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1. Introduction

Let A denote the class of analytic functions of the form

f(z) = z +

∞∑
k=2

akz
k, (1.1)

which are analytic in the open unit disk U = {z ∈ C : |z| < 1} . Let S∗(α) and
K(α)(0 ≤ α < 1) denote the subclasses of A that consists, respectively, of starlike of
order α and convex of order α in the disk U. It is well known that S∗(α) ⊂ S∗(0) = S∗
and K(α) = K(0) = K.

If f(z) and g(z) are analytic in U, we say that f(z)is subordinate to g(z), written
f(z) ≺ g(z) if there exists a Schwarz function ω, which by definition is analytic in U
with ω(0) = 0 and |ω(z)| < 1, such that f(z) = g(ω(z)), for all z ∈ U. Furthermore,
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if the function g(z) is univalent in U, then we have the following equivalence :
f(z) ≺ g(z)⇐⇒ f(0) = g(0) and f(U) ⊂ g(U).

For the fucntion f(z) given by (1.1) and g(z) given by

g(z) = z +

∞∑
k=2

bkz
k (1.2)

the Hadmard product or convolution of f(z) and g(z) is defined by

(f ∗ g)(z) = z +

∞∑
k=2

akbkz
k = (g ∗ f)(z) (1.3)

Making use of principle of subordination between analytic functions. We introduce
the subclasses S∗[λ, φ] and K[λ, φ] of the class A for −1 ≤ λ ≤ 1 which are defined
by

S∗[λ, φ] =

{
f ∈ A :

zf ′(z)

[(1− λ)f(z) + λzf ′(z)]
≺ φ(z) (z ∈ U)

}
(1.4)

and

K[λ, φ] =

{
f ∈ A :

zf ′′(z) + f ′(z)

[f ′(z) + λzf ′′(z)]
≺ φ(z) (z ∈ U)

}
(1.5)

For complex parameters a1, ..., aq; b1, ..., bs(bj 6∈ Z−0 = {0,−1,−2, ...} ; j = 1, ..., s),
we define the generalized hypergeometric function qFs(a1, ..., ai, ..., aq; b1, ..., bs; z) by
[12] the following infinite series:

qFs(a1, ..., ai, ..., aq; b1, ..., bs; z) =

∞∑
k=0

(a1)k...(aq)k
(b1)k...(bs)k

zk

k!
(1.6)

(q ≤ s+ 1; q, s ∈ N0 = N ∪ {0} ; z ∈ U),

where (α)k is Pochhammer symbol defined by

(α)k =

{
1 for k = 0
α(α+ 1). . .(α+ k − 1) for k ∈ N

Dziok and Srivastava [4] considered a linear operator H(a1, ..., aq; b1, ..., bs) : A → A
defined by the following Hadamard product:

H(a1, ..., aq; b1, ..., bs)f(z) = h(a1, ..., aq; b1, ..., bs; z) ∗ f(z) (1.7)

where
h(a1, ..., ai, ..., aq; b1, ..., bs; z) = zqFs(a1, ..., aq; b1, ..., bs; z)

(q ≤ s+ 1; q, s ∈ N0; z ∈ U).
If f(z) ∈ A is given by (1.1), then we have

H(a1, ..., aq; b1, ..., bs)f(z) = z +

∞∑
k=2

Γk[a1; b1]akz
k, (1.8)
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where

Γk[a1; b1] =
(a1)k−1...(aq)k−1

(b1)k−1...(bs)k−1(k − 1)!
(1.9)

The Dziok-Srivastava linear operator Hq,s[a1; b1] includes various other operators,
which were considered in earlier works. We can quote here for example linear opera-
tors introduced by Carlson and Shaffer, Bernardi, Libera and Livingston, Choi, Saigo
and Srivastava, Kim and Srivastava, Srivastava and Owa, Cho, Kwon and Srivastava,
Ruscheweyh, Hohlov, Salagean, Noor, and others (see for details [8], [9] and []).

In recent years, many interesting subclasses of analytic functions associated with
the Dziok-Srivastava operator Hq,s[a1; b1] and its many special cases were investi-
gated by, for example, Murugusundaramoorthy and Magesh [7], Srivastava et al.
([13],[14]),Wang et al. [15] and others.

In this paper, we investigate convolution properties of the classes S∗[a1;λ, φ] and
K[a1;λ, φ] associated with the operator Hq,s[a1; b1]. Using convolution properties, we
find the necessary and sufficient condition and coefficient estimate for these classes.

2. Convolution properties

We assume that 0 < θ < 2π,−1 ≤ λ ≤ 1 throughout this section and Γk[a1; b1]is
defined by (1.9)
Theorem 1. The function f(z) defined by (1.1) is in the class S∗[λ, φ] if and only
if.

1

z

f(z) ∗
z − (λ−1)φ(eiθ)

1−φ(eiθ) z2

(1− z)2

 6= 0 (z ∈ U, 0 < θ2π) (2.1)

Proof. A function f(z) is in the class S∗[λ, φ] if and only if

zf ′(z)

[(1− λ)f(z) + λzf ′(z)]
6= φ(eiθ) (z ∈ U, 0 < θ < 2π) (2.2)

which is equivalent to

zf ′(z) 6= φ(eiθ) [(1− λ)f(z) + λzf ′(z)] ,

1

z

[
zf ′(z)

[
1− λφ(eiθ)

]
− (1− λ)φ(eiθ)f(z)

]
6= 0. (2.3)

Since
f(z) = f(z) ∗ 1

(1−z) and zf ′(z) = f(z) ∗ 1
(1−z)2 ,

The equation (2.3) can be written as

1

z

[
f(z) ∗

(
(1− λφ(eiθ))

z

(1− z)2
− (1− λ)φ(eiθ)

z

1− z

)]

=
1− φ(eiθ)

z

[
f(z) ∗ z − ((λ− 1)φ(eiθ)/(1− φ(eiθ)))z2

(1− z)2

]
6= 0, (0 < θ < 2π). (2.4)
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this completes the proof of Theorem 1.
Theorem 2. The function f(z) defined by (1.1) is in the class K[λ, φ] if and only
if.

1

z

[
f(z) ∗ z − ((1 + (1− 2λ)φ(eiθ))/(φ(eiθ)− 1)z2

(1− z)3

]
6= 0, (z ∈ U). (2.5)

Proof. Let us take

g(z) =
z − ((λ− 1)φ(eiθ)/(1− φ(eiθ)))z2

(1− z)2
, (2.6)

from which we get

zg′(z) =
z − ((1 + (1− 2λ)φ(eiθ))/(φ(eiθ)− 1))z2

(1− z)3
(0 < θ < 2π). (2.7)

Also from the identity zf ′(z) ∗ g(z) = f(z) ∗ zg′(z), (f, g ∈ A) and the fact that

f(z) ∈ K[λ, φ]⇐⇒ zf ′(z) ∈ S∗[λ, φ].

the result (2.5) follows from Theorem 1.
Theorem 3. A necessary and sufficient condition for the function f(z) defined by
(1.1) to be in the class S∗q,s[a1;λ, φ] is that.

1 +

∞∑
k=2

(1− λ)φ(eiθ) + k(λφ(eiθ)− 1)

φ(eiθ)− 1
Γk[a1, b1]akz

k−1 6= 0 (z ∈ U, 0 < θ < 2π)

(2.8)
Proof. From Theorem 1, we can say that f(z) ∈ S∗q,s[a1, λ, φ] if and only if

1

z

[
Hq,s[a1, b1]f(z) ∗ z − ((λ− 1)φ(eiθ)/(1− φ(eiθ)))z2

(1− z)2

]
6= 0, (z ∈ U, 0 < θ < 2π).

(2.9)
From (1.8), the left hand side of (2.9) can be written as

1

z

[
Hq,s[a1, b1]f(z) ∗

(
z

(1− z2)
− (1− λ)φ(eiθ)

φ(eiθ)− 1

z2

(1− z)2

)]
, (0 < θ < 2π). (2.10)

=
1

z
[z(Hq,s(a1, b1))f(z)′

− (1− λ)φ(eiθ)

φ(eiθ)− 1
{z(Hq,s(a1, b1))f(z)′ − (Hq,s(a1, b1))f(z)}

]
. (2.11)

= 1 +

∞∑
k=2

(1− λ)φ(eiθ) + k(λφ(eiθ)− 1)

φ(eiθ)− 1
Γk[a1, b1]akz

k−1, (0 < θ < 2π). (2.12)
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Thus the proof is completed.
Theorem 4. A necessary and sufficient condition for the function f(z) defined by
(1.1) to be in the class Kq,s[a1;λ, φ] is that

1 +

∞∑
k=2

k
(1− λ)φ(eiθ) + k(λφ(eiθ)− 1)

φ(eiθ)− 1
Γk[a1, b1]akz

k−1 6= 0, (z ∈ U, 0 < θ < 2π)

(2.13)
Proof. From Theorem 1, we find that f(z) ∈ Kq,s[a1;λ, φ] if and only if

1

z

[
Hq,s[a1, b1]f(z) ∗ z − ((1 + (1− 2λ)φ(eiθ))/(φ(eiθ)− 1)z2

(1− z)3

]
6= 0, (z ∈ U). (2.14)

Using the definition (1.8), the above equation can be written as

1

z

[
Hq,s[a1, b1]f(z) ∗

(
z

(1− z)3
− (1 + (1− 2λ)φ(eiθ))

(φ(eiθ)− 1)

z

(1− z)3

)]
=

1

z

[
z

2
(zHq,s[a1, b1]f(z))

′′ − (1 + (1− 2λ)φ(eiθ))

2(φ(eiθ)− 1)
z2(Hq,s[a1, b1]f(z))′′

]
= 1 +

∞∑
k=2

k
(1− λ)φ(eiθ) + k(λφ(eiθ)− 1)

φ(eiθ)− 1
Γk[a1, b1]akz

k−1 (2.15)

which proves the Theorem.
Theorem 5. If the function f(z) defined by (1.1) belongs to S∗q,s[a1;λ, φ] then

∞∑
k=2

(1− λ)|φ(eiθ)| − |(λφ(eiθ)− 1)|k)Γk[a1, b1]|ak| ≤ |1− φ(eiθ)| (2.16)

Proof. Since∣∣∣∣∣1−
∞∑
k=2

(1− λ)φ(eiθ) + k(λφ(eiθ)− 1)

1− φ(eiθ)
Γk[a1, b1]akz

k−1

∣∣∣∣∣ (z ∈ U)

≥ 1−
∞∑
k=2

∣∣∣∣ (1− λ)φ(eiθ) + k(λφ(eiθ)− 1)

1− φ(eiθ)

∣∣∣∣Γk[a1, b1] |ak|

=>

∞∑
k=2

(
(1− λ)

∣∣φ(eiθ)
∣∣− ∣∣(λφ(eiθ)− 1)

∣∣ k)Γk[a1, b1] |ak| ≤
∣∣1− φ(eiθ)

∣∣
Theorem 6. If the function f(z) defined by (1.1) belongs to Kq,s[a1;λ, φ] then

∞∑
k=2

((1− λ)|φ(eiθ)| − |(λφ(eiθ)− 1)|k)kΓk[a1, b1]|ak| ≤ |1− φ(eiθ)| (2.17)

Remark. Putting φ(eiθ) = 1+Aeiθ

1+Beiθ
and λ = 0 in theorems 1 to 6, we get the results

given recently by Aouf and Seoudy [2], Some of the results by Aouf and Seoudy also
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contain the result due to Silverman ([10], [11]) and Ahuja [1].
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