−2} ⊂ V (H), k − 2 ≡ 2 mod 4, suppose Uk contains the
least possible number of saturated vertices, m−1

2 , then ukv2, ukv4, · · · , ukvm−1 are
saturated as shown in the example in Figure 3, for which k = 4 and m = 7.

Figure 3: A G4,7 Grid with Max(G) = 7

Lemma 3.19. Let G be a G3,m with an induced matching M and G|(9)|, induced
by {Vi, Vi+2, · · · , Vi+8} be a G3,9 subgrid of G. Suppose that M ′ ⊂ M is an induced
matching of G|(9)| such that u(1,2)vi, u(1,2)vi+8 ∈M ′. No other edge u(1,2)vi+t, 1 < t <

i+7 is contained in M ′. Then for G
′|(9)| ⊂ G|(9)|, defined as G|(9)|\U1, |Vsb(G

′|(9)|)| ≤
8.

Proof. Let G|(7)| = G|(9)|\ {{u1vi+1, uivi+2, · · · , u1vi+7} , Vi, Vi+8}. It can be seen
that G|(7)| is a G2,7 subgrid of G|(9)|. Clearly also, G|(7)| ⊂ G

′|(9)|. Since
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u(1,2)vi, u(1,2)vi+8 ∈ M ′, then, u2vi+1 and u2vi+7 can not be saturated. Let Gy
be subgraph of G|(7)|, defined as G|(7)|\ {u2vi+1, u2vi+7}. Now, |V (Gy)| = 12 and

|Vsb(Gy)| can be seen to be at most 6. Thus |Vsb(G
′|(9)|)| = |Vsb(Gy)|+ 2 = 8, since

u2vi and u2vi+8 are saturated in M ′.

Remark 3.20. For U1 ⊂ G|(9)| as defined in Lemma 3.19, U1 contains at least 6
saturated vertices, implying that M ′ contains two edges whose four vertices are from
U1.

Corollary 3.21. Let G be a G3,m grid with m ≥ 11 and m ≡ 3 mod 4. If M ′ is a
maximum induced matching of G. Then M ′ contains at least 2k′ edges from U1, where
m = 8k′ + 3 or m = 8k′ + 7.

Figure 4: A G ≡ G3,23 Grid with Max(G) = 17

Figure 5: A G ≡ G3,19 Grid with Max(G) = 14

Theorem 3.22. Let G be a Gn,m grid, with m ≥ 23. Then for n ≡ 1 mod 4,
Max(G) ≤

⌊
2mn−m−3

8

⌋
.

Proof. For n ≡ 1 mod 4, n − 5 ≡ 0 mod 4. Let G1 and G2 be partitions of G
induced by {U1, U2, · · · , Un−5} and {Un−4, Un−3, Un−2, Un−1, Un} respectively. Also,
let M ′,M ′′ be maximum induced matching of G1 and G2 respectively.

Suppose, Un−5 contains at least m−1
2 saturated vertices, the least Un−5 can contain

for M ′ to remain maximum induced matching of G1. By Theorem 3.12, U1 ⊂ G2 (the
Un−4 of G) contains at least 2k + 2 saturated vertices with k = m−3

4 . Following the
proof of Theorem 3.12, it is shown that M ′′ contains m−3

4 edges of U1 ⊂ G2 and either
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of u(1,2)v4 and u(1,2)vm−3. Now, with G = G′ ∪G′′ and hence, |M | ≤ |M ′|+ |M ′′|, it
is obvious therefore, that for each edge uαuβ ∈ Un−4 contained in M ′′, either uα or uβ
is adjacent to a saturated vertex on Un−5 and also, un−4v4 (or un−4vm−3) is adjacent
to saturated un−5v4 (or to saturated un−4vm−3). Hence, |Vst(G)| ≤ 2mn−m−7

4 and
thus, Max(G) ≤

⌊
2mn−m−7

8

⌋
.

Theorem 3.23. Let G be a Gn,m grid with n ≡ 3 mod 4 and m ≡ 3 mod 4, m ≥ 11.
Then Max(G) ≤

⌊
2mn−m+1

8

⌋
and Max(G) ≤

⌊
2mn−m+5

8

⌋
for m = 8k′ + 3 and

m = 8k′ + 7 respectively.

Proof. The proof follows similar techniques as in Theorem 3.22.
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1. Introduction

It is well known that functional integral equations of different types find numerous
applications in modeling real world problems which appear in physics, engineering,
biology, etc, see for example [1, 3, 6, 13, 14, 16, 17, 20]. Apart from that, integral
equations are often investigated in monographs and research papers (cf. [5, 11, 15,
17, 23, 24]) and the references cited therein.

In [5], the authors discussed the solvability of the Urysohn integral equation

x(t) = f(t) +

∫ ∞
0

u(t, s, x(s)) ds,
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while the authors in [3] studied the existence of integrable solutions of the following
integral equation

x(t) = f1

(
t,

∫ t

0

k(t, s)f2(s, x(s)) ds

)
.

In [2], the authors studied the solvability of the functional integral equation

x(t) = f

(
t, x(α(t)),

∫ β(t)

0

g(t, s, x(γ(s))) ds

)
, t ≥ 0

in the space BC(R+) (the space of all continuous and bounded functions on R+).
The authors in [4] studied the nonlinear integral equation

x(t) = p(t) +

∫ t

0

v(t, s, x(s)) ds, t ≥ 0

by using a combination of the technique of weak noncompactness and the classical
Schauder fixed point principle. Also, Banaś and Knap [7] discussed the solvability
of the equations considered in the space of Lebesgue integrable functions using the
technique of measures of weak noncompactness and the fixed point theorem due to
Emmanuel [19].

In addition in [22], the authors study the functional integral equation of convolu-
tion type

x(t) = f(t, x(t)) +

∫ ∞
0

k(t− s)Q(s)ds

using a new construction of a measure of noncompactness in Lp(R+).
Motivated by the work [22], in this paper, we will study the existence of solutions

to the following more general functional integral equation

x(t) = f1(t, x(t)) + f2

(
t,

∫ ∞
0

k(t− s)Q(x)(s)ds

)
, t ∈ R+. (1.1)

Throughout f1, f2 : R+ × R → R, k ∈ L1(R) and Q is an operator which acts
continuously from the space Lp(R+) onto itself.

2. Notation and Auxiliary Facts

We will collect in this section some definitions and basic results which will be used
further on throughout the paper.

First, we denote by Lp(R+) the space of Lebesgue integrable functions on R+

equipped with the standard norm ‖x‖pp =
∞∫
0

|x(t)|pdt.

Theorem 2.1. ([10, 21]) Let F be a bounded set in Lp(RN ) with 1 ≤ p <∞. Then,
F has a compact closure in Lp(RN ) if and only if lim

h→0
‖τhf − f‖p = 0 uniformly in

f ∈ F , where τhf(x) = f(x+ h) for all x ∈ RN .
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In addition, for ε > 0, there is a bounded and measurable subset Ω of RN such
that ‖f‖Lp(RN\Ω) < ε for all f ∈ F .

Corollary 2.2. Let F be a bounded set in Lp(R+) with 1 ≤ p <∞. The closure of F
in Lp(R+) is compact if and only if lim

h→0

(∫∞
0
|f(x)− f(x+ h)|pdx

) 1
p = 0 uniformly

in f ∈ F .

In addition, for ε > 0, there is a constant T > 0 such that
(∫∞
T
|f(x)|pdx

) 1
p < ε, for

all f ∈ F .

Next, we recall some basic facts concerning measures of noncompactness, [8, 9].
Let us assume that E is Banach space with norm ‖.‖ and zero element θ. Denote by
ME the family of all nonempty and bounded subsets of E and by NE its subfamilies
consisting of all relatively compact sets. For a subset X of R, the symbol X stands
for the closure of X and the symbol coX denotes the convex closed hull of X. By
B(x, r), we mean the ball centered at x and of radius r.

Definition 2.3. A mapping µ : ME → R+ is said to be a measure of noncompactness
in E if it satisfies the following conditions:

1) The family of kernel of µ defined by kerµ = {X ∈ME : µ(X) = 0} is nonempty
and kerµ ⊂ NE .

2) X ⊂ Y ⇒ µ(X) ≤ µ(Y ).

3) µ(X) = µ(coX) = µ(X).

4) µ(λX + (1− λ)Y ) ≤ λ µ(X) + (1− λ) µ(Y ) for 0 ≤ λ ≤ 1.

5) If Xn ∈ME , Xn = Xn, Xn+1 ⊂ Xn for n = 1, 2, 3, ... and if lim
n→∞

µ(Xn) = 0

then ∩∞n=1Xn 6= φ.

In the following, we fix ∅ 6= X ⊂ Lp(R+) bounded, ε > 0, and T > 0. For arbitrary
function x ∈ X, we let

w(x, ε) = sup

{(∫ ∞
0

|x(t+ h)− x(t)|pdt
) 1

p

: |h| < ε

}
,

w(X, ε) = sup {w(x, ε) : x ∈ X}

and
w0(X) = lim

ε→0
w(X, ε).

Also, let

dT (X) = sup

{(∫ ∞
T

|x(s)|pds
) 1

p

: x ∈ X

}
and

d(X) = lim
T→∞

dT (X).
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Then, the function µ :MLp(R+) → R given by µ(X) = w0(X) + d(X) is a measure of
noncompactness on Lp(R+), [22].

In the end of this section, we state Darbo’s fixed point theorem which play an
important role in carrying out the proof of our main result.

Theorem 2.4. [12] Let Ω be a nonempty, bounded, closed, and convex subset of a
Banach space E, and let F : Ω → Ω be a continuous mapping such that a constant
k ∈ [0, 1) exists with the property

µ(FX) ≤ kµ(X),

for any nonempty subset X of Ω. Then F has a fixed point in the set Ω.

3. Main Results

In this section, we study the existence of solutions to Eq.(1.1) in the space Lp(R+).
We consider equation (1.1) under the following assumptions:

(a0) fi(·, 0) ∈ Lp(R+), i = 1, 2.

(a1) The functions fi : R+ × R → R, i = 1, 2, satisfy Carathéodory conditions and
there exist constant λi ∈ [0, 1) and ai ∈ Lp(R+) such that

|fi(t, x)− fi(s, y)| ≤ |ai(t)− ai(s)|+ λi(|x− y|)

for almost all t, s ∈ R+ and x, y ∈ R.

(a2) k ∈ L1(R).

Notice that, under this hypothesis, the linear operator K : Lp(R+) → Lp(R+)

is given by (Kx)(t) =
∞∫
0

k(t − s)x(s) ds and it is a continuous operator and

‖Kx‖p ≤ ‖k‖L1(R)‖x‖p.

(a3) The operator Q maps continuously the space Lp(R+) onto itself and there ex-
ists a constant b ∈ R+ such that λ1 + λ2b‖k‖Lp(R) < 1 and ‖Qx‖Lp[T,∞) ≤
b‖x‖Lp[T,∞) for any x ∈ Lp(R+) and T ∈ R+.

Now, we are in a position to present our main result.

Theorem 3.1. Under the assumptions (a0)− (a3), Eq.(1.1) has at least one solution
x ∈ Lp(R+).

Proof: First of all, we define the operator F : Lp(R+)→ Lp(R+), by

F (x)(t) = f1(t, x(t)) + f2

(
t,

∫ ∞
0

k(t− s)Q(x)(s)ds

)
. (3.1)
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It is clear that Fx is measurable for any x ∈ Lp(R+), thanks to Carathéodory con-
ditions. Next, claim that Fx ∈ Lp(R+) for any x ∈ Lp(R+). To establish this claim,
we use the assumptions (a0)− (a3), for a.e. t ∈ R+, then, we have

|F (x)(t)| ≤ |f1(t, x)− f1(t, 0)|+ |f1(t, 0)|

+

∣∣∣∣f2

(
t,

∫ ∞
0

k(t− s)Q(x)(s)ds

)
− f2(t, 0)

∣∣∣∣+ |f2(t, 0)|

≤ λ1‖x‖p + ‖f1(·, 0)‖p + ‖f2(·, 0)‖p + λ2b‖k‖L1(R)‖x‖p,

where we have used Young’s inequality. Therefore, we obtain

‖Fx‖p ≤ λ1‖x‖p + ‖f1(·, 0)‖p + ‖f2(·, 0)‖p + λ2b‖k‖L1(R)‖x‖p. (3.2)

Hence, F (x) ∈ Lp(R+) and F is well defined. Moreover, from (3.2), we have

F (Br0) ⊂ Br0 , where r0 =
‖f1(·,0)‖p+‖f2(·,0)‖p
1−λ1−λ2b‖k‖L1(R)

. Also, F is continuous in Lp(R+) be-

cause f1(t, ·), f2(t, ·), K and Q are continuous for a.e. t ∈ R+.

Further, we will show that w0(FX) ≤ (λ1 + λ2b‖k‖L1(R)w0(X) for any set

∅ 6= X ⊂ Br0 . For, we fix an arbitrary ε > 0 and we choose x ∈ X and t, h ∈ R+

with |h| ≤ ε. Then, we have

|(Fx)(t)− (Fx)(t+ h)|
≤ |f1(t, x(t)− f1(t+ h, x(t))|+ |f1(t+ h, x(t)− f1(t+ h, x(t+ h))|

+

∣∣∣∣f2

(
t,

∫ ∞
0

k(t− s)Q(x)(s)ds

)
− f2

(
t+ h,

∫ ∞
0

k(t− s)Q(x)(s)ds

)∣∣∣∣
+

∣∣∣∣f2

(
t+ h,

∫ ∞
0

k(t− s)Q(x)(s)ds

)
− f2

(
t+ h,

∫ ∞
0

k(t+ h− s)Q(x)(s)ds

)∣∣∣∣
≤ |a1(t)− a1(t+ h)|+ λ1|x(t)− x(t+ h)|+ |a2(t)− a2(t+ h)|

+λ2

∣∣∣∣∫ ∞
0

(k(t− s)− k(t+ h− s))Q(x)(s)ds

∣∣∣∣ .
Therefore,

(∫ ∞
0

|(Fx)(t)− (Fx)(t+ h)|pdt
) 1

p

≤
(∫ ∞

0

|a1(t)− a1(t+ h)|pdt
) 1

p

+ λ1

(∫ ∞
0

|x(t)− x(t+ h)|pdt
) 1

p

+

(∫ ∞
0

|a2(t)− a2(t+ h)|pdt
) 1

p
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+λ2

(∫ ∞
0

|
∫ ∞

0

(k(t− s)− k(t+ h− s))Q(x)(s)ds|pdt
) 1

p

≤
(∫ ∞

0

|a1(t)− a1(t+ h)|pdt
) 1

p

+ λ1

(∫ ∞
0

|x(t)− x(t+ h)|pdt
) 1

p

+

(∫ ∞
0

|a2(t)− a2(t+ h)|p dt
) 1

p

+ λ2‖Qx‖p
∫
R

|k(t)− k(t+ h)|dt

≤ w(a1, ε) + λ1w(x, ε) + w(a2, ε) + λ2‖Qx‖p‖k − τhk‖L1(R).

From the above inequalities, we get

w(FX, ε) ≤ w(a1, ε) + λ1w(X, ε) + w(a2, ε) + λ2br0‖k − τhk‖L1(R).

Since {a1} and {a2} are compact sets in Lp(R+) and {k} is a compact set in L1(R),
we have w(a1, ε)→ 0, w(a2, ε)→ 0 and ‖k − τhk‖L1(R) → 0 as ε→ 0. Then, we get

w0(FX) ≤ λ1w0(X) ≤ (λ1 + λ2b‖k‖L1(R))w0(X). (3.3)

In the following, we fix an arbitrary number T > 0. Then, for an arbitrary function
x ∈ X, we obtain(∫ ∞

T

|F (x)(t)|pdt
) 1

p

≤
(∫ ∞

T

|f1(t, x)− f1(t, 0)|pdt
) 1

p

+

(∫ ∞
T

|f1(t, 0)|pdt
) 1

p

+

(∫ ∞
T

|f2(t,

∫ ∞
0

k(t− s)Q(x)(s)ds)− f2(t, 0)|pdt
) 1

p

+

(∫ ∞
T

|f2(t, 0)|pdt
) 1

p

≤ λ1

(∫ ∞
T

|x(t)|pdt
) 1

p

+

(∫ ∞
T

|f1(t, 0)|pdt
) 1

p

+λ2b‖k‖L1(R)

(∫ ∞
T

|x(t)|pdt
) 1

p

+

(∫ ∞
T

|f2(t, 0)|pdt
) 1

p

.

Since {f1(t, 0)} and {f2(t, 0)} are compact in Lp(R+), then, as T → 0, we obtain(∞∫
T

|f1(t, 0)|pdt
) 1

p

→ 0 and

(∞∫
T

|f2(t, 0)|pdt
) 1

p

→ 0. Therefore,

d(FX) ≤ (λ1 + λ2b‖k‖L1(R))d(X). (3.4)

From (3.3) and (3.4), we get

µ(FX) ≤ (λ1 + λ2b‖k‖L1(R))µ(X). (3.5)

By (3.5) and Theorem 2.4, we deduce that the operator F has a fixed point x in Br0
and consequently, Eq.(1.1) has at least one solution in Lp(R+).



On the Existence of Solutions of a Functional Integral Equation 25

4. Example

Consider the functional integral equation

x(t) =
t

t3 + 1
+

1

4
ln(1 + x2) +

3

4

∫ ∞
0

(t− s)e−(t−s)|x(s)|ds. (4.1)

In our example, the functions f1(t, x) and f2(t, x) are given by

f1(t, x) =
t

t3 + 1
+

1

4
ln(1 + x2)

and

f2(t, x) =
3

4
x.

It is clear that for i = 1, 2, fi : R+ × R→ R satisfies assumption (a0). In fact we

have a1(t) =
t

t3 + 1
, λ1 = 1

4 , a2(t) = 0 and λ2 = 3
4 .

Indeed by using the Mean Value Theorem, we have

|f1(t, x)− f1(s, y)| ≤
∣∣∣∣ t

t3 + 1
− s

s3 + 1

∣∣∣∣+
1

4
|x− y|.

Furthermore we have

|f2(t, x)− f2(s, y)| ≤ 3

4
|x− y| .

It is easy to see that assumption (a1) is satisfied.

In our example, the function k(t) takes the form

k(t) = te−t.

In fact assumption (a2) is satisfied and by [3] ‖k‖L1(R+) ≤ 1√
e
.

In our example, the operator Q is defined by

(Qx)(t) = [|x(t)|].

Q satisfies assumption (a3) and we have if b = 1

λ1 + λ2b‖k‖L1(R+) ≤
1

4
+

3

4
√
e
≤ 1.

Now, by Theorem 3.1, our functional integral equation (4.1) has a solution belonging
to L1(R+).
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1. Introduction

Cubic integral equations have several useful applications in modeling numerous prob-
lems and events of the real world (cf. [3, 8, 9, 12, 13, 18, 19]).

In this paper we consider the cubic Urysohn integral equation with linear pertur-
bation of second kind

x(τ) = φ(τ) + ϕ(τ, x(τ)) + x2(τ)

∫ 1

0

u(τ, s, (Λx)(s)) ds, τ ∈ I = [0, 1]. (1.1)

In the above equation, we consider φ : I → R, ϕ : I × R→ R, u : I × I × R→ R are
given functions and Λ : C(I)→ C(I) is an operator verifies special assumption which
will state in Section 3.

Eq.(1.1) is of interest since it contains many includes several integral equations
studied earlier as special cases, see [1, 2, 6, 7, 10, 11, 14, 15, 16, 20, 21, 22] and
references therein. By using the measure of noncompactness related to monotonicity
associated with fixed point theorem due to Darbo, we show that Eq.(1.1) has at least
one solution in C(I) which is nondecreasing on the interval I.
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2. Auxiliary Facts and Results

In this section, we present some definitions and results which we will use further on.
Let (E, ‖·‖) be a real Banach space with zero element 0. Let B(x, r) be the closed

ball centered at x with radius r. We denote by Br the closed ball B(0, r). Next, let
X be a subset of E, we denote by X and ConvX the closure and convex closure of X,
respectively. We use the symbols λX and X + Y for the usual algebraic operations
on the sets. Moreover, the symbol ME stands for the family of all nonempty and
bounded subsets of E and the symbol NE stands for its subfamily consisting of all
relatively compact subsets.

Now, we state the definition of a measure of noncompactness [4]:

Definition 2.1. A function µ : ME → R+ is called a measure of noncompactness in
E if it verifies the following assumptions:

(1) The family kerµ 6= ∅ and kerµ ⊂ NE , where kerµ = {X ∈ME : µ(X) = 0}.

(2) µ(X) ≤ µ(Y ), if X ⊂ Y .

(3) µ(X) = µ(X) and µ(ConvX) = µ(X).

(4) µ(λX + (1− λ)Y ) ≤ λµ(X) + (1− λ)µ(Y ), 0 ≤ λ ≤ 1.

(5) If Xn ∈ ME , Xn = Xn, Xn+1 ⊂ Xn for n = 1, 2, 3, ... and lim
n→∞

µ(Xn) = 0,

then ∩∞n=1Xn 6= ∅.

Notice that kerµ is said to be the kernel of the measure of noncompactness µ.
In the following, we will work in the Banach space C(I) of all real functions defined

and continuous on I = [0, 1] equipped with the standard norm ‖x‖ = max{|x(τ)| :
τ ∈ I}. We recall the measure of noncompactness in C(I) which we will need in the
next section (see [5]).

Let ∅ 6= X ⊂ C(I). For x ∈ X and ε ≥ 0 we denote by ω(x, ε) the modulus of
continuity of the function x as follows

ω(x, ε) = sup{|x(τ)− x(t)| : τ, t ∈ I, |τ − t| ≤ ε}.

Next, we put ω(X, ε) = sup{ω(x, ε) : x ∈ X} and ω0(X) = lim
ε→0

ω(X, ε). Moreover,

we define
d(x) = sup{|x(τ)− x(t)| − [x(τ)− x(t)] : τ, t ∈ I, τ ≥ t}

and
d(X) = sup{d(x) : x ∈ X}.

Notice that d(X) = 0 if and only if all functions belonging to X are nondecreasing
on I.

Finally, we define the function µ on the family MC(I) as follows

µ(X) = ω0(X) + d(X).
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Notice that the function µ is a measure of noncompactness in C(I) [5].
We present a fixed point theorem due to Darbo [17] which we will need in the

proof of our main result. First, we make use of the following definition.

Definition 2.2. Let ∅ 6= M be a subset of a Banach space E and let P : M → E
be a continuous mapping which maps bounded sets onto bounded sets. The operator
P satisfies the Darbo condition (with a constant κ ≥ 0) with respect to a measure of
noncompactness µ if for any bounded subset X of M we have

µ(PX) ≤ κµ(X).

If P verifies the Darbo condition with κ < 1 then it is a contraction operator with
respect to µ.

Theorem 2.3. Let ∅ 6= Ω be a closed, bounded and convex subset of the space E and
let P : Ω→ Ω be a contraction mapping with respect to the measure of noncompactness
µ.
Then P has a fixed point in the set Ω.

Notice that the assumptions of the above theorem gives us that the set FixP of
all fixed points of P belongs to Ω is an element of kerµ [4].

3. The Main Result

We consider Eq.(1.1) and assume that the following assumptions are verified:

(a1) The function φ : I → R is continuous, nonnegative and nondecreasing on I.

(a2) The function ϕ : I × R→ R is continuous, ϕ : I × R+ → R+ and

∃ c ≥ 0 : |ϕ(τ, x1)− ϕ(τ, x2)| ≤ c|x1 − x2| ∀ (x1, x2) ∈ R2 & τ ∈ I.

(a3) The superposition operator Φ generated by the function ϕ satisfies for any
nonnegative function x the condition d(Φx) ≤ cd(x), where c is the same c
appears in assumption (a2).

(a4) The function u : I × I × R → R is a continuous, u : I × I × R+ → R+ and for
arbitrary fixed t ∈ I and x ∈ R the function τ → u(τ, t, x) is nondecreasing on I.
Moreover,

∃ Ψ : R+ → R+(nondecreasing) : |u(τ, t, x)| ≤ Ψ(|x|) ∀ (τ, t) ∈ I2 & x ∈ R.

(a5) The operator Λ : C(I)→ C(I) is continuous and

∃ ψ : R+ → R+(nondecreasing) : |(Λx)(τ)| ≤ ψ(‖x‖) for any τ ∈ I, x ∈ C(I).

Moreover, for every nonnegative function x ∈ C(I), the function Λx is nonneg-
ative and nondecreasing on I.
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(a6) The inequality
‖φ‖+ cr + ϕ∗ + r2Ψ(ψ(r)) ≤ r (3.1)

has a positive solution r0 such that c+2r0Ψ(ψ(r0)) < 1, where ϕ∗= max
0≤τ≤1

ϕ(τ, 0).

Under the above assumptions, we state our main result as follows.

Theorem 3.1. Let the assumptions (a1) − (a6) be verified, then the cubic Urysohn
integral equation (1.1) has at least one solution x ∈ C(I) which is nondecreasing on I.

Proof. Let F be an operator defined on C(I) by

(Fx)(τ) = φ(τ) + ϕ(τ, x(τ)) + x2(τ)(Ux)(t), (3.2)

where U is the Urysohn integral operator

(Ux)(τ) =

∫ 1

0

u(τ, t, (Λx)(t)) dt. (3.3)

For better readability, we will write the proof in seven steps.

Step 1: F maps the space C(I) into itself.

Notice that for a given x ∈ C(I), according to assumptions (a1) − (a5), we have
Fx ∈ C(I). Therefore, the operator F maps C(I) into itself.

Step 2: F maps the ball Br0 into itself.

For all τ ∈ I, we have

|(Fx)(τ)| ≤
∣∣∣∣φ(τ) + ϕ(τ, x(τ)) + x2(τ)

∫ 1

0

u(τ, t, (Λx)(t)) dt

∣∣∣∣
≤ |φ(τ)|+ |ϕ(τ, x(τ))− ϕ(τ, 0)|+ |ϕ(τ, 0)|

+|x2(τ)|
∫ 1

0

|u(τ, t, (Λx)(t))| dt

≤ ‖φ‖+ c‖x‖+ ϕ∗ + ‖x‖2Ψ(ψ(‖x‖))
∫ 1

0

ds

= ‖φ‖+ c‖x‖+ ϕ∗ + ‖x‖2Ψ(ψ(‖x‖)).

From the above estimate, we get

‖Fx‖ ≤ ‖φ‖+ c‖x‖+ ϕ∗ + ‖x‖2Ψ(ψ(‖x‖)).

Therefore, if we have ‖x‖ ≤ r0, we obtain

‖Fx‖ ≤ ‖φ‖+ cr0 + ϕ∗ + r20Ψ(ψ(r0)) ≤ r0,

in view of the assumption (a6). Consequently, the operator F maps the ball Br0 into
itself.
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Further, let B+
r0 be the subset of Br0 given by

B+
r0 = {x ∈ Br0 : x(τ) ≥ 0, for τ ∈ I}.

Notice that, the set ∅ 6= B+
r0 is closed, bounded and convex.

Step 3: F maps continuously the ball B+
r0 into itself.

In view of the above facts about B+
r0 and assumptions (a1)− (a4), we infer that F

maps the set B+
r0 into itself.

Step 4: The operator F is continuous on B+
r0 .

To establish this, let us fix arbitrarily ε > 0 and y ∈ B+
r0 . By assumption (a4),

we can find δ > 0 such that for arbitrary x ∈ B+
r0 with ‖x − y‖ ≤ δ we have that

‖Λx− Λy‖ ≤ ε. Indeed, for each τ ∈ I we have

|(Fx)(τ)− (Fy)(τ)|
≤ |ϕ(τ, x(τ))− ϕ(τ, y(τ))|

+

∣∣∣∣x2(τ)

∫ 1

0

u(τ, t, (Λx)(t)) dt− y2(τ)

∫ 1

0

u(τ, t, (Λy)(t)) dt

∣∣∣∣
≤ c|x(τ)− y(τ)|+

∣∣∣∣x2(τ)

∫ 1

0

u(τ, t, (Λx)(t)) dt− y2(τ)

∫ 1

0

u(τ, t, (Λx)(t)) dt

∣∣∣∣
+

∣∣∣∣y2(τ)

∫ 1

0

u(τ, t, (Λx)(t)) dt− y2(τ)

∫ 1

0

u(τ, t, (Λy)(t)) dt

∣∣∣∣
≤ c|x(τ)− y(τ)|+ |x2(τ)− y2(τ)|

∫ 1

0

|u(τ, t, (Λx)(t))| dt

+|y2(τ)|
∫ 1

0

|u(τ, t, (Λx)(t))− u(τ, t, (Λy)(t))| dt.

Therefore, we have

‖Fx− Fy‖ ≤ c‖x− y‖+ 2r0Ψ(ψ(r0))‖x− y‖+ r20ω
∗(u, ε), (3.4)

where we denoted

ω∗(u, ε) = sup{|u(τ, t, x)− u(τ, t, y)| : τ, t ∈ I, x, y ∈ [0, ψ(r0)], |x− y| ≤ ε}.

From assumption (a4) we infer that ω∗(u, ε)→ 0 as ε→ 0 and therefore, the operator
F is continuous in B+

r0 .

Step 5: An estimate of F with respect to the term related to continuity ω0.

Let ∅ 6= X ⊂ B+
r0 , fix an arbitrarily number ε > 0 and choose x ∈ X and τ1, τ2 ∈ I

such that |τ2 − τ1| ≤ ε. Without restriction of the generality, we may assume that
τ1 ≤ τ2. In the view of our assumptions, we have
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|(Fx)(τ2)− (Fx)(τ1)|
≤ |φ(τ2)− φ(τ1)|+ |ϕ(τ2, x(τ2))− ϕ(τ1, x(τ1))|

+
∣∣x2(τ2) (Ux)(τ2)− x2(τ2) (Ux)(τ1)

∣∣
+
∣∣x2(τ2) (Ux)(τ1)− x2(τ1) (Ux)(τ1)

∣∣
≤ ω(φ, ε) + |ϕ(τ2, x(τ2))− ϕ(τ1, x(τ2))|+ |ϕ(τ1, x(τ2))− ϕ(τ1, x(τ1))|
+
∣∣x2(τ2)

∣∣ |(Ux)(τ2)− (Ux)(τ1)|+
∣∣x2(τ2)− x2(τ1)

∣∣ |(Ux)(τ1)|
≤ ω(φ, ε) + γr0(ϕ, ε) + c ω(x, ε) + |x(τ2)|2 |(Ux)(τ2)− (Ux)(τ1)|

+ |x(τ2)− x(τ1)| |x(τ2) + x(τ1)| |(Ux)(τ1)|
≤ ω(φ, ε) + γr0(ϕ, ε) + c ω(x, ε)

+‖x‖2
∫ 1

0

|u(τ2, t, (Λx)(t))− u(τ1, t, (Λx)(t))| dt+ 2‖x‖ω(x, ε)Ψ(ψ(‖x‖))

≤ ω(φ, ε) + γr0(ϕ, ε) + c ω(x, ε) + ‖x‖2ωψ(‖x‖)(u, ε) + 2‖x‖ω(x, ε)Ψ(ψ(‖x‖)),

where we denoted

γr0(ϕ, ε) = sup {|ϕ(τ2, x)− ϕ(τ1, x)| : τ1, τ2 ∈ I, x ∈ [0, r0], |τ2 − τ1| ≤ ε}

and

ωb(u, ε) = sup {|u(τ2, t, y)− u(τ1, t, y)| : t, τ1, τ2 ∈ I, y ∈ [0, b], |τ2 − τ1| ≤ ε} .

Hence,

ω(Fx, ε) ≤ ω(φ, ε) + γr0(ϕ, ε) + c ω(x, ε) + r20ωψ(r0)(u, ε) + 2r0ω(x, ε)Ψ(ψ(r0)).

Consequently,

ω(FX, ε) ≤ ω(φ, ε) + γr0(ϕ, ε) + (c+ 2r0Ψ(ψ(r0))) ω(X, ε) + r20ωψ(r0)(u, ε).

Since the function φ is continuous on I, the function ϕ is uniformly continuous on
I × [0, r0] and the function u is uniformly continuous the set I × I × [0, ψ(r0)], then
we obtain

ω0(FX) ≤ (c+ 2r0Ψ(ψ(r0))) ω0(X). (3.5)

Step 6: An estimate of F with respect to the term related to monotonicity d.

Fix an arbitrary x ∈ X and τ1, τ2 ∈ I with τ2 > τ1. Then, taking into account
our assumption, we get

|(Fx)(τ2)− (Fx)(τ1)| − ((Fx)(τ2)− (Fx)(τ1))

=

∣∣∣∣φ(τ2) + ϕ(τ2, x(τ2)) + x2(τ2)

∫ 1

0

u(τ2, t, (Λx)(t)) dt
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−φ(τ1)− ϕ(τ1, x(τ1))− x2(τ1)

∫ 1

0

u(τ1, t, (Λx)(t)) dt

∣∣∣∣
−
(
φ(τ2) + ϕ(τ2, x(τ2)) + x2(τ2)

∫ 1

0

u(τ2, t, (Λx)(t)) dt

−φ(τ1)− ϕ(τ1, x(τ1))− x2(τ1)

∫ 1

0

u(τ1, t, (Λx)(t)) dt

)
≤ [|φ(τ2)− φ(τ1)| − (φ(τ2)− φ(τ1))]

+ [|ϕ(τ2, x(τ2))− ϕ(τ1, x(τ1))| − (ϕ(τ2, x(τ2))− ϕ(τ1, x(τ1)))]

+

∣∣∣∣x2(τ2)

∫ 1

0

u(τ2, t, (Λx)(t)) dt− x2(τ1)

∫ 1

0

u(τ2, t, (Λx)(t)) dt

∣∣∣∣
+

∣∣∣∣x2(τ1)

∫ 1

0

u(τ2, t, (Λx)(t)) dt− x2(τ1)

∫ 1

0

u(τ1, t, (Λx)(t)) dt

∣∣∣∣
−
(
x2(τ2)

∫ 1

0

u(τ2, t, (Λx)(t)) dt− x2(τ1)

∫ 1

0

u(τ2, t, (Λx)(t)) dt

)
−
(
x2(τ1)

∫ 1

0

u(τ2, t, (Λx)(t)) dt− x2(τ1)

∫ 1

0

u(τ1, t, (Λx)(t)) dt

)
≤ |ϕ(τ2, x(τ2))− ϕ(τ1, x(τ1))| − (ϕ(τ2, x(τ2))− ϕ(τ1, x(τ1)))

+
[
|x2(τ2)− x2(τ1)| − (x2(τ2)− x2(τ1))

] ∫ 1

0

u(τ2, t, (Λx)(t)) dt

+x2(τ1)

[∣∣∣∣∫ 1

0

u(τ2, t, (Λx)(t)) dt−
∫ 1

0

u(τ1, t, (Λx)(t)) dt

∣∣∣∣
−
(∫ 1

0

u(τ2, t, (Λx)(t)) dt−
∫ 1

0

u(τ1, t, (Λx)(t)) dt

)]
≤ d(Φx) + 2‖x‖Ψ(ψ(‖x‖))d(x).

The above estimate gives us that

d(Fx) ≤ cd(x) + 2r0Ψ(ψ(r0))d(x),

and consequently,

d(FX) ≤ (c+ 2r0Ψ(ψ(r0)))d(X). (3.6)

Step 7: F is a contraction with respect to the measure of noncompactness µ.

By adding (3.5) and (3.6), we get

ω0(FX) + d(FX) ≤ (c+ 2r0Ψ(ψ(r0)))ω0(X) + (c+ 2r0Ψ(ψ(r0)))d(X)

or

µ(FX) ≤ (c+ 2r0Ψ(ψ(r0)))µ(X).
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Since c + 2r0Ψ(ψ(r0)) < 1, then the operator F is contraction with respect to the
measure of noncompactness µ.

Finally, Theorem 2.3 guarantees that Eq.(1.1) has at least one solution x ∈ C(I)
which is nondecreasing on I. This completes the proof.

4. Example

Let us consider the cubic Urysohn integral equation

x(τ) =

√
τ

8
+
τx(τ)

1 + τ2
+
x2(τ)

4

∫ 1

0

arctan

(
τ
∫ t
0
sx2(s) ds

1 + t2

)
dt. (4.1)

Here, φ(τ) =
√
τ
8 and this function verifies assumption (a1) and ‖φ‖ = 1/8. Also,

ϕ(τ, x) = τx
1+τ2 and this function verifies assumption (a2) with

|ϕ(τ, x)− ϕ(τ, y)| ≤ 1

2
|x− y| ∀ t ∈ I & (x, y) ∈ R2.

Moreover, the function ϕ verifies assumption (a3). Indeed, for arbitrary nonnegative
function x ∈ C(I) and τ1, τ2 ∈ I with τ1 ≤ τ2, we have

d(Φx) = |(Φx)(τ2)− (Φx)(τ1)| − ((Φx)(τ2)− (Φx)(τ1))

= |ϕ(τ2, x(τ2))− ϕ(τ1, x(τ1))| − (ϕ(τ2, x(τ2))− ϕ(τ1, x(τ1)))

=

∣∣∣∣ τ2
1 + τ22

x(τ2)− τ1
1 + τ21

x(τ1)

∣∣∣∣− ( τ2
1 + τ22

x(τ2)− τ1
1 + τ21

x(τ1)

)
≤ τ2

1 + τ22
|x(τ2)− x(τ1)|+

∣∣∣∣ τ2
1 + τ22

− τ1
1 + τ21

∣∣∣∣x(τ1)

− τ2
1 + τ22

(x(τ2)− x(τ1))−
(

τ2
1 + τ22

− τ1
1 + τ21

)
x(τ1)

=
τ2

1 + τ22
[|x(τ2)− x(τ1)| − (x(τ2)− x(τ1))]

=
τ2

1 + τ22
d(x) ≤ 1

2
d(x).

The function u(τ, t, x) = arctan τx
1+t2 satisfies assumption (a4), we have |u(τ, t, x)| ≤ |x|

which means Ψ(r) = r. Moreover, the operator (Λx)(τ) =
∫ τ
0
tx2(t) dt verifies as-

sumption (a5) with ψ(r) = r2.
Therefore, the inequality (3.1) has the form 1

8 + r
2 + r4 ≤ r or 1

4 + r + 2r4 ≤ 2r.
This inequality admits r0 = 1/2 as a positive solution. Moreover,

c+ 2r0Ψ(ψ(r0)) =
1

2
+

1

4
=

3

4
< 1.

Consequently, Theorem 3.1 guarantees that equation (4.1) has a continuous nonde-
creasing solution.
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Abstract: This paper is devoted to study the existence of solu-
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1. Introduction

The theory of fractional differential equations is an important branch of differential
equation theory, which has an extensive physical, chemical, biological, and engineering
background, and hence has been emerging as an important area of investigation in
the last few decades; see the monographs of Abbas et al. [3, 4], Kilbas et al. [18],
Podlubny [23], and Zhou [25], and the references therein.

On the other hand, the theory of impulsive differential equations has undergone
rapid development over the years and played a very important role in modern applied
mathematical models of real processes rising in phenomena studied in physics, popu-
lation dynamics, chemical technology, biotechnology and economics; see for instance
the monographs by Bainov and Simeonov [12], Benchohra et al. [13], Lakshmikan-
tham et al. [19], and Samoilenko and Perestyuk [24] and references therein. Moreover,
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impulsive differential equations present a natural framework for mathematical mod-
eling of several real-world problems. In pharmacotherapy, instantaneous impulses
cannot describe the dynamics of certain evolution processes. For example, when one
considers the hemodynamic equilibrium of a person, the introduction of the drugs in
the bloodstream and the consequent absorption for the body are a gradual and con-
tinuous process. In [1, 2, 5, 16, 22] the authors studied some new classes of abstract
impulsive differential equations with not instantaneous impulses.

However, the theory for fractional differential equations in Banach spaces has yet
been sufficiently developed. Recently, Benchohra et al. [14] applied the measure of
noncompactness to a class of Caputo fractional differential equations of order r ∈ (0, 1]
in a Banach space. Let E be a Banach space with norm ‖ · ‖.

In this paper, we study the following initial value problem (IVP for short), for
fractional order differential equations

cDry(t) = f(t, y(t)), for a.e. t ∈ (sk, tk+1], k = 0, . . . ,m, 0 < r ≤ 1, (1)

y(t) = gk(t, y(t)), t ∈ (tk, sk], k = 1, . . . ,m, (2)

y(0) = y0, (3)

where cDr is the Caputo fractional derivative, f : J × E → E, gk : (tk, sk]× E → E,
k = 1, . . . ,m, are given functions, J = [0, T ] and y0 ∈ E, 0 = s0 < t1 < s1 < · · · <
tm < sm < tm+1 = T .

To our knowledge no paper has been considered for non-instantaneous impulsive
fractional differential equations in abstract spaces. This paper fills the gap in the
literature. To investigate the existence of solutions of the problem above, we use
Mönch’s fixed point theorem combined with the technique of measures of noncom-
pactness, which is an important method for seeking solutions of differential equations.
See Akhmerov et al. [7], Alvàrez [8], Banaś et al. [9, 10, 11], Guo et al. [15], Mönch
[20], Mönch and Von Harten [21].

2. Preliminaries

In this section, we first state the following definitions, lemmas and some notation. By
C(J,E) we denote the Banach space of all continuous functions from J into E with
the norm

‖y‖∞ = sup{‖y(t)‖ : t ∈ J}.

Let L1(J,E) be the Banach space of measurable functions y : J → E which are
Bochner integrable, equipped with the norm

‖y‖L1 =

∫ T

0

‖y(t)‖dt.
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PC(J,E) = {y : J → E : y ∈ C((tk, tk+1], E), k = 0, . . . ,m and there exist y(t−k )

and y(t+k ), k = 1, . . . ,m with y(t−k ) = y(tk)}.

PC(J,E) is a Banach space with the norm

‖y‖PC = sup
t∈J
‖y(t)‖.

Set
J ′ = J \ ∪mk=1(tk, sk].

Moreover, for a given set V of functions v : J → E, let us denote by

V (t) = {v(t), v ∈ V }, t ∈ J

and
V (J) = {v(t), v ∈ V, t ∈ J}.

Now let us recall some fundamental facts of the notion of Kuratowski measure of
noncompactness.

Definition 2.1. ([9]). Let X be a Banach space and ΩX the bounded subsets of X.
The Kuratowski measure of noncompactness is the map α : ΩX → [0,∞] defined by

α(B) = inf{ε > 0 : B ⊆ ∪ni=1Bi and diam(Bi) ≤ ε}; here B ∈ ΩX .

Properties: The Kuratowski measure of noncompactness satisfies the following prop-
erties (for more details see [9])

(a) α(B) = 0⇔ B is compact (B is relatively compact).

(b) α(B) = α(B).

(c) A ⊂ B ⇒ α(A) ≤ α(B).

(d) α(A+B) ≤ α(A) + α(B).

(e) α(cB) = |c|α(B); c ∈ R.

(f) α(convB) = α(B).

For completeness we recall the definition of Caputo derivative of fractional order.

Definition 2.2. ([18]). The fractional (arbitrary) order integral of the function
h ∈ L1([0, T ], E) of order r ∈ R+ is defined by

Irh(t) =
1

Γ(r)

∫ t

0

(t− s)r−1h(s)ds, for a.e. t ∈ [0, T ],

where Γ is the Euler gamma function defined by Γ(r) =

∫ ∞
0

tr−1e−tdt, r > 0.
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Definition 2.3. ([18]). For a function h ∈ ACn(J,E), the Caputo fractional-order
derivative of order r of h is defined by

(cDr
0h)(t) =

1

Γ(n− r)

∫ t

0

(t− s)n−r−1h(n)(s)ds, for a.e. t ∈ [0, T ],

where n = [r] + 1.

We need the following auxiliary lemmas ([18]).

Lemma 2.4. Let r > 0 and h ∈ ACn(J,E). Then the differential equation

cDr
0h(t) = 0, for a.e. t ∈ J

has solutions h(t) = c0 + c1t + c2t
2 + · · · + cn−1t

n−1, ci ∈ R, i = 0, 1, 2, . . . , n − 1,
n = [r] + 1.

Lemma 2.5. Let r > 0 and h ∈ ACn(J,E). Then

IrcDr
0h(t) = h(t) + c0 + c1t+ c2t

2 + · · ·+ cn−1t
n−1, for a.e. t ∈ J

for some ci ∈ R, i = 0, 1, 2, . . . , n− 1, n = [r] + 1.

Definition 2.6. A map is said to be Carathéodory if

i t→ f(t, u) is measurable for each u ∈ E.

ii u→ F (t, u) is continuous for almost all t ∈ J .

For our purpose we will only need the following fixed point theorem, and the important
Lemma.

Theorem 2.7. ([6, 20]) (Mönch’s fixed point theorem). Let D be a bounded, closed
and convex subset of a Banach space such that 0 ∈ D, and let N be a continuous
mapping of D into itself. If the implication

V = convN(V ) or V = N(V ) ∪ {0} ⇒ α(V ) = 0

holds for every subset V of D, then Nhas a fixed point.

Lemma 2.8. ([15]) If V ⊂ C(J ;E) is a bounded and equicontinuous set, then

(i) the function t→ α(V (t)) is continuous on J , and

αc(V ) = sup
0≤t≤T

α(V (t)).

(ii) α(
∫ T

0
x(s)ds : x ∈ V ) ≤

∫ T
0
α(V (s))ds,

where

V (s) = {x(s) : x ∈ V }, s ∈ J.
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3. Existence of Solutions

First of all, we define what we mean by a solution of the IVP (1)-(3).

Definition 3.1. A function y ∈ PC(J,E) ∩ AC(J ′, E) is said to be a solution of
(1)-(3) if y satisfies y(0) = y0, cDry(t) = f(t, y(t)), for a.e. t ∈ (sk, tk+1], and each
k = 0, . . . ,m, and y(t) = gk(t, y(t)), for all t ∈ (tk, sk], and every k = 1, . . . ,m,

To prove the existence of solutions to (1)-(3), we need the following auxiliary
lemmas.

Lemma 3.2. Let 0 < r ≤ 1 and let h : J → E be integrable. Then linear problem

cDry(t) = h(t), for each t ∈ Jk := (sk, tk+1], k = 0, . . . ,m, (4)

y(t) = gk(t), for each t ∈ J ′k := (tk, sk] k = 1, . . . ,m, (5)

y(0) = y0 (6)

has a unique solution which is given by:

y(t) =


y0 + 1

Γ(r)

∫ t
0
(t− s)r−1h(s)ds, if t ∈ [0, t1],

gk(t), if t ∈ J ′k k = 1, . . . ,m,

gk(sk) + 1
Γ(r)

∫ t
sk

(t− s)r−1h(s)ds, if t ∈ Jk k = 1, . . . ,m.

(7)

Proof. Assume that y satisfies (4)-(6).
If t ∈ [0, t1] then

cDry(t) = h(t).

Lemma 2.5 implies

y(t) = y0 +
1

Γ(r)

∫ t

0

(t− s)r−1h(s)ds.

If t ∈ J ′1 = (t1, s1] we have y(t) = g1(t).
If t ∈ J1 = (s1, t2], then Lemma 2.5 implies

y(t) = y(s+
1 ) +

1

Γ(r)

∫ t

s1

(t− s)r−1h(s)ds

= g1(s1) +
1

Γ(r)

∫ t

s1

(t− s)r−1h(s)ds.

If t ∈ J ′2 = (t2, s2] we have y(t) = g2(t).
If t ∈ J2 = (s2, t3] then again Lemma 2.5 implies

y(t) = y(s+
2 ) +

1

Γ(r)

∫ t

s2

(t− s)r−1h(s)ds

= g2(s2) +
1

Γ(r)

∫ t

s2

(t− s)r−1h(s)ds.
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If t ∈ J ′k = (tk, sk] we have y(t) = gk(t).
If t ∈ Jk = (sk, tk+1] then Lemma 2.5 implies

y(t) = y(s+
k ) +

1

Γ(r)

∫ t

sk

(t− s)r−1h(s)ds

= gk(sk) +
1

Γ(r)

∫ t

sk

(t− s)r−1h(s)ds.

Conversely, assume that y satisfies equation (7).
If t ∈ [0, t1], then y(0) = y0 and, using the fact that cDr is the left inverse of Ir, we
get

cDry(t) = h(t), for each t ∈ (0, t1].

If t ∈ Jk := (sk, tk+1], k = 1, . . . ,m, and using the fact that cDrC = 0, where C is
a constant, we get

cDry(t) = h(t), for each t ∈ Jk := (sk, tk+1], k = 1, . . . ,m.

Also, we have easily that

y(t) = gk(t), for each t ∈ J ′k := (tk, sk], k = 1, . . . ,m.

We are now in a position to state and prove our existence result for the problem
(1)–(3) based on Mönch’s fixed point. Let us list some conditions on the functions
involved in the IVP (1)–(3).

(H1) The function f : J × E → E satisfies the Carathéodory conditions.

(H2) There exists p ∈ C(J,R+) such that

‖f(t, y)‖ ≤ p(t)‖y‖ for any y ∈ E and t ∈ J.

(H3) gk are uniformly continuous functions and there exists ck ∈ C(J,R+) such that

‖gk(t, y)‖ ≤ ck(t)‖y‖, for each y ∈ E and t ∈ J, k = 1, . . . ,m.

(H4) For each bounded set B ⊂ E we have

α(gk(t, B)) ≤ ck(t)α(B), t ∈ J.

(H5) For each bounded set B ⊂ E we have

α(f(t, B)) ≤ p(t)α(B), t ∈ J.

Let
p∗ = sup

t∈J
p(t), c∗ = max

k=1,...,m
(sup
t∈J

(ck(t))).
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Theorem 3.3. Assume that assumptions (H1)-(H5) hold. If

p∗T r

Γ(r + 1)
+ c∗ < 1, (8)

then the IVP (1)–(3) has at least one solution J .

Proof. Transform the problem (1)–(3) into a fixed point problem. Consider the
operator N : PC(J,E)→ PC(J,E) defined by

N(y)(t) =


y0 + 1

Γ(r)

∫ t
0
(t− s)r−1f(s, y(s))ds, if t ∈ [0, t1],

gk(t, y(t)), if t ∈ J ′k := (tk, sk],

gk(sk, y(sk)) + 1
Γ(r)

∫ t
sk

(t− s)r−1f(s, y(s))ds, if t ∈ Jk := (sk, tk+1].

(9)
Clearly, the fixed points of operator N are solutions of problem (1)–(3).

Let

r0 ≥
‖y0‖

1− p∗T r

Γ(r+1) − c∗
, (10)

and consider the set

Dr0 = {y ∈ PC(J,E) : ‖y‖∞ ≤ r0}.

Clearly, the subset Dr0 is closed, bounded and convex. We shall show that N satisfies
the assumptions of Theorem 2.7. The proof will be given in a couple of steps.

Step 1: N is continuous.
Let {un} be a sequence such that un → u in PC(J,E). Then

for t ∈ Jk, we have

‖N(yn)(t)−N(y)(t)‖ ≤ ‖gk(t, yn(t))− gk(t, y(t))‖

+
1

Γ(r)

∫ t

sk

(tk − s)r−1‖f(s, yn(s))− f(s, y(s))‖ds,

for t ∈ [0, t1], we have

‖N(yn)(t)−N(y)(t)‖ ≤ 1

Γ(r)

∫ t

0

(t− s)r−1‖f(s, yn(s))− f(s, y(s))‖ds,

and for t ∈ J ′k, we have

‖N(un)(t)−N(u)(t)‖ ≤ ‖gk(t, yn(t))− gk(t, y(t))‖.

Since gk is continuous and f is of Carathéodory type, the Lebesgue dominated
convergence theorem implies

‖N(un)−N(u)‖∞ → 0 as n→∞.
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Consequently, N is continuous.

Step 2: N maps Dr0 into itself.
For each y ∈ Dr0 , by (H2), (H3) and (10) we have for each t ∈ J ,

‖N(y)(t)‖ ≤ ‖gk(t, y(t))‖+ ‖y0‖+
1

Γ(r)

∫ t

0

(t− s)r−1‖f(s, y(s))‖ds

≤ ck‖y(t)‖+ ‖y0‖+
1

Γ(r)

∫ tk+1

sk

(t− s)r−1p(s)‖y(s)‖ds

≤ ‖y0‖+ r0

(
p∗T r

Γ(r + 1)
+ c∗

)
≤ r0.

Step 3: N(Dr0) is bounded and equicontinuous.
By Step 2, it is obvious that N(Dr0) ⊂ PC(J,E) is bounded.
For the equicontinuous of N(Dr0), let τ1, τ2 ∈ J, τ1 < τ2 and y ∈ Dr0 . Then, for
τ1, τ2 ∈ Jk, we have

‖N(y)(τ2)−N(y)(τ1)‖ =
1

Γ(r)

∫ τ2

τ1

|(τ2 − s)r−1 − (τ1 − s)r−1|‖f(s, y(s)))‖ds

≤ 2
r0p
∗

Γ(r + 1)
[τ r2 − τ r1 ],

for τ1, τ2 ∈ [0, t1], we have

‖N(y)(τ2)−N(y)(τ1)‖ =
1

Γ(r)

∫ τ2

τ1

|(τ2 − s)r−1 − (τ1 − s)r−1|‖f(s, y(s))‖ds.

≤ 2
r0p
∗

Γ(r + 1)
[τ r2 − τ r1 ],

and for τ1, τ2 ∈ J ′k, we have

‖N(y)(τ2)−N(y)(τ1)‖ = ‖gk(τ2, y(τ2))− gk(τ1, y(τ1))‖.

As τ1 → τ2, the right-hand side of the above inequality tens to zero.

Now let V be a subset of Dr0 such that V ⊂ conv(N(V )∪{0}). Then V is bounded
and equicontinuous and therefore the function t→ v(t) = α(V (t)) is continuous on J .
By (H4), (H5), Lemma 2.8 and the properties of the measure α we have for each t ∈ J

v(t) ≤ α(N(V )(t) ∪ {0})
≤ α(N(V )(t)).
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If t ∈ Jk,

v(t) ≤ α(gk(sk, V (sk)) +
1

Γ(r)

∫ t

sk

(t− s)r−1f(s, V (s))ds)

≤ ck(t)α(V (s)) +
1

Γ(r)

∫ t

sk

(t− s)r−1p(t)α(V (s))ds

≤ ck(t)v(s) +
1

Γ(r)

∫ t

sk

(t− s)r−1p(t)v(s)ds

≤ ‖v‖∞
(
c∗ +

p∗T r

Γ(r + 1)

)
,

if t ∈ [0, t1]

v(t) ≤ α(
1

Γ(r)

∫ t

0

(t− s)r−1f(s, V (s))ds)

≤ 1

Γ(r)

∫ t

0

(t− s)r−1p(t)α(V (s))ds

≤ 1

Γ(r)

∫ t

0

(t− s)r−1p(t)v(s)ds

≤ ‖v‖∞
(

p∗T r

Γ(r + 1)

)
≤ ‖v‖∞

(
c∗ +

p∗T r

Γ(r + 1)

)
,

if t ∈ J ′k

v(t) ≤ α(gk(sk, V (sk))

≤ ck(t)α(V (s))

≤ ck(t)v(s)

≤ ‖v‖∞c∗

≤ ‖v‖∞
(
c∗ +

p∗T r

Γ(r + 1)

)
.

This means that

‖v‖∞
[
1−

(
c∗ +

p∗T r

Γ(r + 1)

)]
≤ 0.

By (8) it follows that ‖v‖∞ = 0; that is, v(t) = 0 for each t ∈ J , and then V (t)
is relatively compact in E. In view of the Ascoli–Arzela theorem, V is relatively
compact in Dr0 . Applying now Theorem 2.7 we conclude that N has a fixed point
which is a solution of the problem (1)-(3).
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4. An Example

Let us consider the following infinite system of impulsive fractional initial value prob-
lem,

cD
1
2 yn(t) =

1

9 + n+ et
ln(1 + |yn(t)|), for a.e. t ∈

(
0,

1

3

]
∪
(

1

2
, 1

]
, (11)

yn(t) =
1

4 + n+ et
sin |yn(t)|, t ∈

(
1

3
,

1

2

]
, (12)

yn(0) = 0. (13)

Set

E = l1 = {y = (y1, y2, . . . , yn, . . . , ),

∞∑
n=1

|yn| <∞},

E is a Banach space with the norm

‖y‖ =

∞∑
n=1

|yn|.

Let
f(t, y) = (f1(t, y), f2(t, y), . . . , fn(t, y), . . .),

fn(t, y) =
ln(1 + |yn(t)|)

9 + n+ et
,

and
g1(t, y) = (g11(t, y), g12(t, y), . . . , g1n(t, y), . . .),

g1n(t, y) =
sin |yn(t)|
4 + n+ et

.

Clearly conditions (H2) and (H3) hold with

p(t) =
1

9 + et
, and c1(t) =

1

4 + et
.

We shall check that condition (8) is satisfied with r = 1
2 , T = 1, P ∗ = 1

10 and c∗ = 1
5 .

Indeed (
p∗T r

Γ(r + 1)
+ c∗

)
=

1

5
√
π

+
1

5
< 1.

Then by Theorem 3.3 the problem (11)-(13) has at least one solution.
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A Characterization of Weakly J(n)-Rings

Peter V. Danchev

Abstract: A ring R is called a J(n)-ring if there exists a natural
number n ≥ 1 such that for each element r ∈ R the equality rn+1 = r
holds and a weakly J(n)-ring if there exists a natural number n ≥ 1 such
that for each element r ∈ R the equalities rn+1 = r or rn+1 = −r hold.

We completely describe both classes of these rings R for any n, thus
considerably extending some well-known results in the subject, especially
that of V. Perić in Publ. Inst. Math. Beograd (1983) as well as, in
particular, the classical description of Boolean rings when n = 1.

AMS Subject Classification: 16D60, 16S34, 16U60.
Keywords and Phrases: Boolean rings; Idempotents; Units; Nilpotents; Jacobson
radical; J(n)-rings.

1. Introduction and Background Material

Throughout, all rings R examined in the current paper shall be assumed associa-
tive, containing the identity element 1 which possibly differs from the zero element
0. Standardly, U(R) denotes the set of all invertible elements of R, Id(R) the set of
all idempotent elements of R and Nil(R) the set of all nilpotent elements of R. Tra-
ditionally, J(R) denotes the Jacobson radical of R. All other notions and notations,
not explicitly defined herein, are well-established in the existing literature. About
the specific terminology, specifically that of a PI-ring, let us recall that it is a ring
whose elements satisfy a polynomial identity with coefficients in Z, the ring of all
integers, and at least one coefficient has to be invertible, that is, ±1. In particular,
commutative rings are always PI-rings.

The following concept is rather well-known.

Definition 1.1. A ring R is called Boolean if x2 = x for each x ∈ R, that is,
R = Id(R).
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These rings have a complete characterization as (the subring of) the direct product
of family of copies of the two element field Z2 (see, e.g., [2]). Hence, Boolean rings
are themselves commutative.

To consider some other generalizations, for a fixed prime p, a p-ring is a ring R
in which ap = a and pa = 0 for all a ∈ R. Thus any Boolean ring is simply a 2-ring.
It is known that a ring is a p-ring if, and only if, it is a subdirect product of fields of
order p (cf. [15]). On the other hand, for a prime p and a positive integer k, a pk-ring

is a ring R in which ap
k

= a and pa = 0 for all a ∈ R. The structure of pk-rings has
been described in [1]. A ring R is said to be periodic if, for each a ∈ R, there is a
positive integer n(a) such that an(a)+1 = a. Every periodic ring is commutative by
a fundamental result due to Jacobson from [12]. If such a natural number n(a) does
not depend on the choice of the element a, that is it could be fixed, we thus come to
the following concept.

Definition 1.2. Let n ≥ 1 be a natural number. We shall say that the ring R is a
J(n)-ring if, for every x ∈ R, the equation xn+1 = x holds.

The special case when n = 1 gives the famous Boolean rings; notice also that
x = x2 always implies that x = xj for all j ∈ N. Likewise, these rings are obviously
perfect, i.e., R = Rn+1. Moreover, it was proved in [14] that a ring is a J(n)-ring if, and
only if, it is the direct sum of finitely many pk-rings. Hence, with the aforementioned
result in [1] at hand, the structural characterization of J(n)-rings can be assumed for
totally exhausted. On the other side, they are also somewhat studied in [10], but
without any concrete full description given.

However, the complete description of J(n)-rings was given in [17]. There was
proved that R is a J(n)-ring if, and only if, R is a subdirect product of fields Fpk ,
where p is a prime and k is an integer such that pk−1 divides n. Nevertheless, we will
give here a new more convenient and attractive for further applications description
of their structure in terms of the simple p-element fields Zp, where p is a prime, and
the fields Fq of q = pk elements, where k ∈ N. So, the objective of this article is to
do that by using an elementary algebraic approach. We refer also to [3] and [13] for
more account to that topic.

In order to substantially enlarge the above explorations, we shall be concerned here
and with giving up the full characterization up to isomorphism of weakly J(n)-rings,
that are, rings whose elements satisfy the polynomial identities xn+1 − x = 0 or
xn+1 + x = 0.

We thus come to the following new concept:

Definition 1.3. Suppose that n ≥ 1 be a natural number. We shall say that the ring
R is a weakly J(n)-ring if, for every x ∈ R, the equations xn+1 = x or xn+1 = −x
hold.

It is pretty obvious that subrings and homomorphic images of (weakly) J(n)-rings
are again (weakly) J(n)-rings. Some concrete folklore examples are these:

• ”n = 1”: A ring R is a J(2)-ring if, and only if, R can be embedded as a subring
of the direct product of family of copies of the fields Z2 and Z3.
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As usual, F4 denotes the field of characteristic 2 consisting of four elements con-
structed as follows: It is well known that in the polynomial ring Z2[x] the polynomial
1 + x + x2 is irreducible over Z2 and hence Z2[x]/(x2 + x + 1) ∼= Z2(θ) is a field of
4 elements, denoting it by F4, where θ 6∈ Z2 is a solution of the equation x3 = 1. In
fact, the elements in F4 are {0, 1, θ, θ2} taking into account that θ + 1 = θ−1 = θ2

and that x3 − 1 = (x2 + x + 1)(x − 1) whence x3 = 1 has the set {1 = θ0, θ, θ2} as
solutions. Thus F4 is the splitting field of these two polynomials. Note that under
such a construction the equality F2 = Z2 is true.

• ”n = 2”: A ring R is a J(3)-ring if, and only if, R can be embedded as a subring
of the direct product of family of copies of the fields Z2 and F4.

• ”n = 3”: A ring R is a J(4)-ring if, and only if, R can be embedded as a subring
of the direct product of family of copies of the fields Z2, Z3 and Z5.

In what follows in the subsequent section, we shall provide a full characterizing of
both J(n)-rings and weakly J(n)-rings.

2. The Main Results

We start in this section with the following technicality by treating the general case of
J(n)-rings, as our purpose is to give a new more transparent and conceptual proof of
the characterization result for these rings than that in [17]. In doing that, we need
the following technical claim.

Lemma 2.1. Let n ∈ N and let R be a ring whose elements satisfy the identity
xn+1 = x, while xk+1 6= x for some x, provided k < n and k ∈ N, that is, for every
k < n there exists x in R for which xk+1 is not equal to x. The next three items are
true:

1. R is reduced.

2. J(R) = 0.

3. If R is primitive, then n = pm − 1 for some m ∈ N and R is a field with pm

elements.

Proof. Items (1) and (2) are rather obvious, which follow directly from the condition
xn+1 = x, so we omit their verification. The third item is an immediate consequence
of the fact that R is a PI-ring and of the well-known Kaplansky’s theorem by using
the method presented in detail in [8].

We are now proceed by proving with the following basic statement, which some-
what improves on the aforementioned characterizing result from [17] concerning J(n)-
rings.
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Theorem 2.2. Suppose that n ∈ N. Then, for a ring R, the following two conditions
are equivalent:

1. R is a J(n)-ring.

2. R is a subdirect product of finite fields Fp
mk
k

for some primes pk and integers

mk, k ∈ N, where (pmk

k − 1)/n for each k.

Proof. ”(1) ⇒ (2)”. With Lemma 2.1 at hand, R is a subdirect products of finite
fields Fi satisfying the equality xn+1 = x. Let us fix such a field F with pm elements.
It is then well known that U(F ) is a cyclic group of order pm − 1 which satisfies the
identity xn = 1. Thus pm − 1 divides n.

”(2) ⇒ (1)”. Letting R be a subdirect product of the fields Fi, we then easily see
that each field satisfies xn+1 = x, thus R will also satisfy this identity.

By the same token, we can derive the following consequence for J(n)-rings in the
presence of minimality of the existing natural number n.

Corollary 2.3. Suppose n ∈ N. Then, for a ring R, the following two conditions are
tantamount:

1. R satisfies the equation xn+1 = x with n minimal possible.

2. R is a subdirect product of finite fields Fp
mk
k

for some primes pk and integers

mk, k ∈ N, where (pmk

k − 1)/n for each k and n = LCM(pmk

k − 1 | k ∈ N).

For a convenience of the reader, let us recall that Fq is the finite field with q
elements with q a prime power. We are now ready to prepare our chief result which
completely settles the question when an arbitrary ring is weakly J(n) and which states
as follows:

Theorem 2.4. Let n ≥ 1 be a natural and let R be a ring. Then R is a weakly
J(n)-ring if, and only if, R is a J(n)-ring, or either R = Fq or R = P × Fq, where
q − 1 divides 2n but not n, and P is a J(n)-ring of characteristic 2.

Proof. In one direction, if R = P × Fq, where P is the zero ring or a J(n)-ring of
characteristic 2, for any pair (x, y) ∈ R we indeed have (x, y)n+1 = ±(x, y) depending
on the fact whether y ∈ Fq is a square or not.

In the other direction, we first observe that x2n+1 = x for all x ∈ R. By the famous
Jacobson’s theorem for commutativity, R is really commutative. Moreover, by the
usage of classical arguments, R is the direct product of characteristic p rings, where
p is one of the finitely many primes, for which p− 1 divides 2n. Then, at least one of
these rings, say K, contains an element a with an+1 6= a. Certainly, char(K) = p > 2.
If foremost R 6= K, then R is of the form K×P , where P is a non-zero ring. Consider
the element (a, 1) in R. Its n+ 1-th power is (an+1, 1), and is equal to ±(a, 1). Since
an+1 differs from a, it must be that (an+1, 1) = −(a, 1) = (−a,−1) whence 1 = −1
in P and, therefore, it follows that P is necessarily of characteristic 2.
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So, it suffices to show that K = Fq, where q has the properties indicated in the
statement of the theorem. To that goal, since the element a satisfied the inequality
an+1 6= a, we must have an+1 = −a. Besides, since every prime ideal of K is maximal
and since the nil-radical of K is trivial, there exists a maximal ideal I of K for which
an+1 = −a modulo I. Then the field K/I is finite of characteristic p. We denote it
by Fq. Now, every element y ∈ K/I satisfies y2n+1 = y. Since F∗

q is a cyclic group of
order q − 1, q − 1 divides 2n. Since an+1 = −a and the characteristic of Fq is not 2,
the number n is not divisible by q − 1.

If now K admits a second maximal ideal M , then I and M are co-prime, so that
(K/I) × (K/M) is a quotient of K. Consider its element (a, 1). Then (a, 1)n+1 =
(−a, 1) which is not equal to ±(a, 1) – a contradiction. Thus I is the only maximal
ideal of K. This means that K is a local ring, and hence equal to its residue field
K/I = Fq. The last claim is a direct consequence of the fact that xn+1 = ±x for all
x ∈ K.

Remark 2.5. It is worthwhile noticing that the cases n = 1 are settled in [9] and
[4]; n = 2 in [5]; and n = 3 in [6]. Moreover, by virtue of the main Theorem 2.4,
in accordance with Theorem 2.2, or with the main result from [17], the study of the
structure of weakly J(n)-rings is completely exhausted.

We shall now be involved with some applications by giving up a slight generaliza-
tion of J(n)-rings for n ∈ N to rings with elements satisfying the equation xn = ςx,
where ς is a (primitive) d-th root of unity for some positive integer d (compare with
the slightly weaker version stated in Problem 3 listed below). Precisely, the following
assertion is true:

Theorem 2.6. Let R be a commutative ring and let f(X) =
∑

n≥0 anX
n be a polyno-

mial in R[X]. Suppose also that the polynomial f̃(X) =
∑

n≥0 ana
n−1
0 Xn has a root

in R and that ana
n−1
0 = 1 for n = 0. Then, for all y ∈ R and each ideal I ⊆ Ann(y),

the annihilator of y, we have

f(y) ≡ 0(mod I) ⇐⇒ ∃ ς ∈ R : ς ≡ y(mod I)
∧
f(ς) = 0.

Proof. The implication ”⇐” being elementary, we will be concentrated on the reverse
one ”⇒”. To that goal, let λ ∈ R be a zero of f̃(X). We therefore readily check that
ς = y + λf(y) is a zero of f(X). Keeping in mind that yf(y) = 0, we deduce that

f(y+λf(y)) =
∑
n≥0

an(y+λf(y))n = f(y)+
∑
n≥1

anλ
nf(y)n = f(y)+

∑
n≥1

anλ
nf(y)an−1

0 .

This is obviously equal to

f(y)
∑
n≥0

ana
n−1
0 λn = f(y)f̃(λ) = 0,
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as required.

As a valuable consequence, one derives the following.

Corollary 2.7. Let R be a ring and let d, n be positive integers. Then, for all x ∈ R,
we have

xd(n−1)+1 = x ⇐⇒ ∃ ς ∈ R : ςd = 1
∧
xn = ςx.

Proof. Let x ∈ R. Since for any ς ∈ R and for i = d, . . . , 1, we obtain

xi(n−1)+1 = ςxxi(n−1)+1−n = ςx(i−1)(n−1)+1,

the implication ”⇐” is clear. To prove the converse implication ”⇒”, we may with
no harm in generality replace R by the subring generated by 1 and x. In particular,
we can assume even that R is commutative.

Now, put I = Ann(x). Consequently, the statement of the corollary is equivalent
to

xd(n−1) ≡ 1(mod I) ⇐⇒ ∃ ς ∈ R : ςd = 1
∧
ς ≡ xn−1(mod I).

Next put f(X) = Xd − 1 ∈ R[X] and y = xn−1; thus f(ς) = 0. So, the statement of
the corollary is amounting to

f(y) ≡ 0(mod I) ⇐⇒ ∃ ς ∈ R : f(ς) = 0
∧
ς ≡ y(mod I).

Note that the ideal I is pretty obviously contained in Ann(y). Since λ = −1 is a zero

of f̃(X) = (−1)d−1Xd + 1, the condition of the previous theorem is satisfied and thus
the corollary follows after all.

It is worthwhile noticing that Theorem 2.6 perhaps can be considerably extended
in the non-commutative case as follows (actually, its formulation smells a little like
the classical well-known Hensel’s lemma):

Let R be a ring and let f(X) ∈ R[X] be a polynomial with coefficients in the center
of R. Suppose also that f(X) has an invertible root in the center of R and that f(0)
inverts in R. Then, for all y ∈ R and every ideal I ⊂ Ann(y), the annihilator of y,
we have

f(y) ≡ 0(mod I) ⇐⇒ ∃ ς ∈ R : ς ≡ y(mod I)
∧
f(ς) = 0.

Some idea for an eventual proof could be the following: The right-to-left part
being self-evident, we will deal with the left-to-right one. To that purpose, let ε ∈ R
be an invertible central root of f(X). Put
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h(X) =
εf(X)

f(0)
.

Notice that h(0) = ε inverts in R. Thus h(y) lies in I. We easily check that ς = y+h(y)
satisfies the equality f(ς) = 0. Writing f(X) =

∑
n≥0 anX

n and bearing in mind that
yh(y) = 0, one infers that

f(y + h(y)) =
∑
n≥0

an(y + h(y))n = f(y) +
∑
n≥1

anh(y)n.

We however see that h(y)n = h(0)n−1h(y) for every n ≥ 1. Therefore, we get that

0 = f(y + h(y)) = f(y) + h(y)
∑
n≥1

anh(0)n−1 = f(y)− h(y)

h(0)
f(0) +

h(y)

h(0)
f(h(0)).

Since h(0) = ε and f(ε) = 0, the last expression on the right must be zero, and thus

f(y) = h(y)
h(0)f(0) is in I, which demonstrably riches us that we are done.

3. Concluding Discussion and Open Questions

We call a ring R π-simply presented if, for any a ∈ R, there exists an integer n =
n(a) ≥ 2 such that either an = a or an = 0. If such a natural n is fixed, and so it
does not depend on a, the ring R is just called n-simply presented.

It is rather clear that 2-simply presented rings R are just the Boolean ones. In
fact, if u ∈ U(R), then u2 = u and hence u = 1. This means that U(R) = {1} whence
Nil(R) = {0}. Consequently, for every r ∈ R, it must be that r2 = r, as required. It
is worthwhile noticing that this could also be deduced from [7].

Recall also that (see, e.g., [16]) a ring is strongly clean if every its element is the
sum of a unit and an idempotent which commute each to other. Thus the following is
true: Any n-simply presented ring is strongly clean with nil Jacobson radical. In fact, if
R is such a ring and a ∈ R with an = 0, one represents a = (a−1)+1 ∈ U(R)+Id(R).
If now an = a, one checks that a = a2b = ba2, where b = an−1 + an−2− 1. Therefore,
a is strongly regular element and, thereby, it follows from [16] that such an element
a is strongly clean. Finally, this enables us that R is strongly clean. Also, it is pretty
easy to find that U(R) is torsion having Un−1(R) = {1} and thus, in view of [8], one
infers that R is strongly m-torsion clean for some m ≤ n. We, consequently, again
appeal to [8] to get some expected subdirect isomorphism.

About the nil property of J(R), choose an arbitrary z ∈ J(R). If zn = 0, we are
set. If, however, zn = z, then z(1− zn−1) = 0 which allows us to conclude that z = 0
since 1− zn−1 ∈ U(R).

We close the work with the following three problems of interest and importance.
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Problem 1. Describe n-simply presented rings for all n ∈ N as well as π-simply
presented rings.

Problem 2. For an arbitrary natural n ≥ 1 and a ring R such that its characteristic
is the prime number n + 1, does it follow that R is a J(n)-ring if, and only if, each
element of R is a sum of n idempotents? Equivalently, is such a ring R a J(n)-ring
exactly when R = Id(R) + · · ·+ Id(R) (where the sum is taken n-times)?

We conjecture that the answer is ”yes”, provided that n+1 runs over some special
primes by noticing in this way that if n = 1, we just identify Boolean rings, and that
if n = 2, the conjecture holds in the affirmative in accordance with [11, Theorem 1].

Problem 3. Describe those rings whose elements satisfy the polynomial identity
xn+1 − vx = 0, where n ∈ N and v2 = 1.

It is pretty obvious that weakly J(n)-rings are a partial case of these rings, when
v = ±1.
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Abstract: This work considers a population divided into two groups
according to the adoption of contraception. The campaign in favour of
contraception is modelled as a bounded optimal control problem within
the framework of the logistic and the Malthusian models of population
dynamics. The control is the fraction of non-adopters successfully ed-
ucated on contraception. The objective is to maximise the number of
non-adopters successfully educated on contraception over time. The op-
timisation problem is solved using the Pontryagin’s maximum principle
and the parameters of the model are estimated using the method of least
squares.
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1. Introduction

The subject of population expansion and control has received considerable attention
in the literature (for instance, [23, 36]). The need to control the rate of population
expansion has led to the introduction of several programmes on the use of contra-
ceptives in many developing countries [21]. For example, in Nigeria (with which the
authors are acquainted), the ’Get it together’ campaign has been introduced to sen-
sitise the masses on the use of contraceptives. The commonly used contraceptives
include condom, diaphragm, vaginal cream/foaming tablets, oral contraceptives or
pills, Intra-Uterine Device (IUD), implant and sterilization. These contraceptives are
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accepted globally for birth control [9, 21]. There is no need to stress the different
contraceptives and how it has been accepted worldwide as this can be found else-
where [9, 26, 35, 36]. The practice of birth control in Japan, Russia, Puerto Rico,
China, India and Cameroon has been reported in the literature [26]. The campaign
on birth control is usually inexpensive for the social crusaders1 (that is, the birth
control advocates). This is because fertility control are subsidized in both high- and
low-income countries [28]. On the whole condoms are distributed inexpensively and
IUD insertion costs little [8]. This ought to be enough motivation for many adults
to adopt the use of contraceptives. Regardless of the campaign to create awareness
on use of contraceptives some individuals still hold on to their belief and may get
involved in unprotected sex so much so that it may result to unplanned births, sex-
ually transmitted diseases and child abandonment. Early research has shown that
factors such as fear of the unknown effects of contraceptives, spouse’s disapproval,
religious and cultural beliefs, inadequate information and poor service of family plan-
ning clinics, may be barriers to use of contraceptives [21]. The difficulty in getting
the population to accept the use of contraceptives is a problem, particularly in rural
areas of developing countries. This problem is the motive for the continuous research
on awareness creation on birth control with the use of contraceptives [21].

This paper considers a system made up of individuals that have attained the re-
productive (or child-bearing) age and focuses on the use of a method of contraception
(e.g., condoms). The study is aimed at deriving the optimal number of non-adopters
that should be successfully educated on contraception using optimal control theory.
Models based on optimal control theory are well-known in the literature [1, 5, 6].
The increased application of optimal control theory in ecology and natural resource
management has been discussed as well [29]. In this present study, the state variables,
which are the adopters and the non-adopters of the use of contraceptives, coexist. The
control variable is the fraction of non-adopters successfully educated on contraception
(i.e., the new adopters). This control is used as a proxy for the campaign effort. The
use of a fraction of the population as a control is not novel as it has earlier been
considered [23]. Before delving into the mathematical formulation of the population
dynamics, we provide a review on methods of birth control and population models in
Section 2. The model formulation is given in Section 3. Section 4 is concerned with a
numerical illustration of the population dynamics, and Section 5 concludes the paper.

2. Related Works

Birth control is crucial to reducing population expansion [23] and poverty [36] in
developing economies. The gains of birth control, inter alia, include: a smaller pop-
ulation, higher Gross National Product (GNP) per head and reduction in the ratio
of dependent children to work-age population [8]. The methods of birth control are
found in the literature [21, 32]. These include: the long-term methods such as Intra-
Uterine Device (IUD), sterilization for both male and female and implant; the hor-

1The crusaders in a developing country like Nigeria are mainly physicians, social workers and
non-governmental organisations.
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monal methods such as oral contraceptives, patch and ring; and the barrier methods
such as the condoms, diaphragm and spermicides. It has been found that men who
tend to assign contraceptive responsibility to women have more negative attitudes to-
wards male contraceptive use [35]. The use of contraceptives among women and the
factors that influence their use have been examined [4]. The factors include: being in
a relationship, number of sex partners, pregnancy status, sexual activity status, age
and social class. The prevalence of contraceptive use among women of reproductive
age in Calabar, Nigeria has earlier been studied [7]. Lack of information as one of the
factors that hinders the use of modern methods of birth control has been identified in
Nigeria [21]. Essentially birth control is important in order to attain a steady-state
growth rate of the population [23].

Population studies have gained prominence in the literature. Some of the early
works on population dynamics are found in [16, 24]. Research on the relationship
between population and economic growth has also been carried out [3]. In the study
of pre-industrial societies, the Malthusian model of population dynamics occupies a
central position in the analysis of the demographic change [2, 14, 19, 27]. A competing
model of population dynamics to the Malthusian model is the logistic model. The
Malthusian model is well-suited for populations that are not limited by space, while
the logistic model is the standard model for single-species population growth [34].
The logistic equation, wherein the instantaneous birth rate per individual and the
carrying capacity of the system are the parameters, is a more realistic model in terms
of the birth and death processes of population growth [10]. The logistic curve provides
reliable projections of the total population provided that there is a relationship among
births, deaths and migration [13]. The work of [13] has been generalized [22]. It
has been found that the population size of the logistic model with varying carrying
capacity will eventually be gamma-distributed [25] and that population densities may
exhibit oscillatory behaviour owing to seasonality [15].

Solutions to population models can be either exact or numerical. In [18] exact
solutions to a quasi-linear first-order differential equation that models the growth of a
single population subject to the logistic growth was found. However, in [11], numeri-
cal solutions based on the central finite difference method to the first-order hyperbolic
equation of age and time variables which describes the one-sex models of population
dynamics was provided. The existence of equilibrium solutions of a nonlinear struc-
tured population model and the local asymptotic stability of the equilibria has been
proved [33].

Demographic and environmental variability and the possibility of extinction of
a population may be modelled correctly in stochastic population models [37]. The
structure variables include chronological age of each individual and the population
size. In the stochastic population model it is possible to approximate the model as a
diffusion [12]. In this case the population is at risk of extinction and the stochastic
nature is caused by demographic and environmental fluctuations. The distribution of
the extinction times in the stochastic logistic population model wherein the lifespan
of any population can be described has been investigated [20]. In another study an
alternative approach to the forecasting ability of the logistic population model was
illustrated by modifying the assumption of the homoscedasticity of the error term
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[17]. Later on, a method that can be used to fit a population model in the presence of
observation error was described [31]. This study improves on the existing population
models in the literature [2, 10, 14, 19, 27] by integrating the population dynamics and
the effect of birth control campaign in the same dynamical system. The method of
estimation of parameters for the state-transition equations is similar to the one found
in [31].

3. Model Formulation

In this section, we complete the statement of the problem alongside with the under-
lying assumptions and provide the solution.

3.1. Model Development

Consider a system which consists of individuals of reproductive (or child-bearing)
age. Individuals in the system are assumed to be divided into two mutually exclu-
sive compartments: non-adopters (x(t)) and adopters (y(t)). We assume that the
babies and the people in child-bearing age are distinguishable. This assumption is
necessary because the transition from non-adopter to adopter is only applicable to
people in child-bearing age. Only a portion of x(t) can transfer to adopters and the
new-born babies cannot be adopter or non-adopter in less than a legally allowable
child-bearing age (say, 15 years). We assume that the adopters and the non-adopters
coexist in the system and their interaction precludes personal issues such as the use of
contraceptives. This assumption is consistent with the setting in rural communities
in developing countries like Nigeria, where sex education is seen as either a taboo
or immoral [21]. The non-adopters may change their opinion due to a re-orientation
campaign on the use of contraceptives provided by birth control crusaders (e.g. physi-
cians, social workers and non-governmental organisations) by whatever means. We
assume that the cost of the campaign, which includes the cost of consultation with
physicians and social workers on the use of contraceptives, is negligible. This is be-
cause fertility control is subsidized in both high- and low-income countries [8, 28]. As
a result cost is not considered within the model formulation.

Let θ(t) be the fraction of ’non-adopters successfully educated on contraception’
(new adopters hereinafter). Then θ(t)x(t) is the number of new adopters attributed
to the re-orientation campaign on the use of contraceptives. The changes in the total
population are induced by two effects: maturity (the attainability of reproductive
age) and attrition. On attaining the reproductive age, the new member of the system
may be either adopter or non-adopter. The loss in population may be attributed
to attrition such as death, emigration, or attaining menopause. It is reasonable to
assume that the population dynamics of the birth-control adopters and non-adopters
are different. Consequent upon this, the dynamics of the system is assumed to follow
the population growth models below

dx(t)

dt
= γ1x(t)− γ2x2(t)− θ(t)x(t), x(0) = x0, (3.1)
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and
dy(t)

dt
= β1y(t) + θ(t)x(t), y(0) = y0, (3.2)

where γ1 is the intrinsic growth rate of non-adopters and β1 is the intrinsic growth
rate of adopters. The term γ2x

2(t) in equation (3.1) is used to model the loss of
non-adopters induced by the non-use of contraceptives. This is realistic because ill
health, which is one of the consequences of increased family size [9], is worse-off for
the poorest (most of whom are in rural areas) that are most ignorant and apathetic
on use of contraceptives [8]. The effect of interaction between the adopters and the
non-adopters is not considered. Equations (3.1) and (3.2) are analogous to the well-
known logistic model and Malthusian model of population dynamics, respectively. In
practice, equations (3.1) and (3.2) may be subjected to statistical analysis to ascertain
their significance as an appropriate model for the two population compartments. We
assume that the non-adopters may not all accept and practise contraception no matter
the campaign owing to their religious beliefs. For this reason, the control θ(t) is
assumed to satisfy the relation, 0 ≤ θ(t) < 1.

Let {t : 0 < t ≤ T} be a fixed time horizon. Since efforts are made to increase the
number of adopters, we define the objective function to be

max
θ(t)

∫ T

0

θ(t)x(t)dt. (3.3)

The optimal control problem posed by the objective function (3.3) and the state
transition equations (3.1) and (3.2) together with the initial conditions and the bounds
for the control is thus:

max
θ(t)

∫ T

0

θ(t)x(t)dt,

subject to
dx(t)

dt
= γ1x(t)− γ2x2(t)− θ(t)x(t),

dy(t)

dt
= β1y(t) + θ(t)x(t),

x(0) = x0, y(0) = y0, 0 ≤ θ(t) < 1, t ∈ (0, T ].

This model set-up is a bounded optimal control problem with the bounds being the
closed-open interval 0 ≤ θ(t) < 1.

3.2. Model Solution

To solve the bounded control problem, we employ the Pontryagin’s maximum princi-
ple. The analysis of our solution is as follows.

We compute the control function, θ(t), by assuming that its value is at the lower
bound or it is in the interior. Suppose the total population is a variable, then the



68 V.U. Ekhosuehi and F.O. Chete

Hamiltonian, H, with arguments given as (x(t), y(t), θ(t), λ1(t), λ2(t)), for the problem
is

H = θ(t)x(t) + λ1(t)(γ1x(t)− γ2x2(t)− θ(t)x(t)) + λ2(t)(β1y(t) + θ(t)x(t)), (3.4)

where λj(t), j = 1, 2, is a multiplier function, which defines the marginal valuation of
the productive capacity of the respective state variables. The influence equations for
the state variables x(t) and y(t) are obtained as

dλ1(t)

dt
= − ∂H

∂x(t)
= − (θ(t) + λ1(t) (γ1 − 2γ2x(t)− θ(t)) + λ2(t)θ(t)) , (3.5)

and
dλ2(t)

dt
= − ∂H

∂y(t)
= −β1λ2(t). (3.6)

Thus,
λ2(t) = ϕ exp(−β1t), (3.7)

where ϕ is a constant. Equation (3.7) implies that the marginal value of the adopters
decays exponentially with time. The Lagrangian function, L, for the Hamiltonian
subject to the control bounds, 0 ≤ θ(t) < 1, is

L = θ(t)x(t) + λ1(t)
(
γ1x(t)− γ2x2(t)− θ(t)x(t)

)
+

λ2(t)(β1y(t) + θ(t)x(t)) + ρ1θ(t) + ρ2(1− θ(t)), (3.8)

where ρ1 and ρ2 are the Lagrangian multipliers when the total population is a variable.
The necessary conditions for θ(t) to maximise the bounded control problem are

∂L

∂θ(t)
= x(t)− λ1(t)x(t) + λ2(t)x(t) + ρ1 − ρ2 = 0, ρ1 ≥ 0, ρ1θ(t) = 0, ρ2 = 0. (3.9)

Without campaign on contraception, that is, θ(t) = 0, we use equation (3.9) to get

dλ1(t)

dt
≥ dλ2(t)

dt
. (3.10)

In this case, the optimal population, x∗(t) + y∗(t), is obtained from the transition
equations (3.1) and (3.2) by setting θ(t) = 0. Thus the optimal sub-populations are
found by solving the respective state transition equations. We obtain

x∗(t) =
x0 exp(γ1t)(

1− γ2
γ1
x0(1− exp(γ1t))

) , (3.11)

and
y∗(t) = y0 exp(β1t). (3.12)

We use the symbol ∗ to denote the optimal value. To increase the adopters, there
is a need for awareness campaign. Such a campaign is effective when at least one
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non-adopter accepts and practises contraception. With campaign on contraception
θ(t) lies in the open interval (0, 1). In this open interval, we obtain from equation
(3.9) that

dλ1(t)

dt
=
dλ2(t)

dt
. (3.13)

The optimal sub-populations, x∗(t) and y∗(t), are obtained using equation (3.7) to
simplify the influence equation (3.5) and then the solution is substituted into the
transition equations (3.1) and (3.2). We therefore obtain

x∗(t) =
γ1
2γ2
− β1ϕ exp(−β1t)

2γ2(1 + ϕ exp(−β1t))
, (3.14)

y∗(t) = exp(β1t)
(
y0 + ϑ1(1− exp(−β1t)) + ϑ2

(
ln (ζ(t))

2 − ℘(t)
))

, (3.15)

and

θ∗(t) = γ1 − γ2x∗(t)−
x′(t)

x∗(t)
, (3.16)

where

ϕ =
γ1 − 2γ2x0

β1 − γ1 + 2γ2x0
,

ϑ1 =
γ21

4γ2β1
, ϑ2 =

β1(ϕ+ 1)

2γ2ϕ2
, ζ(t) =

1 + ϕ

1 + ϕ exp(−β1t)
,

℘(t) =
ϕ(1− exp(−β1t)) (1 + (1 + ϕ)(1 + ϕ exp(−β1t)))

(1 + ϕ)(1 + ϕ exp(−β1t))
,

and

x′(t) =
β2
1ϕ exp(−β1t)

2γ2(1 + ϕ exp(−β1t))2
.

The optimal solutions (3.14) – (3.16) are feasible, provided that θ(t) ∈ (0, 1).
On the other hand, if the total population is fixed, say N , then

dx(t)

dt
+
dy(t)

dt
= 0,

so that β1y(t) = −(γ1x(t)− γ2x2(t)). In this case, equation (3.4) becomes

H = θ(t)x(t) + λ(t)(γ1x(t)− γ2x2(t)− θ(t)x(t)), (3.17)

where λ(t) = λ1(t)− λ2(t). The influence equations for the state variable x(t) is

dλ(t)

dt
= − (θ(t) + λ(t) (γ1 − 2γ2x(t)− θ(t))) . (3.18)

The Lagrangian function, L, for the Hamiltonian subject to the control bounds,
0 ≤ θ(t) < 1, would be
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L = θ(t)x(t) + λ(t)
(
γ1x(t)− γ2x2(t)− θ(t)x(t)

)
+ w1θ(t) + w2(1− θ(t)), (3.19)

where w1 and w2 are the Lagrangian multipliers when the total population is fixed.
With θ(t) = 0, we obtain the same result as in equation (3.11). For 0 < θ(t) < 1 and
x(t) 6= 0, we obtain λ(t) = 1,

x(t) =
γ1
2γ2

, (3.20)

y(t) = N − γ1
2γ2

, (3.21)

and
θ(t) =

γ1
2
. (3.22)

3.3. Estimation of the Parameters

In most cases, data on population are available at discrete periods, so that the discrete-
time model may be used to approximate the continuous-time process. Suppose his-
torical data are available for t = 1, 2, · · · , η. Then we estimate the parameters of the
model by setting θ(t) = 0 and applying the method of least squares. By so doing, we
use the difference equation

xt − xt−1 = γ1xt−1 − γ2x2t−1 + error, (3.23)

as the discrete-time analogue of the logistic model. Thereafter, we apply the least
squares method to get

γ̂1 =
(

[ 1 0 ]
(
[ X−1 X2

−1 ]′[ X−1 X2
−1 ]

)−1
[ X−1 X2

−1 ]′X
)
− 1,

(3.24)
and

γ̂2 =
(

[ 0 −1 ]
(
[ X−1 X2

−1 ]′[ X−1 X2
−1 ]

)−1
[ X−1 X2

−1 ]′X
)
,

(3.25)
where X is an η × 1 vector of xt, X−1 is an η × 1 vector of the one period lagged
number of non-adopters, xt−1, and X2

−1 is an η × 1 vector of the squares of the one
period lagged number of non-adopters, x2t−1. We use the hat over the parameters to
denote an estimate. Our approach towards obtaining the estimators for γ1 and γ2
is similar to the Solow method [31], except that the first-order derivative dx(t)/dt is
replaced by the first-order difference xt − xt−1 instead of the current value xt as in
[31].

Similarly, we obtain

β̂1 = [ 0 1 ]
(
[ e Ω ]′[ e Ω ]

)−1
[ e Ω ]′Γ, (3.26)

where Γ is an η × 1 vector of ln yt, Ω is an η × 1 vector of time instants and e is an
η × 1 vector of ones.
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4. Numerical Illustration

The model defined by equations (3.14) – (3.16) is illustrated using values tabulated in
Table 1 with the population size at the current period and the proportion of adopters
given as 4.85× 106 and 0.070, respectively.

Table 1: The population size over time
t (in years) 1 2 3 4 5 6 7

Population ×106 2.00 2.28 2.65 3.12 3.45 4.19 4.33

Proportion of adopters 0.043 0.041 0.038 0.040 0.045 0.049 0.045

The parameters of the model are estimated using the least squares estimators in
equations (3.24) – (3.26) as γ̂1 = 0.2893, γ̂2 = 5.1278× 10−8 and β̂1 = 0.1593, respec-
tively. These parameter estimates as well as the model are statistically significant at
the 5% level from the output of the MATLAB program (see Appendix). Using the
parameter estimates, numerical simulations for the optimal sub-populations and the
optimal fraction of new adopters are carried out and depicted in Figure 1.
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Figure 1: 3D plot of the population dynamics and the control

These simulations are performed in the MATLAB environment (see Appendix for
the MATLAB source code). The simulations show that in the absence of campaign,
the non-adopters and the adopters would continue to grow and the total population
would rise rapidly. It is further shown that with the campaign, the non-adopters would
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reduce drastically and the adopters would increase tremendously. On the whole, the
campaign is able to achieve a reduction in the total population, even though the
fraction of new adopters decreases steadily. These simulations therefore suggest that
the campaign on contraception is a way to improve on the use of contraceptives. Since
contraception could be used as a means of population control, the model proposed in
this paper is a way out of reducing population expansion.

5. Conclusion

This study has provided an insight into population dynamics under birth control
campaign. The approach is to develop a continuous-time optimal control model to
serve as an alternative to the discrete-time approach as in [23]. The fundamentals
of optimal control theory and the Malthusian and logistic models of population dy-
namics have been used as theoretical underpinnings. The method of least squares
has been employed to provide the parameter estimates. Our approach to describing
population defined by two sub-populations according to the use of contraceptives is
very inspiring. Nonetheless, further work may be undertaken so as to incorporate the
interaction between the adopters and the non-adopters. One of the innovations of this
study is to integrate population dynamics and the effect of birth control campaign
in the same dynamical system, by adding the term θ(t)x(t) in the formula for both
types of population dynamics, as in equations (3.1) and (3.2). This setting may be
improved upon. This can be achieved by taking into consideration the time lags of
the two processes as well as the delay in adopting the use of contraceptives. The time
lags of the two processes, that is the population dynamics by birth and death and the
transition from non-adopter to adopter, may be different. The population dynam-
ics by birth and death takes some decades, while the transition from non-adopter to
adopter happens in shorter time period, only several months or a few years. Incorpo-
rating these variables will go a long way towards refining the model as the most likely
approach may involve systems of delay differential equations. Finally in the absence
of subsidy, the core check and balance of driving force in the birth control campaign
would be cost. In this case a well-defined cost function needs to be figured out and
added as a part of the objective function.
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Appendix

clc

P=[2; 2.28; 2.65; 3.12; 3.45; 4.19; 4.33]*10∧6;
Xlag=(ones(length(P),1)-[0.043; 0.041; 0.038; 0.040; 0.045; 0.049; 0.045]).*P;



Population Dynamics with Campaign on Contraception 73

Ylag=P-Xlag;

P0=4.85*10∧6; x0=(1-0.07)*P0; y0=(P0-x0);

X=[Xlag(2:length(P),1); x0];

Y=[Ylag(2:length(P),1); y0];

T=[1:length(P)]’;

g1=[1 0]*(inv([Xlag Xlag.∧2]’*[Xlag Xlag.∧2])*[Xlag Xlag.∧2]’*X)-1,

g2=[0 -1]*(inv([Xlag Xlag.∧2]’*[Xlag Xlag.∧2])*[Xlag Xlag.∧2]’*X),

b1=[0 1]*(inv([ones(length(P),1) T]’*[ones(length(P),1) T])*[ones(length(P),1)

T]’*log(Ylag)),

%t-test for the significance of parameters.

I=eye(length(P)); N=length(P); p=2; s=inv([Xlag Xlag.∧2]’*[Xlag Xlag.∧2]);
betahat1=(inv([Xlag Xlag.∧2]’*[Xlag Xlag.∧2])*[Xlag Xlag.∧2]’*X);
se=sqrt((X’*(I-[Xlag Xlag.∧2]*s*[Xlag Xlag.∧2]’)*X)/(N-p)),
covbeta=(se∧2)*s,
tcal0=(g1+1)/sqrt(covbeta(1,1)),

tcal1=-g2/sqrt(covbeta(2,2)),

tTab1=2.02;

%Decision rule.

if abs(tcal0)>2.02

disp(’Reject H0: the constant term, g1, is significant at 5% level’)

else

if abs(tcal0)<2.02

disp(’We do not reject H0: the constant term, g1, is not significant at 5%

level’)

end

end

if abs(tcal1)>2.02

disp(’Reject H0: the constant term, g2, is significant at 5% level’)

else

if abs(tcal1)< 2.02

disp(’We do not reject H0: the constant term, g2, is not significant at 5%

level’)

end

end

Rsquare=(betahat1’*[Xlag Xlag.∧2]’*[Xlag Xlag.∧2]*betahat1-N*(mean(X))∧2) ...

/(X’*X-N*(mean(X))∧2),

Fcal=(N-2)*Rsquare/(1-Rsquare),

Ftab=5.59;

if Fcal>Ftab
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disp(’Reject H0: the model 1 is significant at 5% level’)

else

if Fcal<Ftab

disp(’We do not reject H0: the model 1 is not significant at 5% level’)

end

end

%t-test for the significance of parameter beta.

I=eye(length(P)); N=length(P); p=2;

s2=inv([ones(length(P),1) T]’*[ones(length(P),1) T]);

betahat2=(inv([ones(length(P),1) T]’*[ones(length(P),1) T])* ...

[ones(length(P),1) T]’*log(Ylag));

se2=sqrt((log(Ylag)’*(I-[ones(length(P),1) T]*s2*[ones(length(P),1) T]’)* ...

log(Ylag))/(N-p)),

covbeta2=(se2∧2)*s2,
tcal2=b1/sqrt(covbeta2(2,2)),

%Decision rule.

if abs(tcal2)>2.02

disp(’Reject H0: the constant term, b1, is significant at 5% level’)

else

if abs(tcal2)<2.02

disp(’We do not reject H0: the constant term, b1, is not significant at 5%

level’)

end

end

Rsquare=(betahat2’*[ones(length(P),1) T]’*[ones(length(P),1) T]*betahat2-N*...

(mean(log(Ylag)))∧2)/(log(Ylag)’*log(Ylag)-N*(mean(log(Ylag)))∧2),

Fcal=(N-2)*Rsquare/(1-Rsquare),

Ftab=5.59;

if Fcal>Ftab

disp(’Reject H0: the model 2 is significant at 5% level’)

else

if Fcal<Ftab

disp(’We do not reject H0: the model 2 is not significant at 5% level’)

end

end

v=(g1-2*g2*x0)/(b1-g1+2*g2*x0);

n=10;

for t=1:n;

x1(t)=(x0*exp(g1*t))/(1-(g2*x0/g1)*(1-exp(g1*t)));

y1(t)=y0*exp(b1*t);

x(t)=(g1/(2*g2))-(b1*v*exp(-b1*t))/(2*g2*(1+v*exp(-b1*t)));
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th(t)=g1-g2*((g1/(2*g2))-(b1*v*exp(-b1*t))/(2*g2*(1+v*exp(-b1*t))))...

-((b1∧2)*v*exp(-b1*t))/((2*g2*(1+v*exp(-b1*t))∧2)*((g1/(2*g2))...
-(b1*v*exp(-b1*t))/(2*g2*(1+v*exp(-b1*t)))));

z1=(v*(1-exp(-b1*t)))*(1+(1+v)*(1+v*exp(-b1*t)));

z2=(1+v)*(1+v*exp(-b1*t));

k1=b1*(v+1)/(2*g2*v∧2); k0=g2∧2/(4*g2*b1); m=((1+v)/(1+v*exp(-b1*t)))∧2;
y(t)=exp(b1*t)*(y0+k0*(1-exp(-b1*t))+k1*(log(((1+v)/(1+v*exp(-b1*t)))∧2)...
-((v*(1-exp(-b1*t)))*(1+(1+v)*(1+v*exp(-b1*t))))/((1+v)*(1+v*exp(-b1*t)))));

end

clf

subplot(2,2,1)

t=1:n;

ribbon(t’,[x1’ x’],0.5)

zlabel(’x(t)’)

ylabel(’t (in years)’)

title (’Fig. a: 3D plot of the population of non-adopters.’)

subplot(2,2,2)

t=1:n;

ribbon(t’,[y1’ y’],0.5)

zlabel(’y(t)’)

ylabel(’t (in years)’)

title (’Fig. b: 3D plot of the population of adopters.’)

subplot(2,2,3)

t=1:n;

ribbon(t’,th’,0.1)

zlabel(’theta (t)’)

ylabel(’t (in years)’)

title (’Fig. c: 3D plot of the fraction of new adopters.’)

subplot(2,2,4)

t=1:n;

ribbon(t’,[(x1’+y1’), (x’+y’)],0.5)

zlabel(’Total population’)

ylabel(’t (in years)’)

legend(’Absence of Campaign’,’Effective Campaign’)

title (’Fig. d: 3D plot of the total population.’)
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Abstract: We generalized the concepts in probability of rough
Cesàro and lacunary statistical by introducing the difference operator ∆α

γ

of fractional order, where α is a proper fraction and γ = (γmnk) is any
fixed sequence of nonzero real or complex numbers. We study some proper-
ties of this operator involving lacunary sequence θ and arbitrary sequence
p = (prst) of strictly positive real numbers and investigate the topological
structures of related with triple difference sequence spaces.

The main focus of the present paper is to generalized rough Cesàro
and lacunary statistical of triple difference sequence spaces and investi-
gate their topological structures as well as some inclusion concerning the
operator ∆α

γ .
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Keywords and Phrases: Analytic sequence; Musielak-Orlicz function; Triple se-
quences; Chi sequence; Cesàro summable; Lacunary statistical convergence.

Introduction

A triple sequence (real or complex) can be defined as a function x : N×N×N→ R (C) ,
where N,R and C denote the set of natural numbers, real numbers and complex
numbers respectively. The different types of notions of triple sequence was introduced
and investigated at the initial by Sahiner et al. [10, 11], Esi et al. [1-3], Dutta et al.
[4], Subramanian et al. [12-15], Debnath et al. [5] and many others.
A triple sequence x = (xmnk) is said to be triple analytic if

sup
m,n,k

|xmnk|
1

m+n+k <∞.

The space of all triple analytic sequences are usually denoted by Λ3. A triple sequence
x = (xmnk) is called triple gai sequence if
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((m+ n+ k)! |xmnk|)
1

m+n+k → 0 as m,n, k →∞.

The notion of difference sequence spaces (for single sequences) was introduced by
Kizmaz [6] as follows

Z (∆) = {x = (xk) ∈ w : (∆xk) ∈ Z}

for Z = c, c0 and `∞, where ∆xk = xk − xk+1 for all k ∈ N.

The difference triple sequence space was introduced by Debnath et al. (see [5])
and is defined as

∆xmnk = xmnk − xm,n+1,k − xm,n,k+1 + xm,n+1,k+1

−xm+1,n,k + xm+1,n+1,k + xm+1,n,k+1 − xm+1,n+1,k+1

and ∆0xmnk = 〈xmnk〉 .

1. Some New Difference Triple Sequence Spaces with
Fractional Order

Let Γ (α) denote the Euler gamma function of a real number α. Using the definition
Γ (α) with α /∈ {0,−1,−2,−3, · · · } can be expressed as an improper integral as follows:
Γ (α) =

∫∞
0
e−xxα−1dx, where α is a positive proper fraction. We have defined the

generalized fractional triple sequence spaces of difference operator

∆α
γ (xmnk) =

∞∑
u=0

∞∑
v=0

∞∑
w=0

(−1)
u+v+w

Γ (α+ 1)

(u+ v + w)!Γ (α− (u+ v + w) + 1)
xm+u,n+v,k+w. (1.1)

In particular, we have

(i) ∆
1
2 (xmnk) = xmnk − 1

16xm+1,n+1,k+1 − · · · ;

(ii) ∆−
1
2 (xmnk) = xmnk + 5

16xm+1,n+1,k+1 + · · · ;

(iii) ∆
2
3 (xmnk) = xmnk − 4

81xm+1,n+1,k+1 − · · · .

Now we determine the new classes of triple difference sequence spaces ∆α
γ (x) as

follows:

∆α
γ (x) =

{
x : (xmnk) ∈ w3 :

(
∆α
γx
)
∈ X

}
, (1.2)

where

∆α
γ (xmnk) =

∞∑
u=0

∞∑
v=0

∞∑
w=0

(−1)
u+v+w

Γ (α+ 1)

(u+ v + w)!Γ (α− (u+ v + w) + 1)
xm+u,n+v,k+w
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and

X ∈ χ3∆
f (x) = χ3

f

(
∆α
γxmnk

)
= µmnk

(
∆α
γx
)

=
[
fmnk

((
(m+ n+ k)!

∣∣∆α
γ

∣∣) 1
m+n+k , 0̄

)]
.

Proposition 1.1.

(i) For a proper fraction α ∆α : W ×W ×W →W ×W ×W defined by equation
of (2.1) is a linear operator;

(ii) For α, β > 0, ∆α
(
∆β (xmnk)

)
= ∆α+β (xmnk) and ∆α (∆−α (xmnk)) = xmnk.

Proof: Omitted.

Proposition 1.2. For a proper fraction α and f be an Musielak-Orlicz function, if

χ3
f (x) is a linear space, then χ

3∆α
γ

f (x) is also a linear space.

Proof: Omitted.

2. Definitions and Preliminaries

Throughout the article w3, χ3 (∆) ,Λ3 (∆) denote the spaces of all, triple gai differ-
ence sequence spaces and triple analytic difference sequence spaces respectively.
Subramanian et al. (see [12]) introduced by a triple entire sequence spaces, triple
analytic sequences spaces and triple gai sequence spaces. The triple sequence spaces
of χ3 (∆) ,Λ3 (∆) are defined as follows:

χ3 (∆) =
{
x ∈ w3 : ((m+ n+ k)! |∆xmnk|)1/m+n+k → 0 as m,n, k →∞

}
,

Λ3 (∆) =
{
x ∈ w3 : supm,n,k |∆xmnk|

1/m+n+k
<∞

}
.

Definition 2.1. An Orlicz function ([see [7]) is a function M : [0,∞) → [0,∞)
which is continuous, non-decreasing and convex with M (0) = 0, M (x) > 0, for
x > 0 and M (x) → ∞ as x → ∞. If convexity of Orlicz function M is replaced by
M (x+ y) ≤M (x) +M (y) , then this function is called modulus function.

Lindenstrauss and Tzafriri ([8]) used the idea of Orlicz function to construct Orlicz
sequence space.

A sequence g = (gmn) defined by

gmn (v) = sup {|v|u− (fmnk) (u) : u ≥ 0} , m, n, k = 1, 2, · · ·

is called the complementary function of a Musielak-Orlicz function f . For a given
Musielak-Orlicz function f, (see [9]) the Musielak-Orlicz sequence space tf is defined
as follows

tf =
{
x ∈ w3 : If (|xmnk|)1/m+n+k → 0 as m,n, k →∞

}
,
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where If is a convex modular defined by

If (x) =

∞∑
m=1

∞∑
n=1

∞∑
k=1

fmnk (|xmnk|)1/m+n+k
, x = (xmnk) ∈ tf .

We consider tf equipped with the Luxemburg metric

d (x, y) =

∞∑
m=1

∞∑
n=1

∞∑
k=1

fmnk

(
|xmnk|1/m+n+k

mnk

)

is an extended real number.

Definition 2.2. Let α be a proper fraction. A triple difference sequence spaces of
∆α
γx =

(
∆α
γxmnk

)
is said to be ∆α

γ strong Cesàro summable to 0̄ if

lim
uvw→∞

1

uvw

u∑
m=1

v∑
n=1

w∑
k=1

∣∣∆α
γxmnk, 0̄

∣∣ = 0.

In this we write ∆α
γxmnk →[C,1,1,1] ∆α

γxmnk. The set of all ∆α
γ strong Cesàro

summable triple sequence spaces is denoted by [C, 1, 1, 1].

Definition 2.3. Let α be a proper fraction and β be a nonnegative real number.
A triple difference sequence spaces of ∆α

γx =
(
∆α
γxmnk

)
is said to be ∆α

γ rough strong
Cesàro summable in probability to a random variable ∆α

γx : W ×W ×W → R×R×R
with respect to the roughness of degree β if for each ε > 0,

lim
uvw→∞

1

uvw

u∑
m=1

v∑
n=1

w∑
k=1

P
(∣∣∆α

γxmnk, 0̄
∣∣ ≥ β + ε

)
= 0.

In this case we write ∆α
γxmnk →

[C,1,1,1]P∆

β ∆α
γxmnk. The class of all β∆α

γ− strong
Cesàro summable triple sequence spaces of random variables in probability and it will
be denoted by β [C, 1, 1, 1]

P∆
.

3. Rough Cesàro Summable of Triple of ∆α
γ

In this section by using the operator ∆α
γ , we introduce some new triple difference

sequence spaces of rough Cesàro summable involving lacunary sequences θ and arbi-
trary sequence p = (prst) of strictly positive real numbers.
If α be a proper fraction and β be nonnegative real number. A triple difference se-
quence spaces of ∆α

γX =
(
∆α
γxmnk

)
is said to be ∆α

γ− rough strong Cesàro summable
in probability to a random variable ∆α

γX : W ×W ×W → R×R×R with respect to
the roughness of degree β if for each ε > 0 then define the triple difference sequence
spaces as follows:
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(i)

C
(
∆α
γ , p
)
θ

=

∞∑
r=1

∞∑
s=1

∞∑
t=1

P

fmnk
∣∣∣∣∣∣ 1

hrst

∑
(mnk)∈Irst

∆α
γX

∣∣∣∣∣∣
prst ≥ β + ε

 <∞.

In this case we write C
(
∆α
γ , p
)
θ
→[C,1,1,1]P∆

β C
(
∆α
γ , p
)
θ
. The class of all

βC
(
∆α
γ , p
)
θ
− rough strong Cesàro summable triple sequence spaces of random

variables in probability and it will be denoted by β [C, 1, 1, 1]
P∆

.

(ii)

C
[
∆α
γ , p
]
θ

=

∞∑
r=1

∞∑
s=1

∞∑
t=1

P

 1

hrst

∑
(mnk)∈Irst

fmnk
[∣∣∆α

γX
∣∣prst] ≥ β + ε

 <∞.

In this case we write C
[
∆α
γ , p
]
θ
→[C,1,1,1]P∆

β C
[
∆α
γ , p
]
θ
. The class of all

βC
[
∆α
γ , p
]
θ
− rough strong Cesàro summable triple sequence spaces of random

variables in probability.

(iii)

CΛ

(
∆α
γ , p
)
θ

= P

fmnk
∣∣∣∣∣∣ 1

hrst

∑
(mnk)∈Irst

∆α
γX

∣∣∣∣∣∣
prst ≥ β + ε

 <∞.

In this case we write CΛ

(
∆α
γ , p
)
θ
→[C,1,1,1]P∆

β CΛ

(
∆α
γ , p
)
θ
. The class of all

βCΛ

(
∆α
γ , p
)
θ
− rough strong Cesàro summable triple sequence spaces of random

variables in probability.

(iv)

CΛ

[
∆α
γ , p
]
θ

=
1

hrst

∑
(mnk)∈Irst

P
(
fmnk

[∣∣∆α
γX
∣∣prst] ≥ β + ε

)
<∞.

In this case we write CΛ

[
∆α
γ , p
]
θ
→[C,1,1,1]P∆

β CΛ

[
∆α
γ , p
]
θ
. The class of all

βCΛ

[
∆α
γ , p
]
θ
− rough strong Cesàro summable triple sequence spaces of random

variables in probability.

(v)

N
(
∆α
γ , p
)
θ

= lim
rst→∞

1

hrst

∑
(mnk)∈Irst

P
(
fmnk

[∣∣∆α
γX, 0̄

∣∣prst] ≥ β + ε
)

= 0.

In this case we write N
(
∆α
γ , p
)
θ
→[C,1,1,1]P∆

β N
(
∆α
γ , p
)
θ
. The class of all

βN
(
∆α
γ , p
)
θ
− rough strong Cesàro summable triple sequence spaces of ran-

dom variables in probability.
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Theorem 3.1. If α be a proper fraction, β be nonnegative real number, f be an
Musielak-Orlicz function and (prst) is a triple difference analytic sequence then the
sequence spaces C

(
∆α
γ , p
)
θ
, C
[
∆α
γ , p
]
θ
, CΛ

(
∆α
γ , p
)
θ
, CΛ

[
∆α
γ , p
]
θ

and N
(
∆α
γ , p
)
θ

are
linear spaces.

Proof: Because the linearity may be proved in a similar way for each of the sets of
triple sequences, hence it is omitted.

Theorem 3.2. If α be a proper fraction, β be nonnegative real number, f be an
Musielak-Orlicz function and (prst), for all r, s, t ∈ N, then the triple difference se-
quence spaces C

[
∆α
γ , p
]
θ

is a BK-space with the Luxemburg metric is defined by

d (x, y)1 =

∞∑
u=0

∞∑
v=0

∞∑
w=0

fmnk

[γuvwxuvw
uvw

]

+ lim
uvw→∞

1

uvw

∞∑
r=1

∞∑
s=1

∞∑
t=1

fmnk

P
 1

hrst

∑
(m,n,k)∈Irst

∣∣∆α
γx
∣∣p ≥ β + ε

1/p

, 1 ≤ p.

Also if prst = 1 for all (r, s, t) ∈ N, then the triple difference spaces CΛ

[
∆α
γ , p
]
θ

and

N
(
∆α
γ , p
)
θ

are BK-spaces with the Luxemburg metric is defined by

d (x, y)2 =

∞∑
u=0

∞∑
v=0

∞∑
w=0

fmnk

[γuvwxuvw
uvw

]
+ lim
uvw→∞

1

uvw

1

hrst

∑
(m,n,k)∈Irst

fmnk
[
P
(∣∣∆α

γx
∣∣) ≥ β + ε

]
.

Proof. We give the proof for the space CΛ

[
∆α
γ , p
]
θ

and that of others followed by
using similar techniques.
Suppose (xn) is a Cauchy sequence in CΛ

[
∆α
γ , p
]
θ
, where xn = (xij`)

n
and xm =(

xmij`

)
are two elements in CΛ

[
∆α
γ , p
]
θ
. Then there exists a positive integer n0 (ε)

such that |xn − xm| → 0 as m,n → ∞ for all m,n ≥ n0 (ε) and for each i, j, ` ∈ N.
Therefore 

x11
uvw x12

uvw ... ...

x21
uvw x22

uvw ... ...

.

.

.


and



∆α
γx

11
ij` ∆α

γx
12
ij` ... ...

∆α
γx

21
ij` ∆α

γx
22
ij` ... ...

.

.

.


are Cauchy sequences in complex field C and CΛ

[
∆α
γ , p
]
θ

respectively. By using the

completeness of C and CΛ

[
∆α
γ , p
]
θ

we have that they are convergent and suppose
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that xnij` → xij` in C and
(

∆α
γx

n
ij`

)
→ yij` in CΛ

[
∆α
γ , p
]
θ

for each i, j, ` ∈ N as

n → ∞. Then we can find a triple sequence space of (xij`) such that yij` = ∆α
γxij`

for i, j, ` ∈ N. These xsij` can be interpreted as

xij` =
1

γij`

i−m∑
u=1

j−n∑
v=1

`−k∑
w=1

∆α
γ yuvw

=
1

γij`

i∑
u=1

j∑
v=1

∑̀
w=1

∆α
γ yu−m,v−n,w−k, (y1−m,1−n,1−k = y2−m,2−n,2−k = · · · = y000 = 0) .

for sufficiently large (i, j, `); that is,

(
∆α
γx

n
)

=



∆α
γx

11
ij` ∆α

γx
12
ij` ... ...

∆α
γx

21
ij` ∆α

γx
22
ij` ... ...

.

.

.


converges to

(
∆α
γxij`

)
for each i, j, ` ∈ N as n→∞. Thus |xm − x|2 → 0 as m→∞.

Since CΛ

[
∆α
γ , p
]
θ

is a Banach Luxemburg metric with continuous coordinates, that

is |xn − x|2 → 0 implies
∣∣∣xnij` − xij`∣∣∣ → 0 for each i, j, ` ∈ N as n → ∞, this shows

that CΛ

[
∆α
γ , p
]
θ

is a BK-space.

Theorem 3.3. If α be a proper fraction, β be nonnegative real number, f be an
Musielak-Orlicz function and (prst), for all r, s, t ∈ N, then the triple difference se-
quence space C

(
∆α
γ , p
)
θ

is a BK-space with the Luxemburg metric is defined by

d (x, y)3 =

∞∑
u=0

∞∑
v=0

∞∑
w=0

fmnk

[γuvwxuvw
uvw

]

+ lim
uvw→∞

1

uvw

∞∑
r=1

∞∑
s=1

∞∑
t=1

fmnk

P
∣∣∣∣∣∣ 1

hrst

∑
(m,n,k)∈Irst

∆α
γx

∣∣∣∣∣∣
p ≥ β + ε

1/p

, 1 ≤ p.

Also if prst = 1 for all (r, s, t) ∈ N, then the triple difference spaces CΛ

(
∆α
γ , p
)
θ

is a
BK-spaces with the Luxemburg metric is defined by

d (x, y)4 =

∞∑
u=0

∞∑
v=0

∞∑
w=0

fmnk

[
γuvwXuvw

uvw

]

+ lim
uvw→∞

1

uvw
fmnk

P
∣∣∣∣∣∣ 1

hrst

∑
(m,n,k)∈Irst

∆α
γx

∣∣∣∣∣∣
 ≥ β + ε

 .
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Proof: The proof follows from Theorem 4.2.
Now, we can present the following theorem, determining some inclusion relations
without proof, since it is a routine verification.

Theorem 3.4. Let α, ξ be two positive proper fractions α > ξ > 0 and β be two
nonnegative real number, f be an Musielak-Orlicz function and (prst) = p, for each
r, s, t ∈ N be given.Then the following inclusions are satisfied:

(i) C
(
∆ξ
γ , p
)
θ
⊂ C

(
∆α
γ , p
)
θ
;

(ii) C
[
∆ξ
γ , p
]
θ
⊂ C

[
∆α
γ , p
]
θ
;

(iii) C
(
∆α
γ , p
)
θ
⊂ C

(
∆α
γ , q
)
θ
, 0 < p < q.

4. Rough Lacunary Statistical Convergence of Triple
of ∆α

γ

In this section by using the operator ∆α
γ , we introduce some new triple difference

sequence spaces involving rough lacunary statistical sequences spaces and arbitrary
sequence p = (prst) of strictly positive real numbers.

Definition 4.1. The triple sequence θi,`,j = {(mi, n`, kj)} is called triple lacunary if
there exist three increasing sequences of integers such that

m0 = 0, hi = mi −mr−1 →∞ as i→∞ and

n0 = 0, h` = n` − n`−1 →∞ as `→∞,
k0 = 0, hj = kj − kj−1 →∞ as j →∞.

Let mi,`,j = min`kj , hi,`,j = hih`hj , and θi,`,j is determine by

Ii,`,j = {(m,n, k) : mi−1 < m < mi and n`−1 < n ≤ n` andkj−1 < k ≤ kj} ,

qi =
mi

mi−1
, q` =

n`
n`−1

, qj =
kj
kj−1

.

Definition 4.2. Let α be a proper fraction, f be an Musielak-Orlicz function and θ =
{mrnskt}(rst)∈N⋃

0 be the triple difference lacunary sequence spaces of
(
∆α
γXmnk

)
is

said to be ∆α
γ− lacunary statistically convergent to a number 0̄ if for any ε > 0,

lim
rst→∞

1

hrst

∣∣{(m,n, k) ∈ Irst : fmnk
[∣∣∆α

γXmnk, 0̄
∣∣] ≥ ε}∣∣ = 0,

where

Ir,s,t = {(m,n, k) : mr−1 < m < mr andns−1 < n ≤ ns andkt−1 < k ≤ kt} ,

qr =
mr

mr−1
, qs =

ns
ns−1

, qt =
kt
kt−1

.

In this case write ∆α
γX →Sθ ∆α

γx.
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Definition 4.3. If α be a proper fraction, β be nonnegative real number, f be an
Musielak-Orlicz function and θ = {mrnskt}(r,s,t)∈N3

⋃
(0,0,0) be the triple difference

sequence spaces of lacunary. A number X is said to be ∆α
γ − Nθ− convergent to a

real number 0̄ if for every ε > 0,

lim
rst→∞

1

hrst

∑
m∈Ir

∑
n∈Is

∑
k∈It

fmnk
[∣∣∆α

γXmnk, 0̄
∣∣] = 0.

In this case we write ∆α
γXmnk →Nθ 0̄.

Definition 4.4. Let α be a proper fraction, β be nonnegative real number, f be
an Musielak-Orlicz function and arbitrary sequence p = (prst) of strictly positive
real numbers. A triple difference sequence spaces of random variables is said to be
∆α
γ− rough lacunary statistically convergent in probability to ∆α

γX : W ×W ×W →
R× R× R with respect to the roughness of degree β if for any ε, δ > 0,

lim
rst→∞

1

hrst

∣∣{(m,n, k) ∈ Irst : P
([
fmnk

(∣∣∆α
γ (xmnk)

∣∣)]prst ≥ β + ε
)
≥ δ
}∣∣ = 0

and we write ∆α
γXmnk →SP

β 0̄. It will be denoted by βSPθ .

Definition 4.5. Let α be a proper fraction, β be nonnegative real number, f be an
Musielak-Orlicz function and arbitrary sequence p = (prst) of strictly positive real
numbers. A triple difference sequence spaces of random variables is said to be ∆α

γ−
rough Nθ− convergent in probability to ∆α

γX : W ×W ×W → R×R×R with respect
to the roughness of degree β if for any ε > 0,

lim
rst→∞

1

hrst

∑
m∈Ir

∑
n∈Is

∑
k∈It

∣∣{P ([fmnk (∣∣∆α
γXmnk

∣∣)]prst ≥ β + ε
)}∣∣ = 0,

and we write ∆α
γXmnk →

NPθ
β ∆α

γX. The class of all β−Nθ− convergent triple difference

sequence spaces of random variables in probability will be denoted by βNP
θ .

Definition 4.6. Let α be a proper fraction, β be nonnegative real number, f be an
Musielak-Orlicz function and arbitrary sequence p = (prst) of strictly positive real
numbers. A triple difference sequence spaces of random variables is said to be ∆α

γ−
rough lacunary statistically Cauchy if there exists a number N = N (ε) in probability
to ∆α

γX : W ×W ×W → R×R×R with respect to the roughness of degree β if for
any ε, δ > 0,

lim
rst→∞

1

hrst

∣∣{(m,n, k) ∈ Irst : P
([
fmnk

(∣∣∆α
γ (xmnk − xN )

∣∣)]prst ≥ β + ε
)
≥ δ
}∣∣ = 0.

Theorem 4.1. Let α be a proper fraction, β be nonnegative real number, f be an
Musielak-Orlicz function and arbitrary sequence p = (prst) of strictly positive real
numbers, 0 < p <∞.

(i) If (xmnk)→
(
N
(
∆α
γ , p
)
θ

)
for prst = p then (xmnk)→

(
∆α
γ (Sθ)

)
.
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(ii) If x ∈
(
∆α
γ (Sθ)

)
, then (xmnk)→

(
N
(
∆α
γ , p
)
θ

)
.

Proof. Let x = (xmnk) ∈
(
N
(
∆α
γ , p
)
θ

)
and ε > 0,∣∣{P ([fmnk (∣∣∆α

γXmnk

∣∣)]prst ≥ β + ε
)}∣∣ = 0.

We have

1

hrst

∑
(mnk)∈Irst

∣∣{P ([fmnk (∣∣∆α
γXmnk

∣∣)]prst ≥ β + ε
)}∣∣

≥ 1

hrst

∣∣{(m,n, k) ∈ Irst : P
([
fmnk

(∣∣∆α
γ (xmnk)

∣∣)]prst ≥ β + ε
)
≥ δ
}∣∣(β + ε

δ

)p
.

So we observe by passing to limit as r, s, t→∞,

lim
rst→∞

1

hrst

∣∣{(m,n, k) ∈ Irst : P
([
fmnk

(∣∣∆α
γ (xmnk)

∣∣)]prst ≥ β + ε
)
≥ δ
}∣∣

≤
(

δ

α+ ε

)p
P

 lim
rst→∞

1

hrst

∑
(m,n,k)∈Irst

∣∣∆α
γxmnk

∣∣p = 0,

which implies that xmnk →
(
∆α
γ (Sθ)

)
.

Suppose that x ∈ ∆α
γ

(
Λ3
)

and (xmnk) →
(
∆α
γ (S)

)
. Then it is obvious that(

∆α
γx
)
∈ Λ3 and

1

hrst

∣∣{(m,n, k) ∈ Irst : P
([
fmnk

(∣∣∆α
γ (xmnk)

∣∣)]prst ≥ β + ε
)
≥ δ
}∣∣→ 0

as r, s, t→∞. Let ε > 0 be given and there exists u0v0w0 ∈ N such that∣∣∣∣{(m,n, k) ∈ Irst : P
([
fmnk

(∣∣∆α
γ (xmnk)

∣∣)]prst ≥ β +
ε

2

)
≥ δ

2

}∣∣∣∣
≤ ε

2
(
d
(
∆α
γx, y

))
Λ3

+
δ

2
,

where
∑∞
u=1

∑∞
v=1

∑∞
w=1 |γuvwxuvw| = 0, for all r ≥ u0, s ≥ v0, t ≥ w0. Further

more, we can write
∣∣∆α

γxmnk
∣∣ ≤ d

(
∆α
γxmnk, y

)
∆α
γ

≤ d
(
∆α
γx, y

)
Λ3 = d (x, y)∆α

γx
. For

r, s, t ≥ u0, v0, w0

1

hrst

∑
(mnk)∈Irst

P
([
fmnk

(∣∣∆α
γXmnk

∣∣)]p) =
1

hrst
P

 ∑
(mnk)∈Irst

[
fmnk

(∣∣∆α
γXmnk

∣∣)]p
+

1

hrst
P

 ∑
(mnk)/∈Irst

[
fmnk

(∣∣∆α
γXmnk

∣∣)]p <
1

hrst
P

(
hrst

(
ε

2
+
δ

2

)

+hrst
ε d (x, y)

p
∆α
γX

2 d (x, y)
p
∆α
γX

+
δ

2

)
= ε+ δ.
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Hence (xmnk)→
(
N
(
∆α
γ , p
)
θ

)
.

Corollary 4.1. If α be a proper fraction, β be nonnegative real number, f be an
Musielak-Orlicz function and arbitrary sequence p = (prst) of strictly positive real
numbers then the following statements are hold:

(i) S
⋂

Λ3 ⊂ ∆α
γ (Sθ)

⋂
∆α
γ

(
Λ3
)

;

(ii) ∆α
γ (Sθ)

⋂
∆α
γ

(
Λ3
)

= ∆α
γ

(
w3
p

)
.

Theorem 4.2. Let α be a proper fraction, β be nonnegative real number, f be an
Musielak-Orlicz function and arbitrary sequence p = (prst) of strictly positive real
numbers. If x = (xmnk) is a ∆α

γ− triple difference rough lacunary statistically con-
vergent sequence, then x is a ∆α

γ− triple difference rough lacunary statistically Cauchy
sequence.

Proof. Assume that (xmnk)→
(
∆α
γ (Sθ)

)
and ε, δ > 0. Then

1

δ

∣∣∣{(m,n, k) ∈ Irst : P
([
fmnk

(∣∣∆α
γxmnk

∣∣)]prst ≥ β +
ε

2

)}∣∣∣
for almost all m,n, k and if we select N, then

1

δ

∣∣∣{(m,n, k) ∈ Irst : P
([
fmnk

(∣∣∆α
γxN

∣∣)]prst ≥ β +
ε

2

)}∣∣∣
holds. Now, we have∣∣{(m,n, k) ∈ Irst : P

([
fmnk

(∣∣∆α
γ (xmnk − xN )

∣∣)]prst)}∣∣
≤ 1

δ

∣∣∣{(m,n, k) ∈ Irst : P
([
fmnk

(∣∣∆α
γxmnk

∣∣)]prst ≥ β +
ε

2

)}∣∣∣
+

1

δ

∣∣∣{(m,n, k) ∈ Irst : P
([
fmnk

(∣∣∆α
γxN

∣∣)]prst ≥ β +
ε

2

)}∣∣∣ < 1

δ
(β + ε) = ε,

for almost all m,n, k. Hence (xmnk) is a ∆α
γ− rough lacunary statistically Cauchy.

Theorem 4.3. If α be a proper fraction, β be nonnegative real number, f be an
Musielak-Orlicz function and arbitrary sequence p = (prst) of strictly positive real
numbers and 0 < p <∞, then N

(
∆α
γ , p
)
θ
⊂ ∆α

γ (Sθ) .

Proof. Suppose that x = (xmnk) ∈ N
(
∆α
γ , p
)
θ

and∣∣{(m,n, k) ∈ Irst : P
([
fmnk

(∣∣∆α
γxmnk

∣∣)]p ≥ β + ε
)}∣∣ .

Therefore we have

1

hrst

∑
(mnk)∈Irst

P
([
fmnk

(∣∣∆α
γxmnk

∣∣)]p) ≥ 1

hrst

∑
(mnk)∈Irst

(β + ε)
p

≥ 1

hrst

∣∣{(m,n, k) ∈ Irst : P
([
fmnk

(∣∣∆α
γxmnk

∣∣)]p ≥ β + ε
)}∣∣ (β + ε)

p
.



92 A. Esi and N. Subramanian

So we observe by passing to limit as r, s, t→∞,

lim
rst→∞

1

hrst

∣∣{(m,n, k) ∈ Irst : P
([
fmnk

(∣∣∆α
γ (xmnk)

∣∣)]p ≥ β + ε
)
≥ δ
}∣∣

<
1

(β + ε)
p

P
 lim
rst→∞

1

hrst

∑
(m,n,k)∈Irst

[
fmnk

(∣∣∆α
γ (xmnk)

∣∣)]p = 0

implies that x ∈ ∆α
γ (Sθ) . Hence N

(
∆α
γ , p
)
θ
⊂ ∆α

γ (Sθ) .
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Abstract: In this work, we establish some assumptions that guar-
anteeing the global exponential stability (GES) of the zero solution of a
neutral differential equation (NDE). We aim to extend and improves some
results found in the literature.
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1. Introduction

In [1], sufficient conditions for solutions of the (NDEs) form

d

dt
(x(t) + c(t)x(t− τ)) + p(t)x(t) + q(t)x(t− σ) = 0 (1)

to tend zero as t→∞ are established.
In [4, 8, 10, 15, 17], it was considered a (NDE),

d

dt
(x(t) + px(t− τ)) = −αx(t) + b tanh(x(t− σ)) = 0 (2)

and the asymptotic stability (AS) of solutions are investigated.
In addition, some qualitative behaviors of solutions of equation (2) or some differ-

ent models of that (NDE) were investigated in the relevant literature; for example,
(S), (AS), (ES) in [2, 6, 9, 11, 14, 16, 17-25], (GES) in [3], asymptotic behaviors in
[13], oscillation and non-oscillation in [5, 7] and so on.
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In this paper, we deal with the following (NDE) with different variable delays:

d

dt

[
x(t) +

2∑
i=1

pi(t)x(t− τi(t))
]

+ a(t)h(x(t))−
2∑
i=1

bi(t) tanhx(t− σi(t)) = 0, (3)

for t ≥ 0 where ai, bi : [0,∞) → [0,∞) are continuously differentiable functions and∑2
i=1 a

2
i (t) ≤ 1. The functions τi(.) : [0,∞) → [0, τi], (τi > 0) and σi(.) : [0,∞) →

[0, σi], (σi > 0) are bounded and continuously differentiable, and the functions h,
p1 and p2 are continuous with h(0) = 0. Let ri = max{τi, σi} > 0, (i = 1, 2).
Let µ1, µ2, µ3, µ4 ∈ (0, 1) be positive constants such that τ ′1(t) ≤ µ1, τ ′2(t) ≤ µ2,
σ′1(t) ≤ µ3 and σ′2(t) ≤ µ4. For each solution of (NDE) (3), we suppose that

x0(θ) = φ(θ), θ ∈ [−ri, 0], where φ ∈ C([−ri, 0];R).

2. Stability Result

Our stability result is given below.
Theorem. Let K,α0, α1, α2, α3 and α4 be positive constants. The zero solution of
(NDE)(3) is global exponential stable if the following matrix inequalities hold:

Ω =


Ω11 Ω12 Ω13 Ω14 Ω15 0
∗ Ω22 Ω23 Ω24 Ω25 0
∗ ∗ Ω33 Ω34 Ω35 0
∗ ∗ ∗ Ω44 0 0
∗ ∗ ∗ ∗ Ω55 0
∗ ∗ ∗ ∗ ∗ Ω66

 < 0,

∆ =


∆11 ∆12 ∆13 ∆14 ∆15 0
∗ ∆22 ∆23 ∆24 ∆25 0
∗ ∗ ∆33 ∆34 ∆35 0
∗ ∗ ∗ ∆44 0 0
∗ ∗ ∗ ∗ ∆55 0
∗ ∗ ∗ ∗ ∗ ∆66

 < 0, (4)

where

h1(x) =

{
h(x)x−1, x 6= 0
h′(0) , x = 0

and

Ω11 =2Kα0λ1 − 2a(t)α0
h(x)

x
λ1 + α1λ1

2∑
i=1

e2Kτi + α3λ1

2∑
i=1

e2Kσi
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+
α2λ1
2K

2∑
i=1

(e2Kτi − 1) +
α4λ1
2K

2∑
i=1

(e2Kσi − 1),

Ω12 =2λ1Kα0p1(t)− λ1α0a(t)
h(x)

x
p1(t),

Ω13 =2λ1Kα0p2(t)− λ1α0a(t)
h(x)

x
p2(t),

Ω14 =λ1α0b1(t),

Ω15 =λ1α0b2(t),

Ω22 =2λ1Kα0p
2
1(t)− α1λ1(1− µ1),

Ω23 =2λ1Kα0p1(t)p2(t),

Ω24 =λ1α0p1(t)b1(t),

Ω25 =λ1α0p1(t)b2(t),

Ω33 =2λ1Kα0p
2
2(t)− α1λ1(1− µ2),

Ω34 =λ1α0p2(t)b1(t),

Ω35 =λ1α0p2(t)b2(t),

Ω44 =− α3λ1(1− µ3),

Ω55 =− α3λ1(1− µ4),

Ω66 =− α2τi,

∆11 =2Kα0λ2 − 2a(t)α0
h(x)

x
λ2 + α1λ2

2∑
i=1

e2Kτi + α3λ2

2∑
i=1

e2Kσi ,

+
α2λ2
2K

2∑
i=1

(e2Kτi − 1) +
α4λ2
2K

2∑
i=1

(e2Kσi − 1),

∆12 =2λ2Kα0p1(t)− λ2α0a(t)
h(x)

x
p1(t),

∆13 =2λ2Kα0p2(t)− λ2α0a(t)
h(x)

x
p2(t),

∆14 =λ2α0b1(t),

∆15 =λ2α0b2(t),

∆22 =2λ2Kα0p
2
1(t)− α1λ2(1− µ1),

∆23 =2λ2Kα0p1(t)p2(t),

∆24 =λ2α0p1(t)b1(t),

∆25 =λ2α0p1(t)b2(t),

∆33 =2λ2Kα0p
2
2(t)− α1λ1(1− µ2),

∆34 =λ2α0p2(t)b1(t),

∆35 =λ2α0p2(t)b2(t),

∆44 =− α3λ2(1− µ3),

∆55 =− α3λ2(1− µ4),

∆66 =− α4σi,

λ1 =
1

2

τi
τi + σi

, λ2 =
1

2

σi
τi + σi

, (i = 1, 2).
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Proof. Choose an auxiliary functional, that is, Lyapunov functional (LF) by

V (.) = V (t, x) = e2Ktα0

[
x(t) +

2∑
i=1

pi(t)x(t− τi(t))
]2

+ α1

2∑
i=1

t∫
t−τi(t)

e2K(s+τi)x2(s)ds

+ α2

2∑
i=1

0∫
−τi

t∫
t+θ

e2K(s−θ)x2(s)dsdθ

+ α3

2∑
i=1

t∫
t−σi(t)

e2K(s+σi) tanh2 x(s)ds

+ α4

2∑
i=1

0∫
−σi

t∫
t+θ

e2K(s−θ) tanh2 x(s)dsdθ,

where αi ∈ <, (i = 0, 1, ..., 4), αi > 0, and we choose them later.

The calculation of derivative of (LF) V (.) with respect to the (NDE) (3) gives that

dV (.)

dt
= 2Ke2Ktα0

[
x(t) +

2∑
i=1

pi(t)x(t− τi(t))
]2

+ 2e2Ktα0

[
x(t) +

2∑
i=1

pi(t)x(t− τi(t))
]

×
[
− a(t)h(x(t)) +

2∑
i=1

bi(t) tanhx(t− σi(t))
]

+ α1

2∑
i=1

e2K(t+τi)x2(t)− α1

2∑
i=1

(1− τ ′i(t))e2K(t−τi(t)+τi)x2(t− τi(t))

− α2

2K

2∑
i=1

[e2Kt − e2K(t+τi)]x2(t)− α2e
2Kt

2∑
i=1

t∫
t−τi

x2(s)ds

+ α3

2∑
i=1

e2K(t+σi) tanh2 x(t)

− α3

2∑
i=1

(1− σ′i)e2K(t−σi(t)+σi) tanh2 x(t− σi(t))
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− α4

2K

2∑
i=1

[e2Kt − e2K(t+σi)] tanh2 x(t)− α4e
2Kt

2∑
i=1

t∫
t−σi

tanh2 x(s)ds

= 2Ke2Ktα0[x2(t) + 2x(t)p1(t)x(t− τ1(t)) + 2x(t)p2(t)x(t− τ2(t))]

+ p21(t)x2(t− τ1(t)) + p22x
2(t− τ2(t))

+ 2p1(t)p2(t)x(t− τ1(t))x(t− τ2(t))

+ 2e2Ktα0

[
− α(t)

h(x)

x
x2(t) + x(t)b1(t) tanhx(t− σ1(t))

+ x(t)b2(t) tanhx(t− σ2(t))− a(t)
h(x)

x
x(t)p1(t)x(t− τ1(t))

− a(t)
h(x)

x
x(t)p2(t)x(t− τ2(t))

+ (p1(t)x(t− τ1(t)) + p2(t)x(t− τ2(t)))(b1(t) tanhx(t− σ1(t))

+ b2(t) tanhx(t− σ2(t)))

]
+ α1

2∑
i=1

e2K(t+τi)x2(t)− α1(1− τ ′1(t))e2K(t−τ1(t)+τ1)x2(t− τ1(t))

− α1(1− τ ′2(t))e2K(t−τ2(t)+τ2)x2(t− τ2(t))

+
α2

2K
e2Kt

2∑
i=1

[e2Kτi − 1]x2(t)− α2e
2Kt

2∑
i=1

t∫
t−τi

x2(s)ds

+ α3

2∑
i=1

e2K(t+σi) tanh2 x(t)

− α3(1− σ′1(t))e2K(t−σ1(t)+σ1) tanh2 x(t− σ1(t))

− α3(1− σ′2(t))e2K(t−σ2(t)+σ2) tanh2 x(t− σ2(t))

+
α4

2K
e2Kt

2∑
i=1

[e2Kσi − 1] tanh2 x(t)− α4e
2Kt

2∑
i=1

t∫
t−σi

tanh2 x(s)ds.

The assumptions of the theorem implies

− α1(1− τ ′1(t))e2K(τ1−τ1(t)) ≤ −α1(1− µ1)

− α1(1− τ ′2(t))e2K(τ2−τ2(t)) ≤ −α1(1− µ2)

− α3(1− σ′1(t))e2K(σ1−σ1(t)) ≤ −α3(1− µ3)

and

− α3(1− σ′2(t))e2K(σ2−σ2(t)) ≤ −α3(1− µ4).
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Then,

dV (.)

dt
≤ 2Ke2Ktα0[x2(t) + 2x(t)p1(t)x(t− τ1(t)) + 2x(t)p2(t)x(t− τ2))

+ p21(t)x2(t− τ1(t)) + p22(t)x2(t− τ2(t))

+ 2p1(t)p2(t)x(t− τ1(t))x(t− τ2(t))

+ 2e2Ktα0

[
− α(t)

h(x)

x
x2(t) + x(t)b1(t) tanhx(t− σ1(t))

+ x(t)b2(t) tanhx(t− σ2(t))− a(t)
h(x)

x
x(t)p1(t)x(t− τ1(t))

− a(t)
h(x)

x
x(t)p2(t)x(t− τ2(t))

+ p1(t)b1(t)x(t− τ1(t)) tanhx(t− σ1(t))

+ p1(t)b2(t)x(t− τ1(t)) tanhx(t− σ2(t))

+ p2(t)b1(t)x(t− τ2(t)) tanhx(t− σ1(t))

+ p2(t)b2(t)x(t− τ2(t)) tanhx(t− σ2(t))

+ α1

2∑
i=1

e2K(t+τi)x2(t)− α1e
2Kt(1− µ1)x2(t− τ1(t))

− α1e
2Kt(1− µ2)x2(t− τ2(t))

+
α2

2K
e2Kt

2∑
i=1

[e2Kτi − 1]x2(t)− α2e
2Kt

2∑
i=1

t∫
t−τi

x2(s)ds

+ α3

2∑
i=1

e2K(t+σi) tanh2 x(t)− α3e
2Kt(1− µ3) tanh2 x(t− σ1(t))

− α3e
2Kt(1− µ4) tanh2 x(t− σ2(t))

+
α4

2K
e2Kt

2∑
i=1

[e2Kσi − 1] tanh2 x(t)

− α4e
2Kt

2∑
i=1

t∫
t−σi

tanh2 x(s)ds.

Since
tanh2 x ≤ x2,

then

dV (.)

dt
≤ e2Kt{[2Kα0 − 2α0a(t)

h(x)

x
+ α1

2∑
i=1

e2Kτi +
α2

2K

2∑
i=1

(e2Kτi − 1)

+ α3

2∑
i=1

e2Kσi +
α4

2K

2∑
i=1

(e2Kσi − 1)]x2(t)
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+ [4Kα0p1(t)− 2α0a(t)
h(x)

x
p1(t)]x(t)(t− τ1(t))

+ [4Kα0p2(t)− 2α0a(t)
h(x)

x
p2(t)]x(t)(t− τ2(t))

+ 2α0b1(t)x(t) tanhx(t− σ1(t))

+ 2α0b2(t)x(t) tanhx(t− σ2(t))

+ [2Kα0p
2
1(t)− α1(1− µ1)]x2(t− τ1(t))

+ 4Kα0p1(t)p2(t)x(t− τ1(t))x(t− τ2(t))

+ 2α0p1(t)b1(t)x(t− τ1(t)) tanhx(t− σ1(t))

+ 2α0p1(t)b2(t)x(t− τ1(t)) tanhx(t− σ2(t))

+ [2Kα0p
2
2(t)− α1(1− µ2)]x2(t− τ2(t))

+ 2α0p2(t)b1(t)x(t− τ2(t)) tanhx(t− σ1(t))

+ 2α0p2(t)b2(t)x(t− τ2(t)) tanhx(t− σ2(t))

− α3(1− µ3) tanh2 x(t− σ1(t))

− α3(1− µ4) tanh2 x(t− σ2(t))

− α2

2∑
i=1

t∫
t−τi

x2(s)ds

− α4

2∑
i=1

t∫
t−σi

tanh2 x(s)ds}.

Then,

dV (.)

dt
≤

2∑
i=1

1

τi

t∫
t−τi

ξT1 (t, s)Ωξ1(t, s)ds+

2∑
i=1

1

σi

t∫
t−σi

ξT2 (t, s)∆ξ2(t, s)ds,

where

ξ1(t, s) = [x(t), x(t− τ1(t)), x(t− τ2(t)), tanhx(t− σ1(t)), tanhx(t− σ2(t)), x(s)]T

and

ξ2(t, s) = [x(t), x(t−τ1(t)), x(t−τ2(t)), tanhx(t−σ1(t)), tanhx(t−σ2(t)), tanhx(s)]T .

From (4), we have dV (.)
dt < 0 , which implies that V (.) ≤ V (0, x(0)). In view of

the (LF) V (.), we find

V (0, x(0)) = α0[x(0) +

2∑
i=1

pi(0)x(−τi(0))]2 + α1

2∑
i=1

0∫
−τi(0)

e2K(s+τi)x2(s)ds



102 M. Gözen and C. Tunç

+ α2

2∑
i=1

0∫
−τi

0∫
θ

e2K(s−θ)x2(s)dsdθ + α3

2∑
i=1

0∫
−σi(0)

e2K(s+σi) tanh2 x(s)ds

+ α4

2∑
i=1

0∫
−σi

0∫
θ

e2K(s−θ) tanh2 x(s)dsdθ.

It is also obvious that

α0[x(0) +

2∑
i=1

pi(0)x(−τi(0))]2 = α0[x2(0) + 2x(0)

2∑
i=1

pi(0)x(−τi(0))

+ (

2∑
i=1

pi(0)x(−τi(0)))2]

= α0[x2(0) + 2x(0)

2∑
i=1

pi(0)x(−τi(0))

+ p21(0)x2(−τ1(0)))

+ 2p1(0)x(−τ1(0)))p2(0)x(−τ2(0))

+ p22(0)x2(−τ2(0))].

If we use the inequality
2|xy| ≤ x2 + y2,

then

α0[x(0) +

2∑
i=1

pi(0)x(−τi(0))]2 ≤ α0[x2(0) + 2x2(0) + p21(0)x2(−τ1(0))

+ p22(0)x2(−τ2(0)) + p21(0)x2(−τ1(0))

+ p21(0)x2(−τ1(0) + p22(0)x2(−τ2(0))

+ p22(0)x2(−τ2(0))]

= α0[3x2(0) + 3p21(0)x2(−τ1(0))

+ 3p22(0)x2(−τ2(0)))].

In view of the assumption
∑2
i=1 p

2
i (t) ≤ 1, it follows that

α0[x(0) +

2∑
i=1

pi(0)x(−τi(0))]2 ≤ α0[3x2(0) + 3x2(−τ1(0)) + 3x2(−τ2(0)))]

≤ 9α0 sup
θ∈[−ri,0]

|φ(θ)|2,

α1

2∑
i=1

0∫
−τi(0)

e2K(s+τi)x2(s)ds ≤ α1

2∑
i=1

e2Kτi
0∫

−τi(0)

sup
t∈[−τi(0),0]

e2Ktx2(t)ds
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= α1

2∑
i=1

e2Kτi sup
t∈[−τi(0),0]

e2Ktx2(t)τi(0)

≤ α1

2∑
i=1

e2Kriri sup
t∈[−τi(0),0]

e2Ktx2(t)

≤ α1

2∑
i=1

e2Kriri sup
θ∈[−ri,0]

|φ(θ)|2,

α2

2∑
i=1

0∫
−τi

0∫
θ

e2K(s−θ)x2(s)dsdθ ≤ α2

2∑
i=1

0∫
−τi

[ sup
s∈[θ,0]

x2(s)

0∫
θ

e2K(s−θ)ds]dθ

= α2

2∑
i=1

0∫
−τi

sup
s∈[−θ,0]

x2(s)[
1

2K
e−2Kθ − 1

2K
]dθ

≤ 1

2K
α2

2∑
i=1

0∫
−τi

sup
s∈[−θ,0]

x2(s)e−2Kθdθ

≤ α2

2∑
i=1

sup
θ∈[−ri,0]

|φ(θ)|2[− 1

4K2
+

1

4K2
e2Kτi ]

≤ 1

4K2
α2

2∑
i=1

e2Kri sup
θ∈[−ri,0]

|φ(θ)|2,

α3

2∑
i=1

0∫
−σi(0)

e2K(s+σi) tanh2 x(s)ds ≤ α3

2∑
i=1

e2Kσi

0∫
−σi(0)

e2Ksx2(s)ds

≤ α3

2∑
i=1

e2Kσi

0∫
−σi(0)

sup
t∈[−σi(0),0]

e2Ktx2(t)ds

= α3

2∑
i=1

e2Kσi sup
t∈[−σi(0),0]

e2Ktx2(t)σi(0)

≤ α3

2∑
i=1

e2Kriri sup
t∈[−σi(0),0]

e2Ktx2(t),

α4

2∑
i=1

0∫
−σi

0∫
θ

e2K(s−θ) tanh2 x(s)dsdθ ≤ α4

2∑
i=1

0∫
−σi

[ sup
s∈[θ,0]

x2(s)

0∫
θ

e2K(s−θ)ds]dθ

= α4

2∑
i=1

0∫
−σi

sup
s∈[−θ,0]

x2(s)[
1

2K
e−2Kθ − 1

2K
]dθ

≤ 1

2K
α4

2∑
i=1

0∫
−σi

sup
s∈[−θ,0]

x2(s)e−2Kθdθ
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≤ α4

2∑
i=1

sup
θ∈[−ri,0]

|φ(θ)|2[− 1

4K2
+

1

4K2
e2Kσi ]

≤ 1

4K2
α4

2∑
i=1

e2Kri sup
θ∈[−ri,0]

|ϕ(θ)|2.

Hence,

V (0, x(0)) = α0[x(0) +

2∑
i=1

pi(0)x(−τi(0))]2 + α1

2∑
i=1

0∫
−τi(0)

e2K(s+τi)x2(s)ds

+ α2

2∑
i=1

0∫
−τi

0∫
θ

e2K(s−θ)x2(s)dsdθ + α3

2∑
i=1

0∫
−σi(0)

e2K(s+σi) tanh2 x(s)ds

+ α4

2∑
i=1

0∫
−σi

0∫
θ

e2K(s−θ) tanh2 x(s)dsdθ

≤ [9α0 + (α1 + α3)

2∑
i=1

rie
2Kri + (α2 + α4)

1

4K2

2∑
i=1

e2Kri ]

2∑
i=1

sup
θ∈[ri,0]

|φ(θ)|2

≡M.

We can now write

|x+

2∑
i=1

pi(t)x(−τi(t))|2 ≤M1e
−2kt,

where M1 = M
α0

> 0. For ∀ε ∈ (0,min{2K,− 2
ri

log |pi(t)|}) and v > 0, the inequality

xy ≤ vx2 + 1
vy

2 for any x, y ∈ R implies that

eεt|x|2 ≤ (1 + v)eεt
∣∣∣∣x(t) +

2∑
i=1

pi(t)x(t− τi(t))
∣∣∣∣2 +

1 + v

v
eεt

2∑
i=1

|pi(t)x(t− τi(t))|2

≤ (1 + v)M1 +
1 + v

v

2∑
i=1

|pi(t)|2|x(t− τi(t))|2eεrieε(t−τi(t)).

And from ∀ε ∈ (0,min{2K,− 2
ri

log |pi(t)|}), we have
∑2
i=1 |pi(t)|2eεri < 1. Thus, if

we choose v > 0 sufficiently large, then it follows that

γ =

∑2
i=1 |pi(t)|2(1 + v)eεri

v
< 1.
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Therefore,

eεt|x|2 ≤ (1 + v)M1 + γ

2∑
i=1

|x(t− τi(t))|2eε(t−τi(t)) (∀T ≥ 0),

sup
0≤t≤T

{eεt|x(t)|2} ≤ (1 + v)M1 + γ sup
θ∈[ri,0]

|ϕ(θ)|2 + γ sup
0≤t≤T

{eεt|x(t)|2}, (i = 1, 2).

Consequently, we obtain

sup
0≤t≤T

{eεt|x|2} ≤
(1 + v)M1 + γ supθ∈[ri,0] |ϕ(θ)|2

1− γ
, (i = 1, 2).

When T → +∞, we can find that

sup
0≤t≤∞

{eεt|x(t)|2} ≤
(1 + v)M1 + γ supθ∈[ri,0] |ϕ(θ)|2

1− γ
, (i = 1, 2).

Thus,
|x| ≤M2e

−at,

where

M2 =

√
(1 + v)M1 + γ supθ∈[ri,0] |ϕ(θ)|2

1− γ
> 0, α =

ε

2
> 0, (i = 1, 2).

This ends the proof.
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106 M. Gözen and C. Tunç
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Abstract: In this article, homotopy analysis method is successfully
applied to find the approximate solution of Caputo fractional Volterra
integro-differential equation. The reliability of the method and reduction
in the size of the computational work give this method a wider applica-
bility. Also, the behavior of the solution can be formally determined by
analytical approximate. Moreover, we proved the existence and conver-
gence of the solution. Finally, an example is included to demonstrate the
validity and applicability of the proposed technique.

AMS Subject Classification: 65H20, 26A33, 35C10.
Keywords and Phrases: Homotopy analysis method; Caputo fractional derivative;
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1. Introduction

In this paper, we consider Caputo fractional Volterra integro-differential equation of
the form:

cDαu(x) = g(x) +

∫ x

0

K(x, t)F (u(t))dt, (1.1)

with the initial condition

u(i)(0) = δi, i = 0, 1, 2, · · · , n− 1, (1.2)
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where cDα is the Caputo’s fractional derivative, n−1 < α ≤ n, n ∈ N and u : J −→ R,
where J = [0, 1] is the continuous function which has to be determined, g : J −→ R
and K : J × J −→ R, are continuous functions. F : R −→ R, is Lipschitz continuous
function.

The fractional integro-differential equations have attracted much more interest
of mathematicians and physicists which provides an efficiency for the description of
many practical dynamical arising in engineering and scientific disciplines such as,
physics, biology, electrochemistry, chemistry, economy, electromagnetic, control the-
ory and viscoelasticity [2, 5, 8, 7, 9, 10, 17, 18, 20]. In recent years, many authors
focus on the development of numerical and analytical techniques for fractional integro-
differential equations. For instance, we can remember the following works. An ap-
plication of fractional derivatives was first given in 1823 by Abel [1] who applied the
fractional calculus in the solution of an integral equation that arises in the formula-
tion of the Tautochrone problem, Al-Samadi and Gumah [3] applied the homotopy
analysis method for fractional SEIR epidemic model, Zurigat et al. [23] applied HAM
for system of fractional integro-differential equations, Yang and Hou [20] applied the
Laplace decomposition method to solve the fractional integro-differential equations,
Mittal and Nigam [18] applied the Adomian decomposition method to approximate
solutions for fractional integro-differential equations, and Ma and Huang [17] applied
hybrid collocation method to study integro-differential equations of fractional order.
Moreover, properties of the fractional integro-differential equations have been studied
by several authors [11, 12, 21, 23]. The homotopy analysis method (HAM) that was
first proposed by Liao [14, 15, 16], is implemented to derive analytic approximate so-
lutions of fractional integro-differential equations (FIDEs) and convergence of HAM
for this kind of equations is considered. Unlike all other analytical methods, HAM
adjusts and controls the convergence region of the series solution via an auxiliary
parameter ~.

The main objective of the present paper is to study the behavior of the solution
that can be formally determined by analytical approximated method as the homotopy
analysis method. Moreover, we proved the existence and convergence of the solution
of the Caputo fractional Volterra integro-differential equation.

The rest of the paper is organized as follows: In Section 2, some preliminaries
and basic definitions related to fractional calculus are recalled. In Section 3, homo-
topy analysis method is constructed for solving Caputo fractional Volterra integro-
differential equations. In Section 4, the existence and convergence of the solution
have been proved. In Section 5, the analytical example is presented to illustrate the
accuracy of this method. Finally, we will give a report on our paper and a brief
conclusion is given in Section 6.

2. Preliminaries

The mathematical definitions of fractional derivative and fractional integration are
the subject of several different approaches. The most frequently used definitions of
the fractional calculus involves the Riemann-Liouville fractional derivative, Caputo
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derivative [13, 19, 22].

Definition 2.1. (Riemann-Liouville fractional integral). The Riemann-Liouville frac-
tional integral of order α > 0 of a function f is defined as

Jαf(x) =
1

Γ(α)

∫ x

0

(x− t)α−1f(t)dt, x > 0, α ∈ R+,

J0f(x) = f(x), (2.1)

where R+ is the set of positive real numbers.

Definition 2.2. (Caputo fractional derivative). The fractional derivative of f(x) in
the Caputo sense is defined by

cDα
xf(x) = Jm−αDmf(x)

=


1

Γ(m−α)

∫ x
0

(x− t)m−α−1 d
mf(t)
dtm dt, m− 1 < α < m,

dmf(x)
dxm , α = m, m ∈ N,

(2.2)

where the parameter α is the order of the derivative and is allowed to be real or even
complex. In this paper, only real and positive α will be considered.

Hence, we have the following properties:

1. JαJvf = Jα+vf, α, v > 0,

2. Jαxβ = Γ(β+1)
Γ(β+α+1)x

β+α,

3. JαDαf(x) = f(x)−
∑m−1
k=0 f (k)(0+)x

k

k! , x > 0, m− 1 < α ≤ m.

Definition 2.3. (Riemann-Liouville fractional derivative). The Riemann Liouville
fractional derivative of order α > 0 is normally defined as

Dαf(x) = DmJm−αf(x), m− 1 < α ≤ m, m ∈ N. (2.3)

Theorem 2.4. [22] (Banach contraction principle). Let (X, d) be a complete metric
space, then each contraction mapping T : X −→ X has a unique fixed point x of T in
X i.e. Tx = x.

3. Homotopy Analysis Method (HAM)

Consider,
N [u] = 0,

where N is a nonlinear operator, u(x) is unknown function and x is an independent
variable. Let u0(x) denote an initial guess of the exact solution u(x), ~ 6= 0 an
auxiliary parameter, H1(x) 6= 0 an auxiliary function, and L an auxiliary linear
operator with the property L[s(x)] = 0 when s(x) = 0. Then using q ∈ [0, 1] as an
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embedding parameter, we can construct a homotopy when consider, N [u] = 0, as
follows [4, 6, 14, 15, 21]:

(1− q)L[φ(x; q)− u0(x)]− q~H1(x)N [φ(x; q)] = Ĥ[φ(x; q);u0(x), H1(x), ~, q]. (3.1)

It should be emphasized that we have great freedom to choose the initial guess
u0(x), the auxiliary linear operator L, the non-zero auxiliary parameter ~, and the
auxiliary function H1(x). Enforcing the homotopy Eq.(3.1) to be zero, i.e.,

Ĥ1[φ(x; q);u0(x), H1(x), ~, q] = 0, (3.2)

we have the so-called zero-order deformation equation

(1− q)L[φ(x; q)− u0(x)] = q~H1(x)N [φ(x; q)], (3.3)

when q = 0, the zero-order deformation Eq.(3.3) becomes

φ(x; 0) = u0(x), (3.4)

and when q = 1, since ~ 6= 0 and H1(x) 6= 0, the zero-order deformation Eq.(3.3) is
equivalent to

φ(x; 1) = u(x). (3.5)

Thus, according to Eqs.(3.4) and (3.5), as the embedding parameter q increases
from 0 to 1, φ(x; q) varies continuously from the initial approximation u0(x) to the
exact solution u(x). Such a kind of continuous variation is called deformation in
homotopy [14, 23]. Due to Taylor’s theorem, φ(x; q) can be expanded in a power
series of q as follows

φ(x; q) = u0(x) +

∞∑
m=1

um(x)qm, (3.6)

where

um(x) =
1

m!

∂mφ(x; q)

∂qm
|q=0. (3.7)

Let the initial guess u0(x), the auxiliary linear parameter L, the nonzero auxiliary
parameter ~ and the auxiliary function H1(x) be properly chosen so that the power
series (3.6) of φ(x; q) converges at q = 1, then, we have under these assumptions the
solution series

u(x) = φ(x; 1) = u0(x) +

∞∑
m=1

um(x). (3.8)

From Eq.(3.6), we can write Eq.(3.3) as follows:

(1− q)L[φ(x; q)− u0(x)] = (1− q)L[

∞∑
m=1

um(x)qm] (3.9)

= q~H1(x)N [φ(x; q)],
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then

L[

∞∑
m=1

um(x)qm]− qL[

∞∑
m=1

um(x)qm] = q~H1(x)N [φ(x; q)]. (3.10)

By differentiating Eq.(3.10) m times with respect to q, we obtain

{L[

∞∑
m=1

um(x)qm]− qL[

∞∑
m=1

um(x)qm]}(m) = q~H1(x)N [φ(x; q)]
(m)

= m!L[um(x)− um−1(x)]

= ~H1(x)m
∂m−1N [φ(x; q)]

∂qm−1
|q=0.

Therefore,

L[um(x)− χmum−1(x)] = ~H1(x)<m(−−−→um−1(x)), (3.11)

where

<m(−−−→um−1(x)) =
1

(m− 1)!

∂m−1N [ϕ(x; q)]

∂qm−1
|q=0, (3.12)

and

χm =

{
0, m ≤ 1,

1, m > 1.

Note that the high-order deformation Eq.(3.11) is governing the linear operator L,
and the term <m(−−−→um−1(x)) can be expressed simply by Eq.(3.12) for any nonlinear
operator N.

HAM applied to fractional Volterra integro-differential
equation

We consider Caputo fractional Volterra integro-differential equation given by (1.1),
with the initial condition (1.2). We can define

N [φ(x; q)] = cDαφ(x; q)− g(x)−
∫ x

0

K(x, t)F (φ(t; q))dt.

Now we construct the zero-order deformation equation

(1− q)cDα[φ(x; q)− u0(x)] = q~N [φ(x; q)], (3.13)

subject to the following initial conditions

u0(x) = φ(0; q) = u0 =

n−1∑
k=0

δk
xk

k!
, (3.14)
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where q ∈ [0, 1] is the embedding parameter, ~ 6= 0 is an auxiliary parameter, u0(x)
is an initial guess of the solution u(x) and φ(x; q) is an unknown function on the
independent variables x and q. Also we suppose that

cDα(C) = 0, (3.15)

where C is an integral constant. When the parameter q increases from 0 to 1, then the
homotopy solution φ(x; q) varies from u0(x) to solution u(x) of the original equation
(1.1). Using the parameter q, φ(x; q) can be expanded in Taylor series as follows:

φ(x; q) = u0(x) +

∞∑
m=1

um(x)qm, (3.16)

where um(x) define as (3.7).

Assuming that the auxiliary parameter ~ is properly selected so that the above
series is convergent when q = 1, then the solution u(x) can be given by

u(x) = u0(x) +

∞∑
m=1

um(x). (3.17)

Differentiating (3.13) and the initial condition (3.14) m times with respect to q,
then setting q = 0, and finally dividing them by m!, we get the mth-order deformation
equation

cDα[um(x)− χmum−1(x)] = ~<m(−−−→um−1(x)), (3.18)

subject to the following initial conditions,

um(0) = 0, (3.19)

where

<m(−−−→um−1(x)) =
1

(m− 1)!

∂m−1N [φ(x; q)]

∂qm−1
|q=0

= cDαum−1(x)−
∫ x

0

K(x, t)F (um−1(t))dt− (1− χm)g(x),

and
−→um = u0, u1, · · · , um.

Applying the operator Jα to both sides of the linear m-order deformation (3.18)

um(x) = (χm + ~)um−1(x)− ~Jα
[ ∫ x

0

K(x, t)F (um−1(t))dt+ (1− χm)g(x)
]
.
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4. Main Results

In this section, we shall give an existence and uniqueness results of Eq. (1.1), with
the initial condition (1.2) and prove it. Before starting and proving the main results,
we introduce the following hypotheses:

(H1) There exists a constant LF > 0 such that, for any u1, u2 ∈ C(J,R)

|F (u1(x))− F (u2(x))| ≤ LF |u1 − u2| .

(H2) There exists a function K∗ ∈ C(D,R+), the set of all positive function contin-
uous on D = {(x, t) ∈ R× R : 0 ≤ t ≤ x ≤ 1} such that

K∗ = sup
x∈[0,1]

∫ x
0
|K(x, t)| dt <∞.

(H3) The function g : J → R is continuous.

Lemma 4.1. If u0(x) ∈ C(J,R), then u(x) ∈ C(J,R+) is a solution of the problem
(1.1)− (1.2) iff u satisfies

u(x) = u0 +
1

Γ(α)

∫ x

0

(x− s)α−1g(s)ds

+
1

Γ(α)

∫ x

0

(x− s)α−1

(∫ s

0

K(s, τ)F (u(τ))dτ

)
ds,

for x ∈ J, and u0 =
∑n−1
k=0 δk

xk

k! .

Now, we will study the existence and uniqueness result of the solution based on
the Banach contraction principle.

Theorem 4.2. Assume that (H1)–(H3) hold. If(
K∗LF

Γ(α+ 1)

)
< 1, (4.1)

then there exists a unique solution u(x) ∈ C(J) to (1.1)− (1.2).

Proof. By Lemma 4.1. we know that a function u is a solution to (1.1)− (1.2) iff u
satisfies

u(x) = u0 +
1

Γ(α)

∫ x

0

(x− s)α−1g(s)ds+
1

Γ(α)

∫ x

0

(x− s)α−1

×
(∫ s

0

K(s, τ)F (u(τ))dτ

)
ds.
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Let the operator T : C(J,R)→ C(J,R) be defined by

(Tu)(x) = u0 +
1

Γ(α)

∫ x

0

(x− s)α−1g(s)ds

+
1

Γ(α)

∫ x

0

(x− s)α−1
(∫ s

0

K(s, τ)F (u(τ))dτ
)
ds.

Firstly, we prove that the operator T is completely continuous. We can see that, if
u ∈ C(J,R) is a fixed point of T , then u is a solution of (1.1)− (1.2).

Now we prove T has a fixed point u in C(J,R). For that, let u1, u2 ∈ C(J,R) and
for any x ∈ [0, 1] such that

u1(x) = u0 +
1

Γ(α)

∫ x

0

(x− s)α−1g(s)ds

+
1

Γ(α)

∫ x

0

(x− s)α−1
(∫ s

0

K(s, τ)F (u1(τ))dτ
)
ds,

and

u2(x) = u0 +
1

Γ(α)

∫ x

0

(x− s)α−1g(s)ds

+
1

Γ(α)

∫ x

0

(x− s)α−1
(∫ s

0

K(s, τ)F (u2(τ))dτ
)
ds.

Consequently, we get

|(Tu1)(x)− (Tu2)(x)|

≤ 1

Γ(α)

∫ x

0

(x− s)α−1
(∫ s

0

|K(s, τ)| |F (u1(τ))− F (u2(τ))| dτ
)
ds

≤ K∗LF
Γ(α+ 1)

|u1(x)− u2(x)|

=

(
K∗LF

Γ(α+ 1)

)
|u1(x)− u2(x)| .

From the inequality (4.1) we have

‖Tu1 − Tu2‖∞ ≤
(

K∗LF
Γ(α+ 1)

)
‖u1 − u2‖∞ .

This means that T is contraction map. By the Banach contraction principle, we
can conclude that T has a unique fixed point u in C(J,R).

Now, we will study the convergence theorem of the solutions based on the HAM.

Theorem 4.3. If the series solution u(x) =
∑∞
m=0 um(x) obtained by the m-order

deformation is convergent, then it converges to the exact solution of the fractional
Volterra integro-differential equation (1.1)− (1.2).
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Proof. We assume
∑∞
m=0 um(x) converge to u(x) then

lim
m→∞

um(x) = 0.

We can write
n∑

m=1

cDα[um(x)− χmum−1(x)] = cDαu1(x) + (cDαu2(x)−c Dαu1(x))

+(cDαu3(x)−c Dαu2(x)) + . . .

+(cDαun(x)−c Dαun−1(x))

= cDαun(x). (4.2)

Hence, from Eq.(4.2)
lim
n→∞

un(x) = 0. (4.3)

So, using Eq.(4.3), we have

∞∑
m=1

cDα[um(x)− χmum−1(x)] =

∞∑
m=1

[cDαum(x)− χmcDαum−1(x)] = 0.

Therefore from Eq.(4.3), we can obtain that

∞∑
m=1

cDα[um(x)− χmum−1(x)] = ~
∞∑
m=1

<m−1(−−−→um−1(x)) = 0.

Since ~ 6= 0 and we have
∞∑
m=1

<m−1(−−−→um−1(x)) = 0. (4.4)

By substituting <m−1(−−−→um−1(x)) into the relation (4.4) and simplifying it, we have

<m−1(−−−→um−1(x)) =

∞∑
m=1

[cDαum−1(x)−
∫ x

0

K(x, t)F (um−1(t))dt− (1− χm)g(x)]

= cDα(

∞∑
m=1

um−1(x))−
∫ x

0

K(x, t)[

∞∑
m=1

F (um−1(t))]dt

−
∞∑
m=1

(1− χm)g(x)

= cDαu(x))−
∫ x

0

K(x, t)F (u(t))dt− g(x).

From Eq.(4.4) and Eq.(4.5), we have

cDαu(x) = g(x) +

∫ x

0

K(x, t)F (u(t))dt,

therefore, u(x) must be the exact solution of Eq.(1.1) and the proof is complete.
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5. Illustrative Example

In this section, we present the analytical technique based on HAM to solve Caputo
fractional Volterra integro-differential equations.

Example 1. Let us consider Caputo fractional Volterra integro-differential equation:

cD0.5[u(x)] =
32− 3

√
π

12
√
π

x1.5 +

∫ x

0

t

x2.5
u(t)dt, (5.1)

with the initial condition

u(0) = 0.

From (3.13), (5.1) can be written as

N [φ(x; q)] = cD0.5φ(x; q)− 32− 3
√
π

12
√
π

x1.5 −
∫ x

0

t

x2.5
φ(t; q)dt.

Now, using themth-order deformation equation (3.18) and initial conditions (3.19),
and recursive equation (3.20) we can write

um(x) = (χm + ~)um−1(x)− ~J0.5[(1− χm)
32− 3

√
π

12
√
π

x1.5 +

∫ x

0

t

x2.5
um−1(t)dt].

Then,

u0(x) = 0,

u1(x) = ~(
3
√
π

32
− 1)x2,

u2(x) = ~(1− ~(
3
√
π

32
− 1))(

3
√
π

32
− 1)x2,

u3(x) = ~(1− ~(
3
√
π

32
− 1))2(

3
√
π

32
− 1)x2,

.

.

.

un(x) = ~(1− ~(
3
√
π

32
− 1))n−1(

3
√
π

32
− 1)x2,

.

.

.

thus the HAM series solution can be written as

um(x) =

m∑
n=0

un(x) = ~(
3
√
π

32
−1)[1 + (1−~(

3
√
π

32
−1)) + · · ·+ (1−~(

3
√
π

32
−1))m−1]x2.
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The exact solution of (5.1) when 64
3
√
π−32

< ~ < 0 is

u(x) =

∞∑
n=0

un(x)

= ~(
3
√
π

32
− 1)

[
1 + (1− ~(

3
√
π

32
− 1)) + (1− ~(

3
√
π

32
− 1))2 + · · ·

]
x2

= ~(
3
√
π

32
− 1)

(
1

1− (1− ~( 3
√
π

32 − 1))

)
x2 = x2.

6. Conclusions

Homotopy analysis method is successfully applied to derive approximate analytical
solutions for fractional Volterra integro-differential equations. Also, we proved the
existence and convergence of the solution. Moreover, the obtained results show that
we can control of the convergence district of homotopy analysis technique by control
the auxiliary parameter ~. The convergence theorem and the illustrative example
establish the precision and efficiency of the proposed technique.
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The Real and Complex Convexity

Abidi Jamel

Abstract: We prove that the holomorphic differential equation
ϕ′′(ϕ+c) = γ(ϕ′)2 (ϕ : C→ C be a holomorphic function and (γ, c) ∈ C2)
plays a classical role on many problems of real and complex convexity. The
condition exactly γ ∈ {1, s−1s /s ∈ N\{0}} (independently of the constant
c) is of great importance in this paper.

On the other hand, let n ≥ 1, (A1, A2) ∈ C2, and g1, g2 : Cn → C be
two analytic functions. Put u(z, w) =| A1w − g1(z) |2 + | A2w − g2(z) |2,
v(z, w) =| A1w − g1(z) |2 + | A2w − g2(z) |2, for (z, w) ∈ Cn × C. We
prove that u is strictly plurisubharmonic and convex on Cn×C if and only
if n = 1, (A1, A2) ∈ C2\{0} and the functions g1 and g2 have a classical
representation form described in the present paper.

Now v is convex and strictly psh on Cn × C if and only if (A1, A2) ∈
C2\{0}, n ∈ {1, 2} and g1, g2 have several representations investigated in
this paper.
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1. Introduction

It is not difficult to prove that if g : D → C be a function (not necessarily holomorphic)
such that v is convex over D × C, then g is an affine function, where D is a convex
domain of Cn, n ≥ 1 and v(z, w) =| w − g(z) |2, for (z, w) ∈ D × C.
But if we consider the case of 2 functions, the problem is difficult. However if g1, g2 :
Cn → C be 2 holomorphic functions, v1(z, w) =| A1w − g1(z) |2
+ | A2w − g2(z) |2, v2(z, w) = v1(z, w), for (z, w) ∈ Cn × C and A1, A2 ∈ C.

We have the questions:
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– Find exactly all the conditions described by g1 and g2 such that v1 is convex
over Cn × C?

– Find exactly all the conditions described by g1 and g2 such that v1 (respectively
v2) is convex and not strictly psh over Cn × C?

– Find exactly all the conditions described by g1 and g2 such that v1 (respectively
v2) is convex and strictly psh over Cn × C?

Several questions can be studied in this situation.
The class of convex and strictly psh functions is a good family for the study

and has several applications in complex analysis, convex analysis in several complex
variables, harmonic analysis (representation theory), physics, mechanics and others.
For example, the importance of my study of this last class is to discover the existence
of an infinite family of convex and strictly psh functions but not strictly convex (or
not strictly convex in all Euclidean open ball of the domain of definition) on the
above form. It follows that the exact characterization of the (convex and strictly psh)
functions of the form | A1w − g1(z) |2 + | A2w − g2(z) |2 describe the existence of
an important family of holomorphic functions (which is fundamental for the study).
Note that if n increases, the problem is difficult if we consider several absolute values.

Using this paper, we can answer to the following question.
Characterize all the holomorphic not constant functions f1, f2 : Cn → C and all
the holomorphic not constant functions F1, F2 : Cm → C, such that u is convex
(respectively convex and strictly psh) over Cn × Cm, where n,m ≥ 1 and

u(z, w) =| f1(z)− F1(w) |2 + | f2(z)− F2(w) |2

for each (z, w) ∈ Cn × Cm.
Now, for example, given g1, g2 : Cn → C be two analytic functions, n ≥ 1 and

A1, A2 ∈ C\{0}. Define u(z, w) =| A1w − g1(z) |2 + | A2w − g2(z) |2, for (z, w) ∈
Cn × C. We prove that u is convex and strictly plurisubharmonic on Cn × C if and
only if n = 1, g1 and g2 satisfies{

g1(z) = A1(az + b) +A2(cz + d)
g2(z) = A2(az + b)−A1(cz + d)

(for each z ∈ C with a, b, d ∈ C and c ∈ C\{0}), or{
g1(z) = A1(a1z + b1) +A2e

(c1z+d1)

g2(z) = A2(a1z + b1)−A1e
(c1z+d1)

(for each z ∈ C, where a1, b1, d1 ∈ C and c1 ∈ C\{0}).
However, the number of the absolute values implies that n = 1. The great differences
between the classes of functions (convex and strictly psh) and strictly convex is one
of the purpose of this paper.
Moreover, if we replace Cn by a convex domain bounded on Cn, the above result is
not true.
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We show extension results of ([3], Corollaire 17), which is the following.

Let α, β ∈ C, (α 6= β) and g : Cn → C be analytic. Using holomorphic differential
equations, we prove that | g + α | and | g + β | are convex functions over Cn if and
only if g is an affine function on Cn.
Observe that the complex structure plays a key role in this situation. For example,
let ϕ(z) = x21 + 1, for z = (z1, ..., zn) ∈ Cn, z1 = (x1 + iy1) ∈ C, where x1, y1 ∈ R.
Then ϕ is real analytic on Cn. | ϕ + 0 |=| ϕ | and | ϕ + 1 | are convex functions on
Cn. But ϕ is not affine on Cn.

Let U be a domain of Rd, (d ≥ 2). We denote by sh(U) the subharmonic functions
on U and md the Lebesgue measure on Rd. Let f : U → C be a function. | f | is the
modulus of f, Re(f) is the real part of f. supp(f) is the support of f. For N ≥ 1 and

h = (h1, ..., hN ), where h1, ..., hN : U → C, ‖ h ‖= (| h1 |2 +...+ | hN |2)
1
2 .

Let g : D → C be an analytic function, D is a domain of C. We denote by g(0) =
g, g(1) = g′ is the holomorphic derivative of g over D. g(2) = g′′, g(3) = g′′′. In general
g(m) = ∂mg

∂zm is the holomorphic derivative of g of order m, for all m ∈ N.
Let z ∈ Cn, z = (z1, ..., zn), n ≥ 1. For n ≥ 2 and j ∈ {1, ..., n}, we write z =
(zj , Zj) = (z1, ..., zj−1, zj , zj+1, ..., zn) where Zj = (z1, ..., zj−1, zj+1, ..., zn) ∈ Cn−1. If
ξ = (ξ1, ..., ξn) ∈ Cn, we denote < z/ξ >= z1ξ1 + ... + znξn and B(ξ, r) = {ζ ∈ Cn/
‖ ζ − ξ ‖< r} for r > 0, where

√
< ξ/ξ > =‖ ξ ‖ is the Euclidean norm of ξ.

C(U) = {ϕ : U → C/ϕ is continuous on U}.
Ck(U) = {ϕ : U → C/ϕ is of class Ck on U} and Ckc (U) = {ϕ : U → C/ϕ ∈
Ck(U) and have a compact support on U}, k ∈ N ∪ {∞} and k ≥ 1.
Let ϕ : U → C be a function of class C2. ∆(ϕ) is the Laplacian of ϕ.
Let D be a domain of Cn, (n ≥ 1). psh(D) and prh(D) are respectively the class of
plurisubharmonic and pluriharmonic functions on D.

Definition 1. Let ϕ : D → R be a function of class C2 and a ∈ D. We say that ϕ

is strictly plurisubharmonic at a if

n∑
j,k=1

∂2ϕ

∂zj∂zk
(a)αjαk > 0, for all α = (α1, ..., αn) ∈

Cn\{0}.

Moreover, we say that ϕ is strictly plurisubharmonic on D if ϕ is strictly psh at
every point a ∈ D.
For all a ∈ C, | a | is the modulus of a. Re(a) is the real part of a. D(a, r) = {z ∈ C/
| z − a |< r} and ∂D(a, r) = {z ∈ C/ | z − a |= r}, for r > 0.

For p an analytic polynomial over C, deg(p) is the degree of p.

For the study of properties and extension problems of analytic and plurisubhar-
monic functions we cite the references [1], [4], [5], [6], [7], [8], [10], [13], [14], [15], [16],
[19], [20], [21], [24], [25], [26], [27], [29], [30], [32], [34], [35] and [12]. Several properties
of analytic functions and their graphs are obtained in [12] and [13].

The class of n-harmonic functions is introduced by Rudin in [33]. There are many
investigations of plurisubharmonic functions in [2], [18], [22], [23], [28], [29], [31], [11]
and [9]. Good references for the study of convex functions in complex convex domains
are [17], [21] and [35].
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2. A Fundamental Properties over Cn

The following 4 lemmas (Lemma 1, Lemma 2, Lemma 3 and Lemma 4) are fun-
damental in this paper. Convex and plurisubharmonic functions are connected by
the

Lemma 1. Let u : Cn → R be a continuous function, n ≥ 1. Put v(z, w) = u(w− z),
for (z, w) ∈ Cn × Cn. For z = (z1, ..., zn), α = (α1, ..., αn) ∈ Cn and 1 ≤ j ≤ n, we
write zj = (xj + ixj+n) and αj = (bj + ibj+n), where xj , xj+n, bj , bj+n ∈ R.
The following conditions are equivalent

(a) u is convex on Cn;

(b) v is psh on Cn × Cn;

(c) For all ϕ ∈ C∞c (Cn), ϕ ≥ 0, we have

1

2

2n∑
j,k=1

∫
u(z)

∂2ϕ

∂xj∂xk
(z)bjbkdm2n(z) = Re(

n∑
j,k=1

∫
u(z)

∂2ϕ

∂zj∂zk
(z)αjαkdm2n(z))

+

n∑
j,k=1

∫
u(z)

∂2ϕ

∂zj∂zk
(z)αjαkdm2n(z) ≥ 0

for each α = (α1, ..., αn) ∈ Cn;

(d) For all ϕ ∈ C∞c (Cn), ϕ ≥ 0, we have

Re(

n∑
j,k=1

∫
u(z)

∂2ϕ

∂zj∂zk
(z)αjαkdm2n(z)) ≤ 1

4

2n∑
j,k=1

∫
u(z)

∂2ϕ

∂xj∂xk
(z)bjbkdm2n(z)

≤
n∑

j,k=1

∫
u(z)

∂2ϕ

∂zj∂zk
(z)αjαkdm2n(z)

for each α = (α1, ..., αn) ∈ Cn. (This is an important property in real and
complex analysis);

(e)

∣∣∣∣∣∣
n∑

j,k=1

∫
u(z)

∂2ϕ

∂zj∂zk
(z)αjαkdm2n(z)

∣∣∣∣∣∣ ≤
n∑

j,k=1

∫
u(z)

∂2ϕ

∂zj∂zk
(z)αjαkdm2n(z),

for each α = (α1, ..., αn) ∈ Cn, for each ϕ ∈ C∞c (Cn), ϕ ≥ 0.

Proof. (a) implies (b) is evident.

(b) implies (a).
Case 1. n = 1.

Let ρ : C→ R+, ρ is a radial C∞ function, supp(ρ) ⊂ D(0, 1) and
∫
ρ(ξ)dm2(ξ) = 1.

For all δ > 0, we define ρδ by ρδ(ξ) = 1
δ2 ρ( ξδ ), for ξ ∈ C.

Observe that v(z, .) is sh and continuous on C.
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Fix δ > 0 and z ∈ C. We have

v(z, .) ∗ ρδ(w) =

∫
v(z, w − ξ)ρδ(ξ)dm2(ξ) =

∫
u(w − ξ − z)ρδ(ξ)dm2(ξ)

= ϕδ(w − z) = ψδ(z, w),

where ϕδ(ζ) =
∫
u(ζ − ξ)ρδ(ξ)dm2(ξ) = u ∗ ρδ(ζ), for ζ ∈ C.

Therefore the function ϕδ is C∞ on C. Consequently, ψδ is C∞ on C2.
Let A(z, w, ξ) = v(z, w− ξ)ρδ(ξ), for z, w, ξ ∈ C. Since u is continuous on C, then

A is continuous on C3. Note that the function A(., ., ξ) is psh on C2, for each ξ ∈ C.
Since ρδ have a support compact, then by ([32], p.75), ψδ is psh on C2.
Consequently, ψδ is C∞ and psh over C2.
By ([3], Lemme 3 p. 339), the function ϕδ is convex over C. Thus u ∗ ρδ is a convex
function on C, for all δ > 0. The sequence of functions (u ∗ ρ 1

j
), ( for j ∈ N\{0}),

converges to the function u uniformly over all compact subset of C because u is
continuous. Therefore, u is convex on C.

Case 2. n ≥ 2. This proof is similar to the Case 1.

(a) implies (c) is well known.

(c) implies (a).
Let j ∈ {1, ..., 2n}. If bj = 1 and bk = 0, for all k 6= j, then∫

u(z)
∂2ϕ

∂x2j
(z)dm2n(z) ≥ 0.

It follows that

2n∑
j=1

∫
u(z)

∂2ϕ

∂x2j
(z)dm2n(z) =

∫
u(z)∆ϕ(z)dm2n(z) ≥ 0,

for all ϕ ∈ C∞c (Cn), ϕ ≥ 0.
Therefore u = v on Cn\E, where v is a subharmonic function on Cn and E is a
borelien subset of Cn with m2n(E) = 0.

Now, assume that u is not subharmonic on Cn. Then there exists z0 ∈ Cn and
r > 0 such that

u(z0) >
1

m2n(B(z0, r))

∫
B(z0,r)

u(ξ)dm2n(ξ).

Since ∫
B(z0,r)

u(ξ)dm2n(ξ) =

∫
B(z0,r)

v(ξ)dm2n(ξ),

it follows that u(z0) > v(z0) and consequently, v(z0)− u(z0) < 0.
Since u is continuous on Cn, then (v − u) is an upper semi-continuous function

on Cn. Therefore, there exists η ∈]0, r[ such that (v − u) < 0 on B(z0, η). Since
m2n(B(z0, η)) > 0 and u = v on Cn\E, we have a contradiction.

The rest of the proof of this lemma is similar to the two above proofs.
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Remark 1. The constant 1
4 is the good constant for the two inequalities in the

assertion (d) at Lemma 1.
Let D be a not empty convex domain of Cn, n ≥ 1 and s ∈ N\{0, 1}. There does

not exists a constant c > 0 such that for all u : D → R be a function of class Cs and
convex on D, we have

1

c
|

n∑
j,k=1

∂2u

∂zj∂zk
(z)αjαk |≤

2n∑
j,k=1

∂2u

∂xj∂xk
(z)bjbk ≤ c |

n∑
j,k=1

∂2u

∂zj∂zk
(z)αjαk |,

∀z = (z1, ..., zn) ∈ D, ∀α = (α1, ..., αn) ∈ Cn, zj = (xj + ixj+n), αj = (bj + ibj+n),
(xj , xj+n, bj , bj+n ∈ R), 1 ≤ j ≤ n.

Lemma 2. Let a, b, c ∈ C. We have

(A) (aαα + bββ + 2Re(cαβ) ≥ 0, for all (α, β) ∈ C2) if and only if (a ≥ 0, b ≥ 0
and | c |2≤ ab).

(B) (aαα+bββ+2Re(cαβ) > 0, for all (α, β) ∈ C2\{0}) if and only if (a > 0, b > 0
and | c |2< ab).

Proof. See ([3], Lemme 9, p. 354).

Lemma 3. Let u : G → R and h : D → C, G is a convex domain of Cn, D is
a domain of Cn, n ≥ 1. Suppose that u is a function of class C2 on G and h is a
pluriharmonic (prh) function over D. Then we have

(A) The Levi hermitian form of | h |2 is

L(| h |2)(z)(α) =

n∑
j,k=1

∂2(| h |2)

∂zj∂zk
(z)αjαk

=|
n∑
j=1

∂h

∂zj
(z)αj |2 + |

n∑
j=1

∂(h)

∂zj
(z)αj |2

for each z = (z1, ..., zn) ∈ D, for all α = (α1, ..., αn) ∈ Cn.
We can also study the case where h is n-harmonic on D.

(B) u is convex on G if and only if

|
n∑

j,k=1

∂2u

∂zj∂zk
(z)αjαk |≤

n∑
j,k=1

∂2u

∂zj∂zk
(z)αjαk

for each z ∈ G and all α = (α1, ..., αn) ∈ Cn.
u is strictly convex on G if and only if

|
n∑

j,k=1

∂2u

∂zj∂zk
(z)αjαk |<

n∑
j,k=1

∂2u

∂zj∂zk
(z)αjαk

for each z ∈ G and every α = (α1, ..., αn) ∈ Cn\{0}.
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Proof. Let z = (z1, ..., zn) ∈ D, α = (α1, ..., αn) ∈ Cn.

∀j, k ∈ {1, ..., n}, since h is prh on D then

∂2(| h |2)

∂zj∂zk
(z) =

∂h

∂zj
(z)

∂(h)

∂zk
(z) +

∂h

∂zk
(z)

∂(h)

∂zj
(z).

Therefore,

n∑
j,k=1

∂2(| h |2)

∂zj∂zk
(z)αjαk =

n∑
j,k=1

∂h

∂zj
(z)αj

∂(h)

∂zk
(z)αk +

n∑
j,k=1

∂h

∂zk
(z)αk

∂(h)

∂zj
(z)αj

= (
n∑
j=1

∂h

∂zj
(z)αj)(

n∑
k=1

∂(h)

∂zk
(z)αk) + (

n∑
j=1

∂h

∂zj
(z)αj)(

n∑
k=1

∂h

∂zk
(z)αk)

=|
n∑
j=1

∂h

∂zj
(z)αj |2 + |

n∑
j=1

∂h

∂zj
(z)αj |2 .

The following lemma plays a classical role on several problems of complex analysis.
Several fundamental properties of pluripotential theory deduced by this lemma was
obtained in this paper.

Lemma 4. Let f1, ..., fN , g1, ..., gN : D → C, D is a domain of Cn, n,N ≥ 1.
Put f = (f1, ..., fN ), g = (g1, ..., gN ) and assume that f1, ..., fN , g1, ..., gN are
holomorphic functions on D. Let u : D → R be a function of class C2. Then
(‖ f ‖2 + ‖ g ‖2) and (‖ f + g ‖2) have the same hermitian Levi form over D.
In particular (u+ ‖ f ‖2 + ‖ g ‖2) is strictly psh on D if and only if (u+ ‖ f + g ‖2)
is strictly psh on D.

Proof. ‖ f + g ‖2=

N∑
j=1

| fj + gj |2=‖ f ‖2 + ‖ g ‖2 +

N∑
j=1

fjgj +

N∑
j=1

fjgj on D.

Observe that

N∑
j=1

(fjgj + fjgj) = 2Re(

N∑
j=1

fjgj) is a pluriharmonic (prh) function on

D. Consequently, the Levi hermitian form of the function

N∑
j=1

(fjgj + fjgj) is equal

zero on D × Cn. It follows that ‖ f + g ‖2 and (‖ f ‖2 + ‖ g ‖2) have the same
hermitian Levi form on D.

Now we choose a proof which is classical in complex analysis of the following.

Theorem 1. Let g1, g2 : Cn → C be two analytic functions, n ≥ 1 and A1, A2 ∈
C\{0}. Put

u(a,b)(z) =| A1(< z/a > +b)− g1(z) |2 + | A2(< z/a > +b)− g2(z) |2= u(z),
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for z ∈ Cn, a ∈ Cn and b ∈ C.
The following conditions are equivalent

(A) u(a,b) is convex on Cn, for all a ∈ Cn and b ∈ C;

(B) {
g1(z) = A1(< z/a1 > +b1) +A2(< z/c1 > +d1)m

g2(z) = A2(< z/a1 > +b1)−A1(< z/c1 > +d1)m

(for each z ∈ Cn with a1, c1 ∈ Cn, b1, d1 ∈ C,m ∈ N), or{
g1(z) = A1(< z/a2 > +b2) +A2e

(<z/c2>+d2)

g2(z) = A2(< z/a2 > +b2)−A1e
(<z/c2>+d2)

(for each z ∈ Cn, where a2, c2 ∈ Cn, b2, d2 ∈ C).

Proof. Case 1. n = 1.

(A) implies (B). For a, b ∈ C, u(a,b) is a function of class C∞ on C2. Therefore we
have

|
∂2u(a,b)

∂z2
(z) |≤

∂2u(a,b)

∂z∂z
(z), ∀z ∈ C,∀(a, b) ∈ C2.

Fix z ∈ C. Then

| g′′1 (z)[A1(az + b)− g1(z)] + g′′2 (z)[A2(az + b)− g2(z)] |
≤| A1a− g′1(z) |2 + | A2a− g′2(z) |2,

for all a, b ∈ C.

State 1. Take a = 0. Then

| −g′′1 (z)g1(z)− g′′2 (z)g2(z) + b(A1g
′′
1 (z) +A2g

′′
2 (z)) |≤| g′1(z) |2 + | g′2(z) |2,

for all b ∈ C.
If (A1g

′′
1 (z) +A2g

′′
2 (z)) 6= 0. Then the subset C is bounded. A contradiction.

It follows that (A1g
′′
1 + A2g

′′
2 ) = 0 over C. Consequently, (A1g1 + A2g2) is an affine

function on C.
State 2. For all a ∈ C, we have

| g′′1 (z)[A1az − g1(z)] + g′′2 (z)[A2az − g2(z)] |
≤| A1a− g′1(z) |2 + | A2a− g′2(z) |2, ∀z ∈ C.

It follows that

| g′′1 (z)g1(z) + g′′2 (z)g2(z) |≤| A1a− g′1(z) |2 + | A2a− g′2(z) |2
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for each z ∈ C. We have

(| A1 |2 + | A2 |2) | a |2 −2Re[a(A1g
′
1(z) +A2g

′
2(z))]+ | g′1(z) |2 + | g′2(z) |2

− | g′′1 (z)g1(z) + g′′2 (z)g2(z) |≥ 0,∀z ∈ C, ∀a ∈ C.

Now observe that

(| A1 |2 + | A2 |2) | a |2 −2Re[a(A1g
′
1(z) +A2g

′
2(z))]+ | g′1(z) |2 + | g′2(z) |2

− | g′′1 (z)g1(z) + g′′2 (z)g2(z) |=| a
√
| A1 |2 + | A2 |2

− 1√
| A1 |2 + | A2 |2

(A1g
′
1(z) +A2g

′
2(z)) |2 +

−1

| A1 |2 + | A2 |2
| A1g

′
1(z) +A2g

′
2(z) |2

+ | g′1(z) |2 + | g′2(z) |2 − | g′′1 (z)g1(z) + g′′2 (z)g2(z) |≥ 0

for each a ∈ C.
For a = 1

|A1|2+|A2|2 (A1g
′
1(z) +A2g

′
2(z)), we have

| A2 |2

| A1 |2 + | A2 |2
| g′1(z) |2 +

| A1 |2

| A1 |2 + | A2 |2
| g′2(z) |2

− 2

| A1 |2 + | A2 |2
Re[A1A2g

′
1(z)g′2(z)]− | g′′1 (z)g1(z) + g′′2 (z)g2(z) |≥ 0.

Thus

1

| A1 |2 + | A2 |2
| A2g

′
1(z)−A1g

′
2(z) |2 − | g′′1 (z)g1(z) + g′′2 (z)g2(z) |≥ 0

for each z ∈ C. Put A = A1

A2
∈ C\{0}.

A1g
′′
1 +A2g

′′
2 = 0 on C and then g′′2 = −Ag′′1 over C.

Therefore we have

(1)
1

(| A1 |2 + | A2 |2)
| A2g

′
1(z)−A1g

′
2(z) |2≥| g′′1 (z)(g1(z)−Ag2(z)) |

for each z ∈ C.
Since g′′1 = − 1

A
g′′2 , then

(2)

1

(| A1 |2 + | A2 |2)
| A2g

′
1(z)−A1g

′
2(z) |2≥

| 1

A
g′′2 (z)(g1(z)−Ag2(z)) |=| −1

A
g′′2 (z)(g1(z)−Ag2(z)) |

for every z ∈ C.
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(1) implies that

| g′′1 (z)(g1(z)−Ag2(z)) |≤ 1

(| A1 |2 + | A2 |2)
| A2g

′
1(z)−A1g

′
2(z) |2

for each z ∈ C.
Then

| g′′1 (z)(g1(z)− A1

A2
g2(z)) |= 1

| A2 |2
| A2g

′′
1 (z)(A2g1(z)−A1g2(z)) |

≤ 1

(| A1 |2 + | A2 |2)
| A2g

′
1(z)−A1g

′
2(z) |2

for each z ∈ C.
Then we obtain the inequality

(3)

| A2g
′′
1 (z)(A2g1(z)−A1g2(z)) |≤ | A2 |2

(| A1 |2 + | A2 |2)
| A2g

′
1(z)−A1g

′
2(z) |2

for every z ∈ C.

Now (2) implies the following inequality

(4)

| −A1g
′′
1 (z)(A2g

′
1(z)−A1g

′
2(z)) |≤ | A1 |2

(| A1 |2 + | A2 |2)
| A2g

′
1(z)−A1g

′
2(z) |2

for every z ∈ C.

The sum between the inequalities (3) and (4) implies that

| A2g
′′
1 (z)(A2g1(z)−A1g2(z)) | + | −A1g

′′
2 (z)(A2g1(z)−A1g2(z)) |

≤ (| A1 |2 + | A2 |2)

(| A1 |2 + | A2 |2)
| A2g

′
1(z)−A1g

′
2(z) |2=| A2g

′
1(z)−A1g

′
2(z) |2

for each z ∈ C.
By the triangle inequality we have

| (A2g
′′
1 (z)−A1g

′′
2 (z))(A2g1(z)−A1g2(z)) |≤| A2g

′
1(z)−A1g

′
2(z) |2

for each z ∈ C.
Now put ϕ(z) = A2g1(z)−A1g2(z), for z ∈ C.

Note that ϕ : C→ C, ϕ is holomorphic over C. ϕ satisfy the holomorphic differential
inequality | ϕ′′ϕ |≤| ϕ′ |2 on C. Then ϕ′′ϕ = γ(ϕ′)2, where γ ∈ C, | γ |≤ 1.
By ([3],Corollaire 14, p. 361; Théorème 22, p. 362) exactly γ ∈ {1, t−1t /t ∈ N\{0}}.
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Therefore ϕ(z) = (az+ b)s for all z ∈ C, where a, b ∈ C and s ∈ N, or ϕ(z) = e(cz+d),
for all z ∈ C, where c, d ∈ C.
Step 1. ϕ(z) = (az + b)s, for all z ∈ C. Then A2g1(z)−A1g2(z) = (az + b)s.

Now since A1g
′′
1 (z) + A2g

′′
2 (z) = 0, then A1g1(z) + A2g2(z) = a1z + b1, for all

z ∈ C, where a1, b1 ∈ C. We have the system{
A2g1(z)−A1g2(z) = (az + b)s

A1g1(z) +A2g2(z) = a1z + b1

for each z ∈ C.
It follows that (| A2 |2 + | A1 |2)g1(z) = A2(az + b)s +A1(a1z + b1), and then{

g1(z) = A1(a2z + b2) +A2(a3z + b3)s

g2(z) = A2(a2z + b2)−A1(a3z + b3)s

for each z ∈ C, where a2, b2, a3, b3 ∈ C and s ∈ N.
Step 2. ϕ(z) = e(cz+d), for all z ∈ C.
Then we have by the Step 1, the system{

A2g1(z)−A1g2(z) = e(cz+d)

A1g1(z) +A2g2(z) = a1z + b1

for all z ∈ C, with (a1, b1 ∈ C).
Then {

g1(z) = A1(c1z + d1) +A2e
(c2z+d2)

g2(z) = A2(c1z + d1)−A1e
(c2z+d2)

for each z ∈ C, where c1, d1, c2, d2 ∈ C.
(B) implies (A) is evident.

Case 2. n ≥ 2.
For z = (z1, ..., zn) ∈ Cn, we write z = (z1, Z1), Z1 ∈ Cn−1, z1 ∈ C.
We can prove that (A1g1 +A2g2) is an affine function on Cn.

A1g1(z) +A2g2(z) =< z/a0 > +b0, a0 ∈ Cn, b0 ∈ C.

Consider the functions g1(., Z1), g2(., Z1) and we use the problem of fibration as
follows. By the Case 1, we have{

g1(z) = A1[α(Z1)z1 + β(Z1)] +A2ϕ(z)
g2(z) = A2[α(Z1)z1 + β(Z1)]−A1ϕ(z),

where α, β : Cn−1 → C and ϕ : Cn → C.

A2g1(z)−A1g2(z) = (| A1 |2 + | A2 |2)ϕ(z).

Then ϕ is analytic on Cn. Consequently,

(A1g1(z) +A2g2(z)) = (| A1 |2 + | A2 |2)[α(Z1)z1 + β(Z1)] =< z/a0 > +b0
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for each z ∈ Cn.

Then α and β are analytic functions. α is constant and β is an affine function on
Cn−1. Then α(Z1)z1 + β(Z1) =< z/λ > +µ, λ ∈ Cn, µ ∈ C (z = (z1, Z1) ∈ Cn).
It follows that | ϕ |2 is convex on Cn. By ([3], Théorème 20, p. 358), the proof is
complete.

Theorem 2. Let g1, g2 : Cn → C be two analytic functions, n ≥ 1 and A1, A2 ∈
C\{0}. For all a ∈ Cn and b ∈ C, define

u(a,b)(z) =| A1(< z/a > +b)− g1(z) |2 + | A2(< z/a > +b)− g2(z) |2,

u(a,b,c1,c2)(z) =| A1(< z/a > +b)− g1(z) + c1 |2 + | A2(< z/a > +b)− g2(z) + c2 |2,

for each z ∈ Cn.
The following assertions are equivalent

(A) u(a,b) is strictly convex on Cn, for each (a, b) ∈ Cn × C;

(B) n = 1 and g1, g2 are affine functions on C with the condition (A1g
′
2 6= A2g

′
1);

(C) There exists c1, c2 ∈ C such that u(a,b,c1,c2) is strictly convex on Cn, for every
(a, b) ∈ Cn × C.

Proof. (A) implies (B).

Since u(a,b) is strictly convex on Cn, for each (a, b) ∈ Cn×C, then by Theorem 1, we
have {

g1(z) = A1(< z/a1 > +b1) +A2(< z/c1 > +d1)m

g2(z) = A2(< z/a1 > +b1)−A1(< z/c1 > +d1)m

(for each z ∈ Cn, where a1, c1 ∈ Cn, b1, d1 ∈ C,m ∈ N), or

{
g1(z) = A1(< z/a2 > +b2) +A2e

(<z/c2>+d2)

g2(z) = A2(< z/a2 > +b2)−A1e
(<z/c2>+d2)

(for each z ∈ Cn, where a2, c2 ∈ Cn, b2, d2 ∈ C).

Case 1. {
g1(z) = A1(< z/a1 > +b1) +A2(< z/c1 > +d1)m

g2(z) = A2(< z/a1 > +b1)−A1(< z/c1 > +d1)m

for each z ∈ Cn.

u(a,b)(z) =| A1(< z/a > +b− < z/a1 > −b1)−A2(< z/c1 > +d1)m |2

+ | A2(< z/a > +b− < z/a1 > −b1) +A1(< z/c1 > +d1)m |2,
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where (a, b) ∈ Cn × C.
Choose now a = a1 and b = b1. It follows that

u(z) =|< z/c1 > +d1 |2m (| A1 |2 + | A2 |2)

and u is strictly convex on Cn.
Thus v is strictly convex on Cn, where v(z) =|< z/c1 >|2m, for z ∈ Cn. But v is
strictly convex on Cn if and only if m = 1, n = 1 and c1 ∈ C\{0}.

g1(z) = A1(a1z + b1) +A2(c1z + d1) = α1z + β1,

g2(z) = A2(a1z + b1)−A1(c1z + d1) = α2z + β2,

for z ∈ C, with α1, β1, α2, β2 ∈ C and (α1 6= 0 or α2 6= 0).
In this case A1g

′
2 = A1(A2a1 −A1c1), A2g

′
1 = A2(A1a1 +A2c1).

A1g
′
2 6= A2g

′
1, because − | A1 |2 c1 6=| A2 |2 c1.

Case 2. {
g1(z) = A1(< z/a2 > +b2) +A2e

(<z/c2>+d2)

g2(z) = A2(< z/a2 > +b2)−A1e
(<z/c2>+d2)

for each z ∈ C. For (a, b) ∈ Cn × C,

u(a,b)(z) = | A1(< z/a > +b− < z/a2 > −b2)−A2e
(<z/c2>+d2) |2

+ | A2(< z/a > +b− < z/a2 > −b2) +A1e
(<z/c2>+d2) |2 .

Choose now a = a2 and b = b2. It follows that

u(z) =| e(<z/c2>+d2) |2 (| A1 |2 + | A2 |2)

and u is strictly convex on Cn. Thus ϕ is strictly convex on Cn, where ϕ(z) =
| e<z/c2> |2, for all z ∈ Cn. But now observe that ϕ is not strictly convex at all
point of Cn, for all n ≥ 1. Therefore this case is impossible.

(B) implies (A) is evident.

(B) implies (C). Note that if

u(a,b,c1,c2)(z) =| A1(az + b)− g1(z) + c1 |2 + | A2(az + b)− g2(z) + c2 |2,

a, b, c1, c2 ∈ C, we now prove that

0 <| A1a− g′1 |2 + | A2a− g′2 |2, for each a ∈ C.

If a =
g′1
A1
∈ C (g1 is an affine function), then a 6= g′2

A2
, because if a =

g′2
A2
, then

g′1
A1

=
g′2
A2

and therefore A2g
′
1 = A1g

′
2. A contradiction.

Consequently, | A1a − g′1 |2 + | A2a − g′2 |2> 0, for every a ∈ C. It follows that
u(a,b,c1,c2) is strictly convex on C, for all (a, b, c1, c2) ∈ C4.

(C) implies (B). By the proof of the assertion (A) implies (B), we have{
g1(z)− c1 = A1(< z/α1 > +β1) +A2(< z/α2 > +β2)m

g2(z)− c2 = A2(< z/α1 > +β1)−A1(< z/α2 > +β2)m
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(for each z ∈ Cn, where α1, α2 ∈ Cn, β1, β2 ∈ C,m ∈ N), or{
g1(z)− c1 = A1(< z/γ1 > +δ1) +A2e

(<z/γ2>+δ2)

g2(z)− c2 = A2(< z/γ1 > +δ1)−A1e
(<z/γ2>+δ2)

(for each z ∈ Cn, where γ1, γ2 ∈ Cn, δ1, δ2 ∈ C).

Case 1. {
g1(z)− c1 = A1(< z/α1 > +β1) +A2(< z/α2 > +β2)m

g2(z)− c2 = A2(< z/α1 > +β1)−A1(< z/α2 > +β2)m

for each z ∈ Cn.

u(a,b,c1,c2)(z) = | A1(< z/a > +b− < z/α1 > −β1) +A2(< z/α2 > +β2)m |2

+ | A2(< z/a > +b− < z/α1 > −β1) +A1(< z/α2 > +β2)m |2

for each z ∈ Cn.
Take a = α1, b = β1, then we have

u(a,b,c1,c2) = (| A1 |2 + | A2 |2) |< z/α2 > +β2 |2m .

Therefore u(a,b,c1,c2) is strictly convex on Cn if and only if m = n = 1 and α2 6= 0.
Therefore (g1 − c1) and (g2 − c2) are affine functions and consequently, g1 and g2 are
affine functions.

g1(z) = λ1z + µ1 = A1(α1z + β1) +A2(α2z + β2) + c1,

g2(z) = λ2z + µ2 = A2(α1z + β1)−A1(α2z + β2) + c2,

where λ1, µ1, λ2, µ2 ∈ C. Then (A1g
′
2 6= A2g

′
1).

Case 2. {
g1(z)− c1 = A1(< z/γ1 > +δ1) +A2e

(<z/γ2>+δ2)

g2(z)− c2 = A2(< z/γ1 > +δ1)−A1e
(<z/γ2>+δ2)

for each z ∈ Cn.
We prove that this case is impossible.

Using the holomorphic differential equation k′′(k+c) = γ(k′)2 (k : C→ C, (γ, c) ∈
C2, k is holomorphic on C), we prove

Theorem 3. Let (A1, A2) ∈ C2\{0} and n ≥ 1. Given two analytic functions g1, g2 :
Cn → C. Put u(a,b)(z) =| A1(< z/a > +b)− g1(z) |2 + | A2(< z/a > +b)− g2(z) |2,
for z ∈ Cn, (a, b) ∈ Cn × C.
The following conditions are equivalent

(A) u(a,b) is strictly convex on Cn, for each (a, b) ∈ Cn × C;

(B) n = 1, g1, g2 are affine functions on C and we have the following 3 cases.
A2 = 0, A1 6= 0. Then g′2 6= 0.
A1 = 0, A2 6= 0. Then g′1 6= 0.
A1 6= 0 and A2 6= 0. Then A2g

′
1 6= A1g

′
2.
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Proof. If A1 6= 0 and A2 6= 0, we use the above Theorem 2.
Now suppose that A2 = 0 and A1 6= 0. For (a, b) ∈ Cn × C, u(a,b) is C∞ and strictly
convex on Cn. Therefore we have

|
n∑

j,k=1

∂2u(a,b)

∂zj∂zk
(z)αjαk |<

n∑
j,k=1

∂2u(a,b)

∂zj∂zk
(z)αjαk

for each z = (z1, ..., zn) ∈ Cn, for every α = (α1, ..., αn) ∈ Cn\{0}.
It follows that for z = (z1, ..., zn) fixed on Cn, for a ∈ Cn fixed and α =

(α1, ..., αn) ∈ Cn\{0} fixed, we have the inequality

(S) | g1(z)

n∑
j,k=1

∂2g1
∂zj∂zk

(z)αjαk + g2(z)

n∑
j,k=1

∂2g2
∂zj∂zk

(z)αjαk

− A1(< z/a > +b)

n∑
j,k=1

∂2g1
∂zj∂zk

(z)αjαk | < | A1 < α/a > −
n∑
j=1

∂g1
∂zj

(z)αj |2

+ |
n∑
j=1

∂g2
∂zj

(z)αj |2

for each b ∈ C.
Observe that the right expression of the above strict inequality (S) is independent

of b. Therefore if

n∑
j,k=1

∂2g1
∂zj∂zk

(z)αjαk 6= 0, then the subset C is bounded.

A contradiction. It follows that
n∑

j,k=1

∂2g1
∂zj∂zk

(z)αjαk = 0, for every z = (z1, ..., zn) ∈ Cn and α = (α1, ..., αn) ∈ Cn.

Since g1 is a holomorphic function over Cn, then g1 is an affine function on Cn.
Choose (a0, b0) ∈ Cn × C such that A1(< z/a0 > +b0) = g1(z), for all z ∈ Cn.

Therefore u(a0,b0)(z) =| g2(z) |2, for each z ∈ Cn. Consequently, | g2 |2 is
strictly convex on Cn. Then, n = 1. In particular | g2 |2 is convex on C. By
([3], Théorème 20, p. 358) we have g2(z) = (λz + δ)s, (for all z ∈ C, where λ, δ ∈ C,
s ∈ N), or g2(z) = e(λ1z+δ1), (for all z ∈ C, with λ1, δ1 ∈ C).

Case 1. g2(z) = (λz + δ)s, for all z ∈ C.
We have | g′′2 (z)g2(z) |<| g′2(z) |2, for each z ∈ C. Then λ 6= 0 and s = 1.

g′2(z) = λ 6= 0, (z ∈ C).

Case 2. g2(z) = e(λ1z+δ1), for each z ∈ C.
| g2 |2 is a function of class C∞ on C. We prove that | g2 |2 is not strictly convex at
all point of C. Therefore this case is impossible.

Corollary 1. Let g1, g2 : Cn → C be two analytic functions. For a ∈ Cn, b, c ∈ C, put

u(a,b,c)(z) =|< z/a > +b− g1(z) + c |2 + |< z/a > +b− g2(z) |2
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for z ∈ Cn. The following conditions are equivalent

(A) u(a,b,c) is convex on Cn, for each (a, b, c) ∈ Cn × C× C;

(B) g1 and g2 are affine functions on Cn.

Question. Let (A1, A2) ∈ C2\{0} and n ≥ 1. Find exactly all the analytic functions
g1, g2 : Cn → C such that v is convex and u is strictly (n+ 1)− sh on Cn ×C, where
v(z, w) =| A1w − g1(z) |2 + | A2w − g2(z) |2 and u(z, w) = v(z, w) + v(z, w), for
(z, w) ∈ Cn × C?

The case of the conjugate of holomorphic functions

Theorem 4. Let g1, g2 : Cn → C be two analytic functions, where n ≥ 1. Given
(A1, A2) ∈ (C\{0})2 and u(z, w) =| A1w − g1(z) |2 + | A2w − g2(z) |2, for (z, w) ∈
Cn × C. The following assertions are equivalent

(A) u is convex on Cn × C;

(B) We have the two following fundamental representations.{
g1(z) = A1(< z/a > +b) +A2(< z/c > +d)m

g2(z) = A2(< z/a > +b)−A1(< z/c > +d)m

(for each z ∈ Cn, where a, c ∈ Cn, b, d ∈ C,m ∈ N), or{
g1(z) = A1(< z/λ > +µ) +A2e

(<z/γ>+δ)

g2(z) = A2(< z/λ > +µ)−A1e
(<z/γ>+δ)

(for each z ∈ Cn, where λ, γ ∈ Cn, µ, δ ∈ C).

Proof. Let T (z, w) = (z, w), for (z, w) ∈ Cn × C. T is an R− linear bijective
transformation over Cn × C. Therefore, v = uoT is convex on Cn × C. But

v(z, w) =| A1w − g1(z) |2 + | A2w − g2(z) |2=| A1w − g1(z) |2 + | A2w − g2(z) |2

for (z, w) ∈ Cn × C. By the Theorem 1, we conclude the proof.

Example. Let g(z) = z2 + 2, z ∈ C. Put g1 = g, g2 = −g.
Then g1 and g2 are analytic functions on C. Let D = D(2i, 14 ). Define u(z, w) =|
w − g1(z) |2 + | w − g2(z) |2, v(z, w) =| w − g1(z) |2 + | w − g2(z) |2, (z, w) ∈ C2.
Then u(z, w) = v(z, w) = 2(| w |2 + | g(z) |2), (z, w) ∈ C2. We have u is strictly
convex on D×C. But we can not write g1 and g2 on the form of the above theorem.

Now let (A1, A2) ∈ C2\{0}. Define u1(z, w) =| A1w − k1(z) |2 + | A2w − k2(z) |2,
v1(z, w) =| A1w − k3(z) |2 + | A2w − k4(z) |2, for (z, w) ∈ D × C, where k1 = A2g,
k2 = −A1g, k3 = A2g, k4 = −A1g. Note that k1, k2, k3 and k4 are analytic functions
on D. We have u1(z, w) = v1(z, w) = (| A1 |2 + | A2 |2)(| w |2 + | g(z) |2), for
(z, w) ∈ D × C. Then u1 and v1 are functions strictly convex on D × C, but k1, k2,
k3 and k4 are not affine functions on D.

It follows that in all bounded not empty convex domain of Cn (n ≥ 1), the above
theorem is false.
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Theorem 5. Let g1, g2 : Cn → C be two analytic functions, where n ≥ 1. Let
(A1, A2) ∈ (C\{0})2 and define v(z, w) =| A1w − g1(z) |2 + | A2w − g2(z) |2, for
(z, w) ∈ Cn × C. The following assertions are equivalent

(A) v is convex and strictly psh on Cn × C;

(B) n ∈ {1, 2} and we have the following cases:
If n = 1, then {

g1(z) = A1(az + b) +A2(cz + d)m

g2(z) = A2(az + b)−A1(cz + d)m

(for each z ∈ C, where a, b, c, d ∈ C,m ∈ N with (m = 0, a 6= 0), (m = 1, (a, c) 6=
(0, 0)), (m ≥ 2, a 6= 0) ), or{

g1(z) = A1(λz + µ) +A2e
(γz+δ)

g2(z) = A2(λz + µ)−A1e
(γz+δ)

(for each z ∈ C, where λ, µ, γ, δ ∈ C, (λ, γ) 6= (0, 0)).
If n = 2, then {

g1(z) = A1(< z/a > +b) +A2(< z/c > +d)
g2(z) = A2(< z/a > +b)−A1(< z/c > +d)

(for each z ∈ C2, where a, c ∈ C2, b, d ∈ C with the determinant det(a, c) 6= 0),
or {

g1(z) = A1(< z/λ > +µ) +A2e
(<z/γ>+δ)

g2(z) = A2(< z/λ > +µ)−A1e
(<z/γ>+δ)

(for each z ∈ C2, where λ, γ ∈ C2, µ, δ ∈ C with the determinant det(λ, γ) 6= 0).

Proof. Let T : Cn × C→ Cn × C, T (z, w) = (z, w), for (z, w) ∈ Cn × C.
T is an R linear bijective transformation on Cn × C. Then voT = u is convex on
Cn × C. u(z, w) =| A1w − g1(z) |2 + | A2w − g2(z) |2, for (z, w) ∈ Cn × C.
It follows that {

g1(z) = A1(< z/a > +b) +A2(< z/c > +d)m

g2(z) = A2(< z/a > +b)−A1(< z/c > +d)m

(for each z ∈ Cn, where a, c ∈ Cn, b, d ∈ C,m ∈ N), or{
g1(z) = A1(< z/λ > +µ) +A2e

(<z/γ>+δ)

g2(z) = A2(< z/λ > +µ)−A1e
(<z/γ>+δ)

(for each z ∈ Cn, where λ, γ ∈ Cn, µ, δ ∈ C).
Case 1. {

g1(z) = A1(< z/a > +b) +A2(< z/c > +d)m

g2(z) = A2(< z/a > +b)−A1(< z/c > +d)m

for each z ∈ Cn. We have
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v(z, w) = | A1(w −< z/a >− b)−A2(< z/c > +d)m |2

+ | A2(w −< z/a >− b) +A1(< z/c > +d)m |2

= (| A1 |2 + | A2 |2)(| w −< z/a >− b |2 + |< z/c > +d |2m),

for (z, w) ∈ Cn × C.
Let v1(z, w) =| w −< z/a >− b |2 + |< z/c > +d |2m, (z, w) ∈ Cn × C.

v and v1 are functions of class C∞ on Cn × C. Note that v is strictly psh on Cn × C
if and only if v1 is strictly psh on Cn ×C. By Lemma 4, v1 is strictly psh on Cn ×C
if and only if v2 is strictly psh on Cn × C, where

v2(z, w) =| w |2 + |< z/a > +b |2 + |< z/c > +d |2m

for each (z, w) ∈ Cn × C (v2 is a function of class C∞ on Cn × C).
But the Levi hermitian form of v2 is

L(v2)(z, w)(α, β) =| β |2 + |< α/a >|2 +m2 |< α/c >|2|< z/c > +d |2m−2,

for each (z, w) ∈ Cn × C and all (α, β) ∈ Cn × C.
We have (L(v2)(z, w)(α, β) > 0, ∀(z, w) ∈ Cn × C, ∀(α, β) ∈ Cn × C\{0}) if and

only if (ϕ2(z, α) > 0, ∀z ∈ Cn, ∀α ∈ Cn\{0}), where

ϕ2(ξ, δ) =|< δ/a >|2 +m2 |< δ/c >|2|< ξ/c > +d |2m−2

for (ξ, δ) ∈ Cn × Cn.
Step 1. m = 0.

Then |< α/a >|> 0, for each α ∈ Cn\{0}. Thus n = 1 and a ∈ C\{0}.
In this case we have {

g1(z) = A1(az + b) +A2

g2(z) = A2(az + b)−A1

for each z ∈ C.
Step 2. m = 1.

Let ϕ3(α) = ϕ2(z, α) =|< α/a >|2 + |< α/c >|2, for (z, α) ∈ Cn × C. Now since we
have ϕ2(z, α) > 0, for each z ∈ Cn, and α ∈ Cn\{0}. Then ϕ3(α) =|< α/a >|2 +
|< α/c >|2> 0, for every α ∈ Cn\{0}.

Put a = (a1, ..., an), c = (c1, ..., cn). Let α = (α1, ..., αn) ∈ Cn. We have ϕ3(α) = 0
if and only if α = 0. But ϕ3(α) = 0 is equivalent with < α/a >= 0 and < α/c >= 0.
Therefore {

α1a1 + ...+ αnan = 0
α1c1 + ...+ αncn = 0.

Then α1(a1, c1) + ... + αn(an, cn) = (0, 0) ∈ C2 (C2 is considered a complex vector
space of dimension 2) if and only if α1 = ... = αn = 0. Then the set of vectors
{(a1, c1), ..., (an, cn)} is a free family of n vectors of C2. Therefore n ≤ 2.



The Real and Complex Convexity 141

State 1. n = 1.

|< α/a >|2 + |< α/c >|2=| αa |2 + | αc |2> 0,

for each α ∈ C\{0}. Then (a, c) 6= (0, 0). Therefore{
g1(z) = A1(az + b) +A2(cz + d)
g2(z) = A2(az + b)−A1(cz + d)

for each z ∈ C. We have

v1(z, w) =| w − az − b |2 + | cz + d |2

and
v2(z, w) =| w |2 + | az + b |2 + | cz + d |2 .

v2 is strictly psh on C2 because | a |2 + | c |2> 0.

State 2. n = 2.
In this case {(a1, c1), (a2, c2)} is a basis of the C− vector space C2. It follows that
{(a1, a2), (c1, c2)} is a basis of C2 and consequently, {(a1, a2), (c1, c2)} = {a, c} is a
basis of C2. Then the determinant det(a, c) 6= 0.
In this case we have{

g1(z) = A1(< z/a > +b) +A2(< z/c > +d)
g2(z) = A2(< z/a > +b)−A1(< z/c > +d)

(for each z ∈ C2, where a, c ∈ C2, b, d ∈ C with the determinant det(a, c) 6= 0).

Step 3. m ≥ 2.

ϕ2(z, α) =|< α/a >|2 +m2 |< α/c >|2|< z/c > +d |2m−2, z, α ∈ Cn.

State 1. c = 0.
Then ϕ2(z, α) =|< α/a >|2> 0, for every α ∈ Cn\{0}.
It follows that n = 1. Consequently, a 6= 0. In this case we have{

g1(z) = A1(az + b) +A2d
m

g2(z) = A2(az + b)−A1d
m

(for each z ∈ C, where a ∈ C\{0}, b, d ∈ C and m ∈ N, m ≥ 2).

State 2. c 6= 0.
There exists z0 ∈ Cn such that |< z0/c > +d |= 0.
Since (2m− 2) ≥ 2, then |< z0/c > +d |2m−2= 0. It follows that ϕ2(z0, α) =
|< α/a >|2> 0, for each α ∈ Cn\{0}.
Then n = 1 and a ∈ C\{0}. In this case{

g1(z) = A1(az + b) +A2(cz + d)m

g2(z) = A2(az + b)−A1(cz + d)m
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(for each z ∈ C, where a ∈ C\{0}, c ∈ C\{0}, b, d ∈ C and m ∈ N, m ≥ 2).
Consequently, for m ≥ 2 and independently of c, we have in all this step 3, n = 1 and{

g1(z) = A1(az + b) +A2(cz + d)m

g2(z) = A2(az + b)−A1(cz + d)m

(for each z ∈ C, where a ∈ C\{0}, b, c, d ∈ C and m ∈ N, m ≥ 2).

Case 2. {
g1(z) = A1(< z/λ > +µ) +A2e

(<z/γ>+δ)

g2(z) = A2(< z/λ > +µ)−A1e
(<z/γ>+δ)

for all z ∈ Cn.

v(z, w) = (| A1 |2 + | A2 |2)(| w −< z/λ >− µ |2 + | e(<z/γ>+δ) |2),

for (z, w) ∈ Cn × C.
Let u1(z, w) =| w −< z/λ >− µ |2 + | e(<z/γ>+δ) |2, for (z, w) ∈ Cn × C.

v and u1 are functions of class C∞ on Cn ×C. We have v is strictly psh on Cn ×C if
and only if u1 is strictly psh on Cn × C.

Now define

u2(z, w) =| w |2 + |< z/λ > +µ |2 + | e(<z/γ>+δ) |2,

for (z, w) ∈ Cn × C. u2 is a function of class C∞ on Cn × C. By Lemma 4, we have
u1 is strictly psh on Cn × C if and only if u2 is strictly psh on Cn × C.

The Levi hermitian form of u2 is

L(u2)(z, w)(α, β) =| β |2 + |< α/λ >|2 + |< α/γ >|2| e(<z/γ>+δ) |2,

for each (z, w) ∈ Cn × C, for all (α, β) ∈ Cn × C. We have

(L(u2)(z, w)(α, β) > 0, ∀(z, w) ∈ Cn × C, ∀(α, β) ∈ Cn × C\{(0, 0)})

if and only if

(ϕ1(z, α) =|< α/λ >|2 + |< α/γ >|2| e(<z/γ>+δ) |2> 0, ∀z ∈ Cn, ∀α ∈ Cn\{0}).

Now observe that (ϕ1(z, α) > 0, ∀z ∈ Cn, ∀α ∈ Cn\{0}) if and only if (θ(z, α) =
|< α/λ >|2 + |< α/γ >|2> 0,∀α ∈ Cn\{0}). But θ is independent of z ∈ Cn.
Therefore, u is strictly psh on Cn×C if and only if ϕ(α) =|< α/λ >|2 + |< α/γ >|2>
0, for all α ∈ Cn\{0}).

By the same method of the Case 1, we prove that n ≤ 2.

Step 1. n = 1. Then (| λ |2 + | γ |2) > 0.

Step 2. n = 2. Then by the same algebraic method developed in the Case 1, we prove
that the determinant det(λ, γ) 6= 0.

The proof is now finished.
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The complete characterization

Theorem 6. Let g1, g2 : Cn → C be two analytic functions, n ≥ 1. Given (A1, A2) ∈
C2\{(0, 0)}. Put v(z, w) =| A1w − g1(z) |2 + | A2w − g2(z) |2, for (z, w) ∈ Cn × C.
The following conditions are equivalent

(A) v is convex and strictly psh on Cn × C;

(B) n ∈ {1, 2} and we have the following three cases.
If A1, A2 ∈ C\{0}, this situation is studied in the above theorem.
If A1 6= 0, A2 = 0, then g1 is affine on Cn, | g2 |2 is convex on Cn and
(| g1 |2 + | g2 |2) is strictly psh on Cn.
If A1 = 0, A2 6= 0, then g2 is affine, | g1 |2 is convex on Cn and
(| g1 |2 + | g2 |2) is strictly psh on Cn.

Corollary 2. Let g1, g2 : Cn → C be two analytic functions, n ≥ 1. Given (A1, A2) ∈
C2. Put v(z, w) =| A1w − g1(z) |2 + | A2w − g2(z) |2, for (z, w) ∈ Cn × C.
The following conditions are equivalent

(A) v is convex strictly psh and not strictly convex on Cn × C;

(B) n ∈ {1, 2}, (A1, A2) ∈ C2\{0} and we have{
g1(z) = A1(< z/λ > +µ) +A2(< z/λ1 > +µ1)s

g2(z) = A2(< z/λ > +µ)−A1(< z/λ1 > +µ1)s

(for each z ∈ Cn, where λ, λ1 ∈ Cn, µ, µ1 ∈ C, s ∈ N with (s = 0, n = 1, λ = 0),
or (s = 1, λ1 = 0, n = 1, λ 6= 0), or (s ≥ 2, n = 1, λ 6= 0)), or{

g1(z) = A1(< z/λ2 > +µ2) +A2e
(<z/λ3>+µ3)

g2(z) = A2(< z/λ2 > +µ2)−A1e
(<z/λ3>+µ3)

(for each z ∈ Cn, where λ2, λ3 ∈ Cn, µ2, µ3 ∈ C, with (n = 1, λ2 6= 0), or
(n = 1, λ3 6= 0), or (n = 2, the determinant det(λ2, λ3) 6= 0)).

Corollary 3. Let g1, g2 : Cn → C be two analytic functions, n ≥ 1. Given (A1, A2) ∈
C2. Put v(z, w) =| A1w − g1(z) |2 + | A2w − g2(z) |2, for (z, w) ∈ Cn × C.
The following conditions are equivalent

(A) v is convex strictly psh and not strictly convex at all point of Cn × C;

(B) n ∈ {1, 2}, (A1, A2) ∈ C2\{0} and we have{
g1(z) = A1(< z/λ > +µ) +A2(< z/λ1 > +µ1)s

g2(z) = A2(< z/λ > +µ)−A1(< z/λ1 > +µ1)s

(for each z ∈ Cn, where λ, λ1 ∈ Cn, µ, µ1 ∈ C, s ∈ N with (n = 1, s = 0, λ 6= 0),
or (n = 1, s ∈ N, λ1 = 0, λ 6= 0)), or{

g1(z) = A1(< z/λ2 > +µ2) +A2e
(<z/λ3>+µ3)

g2(z) = A2(< z/λ2 > +µ2)−A1e
(<z/λ3>+µ3)
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(for each z ∈ Cn, where λ2, λ3 ∈ Cn, µ2, µ3 ∈ C, with (n = 1, λ3 6= 0, λ2 = 0),
or (n = 2 and the determinant det(λ2, λ3) 6= 0)).

In fact we have the following.

Theorem 7. Let n ≥ 1 and consider two holomorphic functions g1, g2 : Cn → C.
Given (A1, A2) ∈ (C\{0})2. Let

u(z, w) =| A1w − g1(z) |2 + | A2w − g2(z) |2, v(z, w) = u(z, w)+ | A1w − g1(z) |2

+ | A2w − g2(z) |2, v1(z, w) =| A1w − g1(z) |2 + | A2w − g2(z) |2

+ | A1w − g1(z) |2 + | A2w − g2(z) |2,

for (z, w) ∈ Cn × C. The following conditions are equivalent

(A) u is convex on Cn × C and v is strictly psh on Cn × C;

(B) u is convex on Cn × C and v1 is strictly psh on Cn × C;

(C) n ∈ {1, 2} and we have the following two cases.
(I) {

g1(z) = A1(< z/λ > +µ) +A2(< z/λ1 > +µ1)s

g2(z) = A2(< z/λ > +µ)−A1(< z/λ1 > +µ1)s

(for each z ∈ Cn, where λ, λ1 ∈ Cn, µ, µ1 ∈ C, s ∈ N, with (n = 1, λ 6= 0), or
(n = 1, λ1 6= 0, s = 1), or (n = 2, s = 1 and the determinant det(λ, λ1) 6= 0)).
(II) {

g1(z) = A1(< z/λ2 > +µ2) +A2e
(<z/λ3>+µ3)

g2(z) = A2(< z/λ2 > +µ2)−A1e
(<z/λ3>+µ3)

(for each z ∈ Cn, where λ2, λ3 ∈ Cn, µ2, µ3 ∈ C, with (n = 1, λ2 6= 0), or
(n = 1, λ3 6= 0), or (n = 2 and the determinant det(λ2, λ3) 6= 0)).

Proof. This proof is similar to the proof of Theorem 4.

Now we can answer to the following question.

Question. Let n ≥ 1 and A1, A2 ∈ C\{0}. Find all the functions f1, f2 : Cn → C
such that f1 ∈ C(Cn) and {

ϕ1 is psh on Cn × C
ϕ2 is convex on Cn × C,

or (for example) ϕ1 is psh on Cn × C
ϕ2 is convex and strictly psh on Cn × C, but not strictly convex on all
not empty open ball of Cn × C,



The Real and Complex Convexity 145

where

ϕ1(z, w) = log | A1w − f1(z) | + log | A2w − f2(z) |,
ϕ2(z, w) = | A1w − f1(z) |2 + | A2w − f2(z) |2,

for (z, w) ∈ Cn × C.

Using algebraic methods, we can prove the following theorem:

Theorem 8. Let n ≥ 1 and (A1, A2) ∈ C2. Given g1, g2 : Cn → C be two analytic
functions. Put u(z, w) =| A1w − g1(z) |2 + | A2w − g2(z) |2, (z, w) ∈ Cn × C.
The following conditions are equivalent

(A) u is convex and strictly psh on Cn × C;

(B) n ∈ {1, 2}, (A1, A2) ∈ C2\{(0, 0)} and we have the following three situations.

(1) A1 6= 0 and A2 = 0. Then n = 1, g1 is affine, | g2 |2 is convex and strictly
sh on C.

(2) A1 = 0 and A2 6= 0. Then n ∈ {1, 2}, | g1 |2 is convex on Cn, g2 is affine
on Cn and (| g1 |2 + | g2 |2) is strictly psh on Cn.

(3) A1, A2 ∈ C\{0}. Then n ∈ {1, 2}, g1 and g2 are affine functions on Cn
and (| g1 |2 + | g2 |2) is strictly psh on Cn.

3. A Classical Complex Analysis Problem

Let n,N ≥ 1 and (A1, B1, ..., AN , BN ∈ C\{0}). For f1, g1, ..., fN , gN : Cn → C,
define

u1(z, w) = | A1w − f1(z) |2 + | B1w − g1(z) |2,
v1(z, w) = | A1w − f1(z) |2 + | B1w − g1(z) |2, . . . ,
uN (z, w) = | ANw − fN (z) |2 + | BNw − gN (z) |2,
vN (z, w) = | ANw − fN (z) |2 + | BNw − gN (z) |2,

u = (u1 + ...+ uN ) and v = (v1 + ...+ vN ), for (z, w) ∈ Cn × C. Define

ϕ1(z, w) = log | A1w − f1(z) | + log | B1w − g1(z) |, . . . ,
ϕN (z, w) = log | ANw − fN (z) | + log | BNw − gN (z) |, (z, w) ∈ Cn × C.

Question. Find all the functions f1, g1, ..., fN , gN : Cn → C such that f1, ..., fN are
continuous functions on Cn and

u1 is convex on Cn × C and
ϕ1 is psh on Cn × C
.
.
.
uN is convex on Cn × C and
ϕN is psh on Cn × C; and
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the function u is strictly psh on Cn × C?

Question. Find exactly all the functions f1, g1, ..., fN , gN : Cn → C such that
f1, ..., fN are continuous functions on Cn, and

v1 is convex on Cn × C and
ϕ1 is psh on Cn × C
.
.
.
vN is convex on Cn × C and
ϕN is psh on Cn × C; and

v is strictly psh on Cn × C?

Theorem 9. Let n ≥ 1, n + 1 = 2q, q ∈ N. Let A1, B1, ..., Aq, Bq ∈ C\{0} and
f1, g1, ..., fq, gq : Cn → C be 2q analytic functions. Define

u1(z, w) = | A1w − f1(z) |2 + | B1w − g1(z) |2, . . . ,
uq(z, w) = | Aqw − fq(z) |2 + | Bqw − gq(z) |2

and u = (u1 + ...+ uq), for (z, w) ∈ Cn × C.
The following conditions are equivalent

(A) u1, ..., uq are convex functions on Cn × C and u is strictly psh on Cn × C;

(B) For each j ∈ {1, ..., q}, we have{
fj(z) = Aj(< z/λj > +µj) +Bjϕj(z)
gj(z) = Bj(< z/λj > +µj)−Ajϕj(z)

for each z ∈ Cn, with λj ∈ Cn, µj ∈ C, ϕj : Cn → C be a holomorphic function,
| ϕj |2 is a convex function on Cn and

(λ1 − λ2, ..., λ1 − λq, (
∂ϕ1

∂z1
(a), ...,

∂ϕ1

∂zn
(a)), ..., (

∂ϕq
∂z1

(a), ...,
∂ϕq
∂zn

(a)))

is a basis of Cn, for all a ∈ Cn.

(We can also study the problem u is strictly psh on Cn×C and not strictly convex on
all not empty open ball of Cn × C, ...).

Proof. (A) implies (B). Let j ∈ {1, ..., q}. By Theorem 1, we have{
fj(z) = Aj(< z/λj > +µj) +Bjϕj(z)
gj(z) = Bj(< z/λj > +µj)−Ajϕj(z)

ϕj : Cn → C, ϕj is analytic and | ϕj |2 is convex on Cn.
In fact ϕj(z) = (< z/γj > +δj)

sj , (for all z ∈ Cn, where γj ∈ Cn, δj ∈ C, sj ∈ N), or
ϕj(z) = e(<z/aj>+bj), for all z ∈ Cn, with aj ∈ Cn, bj ∈ C.
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We consider in this proof the case where

{
fj(z) = Aj(< z/λj > +µj) +Bj(< z/γj > +δj)

sj

gj(z) = Bj(< z/λj > +µj)−Aj(< z/γj > +δj)
sj

for each z ∈ Cn and all j ∈ {1, ..., n} (the proof of the other cases are similar of this
proof). Therefore,

u(z, w) = (| A1 |2 + | B1 |2)[| w− < z/λ1 > −µ1 |2 + |< z/γ1 > +δ1 |2s1 ] + · · ·
+ (| Aq |2 + | Bq |2)[| w− < z/λq > −µq |2 + |< z/γq > +δq |2sq ],

(z, w) ∈ Cn × C.

Define

v(z, w) = | w− < z/λ1 > −µ1 |2 + |< z/γ1 > +δ1 |2s1 + · · ·
+ | w− < z/λq > −µq |2 + |< z/γq > +δq |2sq ,

(z, w) ∈ Cn × C. u and v are functions of class C∞ on Cn × C.

We have in fact u is strictly psh on Cn×C if and only if v is strictly psh on Cn×C.
Because this situation, we study the function v.

Let T : Cn×C→ Cn×C, T (z, w) = (z, w+ < z/λ1 >), for (z, w) ∈ Cn×C. T is a
C− linear bijective transformation over Cn ×C. Put v1 = voT. Then v1 is a function
of class C∞ on Cn × C.
We have v is strictly psh on Cn × C if and only if v1 is strictly psh on Cn × C.

v1(z, w) = | w − µ1 |2 + |< z/γ1 > +δ1 |2s1 + | w− < z/λ2 − λ1 > −µ2 |2

+ |< z/γ2 > +δ2 |2s2 +...+ | w− < z/λq − λ1 > −µq |2

+ |< z/γq > +δq |2sq ,

for (z, w) ∈ Cn × C.
The Levi hermitian form of v1 is

L(v1)(z, w)(α, β) = | β |2 +s21 |< α/γ1 >|2|< z/γ1 > +δ1 |2s1−2

+ | β− < α/λ2 − λ1 >|2 +s22 |< α/γ2 >|2|< z/γ2 > +δ2 |2s2−2 +...

+ | β− < α/λq − λ1 >|2 +s2q |< α/γq >|2|< z/γq > +δq |2sq−2,

for (z, w), (α, β) ∈ Cn × C.
Fix now (z0, w0) ∈ Cn×C. Let (α, β) ∈ Cn×C with L(v)(z0, w0)(α, β) = 0. Then
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β = 0

s21 |< α/γ1 >|2|< z/γ1 > +δ1 |2s1−2= 0

< α/λ2 − λ1 >= 0

s22 |< α/γ2 >|2|< z/γ2 > +δ2 |2s2−2= 0

.

.

.

< α/λq − λ1 >= 0

s2q |< α/γq >|2|< z/γq > +δq |2sq−2= 0.

Thus 

β = 0
< α/λ2 − λ1 >= 0
.
.
.
< α/λq − λ1 >= 0
s21 |< α/γ1 >|2|< z/γ1 > +δ1 |2s1−2= 0
.
.
.
s2q |< α/γq >|2|< z/γq > +δq |2sq−2= 0.

Therefore this above system is equivalent with β = 0 and the system

< α/λ2 − λ1 >= 0
.
.
.
< α/λq − λ1 >= 0
s21 |< α/γ1 >|2|< z/γ1 > +δ1 |2s1−2= 0
.
.
.
s2q |< α/γq >|2|< z/γq > +δq |2sq−2= 0.

Consequently, v1 is strictly psh on Cn×C if and only if (for each (α, β) ∈ Cn×C
and every (z, w) ∈ Cn × C, the condition L(v1)(z, w)(α, β) = 0 implies that α = 0
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and β = 0). Then the system

< α/λ2 − λ1 >= 0
.
.
.
< α/λq − λ1 >= 0
s21 |< α/γ1 >|2|< z/γ1 > +δ1 |2s1−2= 0
.
.
.
s2q |< α/γq >|2|< z/γq > +δq |2sq−2= 0

implies that α = 0.

Using algebraic methods, we have then (λ2 − λ1, ..., λq − λ1, γ1, ..., γq) is a basis
of Cn = C2q−1 and s1 = ... = sq = 1 (Cn considered a complex vector space of
dimension n).

Theorem 10. Let n = 2q, n ∈ N, n ≥ 1, q ∈ N. Let f1, g1, ..., fq, gq : Cn → C be 2q
holomorphic functions and A1, B1, ..., Aq, Bq ∈ C\{0}.
Define

uj(z, w) =| Ajw − fj(z) |2 + | Bjw − gj(z) |2, u = (u1 + ...+ uq),

for (z, w) ∈ Cn × C and j ∈ {1, ..., q}. The following conditions are equivalent

(A) u1, ..., uq are convex functions on Cn × C and u is strictly psh on Cn × C;

(B) For every j ∈ {1, ..., q},{
fj(z) = Aj(< z/λj > +µj) +Bjϕj(z)
gj(z) = Bj(< z/λj > +µj)−Ajϕj(z)

(for each z ∈ Cn, with λj ∈ Cn, µj ∈ C, ϕj : Cn → C be a holomorphic function
and | ϕj |2 is a convex function on Cn) and

(λ1, ..., λq, (
∂ϕ1

∂z1
(a), ...,

∂ϕ1

∂zn
(a)), ..., (

∂ϕq
∂z1

(a), ...,
∂ϕq
∂zn

(a)))

is a basis of Cn for all a ∈ Cn.

(We can also study the problem u is strictly psh on Cn×C and not strictly convex on
all not empty Euclidean open ball of Cn × C, ...).
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4. Real Convexity and Complex Convexity

Question. An original question of complex analysis is now to find exactly the set of
all continuous functions f1, ..., fN : D → C (D is a convex domain of Cn, n ≥ 1, N ≥ 1)
such that ϕ is psh on D×C, where ϕ(z, w) = log(| w− f1(z) |2 +...+ | w− fN (z) |2),
for (z, w) ∈ D × C.

Observe that for N = 1, this is exactly all the holomorphic functions over D. But
for N ≥ 2, the set of solution contains several classes of functions.

Example. N = 2 and D = Cn. Put

k1(z) = (< z/a > +b) + (< z/c > +d)s,

k2(z) = (< z/a > +b)− (< z/c > +d)s,

z ∈ Cn, a, c ∈ Cn\{0}, b, d ∈ C, s ∈ N\{0}. k1, k2, k1 and k2 are not holomorphic
functions over Cn. The function ψ is psh on Cn×C, where ψ(z, w) = log(| w−k1(z) |2
+ | w − k2(z) |2), (z, w) ∈ Cn × C.

Theorem 11. Let g1, g2, k : Cn → C be three analytic functions, n ≥ 1. Let
(A1, A2) ∈ (C\{0})2. Put u(z, w) =| A1(w−k(z))−g1(z) |2 + | A2(w−k(z))−g2(z) |2,
v(z, w) =| A1w − g1(z) |2 + | A2w − g2(z) |2, for (z, w) ∈ Cn × C.
The following conditions are equivalent

(A) u is convex on Cn × C;

(B) k is an affine function and{
g1(z) = A1(< z/a > +b) +A2(< z/c > +d)m

g2(z) = A2(< z/a > +b)−A1(< z/c > +d)m

(for each z ∈ Cn, where a, c ∈ Cn, b, d ∈ C), or{
g1(z) = A1(< z/λ > +µ) +A2e

(<z/γ>+δ)

g2(z) = A2(< z/λ > +µ)−A1e
(<z/γ>+δ)

(for each z ∈ Cn, where λ, γ ∈ Cn, µ, δ ∈ C);

(C) v is convex on Cn × C and k is an affine function on Cn.

Theorem 12. Let A1, A2 ∈ C\{0}. Consider three holomorphic functions g1, g2, k :Cn→C,
n ≥ 1. Put

v(z, w) = | A1(w − k(z))− g1(z) |2 + | A2(w − k(z))− g2(z) |2,
u(z, w) = | A1w − g1(z) |2 + | A2w − g2(z) |2,
u1(z, w) = | A1(w − k(z)) |2 + | A2(w − k(z)) |2,

for (z, w) ∈ Cn × C. The following conditions are equivalent
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(A) v is strictly psh and convex on Cn × C;

(B) n ∈ {1, 2}, k is an affine function and{
g1(z) = A1(< z/λ > +µ) +A2ϕ(z)
g2(z) = A2(< z/λ > +µ)−A1ϕ(z)

(for each z ∈ Cn, where λ ∈ Cn, µ ∈ C and ϕ : Cn → C be analytic, | ϕ |2 is
convex on Cn and (| k |2 + | ϕ |2) is strictly psh on Cn);

(C) 

| A2g1 −A1g2 |2 is convex on Cn,

(A1g1 +A2g2) is affine on Cn,

k is affine on Cn, and

the function (| k |2 + 1
(|A1|2+|A2|2)2 | A2g1 −A1g2 |2) is strictly psh on Cn;

(D) u is convex on Cn × C, u1 is convex on Cn × C and the function (u + u1) is
strictly psh on Cn × C.
(If n = 1, we can study the strict plurisubharmonicity of v and u on a neigh-
borhood of ∂D(0, 1)×D(0, 1)).

Remark 2. Let A1, A2 ∈ C\{0} with (A1A2 6= A1A2) and g1, g2 : C → C be two
analytic functions. Put u(z, w) =| A1w − g1(z) |2 + | A2w − g2(z) |2, v(z, w) =
| A1w − g1(z) |2 + | A2w − g2(z) |2, for (z, w) ∈ C2. If u is strictly psh on C2, then v
is strictly psh on C2 (and the converse is false).

By a simple study of u and v, we prove that this property is not true for the class
of convex functions (respectively strictly psh and convex, strictly convex, strictly psh
convex and not strictly convex on all not empty Euclidean open ball of C2, ...). This
is one of the great differences between the above classes of functions.

A good comparison between the subject strictly convex and the concept (convex
and strictly psh) can be follows by the following two theorems.

Theorem 13. Fix g1, g2 : Cn → C be two holomorphic functions, n ∈ N\{0}. Let
(A1, A2) ∈ C2. Define

v(z, w) =| A1w − g1(z) |2 + | A2w − g2(z) |2, (z, w) ∈ Cn × C.

The following conditions are equivalent

(A) v is strictly convex on Cn × C;

(B) n = 1, (A1, A2) ∈ C2\{(0, 0)} and{
g1(z) = A1(az + b) +A2(cz + d)
g2(z) = A2(az + b)−A1(cz + d)

(for each z ∈ C, where a, b, c, d ∈ C, c 6= 0).
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Theorem 14. Let g1, g2 : Cn → C be two holomorphic functions, n ∈ N\{0}. Let
(A1, A2) ∈ C2. Define

u(z, w) =| A1w − g1(z) |2 + | A2w − g2(z) |2, (z, w) ∈ Cn × C.

The following conditions are equivalent

(A) u is strictly psh and convex on Cn × C, but u is not strictly convex in all not
empty Euclidean open ball of Cn × C;

(B) n = 1, (A1, A2) ∈ C2\{(0, 0)} and{
g1(z) = A1(az + b) +A2e

(cz+d)

g2(z) = A2(az + b)−A1e
(cz+d)

for each z ∈ C, with a, b, d ∈ C and c ∈ C\{0}.

Now one can observe that there exists a great differences between the classes (con-
vex and strictly psh) and strictly convex functions in all of the above two theorems.

The representation theorems for another cases

We begin by

Theorem 15. Let k(w) = (aw + b)m, for all w ∈ C, where a ∈ C\{0} and b ∈ C,
m ∈ N, m ≥ 2. (| k |2 is convex on C). Let (A1, A2) ∈ C2\{0} and consider two
holomorphic functions g1, g2 : Cn → C, n ≥ 1. Define

u(z, w) =| A1k(w)− g1(z) |2 + | A2k(w)− g2(z) |2, (z, w) ∈ Cn × C.

We have

(A) u is convex on Cn × C if and only if{
g1(z) = A2ϕ(z)
g2(z) = −A1ϕ(z)

for each z ∈ Cn, where ϕ : Cn → C, ϕ is holomorphic and | ϕ |2 is convex on
Cn;

(B) u is convex on Cn ×C and u(., 0) is strictly psh on Cn if and only if n = 1 and
| ϕ |2 is strictly sh on C.
(The same case for k(w) = e(a1w+b1), for all w ∈ C, with a1 ∈ C\{0} and
b1 ∈ C).

Observe that, in all not empty convex domain G subset of Cn, (n ≥ 2), there
exists K : G → R be a function of class C2 such that K is strictly psh on G, but
K is not convex in all not empty Euclidean open ball subset of G. For example
K1(z, w) =| w − ez |2, (z, w) ∈ C2. K1 is strictly psh on C2, but K1 is not convex in
all Euclidean open ball of C2 (consider K1(z, w)).

The converse can be studied and investigated by the following.
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Theorem 16. Let (A1, A2) ∈ C2\{0} and n ≥ 1.
Let ϕ(w) = (aw + b)m, where a ∈ C\{0}, b ∈ C, m ∈ N, m ≥ 2 (for all w ∈ C) and
g1, g2 : Cn → C be two holomorphic functions. Define

u(z, w) =| A1ϕ(w)− g1(z) |2 + | A2ϕ(w)− g2(z) |2,

for (z, w) ∈ Cn × C. The following conditions are equivalent

(A) u is convex and not strictly psh at all point of Cn × C;

(B) We have the following two cases{
g1(z) = A2(< z/λ > +µ)s

g2(z) = −A1(< z/λ > +µ)s

(for every z ∈ Cn, where λ ∈ Cn, µ ∈ C, s ∈ N such that (s = 0), or
(n = 1, λ = 0), or (n ≥ 2)), or{

g1(z) = A2e
(<z/λ1>+µ1)

g2(z) = −A1e
(<z/λ1>+µ1)

(for each z ∈ Cn, where λ1 ∈ Cn, µ1 ∈ C, such that (n = 1, λ1 = 0), or (n ≥ 2)).
(The same situation if ϕ(w) = e(aw+b), for w ∈ C, where a ∈ C\{0}, b ∈ C).

In general observe that if k is an arbitrary holomorphic function on C, there does
not exists (B1, B2) ∈ C2\{0}, there does not exists n ≥ 1 and f1, f2 : Cn → C be two
holomorphic functions such that v is convex on Cn ×C; v(z, w) =| B1k(w)− f1(z) |2
+ | B2k(w)−f2(z) |2, (z, w) ∈ Cn×C. The example is given by the following theorem
which is fundamental in mathematical analysis.

Theorem 17. Let (A1, A2) ∈ (C\{0})2 and n ∈ N\{0}. Define p1(w) = w3,
p2(w) = w4 + w2 and p3(w) = w3 + w, for w ∈ C and p be an analytic polyno-
mial over C, deg(p) ≤ 2. Let ϕ = (ϕ1, ϕ2), where ϕ1, ϕ2 : Cn → C be two analytic
functions. Define

uϕ(z, w) = | A1p1(w)− ϕ1(z) |2 + | A2p1(w)− ϕ2(z) |2,
vϕ(z, w) = | A1p2(w)− ϕ1(z) |2 + | A2p2(w)− ϕ2(z) |2,
ψϕ(z, w) = | A1p3(w)− ϕ1(z) |2 + | A2p3(w)− ϕ2(z) |2 and

ρϕ(z, w) = | A1p(w)− ϕ1(z) |2 + | A2p(w)− ϕ2(z) |2,

for (z, w) ∈ Cn × C. We have the following four assertions:

(A) There exists an infinite number of holomorphic functions g1, g2 : Cn → C,
g = (g1, g2) and ug is convex on Cn × C.

(B) There does not exists an holomorphic function f = (f1, f2), where f1, f2 : Cn→C
such that vf is convex on Cn × C.
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(C) There does not exists an holomorphic function k = (k1, k2), where k1, k2 : Cn→C
such that ψk is convex on Cn × C.

(D) For all polynomial p analytic on C, deg(p) ≤ 2, there exists always an infinite
number of holomorphic functions θ1, θ2 : Cn → C, θ = (θ1, θ2) and ρθ is convex
on Cn × C.
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[15] M. Hervé, Les Fonctions Analytiques, Presses Universitaires de France, 1982.
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1. Introduction and Preliminaries

Banach contraction theorem is one of the fundamental theorems in metric fixed point
theory. Banach proved existence of unique fixed point for a self contraction in com-
plete metric space. Since the contractions are always continuous, Kannan introduced
a new type of contractive map known as Kannan mapping [8] and proved analogues
results of Banach contraction theorem. The importance of Kannan mapping is that
it can be discontinuous and it characterizes completeness of the space [14, 15]. In [11]
Reich introduced a new type of contraction which is a generalization of Banach con-
traction and Kannan mapping and proved existence of unique fixed point in complete
metric spaces. Later Chatterjea defined a contraction similar to Kannan mapping
known as Chatterjea mapping [4] and proved various fixed point results. Inspired by
these contractions, several authors did research in this area using different spaces and
by weakening the contraction conditions [2, 7, 9, 12].

The concept of coupled fixed point was introduced by Guo and Lakshmikantham
[6]. They proved fixed point theorems using mixed monotone property in cone spaces.
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In [3] Gnana Bhaskar and Lakshmikantham proved coupled fixed point theorems for
contractions in partially ordered complete metric spaces using mixed monotone prop-
erty. Kannan, Chatterjea and Reich type contractions are further explored in coupled
fixed point theory and the results are reported in [1, 5, 13]. Recently the concept of
FG-coupled fixed point was introduced in [10] and they proved FG-coupled fixed point
theorems for various contractive type mappings.

In this paper we prove existence of FG-coupled fixed point theorems using Kannan,
Chatterjea and Reich type contraction on partially ordered complete metric spaces.

Now we recall some basic concepts of coupled and FG-coupled fixed points.

Definition 1.1 ([3]). An element (x, y) ∈ X ×X is said to be a coupled fixed point
of the map F : X ×X → X if F (x, y) = x and F (y, x) = y.

Definition 1.2 ([10]). Let (X, dX ,≤P1
) and (Y, dY ,≤P2

) be two partially ordered
metric spaces and F : X × Y → X and G : Y ×X → Y . We say that F and G have
mixed monotone property if for any x, y ∈ X
x1, x2 ∈ X, x1 ≤P1 x2 ⇒ F (x1, y) ≤P1 F (x2, y) and G(y, x1) ≥P2 G(y, x2)
y1, y2 ∈ Y, y1 ≤P2

y2 ⇒ F (x, y1) ≥P1
F (x, y2) and G(y1, x) ≤P2

G(y2, x).

Definition 1.3 ([10]). An element (x, y) ∈ X × Y is said to be FG-coupled fixed
point if F (x, y) = x and G(y, x) = y.

If (x, y) ∈ X × Y is an FG-coupled fixed point then (y, x) ∈ Y × X is a GF-
coupled fixed point. Partial order ≤ on X × Y is defined as (u, v) ≤ (x, y) ⇔
x ≥P1

u, y ≤P2
v ∀(x, y), (u, v) ∈ X × Y . Also the iteration is given by

Fn+1(x, y) = F (Fn(x, y), Gn(y, x)) and Gn+1(y, x) = G(Gn(y, x), Fn(x, y)) for ev-
ery n ∈ N and (x, y) ∈ X × Y .

2. Main Results

Theorem 2.1. Let (X, dX ,≤P1), (Y, dY ,≤P2) be two partially ordered complete metric
spaces. Let F : X × Y → X and G : Y ×X → Y be two continuous functions having

the mixed monotone property. Assume that there exist p, q, r, s ∈
[
0,

1

2

)
satisfying

dX(F (x, y), F (u, v)) ≤ p dX(x, F (x, y)) + q dX(u, F (u, v));∀x ≥P1
u, y ≤P2

v (1)

dY (G(y, x), G(v, u)) ≤ r dY (y,G(y, x)) + s dY (v,G(v, u));∀x ≤P1 u, y ≥P2 v. (2)

If there exist x0 ∈ X, y0 ∈ Y satisfying x0 ≤P1
F (x0, y0) and y0 ≥P2

G(y0, x0) then
there exist x ∈ X, y ∈ Y such that x = F (x, y) and y = G(y, x).
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Proof. Given x0 ≤P1
F (x0, y0) = x1 and y0 ≥P2

G(y0, x0) = y1.
Define xn+1 = F (xn, yn) and yn+1 = G(yn, xn) for n = 1, 2, 3..
Then we can easily show that {xn} is increasing in X and {yn} is decreasing in Y.
Using inequalities (1) and (2) we get

dX(xn+1, xn) = dX(F (xn, yn), F (xn−1, yn−1))

≤ p dX(xn, F (xn, yn)) + q dX(xn−1, F (xn−1, yn−1))

= p dX(xn, xn+1) + q dX(xn−1, xn)

ie, (1− p) dX(xn+1, xn) ≤ q dX(xn−1, xn)

ie, dX(xn, xn+1) ≤ q

1− p
dX(xn−1, xn)

= δ1 dX(xn−1, xn) where δ1 =
q

1− p
< 1

≤ δ21 dX(xn−2, xn−1)

...

≤ δn1 dX(x0, x1).

Similarly we get dY (yn+1, yn) ≤ δ2n dY (y1, y0) where δ2 =
r

1− s
< 1.

Consider m > n

dX(xm, xn) ≤ dX(xm, xm−1) + dX(xm−1, xm−2) + ...+ dX(xn+1, xn)

≤ δ1m−1 dX(x1, x0) + δ1
m−2 dX(x1, x0) + ...+ δ1

n dX(x1, x0)

= δ1
n
(

1 + δ1 + ...+ δ1
m−n−1

)
dX(x1, x0)

6
δ1

n

1− δ1
dX(x1, x0).

Since 0 ≤ δ1 < 1, δ1
n converges to 0(as n→∞). Therefore {Fn(x0, y0)} is a Cauchy

sequence in X. Similarly we can prove that {Gn(y0, x0)} is a Cauchy sequence in Y .
Since by the completeness of X and Y , there exist x ∈ X and y ∈ Y such that
limn→∞ Fn(x0, y0) = x and limn→∞Gn(y0, x0) = y.
Now we have to prove the existence of FG-coupled fixed point.
Consider,

dX(F (x, y), x) = lim
n→∞

dX(F (Fn(x0, y0), Gn(y0, x0)), Fn(x0, y0))

= lim
n→∞

dX(Fn+1(x0, y0), Fn(x0, y0))

= 0

ie, F (x, y) = x. Similarly we get G(y, x) = y.

By replacing the continuity of F and G by other conditions we obtain the following
existence theorems of FG-coupled fixed point.
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Theorem 2.2. Let (X, dX ,≤P1
) and (Y, dY ,≤P2

) be two partially ordered complete
metric spaces and F : X × Y → X, G : Y × X → Y be two mappings having the
mixed monotone property. Assume that X and Y satisfy the following property

(i) If a non-decreasing sequence {xn} → x then xn ≤P1
x ∀n.

(ii) If a non-increasing sequence {yn} → y then y ≤P2
yn ∀n.

Also assume that there exist p, q, r, s ∈
[
0,

1

2

)
satisfying

dX(F (x, y), F (u, v)) ≤ p dX(x, F (x, y)) + q dX(u, F (u, v)); ∀x ≥P1
u, y ≤P2

v (3)

dY (G(y, x), G(v, u)) ≤ r dY (y,G(y, x)) + s dY (v,G(v, u)); ∀x ≤P1 u, y ≥P2 v. (4)

If there exist x0 ∈ X, y0 ∈ Y satisfying x0 ≤P1
F (x0, y0) and y0 ≥P2

G(y0, x0) then
there exist x ∈ X, y ∈ Y such that x = F (x, y) and y = G(y, x).

Proof. Following as in the proof of Theorem 2.1 we get limn→∞ Fn(x0, y0) = x and
limn→∞Gn(y0, x0) = y.
Now we have

dX(F (x, y), x) ≤ dX(F (x, y), Fn+1(x0, y0)) + dX(Fn+1(x0, y0), x)

= dX(F (x, y), F (Fn(x0, y0), Gn(y0, x0)) + dX(Fn+1(x0, y0), x)

≤ p dX(x, F (x, y)) + q dX(Fn(x0, y0), F (Fn(x0, y0), Gn(y0, x0)))

+ dX(Fn+1(x0, y0), x) (using (3))

ie, dX(F (x, y), x) ≤ p dX(x, F (x, y)) as n→∞.
This holds only when dX(F (x, y), x) = 0. Therefore we get F (x, y) = x.
Similarly using (4) and limn→∞Gn(y0, x0) = y we can prove y = G(y, x).

Remark 2.1. If we put k = m and l = n in Theorems 2.1 and 2.2, we get Theorems
2.7 and 2.8 respectively of [10].

Theorem 2.3. Let (X, dX ,≤P1), (Y, dY ,≤P2) be two partially ordered complete metric
spaces. Let F : X × Y → X and G : Y ×X → Y be two continuous functions having

the mixed monotone property. Assume that there exist p, q, r, s ∈
[
0,

1

2

)
satisfying

dX(F (x, y), F (u, v)) ≤ p dX(x, F (u, v)) + q dX(u, F (x, y)); ∀ x ≥P1
u, y ≤P2

v (5)

dY (G(y, x), G(v, u)) ≤ r dY (y,G(v, u)) + s dY (v,G(y, x)); ∀ x ≤P1
u, y ≥P2

v. (6)

If there exist x0 ∈ X, y0 ∈ Y satisfying x0 ≤P1 F (x0, y0) and y0 ≥P2 G(y0, x0) then
there exist x ∈ X, y ∈ Y such that x = F (x, y) and y = G(y, x).
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Proof. As in Theorem 2.1 we have {xn} increasing in X and {yn} decreasing in Y .
We have

dX(xn+1, xn) = dX(F (xn, yn), F (xn−1, yn−1))

≤ p dX(xn, F (xn−1, yn−1)) + q dX(xn−1, F (xn, yn)) (Using (5))

= p dX(xn, xn) + q dX(xn−1, xn+1)

≤ q [dX(xn−1, xn) + dX(xn, xn+1)]

ie, dX(xn, xn+1) ≤ q

1− q
dX(xn−1, xn)

= δ1 dX(xn−1, xn) where δ1 =
q

1− q
< 1

≤ δ21 dX(xn−2, xn−1)

...

≤ δn1 dX(x0, x1).

Similarly we get dY (yn+1, yn) ≤ δ2ndY (y1, y0) where δ2 =
r

1− r
< 1

Now, we prove that {Fn(x0, y0)} and {Gn(y0, x0)} are Cauchy sequences in X and
Y respectively.
For m > n,

dX(xm, xn) ≤ dX(xm, xm−1) + dX(xm−1, xm−2) + ...+ dX(xn+1, xn)

≤ δ1m−1 dX(x1, x0) + δ1
m−2 dX(x1, x0) + ...+ δ1

n dX(x1, x0)

≤ δ1
n

1− δ1
dX(x1, x0).

Since 0 ≤ δ1 < 1, δ1
n converges to 0 (as n→∞). Therefore {Fn(x0, y0)} is a Cauchy

sequence in X.
Similarly we can prove that {Gn(y0, x0)} is a Cauchy sequence in Y .
By the completeness of X and Y , there exist x ∈ X and y ∈ Y such that
limn→∞ Fn(x0, y0) = x and limn→∞Gn(y0, x0) = y.
As in the proof of Theorem 2.1 we can show that x = F (x, y) and y = G(y, x).

Theorem 2.4. Let (X, dX ,≤P1
) and (Y, dY ,≤P2

) be two partially ordered complete
metric spaces and F : X × Y → X, G : Y × X → Y be two mappings having the
mixed monotone property. Assume that X and Y satisfy the following property

(i) If a non-decreasing sequence {xn} → x then xn ≤P1
x ∀n.

(ii) If a non-increasing sequence {yn} → y then y ≤P2
yn ∀n.

Also assume that there exist p, q, r, s ∈
[
0,

1

2

)
satisfying

dX(F (x, y), F (u, v)) ≤ p dX(x, F (u, v)) + q dX(u, F (x, y)); ∀x ≥P1
u, y ≤P2

v (7)
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dY (G(y, x), G(v, u)) ≤ r dY (y,G(v, u)) + s dY (v,G(y, x)); ∀x ≤P1
u, y ≥P2

v. (8)

If there exist x0 ∈ X, y0 ∈ Y satisfying x0 ≤P1
F (x0, y0) and y0 ≥P2

G(y0, x0) then
there exist x ∈ X, y ∈ Y such that x = F (x, y) and y = G(y, x).

Proof. Following as in the proof of Theorem 2.3 we get limn→∞ Fn(x0, y0) = x and
limn→∞Gn(y0, x0) = y.
Consider

dX(F (x, y), x) ≤ dX(F (x, y), Fn+1(x0, y0)) + dX(Fn+1(x0, y0), x)

= dX(F (x, y), F (Fn(x0, y0), Gn(y0, x0))) + dX(Fn+1(x0, y0), x)

≤ p dX(x, F ((Fn(x0, y0), Gn(y0, x0))) + q dX(Fn(x0, y0), F (x, y))

+ dX(Fn+1(x0, y0), x)

= p dX(x, Fn+1(x0, y0)) + q dX(Fn(x0, y0), F (x, y))

+ dX(Fn+1(x0, y0), x)

ie, dX(F (x, y), x) ≤ q dX(x, F (x, y)) as n→∞, which implies that dX(F (x, y), x) = 0.
Therefore we get F (x, y) = x.
Similarly using (8) and limn→∞Gn(y0, x0) = y, we get y = G(y, x).

Remark 2.2. If we put p = r and q = s in Theorems 2.3 and 2.4, we get Theorems
2.9 and 2.10 respectively of [10].

The following example illustrates the above results.

Example 2.1. Let X = [0, 1] and Y = [−1, 1] with usual metric. Partial order on X
is defined as x ≤P1

u if and only if x = u and partial order on Y is defined as y ≤P2
v

if and only if either y = v or (y, v) = (0, 1). The mapping F : X × Y → X is defined

by F (x, y) =
x+ 1

2
and G : Y ×X → Y is defined as G(y, x) =

x− 1

2
. Then F and

G satisfies (1), (2), (5), (6) with p, q, r, s ∈ [0, 12 ). Also (1, 0) is the FG-coupled fixed
point.

Theorem 2.5. Let (X, dX ,≤P1), (Y, dY ,≤P2) be two partially ordered complete metric
spaces. Let F : X × Y → X and G : Y ×X → Y be two continuous functions having
the mixed monotone property. Assume that there exist a, b, c with a + b + c < 1
satisfying

dX(F (x, y), F (u, v)) ≤ a dX(x, F (x, y)) + b dX(u, F (u, v)) + c dX(x, u);

∀x ≥P1
u, y ≤P2

v
(9)

dY (G(y, x), G(v, u)) ≤ a dY (y,G(y, x)) + b dY (v,G(v, u)) + c dY (y, v);

∀x ≤P1
u, y ≥P2

v.
(10)

If there exist x0 ∈ X, y0 ∈ Y satisfying x0 ≤P1
F (x0, y0) and y0 ≥P2

G(y0, x0) then
there exist x ∈ X, y ∈ Y such that x = F (x, y) and y = G(y, x).
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Proof. Following as in Theorem 2.1 we have {xn} is increasing in X and {yn} is
decreasing in Y .
Now we claim that

dX(Fn+1(x0, y0), Fn(x0, y0)) ≤
( b+ c

1− a

)n
dX(x0, x1) (11)

dY (Gn+1(y0, x0), Gn(y0, x0)) ≤
(a+ c

1− b

)n
dY (y0, y1). (12)

The proof is by mathematical induction with the help of (9) and (10).
For n = 1, consider

dX(F 2(x0, y0), F (x0, y0)) = dX(F (F (x0, y0), G(y0, x0)), F (x0, y0))

≤ a dX(F (x0, y0), F 2(x0, y0)) + b dX(x0, F (x0, y0))

+ c dX(F (x0, y0), x0)

ie, dX(F 2(x0, y0), F (x0, y0)) ≤ b+ c

1− a
dX(x0, x1).

Thus the inequality (11) is true for n = 1.
Now assume that (11) is true for n ≤ m, and check for n = m+ 1.
Consider,

dX(Fm+2(x0, y0), Fm+1(x0, y0))

= dX(F (Fm+1(x0, y0), Gm+1(y0, x0)), F (Fm(x0, y0), Gm(y0, x0)))

≤ a dX(Fm+1(x0, y0), Fm+2(x0, y0)) + b dX(Fm(x0, y0), Fm+1(x0, y0))

+ c dX(Fm+1(x0, y0), Fm(x0, y0))

ie, dX(Fm+2(x0, y0), Fm+1(x0, y0)) ≤ b+ c

1− a
dX(Fm(x0, y0), Fm+1(x0, y0))

≤
( b+ c

1− a

)m+1

dX(x0, x1)

ie, the inequality (11) is true for all n ∈ N.
Similarly we can prove the inequality (12).
For m > n, consider

dX(Fn(x0, y0), Fm(x0, y0))

≤ dX(Fn(x0, y0), Fn+1(x0, y0)) + dX(Fn+1(x0, y0), Fn+2(x0, y0)) + ...

+ dX(Fm−1(x0, y0), Fm(x0, y0))

≤

[( b+ c

1− a

)n
+
( b+ c

1− a

)n+1

+ ...+
( b+ c

1− a

)m−1]
dX(x0, x1)

≤ δ1
n

1− δ1
dX(x0, x1) where δ1 =

b+ c

1− a
< 1.
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Since 0 ≤ δ1 < 1, δ1
n converges to 0 (as n→∞) ie, {Fn(x0, y0)} is a Cauchy sequence

in X. Similarly by using inequality (12) we can prove that {Gn(y0, x0)} is a Cauchy
sequence in Y.
By the completeness of X and Y, there exist x ∈ X and y ∈ Y such that
limn→∞ Fn(x0, y0) = x and limn→∞Gn(y0, x0) = y.
As in the proof of Theorem 2.1, using continuity of F and G we can prove that
F (x, y) = x and G(y, x) = y.

If we take X = Y and F = G in the above theorem we get the following corollary.

Corollary 2.1. Let (X, d,≤) be a partially ordered complete metric space. Let
F : X ×X → X be a continuous function having the mixed monotone property. As-
sume that there exist non-negative a, b, c such that a+ b+ c < 1 satisfying

d(F (x, y), F (u, v)) ≤ a d(x, F (x, y)) + b d(u, F (u, v)) + c d(x, u); ∀x ≥ u, y ≤ v.

If there exist x0, y0 ∈ X satisfying x0 ≤ F (x0, y0) and y0 ≥ F (y0, x0) then there exist
(x, y) ∈ X ×X such that x = F (x, y) and y = F (y, x).

Theorem 2.6. Let (X, dX ,≤P1
) and (Y, dY ,≤P2

) be two partially ordered complete
metric spaces and F : X × Y → X, G : Y × X → Y be two mappings having the
mixed monotone property. Assume that X and Y satisfy the following property

(i) If a non-decreasing sequence {xn} → x then xn ≤P1 x ∀n.

(ii) If a non-increasing sequence {yn} → y then y ≤P2
yn ∀n.

Also asuume that there exist a, b, c with a+ b+ c < 1 satisfying

dX(F (x, y), F (u, v)) ≤ a dX(x, F (x, y)) + b dX(u, F (u, v)) + c dX(x, u);

∀x ≥p1 u, y ≤p2 v
(13)

dY (G(y, x), G(v, u)) ≤ a dY (y,G(y, x)) + b dY (v,G(v, u)) + c dY (y, v);

∀x ≤P1
u, y ≥P2

v.
(14)

If there exist x0 ∈ X, y0 ∈ Y satisfying x0 ≤P1
F (x0, y0) and y0 ≥P2

G(y0, x0) then
there exist x ∈ X, y ∈ Y such that x = F (x, y) and y = G(y, x).

Proof. Following as in the proof of Theorem 2.5 we obtain limn→∞ Fn(x0, y0) = x
and limn→∞Gn(y0, x0) = y.
We have

dX(F (x, y), x) ≤ dX(F (x, y), Fn+1(x0, y0)) + dX(Fn+1(x0, y0), x)

= dX(F (x, y), F (Fn(x0, y0), Gn(y0, x0))) + dX(Fn+1(x0, y0), x)

≤ a dX(x, F (x, y)) + b dX(Fn(x0, y0), F (Fn(x0, y0), Gn(y0, x0)))

+ c dX(x, Fn(x0, y0)) + dX(Fn+1(x0, y0), x)

= a dX(x, F (x, y)) + b dX(Fn(x0, y0), Fn+1(x0, y0))

+ c dX(x, Fn(x0, y0)) + dX(Fn+1(x0, y0), x)
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ie, dX(F (x, y), x) ≤ a dX(x, F (x, y)) as n→∞, which implies that dX(F (x, y), x) = 0.
Therefore F (x, y) = x.
Similarly using (14) and limn→∞Gn(y0, x0) = y we get y = G(y, x).

By assuming X = Y and F = G in the above theorem we will get the following
corollary.

Corollary 2.2. Let (X, d,≤) be a partially ordered complete metric space and
F : X ×X → X be a mapping having the mixed monotone property. Assume that
X satisfy the following property

(i) If a non-decreasing sequence {xn} → x then xn ≤ x ∀n.

(ii) If a non-increasing sequence {yn} → y then y ≤ yn ∀n.

Also assume that there exist non-negative a, b, c such that a+ b+ c < 1 satisfying

d(F (x, y), F (u, v)) ≤ a d(x, F (x, y)) + b d(u, F (u, v)) + c d(x, u); ∀x ≥ u, y ≤ v.

If there exist (x0, y0) ∈ X×X satisfying x0 ≤ F (x0, y0) and y0 ≥ F (y0, x0) then there
exist x, y ∈ X such that x = F (x, y) and y = F (y, x).

Remark 2.3. If we take c = 0 in Theorems 2.5 and 2.6, we get Theorems 2.7 and
2.8 respectively of [10].

Theorem 2.7. Let (X, dX ,≤P1), (Y, dY ,≤P2) be two partially ordered complete metric
spaces. Let F : X × Y → X and G : Y ×X → Y be two continuous functions having
the mixed monotone property. Assume that there exist non-negative a,b,c satisfying

dX(F (x, y), F (u, v)) ≤ a dX(x, F (u, v))+ b dX(u, F (x, y)) + c dX(x, u);

∀x ≥P1
u, y ≤P2

v; 2b+ c < 1
(15)

dY (G(y, x), G(v, u)) ≤ a dY (y,G(v, u))+ b dY (v,G(y, x)) + c dY (y, v);

∀x ≤P1
u, y ≥P2 v; 2a+ c < 1.

(16)

If there exist x0 ∈ X, y0 ∈ Y satisfying x0 ≤P1 F (x0, y0) and y0 ≥P2 G(y0, x0) then
there exist x ∈ X, y ∈ Y such that x = F (x, y) and y = G(y, x).

Proof. As in the proof of Theorem 2.1, it can be proved that {xn} is increasing in
X and {yn} is decreasing in Y.
Now we claim that

dX(Fn+1(x0, y0), Fn(x0, y0)) ≤
( b+ c

1− b

)n
dX(x0, x1) (17)

dY (Gn+1(y0, x0), Gn(y0, x0)) ≤
(a+ c

1− a

)n
dY (y0, y1). (18)
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We prove the claim by mathematical induction, using (15) and (16).
For n = 1, consider

dX(F 2(x0, y0), F (x0, y0))

= dX(F (F (x0, y0), G(y0, x0)), F (x0, y0))

≤ a dX(F (x0, y0), F (x0, y0)) + b dX(x0, F
2(x0, y0)) + c dX(F (x0, y0), x0)

≤ b [dX(x0, F (x0, y0)) + dX(F (x0, y0), F 2(x0, y0))] + c dX(F (x0, y0), x0)

ie, dX(F 2(x0, y0), F (x0, y0)) ≤ b+ c

1− b
dX(x0, x1).

Thus the inequality (17) is true for n = 1.
Now assume that (17) is true for n ≤ m, then check for n = m+ 1.
Consider,

dX(Fm+2(x0, y0), Fm+1(x0, y0))

= dX(F (Fm+1(x0, y0), Gm+1(y0, x0)), F (Fm(x0, y0), Gm(y0, x0)))

≤ a dX(Fm+1(x0, y0), Fm+1(x0, y0)) + b dX(Fm(x0, y0), Fm+2(x0, y0))

+ c dX(Fm+1(x0, y0), Fm(x0, y0))

≤ b [dX(Fm(x0, y0), Fm+1(x0, y0)) + dX(Fm+1(x0, y0), Fm+2(x0, y0))]

+ c dX(Fm+1(x0, y0), Fm(x0, y0))

ie,

dX(Fm+2(x0, y0), Fm+1(x0, y0)) ≤ b+ c

1− b
dX(Fm(x0, y0), Fm+1(x0, y0))

≤
( b+ c

1− b

)m+1

dX(x0, x1)

ie, the inequality (17) is true for all n ∈ N.
Similarly we can prove the inequality (18).
For m > n, consider

dX(Fn(x0, y0), Fm(x0, y0))

≤ dX(Fn(x0, y0), Fn+1(x0, y0)) + dX(Fn+1(x0, y0), Fn+2(x0, y0)) + ...

+ dX(Fm−1(x0, y0), Fm(x0, y0))

≤

[( b+ c

1− b

)n
+
( b+ c

1− b

)n+1

+ ...+
( b+ c

1− b

)m−1]
dX(x0, x1)

≤ δ1
n

1− δ1
dX(x0, x1); where δ1 =

b+ c

1− b
< 1.

Since 0 ≤ δ1 < 1, δ1
n converges to 0 (as n→∞) ie, {Fn(x0, y0)} is a Cauchy sequence

in X. Similarly we can prove that {Gn(y0, x0)} is a Cauchy sequence in Y .
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SinceX and Y are complete, there exist x ∈ X and y ∈ Y such that limn→∞ Fn(x0, y0)
= x and limn→∞Gn(y0, x0) = y.
By continuity of F and G, as in the Theorem 2.1 we can show that F (x, y) = x and
G(y, x) = y.

If X = Y and F = G in the above theorem we get the following corollary.

Corollary 2.3. Let (X, d,≤) be a partially ordered complete metric space. Let
F : X ×X → X be a continuous function having the mixed monotone property. As-
sume that there exist non-negative a, b, c such that 2a+c < 1 and 2b+c < 1 satisfying

d(F (x, y), F (u, v)) ≤ a d(x, F (u, v)) + b d(u, F (x, y)) + c d(x, u); ∀ x ≥ u, y ≤ v.

If there exist (x0, y0) ∈ X×Y satisfying x0 ≤ F (x0, y0) and y0 ≥ F (y0, x0) then there
exist x, y ∈ X such that x = F (x, y) and y = F (y, x).

In the following theorem we replace the continuity by other conditions to obtain
FG-coupled fixed point.

Theorem 2.8. Let (X, dX ,≤P1
) and (Y, dY ,≤P2

) be two partially ordered complete
metric spaces and F : X × Y → X, G : Y × X → Y be two mappings having the
mixed monotone property. Assume that X and Y satisfy the following property

(i) If a non-decreasing sequence {xn} → x then xn ≤P1 x ∀n.

(ii) If a non-increasing sequence {yn} → y then y ≤P2
yn ∀n.

Also assume that there exist non-negative a,b,c satisfying

dX(F (x, y), F (u, v)) ≤ a dX(x, F (u, v))+b dX(u, F (x, y)) + c dX(x, u);

∀x ≥P1
u, y ≤P2

v; 2b+ c < 1
(19)

dY (G(y, x), G(v, u)) ≤ a dY (y,G(v, u))+b dY (v,G(y, x)) + c dY (y, v);

∀x ≤P1
u, y ≥P2

v; 2a+ c < 1.
(20)

If there exist x0 ∈ X, y0 ∈ Y satisfying x0 ≤P1
F (x0, y0) and y0 ≥P2

G(y0, x0) then
there exist x ∈ X, y ∈ Y such that x = F (x, y) and y = G(y, x).

Proof. Following as in the proof of Theorem 2.7 we get limn→∞ Fn(x0, y0) = x and
limn→∞Gn(y0, x0) = y.
We have

dX(F (x, y), x) ≤ dX(F (x, y), Fn+1(x0, y0)) + dX(Fn+1(x0, y0), x)

= dX(F (x, y), F (Fn(x0, y0), Gn(y0, x0)) + dX(Fn+1(x0, y0), x)

≤ a dX(x, F (Fn(x0, y0), Gn(y0, x0))) + b dX(Fn(x0, y0), F (x, y))

+ c dX(x, Fn(x0, y0)) + dX(Fn+1(x0, y0), x)

= a dX(x, Fn+1(x0, y0)) + b dX(Fn(x0, y0), F (x, y))

+ c dX(x, Fn(x0, y0)) + dX(Fn+1(x0, y0), x)



168 D. Karichery and S. Pulickakunnel

ie, dX(F (x, y), x) ≤ b dX(x, F (x, y)) as n→∞, which implies that dX(F (x, y), x) = 0.
Therefore F (x, y) = x.
Also by using (20) and limn→∞Gn(y0, x0) = y we can show that y = G(y, x).

Taking X = Y and F = G in the above corollary we get the corresponding coupled
fixed point result.

Corollary 2.4. Let (X, d,≤) be a partially ordered complete metric spaces and
F : X × Y → X be a mapping having the mixed monotone property. Assume that
X satisfy the following property

(i) If a non-decreasing sequence {xn} → x then xn ≤ x ∀n.

(ii) If a non-increasing sequence {yn} → y then y ≤ yn ∀n.

Also assume that there exist non-negative a, b, c such that 2a + c < 1 and 2b + c < 1
satisfying

d(F (x, y), F (u, v)) ≤ a d(x, F (u, v)) + b d(u, F (x, y)) + c d(x, u);∀x ≥ u, y ≤ v.

If there exist (x0, y0) ∈ X×Y satisfying x0 ≤ F (x0, y0) and y0 ≥ F (y0, x0) then there
exist (x, y) ∈ X × Y such that x = F (x, y) and y = F (y, x).

Remark 2.4. If we take c = 0 in Theorems 2.7 and 2.8, we get Theorems 2.9 and
2.10 respectively of [10].
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Abstract: In this paper, we present some interesting results con-
cerning the location of zeros of Lacunary-type of polynomial in the com-
plex plane. By relaxing the hypothesis and putting less restrictive con-
ditions on the coefficients of the polynomial, our results generalize and
refines some classical results.
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1. Introduction

The study of the zeros of a polynomial dates from about the time when the geometric
representation of complex numbers was introduced into mathematics. The first con-
tributors of the subject were Guass and Cauchy. Since the days of Gauss and Cauchy
many mathematicians have contributed to the further growth of the subject. The
classical results of Cauchy [3], concerning the bounds for the moduli of the zeros of a
polynomial states

Theorem A. P (z) :=
n∑
j=0

ajz
j is a polynomial of degree n and M = max0≤j≤n−1 | ajan |,

then all the zeros of P (z) lie in

|z| ≤ 1 +M.

There exists several generalizations and improvements of this result (for reference
see [12] and [13]). As an improvement of this result, Joyal, Labelle and Rahman [8]
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proved that, if B = max0≤j≤n−1 |aj |, then all the zeros of the polynomial P (z) :=

zn +
n−1∑
j=0

ajz
j are contained in the circle

|z| ≤ 1

2

{
1 + |an−1|+ {(1− |an−1|)2 + 4B} 1

2

}
. (1.0)

Next we state the following elegant result which is commonly known as Eneström-
Kakeya Theorem in the theory of distribution of zeros of polynomials.

Theorem B. Let P (z) :=
n∑
j=0

ajz
j be a polynomial of degree n such that

an ≥ an−1 ≥ · · · ≥ a1 ≥ a0 > 0,

then all the zeros of P (z) lie in |z| ≤ 1.
Theorem B was proved by Eneström [4], independently by Kakeya [9] and Hur-

witz [7]. Applying this result to the polynomial znP ( 1
z ), one gets equivalent form of

Eneström-Kakeya Theorem which states that

Theorem C. If P (z) :=
n∑
j=0

ajz
j is a polynomial of degree n such that

a0 ≥ a1 ≥ · · · ≥ an−1 ≥ an > 0,

then all the zeros of P (z) lie in |z| ≥ 1.
Applying the above results to the polynomial P (tz), the following more general

result is immediate:

Theorem D. Let P (z) :=
n∑
j=0

ajz
j be a polynomial of degree n such that

ant
n ≥ an−1tn−1 ≥ · · · ≥ a1t ≥ a0 > 0,

then all the zeros of P (z) lie in |z| ≤ t and in case

0 < an ≤ an−1tn−1 ≤ · · · ≤ a1tn−1 ≤ a0tn,

then P (z) has all zeros in |z| ≥ 1
t .

Now consider the class of polynomials

P (z) := a0 + a1z + · · ·+ aµz
µ + an1

zn1 + an2
zn2 + · · ·+ ankz

nk , (1.1)

0 < n0 = µ < n1 < n2 < · · · < nk, a0aµan1
an2

. . . ank 6= 0.

Here the coefficients aj , 0 ≤ j ≤ µ, are fixed, the coefficients anj , j = 1, 2, . . . , k are
arbitrary and the remaining coefficients aj are zero.

Landau ([10] and [11]) Initiated the study of polynomials of this form in 1906-7.
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He considered the case µ = 1, k = 1 or 2 and proved that every trinomial

a0 + a1z + anz
n, a1an 6= 0, n ≥ 2

has at least one zero in the circle |z| ≤ 2

∣∣∣∣a0a1
∣∣∣∣ and every quadrinomial

a0 + a1z + amz
m + anz

n, a1aman 6= 0, 2 ≤ m < n,

has at least one zero in the circle |z| ≤ 17
3

∣∣∣∣a0a1
∣∣∣∣. Thus for these cases Landau proved

the existence of a circle |z| = R(a0, a1) containing at least one zero of P (z). He also
raised the question as to whether or not a circle with this same property existed in
the case µ = 1 and k arbitrary.

An affirmative reply was given in 1907 by Allardice [1] who proved that when
µ = 1, at least one zero of P (z) lies in the circle

|z| ≤
∣∣∣∣a0a1
∣∣∣∣ k∏
j=1

nj
nj − 1

and by Fejér ([6], [5]) who proved that, when a1 = a2 = · · · = aµ−1 = 0, at least one
zero of P (z) lies in the circle

|z| ≤
{∣∣∣∣ a0aµ

∣∣∣∣ k∏
j=1

nj
nj − µ

} 1
µ

.

Another result which is instructive is the one due to Van Vleck [14], who proved that
the polynomial

P (z) := 1 + arz
r + ar+1z

r+1 + · · ·+ anz
n, r < n, ar 6= 0

has at least r zeros in the disk |z| ≤
[
C(n,r)
|ar|

] 1
r

.

Recently Aziz and Rather [2] proved the following result for Lacunary-type of
polynomials.

Theorem E. For any given positive number t, all the zeros of the polynomial

P (z) := anz
n + aµz

µ + aµ−1z
µ−1 + · · ·+ a1z + a0, µ < n, a0aµan 6= 0

lie in the circle

|z| ≤ max

{
N

1
n−µ
p,t , N

1
n
p,t

}
,

where

Np,t = (µ+ 1)
1
q

{ µ∑
j=0

∣∣∣∣ aj
antn−j

∣∣∣∣p} 1
p

,
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p > 1, q > 1 with p−1 + q−1 = 1.
In this paper, we consider the following Lacunary-type of polynomials of type (1.1)

with k = 1 and µ arbitrary

P (z) := anz
n + aµz

µ + aµ−1z
µ−1 + · · ·+ a1z + a0, µ < n, a0aµan 6= 0, (1.2)

and prove some results concerning the bounds for the zeros of polynomials of this
form.

2. Main Results

Theorem 1. Let P (z) be a polynomial of type (1.2) which does not vanish in |z| < t,
where t > 0, then for p > 0, q > 0, p−1 + q−1 = 1, all the zeros of P (z) lie in∣∣∣∣z − t∣∣∣∣ ≤ A = (µ+ 2))

1
q

{ µ+1∑
j=0

∣∣∣∣ taj − aj−1antn−j

∣∣∣∣p} 1
p

, (2.1)

where a−1 = aµ+1 = 0.

Theorem 1 states that if no zero of a polynomial P (z) of type (1.2) lie in |z| < t, t >
0, then all its zeros will lie in the region between the circles |z| < t and |z − t| ≤ A,
where A is defined above. As an example we take a polynomial P (z) = z3 + 2z + 3.
Here µ = 1 and n = 3. We make use of Wolfram Mathematica to visualize the zeros of
the above polynomial in a specific region (figure 1). The zeros of the polynomial are
(−1.17951, 0); (0.589755,−1.74454); (0.589755, 1.74454). Take t = 1, clearly P (z)
does not vanish in |z| < 1. Therefore it follows from Theorem 1 with p = 2, q = 2
that all the zeros of P (z) lie in |z − 1| ≤ 8.48528.
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Thus it is clear from figure 1 that all the zeros of the above polynomial lie in the
unshaded region between the circles |z| < 1 and |z − 1| ≤ 8.48528.

For µ = n − 1, the Lacunary polynomial P (z) in Theorem 1 reduces to a simple
polynomial of degree n and yields the following result.

Corollary 1. Let P (z) :=
n∑
j=0

ajz
j, be a polynomial of degree n which does not vanish

in |z| < t where t > 0, then for p > 0, q > 0, p−1 + q−1 = 1, all the zeros of P (z) lie
in ∣∣∣∣z − t∣∣∣∣ ≤ (n+ 1)

1
q

{ n∑
j=0

∣∣∣∣ taj − aj−1antn−j

∣∣∣∣p} 1
p

, (2.2)

where a−1 = 0.

As an example, we take P (z) = 2z2 + 2z + 3, having zeros (−0.5,−1.11803);
(−0.5, 1.11803). Also take t = 1. Clearly these zeros does not lie in |z| < 1. Moreover
from Corollary 1, it is clear that all the zeros lie in the region between the circles
|z| < 1 and |z − 1| < 2.738 as is clear from figure 2.

For µ = 1, we have the following result for trinomial of degree n.

Corollary 2. Let P (z) = anz
n + a1z + a0, be a trinomial of degree n which does not

vanish in |z| < t where t > 0, then for p > 0, q > 0, p−1 + q−1 = 1, all the zeros of
P (z) lie in ∣∣∣∣z − t∣∣∣∣ ≤ 3

1
q

{ 2∑
j=0

∣∣∣∣ taj − aj−1antn−j

∣∣∣∣p} 1
p

. (2.3)
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Letting q →∞ so that p = 1 in Theorem 1, we get the following result.

Corollary 3. Let P (z) be a polynomial of type (1.2) which does not vanish in |z| < t,
where t > 0, then all the zeros of P (z) lie in the circle

|z − t| ≤
µ+1∑
j=0

∣∣∣∣ taj − aj−1antn−j

∣∣∣∣. (2.4)

In particular for t = 1, we have the following Corollary by restricting the coeffi-
cients of the polynomial.

Corollary 4. Let P (z) be a polynomial of type (1.2) with real coefficients, which does
not vanish in |z| < 1 and

aµ ≥ aµ−1 ≥ · · · ≥ a1 ≥ a0 > 0, an > 0,

then all the zeros of the polynomial lie in the circle

|z − 1| ≤ 2
aµ
an
. (2.5)

In other words all the zeros of the polynomial P (z) which does not vanish in |z| < 1
lie in the region {

z : 1 ≤ |z| ∩ |z − 1| ≤ 2
aµ
an

}
.

If we reverse the monotonicity of the coefficients of the polynomial, we get the
following result.

Corollary 5. Let P (z) be a polynomial of type (1.2) with real coefficients, which does
not vanish in |z| < 1 and

a0 ≥ a1 ≥ · · · ≥ aµ > 0, an > 0,

then all the zeros of P (z) lie in the circle

|z − 1| ≤ 2
a0
an
. (2.6)

In other words if P (z) does not vanish in |z| < 1, then all the zeros of P (z) lie in
the region {

z : 1 ≤ |z| ∩ |z − 1| ≤ 2
a0
an

}
.

Again we make use of WOLFRAM MATHEMATICA to show that the bounds
obtained in our results are sharper then the prior ones. For this we take the following
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Lacunary polynomial of type (1.2)

P (z) := z3 + 2z + 12.

Its zeros are given below
(−2), (1− 2.23607ι), (1 + 2.23607ι). The bounds for the zeros of the above Lacunary
polynomial P (z) obtained by using different results are given in the following table.

Bounds for the zeros of P (z) := 2z8 + z + 5 by using different results
S.No. Theorems Bounds
1 Landau’s Theorem for Trinomials |z| ≤ 12
2 Theorem A |z| ≤ 13
3 Theorem C |z| ≥ 1
4 Corollary 2 1 ≤ |z| ∩ |z − 2| ≤ 6.4807
5 Corollary 3 1 ≤ |z| ∩ |z − 2| ≤ 6

In order to visualize the above bounds we draw the following figure in which circles
of different colours represents different bounds obtained by various results.

3. Proof of Theorem

Proof of Theorem 1. Consider the polynomial

F (z) = (t− z)P (z) = (t− z)(anzn + aµz
µ + ...+ a1z + a0)

= −anzn+1 + tanz
n − aµzµ+1 + (taµ − aµ−1)zµ

+(taµ−1 − aµ−2)zµ−1 + ...+ (ta1 − a0)z + ta0.
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This gives

|F (z)| = | − anzn+1 + tanz
n − aµzµ+1 + (taµ − aµ−1)zµ + (taµ−1 − aµ−2)zµ−1

+...+ (ta1 − a0)z + ta0| ≥ |an||zn|
[∣∣∣∣z − t∣∣∣∣− µ+1∑

j=0

∣∣∣∣ taj − aj−1an

∣∣∣∣ 1

|z|n−j

]
.

Since p > 0, q > 0 and p−1 + q−1 = 1, therefore we have by Hölder’s inequality for
|z| ≥ t,

|F (z)| ≥ |an||zn|
[∣∣∣∣z − t∣∣∣∣− (µ+ 2)

1
q

{ µ+1∑
j=0

∣∣∣∣ taj − aj−1antn−j

∣∣∣∣p} 1
p
]
> 0

if ∣∣∣∣z − t∣∣∣∣ > (µ+ 2)
1
q

{ µ+1∑
j=0

∣∣∣∣ taj − aj−1antn−j

∣∣∣∣p} 1
p

.

This shows that for |z| ≥ t, F (z) does not vanish in∣∣∣∣z − t∣∣∣∣ > (µ+ 2)
1
q

{ µ+1∑
j=0

∣∣∣∣ taj − aj−1antn−j

∣∣∣∣p} 1
p

.

Hence, we conclude that those zeros of F (z) and therefore P (z) whose modulus is
greater than t lie in ∣∣∣∣z − t∣∣∣∣ ≤ (µ+ 2)

1
q

{ µ+1∑
j=0

∣∣∣∣ taj − aj−1antn−j

∣∣∣∣p} 1
p

.

This completes proof of Theorem 1.
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Abstract: The problem of finding out the region which contains all

or a prescribed number of zeros of a polynomial P (z) :=
n∑
j=0

ajz
j has

a long history and dates back to the earliest days when the geometrical
representation of complex numbers was introduced. In this paper, we
present certain results concerning the location of the zeros of Lacunary-

type polynomials P (z) := a0 +
n∑
j=µ

ajz
j in a disc centered at the origin.
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1. Introduction and Statement of Results

The problem of locating some or all the zeros of a given polynomial as a function of its
coefficients is of long standing interest in mathematics. This fact can be visualized by
glancing at the references in the comprehensive books of Marden [9] and Milovanovic,
Mitrinovic and Rassias [10], Rahman and Schmeisser [12] and by noting the abundance
of recent publications on the subject [7, 8, 13].

Regarding the least number of zeros of polynomial P (z) =
n∑
j=0

ajz
j in a given

circle Mohammad [11] proved the following:

Theorem A. Let P (z) :=
n∑
j=0

ajz
j be a polynomial of degree n such that

an ≥ an−1 ≥ an−2 ≥ · · · ≥ a1 ≥ a0 > 0,
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then the number of zeros of P (z) in |z| ≤ 1
2 does not exceed

1 +
1

log 2
log

an
a0
.

Dewan [3] generalized Theorem A to polynomials with complex coefficients and
proved the following result:

Theorem B. Let P (z) :=
n∑
j=0

ajz
j be a polynomial of degree n with complex coeffi-

cients. If Re aj = αj and Im aj = βj , j = 0, 1, 2, . . . , n such that

αn ≥ αn−1 ≥ αn−2 ≥ · · · ≥ α1 ≥ α0 > 0,

then the number of zeros of P (z) in |z| ≤ 1
2 does not exceed

1 +
1

log 2
log

αn +
n∑
j=0

|βj |

|a0|
.

In this direction, recently Irshad et al [1] proved the following:

Theorem C. Let P (z) :=
n∑
j=0

ajz
j be a polynomial of degree n with complex coeffi-

cients such that for some λ ≥ 1, 0 ≤ k ≤ n,

|an| ≤ |an−1| ≤ . . . ≤ |ak+1| ≤ λ|ak| ≥ |ak−1| ≥ . . . ≥ |a1| ≥ |a0|,

and for some real β,
| arg aj − β| ≤ α ≤ π

2 , j = 0, 1, 2, . . . , n
then the number of zeros of P (z) in |z| ≤ 1

2 does not exceed

1

log 2
log

{
2λ|ak| cosα+ 2|λ− 1||ak| sinα

|a0|

+

|an|(sinα− cosα+ 1) + 2 sinα
n−1∑
j=0

|aj |+ 2|1− λ||ak|

|a0|

 .

Chan and Malik [2] introduced the class of Lacunary polynomials of the form

P (z) := a0 +
n∑
j=µ

ajz
j , where a0 6= 0. Notice that when µ = 1, we simply have the

class of all polynomials of degree n. In [5] and [6] Landau proved that every trinomial

a0 + a1z + anz
n, a1an 6= 0, n ≥ 2

has at least one zero in the circle |z| ≤ 2|a0a1 | and that of quadrinomial

a0 + a1z + amz
m + anz

n, a1aman 6= 0, 2 ≤ m ≤ n
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has at least one zero in the circle |z| ≤ 17
3 |

a0
a1
|. These two polynomials are of the

Lacunary-type P (z) := a0 +
n∑
j=µ

ajz
j .

The aim of this paper is to study the number of zeros in a disc centered at the
origin for such class of polynomials. We begin by proving the following result putting
restrictions on the moduli of the coefficients. In fact we prove:

Theorem 1. Let P (z) := a0 +
n∑
j=µ

ajz
j , 1 ≤ µ ≤ n − 1, a0 6= 0, be a polynomial of

degree n. If for some real α and β

| arg aj − β| ≤ α ≤ π

2
, µ ≤ j ≤ n

and for some t > 0 and some k with µ ≤ k ≤ n,

tµ|aµ| ≤ · · · ≤ tk−1|ak−1| ≤ tk|ak| ≥ tk+1|ak+1| ≥ · · · ≥ tn−1|an−1| ≥ tn|an|

then the number of zeros of P (z) in |z| ≤ t
2 does not exceed

1

log 2
log

M

|a0|
,

where

M = 2|a0|t+ |aµ|tµ+1(1− sinα− cosα) + 2|ak|tk+1 cosα+ |an|tn+1(1− sinα− cosα)

+ 2

n∑
j=µ

|aj |tj+1 sinα.

For t = 1, we get the following:

Corollary 1.1. Let P (z) := a0 +
n∑
j=µ

ajz
j , 1 ≤ µ ≤ n− 1, a0 6= 0 be a polynomial of

degree n. If for some real α and β

| arg aj − β| ≤ α ≤ π

2
, µ ≤ j ≤ n

and some k with

|aµ| ≤ · · · ≤ |ak−1| ≤ |ak| ≥ |ak+1| ≥ · · · ≥ |an−1| ≥ |an|

then the number of zeros of P (z) in |z| ≤ 1
2 does not exceed

1

log 2
log

M

|a0|
,

where

M = 2|a0|+ |aµ|(1− sinα− cosα)

+2|ak| cosα+ |an|(1− sinα− cosα) + 2

n∑
j=µ

|aj | sinα.
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With k = n in Corollary 1.1, we get:

Corollary 1.2. Let P (z) := a0 +
n∑
j=µ

ajz
j , 1 ≤ µ ≤ n− 1, a0 6= 0 be a polynomial of

degree n. If for some real α and β

| arg aj − β| ≤ α ≤ π

2
, µ ≤ j ≤ n

such that
|aµ| ≤ · · · ≤ |an−1| ≤ |an|

then the number of zeros of P (z) in |z| ≤ 1
2 does not exceed

1

log 2
log

M

|a0|
,

where

M = 2|a0|+ |aµ|(1− sinα− cosα) + |an|(1− sinα+ cosα) + 2

n∑
j=µ

|aj | sinα.

Choosing k = µ in Corollary 1.1, we get:

Corollary 1.3. Let P (z) := a0 +
n∑
j=µ

ajz
j , 1 ≤ µ ≤ n− 1, a0 6= 0 be a polynomial of

degree n. If for some real α and β

| arg aj − β| ≤ α ≤ π

2
, µ ≤ j ≤ n

such that
|aµ| ≥ · · · ≥ |an−1| ≥ |an|

then the number of zeros of P (z) in |z| ≤ 1
2 does not exceed

1

log 2
log

M

|a0|
,

where

M = 2|a0|+ |aµ|(1− sinα+ cosα) + |an|(1− sinα− cosα) + 2

n∑
j=µ

|aj | sinα.

Taking µ = 1 in Corollary 1.3, we have

Corollary 1.4. Let P (z) :=
n∑
j=0

ajz
j , a0 6= 0 be a polynomial of degree n. If for

some real α and β

| arg aj − β| ≤ α ≤ π

2
, µ ≤ j ≤ n
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such that
|a1| ≥ · · · ≥ |an−1| ≥ |an|

then the number of zeros of P (z) in |z| ≤ 1
2 does not exceed

1

log 2
log

M

|a0|
,

where

M = 2|a0|+ |a1|(1− sinα+ cosα) + |an|(1− sinα− cosα) + 2

n∑
j=1

|aj | sinα.

Next, we put restriction on the real part of coefficients of a polynomial and proved:

Theorem 2. Let P (z) := a0 +
n∑
j=µ

ajz
j , 1 ≤ µ ≤ n − 1, a0 6= 0, be a polynomial of

degree n with Re aj = αj and Im aj = βj for µ ≤ j ≤ n. Suppose that for some
t > 0 and some k with µ ≤ k ≤ n we have

tµαµ ≤ · · · ≤ tk−1αk−1 ≤ tkαk ≥ tk+1αk+1 ≥ · · · ≥ tn−1αn−1 ≥ tnαn

then the number of zeros of P (z) in |z| ≤ t
2 does not exceed

1

log 2
log

M

|a0|
,

where

M = 2(|α0|+ |β0|)t+ (|αµ| − αµ)tµ+1 + 2αkt
k+1 + (|αn| − αn)tn+1 + 2

n∑
j=µ

|βj |tj+1.

For t = 1 in Theorem 2, we obtain

Corollary 2.1. Let P (z) := a0 +
n∑
j=µ

ajz
j , 1 ≤ µ ≤ n − 1, a0 6= 0, be a polynomial

of degree n with Re aj = αj and Im aj = βj for µ ≤ j ≤ n. Suppose that for some
k with µ ≤ k ≤ n we have

αµ ≤ · · · ≤ αk−1 ≤ αk ≥ αk+1 ≥ · · · ≥ αn−1 ≥ αn

then the number of zeros of P (z) in |z| ≤ 1
2 does not exceed

1

log 2
log

M

|a0|
,

where

M = 2(|α0|+ |β0|) + (|αµ| − αµ) + 2αk + (|αn| − αn) + 2

n∑
j=µ

|βj |.
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For k = n in Corollary 2.1, we get:

Corollary 2.2. Let P (z) := a0 +
n∑
j=µ

ajz
j , 1 ≤ µ ≤ n − 1, a0 6= 0, be a polynomial

of degree n with Re aj = αj and Im aj = βj for µ ≤ j ≤ n such that

αµ ≤ · · · ≤ αn−1 ≤ αn

then the number of zeros of P (z) in |z| ≤ 1
2 does not exceed

1

log 2
log

M

|a0|
,

where

M = 2(|α0|+ |β0|) + (|αµ| − αµ) + 2

n∑
j=µ

|βj |.

For k = µ, in Corollary 2.1, we get:

Corollary 2.3. Let P (z) := a0 +
n∑
j=µ

ajz
j , 1 ≤ µ ≤ n − 1, a0 6= 0, be a polynomial

of degree n with Re aj = αj and Im aj = βj for µ ≤ j ≤ n such that

αµ ≥ · · · ≥ αn−1 ≥ αn

then the number of zeros of P (z) in |z| ≤ 1
2 does not exceed

1

log 2
log

M

|a0|
,

where

M = 2(|α0|+ |β0|) + (|αµ|+ αµ) + (|αµ| − αµ) + 2

n∑
j=µ

|βj |.

For βj = 0, 1 ≤ j ≤ n in Theorem 2, we have the following:

Corollary 2.4. Let P (z) := a0 +
n∑
j=µ

ajz
j, ≤ µ ≤ n− 1, where a0 6= 0. Suppose that

for some t > 0 and some k we have

tµaµ ≤ · · · ≤ tk−1ak−1 ≤ tkak ≥ tk+1ak+1 ≥ · · · ≥ tn−1an−1 ≥ tnan

then the number of zeros of P (z) in |z| ≤ t
2 does not exceed

1

log 2
log

M

|a0|
,

where
M = 2|a0|t+ (|aµ| − aµ)tµ+1 + 2akt

k+1 + (|an| − an)tn+1.
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Finally, we prove the following result:

Theorem 3. Let P (z) := a0+
n∑
j=µ

ajz
j, 1 ≤ µ ≤ n−1, where a0 6= 0, Re aj = αj and

Im aj = βj for µ ≤ j ≤ n. Suppose that for some t > 0 and some k with µ ≤ k ≤ n
we have

tµαµ ≤ · · · ≤ tk−1αk−1 ≤ tkαk ≥ tk+1αk+1 ≥ · · · ≥ tn−1αn−1 ≥ tnαn

and for some µ ≤ l ≤ n we have

tµβµ ≤ · · · ≤ tl−1βl−1 ≤ tlβl ≥ tl+1βl+1 ≥ · · · ≥ tn−1βn−1 ≥ tnβn

then the number of zeros of P (z) in |z| ≤ t
2 does not exceed

1

log 2
log

M

|a0|
,

where

M = 2(|α0|+ |β0|)t+ (|αµ| − αµ + |βµ| − βµ)tµ+1

+2(αkt
k+1 + βlt

l+1)tn+1 + (|αn| − αn + |βn| − βn)tn+1.

If we take t = 1, in Theorem 3 we obtain:

Corollary 3.1. Let P (z) = a0 +
n∑
j=µ

ajz
j , 1 ≤ µ ≤ n− 1, where a0 6= 0, Re aj = αj

and Im aj = βj for µ ≤ j ≤ n. Suppose that for some k with µ ≤ k ≤ n we have

αµ ≤ · · · ≤ αk−1 ≤ αk ≥ αk+1 ≥ · · · ≥ αn−1 ≥ αn

and for some µ ≤ l ≤ n we have

βµ ≤ · · · ≤ βl−1 ≤ βl ≥ βl+1 ≥ · · · ≥ βn−1 ≥ βn.

Then the number of zeros of P (z) in |z| ≤ 1
2 does not exceed

1

log 2
log

M

|a0|
,

where

M = 2(|α0|+ |β0|) + (|αµ| − αµ + |βµ| − βµ) + 2(αk + βl) + (|αn| − αn + |βn| − βn).

For k = l = n in Corollary 3.1, we get the following:

Corollary 3.2. Let P (z) = a0 +
n∑
j=µ

ajz
j , 1 ≤ µ ≤ n− 1, where a0 6= 0, Re aj = αj

and Im aj = βj for µ ≤ j ≤ n such that

αµ ≤ · · · ≤ αn−1 ≤ αn
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and
βµ ≤ · · · ≤ βn−1 ≤ βn

then the number of zeros of P (z) in |z| ≤ 1
2 does not exceed

1

log 2
log

M

|a0|
,

where

M = 2(|α0|+ |β0|) + (|αµ| − αµ + |βµ| − βµ) + (|αn|+ αn + |βn|+ βn).

In Corollary 3.1, if we choose k = l = µ we get:

Corollary 3.3. Let P (z) = a0 +
n∑
j=µ

ajz
j , 1 ≤ µ ≤ n− 1, where a0 6= 0, Re aj = αj

and Im aj = βj for µ ≤ j ≤ n such that

αµ ≥ · · · ≥ αn−1 ≤ αn

and
βµ ≥ · · · ≥ βn−1 ≥ βn

then the number of zeros of P (z) in |z| ≤ 1
2 does not exceed

1

log 2
log

M

|a0|
,

where

M = 2(|α0|+ |β0|) + (|αµ|+ αµ + |βµ|+ βµ) + (|αn| − αn + |βn| − βn).

2. Lemma

For the proof of some these results we need the following lemma which is due to Govil
and Rahman [4].

Lemma 2.1. For any two complex numbers b0 and b1 such that |b0| ≥ |b1| and

|arg bj − β| ≤ α ≤ π

2
, j = 0, 1

for some β, then

|b0 − b1| ≤ (|b0| − |b1|) cosα+ (|b0|+ |b1|) sinα.
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An application of the Maximum modulus theorem shown in (p.171, [14]) we have the
following interesting result:

Lemma 2.2. Let f(z) be regular and |f(z)| ≤ M, in the circle |z| ≤ R and suppose
that f(0) 6= 0, then the number of zeros of f(z) in the circle |z| ≤ 1

2R does not exceed
1

log 2 log
[

M
|f(0)|

]
.

3. Proofs of Theorems

Proof of Theorem 1. Consider the polynomial

F (z) = (t− z)P (z)

= (t− z)

a0 +

n∑
j=µ

ajz
j


= a0t+

n∑
j=µ

ajtz
j − a0z −

n∑
j=µ

ajz
j+1

= a0(t− z) +

n∑
j=µ

ajtz
j −

n+1∑
j=µ+1

aj−1z
j

= a0(t− z) + aµtz
µ +

n∑
j=µ+1

(ajt− aj−1)zj − anzn+1.

For |z| = t, we have

|F (z)| ≤ 2|a0|t+ |aµ|tµ+1 +

n∑
j=µ+1

|ajt− aj−1|tj + |an|tn+1

= 2|a0|t+ |aµ|tµ+1 +

k∑
j=µ+1

|ajt− aj−1|tj +

n∑
j=k+1

|aj−1− ajt|tj + |an|tn+1.

Using Lemma 2.1 with b0 = ajt and b1 = aj−1 when 1 ≤ j ≤ k and with b0 = aj−1
and b1 = ajt when k + 1 ≤ j ≤ n,

|F (z)| ≤ 2|a0|t+ |aµ|tµ+1 +

k∑
j=µ+1

{(|aj |t− |aj−1|) cosα+ (|aj |t+ |aj−1|) sinα}tj

+

n∑
j=k+1

{(|aj−1| − |aj |t) cosα+ (|aj |t+ |aj−1|) sinα}tj + |an|tn+1
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= 2|a0|t+|aµ|tµ+1+

k∑
j=µ+1

|aj |tj+1 cosα−
k∑

j=µ+1

|aj−1|tj cosα+

k∑
j=µ+1

|aj |tj+1 sinα

+

k∑
j=µ+1

|aj−1|tj sinα+

n∑
j=k+1

|aj−1|tj cosα−
n∑

j=k+1

|aj |tj+1 cosα

+

n∑
j=k+1

|aj−1|tj sinα+

n∑
j=k+1

|aj |tj+1 sinα+ |an|tn+1

= 2|a0|t+ |aµ|tµ+1−|aµ|tµ+1 cosα+ |ak|tk+1 cosα+ |aµ|tµ+1 sinα+ |ak|tk+1 sinα

+ 2

k−1∑
j=µ+1

|aj |tj+1 sinα+ |ak|tk+1 cosα− |an|tn+1 cosα+ |ak|tk+1 sinα

+|an|tn+1 sinα+ 2

n−1∑
j=k+1

|aj |tj+1 sinα+ |an|tn+1

= 2|a0|t+|aµ|tµ+1+|aµ|tµ+1(sinα−cosα)+2

n−1∑
j=µ+1

|aj |tj+1 sinα+2|ak|tk+1 cosα

+(sinα− cosα+ 1)|an|tn+1

= 2|a0|t+ |aµ|tµ+1(1− sinα−cosα)+2|ak|tk+1 cosα+ |an|tn+1(1− sinα−cosα)

+2

n∑
j=µ

|aj |tj+1 sinα

= M(say).
Now F (z) is analytic in |z| ≤ t and F (z) ≤ M for |z| = t. Applying Lemma 2.2 to
the polynomial F (z), we get the number of zeros of F (z) in |z| ≤ t

2 does not exceed

1

log 2
log

M

|f(0)|
.

Thus, the number of zeros of F (z) in |z| ≤ t
2 does not exceed

1

log 2
log

{
2|a0|t+ |aµ|tµ+1(1− sinα− cosα) + 2|ak|tk+1 cosα

|a0|

+

|an|tn+1(1− sinα− cosα) + 2
n∑
j=µ

|aj |tj+1 sinα

|a0|

 .

As the number of zeros of P (z) in |z| ≤ 1
2 is also equal to the number of zeros F (z)

the theorem follows.
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Proof of Theorem 2. Consider the polynomial

F (z) = (t− z)P (z)

= (t− z)

a0 +

n∑
j=µ

ajz
j


= a0t+

n∑
j=µ

ajtz
j − a0z −

n∑
j=µ

ajz
j+1

= a0(t− z) +

n∑
j=µ

ajtz
j −

n+1∑
j=µ+1

aj−1z
j

and therefore

F (z) = (α0 + iβ0)(t− z) + (αµ + iβµ)tzµ +

n∑
j=µ+1

(αjt− αj−1)zj

+ i

n∑
j=µ+1

(βjt− βj−1)zj − (αn + iβn)zn+1.

For |z| = t, we have

|F (z)| ≤ 2(|α0|+ |β0|)t+ (|αµ|+ |βµ|)tµ+1 +

n∑
j=µ+1

|αjt− αj−1|tj

+

n∑
j=µ+1

(|βj |t+ |βj−1|)tj + (|αn|+ |βn|)tn+1

= 2(|α0|+ |β0|)t+ (|αµ|+ |βµ|)tµ+1 +

k∑
j=µ+1

(αjt− αj−1)tj

+

n∑
j=k+1

(αj−1 − αjt)tj + |βµ|tµ+1 + 2

n−1∑
j=µ+1

|βj |tj+1 + |βn|tn+1

+(|αn|+ |βn|)tn+1 = 2(|α0|+ |β0|)t+ (|αµ|+ |βµ|)tµ+1 − αµtµ+1 + 2αkt)t
k+1

−αntn+1 + |βµ|tµ+1 + 2

n∑
j=µ+1

|βj |tj+1 + |αn|tn+1 = 2(|α0|+ |β0|)t

+(|αµ| − αµ)tµ+1 + 2αkt
k+1 + (|αn| − αn)tn+1 + 2

n∑
j=µ

|βj |tj+1 = M.
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Proceedings on the same lines of the proof of Theorem 1, the proof of this result
follows.

Proof of Theorem 3. Consider the polynomial

F (z) = (t− z)P (z) = a0(t− z) + aµtz
µ

+

n∑
j=µ+1

(ajt− aj−1)zj − anzn+1,

and so

F (z) = (α0 + iβ0)(t− z) + (αµ + iβµ)tzµ

+

n∑
j=µ+1

((αj + iβj)t− (αj−1 + iβj−1))zj − (αn + iβn)zn+1

= (α0 + iβ0)(t− z) + (αµ + iβµ)tzµ +

n∑
j=µ+1

(αjt− αj−1)zj

+i

n∑
j=µ+1

(βjt− βj−1)zj − (αn + iβn)zn+1.

For |z| = t, we have

|F (z)| ≤ 2(|α0|+ |β0|)t+ (|αµ|+ |βµ|)tµ+1 +

n∑
j=µ+1

|αjt− αj−1|tj

+

n∑
j=µ+1

|βjt− βj−1|tj + (|αn|+ |βn|)tn+1 = 2(|α0|+ |β0|)t

+(|αµ|+ |βµ|)tµ+1 +

k∑
j=µ+1

(αjt− αj−1)tj +

n∑
j=k+1

(αj−1 − αjt)tj

+

l∑
j=µ+1

(βjt− βj−1)tj +

n∑
j=l+1

(βj−1 − βjt)tj + (|αn|+ |βn|)tn+1

= 2(|α0|+ |β0|)t+ (|αµ|+ |βµ|)tµ+1 − αµtµ+1 + 2αkt
k+1

−αntn+1 − βµtµ+1 + 2βlt
l+1 − βntn+1 + (|αn|+ |βn|)tn+1

= 2(|α0|+ |β0|)t+ (|αµ| − αµ + |βµ| − βµ)tµ+1

+2(αkt
k+1 + βlt

l+1) + (|αn| − αn + |βn| − βn)tn+1 = M.

The result now follows as in the proof of Theorem 1.
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Abstract: We investigate the third Hankel determinant problem for
some starlike functions in the open unit disc, that are related to shell-
like curves and connected with Fibonacci numbers. For this, firstly, we
prove a conjecture, posed in [17], for sharp upper bound of second Hankel
determinant. In the sequel, we obtain another sharp coefficient bound
which we apply in solving the problem of the third Hankel determinant
for these functions.
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1. Introduction

Let A denote the class of functions f which are analytic in the open unit disk
U = {z : z ∈ C and |z| < 1} and let S denote the class of functions in A which are
univalent in U and normalized by the conditions f(0) = f ′(0)− 1 = 0 and are of the
form:

f (z) = z +

∞∑
n=2

anz
n. (1.1)

We say that f is subordinate to F in U, written as f ≺ F , if and only if f(z) = F (w(z))
for some analytic function w such that |w(z)| ≤ |z| for all z ∈ U.
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If f ∈ A and
zf ′(z)

f(z)
≺ p(z) or 1 +

zf ′′(z)

f ′(z)
≺ p(z)

where p(z) = 1+z
1−z , then we say that f is starlike or convex respectively. These

functions form known classes denoted by S∗ or C respectively. These classes are very
important subclasses of the class S in geometric function theory. In this paper we
consider the following subclass of starlike functions.

Definition 1. The function f ∈ A belongs to the class SL if it satisfies the condition
that

zf ′(z)

f(z)
≺ p̃(z)

with

p̃(z) =
1 + τ2z2

1− τz − τ2z2
,

where τ = (1−
√

5)/2 ≈ −0.618. The class SL was introduced in [16].

The function p̃ is not univalent in U, but it is univalent in the disc |z| < τ2 ≈ 0.38.
For example, p̃(0) = p̃(−1/2τ) = 1 and p̃(e∓i arccos(1/4)) =

√
5/5, and it may also be

noticed that
1

|τ |
=

|τ |
1− |τ |

,

which shows that the number |τ | divides [0, 1] such that it fulfils the golden section.
The image of the unit circle |z| = 1 under p̃ is a curve described by the equation given
by

(10x−
√

5)y2 = (
√

5− 2x)(
√

5x− 1)2,

which is translated and revolved trisectrix of Maclaurin. The curve p̃(reit) is a closed
curve without any loops for 0 < r ≤ r0 = (3 −

√
5)/2 ≈ 0.38. For r0 < r < 1, it

has a loop, and for r = 1, it has a vertical asymptote. Since τ satisfies the equation
τ2 = 1 + τ, this expression can be used to obtain higher powers τn as a linear
function of lower powers, which in turn can be decomposed all the way down to a
linear combination of τ and 1. The resulting recurrence relationships yield Fibonacci
numbers un:

τn = unτ + un−1. (1.2)

In 1976, Noonan and Thomas [10] stated the sth Hankel determinant for s ≥ 1
and k ≥ 1 as

Hs(k) =

∣∣∣∣∣∣∣∣∣∣
ak ak+1 . . . ak+s−1

ak+1 ak+2 . . .
...

...
...

...
...

ak+s−1 . . . . . . ak+2(s−1)

∣∣∣∣∣∣∣∣∣∣
(1.3)

where a1 = 1.



An Upper Bound for Third Hankel Determinant of Starlike Functions 197

This determinant has also been considered by several authors. For example, Noor
[11] determined the rate of growth of Hs(k) as k →∞ for functions f given by (1) with
bounded boundary. Ehrenborg in [3] studied the Hankel determinant of exponential
polynomials. The Hankel transform of an integer sequence and some of its properties
were discussed by Layman in [8]. Also, several authors considered the case s = 2.
Especially, H2(1) = a3 − a22 is known as Fekete-Szegö functional and this functional
is generalized to a3 − µa22 where µ is some real number [4]. Estimating for an upper
bound of |a3 − µa22| is known as the Fekete-Szegö problem. In [13], Raina and Sokó l
considered Fekete-Szegö problem for the class SL. In 1969, Keogh and Merkes [7]
solved this problem for the classes S∗ and C. The second Hankel determinant is
H2(2) = a2a4−a23. Janteng [5] found the sharp upper bound for |H2(2)| for univalent
functions whose derivative has positive real part. Also, in [6] Janteng et al. obtained
the bounds for |H2(2)| for the classes S∗ and C. In [17], Sokó l et al. considered second
Hankel determinant problem for the class SL and obtained sharp upper bounds for
the functional |a2a4 − a23| belonging to the class SL. Also they gave a conjecture for
sharp bound of |a2a4−a23| for functions in the class SL. The third Hankel determinant
is H3(1) = a3(a2a4 − a23)− a4(a4 − a2a3) + a5(a3 − a22). Recently, Babaloa [1], Raza
and Malik [15] and Bansal et al. [2] have studied third Hankel determinant H3(1),
for various classes of analytic and univalent functions.

In this paper, we investigate an upper bound on the modulus ofH3(1) the functions
belonging to the class SL of analytic functions related to shell-like curves connected
with Fibonacci numbers in the open unit disc defined by (1.1).

Now we recall the following lemmas which will be use in proving our main results.
Let P(β), 0 ≤ β < 1, denote the class of analytic functions p in U with p(0) = 1 and
Re{p(z)} > β. Especially, we will use P instead of P(0).

Lemma 1.1. ([12]) Let p ∈ P with p(z) = 1 + c1z + c2z
2 + · · · , then

|cn| ≤ 2, for n ≥ 1. (1.4)

If |c1| = 2, then p(z) ≡ p1(z) ≡ (1 + xz)/(1 − xz) with x = c1
2 . Conversely, if

p(z) ≡ p1(z) for some |x| = 1, then c1 = 2x. Furthermore, we have∣∣∣∣c2 − c21
2

∣∣∣∣ ≤ 2− |c1|
2

2
. (1.5)

If |c1| < 2, and
∣∣∣c2 − c21

2

∣∣∣ = 2− |c1|
2

2 , then p(z) ≡ p2(z), where

p2(z) =
1 + x̄wz + z(wz + x)

1 + x̄wz − z(wz + x)

and x = c1
2 , w =

2c2−c21
4−|c1|2 and |c2 − c21

2 | = 2− |c1|
2

2 .

Lemma 1.2. ([14]) Let p ∈ P with coefficients cn as above, then

|c1c2 − c3| ≤ 2. (1.6)
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Lemma 1.3. ([9]) Let p ∈ P with coefficients cn as above, then

|c3 − 2c1c2 + c31| ≤ 2. (1.7)

Lemma 1.4. ([16]) If f(z) = z +
∑∞
n=2 anz

n belongs to the class SL, then

|an| ≤ |τ |n−1un, (1.8)

where un is the sequence of Fibonacci numbers and τ = 1−
√
5

2 . Equality holds in (1.8)
for the function f0(z) = z

1−αz−α2z2 .

Lemma 1.5. ([13]) If f(z) = z +
∑
n=2∞anzn belongs to the class SL, then

|a3 − λa22| ≤ τ2(2 + λ) for all λ ∈ C. (1.9)

The above estimation is sharp. If λ > 0, then the equality in (1.9) is attained by the
function f0(z) = z

1−αz−α2z2 while by the function −f0(−z), when λ ≤ 0.

Especially, when λ = 1 in (1.9), we obtain |a3 − a22| ≤ 3τ2.

In this study, we use ideas and techniques used in geometric function theory. The
central problem considered here is the sharp upper bounds for the functionals |H2(2)|
and |a2a3 − a4| of functions in the class SL depicted by the Fibonacci numbers,
respectively. Also the third Hankel determinant |H3(1)| is considered using these
functionals.

2. Main Results

In [17] it was proved that if f(z) = z + a2z
2 + . . . belongs to SL, then

|H2(2)| = |a2a4 − a23| ≤
11

3
τ4.

And it was conjectured that |H2(2)| = |a2a4 − a23| ≤ τ4. Firstly, we present a proof
of this.

Theorem 2.1. If f(z) = z + a2z
2 + . . . belongs to SL, then

|H2(2)| = |a2a4 − a23| ≤ τ4. (2.1)

The bound is sharp.

Proof. For given f ∈ SL, define p(z) = 1 + p1z + p2z
2 + · · · , by

zf ′(z)

f(z)
= p(z) = 1 + p1z + p2z

2 + · · · ,
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where p ≺ p̃. If p ≺ p̃, then there exists an analytic function w such that |w(z)| ≤ |z|
in U and p(z) = p̃(w(z)). Therefore, the function

h(z) =
1 + w(z)

1− w(z)
= 1 + c1z + c2z

2 + . . . (2.2)

is in the class P. It follows that

w(z) =
c1z

2
+

(
c2 −

c21
2

)
z2

2
+

(
c3 − c1c2 +

c31
4

)
z3

2
+ · · · (2.3)

and

p̃(w(z)) = 1 + p̃1

{
c1z

2
+

(
c2 −

c21
2

)
z2

2
+

(
c3 − c1c2 +

c31
4

)
z3

2
+ · · ·

}
+ p̃2

{
c1z

2
+

(
c2 −

c21
2

)
z2

2
+

(
c3 − c1c2 +

c31
4

)
z3

2
+ · · ·

}2

+ p̃3

{
c1z

2
+

(
c2 −

c21
2

)
z2

2
+

(
c3 − c1c2 +

c31
4

)
z3

2
+ · · ·

}3

+ · · ·

= 1 +
p̃1c1z

2
+

{(
c2 −

c21
2

)
p̃1
2

+
c21
4
p̃2

}
z2

+

{(
c3 − c1c2 +

c31
4

)
p̃1
2

+

(
c2 −

c21
2

)
c1p̃2

2
+
c31
8
p̃3

}
z3 + · · · . (2.4)

It is known that

p̃(z) = 1 +

∞∑
n=1

p̃nz
n

= 1 + (u0 + u2)τz + (u1 + u3)τ2z2 +

∞∑
n=3

(un−3 + un−2 + un−1 + un)τnzn

= 1 + τz + 3τ2z2 + 4τ3z3 + 7τ4z4 + 11τ5z5 + · · · . (2.5)

This shows that the relevant connection of p̃ with the sequence of Fibonacci num-
bers un, such that u0 = 0, u1 = 1, un+2 = un + un+1 for n = 0, 1, 2, . . .. Thus,
p̃1 = τ, p̃2 = 3τ2 and

p̃n=(un−1+un+1)τn=(un−3+un−2+un−1+un)τn=τ p̃n−1+τ2p̃n−2 (n = 3, 4, 5, . . .).

If p(z) = 1 + p1z + p2z
2 + · · · , then using (2.4) and (2.5) , we have

p1 =
c1
2
τ, (2.6)

p2 =
1

2

(
c2 −

c21
2

)
τ +

3

4
c21τ

2, (2.7)
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and

p3 =
1

2

(
c3 − c1c2 +

c31
4

)
τ +

3

2
c1

(
c2 −

c21
2

)
τ2 +

1

2
c31τ

3. (2.8)

Hence

zf ′(z)

f(z)
= 1 + a2z + (2a3 − a22)z2 + (3a4 − 3a2a3 + a32)z3 + · · · = 1 + p1z + p2z

2 + · · ·

and

a2 = p1, a3 =
p21 + p2

2
, a4 =

p31 + 3p1p2 + 2p3
6

.

Therefore, we have

|a2a4 − a23|

=
1

12

∣∣p41 − 4p1p3 + 3p22
∣∣

=
1

12

∣∣∣∣ c4116
τ4 − 2c1τ

{
τ

2

(
c3 − c1c2 +

c31
4

)
+

3c1τ
2

2

(
c2 −

c21
2

)
+
c31τ

3

2

}
+ 3

{
τ

2

(
c2 −

c21
2

)
+

3c21τ
2

4

}2
∣∣∣∣∣

=
τ2

12

∣∣∣∣∣
(

3c41
4
− 3c21

4

(
c2 −

c21
2

))
τ +

c41
2
− c1c3 + c21c2 +

3

4

(
c2 −

c21
2

)2
∣∣∣∣∣ . (2.9)

It is known (1.2), that

∀n ∈ N, τ =
τn

un
− xn, xn =

un−1
un

, lim
n→∞

un−1
un

= |τ | ≈ 0.618. (2.10)

Applying (2.10) gives

|a2a4 − a23| =
τ2

12

∣∣∣∣(3c41
4
− 3c21

4

(
c2 −

c21
2

))
τn

un
+ c1(c1c2 − c3)

+
3

4
c2

(
c2 −

c21
2

)
+

3

8
(2xn − 1)c21

(
c2 −

c21
2

)
+

2− 3xn
4

c41

∣∣∣∣ .
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Now, applying the triangle inequality, (1.4), (1.5) and (1.6) gives

|a2a4 − a23| ≤
τ2

12

∣∣∣∣3c414
− 3c21

4

(
c2 −

c21
2

)∣∣∣∣ |τ |nun
+
τ2

12

{
|c1||c1c2 − c3|+

3

4
|c2|

∣∣∣∣c2 − c21
2

∣∣∣∣
+

3

8
(2xn − 1)|c21|

∣∣∣∣c2 − c21
2

∣∣∣∣+
2− 3xn

4
|c1|4

}
≤ τ2

12

∣∣∣∣3c414
− 3c21

4

(
c2 −

c21
2

)∣∣∣∣ |τ |nun
+
τ2

12

{
2|c1|+

3

2

(
2− |c1|

2

2

)
+

3

8
(2xn − 1)|c1|2

(
2− |c1|

2

2

)
+

2− 3xn
4

|c1|4
}
,

because by (2.10), we have xn → 0.618 so 2xn − 1 > 0, 2 − 3xn > 0 for sufficiently
large n. So, in above calculation, in the last line, we have got a function of variable
|c1| =: y ∈ [0, 2] and after elementary calculations we can get that

max
y∈[0,2]

{
2y+

3

2

(
2− y2

2

)
+

3

8
(2xn − 1)y2

(
2− y2

2

)
+

2− 3xn
4

y4
}

=12−12xn at y = 2.

(2.11)
Furthermore, it is clear that

lim
n→∞

∣∣∣∣3c414
− 3c21

4

(
c2 −

c21
2

)∣∣∣∣ |τ |nun = 0

and (2.10), (2.11) give

lim
n→∞

[
max
y∈[0,2]

{
2y +

3

2

(
2− y2

2

)
+

3

8
(2xn − 1)y2

(
2− y2

2

)
+

2− 3xn
4

y4
}]

= 12− 12|τ | = 12τ2,

so we have

|a2a4 − a23| ≤ 0 +
τ2

12
12τ2 = τ4.

If we take in (2.2)

h(z) =
1 + z

1− z
= 1 + 2z + 2z2 + . . . ,

then putting c1 = c2 = c3 = 2 in (2.9) gives

|a2a4 − a23| =
τ2

12
|12τ + 12| = τ2

12

∣∣12τ2
∣∣ = τ4.

and it shows that (2.1) is sharp. It completes the proof.
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Theorem 2.2. If f(z) = z + a2z
2 + . . . belongs to SL, then

|a2a3 − a4| ≤ |τ |3. (2.12)

The bound is sharp.

Proof. Let f ∈ SL and p ∈ P where p(z) = 1 + p1z + p2z
2 + · · · . From (2.6), (2.7),

(2.8) and

zf ′(z)

f(z)
= 1 + a2z + (2a3 − a22)z2 + (3a4 − 3a2a3 + a32)z3 + · · · = 1 + p1z + p2z

2 + · · ·

we have

a2a3 − a4 =
1

3
(p31 − p3).

So we obtain

|a2a3 − a4| =
1

3

∣∣p31 − p3∣∣
=

1

3

∣∣∣∣c318 τ3 − 1

2

(
c3 − c1c2 +

c31
4

)
τ − 3

2
c1

(
c2 −

c21
2

)
τ2 − 1

2
c31τ

3

∣∣∣∣
=

1

3

∣∣∣∣{1

4
c1

(
c2 −

c21
2

)
+

1

2
(c1c2 − c3)− 7

4
c1c2

}
τ +

3

8
c31 −

3

2
c1c2

∣∣∣∣ . (2.13)

Applying (2.10), we have

|a2a3 − a4| =
1

3

∣∣∣∣{1

4
c1

(
c2 −

c21
2

)
+

1

2
(c1c2 − c3)− 7

4
c1c2

}
τn

un

−1

4
c1

(
c2 −

c21
2

)
xn −

1

2
(c1c2 − c3)xn +

7

4
c1c2xn +

3

8
c31 −

3

2
c1c2

∣∣∣∣ .
=

1

3

∣∣∣∣{1

4
c1

(
c2 −

c21
2

)
+

1

2
(c1c2 − c3)− 7

4
c1c2

}
τn

un

+
1

2

(
c3 − 2c1c2 + c31

)
xn +

3

4
c1

(
c2 −

c21
2

)
xn

+
5

4
c1c2xn −

3

4
c1

(
c2 −

c21
2

)
− 3

4
c1c2

∣∣∣∣ (2.14)
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Now, applying the triangle inequality, (1.4), (1.5),(1.6) and (1.7) gives

|a2a3 − a4| ≤
1

3

∣∣∣∣{1

4
c1

(
c2 −

c21
2

)
+

1

2
(c1c2 − c3)− 7

4
c1c2

}∣∣∣∣ |τn|un

+
1

2

∣∣c3 − 2c1c2 + c31
∣∣xn +

|3xn − 3|
4

|c1|
∣∣∣∣c2 − c21

2

∣∣∣∣+
|5xn − 3|

4
|c1||c2|

≤ 1

3

∣∣∣∣{1

4
c1

(
c2 −

c21
2

)
+

1

2
(c1c2 − c3)− 7

4
c1c2

}∣∣∣∣ |τn|un

+
1

2

∣∣c3 − 2c1c2 + c31
∣∣xn +

|3xn − 3|
4

|c1|
(

2− |c1|
2

2

)
+
|5xn − 3|

4
|c1||c2|

≤ 1

3

∣∣∣∣{1

4
c1

(
c2 −

c21
2

)
+

1

2
(c1c2 − c3)− 7

4
c1c2

}∣∣∣∣ |τn|un

+ xn + xn|c1| −
3− 3xn

8
|c1|3, (2.15)

because by (2.10), we have xn → 0.618 so 3xn − 3 < 0, 5xn − 3 > 0 for sufficiently
large n. If we put |c1| =: y ∈ [0, 2] then and after elementary calculations we can get
that h(y) = xn + xny − (3− 3xn)y3/3 increases in [0, 2]. Therefore,

max
y∈[0,2]

{h(y)} = max
y∈[0,2]

{
xn + xny −

3− 3xn
8

y3
}

= 6xn − 3 at y = 2.

Because

lim
n→∞

∣∣∣∣14c1
(
c2 −

c21
2

)
+

1

2
(c1c2 − c3)− 7

4
c1c2

∣∣∣∣ |τn|un
= 0

and by (2.10)

lim
n→∞

[
max
y∈[0,2]

{
xn + xny −

3− 3xn
8

y3
}]

= 6|τ | − 3 = −3(2τ + 1) = −3τ3 = 3|τ |3,

we have

|a2a3 − a4| ≤ 0 +
3|τ |3

3
= |τ |3.

If we take in (2.2)

h(z) =
1 + z

1− z
= 1 + 2z + 2z2 + . . . ,

then putting c1 = c2 = c3 = 2 in (2.13) gives

|a2a3 − a4| = |τ |3.

and it shows that (2.12) is sharp. It completes the proof.

Now, we can obtain an upper bound for |H3(1)| in the class SL as follows:

Theorem 2.3. If f(z) = z + a2z
2 + . . . belongs to SL, then

|H3(1)| ≤ 20τ6. (2.16)
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Proof. Let f ∈ SL. By the definition of third Hankel determinant,

H3(1) =

∣∣∣∣∣∣
a1 a2 a3
a2 a3 a4
a3 a4 a5

∣∣∣∣∣∣ = a3(a2a4 − a23)− a4(a4 − a2a3) + a5(a3 − a22)

where a1 = 1, we have

|H3(1)| ≤ |a3||a2a4 − a23|+ |a4||a4 − a2a3|+ |a5||a3 − a22|. (2.17)

Considering Lemma 1.4, Lemma 1.5, Theorem 2.1 and Theorem 2.2 in (2.17), we
obtain

|H3(1)| ≤ |a3||a2a4 − a23|+ |a4||a4 − a2a3|+ |a5||a3 − a22|
≤ 2τ2τ4 + 3|τ |3|τ |3 + 5τ23τ2

= 20τ6.

3. Concluding, Remarks and Observations

In our present article, we have obtained sharp estimates of the third Hankel deter-
minant for the class SL of analytic functions related to shell-like curves connected
with the Fibonacci numbers. Firstly, we have proved a conjecture given in [17] for
sharp upper bound of second Hankel determinant. Secondly, we have obtained an-
other sharp coefficient bound which will be used in the problem of finding the upper
bound associated with the third Hankel determinant H3(1) for this class. Lastly, we
have given an upper bound for functional |H3(1)| in the class SL.
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