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1. Introduction and preliminaries

There are many results in nonlinear functional analysis which contain conditions with
the measure of noncompactness. Integral equations are one of the most useful mathe-
matical tools in both pure and applied analysis. This is particulary true of problems in
mechanical vibrations and the related fields of engineering and mathematical physics.
The theory of integral equations is rapidly developing with the help of several tools of
functional analysis, topology and fixed point theory. For details, we refer to ([1]-[23])
and the references therein.
The goal of this paper is to study the solvability of the following nonlinear quadratic
integral equation

x(t) = g(t) + (Tx)(t)

∫ t

0

k(t, s)f(s, x(ϕ(s))) ds, t ∈ [0,M ], (1.1)

in the Banach space of real functions being defined and continuous on a bounded and
closed interval. The main tool used to study the existence solutions of that equation
in the class of monotonic functions is a special measure of noncompactness.
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Now, we collect some facts, basic concepts and sketch some useful theorems which
will be needed further on. Let (E, ‖ . ‖) be an infinite dimensional Banach space with
zero element θ. Denote by B(x, r) the closed ball in E centered at x with radius r.
The symbol Br stands for the ball B(θ, r). If X is a nonempty subset of E, then
X and ConvX denote the closure and the convex closure of X, respectively. More-
over, the symbol mE denotes the family of all nonempty and bounded subsets of E
while nE stands for its subfamily consisting of all relatively compact sets.
We will accept the following definition of the concept of a measure of noncompactness
[4].

Definition 1. A mapping µ : mE → [0,∞) is said to be a measure of noncompactness
in E if the following conditions are satisfied:

1. the family kerµ = {X ∈ mE : µ(X) = 0} is nonempty and kerµ ⊂ nE .

2. X ⊂ Y ⇒ µ(X) ≤ µ(Y ).

3. µ(X) = µ(X) = µ(ConvX).

4. µ(λX + (1− λ)Y ) ≤ λµ(X) + (1− λ)µ(Y ) for λ ∈ [0, 1].

5. If (Xn), n ∈ N is sequence of closed sets from mE such that Xn+1 ⊂ Xn and
if limn→∞ µ(Xn) = 0, then the set X∞ =

⋂∞
n=1Xn is nonempty.

The family ker(µ) describe in 1 is referred to as the kernel of the measure of
noncompactness µ.
A measure µ is called sublinear if it satisfies the following two conditions:

6. µ(λX) = |λ| µ(X), for λ ∈ R

7. µ(X + Y ) ≤ µ(X) + µ(Y ).

Moreover, a measure µ is called a measure with maximum property if

8. µ(X
⋃
Y ) = max [ µ(X), µ(Y ) ].

Other facts concerning measures of noncompactness and their properties may be
found in [4].

Definition 2. {Darbo condition} Let M be a nonempty subset of a Banach
space E and the operator F : M → E is continuous and transforms bounded sets
onto bounded ones, then F satisfies the Darbo condition with constant k ≥ 0 with
respect to a measure of noncompactness µ if for any bounded subset X of M we have

µ(FX) ≤ kµ(X).

If F satisfies the Darbo condition with k < 1, then it is called a contraction with
respect to µ. Next, we need the following fixed point theorem ([4], [16]).



Nonincreasing Solutions for Quadratic Integral Equations of Convolution Type 97

Theorem 1. Let Q be nonempty bounded closed convex subset of the space E and
let F : Q → Q be continuous and such that µ(FX) ≤ kµ(X) for any nonempty
subset X of Q, where k is a constant, k ∈ [0, 1). Then F has a fixed point in the
set Q.

Remark 1. Under the assumptions of the above theorem, it can be shown that the
set fixF of fixed points of F belonging to Q is a member of the family kerµ [4]. This
fact permits us to characterize solutions of considered operator equations.

We will work in the classical Banach space C[0,M ] consisting of all real func-
tions defined and continuous on the interval [0,M ]. For convenience, we write
I = [0,M ] and C(I) = C[0,M ]. The space C(I) is furnished by the standard norm

‖ x ‖= max{| x(t) |: t ∈ I}.

Now, we will display the definition of a measure of noncompactness in C(I). That
measure was introduced and studied in [5].
To do this, let us fix a nonempty and bounded subset X of C(I). For x ∈ X and ε ≥ 0
denoted by ω(x, ε), the modulus of continuity of the function x, i.e.,

ω(x, ε) = sup{| x(t)− x(s) |: t, s ∈ I, | t− s |≤ ε}.

Further, let us put
ω(X, ε) = sup{ω(x, ε) : x ∈ X},

ω0(X) = lim
ε→0

ω(X, ε).

Now, let us define the following quantities:

d(x) = sup{| x(s)− x(t) | −[x(s)− x(t)] : t, s ∈ I, t ≤ s},

i(x) = sup{| x(t)− x(s) | −[x(t)− x(s)] : t, s ∈ I, t ≤ s},

d(X) = sup{d(x) : x ∈ X},

i(X) = sup{i(x) : x ∈ X}.

Observe that d(X) = 0 if and only if all functions belonging to X are nondecreasing
on I. In a similar way, we can characterize the set X with i(X) = 0.
Finally, we define the function µ on the family mC(I) by putting

µ(X) = ω0(X) + d(X). (1.2)

It can be shown [5] that the function µ is a measure of noncompactness in
the space C(I). The kernel kerµ of this measure contains nonempty and bounded
sets X such that functions from X are equicontinuous and nondecreasing on the in-
terval I.
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Remark 2. By properties of the kernel kerµ of the measure of noncompactness µ to-
gether with Remark 1 allow us to characterize solutions of the nonlinear integral
equation considered in the next section.

Remark 3. Observe that, in a similar way, we can define the measure of noncom-
pactness associated with the set quantity i(X) define above.

2. Main result

In this section, we will study the nonlinear quadratic integral equation of Volterra
type having the form

x(t) = g(t) + (Tx)(t)

∫ t

0

k(t, s)f(s, x(ϕ(s))) ds, t ∈ I.

Assume that the following conditions are satisfied:

(i) g ∈ C(I) is nonincreasing and nonnegative on the interval I;

(ii) f : I × R+ → R+ is continuous and there exists a nondecreasing function m :
R+ → R+ such that the inequality

| f(s, x) |≤ m(| x |)

holds for all s ∈ I and x ∈ R;

(iii) The operator T : C(I) → C(I) is continuous and satisfies the Darbo condition
for the measure of noncompactness µ with a constant a ≥ 0. Moreover, T is
a positive operator, i.e. Tx ≥ 0 if x ≥ 0;

(iv) There exists a nonnegative constant q such that

| (Tx)(t) |≤ q ‖ x ‖

for each x ∈ C(I) and t ∈ I;

(v) k : I × I → R+ is integrable and nonincreasing in the first argument and

K = sup{
∫ t

0

| k(t, s) | ds : t, s ∈ I};

(vi) ϕ : I → I is increasing and continuous function;

(vii) There exists ro > 0 with ‖ g ‖ +Kqm(ro)ro < ro and Km(r0)a < 1.

Now, we are ready to state the existence theorem.

Theorem 2. Let the assumptions (i)-(vii) be satisfied, then equation (1.1) has at least
one positive and nonincreasing solution x ∈ C(I).
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Proof. Let us consider the operators V,G defined on the space C(I) in the following
way:

(V x)(t) = g(t) + (Tx)(t)

∫ t

0

k(t, s)f(s, x(ϕ(s))) ds, t ∈ [0,M ]

and

(Gx)(t) =

∫ t

0

k(t, s)f(s, x(ϕ(s))) ds.

Firstly, we prove that if x ∈ C(I) then V x ∈ C(I). To do this it is sufficient to
show that if x ∈ C(I) then Gx ∈ C(I). Fix ε > 0, let x ∈ C(I) and t, s ∈ I such
that t ≤ s and | t− s |≤ ε. Then

(Gx)(s)− (Gx)(t) =

∫ s

0

k(s, τ)f(τ, x(ϕ(τ))) dτ −
∫ t

0

k(t, τ)f(τ, x(ϕ(τ))) dτ

=

∫ t

0

k(s, τ)f(τ, x(ϕ(τ))) dτ +

∫ s

t

k(s, τ)f(τ, x(ϕ(τ))) dτ

−
∫ t

0

k(t, τ)f(τ, x(ϕ(τ))) dτ =

∫ t

0

k(s, τ)f(τ, x(ϕ(τ))) dτ

−
∫ t

0

k(t, τ)f(τ, x(ϕ(τ))) dτ +

∫ s

t

k(s, τ)f(τ, x(ϕ(τ))) dτ

≤
∫ t

0

k(s, τ)f(τ, x(ϕ(τ))) dτ −
∫ t

0

k(s, τ)f(τ, x(ϕ(τ))) dτ

+

∫ s

t

k(s, τ)f(τ, x(ϕ(τ))) dτ

Now

| (Gx)(s)− (Gx)(t) | ≤
∫ s

t

| k(s, τ)f(τ, x(ϕ(τ))) | dτ

≤
∫ s

t

k(s, τ)m(| x(ϕ(τ)) |) dτ

≤
∫ s

t

k(s, τ)m(‖ x ‖) dτ

we obtain that

| (Gx)(s)− (Gx)(t) | ≤ m(‖ x ‖)
∫ s

t

k(s, τ) dτ
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Now, in virtue of the Lebesgue dominated Theorem we have that
∫ s
t
k(s, τ) dτ → 0

as ε → 0. Thus Gx ∈ C(I) and consequentially, V x ∈ C(I). Moreover, for
each t ∈ I we have

| (V x)(t) | ≤ | g(t) | + | (Tx)(t) | |
∫ t

0

k(t, s)f(s, x(ϕ(s))) ds |

≤ ‖ g ‖ +q ‖ x ‖
∫ t

0

k(t, s)m(| x(ϕ(s)) |) ds

≤ ‖ g ‖ +q ‖ x ‖ m(‖ x ‖)
∫ t

0

k(t, s) ds

≤ ‖ g ‖ +Kqm(‖ x ‖) ‖ x ‖ .

Hence,
‖ V x ‖ ≤ ‖ g ‖ +Kqm(‖ x ‖) ‖ x ‖ .

Thus, if ‖ x ‖≤ ro we obtain from assumption (vii) that

‖ V x ‖ ≤ ‖ g ‖ +K q m(ro) ro ≤ ro.

As a result the operator V transforms the ball Br0 into itself.
In what follows, we will consider the operator V on the subset B+

r0 of the ball Br0 de-
fined in the following way :

B+
r0 = {x ∈ Br0 : x(t) ≥ 0, for t ∈ I}.

Obviously, the set B+
r0 is nonempty, bounded, closed and convex. Let x ∈ B+

r0 . Notice
that in view of our assumptions (i)-(iv) if x(t) ≥ 0 then (V x)(t) ≥ 0 for t ∈ I.
Thus V transforms the set B+

r0 into itself.
Now, we show that V is continuous on the set B+

r0 . To do this, let us fix ε > 0 and
take arbitrary x, y ∈ B+

r0 such that ‖ x − y ‖≤ ε. Then, for t ∈ I, we derive the
following estimates:

| (V x)(t)− (V y)(t) |

= | (Tx)(t)

∫ t

0

k(t, s)f(s, x(ϕ(s)))ds − (Ty)(t)

∫ t

0

k(t, s)f(s, y(ϕ(s))) ds |

≤ | (Tx)(t)

∫ t

0

k(t, s)f(s, x(ϕ(s))) ds − (Ty)(t)

∫ t

0

k(t, s)f(s, x(ϕ(s))) ds |

+ | (Ty)(t)

∫ t

0

k(t, s)f(s, x(ϕ(s))) ds − (Ty)(t)

∫ t

0

k(t, s)f(s, y(ϕ(s))) ds |

≤ | (Tx)(t)− (Ty)(t) |
∫ t

0

k(t, s)f(s, x(ϕ(s))) ds

+ | (Ty)(t) |
∫ t

0

k(t, s) | f(s, x(ϕ(s))) − f(s, y(ϕ(s))) | ds
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≤ ‖ Tx− Ty ‖
∫ t

0

k(t, s)m(| x(ϕ(s)) |) ds

+ q ‖ y ‖
∫ t

0

k(t, s)βr0(ε) ds

≤ ‖ Tx− Ty ‖
∫ t

0

k(t, s)m(‖ x ‖) ds + q ‖ y ‖ βr0(ε)

∫ t

0

k(t, s) ds

≤ Km(‖ x ‖) ‖ Tx− Ty ‖ + Kq ‖ y ‖ βr0(ε),

≤ Km(ro) ‖ Tx− Ty ‖ + Kqr0βr0(ε),

where we denoted

βr0(ε) = sup{| f(u, x(u))− f(u, y(u)) |: u ∈ I, x, y ∈ [0, r0], ‖ x− y ‖≤ ε}.

Obviously, βr0(ε) → 0 as ε → 0 which is a simple consequence of the uniform conti-
nuity of the function f on I × [0, r0].
From the above estimate, we can write the following inequality:

‖ V x− V y ‖ ≤ Km(ro) ‖ Tx− Ty ‖ +Kqr0βr0(ε),

which implies the continuity of the operator V on the set B+
r0 .

In what follows, let us take a nonempty set X ⊂ B+
r0 . Further, fix arbitrary a

number ε > 0 and choose x ∈ X and t, s ∈ I such that | t − s |≤ ε and t ≤ s. Then
by our assumptions we have

| (V x)(s)− (V x)(t) | ≤ | g(s)− g(t) |

+ | (Tx)(s)

∫ s

0

k(s, τ)f(τ, x(ϕ(τ))) dτ − (Tx)(t)

∫ t

0

k(t, τ)f(τ, x(ϕ(τ))) dτ |

≤ | g(s)− g(t) | + | (Tx)(s)

∫ s

0

k(s, τ)f(τ, x(ϕ(τ))) dτ

− (Tx)(t)

∫ s

0

k(s, τ)f(τ, x(ϕ(τ))) dτ |

+ | (Tx)(t)

∫ s

0

k(s, τ)f(τ, x(ϕ(τ))) dτ − (Tx)(t)

∫ s

0

k(t, τ)f(τ, x(ϕ(τ))) dτ |

+ | (Tx)(t)

∫ s

0

k(t, τ)f(τ, x(ϕ(τ))) dτ − (Tx)(t)

∫ t

0

k(t, τ)f(τ, x(ϕ(τ))) dτ |
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≤ | g(s)− g(t) | + | (Tx)(s)− (Tx)(t) |
∫ s

0

k(s, τ)m(| x(ϕ(τ)) |) dτ

+ | (Tx)(t) |
∫ s

0

| k(s, τ)− k(t, τ) | m(| x(ϕ(τ)) |) dτ

+ | (Tx)(t) |
∫ s

t

k(t, τ)m(| x(ϕ(τ)) |) dτ

≤ ω(g, ε) + m(‖ x ‖)ω(Tx, ε)

∫ s

0

k(s, τ) dτ

+q ‖ x ‖ m(‖ x ‖)
∫ s

0

| k(s, τ)− k(s, τ) | dτ

+ q ‖ x ‖ m(‖ x ‖)
∫ s

t

k(t, τ) dτ

≤ ω(g, ε) +Km(‖ x ‖)ω(Tx, ε) + q ‖ x ‖ m(‖ x ‖)
∫ s

t

k(t, τ) dτ

≤ ω(g, ε) +Km(r0)ω(Tx, ε) + qrom(r0)

∫ s

t

k(t, τ) dτ.

Hence

ωo(V X) ≤ Km(ro) ωo(TX) (2.1)

Now, fix arbitrarily x ∈ X and t, s ∈ I such that t ≤ s. Then we have the following
chain of estimates:

| (V x)(t)− (V x)(s) | − [(V x)(t)− (V x)(s)]

= | g(t) + (Tx)(t)

∫ t

0

k(t, τ)f(τ, x(ϕ(τ))) dτ

− g(s)− (Tx)(s)

∫ s

0

k(s, τ)f(τ, x(ϕ(τ))) dτ |

− [g(t) + (Tx)(t)

∫ t

0

k(t, τ)f(τ, x(ϕ(τ))) dτ − g(s)

− (Tx)(s)

∫ s

0

k(s, τ)f(τ, x(ϕ(τ))) dτ ] ≤ {| g(t)− g(s) | −[g(t)− g(s)]}

+ | (Tx)(t)

∫ t

0

k(t, τ)f(τ, x(ϕ(τ))) dτ − (Tx)(s)

∫ s

0

k(s, τ)f(τ, x(ϕ(τ))) dτ |

− [(Tx)(t)

∫ t

0

k(t, τ)f(τ, x(ϕ(τ))) dτ − (Tx)(s)

∫ s

0

k(s, τ)f(τ, x(ϕ(τ))) dτ ]

≤ | (Tx)(t)

∫ t

0

k(t, τ)f(τ, x(ϕ(τ))) dτ − (Tx)(s)

∫ t

0

k(t, τ)f(τ, x(ϕ(τ))) dτ |

+ | (Tx)(s)

∫ t

0

k(t, τ)f(τ, x(ϕ(τ))) dτ − (Tx)(s)

∫ t

0

k(s, τ)f(τ, x(ϕ(τ))) dτ |
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+ | (Tx)(s)

∫ t

0

k(s, τ)f(τ, x(ϕ(τ))) dτ − (Tx)(s)

∫ s

0

k(s, τ)f(τ, x(ϕ(τ))) dτ |

− {[(Tx)(t)

∫ t

0

k(t, τ)f(τ, x(ϕ(τ))) dτ − (Tx)(s)

∫ t

0

k(t, τ)f(τ, x(ϕ(τ))) dτ ]

+ [(Tx)(s)

∫ t

0

k(t, τ)f(τ, x(ϕ(τ))) dτ − (Tx)(s)

∫ t

0

k(s, τ)f(τ, x(ϕ(τ))) dτ ]

+ [(Tx)(s)

∫ t

0

k(s, τ)f(τ, x(ϕ(τ))) dτ − (Tx)(s)

∫ s

0

k(s, τ)f(τ, x(ϕ(τ))) dτ ]}

≤ | (Tx)(t)− (Tx)(s) |
∫ t

0

k(t, τ)f(τ, x(ϕ(τ))) dτ

+ | (Tx)(s) |
∫ t

0

| k(t, τ) − k(s, τ) | f(τ, x(ϕ(τ))) dτ

+ | (Tx)(s) |
∫ t

s

k(s, τ)f(τ, x(ϕ(τ))) dτ

− [(Tx)(t)− (Tx)(s)]

∫ t

0

k(t, τ)f(τ, x(ϕ(τ))) dτ

− (Tx)(s)

∫ t

0

(k(t, τ) − k(s, τ))f(τ, x(ϕ(τ))) dτ

− (Tx)(s)

∫ t

s

k(s, τ)f(τ, x(ϕ(τ))) dτ.

Since f ≥ 0, k ≥ 0 and t→ k(t, s) is nonincreasing then we have∫ t

0

(k(t, τ) − k(s, τ))f(τ, x(ϕ(τ))) dτ ≥ 0 (2.2)

and ∫ t

s

k(s, τ)f(τ, x(ϕ(τ))) dτ → 0 as ε→ 0. (2.3)

Finally, (2.2)-(2.3) imply

|(V x)(t)− (V x)(s)| − [(V x)(t)− (V x)(s)]

≤ {| (Tx)(t)− (Tx)(s) | −[(Tx)(t)− (Tx)(s)]}
∫ t

0

k(t, τ)f(τ, x(ϕ(τ))) dτ

≤ {| (Tx)(t)− (Tx)(s) | −[(Tx)(t)− (Tx)(s)]}
∫ t

0

k(t, τ)m(| x(ϕ(τ)) |) dτ

≤ {| (Tx)(t)− (Tx)(s) | − [(Tx)(t)− (Tx)(s)]}
∫ t

0

k(t, τ)m(‖ x ‖) dτ

≤ m(r0){| (Tx)(t)− (Tx)(s) | − [(Tx)(t)− (Tx)(s)]}
∫ t

0

k(t, τ) dτ

= Km(r0) i(Tx).
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Hence, we get
i(V x) ≤ Km(r0) i(Tx),

and consequently,
i(V X) ≤ Km(r0) i(TX). (2.4)

Finally, by the equations (2.1)-(2.4) we obtain

µ(V X) ≤ Km(r0) µ(TX) ≤ Km(r0)a µ(X).

Now, since Km(r0)a < 1 and applying Theorem 1, we complete the proof.

Remark 4. By Remarks 1 and 2, we have that solutions of the integral equation
(1.1) belonging to the set B+

r0 are positive, nonincreasing and continuous on the
interval I = [0,M ].

Now, we provide an example illustrating the applicability of Theorem 2.
For example, taking in the assumption (iv) q = 1 and putting Tx = x for x ∈ C(I) we
obtain the Volterra integral equation of the form

x(t) = g(t) + x(t)

∫ t

0

k(t, s)f(s, x(ϕ(s))) ds, t ∈ I.

Obviously that equation is a particular of equation (1.1).

2.1. Convolution type

Consider the quadratic integral equation of convolution type of the form

x(t) = g(t) + (Tx)(t)

∫ t

0

k(t− s)f(s, x(ϕ(s))) ds, t ∈ [0,M ]. (2.5)

Now, the following Corollary deals with the integral equation of convolution type
(2.5) .

Corollary 1. Let k : I → R+ be nonincreasing function and let the assumptions of
Theorem 2 be satisfied, then equation (2.5) has at least one positive and nonincreasing
solution x ∈ C(I).

2.2. Fractional order equation

Now, taking k(t− s) = (t−s)α−1

Γ(α) , then we have the following Corollary.

Corollary 2. Let Mαm(ro)a < Γ(α + 1). Then under the assumptions (i)-(iv) and
(vi) of Theorem 2, the nonlinear quadratic functional integral equation of fractional
order

x(t) = g(t) + (Tx)(t)

∫ t

0

(t− s)α−1

Γ(α)
f(s, x(ϕ(s))) ds, t ∈ [0,M ], 0 < α < 1.

has at least one positive and nonincreasing solution x ∈ C(I).
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Corollary 3. Let (Tx)(t) = p(t, x(ψ(t))) and I = [0, 1] in Corollary 2, we obtain the
same result as was proved in [17].

Corollary 4. Under the same assumptions (i), (ii) and (vi) of Theorem 2 (with q = 1
and (Tx)(t) = x(t)), then the fractional-order integral equation

x(t) = g(t) + x(t)

∫ t

0

(t− s)α−1

Γ(α)
f(s, x(ϕ(s))) ds, t ∈ [0,M ], 0 < α < 1.

has at least one positive and nonincreasing solution x ∈ C(I) if Mαm(ro) < Γ(α+1).
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