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1. Introduction
Every locally compact, noncompact Hausdorff space X has a well known one-point
compactification (Alexandroff compactification, [1]). In this paper we consider the
set B(X) of all one-point local compactifications of X up to an equivalence. We
prove that B(X) is a partially ordered set such that the order 6 induces a Boolean
algebra. Moreover, the elements 0 and 1 of B(X) are respectively X and ωX. Then
we focus on describing the algebra we get using topological notions and convergence
and we provide examples by computing the algebra in some special cases. We also
note the connection with the topic of ends of manifolds (see [2, pages 110-118]), as
for a noncompact, connected, second countable manifold L with n ends, n < ∞, we
have |B(L)| = 2n.

2. Notation and terminology
• Throughout the paper, ZFC is assumed.

• Given a locally compact Hausdorff space X we denote by ωX a one-point com-
pactification of X if X is not compact and X otherwise,
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• a clopen set is a set that is both closed and open,

• if Y is a one-point local compactification different from X, the unique point of
Y \X will be denoted by ∞Y ,

• a filter F of open sets in a topological space X is a non-empty family of sets
open in X such that ∅ /∈ F and, for all V1, V2 ∈ F and an open V ⊂ X we have
V1 ∩ V2 ∈ F ⇒ V ∈ F .

3. Main results
Definition 1. If X is a locally compact Hausdorff space, we call (Y, f) an at most one-
point local compactification of X iff Y is a locally compact Hausdorff and f : X → Y
is a homeomorphic embedding such that f(X) is dense in Y and |Y \ f(X)| 6 1. If
(Y, f) is an at most one point local compactification of X and |Y \ f(X)| = 1, we call
(Y, f) a one-point local compactiication of X.
For simplicity, we say that Y is a/an (at most) one-point local compactification of X
iff (Y, idX) is a/an (at most) one-point local compactification of X.

Definition 2. Let X be a locally compact Hausdorff space, (Y1, f1) and (Y2, f2) its
at most one-point local compactifications. We will write (Y1, f1) 6 (Y2, f2) (or, for
simplicity, Y1 6 Y2) iff one of the following conditions apply:

• f1(X) = Y1

• Y1 = f1(X) ∪ {∞Y1}, Y2 = f2(X) ∪ {∞Y2} and the function

Y1 3 x 7→
{
f2(f−1

1 (x)), x ∈ f1(X)
∞Y2 , x =∞Y1

∈ Y2

is continuous.

Note that 6 is reflexive and transitive, with 0 = X and 1 = ωX. We can define
an equivalence relation ≡ by

(Y1, f1) ≡ (Y2, f2) iff (Y1, f1) 6 (Y2, f2) and (Y2, f2) 6 (Y1, f1),

or, for simplicity,
Y1 ≡ Y2 iff Y1 6 Y2 and Y2 6 Y1.

We also define

B(X) := {Y—one-point local compactification of X}/≡.

From now on instead of an equivalence class of Y in B(X) we will just write Y .
We are now ready to state the first result where we will prove that B(X) ordered

by 6 is a Boolean algebra, by showing that it is in fact order isomorphic to a much
simpler one.
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Theorem 1. Given a locally compact Hausdorff space X, B(X) is a partially ordered
space with a lattice such that the order 6 induces a Boolean algebra, i.e., for Y1, Y2
one-point local compactifications of X:

• Y1 ∨ Y2 = sup6{Y1, Y2},

• Y1 ∧ Y2 = inf6{Y1, Y2},

• 0 = X,

• 1 = ωX,

• for any space Y ∈ B(X) there exists a unique space \Y ∈ B(X) : Y ∧ \Y = 0,
Y ∨ \Y = 1.

In particular, 0 = 1 iff X is compact.

Proof. First consider βX, a Čech–Stone compactification of X. We define A(X) :=
{F ⊂ βX \ X : F clopen in βX \ X} (note that βX \ X is compact). A(X) with
standard set operations is a Boolean algebra. We will show an isomorphism between
B(X) and A(X), proving that B(X) is also a Boolean algebra.

To this end, we will define f : B(X) → A(X). If X is compact, both B(X)
and A(X) are trivial, therefore assume that X is not compact. Consider a clopen in
βX \X set F such that ∅ 6= F 6= βX \X. We can now identify F and (βX \X) \ F
with points, getting a compact space X ∪ {{F}} ∪ {{(βX \ X) \ F}}. Its subspace
X ∪ {{F}} is then a one-point local compactification of X. Conversely, for any one-
point local compactification Y of X there exists a unique clopen in βX \ X set FY
such that Y is equivalent with X ∪ {{FY }} (from the universal property of βX).
We define f(X) = ∅ and for every one-point local compactification Y of X we put
f(Y ) = FY , where Y is the unique clopen in βX \ X set such that Y is equivalent
to X ∪{{FY }}. It can be easily seen that for one-point local compactifications Y1, Y2
of X we have Y1 6 Y2 iff FY1 ⊂ FY2 , so f preserves the partial order and is indeed
an isomorphism. Furthermore, for one-point local compactifications Y1, Y2 of X we
have:

1. Y1 ∨ Y2 = X ∪ {{FY1 ∪ FY2}}.

2. Y1 ∧ Y2 = X ∪ {{FY1 ∩ FY2}} if FY1 ∩ FY2 6= ∅ and Y1 ∧ Y2 = X otherwise.

3. \Y = X ∪ {{(βX \X) \ FY }} for ∅ 6= FY 6= βX \X.

Remark 1. The proof of Theorem 1 shows that B(X) is isomorphic (as a Boolean
algebra) to the algebra of all clopen subsets of the remainder βX \X of X. One easily
concludes that the Stone space of B(X) is homeomorphic to the space of all connected
components of βX \X (that is, the space obtained from βX \X by identifying points
that lie in a common connected component).
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Now that we know that B(X) is a Boolean algebra, we will focus on describing it
without using A(X). If we add a point {∞Y } to a locally compact Hausdorff space X
to get its one-point local compactification Y , we only need to know the neighborhood
basis at {∞Y } to know its topology. To this end, let us introduce the following
characterization. For simplicity, we will also use one more definition.

Definition 3. Let X be a locally compact Hausdorff space, Y its one-point local
compactification. Then

τ(Y ) := {U\{∞Y } : U open neighborhood of ∞Y in Y }.

τ(Y ) uniquely determines Y 6= X, Y ∈ B(X).

Proposition 1. Let X be a locally compact Hausdorff space, Y1, Y2 ∈ B(X), Y1, Y2 6=
0, Y1, Y2 6= 1.

1. τ(Y1 ∧ Y2) = {U1 ∩ U2 : U1 ∈ τ(Y1), U2 ∈ τ(Y2)}, provided that the sets U1 ∩ U2
are nonempty for all U1 ∈ τ(Y1), U2 ∈ τ(Y2) and Y1 ∧ Y2 = 0 otherwise.

2. τ(Y1 ∨ Y2) = {U1 ∪ U2 : U1 ∈ τ(Y1), U2 ∈ τ(Y2)} = τ(Y1) ∩ τ(Y2).

3. τ(\Y1) = {X\F : F ⊂ X, for any U ∈ τ(Y1) F\U compact}.

Or, in terms of convergence:

(a) A net (xγ) ⊂ X in Y1 ∧ Y2 is convergent to ∞Y1∧Y2 iff (xγ) is convergent to
∞Y1 in Y1 and to ∞Y2 in Y2, and Y1 ∧ Y2 = 0 if there is no such net.

(b) A net (xγ) ⊂ X in Y1 ∨ Y2 is convergent to ∞Y1∨Y2 iff every subnet of (xγ) has
a subnet convergent to ∞Y1 in Y1 or to ∞Y2 in Y2.

(c) A net (xγ) ⊂ X in \Y1 is convergent to ∞\Y1 iff (xγ) has no convergent subnets
in Y1.

Proof. Again, let βX be a Čech–Stone compactification of X.
Note that if Y is a one-point local compactification of X and FY is a clopen set

in βX \X such that Y is equivalent with X ∪ {{FY }}, then

τ(Y ) = {X ∩ U : U ⊃ FY and U open in βX}. (*)

Following this notation consider FY1 and FY2 such that Y1 and Y2 are equivalent
to X ∪ {{FY1}} and X ∪ {{FY2}} respectively.

Property (2) follows easily from (*).
To see that {U1 ∪ U2 : U1 ∈ τ(Y1), U2 ∈ τ(Y2)} = τ(Y1) ∩ τ(Y2), take any U1 ∈

τ(Y1), U2 ∈ τ(Y2). U2 = (U2 ∪ {∞Y2}) ∩ X is open in X, and thus open in Y1.
U1∪{∞Y1} is also open in Y1 and thus so is U1∪{∞Y1}∪U2. Similarly, U1∪{∞Y2}∪U2
is open in Y2. The reverse inclusion is trivial.

We turn to (1). If FY1 ∩ FY1 = ∅ we have Y1 ∧ Y2 = 0, assume the contrary.
Consider U open in βX such that FY1 ∩ FY1 ⊂ U and take V1, V2 open in βX such
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that V1 ∩ V2 = ∅, and we have FY1 \ U ⊂ V1 and FY2 \ U ⊂ V2. Then U1 := V1 ∪ U
and U2 := V2 ∪ U are open (in βX) supersets of respectively FY1 and FY2 such that
U1 ∩ U2 = U , which gives us (1).

We are left with (3). To see that

τ(\Y1) ⊂ {X\F : F ⊂ X, for any U ∈ τ(Y1) F\U compact},

consider V open in βX such that (βX \X) \ FY1 ⊂ V and take any U open in βX
such that FY1 ⊂ U . Then (X \ V ) \ U = X \ (U ∪ V ) = βX \ (U ∪ V ) is a closed
subset of βX contained in X and therefore compact.

For the reverse inclusion, let V0 and W0 be open sets with disjoint closures in
βX such that (βX \ X) \ FY1 ⊂ V0 and FY1 ⊂ W0. Consider F ⊂ X such that
for any U ∈ τ(Y1) the set F\U is compact. Take any x ∈ X and its closed (in X)
neighborhood G such that G is compact. Then X \G ∈ τ(Y1), so F ∩G is compact.
Since x and its neighborhood G were arbitrary, this implies that F is closed in X
(since if we take x from the boundary of F , we get that it must be in F ). Similarly,
since F∩V0 ⊂ F \W0 and W0∩X ∈ τ(Y1), we get that F∩V0 is compact which implies
that F ∪FY1 is closed in βX. Therefore we have X \F = X∩(βX \(F ∪F0)) ∈ τ(\Y1)
which ends the proof of (3).

Properties (a) – (c) follow easily from (1) – (3).

On the other hand, one can wonder when a family F of sets open in a locally com-
pact Hausdorff space X induces its one-point local compactifiaction. The following
proposition answers that question.

Proposition 2. Let F be a filter of open sets in a locally compact Hausdorff space
X. Then F induces a one-point local compactification Y of X such that τ(Y ) = F
iff:

1.
⋂
F = ∅,

2. there exists U ∈ F such that for every V ∈ F , U\V is compact,

3. for every U ∈ F there exists V ∈ F such that V ⊂ U .

Proof. It follows from the definition of τ(Y ) and the definition of a locally compact
Hausdorff space that those conditions are necessary. We will prove that they are also
sufficient. We take Y := X∪{∞Y }. A set is open in Y iff it is open in X or it is of the
form U ∪{∞Y } for some U ∈ F . It follows from (1) and (3) that the topology defined
like that is Hausdorff. It remains to show that Y is locally compact. Take U ∈ F
such that for every V ∈ F U\V is compact and assume that U (closure taken in Y ) is
not compact. It follows that there exists a net (xγ) ⊂ U with no convergent subnets.
In particular, (xγ) is not convergent to ∞Y , so there exists V1 a neighborhood of
∞Y and (yγ) a subnet of (xγ) such that (yγ) ⊂ U\V1 with no convergent subnets, a
contradiction.

We will now provide a characterization for B(Rn). To this end, we will need facts
about n-point Hausdorff compactifications (see [5] or [3, Theorem 6.8]).
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Theorem 2 (Theorem 2.1 in [5]). The following statements concerning a space X
are equivalent:

1. X has a N -point compactification.

2. X is locally compact and contains a compact subset K whose complement is the
union of N mutually disjoint, open subsets {Gi}Ni=1 such that K ∪ Gi is not
compact for each i.

3. X is locally compact and contains a compact subset K whose complement is
the union of N mutually disjoint, open subsets {Gi}Ni=1 such that K ∪ Gi is
contained in no compact subset for each i.

Using this, we can prove the following facts.

Lemma 1. Let X be a locally compact, noncompact Hausdorff space such that for
any K ⊂ X compact there exists K0 compact such that K ⊂ K0 and X\K0 has
exactly n connected components (for some fixed n ∈ N independent of the choice
of K), all of them are open and have noncompact (in X) closures. Then X has
an n-point Hausdorff compactification and does not have an (n + 1)-point Hausdorff
compactification.

Lemma 2. Let n ∈ N and X be a Hausdorff topological space that has an n-point
Hausdorff compactification and does not have an (n+ 1)-point Hausdorff compactifi-
cation. Then X is locally compact and |B(X)| = 2n.

We will start with Lemma 1.
Proof. Applying the assumption of the lemma to the empty set we get that there
exists n ∈ N and K0 compact such that X\K0 has exactly n connected components,
let us denote them by G1, . . . , Gn. Therefore (by [5]) X has an n-point Hausdorff
compactification. Suppose that X has an (n+ 1)-Hausdorff compactification. Again
by [5], there exist H1, . . . ,Hn+1 such that K1 := X \

⋃n+1
i=1 Hi is compact, but for each

i the set K1 ∪Hi is not compact. Applying the assumption of the lemma again, this
time to K1, we get that there exists a compact set K2 such that K1 ⊂ K2 and X \K2
has n connected components, let us denote them by V1, . . . , Vn. Then there exist
i0 ∈ {1, . . . , n} and j1, j2 ∈ {1, . . . , n + 1} such that j1 6= j2 and Hi0 has nonempty
intersection with both Vj1 , Vj2 , so it cannot be connected, a contradiction.

Now we turn to Lemma 2.
Proof. Since X has an n-point Hausdorff compactification, but does not have an
n+ 1-point Hausdorff compactification, βX \X has exactly n connected components.
From the proof of Theorem 1 we know that |B(X)| = |A(X)|. Each element of A(X)
is a union of some connected components of βX \X, so |B(X)| = |A(X)| = 2n.

Remark 2. Note that if we assume that if X is a locally compact space such that
|B(X)| = 2n, we also get that X has an n-point Hausdorff compactification and does
not have an (n+ 1)-point Hausdorff compactification (see also [3, Theorem 6.32]).
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From the above lemmas we immediately get the following.

Corollary 1.

• B(R) = {R, [−∞,∞), (−∞,∞],S1}.

• B(Rn) = {Rn,Sn} for n > 2.

We will now define the end of manifolds, as seen in [2].

Definition 4. Let L be a noncompact, connected manifold. Denote by {Kα}α∈K the
family of all compact subsets of L. We consider descending chains

Uα1 ! Uα2 ! · · · ! Uαn
! · · ·

where each Uαk
is a connected component of L\Kαk

, has noncompact closure in L,
satisfies Uαk

! Uαk+1 and
∞⋂
k=1

Uαk
= ∅.

We say that two such chains U = {Uαk
}∞k=1 and V = {Uβk

}∞k=1 are equivalent (U ∼ V)
if for each k > 1 there is n > k such that Uαk

⊃ Vβn
and Vβk

⊃ Uαn
. It is easy to

check that ∼ is an equivalence relation. If

U = {Uα1 ! Uα2 ! · · · ! Uαn ! · · · }

is as above, we call its equivalence class under ∼ an end of L.

Corollary 2.
If L is a noncompact, connected, second countable manifold with n ends, n <∞, then
|B(L)| = 2n.

Proof. Let
U1 = {U1

α1
! U1

α2
! · · · }

...
Un = {Unα1

! Unα2
! · · · }

be representatives of the ends of L.
For every k ∈ {1, 2, . . .}, l ∈ {1, 2, . . . , n} let Kl

αk
be a compact set such that U lαk

is a connected component of L\Kl
αk

. We will show that by taking subsequences
of U2, . . . ,Un we can assume that U l2αk

⊂ L\Kl1
αk

for every l2 > l1 (note that a
subsequence of a representative of an end is a representative of the same end).

Consider K1
α1

. Then {L\U2
α1
, L\U2

α2
, . . .} is an open cover of K1

α1
so there exists

N1 > 0 such that K1
α1
⊂ L\U2

αN1
⊂ L\U2

αN1
. Therefore U2

αN1
⊂ L\K1

α1
. Similarly,

for each m > 1, we can define Nm > Nm−1 such that U2
αNm

⊂ L\K1
αm

. Replacing
U2
αm

by U2
αNm

for each m > 0 we get a subsequence we want for U2. Now we proceed
similarly for U3, . . . ,Un.
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We will now show that by again taking subsequences we can assume that for
every l1 6= l2 we have U l1α1

∩ U l2α1
= ∅. Assume the contrary. Then, without loss of

generality, for each k > 0 we have U1
αk
∩ U2

αk
6= ∅. Since U2

αk
⊂ L\K1

αk
, the set U2

αk

is connected, U1
αk

is a connected component of L\K1
αk

and U1
αk
∩ U2

αk
6= ∅, it follows

that U2
αk
⊂ U1

αk
for each k > 0. Now consider K2

αk
. As before, there exists Nk > k

such that K2
αk
⊂ L\U1

αNk
. It follows that U1

αNk
⊂ L\K2

αk
. If U1

αNk
6⊂ U2

αk
then

U1
αNk
∩ U2

αk
= ∅, so U1

αNk
∩ U2

αNk
= ∅ (since U2

αNk
⊂ U2

αk
). Therefore U1

αNk
⊂ U2

αk

and so U1 and U2 are representatives of the same end, a contradiction.
Now our aim is to use Lemmas 1 and 2, which will end the proof. To this end,

we will construct a family of compact sets {Kj}∞j=1. We will need some properties
of manifolds, namely that a second countable manifold is metrizable and that the
one-point compactification of a connected manifold is locally connected (see [4] or [6,
page 104]). Let ωL = L ∪ {∞} be the one-point compactification of L. Since L is
second countable we can choose a countable basis of its topology B = {B1, B2, B3, . . .}
consisting of open sets with compact closures. Take A1 := K1

α1
∪ . . .∪Kn

α1
∪B1. Let

K1 be a compact superset of A1 such that ωL\K1 is connected (it exists because ωL
is locally connected). Note that connected components of L\K1 are all open and have
noncompact (in L) closures (because ∞ is in the closure taken in ωL of every one of
them). Again, because L is locally compact we can take an open set A2 with compact
closure such that K1 ∪ B2 ⊂ A2. Let K2 be a compact superset of A2 such that
ωL\K2 is connected. As before, all connected components of L\K2 are open and have
noncompact (in L) closures. Moreover, each of them is contained together with its
closure in some connected component of L\K1. Note that since ωL\K2 has non-empty
intersection with every connected component of L\K1 (because ∞ is in the closure
taken in ωL of every one of them), for every connected component of L\K1 there is at
least one connected component of L\K2 contained in it. Continuing in this manner,
we get {Kj}∞j=1. Note that Kj is contained in the interior of Kj+1 for each j > 1
and

⋃∞
j=1Kj = L. Moreover, when j increases the number of connected components

of L\Kj either increases or stays the same. Consider a connected component U1 of
L\K1. We want to show that U1∩U iα1

6= ∅ for some i. Indeed, otherwise by choosing
a connected component U2 of U1 \K2, then a connected U3 of U2 \K3 etc. we would
get a representative of an end that is not among U1, . . . ,Un, a contradiction. Suppose
that U1 ∩ U1

α1
6= ∅. Since K1

α1
⊂ K1 and U1

α1
, U1 are connected components of their

complements we get U1 ⊂ U1
α1

. The sets U iα1
are pairwise disjoint, so L \K1 has at

least n connected components. Moreover, the number of connected components of
L\Kj cannot increase past n for any j. Indeed, if we had at least n + 1 connected
components of L \ Kj for some j, we could construct at least n + 1 different ends
(similarly as before) which again contradicts the fast that U1, . . . ,Un are all of the
ends in L. Lemma 1 ends the proof.

From this and Remark 2 we also get the following.

Corollary 3. If L is a noncompact, connected, second countable manifold with n
ends, n <∞, then L has an n-point Hausdorff compactification and does not have an
(n+ 1)-point Hausdorff compactification.
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