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1. Introduction

The differential equations of fractional order are generalizations of classical differential
equations of integer order. They are increasingly used in a variety of fields such as fluid
flow, control theory of dynamical systems, signal and image processing, aerodynamics,
electromagnetics, probability and statistics, (Samko et al. 1993 [18], Podlubny 1999
[17], Kilbas et al. 2006 [9], Diethelm 2010 [3]) books can be checked as a reference.

Boundary value problem of fractional differential equations is recently approached
by various researchers ([1], [8], [19], [20]).

In [20], Bai and L used some fixed point theorems on cone to show the existence
and multiplicity of positive solutions for a Dirichlet-type problem of the nonlinear
fractional differential equation:{

Dα0+u (t) + f (t, u (t)) = 0, 0 < t < 1,
u (0) = u (1) = 0,
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where Dα0+u is the standard Riemann Liouville fractional derivative of order 1 < α ≤ 2
and f : [0, 1]× [0,∞)→ [0,∞) is continuous function.

In a recent work [8], Katugampola studied the existence and uniqueness of solu-
tions for the following initial value problem:{ ρ

cDα0+u (t) = f (t, u (t)) , α > 0,

Dku (0) = u
(k)
0 , k = 1, 2, ...,m− 1,

where m = [α] , ρcDα0+ is the Caputo-type generalized fractional derivative, of order α,
and f : G→ R is a given continuous function with:

G =

{
(t, u) : t ∈ [0, h∗] ,

∣∣∣∣∣u−
m−1∑
k=0

tku
(k)
0

k!

∣∣∣∣∣ ≤ K, K, h∗ > 0

}
.

This paper focuses on the existence and uniqueness of solutions for a nonlinear frac-
tional differential equation involving Katugampola fractional derivative:

ρDα0+u (t) + βf (t, u (t)) = 0, 0 < t < T, (1.1)

supplemented with the boundary conditions:

u (0) = 0, u (T ) = 0, (1.2)

where β ∈ R, and ρDα0+ for ρ > 0, presents Katugampola fractional derivative of
order 1 < α ≤ 2, f : [0, T ] × [0,∞) → [h,∞) is a continuous function, with finite
positive constants h, T.

2. Background materials and preliminaries

In this section, some necessary definitions from fractional calculus theory are pre-
sented. Let Ω = [0, T ] ⊂ R be a finite interval.

As in [9], let us denote by Xp
c [0, T ] , (c ∈ R, 1 ≤ p ≤ ∞) the space of those

complex-valued Lebesgue measurable functions y on [0, T ] for which ‖y‖Xpc < ∞
is defined by

‖y‖Xpc =

(∫ T

0

|scy (s)|p ds
s

) 1
p

<∞,

for 1 ≤ p <∞, c ∈ R, and

‖y‖X∞c = ess sup
0≤t≤T

[tc |y (t)|] , (c ∈ R) .

Definition 2.1 (Riemann-Liouville fractional integral [9]). The left-sided Riemann-
Liouville fractional integral of order α > 0 of a continuous function y : [0, T ] → R is
given by:

RLIα0+y (t) =
1

Γ (α)

∫ t

0

(t− s)α−1
y (s) ds, t ∈ [0, T ] ,

where Γ (α) =
∫ +∞

0
e−ssα−1ds, is the Euler gamma function.
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Definition 2.2 (Riemann-Liouville fractional derivative [9]). The left-sided Riemann
Liouville fractional derivative of order α > 0 of a continuous function y : [0, T ]→ R is
given by:

RLDα0+y (t) =
1

Γ (n− α)

(
d

dt

)n ∫ t

0

(t− s)n−α−1
y (s) ds, t ∈ [0, T ] , n = [α] + 1,

Definition 2.3 (Hadamard fractional integral [9]). The left-sided Hadamard frac-
tional integral of order α > 0 of a continuous function y : [0, T ]→ R is given by:

HIα0+y (t) =
1

Γ (α)

∫ t

0

(
log

t

s

)α−1

y (s)
ds

s
, t ∈ [0, T ] .

Definition 2.4 (Hadamard fractional derivative [9]). The left-sided Hadamard frac-
tional derivative of order α > 0 of a continuous function y : [0, T ] → R is given
by:

HDα0+y (t) =
1

Γ (n− α)

(
t
d

dt

)n ∫ t

0

(
log

t

s

)n−α−1

y (s)
ds

s
, t ∈ [0, T ] , n = [α] + 1,

if the integral exist.

A recent generalization in 2011, introduced by Udita Katugampola [6], combines
the Riemann-Liouville fractional integral and the Hadamard fractional integral into
a single form (see [9]) , the integral is now known as Katugampola fractional integral,
it is given in the following definition:

Definition 2.5 (Katugampola fractional integral [6]).
The left-sided Katugampola fractional integral of order α > 0 of a function y ∈
Xp
c [0, T ] is defined by:

(ρIα0+y) (t) =
ρ1−α

Γ (α)

∫ t

0

sρ−1y (s)

(tρ − sρ)1−α ds, ρ > 0, t ∈ [0, T ] . (2.1)

Similarly, we can define right-sided integrals [6]-[7], [9].

Definition 2.6 (Katugampola fractional derivatives [7]).
Let α, ρ ∈ R+, and n = [α] + 1. The Katugampola fractional derivative corresponding
to the Katugampola fractional integral (2.1) are defined for 0 ≤ t ≤ T ≤ ∞ by:

ρDα0+y (t) =

(
t1−ρ

d

dt

)n (
ρIn−α0+ y

)
(t) =

ρα−n+1

Γ (n− α)

(
t1−ρ

d

dt

)n ∫ t

0

sρ−1y (s)

(tρ − sρ)α−n+1 ds.

(2.2)
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Theorem 2.7 ([7]). Let α, ρ ∈ R+, then

lim
ρ→1

(ρIα0+y) (t) = RLIα0+y (t) =
1

Γ (α)

∫ t

0

(t− s)α−1
y (s) ds,

lim
ρ→0+

(ρIα0+y) (t) = HIα0+y (t) =
1

Γ (α)

∫ t

0

(
log

t

s

)α−1
y (s)

s
ds,

lim
ρ→1

(ρDα0+y) (t) = RLDα0+y (t) =
1

Γ (n− α)

(
d

dt

)n ∫ t

0

(t− s)n−α−1
y (s) ds,

lim
ρ→0+

(ρDα0+y) (t) = HDα0+y (t) =
1

Γ (n− α)

(
t
d

dt

)n ∫ t

0

(
log

t

s

)n−α−1
y (s)

s
ds.

Remark. As an example, for α, ρ > 0, and µ > −ρ, we have

ρDα0+tµ =
ρα−1Γ

(
1 + µ

ρ

)
Γ
(

1− α+ µ
ρ

) tµ−αρ. (2.3)

In particular
ρDα0+tρ(α−m) = 0, for each m = 1, 2, . . . , n.

For µ > −ρ, we have

ρDα0+tµ =
ρα−n+1

Γ (n− α)

(
t1−ρ

d

dt

)n ∫ t

0

sρ+µ−1 (tρ − sρ)n−α−1
ds

=
ρα−n

Γ (n− α)

(
t1−ρ

d

dt

)n
tρ(n−α)+µ

∫ 1

0

τ
µ
ρ (1− τ)

n−α−1
dτ

=
ρα−n

Γ (n− α)
B

(
n− α, 1 +

µ

ρ

)(
t1−ρ

d

dt

)n
tρ(n−α)+µ

=
ρα−nΓ

(
1 + µ

ρ

)
Γ
(

1 + n− α+ µ
ρ

) (t1−ρ d
dt

)n
tρ(n−α)+µ.

Then

ρDα0+tµ =
ρα−1Γ

(
1 + µ

ρ

)
Γ
(

1 + n− α+ µ
ρ

) [n− α+
µ

ρ

] [
n− α− 1 +

µ

ρ

]
· · ·
[
1− α+

µ

ρ

]
tµ−αρ.

(2.4)
As

Γ

(
1 + n− α+

µ

ρ

)
=

[
n− α+

µ

ρ

] [
n− α− 1 +

µ

ρ

]
· · ·
[
1− α+

µ

ρ

]
Γ

(
1− α+

µ

ρ

)
,

we get

ρDα0+tµ =
ρα−1Γ

(
1 + µ

ρ

)
Γ
(

1− α+ µ
ρ

) tµ−αρ.
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In case m = α− µ
ρ , it follows from (2.4) , that

ρDα0+tρ(α−m) = ρα−1 Γ (α−m+ 1)

Γ (n−m+ 1)
(n−m) (n−m− 1) · · · (1−m) t−ρm.

So, for m = 1, 2, . . . , n, we get

ρDα0+tρ(α−m) = 0.

Similarly, for all α, ρ > 0, we have:

ρIα0+tµ =
ρ−αΓ

(
1 + µ

ρ

)
Γ
(

1 + α+ µ
ρ

) tµ+αρ, ∀µ > −ρ. (2.5)

By C [0, T ] , we denote the Banach space of all continuous functions from [0, T ] into
R with the norm:

‖y‖ = max
0≤t≤T

|y (t)| .

Remark. Let p ≥ 1, c > 0 and T ≤ (pc)
1
pc . Far all y ∈ C [0, T ] , note that

‖y‖Xpc =

(∫ T

0

|scy (s)|p ds
s

) 1
p

≤

(
‖y‖p

∫ T

0

spc−1ds

) 1
p

=
T c

(pc)
1
p

‖y‖ ,

and

‖y‖X∞c = ess sup
0≤t≤T

[tc |y (t)|] ≤ T c ‖y‖ ,

which imply that C [0, T ] ↪→ Xp
c [0, T ] , and

‖y‖Xpc ≤ ‖y‖∞ , for all T ≤ (pc)
1
pc .

We express some properties of Katugampola fractional integral and derivative in
the following result.

Theorem 2.8 ([6]-[7]-[8]).
Let α, β, ρ, c ∈ R, be such that α, β, ρ > 0. Then, for any y ∈ Xp

c [0, T ] , where
1 ≤ p ≤ ∞, we have:
- Index property:

ρIα0+
ρIβ0+y (t) = ρIα+β

0+ y (t) , for all α, β > 0,
ρDα0+

ρDβ0+y (t) = ρDα+β
0+ y (t) , for all 0 < α, β < 1.

- Inverse property

ρDα0+
ρIα0+y (t) = y (t) , for all α ∈ (0, 1) .
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From Definitions 2.5 and 2.6, and Theorem 2.8, we deduce that

ρI1
0+

(
t1−ρ

d

dt

)
ρIα+1

0+ y (t) =

∫ t

0

sρ−1

(
s1−ρ d

ds

)
ρIα+1

0+ y (s) ds

=

∫ t

0

d

ds
ρIα+1

0+ y (s) ds

=

[
1

ραΓ (α+ 1)

∫ s

0

τρ−1 (tρ − τρ)α y (τ) dτ

]t
0

= ρIα+1
0+ y (t) .

Consequently (
t1−ρ

d

dt

)
ρIα+1

0+ y (t) = ρIα0+y (t) , ∀α > 0. (2.6)

Definition 2.9 ([4]). Let E be a real Banach space, a nonempty closed convex set
P ⊂ E is called a cone of E if it satisfies the following conditions:
(i) u ∈ P, λ ≥ 0, implies λu ∈ P.
(ii) u ∈ P, −u ∈ P, implies u = 0.

Definition 2.10 ([2]). Let E be a Banach space, P ∈ C (E) is called an equicontin-
uous part if and only if

∀ε > 0, ∃δ > 0, ∀u, v ∈ E, ∀A ∈ P, ‖u− v‖ < δ ⇒ ‖A (u)−A (v)‖ < ε.

Theorem 2.11 (Ascoli-Arzel [2]). Let E be a compact space. If A is an equicontin-
uous, bounded subset of C (E) , then A is relatively compact.

Definition 2.12 (Completely continuous [4]). We say A : E → E is completely
continuous if for any bounded subset P ⊂ E, the set A (P ) is relatively compact.

The following fixed-point theorems are fundamental in the proofs of our main
results.

Lemma 2.13 (Guo-Krasnosel’skii fixed point theorems [12]).
Let E be a Banach space, P ⊆ E a cone, and Ω1, Ω2 two bounded open balls of
E centered at the origin with Ω̄1 ⊂ Ω2. Suppose that A : P ∩

(
Ω̄2\Ω1

)
→ P is a

completely continuous operator such that either

(i) ‖Ax‖ ≤ ‖x‖ , x ∈ P ∩ ∂Ω1 and ‖Ax‖ ≥ ‖x‖ , x ∈ P ∩ ∂Ω2, or

(ii) ‖Ax‖ ≥ ‖x‖ , x ∈ P ∩ ∂Ω1 and ‖Ax‖ ≤ ‖x‖ , x ∈ P ∩ ∂Ω2,

holds. Then A has a fixed point in P ∩
(
Ω̄2\Ω1

)
.

Theorem 2.14 (Banach’s fixed point [5]). Let E be a Banach space, P ⊆ E a non-
empty closed subset. If A : P → P is a contraction mapping, then A has a unique
fixed point in P.
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3. Main results

In the sequel, T, p and c are real constants such that

p ≥ 1, c > 0, and T ≤ (pc)
1
pc .

Now, we present some important lemmas which play a key role in the proofs of the
main results.

Lemma 3.1. Let α, ρ ∈ R+. If u ∈ C [0, T ] , then:

(i) The fractional equation ρDα0+u (t) = 0, has a solution as follows:

u (t) = C1t
ρ(α−1)+C2t

ρ(α−2)+· · ·+Cntρ(α−n), where Cm ∈ R, with m = 1, 2, . . . , n.

(ii) If ρDα0+u ∈ C [0, T ] and 1 < α ≤ 2, then:

ρIα0+
ρDα0+ u (t) = u (t) + C1t

ρ(α−1) + C2t
ρ(α−2), for some C1, C2 ∈ R. (3.1)

Proof. (i) Let α, ρ ∈ R+. From remark 2, we have:

ρDα0+tρ(α−m) = 0, for each m = 1, 2, . . . , n.

Then, the fractional differential equation ρDα0+u (t) = 0, admits a solution as follows:

u (t) = C1t
ρ(α−1) + C2t

ρ(α−2) + · · ·+ Cnt
ρ(α−n), Cm ∈ R, m = 1, 2, . . . , n.

(ii) Let ρDα0+u ∈ C [0, T ] be the fractional derivative (2.2) of order 1 < α ≤ 2. If we
apply the operator ρIα0+ to ρDα0+u (t) and use Definitions 2.5, 2.6, Theorem 2.8 and
property (2.6), we get

ρIα0+
ρDα0+u (t) =

(
t1−ρ

d

dt

)
ρIα+1

0+
ρDα0+u (t)

=

(
t1−ρ

d

dt

)[
ρ−α

Γ (α+ 1)

∫ t

0

(tρ − sρ)α sρ−1 ρDα0+u (s) ds

]
=

(
t1−ρ

d

dt

)[
ρ−α

Γ (α+ 1)

∫ t

0

(tρ − sρ)αsρ−1

[(
s1−ρ d

ds

)2
ρI2−α

0+ u (s)

]
ds

]

=

(
t1−ρ

d

dt

)[
ρ−α

Γ (α+ 1)

∫ t

0

(tρ − sρ)α d
ds

[(
s1−ρ d

ds

)
ρI2−α

0+ u (s)

]
ds

]
=

(
t1−ρ

d

dt

)[
ρ−α

Γ (α+ 1)

([
(tρ − sρ)α

(
s1−ρ d

ds

)
ρI2−α

0+ u (s)

]t
0

+ αρ

∫ t

0

sρ−1 (tρ − sρ)α−1

(
s1−ρ d

ds

)
ρI2−α

0+ u (s) ds

)]
.
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From (2.6) , we have (
s1−ρ d

ds

)
ρI2−α

0+ u (s) = ρI1−α
0+ u (s) . (3.2)

On the other hand, from (2.2) , we have(
s1−ρ d

ds

)
ρI2−α

0+ u (s) =

(
s1−ρ d

ds

)1
ρI1−(α−1)

0+ u (s) = ρDα−1
0+ u (s) . (3.3)

Then

ρIα0+
ρDα0+u (t) = t1−ρ

d

dt

(
ρ1−α

Γ (α)

∫ t

0

(tρ − sρ)α−1 d

ds
ρI2−α

0+ u (s) ds

)
︸ ︷︷ ︸

ψ

−
ρ1−α ρI1−α

0+ u (0+)

Γ (α)
tρ(α−1),

where

ψ = t1−ρ
d

dt

ρ1−α

Γ (α)

([
(tρ − sρ)α−1 ρI2−α

0+ u (s)
]t

0

+ρ (α− 1)

∫ t

0

sρ−1 (tρ − sρ)α−2 ρI2−α
0+ u (s) ds

)
= t1−ρ

d

dt

(
ρ2−α

Γ (α− 1)

∫ t

0

sρ−1 (tρ − sρ)α−2 ρI2−α
0+ u (s) ds

−
ρ1−α ρI2−α

0+ u (0+)

Γ (α)
tρ(α−1)

)

= t1−ρ
d

dt

(
ρIα−1

0+
ρI2−α

0+ u (t) −
ρ1−α ρI2−α

0+ u (0+)

Γ (α)
tρ(α−1)

)

= t1−ρ
d

dt

(
ρI1

0+u (t)−
ρ1−α ρI2−α

0+ u (0+)

Γ (α)
tρ(α−1)

)

= u (t)−
ρ2−α ρI2−α

0+ u (0+)

Γ (α− 1)
tρ(α−2).

Finally, for 1 < α ≤ 2, we have:

ρIα0+
ρDα0+u (t) = u (t)−

ρ1−α ρI1−α
0+ u (0+)

Γ (α)
tρ(α−1) −

ρ2−α ρI2−α
0+ u (0+)

Γ (α− 1)
tρ(α−2).

(3.4)
As

ρIα0+tµ =
ρ−αΓ

(
1 + µ

ρ

)
Γ
(

1 + α+ µ
ρ

) tµ+αρ, ∀µ > −ρ,
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we use (3.2) , (3.3) , to prove that

ρI1−α
0+

[
C1t

ρ(α−1)
]

=C1

ρ−(1−α)Γ
(

1 + ρ(α−1)
ρ

)
Γ
(

1+(1−α)+ ρ(α−1)
ρ

) tρ(α−1)+(1−α)ρ=C1ρ
α−1Γ(α),(3.5)

ρI1−α
0+

[
C2t

ρ(α−2)
]

=C2
ρDα−1

0+ tρ(α−2) = C2
ρDα−1

0+ tρ((α−1)−1) = 0, (3.6)

for some C1, C2 ∈ R, and

ρI2−α
0+

[
C1t

ρ(α−1)
]

= C1

ρ−(2−α)Γ
(

1 + ρ(α−1)
ρ

)
Γ
(

1 + (2− α) + ρ(α−1)
ρ

) tρ(α−1)+(2−α)ρ = C1ρ
α−2Γ (α) tρ

(3.7)

ρI2−α
0+

[
C2t

ρ(α−2)
]

= C2

ρ−(2−α)Γ
(

1 + ρ(α−2)
ρ

)
Γ
(

1 + (2− α) + ρ(α−2)
ρ

) tρ(α−2)+(2−α)ρ = C2ρ
α−2Γ (α− 1) .

(3.8)
Then, for u (t) = C1t

ρ(α−1) + C2t
ρ(α−2), we have respectively:

ρI1−α
0+ u

(
0+
)

= ρI1−α
0+

[
C1t

ρ(α−1)
] (

0+
)

+ ρI1−α
0+

[
C2t

ρ(α−2)
] (

0+
)

= C1ρ
α−1Γ (α) ,

(3.9)
ρI2−α

0+ u
(
0+
)

= ρI2−α
0+

[
C1t

ρ(α−1)
] (

0+
)
+ρI2−α

0+

[
C2t

ρ(α−2)
] (

0+
)

= C2ρ
α−2Γ (α− 1) .

(3.10)
From (3.4) , (3.5) , (3.6) , (3.7) , (3.8) , (3.9) and (3.10) we get (3.1) .

In the following lemma, we define the integral solution of the boundary value
problem (1.1)-(1.2) .

Lemma 3.2. Let α, ρ ∈ R+, be such that 1 < α ≤ 2. We give ρDα0+u ∈ C [0, T ] ,
and f (t, u) is a continuous function. Then the boundary value problem (1.1)-(1.2) ,
is equivalent to the fractional integral equation

u (t) = β

∫ T

0

G (t, s) f (s, u (s)) ds, t ∈ [0, T ] ,

where

G (t, s) =


ρ1−αsρ−1

Γ(α)

[[
tρ

Tρ (T ρ − sρ)
]α−1 − (tρ − sρ)α−1

]
, 0 ≤ s ≤ t ≤ T,

ρ1−αsρ−1

Γ(α)

[
tρ

Tρ (T ρ − sρ)
]α−1

, 0 ≤ t ≤ s ≤ T,
(3.11)

is the Green’s function associated with the boundary value problem (1.1)-(1.2) .

Proof. Let α, ρ ∈ R+, be such that 1 < α ≤ 2. We apply Lemma 3.1 to reduce the
fractional equation (1.1) to an equivalent fractional integral equation. It is easy to
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prove the operator ρIα0+ has the linearity property for all α > 0 after direct integration.
Then by applying ρIα0+ to equation (1.1) , we get

ρIα0+
ρDα0+u (t) + β ρIα0+f (t, u (t)) = 0.

From Lemma 3.1, we find for 1 < α ≤ 2,

ρIα0+
ρDα0+u (t) = u (t) + C1t

ρ(α−1) + C2t
ρ(α−2),

for some C1, C2 ∈ R. Then, the integral solution of the equation (1.1) is:

u (t) = −βρ
1−α

Γ (α)

∫ t

0

sρ−1f (s, u (s))

(tρ − sρ)1−α ds− C1t
ρ(α−1) − C2t

ρ(α−2). (3.12)

The conditions (1.2) imply that:


u (0) = 0 = 0− 0− lim

t→0
C2tρ(α−2) ⇒ C2 = 0,

u (T ) = 0 = −βρ
1−α

Γ(α)

T∫
0

sρ−1f(s,u(s))

(Tρ−sρ)1−α
ds− C1T ρ(α−1) ⇒ C1 = − βρ1−α

Tρ(α−1)Γ(α)

T∫
0

sρ−1f(s,u(s))

(Tρ−sρ)1−α
ds.

The integral equation (3.12) is equivalent to:

u (t) = −βρ
1−α

Γ (α)

∫ t

0

sρ−1f (s, u (s))

(tρ − sρ)1−α ds+
βtρ(α−1)ρ1−α

T ρ(α−1)Γ (α)

∫ T

0

sρ−1f (s, u (s))

(T ρ − sρ)1−α ds.

Therefore, the unique solution of problem (1.1)-(1.2) is:

u (t) = β

∫ t

0

ρ1−αsρ−1
[[

tρ

Tρ (T ρ − sρ)
]α−1 − (tρ − sρ)α−1

]
Γ (α)

f (s, u (s)) ds

+β

∫ T

t

ρ1−αsρ−1
[
tρ

Tρ (T ρ − sρ)
]α−1

Γ (α)
f (s, u (s)) ds

= β

∫ T

0

G (t, s) f (s, u (s)) ds.

The proof is complete.

3.1. Application of Guo-Krasnosel’skii fixed point theorem

In this part, we assume that β > 0 and 0 < ρ ≤ 1. We impose some conditions on
f, which allow us to obtain some results on existence of positive solutions for the
boundary value problem (1.1)-(1.2) .

We note that u (t) is a solution of (1.1)-(1.2) if and only if:

u (t) = β

∫ T

0

G (t, s) f (s, u (s)) ds, t ∈ [0, T ] .

Now we prove some properties of the Green’s function G (t, s) given by (3.11) .
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Lemma 3.3. Let 1 < α ≤ 2 and 0 < ρ ≤ 1, then the Green’s function G (t, s) given
by (3.11) satisfies:

(1) G (t, s) > 0 for t, s ∈ (0, T ) .

(2) max
0≤t≤T

G (t, s) = G (s, s) , for each s ∈ [0, T ] .

(3) For any t ∈ [0, T ] ,

G (t, s) ≥ b (t)G (s, s) , for any
T

8
≤ s ≤ T and some b ∈ C [0, T ] . (3.13)

Proof. (1) Let 1 < α ≤ 2 and 0 < ρ ≤ 1. In the case 0 < t ≤ s < T, we have:

ρ1−αsρ−1

Γ (α)

[
tρ

T ρ
(T ρ − sρ)

]α−1

> 0.

Moreover, for 0 < s ≤ t < T, we have tρ

Tρ < 1, then tρ

Tρ s
ρ < sρ and tρ− tρ

Tρ s
ρ > tρ−sρ,

thus

tρ − tρ

T ρ
sρ =

tρ

T ρ
(T ρ − sρ) > tρ − sρ ⇒

[
tρ

T ρ
(T ρ − sρ)

]α−1

− (tρ − sρ)α−1
> 0,

which imply that G (t, s) > 0 for any t, s ∈ (0, T ) .
(2) To prove that

max
0≤t≤T

G (t, s) = G (s, s) =
ρ1−αsρ−1

Γ (α)

[
sρ

T ρ
(T ρ − sρ)

]α−1

, ∀s ∈ [0, T ] , (3.14)

we choose

g1 (t, s) =
ρ1−αsρ−1

Γ (α)

[[
tρ

T ρ
(T ρ − sρ)

]α−1

− (tρ − sρ)α−1

]
,

g2 (t, s) =
ρ1−αsρ−1

Γ (α)

[
tρ

T ρ
(T ρ − sρ)

]α−1

.

Indeed, we put max
0≤t≤T

G (t, s) = G (t∗, s) , where 0 ≤ t∗ ≤ T. Then, we get for some

0 < t1 < t2 < T, that

max
0≤t≤T

G (t, s) =

 g1 (t∗, s) , s ∈ [0, t1] ,
max {g1 (t∗, s) , g2 (t∗, s)} , s ∈ [t1, t2] ,
g2 (t∗, s) , s ∈ [t2, T ] ,

=

{
g1 (t∗, s) , s ∈ [0, r] ,
g2 (t∗, s) , s ∈ [r, T ] ,

where r ∈ [t1, t2] , is the unique solution of equation

g1 (t∗, s) = g2 (t∗, s)⇔ t∗ = s,
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which shows the equality (3.14) .
(3) In the following, we divide the proof into two-part, to show the existence
b ∈ C [0, T ] , such that

G (t, s) ≥ b (t)G (s, s) , for any
T

8
≤ s ≤ T.

(i) Firstly, if 0 ≤ t ≤ s ≤ T, we see that G(t,s)
G(s,s) is decreasing with respect to s.

Consequently

G (t, s)

G (s, s)
=

[
tρ

Tρ (T ρ − sρ)
]α−1[

sρ

Tρ (T ρ − sρ)
]α−1 =

(
t

s

)ρ(α−1)

≥
(
t

T

)ρ(α−1)

= b1 (t) , ∀t ∈ [0, s] .

(ii) In the same way, if 0 ≤ s ≤ t ≤ T, we have sρ

Tρ < tρ

Tρ ≤ 1,
(
tρ

Tρ

)α−2 ≥ 1,
∀α ∈ (1, 2] , and

G (t, s) =
ρ1−αsρ−1

Γ (α)

[[
tρ

T ρ
(T ρ − sρ)

]α−1

− (tρ − sρ)α−1

]

=
(α− 1) ρ1−αsρ−1

Γ (α)

∫ tρ

Tρ (Tρ−sρ)

tρ−sρ
τα−2dτ

≥ (α− 1) ρ1−αsρ−1

Γ (α)

(
tρ

T ρ

)α−2

(T ρ − sρ)α−2

(
tρ

T ρ
(T ρ − sρ)− (tρ − sρ)

)
≥ (α− 1) ρ1−αsρ−1

Γ (α)
(T ρ − sρ)α−1 sρ (T ρ − tρ)

T ρ (T ρ − sρ)
.

As 0 < ρ ≤ 1, we get

T ρ−tρ = ρ

∫ T

t

τρ−1dτ ≥ ρT ρ−1 (T − t) , and T ρ−sρ = ρ

∫ T

s

τρ−1dτ ≤ ρsρ−1 (T − s) .

Therefore

G (t, s)

G (s, s)
≥

(α−1)ρ1−αsρ−1

Γ(α) (T ρ − sρ)α−1 sρ(Tρ−tρ)
Tρ(Tρ−sρ)

ρ1−αsρ−1

Γ(α)

[
sρ

Tρ (T ρ − sρ)
]α−1 = (α− 1)

sρ (T ρ − tρ)
T ρ (T ρ − sρ)

(
T ρ

sρ

)α−1

≥ (α− 1)
s (T − t)
T (T − s)

≥ (α− 1)
s (T − t)
T 2

.

Finally, for s ∈
[
T
8 , t
]
, we have:

G (t, s)

G (s, s)
≥ (α− 1) (T − t)

8T
= b2 (t) .
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It is clear that b1 (t) and b2 (t) are positive functions, it is enough to choose:

b (t) =

{ (
t
T

)ρ(α−1)
, for t ∈ [0, t̄] ,

(α−1)(T−t)
8T , for t ∈ [t̄, T ] ,

(3.15)

where t̄ ∈ (0, T ) is the unique solution of the equation b1 (t) = b2 (t) . We see that

b (t) ≤ b̄ = b (t̄) =

(
t̄

T

)ρ(α−1)

=
(α− 1) (T − t̄)

8T
< 1 for all t ∈ [0, T ] .

Finally, we have ∀s ∈
[
T
8 , T

]
,

G (t, s) ≥ b (t)G (s, s) , ∀t ∈ [0, T ] .

The proof is complete.

Lemma 3.4. Let 1 < α ≤ 2 and 0 < ρ ≤ 1, then there exists a positive constant

λ = 1 +
8ραL (α+ 1) [8ρα − (8ρ − 1)

α
]

h (8ρ − 1)
α [

8ρ (α+ 1) + 8ρ(α−1) (α− 1) (8ρ − 1)
] , for some h, L > 0,

such that ∫ T

0

G (s, s) f (s, u (s)) ds ≤ λ
∫ T

T
8

G (s, s) f (s, u (s)) ds. (3.16)

Proof. As f (t, u (t)) ≥ h, for any t ∈ [0, T ] , we get∫ T

T
8

G (s, s)f (s, u (s)) ds≥ h
∫ T

T
8

ρ1−αsρ−1

Γ (α)

[
sρ

T ρ
(T ρ − sρ)

]α−1

ds

≥− h

αραT ρ(α−1)Γ (α)

∫ T

T
8

sρ(α−1)
[
−ραsρ−1 (T ρ−sρ)α−1

]
ds.

The integral by part gives:

∫ T

T
8

G (s, s)f(s, u (s)) ds≥
h
[
Tρ(α−1)

8ρ(α−1)

(
T ρ− Tρ

8ρ

)α
+ρ (α−1)

∫ T
T
8
sρ(α−1)−1 (T ρ−sρ)αds

]
ραT ρ(α−1)Γ (α+ 1)

≥
h
[

Tρ

8ρ(α−1)

(
T ρ− Tρ

8ρ

)α
+ρ (α−1)

∫ T
T
8

sρ(α−2)

Tρ(α−2) s
ρ−1(T ρ−sρ)αds

]
ραT ρΓ (α+ 1)

≥
h
[

Tρ

8ρ(α−1)

(
T ρ− Tρ

8ρ

)α− α−1
α+1

∫ T
T
8

[
−ρ (α+1)sρ−1(T ρ−sρ)α

]
ds
]

ραT ρΓ (α+ 1)

≥ hT ρα (8ρ − 1)
α

ρα8ραΓ (α+ 1)

[
8ρ (α+ 1) + 8ρ(α−1) (α− 1) (8ρ − 1)

8ρα (α+ 1)

]
.
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Then

ρα8ραΓ (α+ 1)

hT ρα (8ρ − 1)
α

[
8ρα (α+ 1)

8ρ (α+ 1) + 8ρ(α−1) (α− 1) (8ρ − 1)

] ∫ T

T
8

G (s, s) f (s, u (s)) ds ≥ 1.

(3.17)
On the other hand, if max

0≤t≤T
f (t, u) is bounded for u ∈ [0,∞) , then there exists

L0 > 0, such that
|f (t, u (t))| ≤ L0, ∀t ∈ [0, T ] .

In the similar way, if max
0≤t≤T

f (t, u) is unbounded for u ∈ [0,∞) , then there exists

M0 > 0, such that

sup
0≤u≤M0

max
0≤t≤T

|f (t, u (t))| ≤ L1, for some L1 > 0.

In all cases, for L = max {L0, L1} , we have:∫ T
8

0

G (s, s) f (s, u (s)) ds ≤ L
∫ T

8

0

G (s, s) ds ≤ LT ρα [8ρα − (8ρ − 1)
α

]

8ραραΓ (α+ 1)
.

From (3.17) , we get∫ T

0

G (s, s) f (s, u (s)) ds =

∫ T

T
8

G (s, s) f (s, u (s)) ds+

∫ T
8

0

G (s, s) f (s, u (s)) ds

≤
∫ T

T
8

G (s, s) f (s, u (s)) ds+
LT ρα [8ρα − (8ρ − 1)

α
]

ρα8ραΓ (α+ 1)

≤
∫ T

T
8

G (s, s) f (s, u (s)) ds

+
LT ρα [8ρα − (8ρ − 1)

α
]

ρα8ραΓ (α+ 1)
× ρα8ραΓ (α+ 1)

hT ρα (8ρ − 1)
α

×
[

8ρα (α+ 1)

8ρ (α+ 1) + 8ρ(α−1) (α− 1) (8ρ − 1)

]
×
∫ T

T
8

G (s, s) f (s, u (s)) ds

≤ λ

∫ T

T
8

G (s, s) f (s, u (s)) ds.

Let us define the cone P by:

P =

{
u ∈ C [0, T ] | u (t) ≥ b (t)

λ
‖u‖ , ∀t ∈ [0, T ]

}
. (3.18)
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Lemma 3.5. Let A : P → C [0, T ] be an integral operator defined by:

Au (t) = β

∫ T

0

G (t, s) f (s, u (s)) ds, (3.19)

equipped with standard norm

‖Au‖ = max
0≤t≤T

|Au (t)| .

Then A (P ) ⊂ P.

Proof. For any u ∈ P, we have from (3.13) , (3.16) and (3.18) , that

Au (t) = β

∫ T

0

G (t, s) f (s, u (s)) ds ≥ βb (t)

∫ T

T
8

G (s, s) f (s, u (s)) ds

≥ βb (t)

λ

∫ T

0

G (s, s) f (s, u (s)) ds

≥ b (t)

λ
max

0≤t≤T

(
β

∫ T

0

G (t, s) f (s, u (s)) ds

)

≥ b (t)

λ
‖Au‖ , ∀t ∈ [0, T ] .

Thus A (P ) ⊂ P. The proof is complete.

Lemma 3.6. A : P → P is a completely continuous operator.

Proof. In view of continuity of G (t, s) and f (t, u) , the operator A : P → P is a
continuous.
Let Ω ⊂ P be a bounded. Then there exists a positive constant M > 0, such that:

‖u‖ ≤M, ∀u ∈ Ω.

By choice

L = sup
0≤u≤M

max
0≤t≤T

|f (t, u)|+ 1.

In this case, we get ∀u ∈ Ω,

|Au (t)| =

∣∣∣∣∣β
∫ T

0

G (t, s) f (s, u (s)) ds

∣∣∣∣∣ ≤ β
∫ T

0

|G (t, s) f (s, u (s))| ds

≤ βL

∫ T

0

G (s, s) ds ≤ βL

ρα−1Γ (α)

∫ T

0

sρ−1 (T ρ − sρ)α−1
ds

≤ βLTαρ

ραΓ (α+ 1)
.
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Consequently, |Au (t)| ≤ βLTαρ

ραΓ(α+1) , ∀u ∈ Ω. Hence, A (Ω) is bounded.

Now, for 1 < α ≤ 2 and 0 < ρ ≤ 1, we give:

δ (ε) =

(
ραΓ (α)

T ρβL
ε

) 1
ρ(α−1)

, for some ε > 0.

Then ∀u ∈ Ω, and t1, t2 ∈ [0, T ] , where t1 < t2, and t2 − t1 < δ, we find
|Au (t2)−Au (t1)| < ε.
Consequently, for 0 ≤ s ≤ t1 < t2 ≤ T, we have:

G (t2, s)−G (t1, s) =
ρ1−αsρ−1

Γ (α)

[[
t
ρ(α−1)
2 − tρ(α−1)

1

](T ρ − sρ
T ρ

)α−1

−
[
(tρ2 − sρ)

α−1 − (tρ1 − sρ)
α−1

]]
<

ρ1−αsρ−1

Γ (α)

[
t
ρ(α−1)
2 − tρ(α−1)

1

](T ρ − sρ
T ρ

)α−1

<
ρ1−αsρ−1

Γ (α)

[
t
ρ(α−1)
2 − tρ(α−1)

1

]
.

In the same way, for 0 ≤ t1 ≤ s < t2 ≤ T or 0 ≤ t1 < t2 ≤ s ≤ T, we have:

G (t2, s)−G (t1, s) <
ρ1−αsρ−1

Γ (α)

[
t
ρ(α−1)
2 − tρ(α−1)

1

]
.

Then

|Au (t2)−Au (t1)| =

∣∣∣∣∣β
∫ T

0

[G (t2, s)−G (t1, s)] f (s, u (s)) ds

∣∣∣∣∣
≤ βL

∫ T

0

|G (t2, s)−G (t1, s)| ds

< βL

∫ T

0

ρ1−αsρ−1

Γ (α)

[
t
ρ(α−1)
2 − tρ(α−1)

1

]
ds

<
βLρ1−α

Γ (α)

[
t
ρ(α−1)
2 − tρ(α−1)

1

] [1

ρ
sρ
]T

0

.

Finally

|Au (t2)−Au (t1)| < βLT ρ

ραΓ (α)

[
t
ρ(α−1)
2 − tρ(α−1)

1

]
. (3.20)

In the following, we divide the proof into three cases.
(a) If δ ≤ t1 < t2 ≤ T, we have:

δ ≤ t1 < t2 ⇔ t
ρ(α−2)
2 < t

ρ(α−2)
1 ≤ δρ(α−2), and tρ−1

2 < tρ−1
1 ≤ δρ−1.

Thus

tρ2 − t
ρ
1 = t2t

ρ−1
2 − t1tρ−1

1 < t2t
ρ−1
2 − t1tρ−1

2 = tρ−1
2 (t2 − t1) < δρ−1 (t2 − t1) < δρ.
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In similar way

t
ρ(α−1)
2 − tρ(α−1)

1 = tρ2t
ρ(α−2)
2 −tρ1t

ρ(α−2)
1 < tρ2t

ρ(α−2)
2 −tρ1t

ρ(α−2)
2 = t

ρ(α−2)
2 (tρ2−t

ρ
1)

< δρ(α−2) (tρ2 − t
ρ
1)

< δρ(α−1).

Then, the inequality (3.20) gives:

|Au (t2)−Au (t1)| <
βLT ρ

ραΓ (α)

[
t
ρ(α−1)
2 − tρ(α−1)

1

]
<

βLT ρ

ραΓ (α)
δρ(α−1)

<
βLT ρ

ραΓ (α)

[(
ραΓ (α)

T ρβL
ε

) 1
ρ(α−1)

]ρ(α−1)

< ε. (3.21)

(b) If t1 ≤ δ < t2 < 2δ, we have:

t1 ≤ δ < t2 ⇔ t
ρ(α−2)
2 < δρ(α−2) ≤ tρ(α−2)

1 ,

and

t
ρ(α−1)
2 − tρ(α−1)

1 = tρ2t
ρ(α−2)
2 − tρ1t

ρ(α−2)
1 < tρ2δ

ρ(α−2) − tρ1δρ(α−2)

< δρ(α−2) (tρ2 − t
ρ
1) < δρ(α−1).

Also, we find the same result (3.21) .
(c) If t1 < t2 ≤ δ, we have:

|Au (t2)−Au (t1)| <
βLT ρ

ραΓ (α)

[
t
ρ(α−1)
2 − tρ(α−1)

1

]
<

βLT ρ

ραΓ (α)
t
ρ(α−1)
2

<
βLT ρ

ραΓ (α)
δρ(α−1)

< ε.

By the means of the Ascoli-Arzel Theorem 2.11, we have A : P → P is completely
continuous.

We define some important constants

F0 = lim
u→0+

max
t∈[0,T ]

f(t,u)
u , F∞ = lim

u→+∞
max
t∈[0,T ]

f(t,u)
u ,

f0 = lim
u→0+

min
t∈[0,T ]

f(t,u)
u , f∞ = lim

u→+∞
min
t∈[0,T ]

f(t,u)
u ,

ω1 =
∫ T

0
G (s, s) ds, ω2 = b̄

λ2

∫ T
0
G (s, s) b (s) ds.

Assume that 1
ω2f∞

= 0 if f∞ → ∞, 1
ω1F0

= ∞ if F0 → 0, 1
ω2f0

= 0 if f0 → ∞, and
1

ω1F∞
=∞ if F∞ → 0.
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Theorem 3.7. If ω2f∞ > ω1F0 holds, then for each:

β ∈
(

(ω2f∞)
−1
, (ω1F0)

−1
)
, (3.22)

the boundary value problem (1.1)-(1.2) has at least one positive solution.

Proof. Let β satisfies (3.22) and ε > 0, be such that

((f∞ − ε)ω2)
−1 ≤ β ≤ ((F0 + ε)ω1)

−1
. (3.23)

From the definition of F0, we see that there exists r1 > 0, such that

f (t, u) ≤ (F0 + ε)u, ∀t ∈ [0, T ] , 0 < u ≤ r1. (3.24)

Consequently, for u ∈ P with ‖u‖ = r1, we have from (3.23) , (3.24) , that

‖Au‖ = max
0<t<T

∣∣∣∣∣β
∫ T

0

G (t, s) f (s, u (s)) ds

∣∣∣∣∣
≤ β

∫ T

0

G (s, s) (F0 + ε)u (s) ds

≤ β (F0 + ε) ‖u‖
∫ T

0

G (s, s) ds

≤ β (F0 + ε) ‖u‖ω1

≤ ‖u‖ .

Hence, if we choose Ω1 = {u ∈ C [0, T ] : ‖u‖ < r1} , then

‖Au‖ ≤ ‖u‖ , for u ∈ P ∩ ∂Ω1. (3.25)

By definition of f∞, there exists r3 > 0, such that

f (t, u) ≥ (f∞ − ε)u, ∀t ∈ [0, T ] , u ≥ r3. (3.26)

Therefore, for u ∈ P with ‖u‖ = r2 = max {2r1, r3} , we have from (3.23) , (3.26) ,
that

‖Au‖ ≥ Au (t̄) = β

∫ T

0

G (t̄, s) f (s, u (s)) ds ≥ β
∫ T

T
8

b (t̄)G (s, s) f (s, u (s)) ds

≥ βb̄

λ

∫ T

0

G (s, s) f (s, u (s)) ds ≥ βb̄

λ

∫ T

0

G (s, s) [(f∞ − ε)u (s)] ds, ∀t ∈ [0, T ] .

By definition of P in (3.18) , we have:

‖Au‖ ≥ βb̄ (f∞ − ε)
λ2

‖u‖
∫ T

0

G (s, s) b (s) ds

≥ β (f∞ − ε) ‖u‖ω2

≥ ‖u‖ .
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If we set Ω2 = {u ∈ C [0, T ] : ‖u‖ < r2} , then

‖Au‖ ≥ ‖u‖ , for u ∈ P ∩ ∂Ω2. (3.27)

Now, from (3.25) , (3.27) , and Lemma 2.13, we guarantee that A has a fix point
u ∈ P ∩

(
Ω̄2\Ω1

)
with r1 ≤ ‖u‖ ≤ r2. It is clear that u is a positive solution of

(1.1)-(1.2) . The proof is complete.

Theorem 3.8. If ω2f0 > ω1F∞ holds, then for each:

β ∈
(

(ω2f0)
−1
, (ω1F∞)

−1
)
, (3.28)

the boundary value problem (1.1)-(1.2) has at least one positive solution.

Proof. Let β satisfies (3.28) and ε > 0, be such that

((f0 − ε)ω2)
−1 ≤ β ≤ ((F∞ + ε)ω1)

−1
. (3.29)

From definition of f0, we see that there exists r1 > 0, such that

f (t, u) ≥ (f0 − ε)u, ∀t ∈ [0, T ] , 0 < u ≤ r1.

Further, if u ∈ P with ‖u‖ = r1, then similar to the proof’s second part of Theorem
3.7, we can get that ‖Au‖ ≥ ‖u‖ . Then, if we choose Ω1 = {u ∈ C [0, T ] : ‖u‖ < r1} ,
thus

‖Au‖ ≥ ‖u‖ , for u ∈ P ∩ ∂Ω1. (3.30)

Next, and by definition of F∞, we may choose R1 > 0, such that

f (t, u) ≤ (F∞ + ε)u, for u ≥ R1. (3.31)

We consider two cases:
1) If max

0≤t≤T
f (t, u) is bounded for u ∈ [0,∞) . Then, there exists some L > 0, such

that
f (t, u) ≤ L, for all t ∈ [0, T ] , u ∈ P.

Let us denote by r3 = max {2r1, βLω1} , if u ∈ P with ‖u‖ = r3, then

‖Au‖ = max
0≤t≤T

∣∣∣∣∣β
∫ T

0

G (t, s) f (s, u (s)) ds

∣∣∣∣∣ ≤ βL
∫ T

0

G (s, s) ds = βLω1 ≤ r3 = ‖u‖ .

Hence,
‖Au‖ ≤ ‖u‖ , for u ∈ ∂Pr3 = {u ∈ P : ‖u‖ ≤ r3} . (3.32)

2) If max
0≤t≤T

f (t, u) is unbounded for u ∈ [0,∞) , then there exists some r4 =

max {2r1, R1} , such that

f (t, u) ≤ max
0≤t≤T

f (t, r4) , for all 0 < u ≤ r4, t ∈ [0, T ] .
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Let u ∈ P with ‖u‖ = r4. Then, from (3.29) , (3.31) , we have:

‖Au‖ = max
0<t<T

∣∣∣∣∣β
∫ T

0

G (t, s) f (s, u (s)) ds

∣∣∣∣∣ ≤ β
∫ T

0

G (s, s) (F∞ + ε)u (s) ds

≤ β (F∞ + ε) ‖u‖
∫ T

0

G (s, s) ds = β (F∞ + ε) ‖u‖ω1

≤ ‖u‖ .

Thus, (3.32) is also true for u ∈ ∂Pr4 .
In both cases 1 and 2, if we set Ω2 = {u ∈ C [0, T ] : ‖u‖ < r2 = max {r3, r4}} , then

‖Au‖ ≤ ‖u‖ , for u ∈ P ∩ ∂Ω2. (3.33)

Now, from (3.30) , (3.33) , and Lemma 2.13, we guarantee that A has a fix point
u ∈ P ∩

(
Ω̄2\Ω1

)
with r1 ≤ ‖u‖ ≤ r2. It is clear that u is a positive solution of

(1.1)-(1.2) . The proof is complete.

Theorem 3.9. Suppose there exists r2 > r1 > 0, such that

sup
0≤u≤r2

max
0≤t≤T

f (t, u) ≤ r2

βω1
, and inf

0≤u≤r1
f (t, u) ≥ r1

βλω2
b (t) , ∀t ∈ [0, T ] . (3.34)

Then, the boundary value problem (1.1)-(1.2) has a positive solution u ∈ P, with
r1 ≤ ‖u‖ ≤ r2.

Proof. Choose Ω1 = {u ∈ C [0, T ] : ‖u‖ < r1} . Then, for u ∈ P ∩ ∂Ω1, we get

‖Au‖ ≥ Au (t̄) = β

∫ T

0

G (t̄, s) f (s, u (s)) ds ≥ β
∫ T

T
8

b (t̄)G (s, s) f (s, u (s)) ds

≥ βb̄

λ

∫ T

0

G (s, s) inf
0≤u≤r1

f (s, u (s)) ds ≥ βb̄

λ

∫ T

0

G (s, s)
r1

βλω2
b (s) ds

≥ r1 = ‖u‖ .

On the other hand, choose Ω2 = {u ∈ C [0, T ] : ‖u‖ < r2} . Then, for u ∈ P ∩ ∂Ω2,
we get

‖Au‖ = max
0<t<T

∣∣∣∣∣β
∫ T

0

G (t, s) f (s, u (s)) ds

∣∣∣∣∣ ≤ β
∫ T

0

G (s, s) sup
0≤u≤r2

max
0≤t≤T

f (s, u (s)) ds

≤ β

∫ T

0

G (s, s)
r2

βω1
ds = r2 = ‖u‖ .

Now, from Lemma 2.13, we guarantee that A has a fix point u ∈ P ∩
(
Ω̄2\Ω1

)
with

r1 ≤ ‖u‖ ≤ r2. It is clear that u is a positive solution of (1.1)-(1.2) . The proof is
complete.
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3.2. Application of Banach fixed point theorem

In this part, we assume that β ∈ R and ρ > 0, and f : [0, T ]× [0,∞)→ [0,∞) satisfies
the conditions:

(H1) f (t, u) is Lebesgue measurable function with respect to t on [0, T ] ,

(H2) f (t, u) is continuous function with respect to u on R.

Theorem 3.10. Assume (H1) , (H2) hold, and there exists a constant σ > 0, such
that

|f (t, u)− f (t, v)| ≤ σ |u− v| , for almost every t ∈ [0, T ] , and all u, v ∈ C [0, T ] .
(3.35)

If

|β| < ραΓ (α+ 1)

σTαρ
. (3.36)

Then, there exists a unique solution of the boundary value problem (1.1)-(1.2) on
[0, T ] .

Proof. Assume that |β| < ραΓ(α+1)
σTαρ , and consider the operator A : C [0, T ]→ C [0, T ]

defined by (3.19) as follows

Au (t) = β

∫ T

0

G (t, s) f (s, u (s)) ds.

We shall show that A is a contraction mapping. In fact, for any u, v ∈ C [0, T ] , we
have

|Au (t)−Av (t)| =

∣∣∣∣∣β
∫ T

0

G (t, s) [f (s, u (s))− f (s, v (s))] ds

∣∣∣∣∣
≤ |β|

∫ T

0

G (t, s) |f (s, u (s))− f (s, v (s))| ds

≤ |β|σ
∫ T

0

G (s, s) |u (s)− v (s)| ds,

then

‖Au−Av‖ ≤ |β|σ ‖u− v‖
∫ T

0

G (s, s) ds

≤ |β|σTαρ

ραΓ (α+ 1)
‖u− v‖ . (3.37)

This imply from (3.37) that A is a contraction operator. As a consequence of Theorem
2.14, by Banach’s contraction principle [5], we deduce that A has a unique fixed point
which is the unique solution of the problem (1.1)-(1.2) on [0, T ] .
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4. Examples

In this section, we present some examples to illustrate the usefulness of our main
results.
Example 1. Consider the following boundary value problem{

1D
3
2

0+u (t) + β (1 + t)u (t) ln (1 + u (t)) = 0, t ∈ [0, 1] .
u (0) = u (1) = 0.

(4.1)

Set β > 0 any finite positive real number, and

f (t, u) = (1 + t)u ln (1 + u) .

In this case, the function f is jointly continuous for any t ∈ [0, 1] , and any u > 0.
We get

F0 = lim
u→0+

max
t∈[0,T ]

f(t,u)
u = 0+, f∞ = lim

u→+∞
min
t∈[0,T ]

f(t,u)
u =∞.

On the other hand, we get

ω1 =

∫ 1

0

G (s, s) ds =
1

Γ
(

3
2

) ∫ 1

0

√
s (1− s)ds =

1
1
2

√
π

π

8
=

√
π

4
, (4.2)

and

b (t) =

{ √
t for t ∈ [0, t̄] ,

1−t
16 for t ∈ [t̄, 1] .

(4.3)

Then

ω2 =
b̄

λ2Γ
(

3
2

) [∫ t̄

0

s
√

(1− s)ds+
1

16

∫ 1

t̄

√
s (1− s)

3
2 ds

]
' b̄
√
π

128λ2
. (4.4)

Where t̄ ' 0, 003876 . . . and b̄ ' 0, 062258 . . . and the choice of λ depends directly by
choice of r1, r2 in (3.25) , (3.27) .

Because ω1, ω2 > 0, two finite constants for any choice of 0 < r1 < r2 < ∞. We
have always:

1

ω2f∞
= 0, and

1

ω1F0
=∞.

Then, the condition (3.22) is satisfied for any 0 < β <∞.
It follows from Theorem 3.7 that the problem (4.1) has at least one solution.

Example 2. Consider{
1D

3
2

0+u (t) + β (1 + t)u (t) exp
(

1
u(t) − [u (t)]

2
)

= 0, t ∈ [0, 1] .

u (0) = u (1) = 0.
(4.5)
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Set β > 0 any finite positive real number, and

f (t, u) = (1 + t)u exp

(
1

u
− u2

)
.

Clearly, for any t ∈ [0, 1] and any u > 0, the function f is jointly continuous.
Here, we have:

f0 = lim
u→0+

min
t∈[0,T ]

f(t,u)
u =∞, F∞ = lim

u→+∞
max
t∈[0,T ]

f(t,u)
u = 0+.

Also, we find the same function b (t) in (4.3) , and same constant ω1, ω2 respectively
in (4.2) , (4.4) .

The choice of λ > 1 depends directly by choice of r1, r2 in (3.30) , (3.33) .
Because ω1, ω2 > 0, two finite constants for any choice of 0 < r1 < r2 < ∞. We

have always:
1

ω2f0
= 0, and

1

ω1F∞
=∞.

Then, the condition (3.28) is satisfied for any 0 < β <∞.
It follows from Theorem 3.8 that the problem (4.5) has at least one solution.

Example 3. Consider the following boundary value problem{
1D

3
2

0+u (t) + (1+t)(1+u(t))√
π

= 0, t ∈ [0, 1] .

u (0) = u (1) = 0.
(4.6)

Set β = 1√
π
, and

f (t, u) = (1 + t) (1 + u) .

The function f is jointly continuous for any t ∈ [0, 1] and any u > 0.
We find the same function b (t) in (4.3) , such that 0 ≤ b (t) < 1, and

ω1 =

∫ 1

0

G (s, s) ds =

√
π

4
.

Choosing r1 = 1
104 < r2 = 2. Then, for all t ∈ [0, 1] , we have:

h = 1 ≤ f (t, u) ≤ 6 = L.

In this case

λ = 1 +
8ραL (α+ 1) [8ρα − (8ρ − 1)

α
]

h (8ρ − 1)
α [

8ρ (α+ 1) + 8ρ(α−1) (α− 1) (8ρ − 1)
]

= 1 +
8

3
2 × 6× 5

2 ×
(

8
3
2 − 7

3
2

)
7

3
2 ×

(
8× 5

2 +
√

8× 7
2

)
' 3, 517426 . . .
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Then

ω2 '
b̄
√
π

128λ2
' 0, 062258×

√
π

128× 3, 5174262
' 3, 9313

√
π

105
.

It remains to show that the conditions in (3.34) , which is

sup
0≤u≤r2

max
0≤t≤T

f (t, u) = 6 ≤ r2

βω1
' 8,

and

inf
0≤u≤r1

f3 (t, u) = 1 + t ≥ r1

βλω2
b (t) ' 0, 72317× b (t) , ∀t ∈ [0, 1] .

Are satisfied. It follows from Theorem 3.9 that the problem (4.6) has at least one
solution.

Example 4. Let{
2
3D

3
2

0+u (t) + cos(t)[2+|u(t)|]
π(
√

2 cos(t)+sin(t))[1+|u(t)|]
= 0, t ∈

[
0, π4

]
,

u (0) = u
(
π
4

)
= 0.

(4.7)

Set β = 1
π and

f (t, u) =
cos (t) [2 + |u|](√

2 cos (t) + sin (t)
)

[1 + |u|]
, t ∈

[
0,
π

4

]
, u, v ∈ R.

As sin (t) , cos (t) are continuous positive functions ∀t ∈
[
0, π4

]
, the function f is

jointly continuous. For any u, v ∈ R and t ∈
[
0, π4

]
, we have

√
2

2 ≤ cos (t) ≤ 1, and

0 ≤ sin (t) ≤
√

2
2 , then

|f (t, u)− f (t, v)| =

∣∣∣∣∣ cos (t) [2 + |u|](√
2 cos (t) + sin (t)

)
[1 + |u|]

− cos (t) [2 + |v|](√
2 cos (t) + sin (t)

)
[1 + |v|]

∣∣∣∣∣
=

∣∣∣∣ cos (t)√
2 cos (t) + sin (t)

∣∣∣∣ ∣∣∣∣2 + |u|
1 + |u|

− 2 + |v|
1 + |v|

∣∣∣∣
≤ ||u| − |v|| ≤ |u− v| .

Hence, the condition (3.35) is satisfied with σ = 1. It remains to show that the
condition (3.36)

0 < β =
1

π
' 0, 318309 . . . <

ραΓ (α+ 1)

σTαρ
=

2
3

3
2 × Γ

(
5
2

)
π
4

' 0, 921317 . . .

is satisfied. It follows from Theorem 3.10 that the problem (4.7) has a unique solution.
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5. Conclusion

In this paper we have discussed the existence and the uniqueness of solutions for a
class of nonlinear fractional differential equations with a boundary value, by using
the properties of Guo-Krasnosel’skii and Banach fixed point theorems. The used
differential operator is developed by Katugampola, which generalizes the Riemann-
Liouville and the Hadamard fractional derivatives into a single form.
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