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Abstract: Motivated by Pettis’ extensions of Sierpiński theorems
on generated families of sets, we consider B-rings, a generalization of the
notion of Boolean algebras, and present their various properties. In par-
ticular, we discuss properties of differences which will be used in the proofs
of results given in our forthcoming papers.
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1 Introduction

The notion of a ring of subsets of a given set used in measure theory is a gener-
alization of an algebra of subsets of the set. It is natural to consider its counterpart
in terms of a partially ordered set as a generalization of a Boolean algebra defined
in terms of a partially ordered set as a distributive 0-1-lattice with complements.
We consider such a generalization in this note under the name B-ring (see Definition
4) to avoid a possible misunderstanding connected with the common use of the term
Boolean ring in the sense of an algebraic ring with a unit and commutative idempotent
multiplication.

As well known (see e.g. [1]) there is a one-to-one correspondence between Boolean
algebras (being a generalization of algebras of sets) and Boolean rings just mentioned.
One may ask whether a similar correspondence takes place in case of B-rings and
respective algebraic rings. Such a more general situation is not discussed in the
classical monographs [1], [9], [10] and [11]. We study in this article various properties
of B-rings that will be used in the proofs of results, presented in [2] and [3], which
give an answer to the above question.

The consideration of B-rings was inspired by the results of B. J. Pettis who ex-
tended in [6] theorems of W. Sierpiński on generated families of subsets of a given set
(see [8] and [7]) to Boolean σ-rings (for generalizations of Sierpiński’s theorems in an-
other direction see [5]). The main theorems from [6] were reformulated and extended
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by the authors in their master theses, the results of which were partially published in
[4]. It is clear that Pettis’ term ”Boolean σ-ring”, though used in [6] without giving
its strict definition, corresponds to a σ-ring of subsets of a given set. However we are
forced to use the name ”B-ring” instead of ”Boolean ring” to avoid a collision with
the traditional meaning of this term.

The notation used in the paper is mostly standard.

2 Boolean algebras and B-rings

Let us recall that by a partially ordered set we mean a non-empty set X with a
binary relation which is reflexive (x ≤ x for x ∈ X), antisymmetric (x ≤ y, y ≤ x
implies x = y for x, y ∈ X) and transitive (x ≤ y, y ≤ z implies x ≤ z for x, y, z ∈ X).

We will say that supA exists in X if there is an x ∈ X (x =: supA ) such that 1◦

y ≤ x for all y ∈ A and 2◦ y ≤ x1 ∈ X for all y ∈ A implies x ≤ x1. Clearly, if supA
exists, it is unique. An analogous definition and comment concern inf A.

Definition 1 A partially ordered set (X,≤) is called a lattice if

∀x,y∈X sup {x, y} and inf {x, y} exist in X. (L)

Instead of the symbols sup{x, y} and inf{x, y} we will use in this note the standard
notation: x∪y := sup {x, y}, x∩y := inf {x, y} and call ∪ and ∩ the lattice operations.

The assertions in the below statement are simple consequences of properties of the
relation of partial order and Definition 1 (see [1], section I).

Statement 1 In an arbitrary lattice (X,≤) the following are true:

(l1) inf {x1, . . . , xn} ∈ X, sup {x1, . . . , xn} ∈ X, x1, . . . , xn ∈ X, n ∈ N;

(l2) x ∩ x = x, x ∪ x = x, x ∈ X;

(l3) x1 ∩ x2 = x2 ∩ x1, x1 ∪ x2 = x2 ∪ x1, x1, x2 ∈ X;

(l4) (x1 ∩ x2) ∩ x3 = x1 ∩ (x2 ∩ x3), x1, x2, x3 ∈ X;

(l5) (x1 ∪ x2) ∪ x3 = x1 ∪ (x2 ∪ x3), x1, x2, x3 ∈ X;

(l6) x ∩ y ≤ x ≤ x ∪ y, x ∩ y ≤ y ≤ x ∪ y, x, y ∈ X;

(l7) x ≤ y ⇔ x ∩ y = x⇔ x ∪ y = y, x, y ∈ X;

(l8) y1 ≤ y2 ⇒ x ∩ y1 ≤ x ∩ y2, x ∪ y1 ≤ x ∪ y2, x, y1, y2 ∈ X;

(l9) (x1 ∪ x2) ∩ y ≥ (x1 ∩ y) ∪ (x2 ∩ y), x1, x2, y ∈ X;

(l10) (x1 ∩ x2) ∪ y ≤ (x1 ∪ y) ∩ (x2 ∪ y), x1, x2, y ∈ X.

Definition 2 A lattice (X,≤) is called distributive if the following condition holds:

∀x1,x2,y∈X (x1 ∪ x2) ∩ y = (x1 ∩ y) ∪ (x2 ∩ y). (D)
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Remark 1 It is easy to show (see [1], section I.6) that in any lattice (X,≤) condition
(D) can be equivalently replaced by

∀x1,x2,y∈X (x1 ∩ x2) ∪ y = (x1 ∪ y) ∩ (x2 ∪ y). (D′)

Definition 3 A lattice (X,≤) will be called, respectively: (0) 0-lattice; (1) 1-lattice;
(2) 0-1-lattice, whenever

inf X exists in X; (L0)

supX exists in X; (L1)

inf X and supX exist in X, (L2)

respectively, and the elements 0 := inf X, 1 := supX are called the zero and the unit
in X.

Definition 4 A distributive 0-lattice (X,≤) is called a B-ring if

∀x,y∈X, x≤y ∃z∈X z ∩ x = 0 and z ∪ x = y, (R)

i.e. if (X,≤) satisfies conditions (L), (L0), (D) and (R).
A B-ring (X,≤) is called a Boolean algebra if supX =: 1 exists in X, i.e. if

(X,≤) satisfies conditions (L), (L2), (D) and (R).

Below we formulate various properties of the notions already introduced and those
which will be defined later. Some of the assertions follow easily from the above and
next definitions or properties formulated subsequently, so we omit their proofs.

Statement 2 If (X,≤) is a 0-lattice, then

0 ≤ x, x ∪ 0 = 0 ∪ x = x, x ∩ 0 = 0 ∩ x = 0, x ∈ X. (l0)

If (X,≤) is a 1-lattice, then

x ≤ 1, x ∪ 1 = 1 ∪ x = 1, x ∩ 1 = 1 ∩ x = x, x ∈ X. (l1)

If (X,≤) is a distributive 0-lattice, then

(x ∩ c = y ∩ c, x ∪ c = y ∪ c)⇒ x = y, x, y, c ∈ X. (l2)

Statement 3 If (X,≤) is a B-ring, then the element z in condition (R) is unique,
i.e. for arbitrary x, y ∈ X and x ≤ y there is a unique z such that:

z ∩ x = 0 and z ∪ x = y. (r)

Definition 5 If (X,≤) is a B-ring and x, y are elements of X satisfying x ≤ y, then
by the proper difference y 	 x of y and x we mean an element z satisfying (R). By
Statement 3, we see that y 	 x is defined uniquely.
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Statement 4 If (X,≤) is a B-ring, then

∀x,y∈X, x≤y y 	 x ≤ y, (y 	 x) ∩ x = 0, (y 	 x) ∪ x = y. (r1)

Statement 5 If (X,≤) is a B-ring then

∀x,y∈X, x≤y y 	 (y 	 x) = x. (r2)

Remark 2 If (X,≤) is a Boolean algebra, then the following particular case of con-
dition (R) holds:

∀x∈X ∃z∈X z ∩ x = 0 and z ∪ x = 1. (Ac)

It can be proved (cf. Statement 6) that in Boolean algebras condition (R) can be
equivalently replaced by a seemingly weaker condition (Ac).

Definition 6 If (X,≤) is a Boolean algebra and x is an element of X, then by the
complement x′ of x we mean the unique (see Statement 3 and Remark 2) element z
satisfying (Ac), i.e. x′ := 1	 x.

Statement 6 If a distributive 0-1-lattice (X,≤) satisfies (Ac), then condition (R) is
satisfied, i.e. (X,≤) is a Boolean algebra.

Proof. For arbitrary x, y ∈ X such that x ≤ y, define z := y ∩ x′. By (l3), (l4), (l7),
(l0), (l1) and (D′), we have

z ∩ x = (y ∩ x′) ∩ x = y ∩ (x′ ∩ x) = y ∩ 0 = 0

and

z ∪ x = (y ∩ x′) ∪ x = (y ∪ x) ∩ (x′ ∪ x) = (y ∪ x) ∩ 1 = y ∪ x = y,

which means that condition (R) is satisfied. �

Definition 7 If (X,≤) is a B-ring, then by the difference y r x we mean

y r x := y 	 (x ∩ y)

for arbitrary x, y ∈ X. The definition makes sense since x∩y ≤ y, in view of Statement
3 and Definition 5.

Notice that Definitions 5 and 7 are consistent, due to the following obvious asser-
tion:

Statement 7 Let (X,≤) be a B-ring. If x, y ∈ X and x ≤ y, then xr y = x	 y.
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3 Differences in B-rings

In this section we will assume that (X,≤) is a B-ring and we will collect several
properties of differences in X. The first four properties are obvious.

Property 1 For arbitrary x, y ∈ X we have

y r x ≤ y. (d1)

Property 2 For arbitrary x, y ∈ X, we have

x = (x ∩ y) ∪ (xr y), (x ∩ y) ∩ (xr y) = 0. (d2)

Property 3 For arbitrary x, y ∈ X, we have

(xr y) ∩ (y r x) = 0. (d3)

Property 4 For arbitrary x, y ∈ X, we have

(xr y) ∩ y = 0. (d4)

Now we will prove the assertion which together with Property 2 yields Property 6.
The next three assertions, Poperties 7, 8 and 9, are given without proofs.

Property 5 For arbitrary x, y ∈ X, we have

(xr y) ∪ y = x ∪ y. (d5)

Proof. By (d1) and (l8), we have

(xr y) ∪ y ≤ x ∪ y.

On the other hand, by (d2), (l3), (l6) and (l8), we get

x = (xr y) ∪ (x ∩ y) ≤ (xr y) ∪ y,

so, by (l8), (l5), (l2), we have

x ∪ y ≤ [(xr y) ∪ y] ∪ y = (xr y) ∪ y

and the assertion follows, due to symmetry of the partial order ≤. �

Property 6 For arbitrary x, y ∈ X, we have

(xr y) ∪ (y r x) ∪ (x ∩ y) = x ∪ y. (d6)

Property 7 For arbitrary x, y ∈ X there exists a unique z, namely z := xr y, such
that z ∩ y = 0 and z ∪ y = x ∪ y. Consequently,

(xr y) ∩ y = 0, (xr y) ∪ y = x ∪ y. (d7)
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Property 8 For arbitrary x, y1, y2 ∈ X, we have

y1 ≤ y2 ⇒ (xr y2) ∩ y1 = 0. (d8)

Property 9 For arbitrary x, y1, y2 ∈ X, we have

y1 ≤ y2 ⇒ (xr y2) r y1 = xr y2. (d9)

We will prove the following assertion and the next two properties follow from
Definition 7 and (r3).

Property 10 For arbitrary x, y1, y2 ∈ X, we have

y1 ≤ y2 ⇒ xr y2 ≤ xr y1. (d10)

Proof. We begin with a particular case, assuming that y1 ≤ y2 ≤ x. Then xry2 ≤ x,
by Definition 5 and (r1), so

xr y2 = (xr y2) ∩ x = (xr y2) ∩ [(x	 y1) ∪ y1], (1)

in view of (l7) and Statement 4. By (1), (D), (d8) and Statement 7, we have

xr y2 = (xr y2) ∩ (xr y1)

and the assertion in the considered case follows from (l6).
In the general case, we deduce from the particular case that

xr y2 = xr (x ∩ y2) ≤ xr (x ∩ y1) = xr y1,

because, by (l7) and (l6), we have

y1 ≤ y2 ⇒ x ∩ y1 ≤ x ∩ y2 ≤ x. �

Property 11 For arbitrary a, x, y ∈ X, we have

ar (x ∪ y) = (ar x) ∩ (ar y). (d11)

Property 12 For arbitrary a, x, y ∈ X, we have

ar (x ∩ y) = (ar x) ∪ (ar y). (d12)

Our list of properties is concluded by the three assertions presented below with
complete proofs.

Property 13 For arbitrary a, x, y ∈ X, we have

ar (x ∪ y) = (ar x) r y. (d13)
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Proof. Denote z := ar (x ∪ y). We have

z ∩ y = 0, (2)

because
z ∩ y = [ar (x ∪ y)] ∩ y = [(ar x) ∩ (ar y)] ∩ y

= (ar x) ∩ [(ar y) ∩ y] = (ar x) ∩ 0 = 0,

by (d11), (d4) and (l0).
On the other hand, we will show that

z ∪ y = (ar x) ∪ y. (3)

To this aim notice first that

z ∪ y = [(ar x) ∩ (ar y)] ∪ y = (ar x) ∪ y (4)

in view of (d11), (D′) and (d4). Due to (d7), we have (ar y) ∪ y = a ∪ y, so (4) and
(D) yield

z ∪ y = [(ar x) ∪ y] ∩ (a ∪ y) = [(ar x) ∩ (a ∪ y)] ∪ y,
since y ∩ (a ∪ y) = y. Hence, by (D), (l2), (l7) and (d1), we have

z ∪ y = [(ar x) ∩ a] ∪ [(ar x) ∩ y] ∪ y = (ar x) ∪ y

This proves identity (3).
In view of (d7), equalities (2) and (3) imply z = (a r x) r y, i.e. the assertion is

true. �

Property 14 For arbitrary x, y, z ∈ X, we have

(xr z) ∪ (y r z) = (x ∪ y) r z. (d14)

Proof. To prove the assertion, in view of (d7), it suffices to show that

z ∩ [(xr z) ∪ (y r z)] = 0 (5)

and
z ∪ [(xr z) ∪ (y r z)] = (x ∪ y) ∪ z. (6)

The property (5) is obvious, due to (D) and (d4), we have

z ∩ [(xr z) ∪ (y r z)] = [z ∩ (xr z)] ∪ [z ∩ (y r z)] = 0.

We apply (d7), we have

z ∪ (xr z) = x ∪ z and z ∪ (y r z) = y ∪ z

and thus

z ∪ [(xr z) ∪ (y r z)] = [z ∪ (xr z)] ∪ [z ∪ (y r z)]

= (x ∪ z) ∪ (y ∪ z) = (x ∪ y) ∪ z,

which proves (6). �
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Property 15 For arbitrary x, y, z ∈ X, we have

(xr y) ∩ z = (x ∩ z) r (y ∩ z). (d15)

Proof. In view of (d7), to prove (d15) it is enough to show that

(y ∩ z) ∩ [(xr y) ∩ z] = 0 (7)

and
(y ∩ z) ∪ [(xr y) ∩ z] = (x ∩ z) ∪ (y ∩ z). (8)

To show (7) notice that

(xr y) ∩ z ≤ xr y ≤ xr (y ∩ z),

by (l5) and (d10), so

(y ∩ z) ∩ [(xr y) ∩ z] ≤ (y ∩ z) ∩ [xr (y ∩ z)] = 0 (9)

in view of (l6) and (d4). Since 0 = inf X, equality (7) follows from (9).
By (D′), the left side of (8) is equal to

[y ∪ (xr y)] ∩ z = (x ∪ y) ∩ z = (x ∩ z) ∪ (y ∩ z)

due to (d7) and (D). �

We would like to express our thanks to Professor Andrzej Kamiński for his constant
scientific attention and help during preparing this article.
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W l
m(α1, α2, . . . , αl, β1, β2, . . . , βm, η)

of analytic functions defined in the open unit disk and satisfying the ana-
lytic criterion

Re

{
z(W l

m[α1]f(z))′

W l
m[α1]f(z)

}
> η.

Our main result contain some interesting corollaries as special cases.
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1 Introduction and definitions

Let A denote the class of functions of the form

f(z) = z +

∞∑
n=2

anz
n (1.1)

which are analytic and univalent in the open disk U = {z : |z| < 1}. For functions

Φ ∈ A given by Φ(z) = z +
∞∑
n=2

φnz
n and Ψ ∈ A given by Ψ(z) = z +

∞∑
n=2

ψnz
n, we

define the Hadamard product (or convolution ) of Φ and Ψ by

(Φ ∗Ψ)(z) = z +

∞∑
n=2

φnψnz
n, z ∈ U .
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For positive real parameters α1, A1 . . . , αl, Al and β1, B1 . . . , βm, Bm (l,m ∈ N =
1, 2, 3, ...) such that

1 +

m∑
n=1

Bn −
l∑

n=1

An ≥ 0, z ∈ U ,

the Wright generalized hypergeometric function [12]

lΨm[(α1, A1), . . . , (αl, Al); (β1, B1), . . . , (βm, Bm); z] =l Ψm[(αn, An)1,l(βn, Bn)1,m; z]

is defined by

lΨm[(αt, At)1,l(βt, Bt)1,m; z] =

∞∑
n=0

{
l∏
t=1

Γ(αt + nAt)}{
m∏
t=1

Γ(βt + nBt)}−1 z
n

n!
, z ∈ U .

If At = 1(t = 1, 2, ..., l) and Bt = 1(t = 1, 2, ...,m) we have the relationship:

ΩlΨm[(αt, 1)1,l(βt, 1)1,m; z] ≡ lFm(α1, . . . , αl;β1, . . . , βm; z) =

∞∑
k=0

(α1)n . . . (αl)n
(β1)n . . . (βm)n

zn

n!

(l ≤ m + 1; l,m ∈ N0 = N ∪ {0}; z ∈ U) where lFm(α1, . . . , αl;β1, . . . , βm; z) is the
generalized hypergeometric function(see for details [12]) where (λ)n is the Pochham-
mer symbol and

Ω =

(
l∏
t=1

Γ(αt)

)−1( m∏
t=1

Γ(βt)

)
. (1.2)

By using the generalized hypergeometric function, Dziok and Srivastava [3] in-
troduced a linear operator which was subsequently extended by Dziok and Raina [4]
using the Wright’s generalized hypergeometric function.

Let W l
m[(αt, At)1,l; (βt, Bt)1,m] : A → A be a linear operator defined by

W l
m[(αt, At)1,l; (βt, Bt)1,m](f)(z) := {Ωz lφm[(αt, At)1,l; (βt, Bt)1,m; z]} ∗ f(z).

We observe that , for f(z) of the form(1.1),we have

W l
m[(αt, At)1,l; (βt, Bt)1,m]f(z) = z +

∞∑
n=2

σn(α1) anz
n

where Ω is given by (1.2) and σn(α1)is defined by

σn(α1) =
ΩΓ(α1 +A1(n− 1)) . . .Γ(αl +Al(n− 1))

(n− 1)!Γ(β1 +B1(n− 1)) . . .Γ(βm +Bm(n− 1))
. (1.3)

For convenience sake, we use contracted notation W l
m[α1] to represent the following:

W l
m[α1]f(z) =W[(α1, A1), . . . , (αl, Al); (β1, B1), . . . , (βm, Bm)]f(z),

which is used in the sequel throughout.
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The linear operator W l
m[α1] includes the Dziok-Srivastava operator (see [3]), so

that it includes (as its special cases) various other linear operators introduced and
studied by Bernardi [1], Carlson and Shaffer [2], Libera [8], Livingston [9], Ruscheweyh
[10] and Srivastava-Owa [11].

For 0 ≤ η < 1, we let W l
m(α1, α2, . . . , αl, β1, β2, . . . , βm, η) be the subclass of A

consisting of functions of the form (1.1) and satisfying the analytic criterion

Re

{
z(W l

m[α1]f(z))′

W l
m[α1]f(z)

}
> η, z ∈ U . (1.4)

By suitably specializing the values of At, Bt, l, m, α1, α2, . . . , αl, β1, β2, . . . , βm, η
and γ the classW l

m(α1, α2, . . . , αl, β1, β2, . . . , βm, η), leads to various new subclasses
of analytic functions.

As illustrations, we present some examples for the case when At = 1(t = 1, 2, ..., l)
and Bt = 1(t = 1, 2, ...,m).

Example 1.1 If l = 2 and m = 1 with α1 = 1, α2 = 1, β1 = 1 then

W2
1 (1, 1, 1, η) ≡ S∗(η)

: =

{
f ∈ A : Re

{
zf ′(z)

f(z)

}
> η, z ∈ U

}
.

where S∗(η) is the well-known starlike function of order η(0 ≤ η < 1).

Example 1.2 If l = 2 and m = 1 with α1 = ζ + 1 (ζ > −1), α2 = 1, β1 = 1, then

W2
1 (δ + 1, 1, 1, η) ≡ Rζ(η)

: =

{
f ∈ A : Re

{
z(Dζf(z))′

Dζf(z)

}
> η, z ∈ U

}
,

where Dζ is called Ruscheweyh derivative of order ζ (ζ > −1) defined by

Dζf(z) :=
z

(1− z)ζ+1
∗ f(z).

Example 1.3 If l = 2 and m = 1 with α1 = µ + 1(µ > −1), α2 = 1, β1 = µ + 2,
then

W2
1 (µ+ 1, 1, µ+ 2, η) ≡ Bµ(η)

: =

{
f ∈ A : Re

(
z(Jµf(z))′

Jµf(z)

)
> η, z ∈ U

}
,

where Jµ is a Bernardi operator [1] defined by

Jµf(z) :=
µ+ 1

zµ

∫ z

0

tµ−1f(t)dt.

Note that the operator J1 was studied earlier by Libera [8] and Livingston [9].
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Example 1.4 If l = 2 and m = 1 with α1 = a (a > 0), α2 = 1, β1 = c (c > 0), then

W2
1 (a, 1, c, η) ≡ Lac (η)

:=

{
f ∈ A : Re

(
z(L(a, c)f(z))′

L(a, c)f(z)

)
> η, z ∈ U

}
,

where L(a, c) is a well-known Carlson-Shaffer linear operator [2] defined by

L(a, c)f(z) :=

( ∞∑
k=0

(a)k
(c)k

zk+1

)
∗ f(z).

Following the earlier works of [7] (see also[5],[6]), we obtain sufficient condition in-
volving coefficient inequalities for f(z) to in the classW l

m(α1, α2, . . . , αl, β1, β2, . . . , βm, η).

Several special cases and consequences of these coefficient inequalities are also pointed
out.

In order to derive our main results, we have to recall here the following lemmas:

Lemma 1.1 ( [7]) A function p(z) ∈ P satisfies Re p(z) > 0 (z ∈ U) if and only if

p(z) 6= x− 1

x+ 1
(z ∈ U)

for all |x| = 1.

Lemma 1.2 A function f(z) ∈ A is in W l
m(α1, α2, . . . , αl, β1, β2, . . . , βm, η) if and

only if

1 +

∞∑
n=2

Anz
n−1 6= 0 (1.5)

where

An =
[n+ 1− 2η + (n− 1)x]Ωσn(α1)

2(1− η)
an (1.6)

and Ω, σn(α1) are given by (1.2) and (1.3).
Proof. Applying Lemma 1.1, we have

z(Wl
m[α1]f(z))

′

Wl
m[α1]f(z)

− η
1− η

6= x− 1

x+ 1
(z ∈ U ; x ∈ C; |x| = 1). (1.7)

where f(z) ∈W l
m(α1, α2, . . . , αl, β1, β2, . . . , βm, η). Then, we not need consider Lemma

1.1 for z = 0, because it follows that

p(0) = 1 6= x− 1

x+ 1

for all |x| = 1.From (1.7), it follows that

(x+ 1)z(W l
m[α1]f(z))′ + (1− 2η − x)W l

m[α1]f(z) 6= 0.
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Thus, we have

2(1− η)z +

∞∑
n=2

[n+ 1− 2η + (n− 1)x]Ωσn(α1)anz
n 6= 0

(z ∈ U ;x ∈ C; |x| = 1),

or, equivalently,

2(1− η)z

(
1 +

∞∑
n=2

[n+ 1− 2η + (n− 1)x]Ωσn(α1)

2(1− η)
anz

n−1

)
6= 0 (1.8)

(z ∈ U ; x ∈ C; |x| = 1).

Now, dividing both sides of (1.8) by 2(1− η)z (z 6= 0), we obtain

1 +

∞∑
n=2

[n+ 1− 2η + (n− 1)x]Ωσn(α1)

2(1− η)
anz

n−1 6= 0

(z ∈ U ;x ∈ C; |x| = 1),

which completes the proof of Lemma 1.2.

2 Coefficient conditions

With the help of Lemma 1.2, we have

Theorem 2.1 If f(z) ∈ A satisfies the following condition:

∞∑
n=2

(∣∣∣∣∣
n∑
l=1

{
l∑

k=1

(k + 1− 2η)Ωσk(α1)(−1)l−k
(

γ

l − k

)
ak

}(
δ

n− l

)∣∣∣∣∣
+

∣∣∣∣∣
n∑
l=1

{
l∑

k=1

(k − 1)(−1)l−kΩσk(α1)

(
γ

l − k

)
ak

}(
δ

n− l

)∣∣∣∣∣
)

≤ 2(1− η), (0 ≤ η < 1; γ, δ ∈ R),

then f(z) ∈ W l
m(α1, α2, . . . , αl, β1, β2, . . . , βm, η).

Proof. To prove that 1 +
∞∑
n=2

Anz
n−1 6= 0, it is sufficient that

(
1 +

∞∑
n=2

Anz
n−1

)
(1− z)γ(1 + z)δ

= 1 +

∞∑
n=2

[
n∑
l=1

{
l∑

k=1

Ak(−1)l−k
(

γ

l − k

)}(
δ

n− l

)]
zn−1

6= 0,
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where A0 = 0, A1 = 1 and γ, δ ∈ R, z ∈ U .Thus, if f(z) satisfies

∞∑
n=2

∣∣∣∣∣
n∑
l=1

{
l∑

k=1

Ak(−1)l−k
(

γ

l − k

)}(
δ

n− l

)∣∣∣∣∣ ≤ 1,

that is, if

1

2(1− η)

∞∑
n=2

∣∣∣∣∣
n∑
l=1

{
l∑

k=1

[(k + 1− 2η)

+x(k − 1)]Ωσk(α1)(−1)l−k
(

γ

l − k

)
ak

}(
δ

n− l

)∣∣∣∣
≤ 1

2(1− η)

∞∑
n=2

(∣∣∣∣∣
n∑
l=1

{
l∑

k=1

(k + 1− 2η)Ωσk(α1)(−1)l−k
(

γ

l − k

)
ak

}(
δ

n− l

)∣∣∣∣∣
+ |x|

∣∣∣∣∣
n∑
l=1

{
l∑

k=1

(k − 1)Ωσk(α1)(−1)l−k
(

γ

l − k

)
ak

}(
δ

n− l

)∣∣∣∣∣
)

≤ 1 (0 ≤ η < 1;x ∈ C; |x| = 1; γ, δ ∈ R),

then f(z) ∈ W l
m(α1, α2, . . . , αl, β1, β2, . . . , βm, η) and so the proof is complete.

Letting At = 1(t = 1, 2, ..., l), Bt = 1(t = 1, 2, ...,m), l = 2, m = 1 with α1 = 1,
α2 = 1 and β1 = 1 in Theorem 2.1, we have the following result obtained by Hayami
et al. [7].

Corollary 2.1 ([7])If f(z) ∈ A satisfies the following condition:

∞∑
n=2

(∣∣∣∣∣
n∑
l=1

{
l∑

k=1

(k + 1− 2η)(−1)l−k
(

γ

l − k

)
ak

}(
δ

n− l

)∣∣∣∣∣
+

∣∣∣∣∣
n∑
l=1

{
l∑

k=1

(k − 1)(−1)l−k
(

γ

l − k

)
ak

}(
δ

n− l

)∣∣∣∣∣
)

≤ 2(1− η)

for some η (0 ≤ η < 1) and γ, δ ∈ R, then f(z) ∈ S∗(η).In particular, for γ = δ = 0,
if f(z) ∈ A satisfies the following condition:

∞∑
n=2

(n− η) |an| ≤ 1− η (0 ≤ η < 1)

then f(z) ∈ S∗(η).

Letting At = 1(t = 1, 2, ..., l), Bt = 1(t = 1, 2, ...,m), l = 2, m = 1 with α1 = ζ+1(ζ >
−1), α2 = 1 and β1 = 1 in Theorem 2.1, we have
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Corollary 2.2 If f(z) ∈ A satisfies the following condition:

∞∑
n=2

(∣∣∣∣∣
n∑
l=1

{
l∑

k=1

(k + 1− 2η)
Γ(ζ + k)

(k − 1)!Γ(ζ + 1)
(−1)l−k

(
γ

l − k

)
ak

}(
δ

n− l

)∣∣∣∣∣
+

∣∣∣∣∣
n∑
l=1

{
l∑

k=1

(k − 1)(−1)l−k
Γ(ζ + k)

(k − 1)!Γ(ζ + 1)

(
γ

l − k

)
ak

}(
δ

n− l

)∣∣∣∣∣
)

≤ 2(1− η), (0 ≤ η < 1; γ, δ ∈ R),

then f(z) ∈ Rζ(η).

Letting At = 1(t = 1, 2, ..., l), Bt = 1(t = 1, 2, ...,m), l = 2, m = 1with α1 =
µ+ 1(µ > −1), α2 = 1, β1 = µ+ 2, in Theorem 2.1, we have

Corollary 2.3 If f(z) ∈ A satisfies the following condition:

∞∑
n=2

(∣∣∣∣∣
n∑
l=1

{
l∑

k=1

(k + 1− 2η)
µ+ 1

µ+ k
(−1)l−k

(
γ

l − k

)
ak

}(
δ

n− l

)∣∣∣∣∣
+

∣∣∣∣∣
n∑
l=1

{
l∑

k=1

(k − 1)
µ+ 1

µ+ k
(−1)l−k

(
γ

l − k

)
ak

}(
δ

n− l

)∣∣∣∣∣
)

≤ 2(1− η), (0 ≤ η < 1; γ, δ ∈ R),

then f(z) ∈ Bµ(η).

Letting At = 1(t = 1, 2, ..., l), Bt = 1(t = 1, 2, ...,m), l = 2, m = 1 with α1 =
a (a > 0), α2 = 1 and β1 = c (c > 0) in Theorem 2.1, we have

Corollary 2.4 If f(z) ∈ A satisfies the following condition:

∞∑
n=2

(∣∣∣∣∣
n∑
l=1

{
l∑

k=1

(k + 1− 2η)
(a)k−1
(c)k−1

(−1)l−k
(

γ

l − k

)
ak

}(
δ

n− l

)∣∣∣∣∣
+

∣∣∣∣∣
n∑
l=1

{
l∑

k=1

(k − 1)(−1)l−k
(a)k−1
(c)k−1

(
γ

l − k

)
ak

}(
δ

n− l

)∣∣∣∣∣
)

≤ 2(1− η), qquad(0 ≤ η < 1; γ, δ ∈ R),

then f(z) ∈ Lac (η).
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1 Introduction

Let T ∗(p) be the class of functions f(z) of the form

f(z) = z−p +

∞∑
n=1

anz
n−p, p ∈ N = {1, 2, · · · } (1)

which are analytic and multivalent in the punctured unit disk U∗ = {z : z ∈ C and
0 < |z| < 1}.

The Hadamard product of f and g where f defined by (1) and g(z) = z−p +
∞∑
n=1

bnz
n−p denote by f ∗ g define as

(f ∗ g)(z) = z−p +

∞∑
n=1

anbnz
n−p. (2)
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Now let

ϕp(a, c; z) = z−p +

∞∑
n=1

(a)n
(c)n

zn−p (3)

(z ∈ U∗, a ∈ R, c ∈ R, c 6= 0,−1,−2, · · · ) (a)0 = 1 and (a)n = a(a + 1) · · · (a + n −
1), n ∈ N which is called shifted factorial.

Consider the class Ka,c(p;A,B, δ), a function f ∈ T ∗(p) belongs to Ka,c(p;A,B, δ)
if it satisfies the following condition∣∣∣∣ z(Lp(a, c)f(z))′ + pLp(a, c)f(z)

Bz(Lp(a, c)f(z))′ + p[B + (A−B)(1− δ)]Lp(a, c)f(z)

∣∣∣∣ < 1 (4)

where −1 ≤ B < A ≤ 1, 0 ≤ δ < 1, p ∈ N, z ∈ U , a ∈ R, c ∈ R, c 6= 0,−1,−2, · · · and

Lp(a, c)f(z) = ϕp(a, c; z) ∗ f(z), f ∈ T ∗(p). (5)

The definition of Lp(a, c)f(z) is motivated by Carlson - Shaffer [2] and the class
Ka,c(p;A,B, δ) is generalized to the class studied by Liu and Srivastava [5].

The function f(z) ∈ Ka,c(p;A,B, δ) is in the class K+
a,c(p,A,B, δ) such that

f(z) = z−p +

∞∑
n=p

|an|zn, (p ∈ N). (6)

Special cases of the classes K+
a,c(p;A,B, δ) and Ka,c(p;A,B, δ)

(1) If a = c = 1, δ = 0 we get the class K+
1,1(p;A,B) was investigated by Mogra [6].

(2) If δ = 0 we get the class Ka,c(p;A,B) was studied by Liu and Srivastava [5].

2 Inclusion Properties of the Class Ka,c(p;A,B, δ)
In order to prove our results we need the following Lemma.

Lemma (Jack [4]) Let w(z) be analytic non constant function in U with w(0) = 0.
If w(z) attains its maximum value on the circle |z| = r < 1 at a point z0 ∈ U , then

z0w
′(z0) = µw(z0), where µ ∈ R and µ ≥ 1. (7)

Theorem 2.1 Let a ≥ p(1−δ)(A−B)
B+1 . Then Ka+1,c(p;A,B, δ) ⊂ Ka,c(p;A,B, δ) where

−1 < B < A ≤ 1, 0 ≤ δ < 1, p ∈ N.

Proof. Assume that f ∈ Ka+1,c(p;A,B, δ) and suppose that

z(Lp(a, c)f(z))′

Lp(a, c)f(z)
= −p

(
1 + [B + (A−B)(1− δ)]w(z)

1 +Bw(z)

)
(8)

for w(z) is analytic or meromorphic in U , with w(0) = 0. From (3) and (5) we have

z(Lp(a, c)f(z))′ = aLp(a+ 1, c)f(z)− (a+ p)Lp(a, c)f(z). (9)
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Now from (9) and (8), we get

aLp(a+ 1, c)f(z)

Lp(a, c)f(z)
=
a+ [aB − p(A−B)(1− δ)]w(z)

1 +Bw(z)
, (10)

then

(Lp(a+ 1, c)f(z))′

Lp(a+ 1, c)f(z)
=

z(Lp(a, c)f(z))′

Lp(a, c)f(z)
(11)

+
[aB − p(A−B)(1− δ)]zw′(z)
a+ [aB − p(A−B)(1− δ)]w(z)

− Bzw′(z)

1 +Bw(z)
.

The last expression obtained by differentiating logarithmically with respect to z
of (10), so

z(Lp(a+ 1, c)f(z))′

Lp(a+ 1, c)f(z)
= −p

[
1 + [B + (A−B)(1− δ)]w(z)

1 +Bw(z)

]
(12)

− p(1− δ)(A−B)zw′(z)

(1 +Bw(z))[a+ (aB − p(A−B)(1− δ))w(z)]
.

Now suppose that there exists z0 ∈ U such that max
|z|≤|z0|

|w(z)| = |w(z0)| = 1, then

by Jack’s lemma we have z0w
′(z0) = µw(z0), (µ ≥ 1).

Let w(z0) = eiθ(0 ≤ θ < 2π) in (12), we get after setting z = z0∣∣∣∣ z0(Lp(a, c)f(z0))′ + pLp(a, c)f(z0)

Bz0(Lp(a, c)f(z0))′ + [Bp+ (A−B)(1− δ)p]Lp(a, c)f(z0)

∣∣∣∣2 − 1

=

∣∣∣∣−p(a+ µ) + [(aB − p(A−B)(1− δ)]eiθ

a+ [aB − µB − p(A−B)(1− δ)]eiθ

∣∣∣∣2 − 1

≥
∣∣∣∣a+ µ+ [aB − p(A−B)(1− δ)]eiθ

a+ [aB − µ− p(A−B)(1− δ)]eiθ

∣∣∣∣2 − 1

=
2µ(1 + cos θ)[a(B + 1)− p(A−B)(1− δ)]
|a+ [aB − µ− p(A−B)(1− δ)]eiθ|2

≥ 0,

since a ≥ p(A−B)(1−δ)
1+B .

This is a contradiction with our hypothesis that f ∈ Ka+1,c(p;A,B, δ), then
|w(z)| < 1, (z ∈ U) and we have f ∈ Ka,c(p;A,B, δ).

Theorem 2.2 Let f(z) ∈ Ka,c(p;A,B, δ). Then g(z) defined by

Lp(a, c)g(z) =

(
k − pα
zk

∫ z

0

tk−1[Lp(a, c)f(t)]αdt

)1/α

(13)

where

α > 0, R(k) ≥ pα
(

1 + [B + (A−B)(1− δ)]
1 +B

)
> 0; p ∈ N
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is also in the class Ka,c(p;A,B, δ).

Proof. Consider f(z) ∈ Ka,c(p;A,B, δ) and by using (13), we have

[Lp(a, c)g(z)]α =
k − pα
zk

∫ z

0

tk−1[Lp(a, c)f(t)]αdt. (14)

After differentiating logarithmically both sides of (14), we get

z(Lp(a, c)g(z))′

Lp(a, c)g(z)
= − k

α
+
k − pα
α

[
Lp(a, c)f(z)

Lp(a, c)g(z)

]α
. (15)

Let
z(Lp(a, c)g(z))′

Lp(a, c)g(z)
= −p

(
1 + [B + (A−B)(1− δ)]w(z)

1 +Bw(z)

)
, (16)

then from (15) and (16), we get

k(Lp(a, c)f(z))α + (αp− k)(Lp(a, c)f(z))α

(Lp(a, c)g(z))α
=
αp+ αp[B + (A−B)(1− δ)]w(z)

1 +Bw(z)
.

(17)
Differentiating both sides of (17), we have

zLp(a, c)f(z)′

Lp(a, c)f(z)
=

p(1 + [B + (A−B)(1− δ)]w(z))

αp(1 + [B + (A−B)(1− δ)]w(z))− k(1 +Bw(z))
(18)

×
[
k − αp

{
1 + [B + (A−B)(1− δ)]w(z) +Bzw′(z)

1 +Bw(z)

}
+

[B + (A−B)(1− δ)]zw′(z)
1 + [B + (A−B)(1− δ)]w(z)

]
.

By making necessary changes in previous theorem and suppose that

max
|z|≤|z0|

|w(z)| = |w(z0)| = 1,

we find z0w
′(z0) = µw(z0) by applying Jack’s Lemma, where z0 ∈ U , µ ≥ 1 and

µ ∈ R. Let w(z0) = eiθ(θ 6= π), in (18), we have∣∣∣∣ z0(Lp(a, c)f(z0))′ + Lp(a, c)f(z0)

Bz0(Lp(a, c)f(z0))′ + p[B + (A−B)(1− δ)]Lp(a, c)f(z0)

∣∣∣∣2 − 1

=

∣∣∣∣ k + µ− αp+ [Bk − αp(B + (A−B)(1− δ))]eiθ

k − αp+ [Bk −Bµ− αp(B + (A−B)(1− δ))]eiθ

∣∣∣∣2 − 1

=
h(θ)

|(k − pα) + [Bk −Bµ− αp(B + (A−B)(1− δ))]eiθ|2

where

h(θ) = µ2(1−B2) + 2µ[(1 +B2)k − αp(1 +B(B + (A−B)(1− δ)))]
+2µ[2BRe(k)− pα(2B + (A−B)(1− δ))] cos θ
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where 0 ≤ θ < 2π,−1 ≤ B < A ≤ 1, µ ≥ 1, 0 ≤ δ < 1.

By hypothesis we have Re(k) ≥ pα
(

1+[B+(A−B)(1−δ)]
1+B

)
thus h(0) ≥ 0 and h(π) ≥

0 which shows that h(θ) ≥ 0(0 ≤ θ < 2π). So we get contradiction with our hypoth-
esis. Therefore, |w(z)| < 1, z ∈ U , then g(z) ∈ Ka,c(p;A,B, δ).

3 Coefficient Bounds

To investigate the coefficient bounds and some other results we assume that a > 0,
c > 0 and A+B ≤ 0, (−1 ≤ B < A ≤ 1).

Theorem 3.1 If f(z) ∈ T ∗(p) defined by (1), then f ∈ K+
a,c(p;A,B, δ) if and only if

∞∑
n=p

[(1−B)(n+ p)− p(A−B)(1− δ)] (a)n+p
(c)n+p

|an| ≤ p(1− δ)(A−B). (19)

The result is sharp for f(z) given by

f(z) = z−p +

(
p(1− δ)(A−B)

n(1−B) + p(1−B − (A−B)(1− δ))

)
(c)n+p
(a)n+p

zn, (20)

n = p, p+ 1, · · · .
Proof. Let f ∈ K+

a,c(p;A,B, δ) given by (6). Then∣∣∣∣ z(Lp(a, c)f(z))′ + pLp(a, c)f(z)

Bz(Lp(a, c)f(z))′ + p(B + (A−B)(1− δ))Lp(a, c)f(z)

∣∣∣∣
=

∣∣∣∣∣∣∣∣
∞∑
n=p

(n+ p)|an| (a)n+p

(c)n+p
zn+p

p(A−B)(1− δ) +
∞∑
n=p

(B(n+ p) + p(A−B)(1− δ))|an| (a)n+p

(c)n+p
zn+p

∣∣∣∣∣∣∣∣ < 1,

choose z to be real and z → 1−, we obtain

∞∑
n=p

(a)n+p
(c)n+p

(n+ p)|an| ≤ p(A−B)(1− δ)

+

∞∑
n=p

(B(n+ p) + p(A−B)(1− δ))|an|
(a)n+p
(c)n+p

,

then

∞∑
n=p

[(1−B)(n+ p)− p(A−B)(1− δ)] (a)n+p
(c)n+p

|an| ≤ p(A−B)(1− δ).
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Conversely, assume that the inequality (19 ) holds true then∣∣∣∣ z(Lp(a, c)f(z))′ + pLp(a, c)f(z)

Bz(Lp(a, c)f(z))′ + p(B + (A−B)(1− δ))Lp(a, c)f(z)

∣∣∣∣
≤

∞∑
n=p

(n+ p)|an| (a)n+p

(c)n+p
|an|

p(A−B)(1− δ) +
∞∑
n=p

(B(n+ p) + p(A−B)(1− δ)) (a)n+p

(c)n+p
|an|

< 1

(z ∈ U , z ∈ C, |z| = 1).
Here, by Maximum Modulus Theorem we get f(z) ∈ K+

a,c(p;A,B, δ). Finally, we
observe that the function given by (20) is an extremal function.

Next we investigate the extreme points of the class K+
a,c(p;A,B, δ).

Theorem 3.2 f(z) ∈ K+
a,c(p;A,B, δ) of the form (6) if and only if it can be expressed

of the form

f(z) =

∞∑
n=p−1

λnfn(z), λn ≥ 0, n = p− 1, p, · · · (21)

where fp−1(z) = z−p, fn(z) = z−p + p(1−δ)(A−B)
n(1−B)+p(1−B−(A−B)(1−δ))

(c)n+p

(a)n+p
zn, n = p, p +

1, · · · and
∞∑

n=p−1
λn = 1.

Proof. Let f(z) of the form (21). Then

f(z) = λp−1z
−p +

∞∑
n=p

λn

[
z−p +

p(1− δ)(A−B)(c)n+p
n(1−B) + p(1−B − (A−B)(1− δ))(a)n+p

zn
]

=

[
z−p +

∞∑
n=p

p(1− δ)(A−B)(c)n+p
[n(1−B) + p(1−B − (A−B)(1− δ))](a)n+p

λnz
n

]
,

then by Theorem 3.1 we have f ∈ K+
a,c(p;A,B, δ).

Conversely, let f(z) ∈ K+
a,c(p;A,B, δ) where f(z) given by (6) then

∞∑
n=p

[n(1−B) + p(1−B − (A−B)(1− δ))(a)n+p
p(1− δ)(A−B)(c)n+p

|an| ≤ 1,

so we obtain λp−1 = 1−
∞∑
n=p

λn where

λn =
[n(1− β) + p(1−B − (A−B)(1− δ))](a)n+p

p(1− δ)(A−B)(c)n+p
|an|, n = p, p+ 1, · · ·

then

f(z) = λp−1z
−p +

∞∑
n=p

λnfn(z) =

∞∑
n=p−1

λnfn(z).
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Theorem 3.3 Let fi(z) = z−p+
∞∑
n=p
|an,i|zn for i = 1, · · · , ` belongs to K+

a,c(p;A,B, δ).

Then G(z) =
∑̀
i=1

gifi(z) ∈ K+
a,c(p;A,B, δ) where

∑̀
i=1

gi = 1.

Proof. By Theorem 3.1 and for every i = 1, · · · , `, we have

∞∑
n=p

[(1−B)(n+ p)− p(A−B)(1− δ)] (a)n+p
(c)n+p

|an,i| ≤ p(A−B)(1− δ)

then

G(z) =
∑̀
i=1

gi(z
−p +

∞∑
n=p

|an,i|zn) = z−p +

∞∑
n=p

(
∑̀
i=1

gi|an,i|)zn.

Since

∞∑
n=p

(
(1−B)(n+ p)− p(A−B)(1− δ)

P (A−B)(1− δ)

)
(
∑̀
i=1

gi|an,i|)
(a)n+p
(c)n+p

=
∑̀
i=1

gi

( ∞∑
n=p

(
(1−B)(n+ p)− p(A−B)(1− δ)

P (A−B)(1− δ)

)
(a)n+p
(c)n+p

|an,i|

)
≤ 1

then G(z) ∈ K+
a,c(p;A,B, δ).

4 Neighbourhoods

Definition 4.1 Let a > 0, c > 0,−1 ≤ B < A ≤ 1 and γ ≥ 0, we define γ -
neighbourhood of a function f ∈ T ∗(p) and denote by Nγ(f) contains all functions

g(z) = z−p +
∞∑
n=1

bnz
n−p ∈ T ∗(p) satisfying

∞∑
n=1

[(1 + |B|)n+ p(A−B)(1− δ)
P (A−B)(1− δ)

(a)n
(c)n
|an − bn| ≤ γ. (22)

Theorem 4.1 Let f ∈ Ka,c(p;A,B, δ). Then Nγ(f) ⊂ Ka,c(p;A,B, δ) for every

µ ∈ C with |µ| < γ, γ > 0, f(z)+µz
−p

1+µ ∈ Ka,c(p;A,B, δ).

Proof. Let g ∈ Ka,c(p;A,B, δ). Then by (4) we have∣∣∣∣ z(Lp(a, c)g(z))′ + pLp(a, c)g(z)

Bz(Lp(a, c)g(z))′ + p(B + (A−B)(1− δ))Lp(a, c)g(z)

∣∣∣∣ 6= ζ (23)
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(ζ ∈ C, |ζ| = 1), equivalently we must have (f∗ϕ)(z)
z−p 6= 0, z ∈ U∗, where

φ(z) = z−p +

∞∑
n=1

dnz
n−p,

= z−p +

∞∑
n=1

(
n(1− ζB)− pζ(A−B)(1− δ)

pζ(A−B)(1− δ)

)
(a)n
(c)n

zn−p.

So that

|dn| ≤
n(1 + |B|) + p(A−B)(1− δ)

p(A−B)(1− δ)
(a)n
(c)n

, n = p, p+ 1, · · · .

Hence we have
(
zp
(
f(z)+µz−p

1+µ ∗ ϕ(z)
))
6= 0, then

1

1 + µ

(f ∗ ϕ)z)

z−p
+

µ

1 + µ
6= 0, (24)

then ∣∣∣∣ 1

1 + µ

(f ∗ ϕ)(z)

z−p
+

µ

1 + µ

∣∣∣∣ ≥ 1

|1 + µ|

∣∣∣∣ (f ∗ ϕ)(z)

z−p

∣∣∣∣
− |µ|
|1 + µ|

>
1

1 + γ

∣∣∣∣ (f ∗ ϕ)(z)

z−p

∣∣∣∣− γ

1 + γ

to hold (24) we must have 1
1+γ

∣∣∣ (f∗ϕ)(z)z−p

∣∣∣− γ
1+γ ≥ 0 then

∣∣∣ (f∗ϕ)(z)z−p

∣∣∣ ≥ γ. Now

γ −
∣∣∣∣ (g ∗ ϕ)(z)

z−p

∣∣∣∣ ≤ ∣∣∣∣ ((f − g) ∗ ϕ)(z)

z−p

∣∣∣∣ ≤ ∞∑
n=1

|an − bn||dn||z|n

<

∞∑
n=1

n(1 + |B|) + p(A−B)(1− δ)
p(A−B)(1− δ)

(a)n
(c)n
|an − bn| ≤ γ,

thus (g∗ϕ)(z)
z−p 6= 0 and g ∈ Ka,c(p;A,B, δ).

Theorem 4.2. Let f ∈ T ∗(p) and let s1(z) = z−p and s`(z) = z−p +
`−1∑
n=1

anz
n−p, ` =

2, 3, · · · , suppose that
∞∑
n=1

dn|an| ≤ 1 where

dn =
n(1 + |B|) + p(A−B)(1− δ)

p(A−B)(1− δ)
(a)n
(c)n

(i) if a > 0, c > 0, then f ∈ Ka,c(p;A,B, δ), and
(ii) if a > c > 0, then

Re

(
f(z)

s`(z)

)
> 1− 1

d`
, Re

s`(z)

f(z)
>

d`
1− d`

, z ∈ U , ` ∈ N.
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Proof. It is clear that N1(z−p) ⊂ Ka,c(p;A,B, δ), since(
z−p + z−pµ

1 + µ

)
= z−p ∈ Ka,c(p;A,B, δ),

then we have f ∈ Ka,c(p;A,B, δ), also dn+1 > dn > 1 thus
`−1∑
n=1
|an|+ d`

∞∑
n=`

|an| ≤ 1.

Consider G(z) = d`[
f(z)
s`(z)

− (1− 1
d`

)] and use the last expression we get

∣∣∣∣G(z)− 1

G(z) + 1

∣∣∣∣ ≤ d`
∞∑
n=`

|an|

2−
∞∑
n=1
|an| − d`

∞∑
n=`

|an|
≤ 1

then (i) is complete, to prove (ii).

Let F (z) = (1 + d`)
[
s`(z)
f(z) −

d`
1−d`

]
so we have

∣∣∣∣F (z)− 1

F (z) + 1

∣∣∣∣ ≤ (1− d`)
∞∑
n=`

|an|

2− 2
`−1∑
n=1
|an|+ (1− d`)

∞∑
n=`

|an|
≤ 1

then the proof is complete.
Definition 4.2. Let f(z) ∈ T ∗(p) given by (6). Then γ-neighbourhood of f and is

denoted by N+
γ (f) contains all functions g(z) = z−p +

∞∑
n=p

bnz
n satisfying

∞∑
n=p

(1−B)(n+ p)− p(A−B)(1− δ)
p(A−B)(1− δ)

(a)n+p
(c)n+p

|an − bn| ≤ γ,

where a > 0, c > 0,−1 ≤ B < A ≤ 1, 0 ≤ δ < 1, γ ≥ 0.
Theorem 4.3. If f ∈ K+

a+1,c(p;A,B, δ), then N+
γ (f) ⊂ K+

a,c(p;A,B, δ) where A +

B ≤ 0 and γ = 2p
a+2p . The result is sharp.

Proof. By using the same procedure as in the proof of Theorem 4.1, with

h(z) = z−p +

∞∑
n=p

enz
n = z−p +

∞∑
n=p

[
(1− ζB)(n+ p)− pζ(A−B)(1− δ)

ζp(A−B)(1− δ)
(a)n+p
(c)n+p

zn
]

where A + B ≤ 0 and f ∈ K+
a+1,c(p;A,B, δ), we have

∣∣∣ (f∗h)(z)z−p

∣∣∣ ≥ 2p
a+2p = γ. For

sharpness, let

f(z) = z−p +

(
(A−B)(1− δ)

2− 2B − (A−B)(1− δ)

)
(c)2p

(a+ 1)2p
zp ∈ K+

a+1,c(p;A,B, δ)
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and

g(z) = z−p

+

[
(A−B)(1− δ)

2− 2B − (A−B)(1− δ)
· (c)2p

(a+ 1)2p
+

γ′(A−B)(1− δ)
2− 2B − (A−B)(1− δ)

(c)2p
(a)2p

]
zp

where γ′ > γ = 2p
a+2p , we get g(z) ∈ N+

γ (f) but not in K+
a,c(p;A,B, δ).
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Abstract: The idea of quasi almost P-convergent sequences defined

as ‖P − lim
p,q→∞

supm,n≥0
1
pq

m+p−1∑
k=m

n+q−1∑
l=n

xk,l−L‖X = 0 was introduced by

V.A.Khan and Q.M.D.Lohani [ Mathematicki Vesnik, (60), 95-100 (2008)].
In this paper we introduce a new concept for quasi almost ∆m-lacunary
strongly P-convergent double sequences defined by Orlicz function and
give inclusion relations.
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1 Introduction

The difference sequence space X(∆) was introduced by Kizmaz[4] as follows:
X(∆) = {x = (xk) : (∆xk) ∈ X} for X = l∞, c, c0, where ∆x = (∆xk) = (xk−xk+1).
After Et. and Colak [1] generalized the difference sequence spaces to the sequence
spaces X(∆m) = {x = (xk) : (∆mxk) ∈ X} for X = l∞, c, c0, where m ∈ N,∆0x =
(xk), ∆x = (xk − xk+1),∆mx = (∆mxk) = (∆m−1xk −∆m−1xk+1), and so that

∆mxk =

m∑
v=0

(−1)v
(
m
v

)
xv.

A double sequence x = (xk,l) is a double infinite array of elements xkl. for k, l ∈ N.
By the convergence of a double sequence we mean the convergence on the Pringsheim
sence that is, a double sequence x = (xkl) is said to be Pringsheim convergent (or
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P-convergent) if for ε > 0 there exists an integer N such that |xk,l − L| < ε whenever
k, l > N [9]. We shall write this as

P − lim
k,l→∞

xk,l = L, where j, k tends to infinity independent of each other.

By a lacunary sequence θ = (kr), r=0,1,2,... where ko = 0, we mean an increasing
sequence of non negative integers hr = (kr − kr−1) → ∞(r → ∞). The intervals
determined by θ are denoted by Ir = (kr−1, kr] and ratio kr

kr−1
will be denoted by qr.

The space of lacunary strongly convergent sequence Nθ was defined by Freedman et
al.[2] as follows

Nθ =

{
x = (xk) : lim

r→∞

1

hr

∑
k∈Ir

|xk − L| = 0, for some L

}
.

The double lacunary sequence was defined by E.Savas and R.F.Patterson[13] as fol-
lows: The double sequence θr,s = {(kr, ls)} is called double lacunary if there exist two
increasing sequence of integers such that

k0 = 0, hr = kr − kr−1 →∞ as r →∞

and

l0 = 0, h̄s = ls − ls−1 →∞ as s→∞.

Notations : kr,s = krls, hr,s = hrh̄s.

The following intervals are determined by θ.

Ir = {(kr) : kr−1 < k < kr}, Is = {(l) : ls−1 < l < ls}

Ir,s = {(k, l) : kr−1 < k < kr and ls−1 < l < ls},

qr = kr
kr−1

, q̄s = ls
ls−1

and qr,s = qr q̄s. We will denote the set of all lacunary sequences

by Nθr,s . The space of double lacunary strongly convergent sequence is defined as
follows:

Nθr,s =

{
x = (xk,l) : lim

r,s

1

hr,s

∑
(k,l)∈Ir,s

|xk,l − L| = 0 for some L

}
[see (13)].

An Orlicz Function is a function M : [0,∞) → [0,∞) which is continuous,
nondecreasing and convex with M(0) = 0, M(x) > 0 for x > 0 and M(x) → ∞, as
x→∞. If convexity of M is replaced by M(x+ y) ≤M(x) +M(y) then it is called
Modulus function which is defined and characterized by Ruckle[12].

An Orlicz function M satisfies the ∆2 − condition (M ∈ ∆2 for short ) if there
exist constant k ≥ 2 and u0 > 0 such that

M(2u) ≤ KM(u)
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whenever |u| ≤ u0.

An Orlicz function M can always be represented in the integral form

M(x) =
x∫
0

q(t)dt, where q known as the kernel of M, is right differentiable for

t ≥ 0, q(t) > 0 for t > 0, q is non-decreasing and q(t)→∞ as t→∞.

Note that an Orlicz function satisfies the inequality

M(λx) ≤ λM(x) for all λ with 0 < λ < 1,

since M is convex and M(0) = 0.

W. Orlicz used the idea of Orlicz function to construct the space (LM ). Lin-
desstrauss and Tzafriri [7] used the idea of Orlicz sequence space;

lM :=

{
x ∈ w :

∞∑
k=1

M

(
|xk|
ρ

)
<∞, for some ρ > 0

}
which is Banach space with the norm

‖x‖M = inf

{
ρ > 0 :

∞∑
k=1

M

(
|xk|
ρ

)
≤ 1

}
.

The space lM is closely related to the space lp, which is an Orlicz sequence space with
M(x) = xp for 1 ≤ p <∞.

Recently Moricz and Rhoads[9] defined almost P-convergent sequences as follows:
A double sequence x = (xk,l) of real numbers is called almost P-convergent to a limit
L if

P − lim
p,q→∞

sup
m,n≥0

1

pq

m+p−1∑
k=m

n+q−1∑
l=n

|xk,l − L| = 0.

Later on V.A.Khan and Q.M.D.Lohani[3], defined quasi almost P-convergent
sequences as folows: A double sequence x = (xk,l) of elements of real normed space
X is said to be quasi almost P-convergent to a limit L if

‖P − lim
p,q→∞

sup
m,n≥0

1

pq

m+p−1∑
k=m

n+q−1∑
l=n

xk,l − L‖X = 0.

and denoted the above set of sequence as t̄2.
Let M be an Orlicz function and Q = (qk,l) be any factorable double sequence

of strictly positive real numbers, we define the following sequence spaces:

[Lθr,s ,∆
m,M,Q]

=

{
x = (xk,l) : P − lim

r,s→∞

1

hr,s

∑
(k,l)∈Ir,s

[
M

(
‖∆mxk+m,l+n − L‖

ρ

)]qk,l

= 0

uniformly in m and n for some L and ρ > 0

}
.
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[Lθr,s ,∆
m,M,Q]0

=

x = (xk,l) : P − lim
r,s→∞

1

hr,s

∑
(k,l)∈Ir,s

[
M

(
‖∆mxk+m,l+n‖

ρ

)]qk,l

= 0

uniformly in m and n and ρ > 0

}
.

We shall denote [Lθr,s ,∆
m,M,Q] and [Lθr,s ,∆

m,M,Q]0 as [Lθr,s ,∆
m,M ] and

[Lθr,s ,∆
m,M ]0 respectively when qk,l = 1 for all k, l. If x is in [Lθr,s ,∆

m,M ], we
say that x is quasi almost lacunary strongly P-convergent with respect to the Orlicz
function M. Also if M(x) = x, qk,l = 1 for all k, l, then [Lθr,s ,∆

m,M,Q] = [Lθr,s ,∆
m]

and [Lθr,s ,∆
m,M,Q]0 = [L0

θr,s
,∆m] which are defined as follows:

[Lθr,s ,∆
m] =

{
x = (xk,l) : P − lim

r,s→∞

1

hr,s

∑
(k,l)∈Ir,s

‖∆mxk+m,l+n − L‖ = 0

uniformly in m and n for some L

}
.

and

[L0
θr,s ,∆

m] =

{
x = (xk,l) : P − lim

r,s→∞

1

hr,s

∑
(k,l)∈Ir,s

‖∆mxk+m,l+n‖ = 0

uniformly in m and n

}
.

Again note that if qk,l = 1 for all k and l then

[Lθr,s ,∆
m,M,Q] = [Lθr,s ,∆

m,M ]and[Lθr,s ,∆
m,M,Q]0 = [Lθr,s ,∆

m,M ]0

We define

[Lθr,s ,∆
m,M ]

=

{
x = (xk,l) : P − lim

r,s→∞

1

hr,s

∑
(k,l)∈Ir,s

[
M

(
‖∆mxk+m,l+n − L‖

ρ

)]
= 0

uniformly in m and n for some L and ρ > 0

}
.

and

[Lθr,s ,∆
m,M ]0

=

{
x = (xk,l) : P − lim

r,s→∞

1

hr,s

∑
(k,l)∈Ir,s

[
M

(
‖∆mxk+m,l+n − L‖

ρ

)]
= 0

uniformly in m and n and ρ > 0

}
.
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Let us consider another extension of quasi almost P-convergence of double sequences
to Orlicz function ; Let M be an Orlicz function and Q = (qk,l) be any factorable
sequence of strictly positive real numbers, we define the following sequence space:

[T,∆m,M,Q] =

{
x = (xk,l) : P − lim

p,q→∞

p,q∑
k,l=1,1

[
M

(
‖∆mxk+m,l+n − L‖

ρ

)]qk,l

= 0

uniformly in m and n for some L and ρ > 0

}
.

[T,∆m,M,Q]0 =

{
x = (xk,l) : P − lim

p,q→∞

p,q∑
k,l=1,1

[
M

(
‖∆mxk+m,l+n‖

ρ

)]qk,l

= 0

uniformly in m and n and for some ρ > 0

}
.

If we take M(x) = x, qk,l = 1 for all k and l, then [T,∆m,M,Q] = [T,∆m]

With these new concepts we can consider the following theorem: The proof of
first theorem is standard thus ommited

Theorem 1.1. For any Orlicz function M and a bounded factorable positive dou-
ble number sequence (qk,l) [Lθr,s ,∆

m,M,Q] and [Lθr,s ,∆
m,M,Q]0 are linear spaces.

Theorem 1.2. Let θr,s = {kr, ls} be a double lacunary sequence with lim inf
r
qr > 1

and lim inf
s
q̄s > 1. Then for any Orlicz function M, [T,∆m,M,Q] ⊂ [Lθr,s ,∆

m,M,Q].

Proof. It is sufficient to show that [T,∆m,M,Q]0 ⊂ [Lθr,s ,∆
m,M,Q]0. The general

inclusion follows by linearity. Suppose lim inf
r
qr > 1 and lim inf

s
q̄s > 1; then there

exists δ > 0 such that qr > 1+δ and q̄s > 1+δ. This implies hr

kr
≥ δ

1+δ and h̄r

ls
≥ δ

1+δ .
Then for x ∈ [T,∆m,M,Q]0, we can write for each m and n,

Br,s =
1

hr,s

∑
(k,l)∈Ir,s

[
M

(
‖∆mxk+m,l+n‖

ρ

)]qk,l

=
1

hr,s

kr∑
k=1

ls∑
l=1

[
M

(
‖∆mxk+m,l+n‖

ρ

)]qk,l

− 1

hr,s

kr−1∑
k=1

ls−1∑
l=1

[
M

(
‖∆mxk+m,l+n‖

ρ

)]qk,l

− 1

hr,s

kr∑
k=kr−1+1

ls−1∑
l=1

[
M

(
‖∆mxk+m,l+n‖

ρ

)]qk,l
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− 1

hr,s

ls∑
l=ls−1+1

kr−1∑
k=1

[
M

(
‖∆mxk+m,l+n‖

ρ

)]qk,l

=
krls
hr,s

(
1

krls

kr∑
k=1

ls∑
l=1

[
M

(
‖∆mxk+m,l+n‖

ρ

)]qk,l
)

−kr−1ls−1

hr,s

(
1

kr−1ls−1

kr−1∑
k=1

ls−1∑
l=1

[
M

(
‖∆mxk+m,l+n‖

ρ

)]qk,l
)

− 1

hr

kr∑
k=kr−1+1

ls−1

hs

1

ls−1

ls−1∑
l=1

[
M

(
‖∆mxk+m,l+n‖

ρ

)]qk,l

− 1

hs

ls∑
l=ls−1+1

kr−1

hr

1

kr−1

kr−1∑
k=1

[
M

(
‖∆mxk+m,l+n‖

ρ

)]qk,l

Since x ∈ [T,∆m,M,Q]0 the last two terms tends to zero uniformly in m,n in Pring-
sheim senses, thus for each m and n

Br,s =
krls
hr,s

(
1

krls

kr∑
k=1

ls∑
l=1

[
M

(
‖∆mxk+m,l+n‖

ρ

)]qk,l
)

−kr−1ls−1

hr,s

(
1

kr−1ls−1

kr−1∑
k=1

ls−1∑
l=1

[
M

(
‖∆mxk+m,l+n‖

ρ

)]qk,l
)

+ 0(1).

Since hr,s = krls − kr−1ls−1 we are granted for each m and n the following:

krls
hr,s

≤ 1 + δ

δ
and

kr−1ls−1

hr,s
≤ 1

δ
.

The terms

1

krls

kr∑
k=1

ls∑
l=1

[
M

(
‖∆mxk+m,l+n‖

ρ

)]qk,l

and

1

kr−1ls−1

kr−1∑
k=1

ls−1∑
l=1

[
M

(
‖∆mxk+m,l+n‖

ρ

)]qk,l

are both Pringsheim null sequences for all m and n. Thus Br,s is Pringsheim.

Theorem 1.3 Let θr,s = {k, l} be a double lacunary sequence with lim sup
r
qr < ∞

and lim sup
s
q̄s <∞. Then for any Orlicz function M

[Lθr,s ,∆
m,M,Q] ⊂ [T,∆m,M,Q].

Proof. Since lim sup
r
qr < ∞ and lim sup

s
q̄s < ∞, there exists H > 0 such that
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qr < H and q̄s < H for all r and s. Let x ∈ [Lθr,s ,∆
m,M,Q] and ε > 0. There exists

r0 > 0 and s0 > 0 such that for every i ≥ r0 and j ≥ s0 and m and n,

Ci,j =
1

hij

∑
(k,l)∈Ii,j

[
M

(
‖∆mxk+m,l+n‖

ρ

)]qk,l

< ε.

Let D = max{Ci,j : 1 ≤ i ≤ r0 and 1 ≤ j ≤ s0} and p and q be such that kr−1 < p ≤
kr and ls−1 < q ≤ ls. Thus we obtain the following

1

pq

p,q∑
k,l=1,1

[
M

(
‖∆mxk+m,l+n‖

ρ

)]qk,l

≤ 1

kr−1ls−1

krls∑
k,l=1,1

[
M

(
‖∆mxk+m,l+n‖

ρ

)]qk,l

≤ 1

kr−1ls−1

r,s∑
t,u=1,1

( ∑
(k,l)∈It,u

[
M

(
‖∆mxk+m,l+n‖

ρ

)]qk,l
)

=
1

kr−1ls−1

r0,s0∑
t,u=1,1

ht,u +
1

kr−1ls−1

r0,s0∑
t,u=1,1

ht,uCt,u.

=
D

kr−1ls−1

r0,s0∑
t,u=1,1

ht,u +
1

kr−1ls−1

∑
(r0<t≤r)∪(s0<u≤s)

ht,uCt,u.

=
Dkr0 ls0r0s0

kr−1ls−1
+

(
sup

t≥r0∪u≥s0
Ct,u

)
1

kr−1ls−1

∑
(r0<t≤r)∪(s0<u≤s)

ht,u.

=
Dkr0 ls0r0s0

kr−1ls−1
+

1

kr−1ls−1
ε

∑
(r0<t≤r)∪(s0<u≤s)

ht,u.

=
Dkr0 ls0r0s0

kr−1ls−1
+ εH2

Since kr and ls both approach infinity as both p and q approach infinity, it fol-
lows that

1

pq

p,q∑
k,l=1,1

[
M

(
‖∆mxk+m,l+n‖

ρ

)]qk,l

→ 0, uniformly in m and n for some ρ > 0.

Therefore x ∈ [T,∆m,M,Q].

Theorem .1.4. Let θr,s = {kr, ls} be a double lacunary sequence with lim inf
r,s
qr,s ≤

lim sup
r,s

qr,s <∞. Then for any Orlicz function M, [Lθr,s ,∆
m,M,Q] = [T,∆m,M,Q].
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1 Introduction

Denote by Σ the class of functions of the form

f(z) =
1

z
+

∞∑
n=0

anz
n (1)

which are analytic and univalent in the punctured disk
U∗ = {z ∈ C : 0 < |z| < 1}.

A function f ∈ Σ is said to be meromorphic starlike if

<zf
′(z)

f(z)
< 0 , z ∈ U∗. (2)

We denote by Σ∗ the class of all meromorphic starlike functions.
A function f ∈ Σ is said to be meromorphic convex if

<
(

1 +
zf ′′(z)

f ′(z)

)
< 0 , z ∈ U∗. (3)
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The class of all meromorphic convex functions will be denoted by Σc.
Let f ∈ Σ be of the form (1) and let α, β be real numbers with α ≥ β ≥ 0. We

define the analogue of the differential operator given in [13] as follows

D0
α,βf(z) = f(z)

D1
α,βf(z) = Dα,βf(z) =

= αβ(z2f(z))′′ + (α− β)
(z2f(z))′

z
+ (1− α+ β)f(z) (4)

Dm
α,βf(z) = Dα,β

(
Dm−1
α,β f(z)

)
, z ∈ U∗ , m ∈ N = {1, 2, . . .} . (5)

If f ∈ Σ is given by (1), then from (4) and (5) we get

Dm
α,βf(z) =

1

z
+

∞∑
n=0

A(α, β, n)manz
n , z ∈ U∗ (6)

where

A(α, β, n) = [(n+ 2)αβ + α− β](n+ 1) + 1. (7)

Note that for α = 1 and β = 0 we obtain the differential operator defined in [1].
Making use of the operator Dm

α,βf(z) we introduce the following subclasses of
meromorphic functions.

Definition 1.1 Let Σ∗m(α, β) be the class of functions f ∈ Σ for which Dm
α,βf(z) ∈

Σ∗, that is

<
z(Dm

α,βf(z))′

Dm
α,βf(z)

< 0 , z ∈ U∗.

Note that Σ∗0(α, β) = Σ∗.

Definition 1.2 Let γ be a complex number. We say that a function f ∈ Σ belongs
to the class HΣ∗m(α, β, γ) if the function F defined by

1

F (z)
=

1− γ
Dm
α,βf(z)

− γ

z(Dm
α,βf(z))′

, z ∈ U∗ (8)

is a meromorphic starlike function.

By specializing parameters γ and m we obtain the following subclasses:

1. HΣ∗m(α, β, 0) = Σ∗m(α, β).

2. HΣ∗0(α, β, 0) = Σ∗.

3. HΣ∗0(α, β, 1) = Σc.



Dorina Răducanu and Halit Orhan and Erhan Deniz 89

Also, if we consider m = 0 in Definition 1.2, we obtain another subclass of Σ
consisting of functions f for which the function F given by

1

F (z)
=

1− γ
f(z)

− γ

zf ′(z)

is in the class Σ∗. We denote this class of functions by HΣ∗(γ).
In this paper we find the relationship between the classes HΣ∗m(α, β, γ) and

Σ∗m(α, β). Sharp upper bounds for the Fekete-Szegö like functional |a1 − µa20| are
also obtained.

2 Relationship property

In order to prove the relationship between the classes HΣ∗m(α, β, γ) and Σ∗m(α, β)
we need the following lemma.

Lemma 2.1 ([7]) Let p(z) be an analytic function in the open unit disk U = {z ∈ C :
|z| < 1} with p(0) = 1 and p(z) 6= 1. If 0 < |z0| < 1 and

<p(z0) = min
|z|≤|z0|

<p(z)

then

z0p
′(z0) ≤ − |1− p(z0)|2

2[1−<p(z0)]
.

Theorem 2.1 Let γ be a complex number such that

∣∣∣∣γ − 1

2

∣∣∣∣ ≤ 1

2
. Then

HΣ∗m(α, β, γ) ⊂ Σ∗m(α, β).

Proof. Assume that f belongs to the class HΣ∗m(α, β, γ). Elementary calculations
show that if f ∈ HΣ∗m(α, β, γ), then

<

[
1 +

z(Dm
α,βf(z))′

Dm
α,βf(z)

+
z(Dm

α,βf(z))′′

(Dm
α,βf(z))′

−
(1− 2γ)z(Dm

α,βf(z))′ + (1− γ)z2(Dm
α,βf(z))′′

(1− γ)(Dm
α,βf(z))′ − γDm

α,βf(z)

]
< 0 , z ∈ U∗. (9)

Consider the analytic function p(z) ∈ U, given by

p(z) = −
z(Dm

α,βf(z))′

Dm
α,βf(z)

. (10)

Then, the inequality (9) becomes

<
[
p(z)− zp′(z)

p(z)
+

(1− γ)zp′(z)

(1− γ)p(z) + γ

]
> 0 , z ∈ U. (11)
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Suppose that there exists a point z0 (0 < |z0| < 1) such that

<p(z) > 0 (|z| < |z0|) and p(z0) = iρ, (12)

where ρ is real and ρ 6= 0. Then, making use of Lemma 2.1, we get

z0p
′(z0) ≤ −1 + ρ2

2
. (13)

By virtue of (11), (12) and (13) it follows that

R0 := <
[
p(z0)− z0p

′(z0)

p(z0)
+

(1− γ)z0p
′(z0)

(1− γ)p(z0) + γ

]

= <
[
iρ− z0p

′(z0)

iρ
+

(1− γ)z0p
′(z0)

(1− γ)iρ+ γ

]
.

Hence

R0 =
zop
′(z0)

|(1− γ)iρ+ γ|2
<[γ̄ − |γ|2]. (14)

Since

∣∣∣∣γ − 1

2

∣∣∣∣ ≤ 1

2
it follows that <[γ̄ − |γ|2] ≥ 0. From (13) and (14) we get

R0 ≤ −
1 + ρ2

2|(1− γ)iρ+ γ|2
Re[γ̄ − |γ|2] ≤ 0,

which contradicts the assumption f ∈ HΣ∗m(α, β, γ). Therefore, we must have

<p(z) = −<
z(Dm

α,βf(z))′

Dm
α,βf(z)

> 0

or

<
z(Dm

α,βf(z))′

Dm
α,βf(z)

< 0 , z ∈ U∗

which shows that f ∈ Σ∗m(α, β). Thus, the proof of our theorem is completed.
If we consider m = 0 in Theorem 2.1, we obtain the following result.

Corollary 2.1 Let γ be a complex number such that

∣∣∣∣γ − 1

2

∣∣∣∣ ≤ 1

2
. Then

HΣ∗(γ) ⊂ Σ∗.

3 Fekete-Szegö like functional

Let S denotes the class of functions of the form

f(z) = z +

∞∑
n=2

anz
n
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which are analytic and univalent in U.
In 1933, M. Fekete and G. Szegö [3] obtained sharp upper bounds for |a3 − µa22|

for f ∈ S and µ real. For different subclasses of S, Fekete-Szegö problem has been
investigated by many authors including [2], [8], [9], [11], [15].

Recently, H.Silverman et al. [14] has obtained sharp upper bounds for Fekete-
Szegö like functional |a1−µa20| for certain subclasses of Σ. In this section we will find
sharp upper bounds for |a1 − µa20| for the class HΣ∗m(α, β, γ).

The following lemma will be used in order to obtain our result.

Lemma 3.1 ([4]) If p1(z) = 1 + c1z + c2z
2 + . . . is a function with positive real part

in U, then

|c2 − vc21| ≤ 2 max {1; |2v − 1|} . (15)

The result is sharp for the functions p1(z) =
1 + z

1− z
, p1(z) =

1 + z2

1− z2
.

Theorem 3.1 Let f(z) given by (1) be in the class HΣ∗m(α, β, γ). Then, for any
complex number µ

|a1 − µa20| ≤
1

|1− 2γ|(1 + 6αβ + 2α− 2β)m
max {1; Λ(α, β, γ, µ,m)} , (16)

if γ /∈
{

1

2
, 1

}

|a1 − µa20| ≤
1

(1 + 6αβ + 2α− 2β)m
, if γ = 1 (17)

and

|a1 − µa20| ≤
2
√

6|µ|
3(1 + 2αβ + α− β)m

, if γ =
1

2
(18)

where

Λ(α, β, γ, µ,m) =

|(3γ2 − 2γ − 1)(1 + 2αβ + α− β)2m + 4(1− 2γ)(1 + 6αβ + 2α− 2β)mµ|
|1− γ|2(1 + 2αβ + α− β)2m

.

The bounds are sharp.

Proof. Suppose f(z) given by (1) belongs to the class HΣ∗m(α, β, γ). Let p1(z) =
1 + c1z+ c2z

2 + . . . be an analytic function with positive real part in U. From (9) we
get

1 +
z(Dm

α,βf(z))′

Dm
α,βf(z)

+
z(Dm

α,βf(z))′′

(Dm
α,βf(z))′

−

−
(1− 2γ)z(Dm

α,βf(z))′ + (1− γ)z2(Dm
α,βf(z))′′

(1− γ)(Dm
α,βf(z))′ − γDm

α,βf(z)
= 1 + c1z + c2z

2 . . . . (19)
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We have

z(Dm
α,βf(z))′

Dm
α,βf(z)

= −1 + (1 + 2αβ + α− β)ma0z

+
[
2(1 + 6αβ + 2α− 2β)ma1 − (1 + 2αβ + α− β)2ma20

]
z2 (20)

+ . . .
z(Dm

α,βf(z))′′

(Dm
α,βf(z))′

= −2− 2(1 + 6αβ + 2α− 2β)ma1z
2 + . . . (21)

and

(1− 2γ)z(Dm
α,βf(z))′ + (1− γ)z2(Dm

α,βf(z))′′

(1− γ)(Dm
α,βf(z))′ − γDm

α,βf(z)
= −1 + γ(1 + 2αβ + α− β)ma0z

−
[
2(1− 2γ)(1 + 6αβ + 2α− 2β)ma1 + γ2(1 + 2αβ + α− β)2ma20

]
z2 + . . . (22)

Using (20), (21) and (22) in (19) we find

c1 = −(1− γ)(1 + 2αβ + α− β)ma0

and

c2 = −2(1− 2γ)(1 + 6αβ + 2α− 2β)ma1 − (1− γ2)(1 + 2αβ + α− β)2ma20

which give

a0 = − c1
(1− γ)(1 + 2αβ + α− β)m

, if γ 6= 1 (23)

and

a1 =
−1

2(1− 2γ)(1 + 6αβ + 2α− 2β)m

[
c2 −

1 + γ

1− γ
c21

]
(24)

if γ /∈
{

1

2
, 1

}
.

Therefore, we have

a1 − µa20 =
−1

2(1− 2γ)(1 + 6αβ + 2α− 2β)m
(c2 − vc21)

where

v =
(1− γ2)(1 + 2αβ + α− β)2m − 2(1− 2γ)(1 + 6αβ + 2α− 2β)mµ

(1− γ)2(1 + 2αβ + α− β)2m
.

Now, the result (16) follows by an application of Lemma 3.1.

If γ = 1, then a0 = 0 and a1 =
−c2

2(1 + 6αβ + 2α− 2β)m
. Since |c2| ≤ 2 it follows

that |a1| ≤
1

(1 + 6αβ + 2α− 2β)m
which proves (17). Also, if γ =

1

2
, then a1 = 0

and

c1 = −1

2
(1 + 2αβ + α− β)ma0
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and

c2 =
3

4
(1 + 2αβ + α− β)2ma20.

Since |c1| ≤ 2 and |c2| ≤ 2 it follows that |a0| ≤
2
√

6

3(1 + 2αβ + α− β)m
and thus, (18)

is proved.
The bounds are sharp for the functions f1(z) and f2(z) defined by

1− γ
Dm
α,βf1(z)

− γ

z(Dm
α,βf1(z))′

=
1

F1(z)
, where − zF ′1(z)

F1(z)
=

1 + z

1− z

respectively,

1− γ
Dm
α,βf2(z)

− γ

z(Dm
α,βf2(z))′

=
1

F2(z)
, where − zF ′2(z)

F2(z)
=

1 + z2

1− z2
.

Obviously, the functions F1, F2 ∈ Σ∗ and f1, f2 ∈ HΣ∗m(α, β, γ).
If we consider first m = 0, then γ = 0 and then m = γ = 0 , respectively in

Theorem 3.1, we obtain the following consequences.

Corollary 3.1 Let f(z) given by (1) be in the class HΣ∗(γ). Then, for any complex
number µ

|a1 − µa20| ≤
1

|1− 2γ|
max

{
1;
|3γ2 − 2γ − 1 + 4(1− 2γ)µ|

|1− γ|2

}
,

if γ /∈
{

1

2
, 1

}
|a1 − µa20| ≤ 1 , if γ = 1

|a1 − µa20| ≤
2
√

6

3
|µ| , if γ = 0.

The bounds are sharp.

Corollary 3.2 If f(z) given by (1) belongs to the class Σ∗m(α, β), then for any com-
plex number µ

|a1 − µa20| ≤
1

(1 + 6αβ + 2α− 2β)m
max {1; Φ(α, β, µ,m)}

where

Φ(α, β, µ,m) =
|4(1 + 6αβ + 2α− 2β)mµ− (1 + 2αβ + α− β)2m|

(1 + 2αβ + α− β)2m
.

The bound is sharp.
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Corollary 3.3 ([14]) Let f(z) given by (1) be a meromorphic starlike function. Then,
for any complex number µ

|a1 − µa20| ≤ max {1; |4µ− 1|} .

The bound is sharp.

Finally, if we consider γ = 1 and m = 0 in Theorem 3.1, we obtain the following
result.

Corollary 3.4 Let f(z) given by (1) be a meromorphic convex function. Then, for
any complex number µ

|a1 − µa20| ≤ 1.

The bound is sharp.
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1 Introduction

Let A denote the class of functions that are analytic in the open unit disk U = {z ∈
C : |z| < 1} and let An,p be the subclass of A consisting of the functions f of the form

f(z) = zp +

∞∑
k=n+p

akz
k, (n ∈ N) (1.1)

where p is some positive integer and f is analytic and p-valent in U. Then function
f ∈ An,p is said to be in class Sn(p, δ) if and only if

Re

(
zf ′(z)

f(z)

)
> δ, (z ∈ U) (1.2)

for some δ (0 ≤ δ < p).
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A function f ∈ Sn(p, δ) is called p-valent starlike of order δ. On the other hand a
function f ∈ An,p is said to be in the class Kn(p, δ) iff

Re

(
1 +

zf ′′(z)

f ′(z)

)
> δ, (z ∈ U) (1.3)

for some δ (0 ≤ δ < p).

A function f ∈ Kn(p, δ) is called p-valent convex function of order δ. It is observed
that

f ∈ Kn(p, δ)⇔ zf ′ ∈ Sn(p, δ) ∀n ∈ {1, 2, ...} (1.4)

The fractional derivative operator occurring in this paper is defined as (see, e.g.
[10], [11]):

Let f is an analytic function in a simply connected region of the z-plane containing
the origin, and the multiplicity of (z − ζ)−λ is removed by requiring log(z − ζ) to be
real when z − ζ > 0. Then the generalized fractional derivative of order λ is defined
for a function f(z) by

Jλ,µ,ν0,z f(z) =



1

Γ(1− λ)

d

dz

{
zλ−µ

∫ z

0

(z − ζ)−λ

. 2F1

(
µ− λ, 1− ν; 1− λ; 1− ζ

z

)
f(ζ)dζ

}
,

(0 ≤ λ < 1)

dn

dzn
Jλ−n,µ,ν0,z f(z), (n ≤ λ < n+ 1, n ∈ N)

(k > max{0, µ− ν − 1} − 1)

(1.5)

provided further that
f(z) = O(|z|k), (z → 0) (1.6)

It follows at once from the above definition that

Jλ,λ,ν0,z f(z) = Dλ
z f(z), (0 ≤ λ < 1) (1.7)

Furthermore, in terms of gamma function, we have

Jλ,µ,ν0,z zρ =
Γ(ρ+ 1)Γ(ρ− µ+ ν + 2)

Γ(ρ− µ+ 1)Γ(ρ− λ+ ν + 2)
zρ−µ,

(0 ≤ λ < 1, ρ > max{0, µ− ν − 1} − 1)

(1.8)

In a recent paper, Goyal and Goyal [2] defined a generalized Ruscheweyh deriva-
tives Jλ,µp fn,p, µ > −1 as

Jλ,µp fn,p(z) =
Γ(µ− λ+ ν + 2)

Γ(ν + 2)Γ(µ+ 1)
zpJλ,µ,ν0,z (zµ−pfn,p(z))

= zp +

∞∑
k=n+p

akB
λ,µ
p (k)zk

(1.9)
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where

Bλ,µp (k) =
Γ(k − p+ 1 + µ)Γ(ν + 2 + µ− λ)Γ(k + ν − p+ 2)

Γ(k − p+ 1)Γ(k + ν − p+ 2 + µ− λ)Γ(ν + 2)Γ(1 + µ)
(1.10)

For λ = µ, this generalized Ruscheweyh derivatives get reduced to Ruscheweyh
derivatives of f(z) of order λ (see, e.g. [7]):

Dλfn,p(z) =
zp

Γ(λ+ 1)

dλ

dzλ
(zλ−pfn,p(z))

= zp +

∞∑
k=n+p

akBk(λ)zk
(1.11)

where

Bk(λ) =
Γ(λ+ k)

Γ(λ+ p)Γ(k − p+ 1)
(1.12)

For p=1, (1.12) reduces to ordinary Ruscheweyh derivatives for univalent func-
tions [9].

Let Tn,p(θ) be the subclass of An,p consisting of functions f of the form

f(z) = zp −
∞∑

k=n+p

ei(k−p)θakz
k, (ak ≥ 0, n ∈ N, −π ≤ θ ≤ π) (1.13)

For α ≥ 0, 0 ≤ β < 1 and µ > −1, we define Wn,p
λ,µ(α, β) subclass of Tn,p(θ)

consisting of functions f of the form (1.13) satisfying

Re

{
pJλ,µp f(z)

z(Jλ,µp f(z))′

}
> α

∣∣∣∣∣ pJλ,µp f(z)

z(Jλ,µp f(z))′
− 1

∣∣∣∣∣+ β (1.14)

Similarly, we define W1,p
λ,µ(α, β) subclass of T1,p(θ) consisting of functions f of the

form (1.13) satisfying (1.14).

Next we introduce the class WCn,p
λ,µ (α, β) ⊂ W1,p

λ,µ(α, β) consisting of the functions
of the form

fn,p(z) = zp −
n+p−1∑
m=p+1

p(1− β)ei(m−p)θCmz
m

[p(1 + α)−m(α+ β)]Bλ,µp (m)
−

∞∑
k=n+p

ei(k−p)θakz
k, (1.15)

(ak ≥ 0, n ∈ N, −π ≤ θ ≤ π)
For µ = λ, the class Wn,p

λ,µ(α, β) get reduced to the class Wn,p
λ (α, β) consisting of

the functions fof the form (1.13) so that

Re

{
pDλpf(z)

z(Dλpf(z))′

}
> α

∣∣∣∣∣ pDλpf(z)

z(Dλpf(z))′
− 1

∣∣∣∣∣+ β (1.16)

For p = 1, the above class get reduced to the class Wn
λ (α, β) defined by Najafzadeh

et al. [4].



78 Application of generalized Ruscheweyh derivatives on p-valent functions

2 Main Results

We shall need the following Lemmas in the sequel to prove our theorems:

Lemma 2.1 Let f1,p(z) = zp −
∑∞
k=n+1 e

i(k−p)θakz
k ∈ T1,p(θ).

Then f1,p ∈ W1,p
λ,µ(α, β) iff

∞∑
k=p+1

p(1 + α)− k(α+ β)

p(1− β)
Bλ,µp (k)ak < 1 (2.1)

Proof. Firstly suppose that f1,p ∈ W1,p
λ,µ(α, β). Using the fact thatRe(u) > α|u−1|+β

if and only if Re(u(1 + αeiγ)− αeiγ) > β for real γ. Let

u =
pJλ,µp f1,p(z)

z(Jλ,µp f1,p(z))′

we have

R

{
(1− β)− αeiγ

∑∞
k=p+1

p−k
p akB

λ,µ
p (k)zk−p −

∑∞
k=p+1

p−βk
p akB

λ,µ
p (k)zk−p

1−
∑∞
k=p+1

k
pakB

λ,µ
p (k)zk−p

}
> 0

(2.2)
The above inequality must hold true for all z ∈ U . Let z → 1−, we easily get

R

{
(1− β)− αeiγ

∑∞
k=p+1

p−k
p akB

λ,µ
p (k)−

∑∞
k=p+1

p−βk
p akB

λ,µ
p (k)

1−
∑∞
k=p+1

k
pakB

λ,µ
p (k)

}
> 0

⇒ Re{p(1− β)− αeiγ
∞∑

k=p+1

(p− k)akB
λ,µ
p (k)−

∞∑
k=p+1

(p− βk)akB
λ,µ
p (k)} > 0

⇒
∞∑

k=p+1

p(1 + α)− k(α+ β)

p(1− β)
Bλ,µp (k)ak < 1

(2.3)

This proves the result.

Theorem 2.1 Let fn,p be defined by (1.15), then f ∈ WCn,p
λ,µ (α, β) iff

∞∑
k=p+n

p(1 + α)− k(α+ β)

p(1− β)
Bλ,µp (k)ak < 1−

n+p−1∑
m=p+1

Cm (2.4)

Proof. Let

am =
p(1− β)Cm

[p(1 + α)−m(α+ β)]Bλ,µp (m)
, p+ 1 ≤ m ≤ n+ p− 1 (2.5)
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Since WCn,p
λ,µ (α, β) ⊂ W1,p

λ,µ(α, β), therefore f ∈ WCn,p
λ,µ (α, β) if and only if

n+p−1∑
m=p+1

p(1 + α)−m(α+ β)

p(1− β)
Bλ,µp (m)am

+

∞∑
k=p+n

p(1 + α)− k(α+ β)

p(1− β)
Bλ,µp (k)ak < 1

⇒
∞∑

k=p+n

p(1 + α)− k(α+ β)

p(1− β)
Bλ,µp (k)ak < 1−

n+p−1∑
m=p+1

Cm

(2.6)

which proves the required result.

Corollary 2.1 If fn,p(z) ∈ WCn,p
λ,µ (α, β) then for k ≥ n+ p, we have

ak ≤
p(1− β)

(
1−

∑n+p−1
m=p+1 Cm

)
[p(1 + α)− k(α+ β)]Bλ,µp (k)

(2.7)

and this result is sharp for gk(z), k ≥ n+ p defined by

gk(z) = zp −
n+p−1∑
m=p+1

p(1− β)Cme
i(m−p)θ

[p(1 + α)−m(α+ β)]Bλ,µp (m)
zm

−
p(1− β)

(
1−

∑n+p−1
m=p+1 Cm

)
[p(1 + α)− k(α+ β)]Bλ,µp (k)

zk,

(2.8)

Theorem 2.2 Let

fj(z) = zp −
n+p−1∑
m=p+1

p(1− β)Cme
i(m−p)θ

[p(1 + α)−m(α+ β)]Bλ,µp (m)
zm −

∞∑
k=p+n

ei(k−p)θak,jz
k (2.9)

for j = 1, 2, ...., l be in WCn,p
λ,µ (α, β). Then the function F (z) =

∑l
j=1 ηjfj(z) is also

in WCn,p
λ,µ (α, β), where

∑l
j=1 ηj = 1, 0 ≤

∑n+p−1
m=p+1 Cm ≤ 1 and 0 ≤ Cm ≤ 1.

Proof. By Theorem 2.1, for every j = 1, 2, ...., l, we have

∞∑
k=p+n

p(1 + α)− k(α+ β)

p(1− β)
Bλ,µp (k)ak,j < 1−

n+p−1∑
m=p+1

Cm (2.10)

but

f(z) =

l∑
j=1

ηjfjz

= zp −
n+p−1∑
m=p+1

p(1− β)ei(m−p)θCmz
m

[p(1 + α)−m(α+ β)]Bλ,µp (m)
−

∞∑
k=n+p

ei(k−p)θ(

l∑
j=1

ηjak,j)z
k,

(2.11)
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Therefore
∞∑

k=p+n

p(1 + α)− k(α+ β)

p(1− β)
Bλ,µp (k)(

l∑
j=1

ηjak,j)

=

l∑
j=1

∞∑
k=p+n

p(1 + α)− k(α+ β)

p(1− β)
Bλ,µp (k)ak,jηj

<

l∑
j=1

(1−
n+p−1∑
m=p+1

Cm)ηj

= 1−
n+p−1∑
m=p+1

Cm

(2.12)

Remark 2.1 If f1(z) and f2(z) be in WCn,p
λ,µ (α, β), then the function

F (z) = 1
2 (f1(z) + f2(z)) is also in WCn,p

λ,µ (α, β).

Remark 2.2 The class WCn,p
λ,µ (α, β) is a convex set.

In the next two theorems, we shall prove the arithmetic mean property and find
extreme points respectively for the class WCn,p

λ,µ (α, β).

Theorem 2.3 Let fj(z), j = (1, 2, ..., l) defined by (2.9) be in WCn,p
λ,µ (α, β) then the

function

H(z) = zp −
n+p−1∑
m=p+1

p(1− β)ei(m−p)θCmz
m

[p(1 + α)−m(α+ β)]Bλ,µp (m)
−

∞∑
k=n+p

ei(k−p)θbkz
k, (2.13)

is also in WCn,p
λ,µ (α, β),

where bk = 1
l

∑l
j=1 ak,j (bk ≥ 0)

Proof. We have
∞∑

k=p+n

p(1 + α)− k(α+ β)

p(1− β)
Bλ,µp (k)bk

=

∞∑
k=p+n

p(1 + α)− k(α+ β)

p(1− β)
Bλ,µp (k)

1

l

l∑
j=1

ak,j

=
1

l

l∑
j=1

[

∞∑
k=p+n

p(1 + α)− k(α+ β)

p(1− β)
Bλ,µp (k)ak,j ]

<
1

l

l∑
j=1

(
1−

n+p−1∑
m=p+1

Cm

)

= 1−
n+p−1∑
m=p+1

Cm

(2.14)
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Hence proved.

Theorem 2.4 Let

fn,p(z) = zp −
n+p−1∑
m=p+1

p(1− β)ei(m−p)θCmz
m

[p(1 + α)−m(α+ β)]Bλ,µp (m)
. (2.15)

and for k ≥ n+ p

fk,p(z) =zp −
n+p−1∑
m=p+1

p(1− β)ei(m−p)θCmz
m

[p(1 + α)−m(α+ β)]Bλ,µp (m)

−
p(1− β)(1−

∑n+p−1
m=p+1 Cm)ei(k−p)θ

[p(1 + α)− k(α+ β)]Bλ,µp (k)
zk.

(2.16)

Then the function F (z) is in WCn,p
λ,µ (α, β) iff it can be expressed in the form

F (z) =

∞∑
k=p+n−1

σkfk,p(z) (2.17)

where σk ≥ 0 (k ≥ n+ p− 1) and
∑∞
k=p+n−1 σk = 1.

Proof. Consider

F (z) =

∞∑
k=p+n−1

σkfk,p(z)

= σnfn,p(z) +

∞∑
k=p+n

σkfk,p(z)

= zp −
n+p−1∑
m=p+1

p(1− β)ei(m−p)θCmz
m

[p(1 + α)−m(α+ β)]Bλ,µp (m)

−
∞∑

k=n+p

p(1− β)σk(1−
∑n+p−1
m=p+1 Cm)ei(k−p)θ

[p(1 + α)− k(α+ β)]Bλ,µp (k)
zk

(2.18)

Finally, we have

∞∑
k=n+p

[p(1 + α)− k(α+ β)](1−
∑n+p−1
m=p+1 Cm)p(1− β)σkB

λ,µ
p (k)

p(1− β)[p(1 + α)− k(α+ β)]Bλ,µp (k)

= (1−
n+p−1∑
m=p+1

Cm)

∞∑
k=n+p

σk = 1−
n+p−1∑
m=p+1

Cm(1− σn+p−1) < 1−
n+p−1∑
m=p+1

Cm

(2.19)
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Conversely suppose that fj(z) ∈ WCn,p
λ,µ (α, β) then

F (z) = zp −
n+p−1∑
m=p+1

p(1− β)ei(m−p)θCmz
m

[p(1 + α)−m(α+ β)]Bλ,µp (m)
−

∞∑
k=n+p

ei(k−p)θakz
k

By putting

σk =
[p(1 + α)− k(α+ β)]Bλ,µp (k)ak

p(1− β)(1−
∑n+p−1
m=p+1Cm)

, (k ≥ n+ p)

Where σk ≥ 0 and if we put σn+p−1 = 1−
∑∞
k=n+pσk, we obtain

F (z) = zp −
n+p−1∑
m=p+1

p(1− β)ei(m−p)θCmz
m

[p(1 + α)−m(α+ β)]Bλ,µp (m)

−
∞∑

k=n+p

p(1− β)ei(k−p)θ(1−
∑n+p−1
m=p+1 Cm)σkz

k

[p(1 + α)− k(α+ β)]Bλ,µp (k)

= fn,p(z)−
∞∑

k=n+p

[fn,p(z)− fk,p(z)]σk

=

∞∑
k=n+p−1

σkfk,p(z).

(2.20)

3 Radii of starlikeness and convexity

Now we obtain the radii of starlikeness and convexity for the elements of the class
WCn,p
λ,µ (α, β).

Theorem 3.1 Let the function fn,p(z) defined by (1.15) be in the class WCn,p
λ,µ (α, β),

then fn,p(z) is starlike of order γ(0 ≤ γ < p) in |z| < r. where r is the largest value
such that

n+p−1∑
m=p+1

Cmr
m−p

[p(1 + α)−m(α+ β)]Bλ,µp (m)
+

(1−
∑n+p−1
m=p+1Cm)rk−p

[p(1 + α)−m(α+ β)]Bλ,µp (k)

≤ 1

p(1− β)
, (k ≥ n+ p)

(3.1)

Proof. We must show that∣∣∣∣z(fn,p(z))′fn,p(z)
− p
∣∣∣∣ =

∣∣∣∣z(fn,p(z))′ − pfn,p(z)fn,p(z)

∣∣∣∣ < p− γ. (3.2)
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But substituting for fn,p(z) from (1.15) and using triangular inequality in left-hand
side of above inequality, we have∣∣∣∣z(fn,p(z))′fn,p(z)

− p
∣∣∣∣

<

∑n+p−1
m=p+1

p(1−β)(m−p)Cm
[p(1+α)−m(α+β)]Bλ,µp (m)

|z|m−p +
∑∞
k=n+p(k − p)ak|z|k−p

1−
∑n+p−1
m=p+1

p(1−β)Cm
[p(1+α)−m(α+β)]Bλ,µp (m)

|z|m−p −
∑∞
k=n+p ak|z|k−p

<

∑n+p−1
m=p+1

p(1−β)(m−p)Cm
[p(1+α)−m(α+β)]Bλ,µp (m)

rm−p +
∑∞
k=n+p(k − p)akrk−p

1−
∑n+p−1
m=p+1

p(1−β)Cm
[p(1+α)−m(α+β)]Bλ,µp (m)

rm−p −
∑∞
k=n+p akr

k−p

(3.3)

Than (3.2) holds true if the above term is less than p− γ or equivalently

n+p−1∑
m=p+1

p(1− β)(m− γ)Cm

[p(1 + α)−m(α+ β)]Bλ,µp (m)
rm−p

+

∞∑
k=n+p

(k − p)
p(1− β)

(
1−

∑n+p−1
m=p+1 Cm

)
[p(1 + α)− k(α+ β)]Bλ,µp (k)

(k − γ)rk−p < p− γ

⇒
n+p−1∑
m=p+1

Cmr
m−p

[p(1 + α)−m(α+ β)]Bλ,µp (m)
+

(1−
∑n+p−1
m=p+1Cm)rk−p

[p(1 + α)−m(α+ β)]Bλ,µp (k)

≤ 1

p(1− β)

(3.4)

This proves the result.

Theorem 3.2 Let fn,p(z) ∈ WCn,p
λ,µ (α, β) and λ > 0 if

dm =
p(1− β)C2

m

[p(1 + α)−m(α+ β)]Bλ,µp (m)
, (p+ 1 ≤ m ≤ n+ p− 1) (3.5)

then the function

G(z) = zp −
n+p−1∑
m=p+1

p(1− β)dme
ι(m−p)θzm

[p(1 + α)−m(α+ β)]Bλ,µp (m)
−

∞∑
k=n+p

ake
ι(k−p)θzk (3.6)

is also in WCn,p
λ,µ (α, β).
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Proof. Since λ > 0 so [p(1 + α)−m(α+ β)]Bλ,µp (m) > 1, therefore

dm =
p(1− β)C2

m

[p(1 + α)−m(α+ β)]Bλ,µp (m)
< Cm ≤ 1

0 ≤
n+p−1∑
m=p+1

dm <

n+p−1∑
m=p+1

Cm ≤ 1,

(3.7)

thus

∞∑
k=n+p

[p(1 + α)−m(α+ β)]akB
λ,µ
p (k)

p(1− β)(1−
∑n+p−1
m=p−1dm)

<
[p(1 + α)−m(α+ β)]akB

λ,µ
p (k)

p(1− β)(1−
∑n+p−1
m=p−1Cm)

< 1

(3.8)

This complete the proof.

Theorem 3.3 Let fn,p, gn,p ∈ WCn,p
λ,µ (α, β) and λ > 0 then

fn,p ∗ gn,p(z) =zp −
n+p−1∑
m=p+1

p2(1− β)2Cm
2eι(m−p)θzm

[p(1 + α)−m(α+ β)]2Bλ,µp (m)
2

−
∞∑

k=n+p

akbke
ι(k−p)θzk

(3.9)

is also in WCn,p
λ1,µ

(α, β) if

λ1 < inf
k

[
[Bλ,µp (k)]2

1−
∑n+p−1
m=p+1dm

− 1

]

where dm(p+ 1 ≤ m ≤ n+ p− 1) are defined by (3.5).

Proof. By using (3.5) we obtain

fn,p ∗ gn,p(z) = zp −
n+p−1∑
m=p+1

p(1− β)dme
ι(m−p)θzm

[p(1 + α)−m(α+ β)]Bλ,µp (m)
−

∞∑
k=n+p

akbke
ι(k−p)θzk

By Theorem 3.2 and Eq. (2.4), we have

∞∑
k=n+p

[p(1 + α)−m(α+ β)]akB
λ,µ
p (k)

p(1− β)(1−
∑n+p−1
m=p−1dm)

< 1
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∞∑
k=n+p

[p(1 + α)−m(α+ β)]bkB
λ,µ
p (k)

p(1− β)(1−
∑n+p−1
m=p−1dm)

< 1

by using Cauchy Schwarz inequality, we have

∞∑
k=n+p

[p(1 + α)− k(α+ β)]
√
akbkB

λ,µ
p (k)

p(1− β)(1−
∑n+p−1
m=p−1dm)

< 1 (3.10)

We must prove

∞∑
k=n+p

[p(1 + α)−m(α+ β)]bkB
λ1,µ
p (k)

p(1− β)(1−
∑n+p−1
m=p−1dm)

< 1. (3.11)

According to (3.10) the inequality (3.11) holds true if

√
akbk

Bλ1,µ
p (k)

Bλ,µp (k)
< 1. (3.12)

But we have

√
akbk <

1−
∑n+p−1
m=p+1dm

Bλ,µp (k)

⇒
1−

∑n+p−1
m=p+1dm

Bλ,µp (k)
<

Bλ,µp (k)

Bλ1,µ
p (k)

Or equivalently

(µ+ 1)(ν + 2)

(µ+ ν − λ1 + 2)
< Bλ1,µ

p (k) <
[Bλ,µp (k)]2

1−
∑n+p−1
m=p+1dm

.

Therefore

λ1 < infk

[
[Bλ,µp (k)]2

1−
∑n+p−1
m=p+1dm

(
µ− λ1
ν + 2

+ 1

)
− 1

]
and this gives the result.
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Dorina Răducanu and Halit Orhan and Erhan Deniz

Submitted by: Jan Stankiewicz

Abstract: In this paper using a differential operator, we define a new
subclass of meromorphic functions. Sharp upper bounds for the functional
|a1 − µa20| in this class are obtained. An inclusion property is also given.

AMS Subject Classification: 30C45, 30C80.
Key Words and Phrases: Univalent meromorphic function, starlike functions, convex
function, differential operator, coefficient bounds.

1 Introduction

Denote by Σ the class of functions of the form

f(z) =
1

z
+

∞∑
n=0

anz
n (1)

which are analytic and univalent in the punctured disk
U∗ = {z ∈ C : 0 < |z| < 1}.

A function f ∈ Σ is said to be meromorphic starlike if

<zf
′(z)

f(z)
< 0 , z ∈ U∗. (2)

We denote by Σ∗ the class of all meromorphic starlike functions.
A function f ∈ Σ is said to be meromorphic convex if

<
(

1 +
zf ′′(z)

f ′(z)

)
< 0 , z ∈ U∗. (3)



88 Inclusion relationship and Fekete-Szegö like inequalities . . .

The class of all meromorphic convex functions will be denoted by Σc.
Let f ∈ Σ be of the form (1) and let α, β be real numbers with α ≥ β ≥ 0. We

define the analogue of the differential operator given in [13] as follows

D0
α,βf(z) = f(z)

D1
α,βf(z) = Dα,βf(z) =

= αβ(z2f(z))′′ + (α− β)
(z2f(z))′

z
+ (1− α+ β)f(z) (4)

Dm
α,βf(z) = Dα,β

(
Dm−1
α,β f(z)

)
, z ∈ U∗ , m ∈ N = {1, 2, . . .} . (5)

If f ∈ Σ is given by (1), then from (4) and (5) we get

Dm
α,βf(z) =

1

z
+

∞∑
n=0

A(α, β, n)manz
n , z ∈ U∗ (6)

where

A(α, β, n) = [(n+ 2)αβ + α− β](n+ 1) + 1. (7)

Note that for α = 1 and β = 0 we obtain the differential operator defined in [1].
Making use of the operator Dm

α,βf(z) we introduce the following subclasses of
meromorphic functions.

Definition 1.1 Let Σ∗m(α, β) be the class of functions f ∈ Σ for which Dm
α,βf(z) ∈

Σ∗, that is

<
z(Dm

α,βf(z))′

Dm
α,βf(z)

< 0 , z ∈ U∗.

Note that Σ∗0(α, β) = Σ∗.

Definition 1.2 Let γ be a complex number. We say that a function f ∈ Σ belongs
to the class HΣ∗m(α, β, γ) if the function F defined by

1

F (z)
=

1− γ
Dm
α,βf(z)

− γ

z(Dm
α,βf(z))′

, z ∈ U∗ (8)

is a meromorphic starlike function.

By specializing parameters γ and m we obtain the following subclasses:

1. HΣ∗m(α, β, 0) = Σ∗m(α, β).

2. HΣ∗0(α, β, 0) = Σ∗.

3. HΣ∗0(α, β, 1) = Σc.
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Also, if we consider m = 0 in Definition 1.2, we obtain another subclass of Σ
consisting of functions f for which the function F given by

1

F (z)
=

1− γ
f(z)

− γ

zf ′(z)

is in the class Σ∗. We denote this class of functions by HΣ∗(γ).
In this paper we find the relationship between the classes HΣ∗m(α, β, γ) and

Σ∗m(α, β). Sharp upper bounds for the Fekete-Szegö like functional |a1 − µa20| are
also obtained.

2 Relationship property

In order to prove the relationship between the classes HΣ∗m(α, β, γ) and Σ∗m(α, β)
we need the following lemma.

Lemma 2.1 ([7]) Let p(z) be an analytic function in the open unit disk U = {z ∈ C :
|z| < 1} with p(0) = 1 and p(z) 6= 1. If 0 < |z0| < 1 and

<p(z0) = min
|z|≤|z0|

<p(z)

then

z0p
′(z0) ≤ − |1− p(z0)|2

2[1−<p(z0)]
.

Theorem 2.1 Let γ be a complex number such that

∣∣∣∣γ − 1

2

∣∣∣∣ ≤ 1

2
. Then

HΣ∗m(α, β, γ) ⊂ Σ∗m(α, β).

Proof. Assume that f belongs to the class HΣ∗m(α, β, γ). Elementary calculations
show that if f ∈ HΣ∗m(α, β, γ), then

<

[
1 +

z(Dm
α,βf(z))′

Dm
α,βf(z)

+
z(Dm

α,βf(z))′′

(Dm
α,βf(z))′

−
(1− 2γ)z(Dm

α,βf(z))′ + (1− γ)z2(Dm
α,βf(z))′′

(1− γ)(Dm
α,βf(z))′ − γDm

α,βf(z)

]
< 0 , z ∈ U∗. (9)

Consider the analytic function p(z) ∈ U, given by

p(z) = −
z(Dm

α,βf(z))′

Dm
α,βf(z)

. (10)

Then, the inequality (9) becomes

<
[
p(z)− zp′(z)

p(z)
+

(1− γ)zp′(z)

(1− γ)p(z) + γ

]
> 0 , z ∈ U. (11)
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Suppose that there exists a point z0 (0 < |z0| < 1) such that

<p(z) > 0 (|z| < |z0|) and p(z0) = iρ, (12)

where ρ is real and ρ 6= 0. Then, making use of Lemma 2.1, we get

z0p
′(z0) ≤ −1 + ρ2

2
. (13)

By virtue of (11), (12) and (13) it follows that

R0 := <
[
p(z0)− z0p

′(z0)

p(z0)
+

(1− γ)z0p
′(z0)

(1− γ)p(z0) + γ

]

= <
[
iρ− z0p

′(z0)

iρ
+

(1− γ)z0p
′(z0)

(1− γ)iρ+ γ

]
.

Hence

R0 =
zop
′(z0)

|(1− γ)iρ+ γ|2
<[γ̄ − |γ|2]. (14)

Since

∣∣∣∣γ − 1

2

∣∣∣∣ ≤ 1

2
it follows that <[γ̄ − |γ|2] ≥ 0. From (13) and (14) we get

R0 ≤ −
1 + ρ2

2|(1− γ)iρ+ γ|2
Re[γ̄ − |γ|2] ≤ 0,

which contradicts the assumption f ∈ HΣ∗m(α, β, γ). Therefore, we must have

<p(z) = −<
z(Dm

α,βf(z))′

Dm
α,βf(z)

> 0

or

<
z(Dm

α,βf(z))′

Dm
α,βf(z)

< 0 , z ∈ U∗

which shows that f ∈ Σ∗m(α, β). Thus, the proof of our theorem is completed.
If we consider m = 0 in Theorem 2.1, we obtain the following result.

Corollary 2.1 Let γ be a complex number such that

∣∣∣∣γ − 1

2

∣∣∣∣ ≤ 1

2
. Then

HΣ∗(γ) ⊂ Σ∗.

3 Fekete-Szegö like functional

Let S denotes the class of functions of the form

f(z) = z +

∞∑
n=2

anz
n
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which are analytic and univalent in U.
In 1933, M. Fekete and G. Szegö [3] obtained sharp upper bounds for |a3 − µa22|

for f ∈ S and µ real. For different subclasses of S, Fekete-Szegö problem has been
investigated by many authors including [2], [8], [9], [11], [15].

Recently, H.Silverman et al. [14] has obtained sharp upper bounds for Fekete-
Szegö like functional |a1−µa20| for certain subclasses of Σ. In this section we will find
sharp upper bounds for |a1 − µa20| for the class HΣ∗m(α, β, γ).

The following lemma will be used in order to obtain our result.

Lemma 3.1 ([4]) If p1(z) = 1 + c1z + c2z
2 + . . . is a function with positive real part

in U, then

|c2 − vc21| ≤ 2 max {1; |2v − 1|} . (15)

The result is sharp for the functions p1(z) =
1 + z

1− z
, p1(z) =

1 + z2

1− z2
.

Theorem 3.1 Let f(z) given by (1) be in the class HΣ∗m(α, β, γ). Then, for any
complex number µ

|a1 − µa20| ≤
1

|1− 2γ|(1 + 6αβ + 2α− 2β)m
max {1; Λ(α, β, γ, µ,m)} , (16)

if γ /∈
{

1

2
, 1

}

|a1 − µa20| ≤
1

(1 + 6αβ + 2α− 2β)m
, if γ = 1 (17)

and

|a1 − µa20| ≤
2
√

6|µ|
3(1 + 2αβ + α− β)m

, if γ =
1

2
(18)

where

Λ(α, β, γ, µ,m) =

|(3γ2 − 2γ − 1)(1 + 2αβ + α− β)2m + 4(1− 2γ)(1 + 6αβ + 2α− 2β)mµ|
|1− γ|2(1 + 2αβ + α− β)2m

.

The bounds are sharp.

Proof. Suppose f(z) given by (1) belongs to the class HΣ∗m(α, β, γ). Let p1(z) =
1 + c1z+ c2z

2 + . . . be an analytic function with positive real part in U. From (9) we
get

1 +
z(Dm

α,βf(z))′

Dm
α,βf(z)

+
z(Dm

α,βf(z))′′

(Dm
α,βf(z))′

−

−
(1− 2γ)z(Dm

α,βf(z))′ + (1− γ)z2(Dm
α,βf(z))′′

(1− γ)(Dm
α,βf(z))′ − γDm

α,βf(z)
= 1 + c1z + c2z

2 . . . . (19)
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We have

z(Dm
α,βf(z))′

Dm
α,βf(z)

= −1 + (1 + 2αβ + α− β)ma0z

+
[
2(1 + 6αβ + 2α− 2β)ma1 − (1 + 2αβ + α− β)2ma20

]
z2 (20)

+ . . .
z(Dm

α,βf(z))′′

(Dm
α,βf(z))′

= −2− 2(1 + 6αβ + 2α− 2β)ma1z
2 + . . . (21)

and

(1− 2γ)z(Dm
α,βf(z))′ + (1− γ)z2(Dm

α,βf(z))′′

(1− γ)(Dm
α,βf(z))′ − γDm

α,βf(z)
= −1 + γ(1 + 2αβ + α− β)ma0z

−
[
2(1− 2γ)(1 + 6αβ + 2α− 2β)ma1 + γ2(1 + 2αβ + α− β)2ma20

]
z2 + . . . (22)

Using (20), (21) and (22) in (19) we find

c1 = −(1− γ)(1 + 2αβ + α− β)ma0

and

c2 = −2(1− 2γ)(1 + 6αβ + 2α− 2β)ma1 − (1− γ2)(1 + 2αβ + α− β)2ma20

which give

a0 = − c1
(1− γ)(1 + 2αβ + α− β)m

, if γ 6= 1 (23)

and

a1 =
−1

2(1− 2γ)(1 + 6αβ + 2α− 2β)m

[
c2 −

1 + γ

1− γ
c21

]
(24)

if γ /∈
{

1

2
, 1

}
.

Therefore, we have

a1 − µa20 =
−1

2(1− 2γ)(1 + 6αβ + 2α− 2β)m
(c2 − vc21)

where

v =
(1− γ2)(1 + 2αβ + α− β)2m − 2(1− 2γ)(1 + 6αβ + 2α− 2β)mµ

(1− γ)2(1 + 2αβ + α− β)2m
.

Now, the result (16) follows by an application of Lemma 3.1.

If γ = 1, then a0 = 0 and a1 =
−c2

2(1 + 6αβ + 2α− 2β)m
. Since |c2| ≤ 2 it follows

that |a1| ≤
1

(1 + 6αβ + 2α− 2β)m
which proves (17). Also, if γ =

1

2
, then a1 = 0

and

c1 = −1

2
(1 + 2αβ + α− β)ma0
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and

c2 =
3

4
(1 + 2αβ + α− β)2ma20.

Since |c1| ≤ 2 and |c2| ≤ 2 it follows that |a0| ≤
2
√

6

3(1 + 2αβ + α− β)m
and thus, (18)

is proved.
The bounds are sharp for the functions f1(z) and f2(z) defined by

1− γ
Dm
α,βf1(z)

− γ

z(Dm
α,βf1(z))′

=
1

F1(z)
, where − zF ′1(z)

F1(z)
=

1 + z

1− z

respectively,

1− γ
Dm
α,βf2(z)

− γ

z(Dm
α,βf2(z))′

=
1

F2(z)
, where − zF ′2(z)

F2(z)
=

1 + z2

1− z2
.

Obviously, the functions F1, F2 ∈ Σ∗ and f1, f2 ∈ HΣ∗m(α, β, γ).
If we consider first m = 0, then γ = 0 and then m = γ = 0 , respectively in

Theorem 3.1, we obtain the following consequences.

Corollary 3.1 Let f(z) given by (1) be in the class HΣ∗(γ). Then, for any complex
number µ

|a1 − µa20| ≤
1

|1− 2γ|
max

{
1;
|3γ2 − 2γ − 1 + 4(1− 2γ)µ|

|1− γ|2

}
,

if γ /∈
{

1

2
, 1

}
|a1 − µa20| ≤ 1 , if γ = 1

|a1 − µa20| ≤
2
√

6

3
|µ| , if γ = 0.

The bounds are sharp.

Corollary 3.2 If f(z) given by (1) belongs to the class Σ∗m(α, β), then for any com-
plex number µ

|a1 − µa20| ≤
1

(1 + 6αβ + 2α− 2β)m
max {1; Φ(α, β, µ,m)}

where

Φ(α, β, µ,m) =
|4(1 + 6αβ + 2α− 2β)mµ− (1 + 2αβ + α− β)2m|

(1 + 2αβ + α− β)2m
.

The bound is sharp.
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Corollary 3.3 ([14]) Let f(z) given by (1) be a meromorphic starlike function. Then,
for any complex number µ

|a1 − µa20| ≤ max {1; |4µ− 1|} .

The bound is sharp.

Finally, if we consider γ = 1 and m = 0 in Theorem 3.1, we obtain the following
result.

Corollary 3.4 Let f(z) given by (1) be a meromorphic convex function. Then, for
any complex number µ

|a1 − µa20| ≤ 1.

The bound is sharp.
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[3] M. Fekete, G. Szegö, Eine bemerkung über ungerade schlichte functionen, J. Lon-
don Math. Soc., 8(1933), 85-89.

[4] F. R. Keogh, E. P. Merkes, A coefficient inequality for certain classes of analytic
functions, Proc. Amer. Math. Soc., 20(1)(1969), 8-12.

[5] S. R. Kulkarni, S. S. Joshi, On a subclass of meromorphic univalent functions with
positive coefficients, Journ. of the Indian Acad. of Math., 24(1)(2002), 197-205.

[6] S. K. Lee, V. Ravichandran, S. Shamani, Coefficient bounds for meromorphic
starlike and convex functions, J. Ineq. Pure Appl. Math., vol. 10, issue 3, art.
71(2009),6 pp.

[7] S. S. Miller, P. T. Mocanu, Second order differential inequalities in the complex
plane, J. Math. Anal. Appl., 65(1978), 289-305.
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Section 1

Let

f(s) =

∞∑
n=1

ane
sλn , s = σ + it, (σ, t are real variables), (1)

where a′ns belong to a Banach space (E, ||.||) and λ′ns ∈ R satisfy the conditions
0 < λ1 < λ2 < λ3... < λn..., λn →∞ as n→∞ and

lim
n→∞

sup{n/λn} = D′ <∞ , (2)

lim
n→∞

sup(λn+1 − λn) = h > 0 , (3)

and

lim
n→∞

sup{(log ||an||)/λn} = −∞ . (4)

Then, the vector valued Dirichlet series in (1) represents an entire function f (s) . By
giving different topologies on the set of entire functions defined by Dirichlet series,
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Kamthan and Hussain [2] have studied various topological properties. In this paper
we obtain these properties for a space of entire functions defined by vector valued
Dirichlet series.

Section 2

Let for entire functions f defined as above by (1)

M (σ, f) = M (σ) = sup
−∞<t<∞

||f (σ + it) ||.

Then M (σ) is called the maximum modulus of f (s) . The order ρ of f (s) is defined
as [1]

ρ = lim
σ→∞

sup
log logM(σ)

σ
, (0 ≤ ρ ≤ ∞) . (5)

Also, for 0 < ρ <∞ the type T of f (s) is defined by [1]

T = lim
σ→∞

sup
logM(σ)

eσρ
, (0 ≤ T ≤ ∞) (6)

It was proved, (see [1]) that if f (s) is of order ρ (0 < ρ <∞) and

lim
n→∞

sup{(log n)/λn} = D = 0

then it is of type T if and only if

T = lim
n→∞

sup
λn
ρe
||an||ρ/λn . (7)

This implies

lim
n→∞

supλ1/ρn ||an||1/λn = (Tρe)
1/ρ

. (8)

We now denote by X the set of all entire functions f (s) given by (1) and satisfying
(2) to (4), for which

lim
σ→∞

sup
logM (σ)

eσρ
≤ T <∞ , 0 < ρ <∞ . (9)

Then from (8), we have

lim
n→∞

supλ1/ρn ||an||1/λn ≤ (Tρe)
1/ρ

. (10)

From (10), for arbitrary ε > 0 and all n > n0 (ε),

||an||
[

λn
(T + ε) eρ

]λn/ρ
< 1. (11)
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For a fixed positive integer q ≥ 1, there exists 0 < ε < q−1. Hence from (11),

∑∞
n=1 ||an||

[
λn

(T+q−1)eρ

]λn/ρ
<
∑no
n=1

[
λn

(T+q−1)eρ

]λn/ρ
+
∑∞
n=n0+1

[
T+ε
T+q−1

]λn/ρ
≤ O(1).

Hence, if we put

||f ||q =
∑
n≥1

||an||
[

λn
(T + q−1) eρ

]λn/ρ
; q ≥ 1, (12)

then ||f ||q is well defined and for q1 ≤ q2 , ||f ||q1 ≤ ||f ||q2 . This norm induces a
metric topology on X. We define

λ (f, g) =
∑
q≥1

1

2q
.
||f − g||q

1 + ||f − g||q

We denote the space X with the above metric λ by Xλ.
Now we prove

Theorem 2.1. The space Xλ is a Frechet space.

Proof. Here, Xλ is a normed linear metric space. For showing that Xλ is a Frechet
space, we need to show that Xλ is complete. Hence, let {fα} be a λ-Cauchy sequence
in X. Therefore, for any given ε > 0 there exists an integer n0 = n0 (ε) such that

λ(fα, fβ) < ε/2 for all α, β > n0.

Hence

||fα − fβ ||q < ε/2 for all α, β > n0 , q ≥ 1.

Denoting by fα (s) =
∑∞
n=1 a

(α)
n es λn , fβ (s) =

∑∞
n=1 a

(β)
n es λn , we have therefore

∞∑
n=1

||a(α)n − a(β)n ||
[

λn
(T + q−1) eρ

]λn/ρ
< ε/2 (13)

for all α, β > n0, q ≥ 1 . Since, λn →∞ as n→∞, therefore we have

||a(α)n − a(β)n || < ε/2 ∀ α, β > n0 , and n = 1, 2...,

i.e. for each fixed n = 1, 2, ...,
{
a
(α)
n

}
is a Cauchy sequence in the Banach space E.

Hence there exists a sequence {an} ⊆ E such that

lim
α→∞

a(α)n = an , n ≥ 1.

Now letting β →∞ in (13), we have for α > n0 ,
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∞∑
n=1

||a(α)n − an||
[

λn
(T + q−1) eρ

]λn/ρ
< ε/2. (14)

Taking α = n0, we get for a fixed q in (14)

||an||
[

λn
(T + q−1) eρ

]λn/ρ
< ||a(n0)

n ||
[

λn
(T + q−1) eρ

]λn/ρ
+ ε/2

Now f (n0) =
∑∞
n=1 a

(n0)
n es λn ∈ Xλ, hence the condition (11) is satisfied. For arbitrary

p > q , we have, ||a(n0)
n || <

[
(T+p−1)eρ

λn

]λn/ρ
for arbitrarily large n. Hence we have,

||an||
[

λn
(T + q−1) eρ

]λn/ρ
<

[(
T + p−1

)
eρ

λn

]λn/ρ [
λn

(T + q−1) eρ

]λn/ρ
+ ε/2

<

[
T + p−1

T + q−1

]λn/ρ

+ ε/2

< ε

for sufficiently large values of n since p > q. We find that the sequence {an} satisfies
(11) and therefore f (s) =

∑∞
n=1 ane

s λn belongs to Xλ. Using (14) again, we have for
q = 1, 2...,

||fα − f ||q < ε/2.

Hence

λ (fα, f) =

∞∑
q=1

1

2q
||fα − f ||q

1 + ||fα − f ||q
≤ ε

2 + ε

∞∑
q=1

1

2q
< ε.

Since above inequality holds for all α > n0, we finally get fα → f with respect to the
metric λ, where f ∈ Xλ. Hence Xλ is complete. This proves Theorem 2.1

Now, we characterize the linear continuous functional on Xλ. We prove

Theorem 2.2. A continuous linear functional ψ on Xλ is of the form

ψ (f) =

∞∑
n=1

anCn

if and only if

|Cn| ≤ A
[

λn
(T + q−1) eρ

]λn/ρ
for all n ≥ 1, q ≥ 1, (15)

where A is finite, positive number, f = f (s) =
∑∞
n=1 ane

s λn and λ1 is sufficiently
large.
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Proof. Let ψ ∈ X ′λ, the dual space of Xλ. Then for any sequence {fm} ⊆ Xλ such
that fm → f, we have ψ (fm) → ψ (f) as m → ∞. Now, letf (s) =

∑∞
n=1 ane

s.λn

where a′ns ∈ E satisfy (11). Then f ∈ Xλ. Also, let fk (s) =
∑k
n=1 an e

sλn . Then
fk ∈ Xλ for k=1,2... . Let q be any fixed positive integer and let 0 < ε < q−1. From
(11) we can find an integer m such that

||an|| <
[

(T + ε) eρ

λn

]λn/ρ
, ∀n > m.

Then, for sufficiently large value of m.∥∥∥∥∥f −
m∑
n=1

ane
s λn

∥∥∥∥∥
q

=

∥∥∥∥∥
∞∑

n=m+1

ane
s λn

∥∥∥∥∥
q

=

∞∑
n=m+1

||an||
[

λn
(T + q−1) eρ

]λn/ρ

<

∞∑
n=m+1

[
(T + ε) eρ

λn

]λn/ρ [
λn

(T + q−1) eρ

]λn/ρ
or ∥∥f −∑m

n=1 ane
s λn
∥∥
q
<
∑∞
n=m+1

[
(T+ε)

(T+q−1)

]λn/ρ
< ε.

Hence

λ (f, fm) =

∞∑
q=1

1

2q
||f − fm||q

1 + ||f − fm||q
≤ ε

1 + ε
< ε,

i.e. fm → f as m→∞ in Xλ. Hence by assumption that ψ ∈ X ′λ, we have

lim
m→∞

ψ (fm) = ψ (f) .

Let us denote by Cn = ψ
(
es λn

)
. Then

ψ (fm) =

m∑
n=1

anψ
(
es λn

)
=

m∑
n=1

anCn .

Also |Cn| = |ψ
(
es λn

)
|. Since ψ is continuous on Xλ, it is continuous on X||.||q for

each q = 1, 2, 3... . Hence there exists a positive constant A independent of q such
that

|ψ
(
es λn

)
| = |Cn| ≤ A||α||q ; q ≥ 1,

where α (s) = es λn . Now using the definition of the form for α (s) , we get
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|Cn| ≤ A
[

λn
(T + q−1) eρ

]λn/ρ
, n ≥ 1, q ≥ 1 .

Hence we get ψ (f) =
∑∞
n=1 anCn , where the sequence {Cn} satisfies (15).

Conversely, suppose that ψ (f) =
∑∞
n=1 anCn and Cn satisfies (15). Then for q ≥ 1,

|ψ (f) | ≤ A

∞∑
n=1

||an||
[

λn
(T + q−1) eρ

]λn/ρ
i.e.

|ψ (f) | ≤ A ||f ||q , q ≥ 1 ,

i.e.

ψ ∈ X
′

||.||q , q ≥ 1.

Now, since

λ (f, g) =
∑
q≥1

1

2q
||f − g||q

1 + ||f − g||q
,

therefore

X
′

λ =

∞⋃
q=1

X
′

||.||q .

Hence ψ ∈ X ′λ. This completes the proof of Theorem 2.2

Section 3

Following Kamthan and Gautam [3] we give some definitions. A sequence {αn} ⊆ X
is said to be linearly independent if

∑∞
n=1 cnαn = 0 implies that cn = 0 ∀ n, for

all sequences of complex numbers {cn} for which
∑∞
n=1 cnαn converges in X. A

subspace X0 of X is said to be spanned by a sequence {αn} ⊆ X if X0 consists of
all linear combinations

∑∞
n=1 cnαn such that

∑∞
n=1 cnαn converges in X. A sequence

{αn} ⊆ X which is linearly independent and spans a subspace X0 of X is said to be
a base in X0. In particular, if en ∈ X, en (s) = esλn , n ≥ 1, then {en} is a base in
X. A sequence {αn} ⊆ X will be called a ‘proper base’ if it is a base and it satisfies
the condition:

“for all sequences {an} ⊆ E, convergence of
∑∞
n=1 ||an|| αn in X implies the

convergence of
∑∞
n=1 anen in X”.

We now prove
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Theorem 3.1. A necessary and sufficient condition that there exists a continuous
linear transformation F : X → X with F (en) = αn, n = 1, 2, ..., where αn ∈ X, is
that for each δ > 0.

lim
n→∞

sup
||αn;T + δ||1/λn

λ
1/ρ
n

<
1

(eρT )
1/ρ

. (16)

Proof. Let F be a continuous linear transformation from X into X with F (en) =
αn, n = 1, 2, ... . Then for any given δ > 0, there exists a δ1 > 0 and a constant
K
′

= K
′
(δ) depending on δ only, such that

||F (en) ;T + δ|| ≤ K
′
||T + δ1||

⇒ ||αn;T + δ|| ≤ K
′
{

λn
(T + δ1) eρ

}λn/ρ

⇒ ||αn;T + δ|| 1/λn

λ
1/ρ
n

≤ 1 + o (1)

{(T + δ1) eρ}1/ρ
, for n ≥ N

⇒ lim
n→∞

sup
||αn;T + δ|| 1/λn

λ
1/ρ
n

<
1

(eρT )
1/ρ

.

Conversely, let the sequence {αn} satisfy (16) and let

α(s) =

∞∑
n=1

anen.

Then this implies that

lim
n→∞

supλ1/ρn ||an|| 1/λn ≤ (ρeT )
1/ρ

.

Hence, given η > 0, there exists N0 = N0 (η), such that

λ1/ρn ||an|| 1/λn ≤ ((T + η) ρe)
1/ρ ∀ n ≥ N0.

Further, for a given η1 > η, we can find N1 = N1 (η1) from (16), such that for n ≥ N1

||αn;T + δ||1/λn

λ
1/ρ
n

≤ 1

((T + η1) eρ)
1/ρ

.

Choose n ≥ max(N0, N1). Then

||an||1/λn ||αn;T + δ||1/λn ≤
{

((T+η)eρ)1/ρ

λ
1/ρ
n

}{
λ1/ρ
n

((T+η1)eρ)
1/ρ

}
≤
{

(T+η)
(T+η1)

}λn/ρ
.



104 Spaces of entire functions represented by . . .

Since η1 > η, the series
∑∞
n=1 ||an|| ||αn;T + δ|| converges for each δ > 0. So∑∞

n=1 anαn converges to an element of X. Define F (α) =
∑∞
n=1 anαn for each

α ∈ X, then F (en) = αn. Now we have only to prove the continuity of F . Given
δ > 0, there exists δ1 > 0 such that

||αn;T + δ||1/λn

λ
1/ρ
n

≤ 1

((T + δ1) eρ)
1/ρ

,∀ n ≥ N = N (δ, δ1) .

Therefore,

||αn;T + δ|| ≤ K
′
{

λn
(T + δ1) eρ

}λn/ρ
, where K

′
= K

′
(δ)

and the inequality is true for all n ≥ 0. Now,

||F (α) ;T + δ|| ≤
∑∞
n=1 ||an|| ||αn;T + δ||

≤ K ′
∑∞
n=1 ||an||

{
λn

(T+δ1)eρ

}λn/ρ
= K

′ ||α;T + δ1|| .

Hence F is continuous. This proves Theorem 3.1.

We now give the characterization of proper bases.

Lemma 3.1. In the space Xλ, the following three conditions are equivalent:
(i) For any sequence {an} ⊆E,

∑∞
n=1 anen converges in X implies

∑∞
n=1 ||an|| αn

converges in X,
(ii) For any sequence {an} ⊆E, the convergence of

∑∞
n=1 anen in X implies that

lim
n→∞

||an||αn = 0 in X,

(iii) lim
n→∞

sup ||αn;T+δ||1/λn

λ
1/ρ
n

< 1
(Teρ)1/ρ

, for each δ > 0 , αn ∈ X,αn ∈ X .

Proof. First suppose that (i) holds. Then for any sequence {an} , where a′
s
n belongs

to Banach space E,
∑∞
n=1 anen converges in X implies that

∑∞
n=1 ||an||αn converges

in X which in turn implies that ||an||αn → 0 as n→∞. Hence (i)⇒(ii).
Now we assume that (ii) is true but (iii) is false. This implies that for some δ > 0,
there exists a sequence {nk} of positive integers such that

||αnk ;T + δ||1/λnk

λ
1/ρ
nk

≥ 1

((T + k−1) eρ)
1/ρ

,∀nk , k = 1, 2, ... .

Define a sequence {an} , as

||an|| =
{

||αn;T + δ||−1 ; n = nk
0 ; n 6= nk

. (17)

Then, we have for large k
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||ank ||
1/λnk λ

1/ρ
nk =

λ1/ρ
nk

||αnk ;T+δ||1/λnk

≤
((
T + k−1

)
eρ
)1/ρ

, ∀ k ≥ k0
.

Hence,

lim
k→∞

supλ1/ρnk
||ank ||

1/λnk ≤ (Tρe)
1/ρ

.

Thus {an} defined by (17) satisfies the condition

lim
n→∞

supλ1/ρn ||an||1/λn ≤ (Tρe)
1/ρ

which is equivalent the condition that
∑
anen converges in X(see Theorem 2.1 above).

Hence by (ii) , lim
n→∞

||an||αn = 0.

However,

‖ ||ank || αnk ;T + δ‖ = ||ank || ||αnk ;T + δ|| = 1.

Hence lim
n→∞

||an||αn = 0 in X. This is a contradiction. Hence (ii)⇒(iii). In course

of the proof of Theorem 3.1 above, we have already proved that (iii)⇒(i). Thus the
proof of Lemma 3.1 is complete.

Lemma 3.2. Let {an} ⊆ E and {αn} ⊆ Xλ. The following three properties are
equivalent:

(a) lim
n→∞

||an||αn = 0 in X implies that
∑∞
n=1 anen converges in X,

(b) Convergence of
∑∞
n=1 ||an|| αn in X implies that

∑∞
n=1 anen converges in

X,

(c) lim
δ→0

{
lim
n→∞

inf ||αn;T+δ||1/λn

λ
1/ρ
n

}
≥ 1

(Teρ)1/ρ
.

Proof. Obviously (a)⇒ (b). We now prove that (b)⇒ (c). To prove this, we suppose
that (b) holds but (c) does not hold. Hence

lim
δ→0

{
lim
n→∞

inf
||αn;T + δ||1/λn

λ
1/ρ
n

}
<

1

(Teρ)
1/ρ

.

Since ‖αn;T + δ‖ increases as δ decreases, this implies that for each δ > 0{
lim
n→∞

inf
||αn;T + δ||1/λn

λ
1/ρ
n

}
<

1

(Teρ)
1/ρ

.

Hence, if η > 0 be a fixed small positive number, then for each r > 0, we can find a
positive number nr such that ∀ r, we have nr+1 > nr and

||αnr ;T + r−1|| 1/λnr

λ
1/ρ
nr

≤ 1

((T + η) eρ)
1/ρ

. (18)
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Now we choose a positive number η1 < η, and define a sequence {an} ⊆ E as

||an|| =


[
{(T+η1)eρ}1/ρ

λ
1/ρ
nr

]λn
; n = nr, r > r0

0 ; n 6= nr

.

Then, for any δ > 0

∞∑
n=1

||an|| ||αn;T + δ|| =
∞∑
r=1

||anr || ||αnr ;T + δ|| (19)

For any given δ > 0, omit from the above series those finite number of terms, which
correspond to those number nr for which 1/r is greater than δ. The remainder of the
series in (19) is dominated by

∑∞
r=1 ||anr || ||αnr ;T + r−1||. Now by (18) and (19), we

find that ∑∞
r=1 ||anr || ||αnr ;T + r−1||

≤
∑∞
r=1

{
((T+η1)eρ)

1/ρ

λ
1/ρ
nr

}λnr {
λ1/ρ
nr

((T+η)eρ)1/ρ

}λnr
=
∑∞
r=1

(
T+η1
T+η

)λnr/ρ
.

Since η1 < η, so above series on R.H.S. is convergent. For this sequence {an} ,∑∞
n=1 ||an||αn converges in X (ρ, T, δ) for each δ > 0 and hence converges in X. But

we have,

lim
n→∞

supλ
1/ρ
n ||an||1/λn = lim

r→∞
sup

{
((T+η1)eρ)

1/ρ

λ
1/ρ
nr

}
λ
1/ρ
nr

= [(T + η1) eρ]
1/ρ

> (Tρe)
1/ρ

,

which is a contradiction. This proves (b)⇒(c).
Now we prove that (c)⇒(a). We assume (c) is true but (b) is not true. Then there
exists a sequences {an} ,where a′

s
n belongs to Banach space E, for which ||an||αn → 0

in X, but
∑∞
n=1 anen does not converge in X. This implies that

lim
n→∞

supλ1/ρn ||an||1/λn > (Tρ e)
1/ρ

.

Hence there exists a positive number ε and a sequence {nk} of positive integers such
that

λ1/ρn ||an||1/λn > [(T + ε) ρe]
1/ρ

, ∀ n = nk.

We choose another positive number η < ε/2 , by assumption we can find a positive
number δ i.e. δ = δ (η) such that{

lim
n→∞

inf
||αn;T + δ||1/λn

λ
1/ρ
n

}
≥ 1

((T + η) eρ)
1/ρ

.

Hence there exists N = N (η), such that



G. S. Srivastava and Archna Sharma 107

||αn;T + δ||1/λn

λ
1/ρ
n

≥ 1

((T + 2η) eρ)
1/ρ

, ∀ n ≥ N.

Therefore

max ‖ ||an|| αn;T + δ‖ = max ||an|| ||αn;T + δ||
≥ max ||ank || ||αnk ;T + δ||

≥
{

((T+ε)ρe)1/ρ

λ
1/ρ
nk

}λnk { λ1/ρ
nk

((T+2η)eρ)1/ρ

}λnk
> 1 for nk > N as ε > 2η.

Thus {||an|| αn} does not tend to zero in X (ρ, T, δ) for the δ chosen above. Hence
{||an|| αn} does not tend to 0 in X and this is a contradiction. Thus (c)⇒(a) is
proved. This proves Lemma 3.2.

Remark: In view of Lemma 2, it follows that a sequence {αn}is a proper base in
Xif and only if it satisfies the condition (17)
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Abstract: We investigate the family of functions normalized by the
condition f(0) = f ′(0)−1 = 0, that are analytic in the unit disk, with the

property that the domain of values f ′(z) + 1+eiα

2 zf ′′(z), (α ∈ (−π, π]) is
the disk |z − b| < b, b ≥ 1. Integral and convolution characterizations are
found and coefficients bounds are given.
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1 Introduction

Let A denote the class of functions of the form f(z) = z +
∞∑
n=2

anz
n that are

analytic in the unit disk ∆ = {z ∈ C : |z| < 1} and let S, K be the subclasses of A
consisting of functions respectively starlike and convex in ∆.

For the functions f and g with the series expansions f(z) =
∞∑
k=0

akz
k and g(z) =

∞∑
k=0

bkz
k the Hadamard product (or convolution) f ∗ g is defined by

(f ∗ g)(z) =

∞∑
k=0

akbkz
k.

This product is associative, commutative and distributive over addition and the func-
tion 1

1−z is an identity for it.
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In [4] H. Silverman and H.M. Silvia introduced the classes

Lα =

{
f ∈ A : Re

(
f ′(z) +

1 + eiα

2
zf ′′(z)

)
> 0, z ∈ ∆

}
,

where α ∈ (−π, π].
For each α ∈ (−π, π] and b, b ≥ 1, let

Lα(b) =

{
f ∈ A :

∣∣∣∣f ′(z) +
1 + eiα

2
zf ′′(z)− b

∣∣∣∣ < b, z ∈ ∆

}
.

Observe that if b→∞, then Lα(b)→ Lα.

2 Characterization results for Lα(b).
We give two characterization conditions for the considered classes Lα(b). Let P

denote the class of holomorphic functions with the normalization p(0) = 1, having
positive real part in ∆. For b ≥ 1 let

P(b) = {p ∈ P : |p(z)− b| < b, z ∈ ∆}.

Theorem 2.1 For α 6= π, let c = 1−eiα
1+eiα . Then f ∈ Lα(b) if and only if there exists

p ∈ P(b) such that the following equality holds for all z ∈ ∆

(1) f(z) =

∫ z

0

c+ 1

ηc+1

[∫ η

0

ζcp(ζ)dζ

]
dη.

Proof. It is easily seen that f ∈ Lα(b) if and only if there exists p ∈ P(b) such that

f ′(z) +
1 + eiα

2
zf ′′(z) = p(z), z ∈ ∆.

Since

f ′(z) +
1 + eiα

2
zf ′′(z) =

1− eiα

2
f ′(z) +

1 + eiα

2
(zf ′(z))

′

we have that
1− eiα

1 + eiα
f ′(z) + (zf ′(z))

′
=

2

1 + eiα
p(z)

which is equivalent to

czcf ′(z) + zc (zf ′(z))
′

=
2

1 + eiα
zcp(z)

where c = 1−eiα
1+eiα . This leads to

[zc (zf ′(z))]
′

=
2

1 + eiα
zcp(z).
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Therefore

zc+1f ′(z) =
2

1 + eiα

∫ z

0

ζcp(ζ)dζ

which is equivalent to (1). The proof is completed.

Note that for a function

(2) qb(z) =
b+ bz

b+ (1− b)z
, z ∈ ∆, b ≥ 1

we have qb(∆) = {w ∈ C : |w − b| < b} . It is easy to observe that

P(b) = {p ∈ P : p ≺ qb, z ∈ ∆} .

Therefore we obtain another characterization of the class Lα(b) in terms of subordi-
nation.

Corollary 2.1 A necessary and sufficient condition for f to be in the class Lα(b) is

f ′(z) +
1 + eiα

2
zf ′′(z) ≺ qb(z), z ∈ ∆,

where qb is given by (2).

Note that

qb(z) = 1 +
2b− 1

b
z +

b− 1

b

2b− 1

b
z2 +

(
b− 1

b

)2
2b− 1

b
z3 + . . . , z ∈ ∆.

Thus from (1) we obtain a function fα,b, related to qb, of the form

(3) fα,b(z) = z +
2b− 1

b

∞∑
n=2

(
b− 1

b

)n−2
2zn

n[n+ 1 + (n− 1)eiα]
.

We will use the notion of convolution in our next characterization result.

Theorem 2.2 Let α ∈ (−π, π], b ≥ 1 and let C(t) := b(1 + eit), t ∈ [0, 2π). Then the
following conditions are equivalent:

(i) f ∈ Lα(b)

(ii) 1
z

[
f ∗ z+e

iαz2

(1−z)3

]
− C(t) 6= 0 for all z ∈ ∆ and for all t ∈ [0, 2π).

Proof. Let p(z) = f ′(z) + 1+eiα

2 zf ′′(z). Observe that

f ∈ Lα(b)⇐⇒ {p(z) ∈ qb(∆), z ∈ ∆} .

Moreover, ∂(qb(∆)) is a curve with parametrization C(t) = b(1 + eit), t ∈ [0, 2π).
Since

f ′(z) +
1 + eiα

2
zf ′′(z) =

1− eiα

2
f ′(z) +

1 + eiα

2
(zf ′(z))′,
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we can write

f ′(z) +
1 + eiα

2
zf ′′(z) =

(
f ∗
(

1− eiα

2

z

1− z
+

1 + eiα

2

z

(1− z)2

))′
=

=

f ∗ z −
(

1−eiα
2

)
z2

(1− z)2

′ =
1

z

{
f ∗ z + eiαz2

(1− z)3

}
.

Now, let f ∈ Lα(b). We remark that it is equivalent to the condition

1

z

{
f ∗ z + eiαz2

(1− z)3

}
∈ qb(∆), z ∈ ∆.

Consequently, for every z ∈ ∆ the value 1
z

{
f ∗ z+e

iαz2

(1−z)3

}
is not a boundary point of

qb(∆) so the result (ii) follows immediately. Next, let 1
z

{
f(z) ∗ z+e

iαz2

(1−z)3

}
− C(t) 6= 0

for all z ∈ ∆ and t ∈ [0, 2π). The last inequality may be rewritten in the following

equivalent form: f ′(z) + 1+eiα

2 zf ′′(z)− C(t) 6= 0. Since p(0) = 1 and p(z) 6= C(t) for
all z ∈ ∆ and all t ∈ [0, 2π) thus p(z) ∈ qb(∆). The proof is thus completed.

Remark 2.1 It is easy to observe that for b1 < b2 is Lα(b1) ⊂ Lα(b2) for each
α ∈ (−π, π]. Consequently we obtain⋃

b≥1

Lα(b) = Lα

and ⋂
b≥1

Lα(b) = Lα(1) =

{
f ∈ A :

∣∣∣∣f ′(z) +
1 + eiα

2
zf ′′(z)− 1

∣∣∣∣ < 1, z ∈ ∆

}
.

Remark 2.2. H. Silverman and E.M. Silvia ([4]) proved that Lπ contains Lα for
each α. Thus we have Lα(b) ⊂ Lπ for every α ∈ (−π, π] and b ≥ 1, where Lπ is
the well known class R, consisting of univalent functions in A whose derivatives have
positive real part in ∆ ([1]).

3 Special members of Lα(b)
In this section we give some examples of functions belonging to the considered

classes.

Theorem 3.1 A function f(z) = z + anz
n ∈ Lα(1) if and only if

|an| ≤
√

2

n
√
n2 + 1 + (n2 − 1) cosα

.
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Proof. It suffices to consider |z| = 1. Assume that f(z) = z + anz
n ∈ Lα(1). Using

the definition of Lα(b) we obtain the equivalent condition∣∣∣∣nanzn−1 [1 +
1

2
(n− 1)(1 + eiα)

]∣∣∣∣ ≤ 1.

Note that the above inequality is equivalent to

n|an|
√

1 +
1

2
(n2 − 1)(1 + cosα) ≤ 1

and this gives the required result.

Theorem 3.2 Let b > 1. A function f(z) = z + anz
n ∈ Lα(b) if

|an| ≤
√

2

n
√
n2 + 1 + (n2 − 1) cosα

.

Proof. Let us denote |an| = r and anz
n−1 = reiϕ. For a function f(z) = z + anz

n

and for |z| = 1 we have

∣∣∣∣f ′(z) +
1 + eiα

2
zf ′′(z)− b

∣∣∣∣ =

∣∣∣∣1− b+ nanz
n−1

[
1 +

1

2
(n− 1)(1 + eiα

]∣∣∣∣ ≤
≤ b− 1 + nr

∣∣∣∣1 +
1

2
(n− 1)(1 + eiα)

∣∣∣∣ .
Thus the condition

∣∣∣f ′(z) + 1+eiα

2 zf ′′(z)− b
∣∣∣ < b will be satisfied if

√
2

2
nr
√
n2 + 1 + (n2 − 1) cosα < 1.

A simple calculation leads to the required result.

Theorem 3.3 Let b ≥ 1. A function f(z) = z
1−Bz ∈ Lα(b) if |B| < r0, where r0 is

the unique real root of the equation

2br3 + (6b+ 1)r − 1 = 0.

Proof. For a function f(z) = z
1−Bz we denote |B| = r, Bz = reiϕ. Note that for

|z| = 1 we have∣∣∣∣f ′(z) +
1 + eiα

2
zf ′′(z)− b

∣∣∣∣ ≤ br3 + 3br2 + (3b+ 1)r + b− 1

|1− r|3
.
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Therefore f(z) = z
1−Bz ∈ Lα(b) if

br3 + 3br2 + (3b+ 1)r + b− 1

|1− r|3
< b

or equivalently if

br3 + 3br2 + (3b+ 1)r + b− 1 < b|1− r|3, r 6= 1.

The above inequality has no solution for r > 1. For r < 1 it takes a form

w(r) = 2br3 + (6b+ 1)r − 1 < 0.

The polynomial w(r) takes negative values for r < r0, where 0 < r0 < 1 is the unique
real root of w(r), so the result yields.

4 Coefficient bounds

First, we give a sufficient condition for f ∈ A to be in the class Lα(b).

Theorem 4.1 If a function f ∈ A satisfies the condition

∞∑
n=2

n

[
1 +

√
2

2
(n− 1)

√
1 + cosα

]
|an| ≤ 1,

then f ∈ Lα(b).

Proof. Note that∣∣∣∣f ′(z) +
1 + eiα

2
zf ′′(z)− b

∣∣∣∣ =

∣∣∣∣∣1− b+

∞∑
n=2

n

[
1 +

n− 1

2
(1 + eiα)

]
anz

n−1

∣∣∣∣∣ ≤
≤ b− 1 +

∞∑
n=2

n

[
1 +

n− 1

2

∣∣1 + eiα
∣∣] |an| =

= b− 1 +

∞∑
n=2

n

[
1 +

√
2

2
(n− 1)

√
1 + cosα

]
|an|.

Therefore the inequality ∣∣∣∣f ′(z) +
1 + eiα

2
zf ′′(z)− b

∣∣∣∣ ≤ b
will be satisfied if

∞∑
n=2

n

[
1 +

√
2

2
(n− 1)

√
1 + cosα

]
|an| ≤ 1.
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The proof is thus completed.

In order to develop next coefficient result for classes Lα(b) we need

Lemma 4.1 (Rogosiński theorem [3]) Let h(z) = 1 +
∞∑
k=1

ckz
k be subordinate to

H(z) =
∞∑
k=1

Ckz
k in ∆. If H(z) is univalent in ∆ and H(∆) is convex, then |cn| ≤ C1.

Now we present upper bounds on coefficients in Lα(b). Unfortunately, they are
not sharp, except in the case n = 2.

Theorem 4.2 Let f ∈ Lα(b). Then

(4) |a2| ≤
2b− 1

b
√

10 + 6 cosα
,

and

(5) |an| ≤
√

2(2b− 1)

bn
√
n2 + 1 + (n2 − 1) cosα

, n ≥ 3.

Equality in (4) holds for the function fα,b given by (3).

Proof. Let f(z) = z +
∞∑
k=2

akz
k ∈ Lα(b) for α ∈ (−π, π] and b ≥ 1. Let us define

q(z) = f ′(z) + 1+eiα

2 zf ′′(z) = 1 +
∞∑
k=1

bkz
k. Then from the definition of Lα(b) we

get q(z) ≺ qb(z). The function qb is univalent in ∆ and qb(∆) is a convex region, so
Rogosiński theorem applies. Since qb(z) = 1 + 2b−1

b z + . . . , so we obtain |bn| ≤ 2b−1
b .

Comparing coefficients of zn on both sides of equality

q(z) = f ′(z) +
1 + eiα

2
zf ′′(z)

we get

b1 =
(
3 + eiα

)
a2

and

bn−1 = nan

[
1 +

1

2
(n− 1)

(
1 + eiα

)]
for n ≥ 3.

Thus on account of Lemma 2.1 we obtain

|b1| = |3 + eiα||a2| ≤
2b− 1

b
,

which is equivalent to the inequality

|a2| ≤
2b− 1

b |3 + eiα|
=

2b− 1

b
√

10 + 6 cosα
.
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Note that for a function fα,b belonging to Lα(b) the second coefficient in its Taylor
series expansion has the form a2 = 2b−1

b(3+eiα) , which shows that result (4) is sharp.

Further we get for n ≥ 3

|an| ≤
2b− 1

bn
∣∣1 + 1

2 (n− 1) (1 + eiα)
∣∣ ,

which is equivalent to (5). A sharp bound of |an| for n ≥ 3 is still an open problem.
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1 Introduction

The paper includes the solution of the stochastic prediction problem using the prop-
erty of the stationary in a wider sense for the stochastic processes and also the method
of the least squares (see also [3]-[5]). The method can be used firstly in the situa-
tion in which observations are ”double-valued” and when a random variable which is
equal to a number of changes of values of the double-valued process has the Poisson
distribution ([2]). Then we generalize the model and we indicate some economical
applications.

2 Definitions and notation

Let {ξt, t ∈ [0,∞)} be the stochastic process defined on the probability space
(Ω,M, P ) in which for every ω ∈ Ω:

ξt(ω) =

{
1 when at time t an event occurred ,
−1 when at time t an event did not occur .

(1)

Let us assume that at time t = 0, of an initial observation of an event, the probability
that the event occurred is the same as the probability that an event did not occur.
So let:

P (ξ0 = 1) = P (ξ0 = −1) = 0, 5 . (2)

Further let {ηt, t ∈ [0,+∞)} be another stochastic process for which
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1. η0 = 0 with probability 1,

2. ηt adopts, for each t, a value which is equal to a number of changes of the sings
of the process {ξt, t ∈ [0,+∞)} in the interval [0, t).

It is easy to notice that for each t ∈ [0,+∞) there is the following property:

ξt = ξ0(−1)ηt . (3)

3 The main problem

We shall prove the following theorem

Theorem 1. Assume that the process ξt is given by (1)-(3). Moreover the processes
ξ0 and ηt are independent for each t ∈ [0,+∞) and the processes ξt and ηt+k− ηk are
independent for each t ∈ [0,+∞) and k > 0.

Then, the process {ξt, t ∈ [0,+∞)} is stationary in a wider sense.

Proof. In order to prove the above theorem, it is advisable to show that the expected
value is - for all random variables of the process - a constant value. Moreover, it is
advisable to show that the variance is finite and the covariance function depends on
only one variable, namely the difference of indexes t+ k and t.

Since ξt = ξ0(−1)ηt , so the expected value mt = Eξt can be written as:

mt = 1P (ξt = 1) + (−1)P (ξt = −1)

= P (ξ0 = 1)P (ηt has even values) + P (ξ0 = −1)P (ηt has odd values)

−P (ξ0 = −1)P (ηt has even values) − P (ξ0 = 1)P (ηt has odd values)

= P (ηt has odd values) {P (ξ0 = −1)− P (ξ0 = 1)}
−P (ηt has even values){P (ξ0 = −1)− P (ξ0 = 1)}

= P (ηt has odd values) · 0− P (ηt has even values) · 0 = 0 .

So mt = 0 = const.

In order to calculate the covariance function B(t, t+k) let us assume that t < t+k.
Then, because of the stationarity of the process, we have:

B(t, t+ k) = E(ξt −mt)(ξt+k −mt+k) = Eξtξt+k = E[ξ0 · (−1)ηt · ξ0 · (−1)ηt+k ]

= ξ2
0E[(−1)ηt · (−1)ηt+k ] = 1 · E[(−1)ηt · (−1)ηt+k−ηt · (−1)ηt ]

= E[(−1)2ηt · (−1)ηt+k−ηt ] (4)

= E[(−1)ηk ] = 1 · P (ηk has even values) + (−1) · P (ηk has odd values)

= 1 ·
[

1

2
+ e−2λk

]
+ (−1) ·

[
1− 1

2
− e−2λk

]
=
e−2λk

2
+
e−2λk

2
= e−2λk.
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Indeed, we have used the fact that

P (ηk has even values) =

∞∑
n=0

e−λk · (2k)2n

(2n)!
= e−λk · cosh(λk)

= e−λk · e
λk + e−λk

2
= e−λk

[
eλk + e−λk

2

]
=

e0 + e−2λk

2
=

1

2
+
e−2λk

2
.

Thus, the covariance function B(t, t+k) depends only on the argument k = t+k−1.
For the covariance function, we shall use the symbol r(k).

The variance of the stochastic process {ξt, t ∈ [0,+∞)} is equal to the value r(0).
Since here r(0) = 1, we can state that the variance is finite.

It completes the proof that the process {ξt, t ∈ [0,+∞)} is stationary in a wider
sense.

Thanks to the properties of stationary in a wider sense of the process {ξt, t ∈
[0,+∞)} one can specify such value ξ∗t+m, which will constitute the forecast of the
stochastic process for m-steps in the future.

The assumptions that we will make are:

1. There is a time series x1 = ξt−1, x2 = ξt−2, ..., xn = ξt−n of the stochastic
process {ξt, t ∈ [0,+∞)},

2. We are looking for the prediction by the linear method of the least squares. The
aim is to specify such a random variable ξ∗t+m for which the mean square error
of the prediction

d2 = E|ξt+m − ξ∗t+m|2

reaches the minimum in the class of all the linear forms of random variables
ξt−1, ..., ξt−n.

The quickest answer to the problem of the stochastic prediction is by making the
assumption that the stochastic process {ξt, t ∈ [0,+∞)} is an element of a Hilbert
space. So, let H be the space of all the random variables which are defined within
the common probability space (Ω,M, P ) and are square-integrable:∫

Ω

|ξ(ω)2|dP (ω) < +∞ .

The space H, together with the operations of the summation of the random variables
and the scalar multiplication of the random variables, is a vector space. The formula

(ξ|η) =

∫
Ω

ξ(ω)η(ω)dP (ω); ξ, η ∈ H (5)
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gives the inner product in the space H.
It is known that the space H is a complete space with the norm || · || induced by

the inner product (5):

||ξ|| =

∫
Ω

|ξ(ω)|2dP

 1
2

.

So the space H is a Hilbert space.

The method of the least squares, in a Hilbert space, leads to the calculating such
element ξ∗t+m, m ≥ 1, that is an orthogonal projection of the predicted random
variable ξt+m on a linear cover spanned on the elements ξt−1, ξt−2, ..., ξt−n.

So we are looking for such coefficients a1, ..., an of the random variable

ξ∗t+m = a1ξt−1 + a2ξt−2 + ...+ anξt−n . (6)

so that the following orthogonality condition is fulfilled:

ξt+m − ξ∗t+m ⊥ ξt−j , for j = 1, ..., n .

Thus the condition for the inner product is:
Since

(ξt+m − ξ∗t+m ⊥ ξt−j) = E(ξ∗t+m − ξt+m)ξt−j

= E(a1ξt−1ξt−j + a2ξt−2ξt−j + ...+ anξt−nξt−j − ξt+mξt−j) .
It is the orthogonality condition which provides the following conditions for the co-
variance function:

E(a1ξt−1ξt−j + a2ξt−2ξt−j + ...+ anξt−nξt−j − ξt+mξt−j) = 0 .

Thus

a1r(j − 1) + a2r(j − 2) + ...+ anr(j − n) = r(m+ j), j = 1, ..., n . (7)

If only the covariance function r(·) is known, the problem of the prediction is
solved. The solution is provided by such coefficients a1, ..., an, that solve a system of
linear equations:

a1r(0) + a2r(1) + ...+ anr(n− 1) = r(m+ 1)
a1r(1) + a2r(0) + ...+ anr(n− 2) = r(m+ 2)
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
a1r(n− 1) + a2r(j − 2) + ...+ anr(0) = r(m+ n)

(8)

Now we assume that the random variable ηt has for each t, a Poisson distribution
with the parameter tλ, where λ > 0 is describes the ”intensity” of a phenomenon
(e.g. a frequency of flooding in a given area or the intensity of rain). It means that
because of the fact that the characteristic function of Poisson distribution takes the
form:

ϕ(x) = eλ(exp(ix)−1) .
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We come up to the following formula for the covariance function of the process {ξt, t ∈
[0,+∞)}

r(k) = e−2λ|k|, k ∈ R . (9)

So then the system of equations (8) gives us

a1e
−2λ|j−1| + a2e

−2λ|j−2| + ...+ ane
−2λ|j−n| = e−2λ|j+m|, j = 1, ..., n (10)

and

r(0) = 1, r(1) = e−2λ, r(2) = e−4λ, ..., r(n− 1)

= e−2λ(n−1), r(m+ 1) = e−2λ(m+1) (11)

The appropriate system of equations takes the form
a1 + a2e

−2λ + ...+ ane
−2λ(n−1) = e−2λ(m+1)

a1e
−2λ + a2 + ...+ ane

−2λ(n−2) = e−2λ(m+2)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
a1e
−2λ(n−1) + a2e

−2λ(n−2) + ...+ an = e−2λ(m+n)

(12)

The solution a1, a2, ..., an of this system of equations helps us to come up to the
prediction. Namely, the expression:

ξ∗t+m = a1ξt−1 + a2ξt−2 + ...+ anξt−n , (13)

as some estimate of the predicted quantity ξt+m - after taking into consideration the
conditions of our example - helps us finally to treat it as the prediction of the process
ξt, t ∈ [0,+∞), for m - steps forward.

In practice, in most cases, the covariance function is not known and it should not
be estimated on the basis of the experimental data. Our analysis is concerned with
the necessity of finding an estimator for the parameter λ.

Considering that we know exactly the analytical formula for the quantity of the
covariance function, the suggestion for an estimator is the following. Let the estimator
of the function r(k) be

r♣(k) = exp(−2λ♣|k|) ,

where λ♣ is the estimator of the parameter λ in Poisson distribution obtained on
the basis of a random sample through the method of maximum likelihood. It is well
known that this estimator is the expected value (or mean value of samples) of the
Poisson process.

In such case, the statistic λ♣ are the consistent and asymptotically unbiased esti-
mator of the parameter λ.

The method of prediction that has been used here, guarantees that the prediction
obtained in this way carries the smallest mean squared error.
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4 Some generalizations

The process is not useful for many economical applications ([1]) because it has only
values 1 and −1. We shall generalize it.

Let

Xt = |the value of changing of an economical indicator at time t|. (14)

Assume that they are positive independent random variable of the same distribution
(i.i.d) and assume that Xt is uniformly distributed on the interval [a, b], a < b, and
E(Xt) = m = const. It is known that E(Xt) = a+b

2 .

Definition 1. Let

ξt+1 = Xt+1 · (−1)ηt+1 , (15)

where ηt is the Poisson process. If for example Xt is the value of changing of share
prince at time t then we have

St+1 = St · [1 +Xt+1 · (−1)ηt+1 ] (16)

which is equivalent to the following notation

St+1 − St
St

= ξt+1 .

This is a so called the percentage change of a share price. It can also be interpreted
as a value of a firm.

Assume that ηt, is defined as typical Poisson process that is, η1 is the time of
waiting for the first event. Let η2 be the time of waiting between the first and second
event. We obtain the sequence η1, η2, .... Now Sn = η1 + η2 + ...+ ηn is the moment
of occuring of the n − th events. Let S0 = 0. The amount ηt of events that occured
in the interval [0, t] is defined as

ηt = max{n : Sn ≤ t} .

Notice that the amount of event ocured in the interval (s, t] is equal to ηt − ηs. It is
proved in [2], §23, that ηt is a random variable with the Poisson distribution. It is
easy to show the following theorem.

Theorem 2. Assume that the process {ξt, t ∈ [0,+∞)} is given by (14) i (15).
Moreover, the processes ξt and ηt+k−ηt are independent for k > 0. Then, the process
ξt is stationary in a wider sense.

Proof. In order to prove the above theorem we shall firstly show that the expected
value of ξt is constant. Indeed, we assume that E(Xt) = 0 (it is not changing the
generality of our considerations).

We have

mt = Eξt = E[Xt · (−1)ηt ] = E[Xt] · E[(−1)ηt ] = 0 .
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Further, we compute the covariance function using (4):

B(t, t+ k) = E[(ξt −mt)(ξt+k −mt+k)] = E[Xt · (−1)ηt ·Xt+k · (−1)ηt+k ]

= E[Xt] · E[Xt+k] · E[(−1)ηt · (−1)ηt+k ] =

(
a+ b

2

)2

· e−2λk = r1(k) .

Finally, the variance is finite, because

r1(0) =

(
a+ b

2

)2

<∞ .
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1 Introduction

Numerous extension operators acting on homeomorphic self-mapping of a Jordan
curve were investigated by many mathematicians; cf e.g. [3], [7] [5], [6].

Let R be the real axis and H := {z : Imz ≥ 0} be the upper half plane. By
Aut+ (R) we denote the set of all increasing homeomorphism of the real axis R onto
itself and Aut+ (H) be the set of all sense-preserving homeomorphic self-mapping of
the upper half plane H onto itself.

In this paper we will discuss some properties of the extension operator G defined
on Aut+ (R) with values in Aut+ (H) given by the simple geoemetric and analytic
condition.

In a paper [6] titled On quasiconformal extensions of an authomorphism of the
real axis similar extension operator H : Aut+ (R)→ Aut+ (H) was investigated.

Recall that a cross-ratio of points a, b, c, d ∈ C is defined by

[a, b; c, d] :=
c− a
c− b

:
d− a
d− b

.

If one of this four points is in the infinity we define (for example)

[a, b,∞, d] := lim
t→∞

[a, b, t, c] =
d− b
d− a

.
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Let T stand for the family of all triangular ∆ (x1, x2, z) which are rectangular and
isosceles and such that x1, x2 ∈ R, x1 < x2, z ∈ H and ∠x1zx2 = π/2.

Simple calculations show that

Lemma 1.1 For all x1, x2 ∈ R, x1 < x2 and z = x+ iy ∈ H the following properties
are equivalent:

i) ∆ (x1, x2, z) ∈ T ;

ii) lim
t→∞

[x1, x2, t, z] = i;

iii) z = 1
2 (1− i) (x1 + ix2) ;

iv) x1 = x− y and x2 = x+ y.

Definition 1.1 Let f ∈ Aut+ (R) we define F = G [f ] by the formula

G [f ] (x+ iy) :=
1

2
(1− i) (f (x− y) + if (x+ y)) , z = x+ iy ∈ H. (1.1)

Remark 1.1 We can also write

G [f ] (x+ iy) =
1

2
(f (x+ y) + f (x− y))+

1

2
i (f (x+ y)− f (x− y)) , z = x+iy ∈ H.

(1.2)
or equivalent if we denote

α :=
1

2
(1 + i) (1.3)

we get
G [f ] (z) = αf (ᾱz + αz̄) + ᾱf (αz + ᾱz̄) , z ∈ H. (1.4)

By Lemma 1.1 we get

Theorem 1.1 Let f ∈ Aut+ (R) and F = G [f ] , if for arbitrary point z = x+ iy ∈ H
we put x1 = x− y, x2 = x+ y then the following properties are equivalent:

i) The point F (z) is the unique point in H such that the cross-ratios [x1, x2,∞, z]
and [f (x1) , f (x2) ,∞, F (z)] are equal i, precisely

lim
t→∞

[x1, x2, t, z] = lim
t→∞

[f (x1) , f (x2) , t, F (z)] = i.

ii) The point F (z) is the unique point in H such that

z − x2

z − x1
=
F (z)− f (x2)

F (z)− f (x1)
= i.

iii) The point F (z) is the unique point in H such that the triangle

∆ (f (x1) , f (x2) , F (z)) ∈ T

is rectangular and isosceles.
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Remark 1.2 The operator H : Aut+ (R) → Aut+ (H) which was investigated in the

paper [6] has a similar property, exactly: If f ∈ Aut+ (R) and F̃ = H [f ] and if for
arbitrary z = x + iy we put x̃1 = x − y/

√
3, x̃2 = x + y/

√
3, then the following

conditions are equivalent

i) The point F̃ (z) is the unique point in H such that the cross-ratios [x1, x2,∞, z]
and

[
f (x1) , f (x2) ,∞, F̃ (z)

]
are equal p := 1

2

(
1 + i

√
3
)
, precisely

lim
t→∞

[x̃1, x̃2, t, z] = lim
t→∞

[
f (x̃1) , f (x̃2) , t, F̃ (z)

]
= p.

ii) The point F̃ (z) is the unique point in H such that

z − x̃2

z − x̃1
=
F̃ (z)− f (x̃2)

F̃ (z)− f (x̃2)
= p.

iii) The point F̃ (z) is the unique point in H such that the triangle

∆
(
f (x̃1) , f (x̃2) , F̃ (z)

)
is an equilateral triangle.

iv) The function F̃ has the form

F̃ (x+ iy) = pf (x̃1) + pf (x̃2) .

Theorem 1.2 If f ∈ Aut+ (R) and F = G [f ], then F has a continuous extension to

the closure H, F̂ : H→ H such that F̂ |R = f and F̂ |H = F .

Proof. We can calculate, using (1.1), for ξ ∈ R

F̂ (ξ) := lim
H3z→ξ∈R

F (z) = lim
H3x+iy→ξ∈R

(1− i)
2

(f (x− y)− if (x+ y))

= f (ξ) =
1

2
f(ξ) (1− i) (1 + i) = f(ξ).

Theorem 1.3 If f ∈ Aut+ (R) and F = G [f ], then F ∈ Aut+ (H) .

Proof. It is enough to show that: F (H) = H, F = G [f ] is injective, F = G [f ] is a
sense-preserving mapping.

From (1.2) it is obviously that F (H) ⊂ H. Now let w = u + iv ∈ H be an
arbitrary point on the upper half-plane, because f ∈ Aut+ (R) then exists such points
x1, x2 ∈ R, x2 > x1 that f (x1) = u−v and f (x2) = u+v. Then for z = x1+x2

2 +ix2−x1

2
we have F (z) = w and H ⊂F (H) . Therefore F (H) = H.

Next by the simply calculation it is easy to verify that the mapping G [F ] is an
injective mapping.

Finally, we note that for a sense-preserving mapping f by Theorem 1.2 the map-
ping F is a sense-preserving also.
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2 Properties of the operator G

Lets denote

M = {h : C→ C : h (z) = az + b for some a, b ∈ R} .

Note thatM is a set of all conformal mappings fixed a point in infinity and h (R) = R.

Theorem 2.1 If h ∈ Aut+ (R) and h ∈M, then G [h] = h.

Proof. Because h has the form h (x) = ax+b for some a, b ∈ R, then for z = x+iy ∈ H
using (1.2) we can calculate

G [h] (x+ iy)

=
1

2
(f (x+ y) + f (x− y)) +

1

2
i (f (x+ y)− f (x− y))

=
1

2
(a (x+ y) + b+ a (x− y) + b) +

1

2
i (a (x+ y) + b− a (x− y)− b)

= a (x+ iy) + b = h (x+ iy) .

Theorem 2.2 If f, g ∈ Aut+ (R) , then

G [f1 ◦ f2] = G [f1] ◦G [f2] .

Proof. Let x+ iy ∈ H, using (1.2) and (1.1) we can calculate that

G [f1] ◦G [f2] (x+ iy)

= G [f1]

(
1

2
(f2 (x+ y) + f2 (x− y)) +

1

2
i (f2 (x+ y)− f2 (x− y))

)
=

1

2
(1− i) (f1 (f2 (x− y)) + if1 (f2 (x+ y)))

= G [f1 ◦ f2] (x+ iy) .

From Theorem 2.1 and Theorem 2.2 follows:

Corollary 2.1 Extension operator G is conformally natural, i.e.

G [h1 ◦ f ◦ h2] = h1 ◦G [f ] ◦ h2

for all f ∈ Aut+ (R) , h1, h2 ∈M.

Corollary 2.2 If f ∈ Aut+ (R) , then G
[
f−1

]
= (G [f ])

−1
.
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3 Bilipschitz property of the operator G

For arbitrary D ⊂ C, a > 0, m ≥ 1 we denote

LD (a,m) :=
{
f : D → D :

a

m
|t2 − t1| ≤ |f (t2)− f (t1)| ≤ am |t2 − t1| , t1, t2 ∈ D

}
,

(3.1)

LD (m) := LD (1,m) . (3.2)

The set LD (m) is the set of m-bilipschitz mapping.

Of course

LD (a,m) ⊂ LD (µ) , for µ = max
{m
a
, am

}
. (3.3)

Note that from Theorem 1.2 we have immediately

Theorem 3.1 If f ∈ Aut+ (R) and F = G [f ] ∈ LH (a,m) for some m ≥ 1 and
a > 0, then also f ∈ LR (a,m) .

Lemma 3.1 If f ∈ LR (a,m) ∩Aut+ (R) , then

a

m
≤ f ′ (t) ≤ am (3.4)

1

m2
≤ f ′ (t2)

f ′ (t1)
≤ m2 (3.5)

for all t, t1, t2 ∈ Df ′ , where Df ′ is the set of differentiability for the function f.

Theorem 3.2 If f ∈ LR (a,m) ∩Aut+ (R) for some a > 0 and m ≥ 1, then

F = G [f ] ∈ LH (a,m) .

Proof. Let zk = xk + iyk, k = 1, 2, we can calculate

|F (z1)− F (z2)| =
∣∣∣∣12 (1− i) (f (x1 − y1) + if (x1 + y1))

−1

2
(1− i) (f (x2 − y2) + if (x2 + y2))

∣∣∣∣
=

√
2

2

∣∣∣∣f (x1 − y1)− f (x2 − y2) + i (f (x1 + y1)− f (x2 + y2))

∣∣∣∣
=

√
2

2

√
(f (x1 − y1)− f (x2 − y2))

2
+ (f (x1 + y1)− f (x2 + y2))

2

≤ am

√
2

2

√
(x1 − y1 − x2 + y2)

2
+ (x1 + y1 − x2 − y2)

2

= am

√
2

2

√
2 |z1 − z2| = am |z1 − z2| .
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and

|F (z1)− F (z2)| =
∣∣∣∣12 (1− i) (f (x1 − y1) + if (x1 + y1))

− 1

2
(1− i) (f (x2 − y2) + if (x2 + y2))

∣∣∣∣
≥ a

m

√
2

2

√
(x1 − y1 − x2 + y2)

2
+ (x1 + y1 − x2 − y2)

2

=
a

m

√
2

2

√
2 (x1 − x2)

2
+ 2 (y1 − y2)

2
=

a

m
|z1 − z2| .

Corollary 3.1 If f ∈ LR (m) ∩Aut+ (R) and m ≥ 1, then F = G [f ] ∈ LH (m).

Proof. From (3.2) we have
f ∈ LR (1,m) .

Using Theorem 3.2 and (3.3) we obtain

F ∈ LH (1,m) = LH (m) .

4 Qusiconformal property of the operator G

Recall that we say that a mapping F : D → D1, where D,D1 ⊂ Ĉ, is K-
quasiconformal if it satisfies two conditions:

1. The map F has ACL property, that means that f is absolutely continuous on
a.e. horizontal and a.e. vertical segments in every rectangle

P = {(x, y) : a1 ≤ x ≤ a2, b1 ≤ y ≤ b2} ⊂ D.

2. There exists a constant K <∞ such that

1

K
≤
|∂F (z)| −

∣∣∂̄F (z)
∣∣

|∂F (z)|+
∣∣∂̄F (z)

∣∣ ≤ K a.e. z ∈ D. (4.1)

Family of K-quasiconformal mappings of the domain D onto D1 we denote by
QD,D1

(K) . If D = D1 we write QD (K) := QD,D (K) .
The condition (4.1) is called the dilatation condition for K-quasiconformal map-

ping. We can replace the dilatation condition by the other condition, see [4]

|κF (z)| ≤ k, where κF (z) :=

∣∣∂̄F (z)
∣∣

|∂F (z)|
, and k =

K − 1

K + 1
. (4.2)
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Theorem 4.1 Let f ∈ LR (a,m) ∩ Aut+ (R) for some a > 0 and m ≥ 1. Then F =
G [f ] is K-quasiconformal mapping on H for K = m2, this means that F ∈ QH

(
m2
)
.

Proof. First note that f ′ (t) exist for t ∈ Df ′ = R \ I and one-dimensional Euclidean
measure if I is equal zero, |I|1 = 0 so F (z) is differentiable for z = x + iy ∈ DF =
H \ I∗, where

I∗ = {x+ iy ∈ H,x+ y ∈ E or x− y ∈ E}

By |I|1 = 0 we have |I∗|2 = 0.
It is enough to prove that ∣∣∣∣ ∂̄F (z)

∂F (z)

∣∣∣∣ ≤ m2 − 1

m2 + 1
(4.3)

for all z = x+ iy ∈ DF . We can calculate, using (1.4)

∂̄F (z) = ααf ′ (ᾱz + αz̄) + ᾱᾱf ′ (αz + ᾱz̄) (4.4)

=
1

2
if ′ (ᾱz + αz̄)− 1

2
if ′ (αz + ᾱz̄)

∂̄F (z) = αᾱf ′ (ᾱz + αz̄) + ᾱαf ′ (αz + ᾱz̄) (4.5)

=
1

2
f ′ (ᾱz + αz̄) +

1

2
f ′ (αz + ᾱz̄)

and ∣∣∣∣ ∂̄F (z)

∂F (z)

∣∣∣∣ =

∣∣∣∣f ′ (ᾱz + αz̄)− f ′ (αz + ᾱz̄)

f ′ (ᾱz + αz̄) + f ′ (αz + ᾱz̄)

∣∣∣∣ =

∣∣∣∣∣∣
f ′(ᾱz+αz̄)
f ′(αz+ᾱz̄) − 1

f ′(ᾱz+αz̄)
f ′(αz+ᾱz̄) + 1

∣∣∣∣∣∣ .
Using (3.5) for t1 = αz + ᾱz̄ = x− y, t2 = αz + ᾱz̄ = x+ y we get (4.3).

Remark 4.1 If f ∈ Aut+ (R) and f is continuous on R and such that

m ≤ f ′ (t) ≤M for a.e. on R (4.6)

then
m |t2 − t1| ≤ |f (t2)− f (t1)| ≤M |t2 − t1| . (4.7)

Proof. From the fact that f ∈ Aut+ (R) and from continuity of f we have that f ′ (t)
exists a.e. in R and

f (t2)− f (t1) =

∫ t2

t1

f ′ (t) dt.

Using (4.6) we get (4.7).

Theorem 4.2 If f ∈ Aut+ (R) and F = G [f ] ∈ QH (K) for some K ≥ 1, then

B := ess sup f ′ (t) < +∞, b := ess inf f ′ (t) > 0 (4.8)

and
f ∈ LR (a,m) (4.9)
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for

a = max

{
B,

1

b

}
, m = K.

Proof. Using (4.4) and (4.5) we can calculate

J [F ] (z) = |∂F (z)|2 −
∣∣∂̄F (z)

∣∣2 = f ′ (ᾱz + αz̄) f ′ (αz + ᾱz̄)

= f ′ (x− y) f ′ (x+ y) . (4.10)

By quasiconformality of F we have

J [f ] (z) > 0 for a. e. on C. (4.11)

Combining the Jacobian form (4.10) with the condition (4.11) we get

f ′ (t) > 0 for a. e. on R. (4.12)

From the assumption of quasiconformality of F we have also

∣∣∣∣ ∂̄F (x+ iy)

∂F (x+ iy)

∣∣∣∣ =

∣∣∣∣∣∣
f ′(x−y)
f ′(x+y) − 1

f ′(x−y)
f ′(x+y) + 1

∣∣∣∣∣∣ ≤ K − 1

K + 1

which is equivalent to

1

K
≤ f ′ (x− y)

f ′ (x+ y)
≤ K

1

K
f ′ (x+ y) ≤ f ′ (x− y) ≤ Kf ′ (x+ y) .

Let we put x− y = s and x+ y = t then

1

K
f ′ (t) ≤ |f ′ (s)| ≤ Kf ′ (t) . (4.13)

Fixing t in (4.13) and having (4.12) we get (4.8).
Taking into account the determination of b and B given in (4.8) we get

b

K
≤ |f ′ (s)| ≤ BK for a. e. on R. (4.14)

Now we define
v (z) := αz,

where α is given in (1.3). Using (1.4) we see that G [f ] ◦ v for z = x+ iy ∈ H has the
form

(G [f ] ◦ v) (z) = G [f ] (αz) = αf (ᾱαz + αᾱz̄) + ᾱf (ααz + ᾱᾱz̄)

= αf (x) + ᾱf (y) .
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Because v is a conformal mapping on a domain D = {u+ iv : u, v ∈ R, v > u} and
G [f ] is a quasiconformal mapping on the domain v (D) ⊂ H so G [f ]◦v is a quasicon-
formal mapping on D. From quasiconformality of the mapping G [f ]◦ v we know that
G [f ] ◦ v has ACL property and consequently the mapping f is absolutely continuous.
From Remark 4.1 and the condition (4.14) we have

b

K
|t2 − t1| ≤ |f (t2)− f (t1)| ≤ BK |t2 − t1|

which is equivalent to (4.9).
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Abstract: We study a turnpike property of approximate solutions
of a discrete-time control system with a compact metric space of states
which arises in economic dynamics. To have this property means that
the approximate solutions of the optimal control problems are determined
mainly by an objective function, and are essentially independent of the
length of the interval, for all sufficiently large intervals. We show that the
turnpike property is stable under perturbations of an objective function.
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1 Introduction

Let (X, ρ) be a compact metric space and Ω be a nonempty closed subset of X×X.
A sequence {xt}∞t=0 ⊂ X is called a program if (xt, xt+1) ∈ Ω for all integers

t ≥ 0. A sequence {xt}T2

t=T1
⊂ X where integers T1, T2 satisfy 0 ≤ T1 < T2 is called a

program if (xt, xt+1) ∈ Ω for all integers t ∈ [T1, T2 − 1].
In this paper we consider the problem

T−1∑
i=0

v(xi, xi+1)→ max (P)

s. t. {(xi, xi+1)}T−1i=0 ⊂ Ω, x0 = z1, xT = z2,

where T is a natural number, z1, z2 ∈ X and v : Ω→ R1 is a bounded function. This
discrete-time optimal control system describes a general model of economic dynamics
[3, 7, 9, 13-15], where the set X is the space of states, v is a utility function and
v(xt, xt+1) evaluates consumption at moment t. The interest in discrete-time optimal
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problems of type (P) also stems from the study of various optimization problems
which can be reduced to it, e.g., tracking problems in engineering [5], the study
of Frenkel-Kontorova model related to dislocations in one-dimensional crystals [1]
and the analysis of a long slender bar of a polymeric material under tension in [6].
Optimization problems of the type (P) with Ω = X ×X were considered in [10-12].

We are interested in a turnpike property of the approximate solutions of (P)
which is independent of the length of the interval T , for all sufficiently large intervals.
To have this property means, roughly speaking, that the approximate solutions of
the optimal control problems are determined mainly by the cost function v, and
are essentially independent of T , z1 and z2. Turnpike properties are well known in
mathematical economics. The term was first coined by Samuelson in 1948 (see [9])
where he showed that an efficient expanding economy would spend most of the time
in the vicinity of a balanced equilibrium path (also called a von Neumann path).

It should be mentioned that the study of the existence and the structure of solu-
tions of optimal control problems defined on infinite intervals and on sufficiently large
intervals has recently been a rapidly growing area of research. See, for example, [2,
6, 8, 10-15] and the references mentioned therein.

In the classical turnpike theory [3, 7, 9] the space X is a compact convex subset
of a finite-dimensional Euclidean space, the set Ω is convex and the function v is
strictly concave. Under these assumptions the turnpike property can be established
and the turnpike x̄ is a unique solution of the maximization problem v(x, x)→ max,
(x, x) ∈ Ω. In this situation it is shown that for each program {xt}∞t=0 either the

sequence {
∑T−1
t=0 v(xt, xt+1) − Tv(x̄, x̄)}∞T=1 is bounded (in this case the program

{xt}∞t=0 is called (v)-good) or it diverges to −∞. Moreover, it is also established that
any (v)-good program converges to the turnpike x̄. In the sequel this property is
called as the asymptotic turnpike property.

In [14] we showed that the turnpike property follows from the asymptotic turnpike
property. More precisely, we assumed that any (v)-good program converges to a
unique solution x̄ of the problem v(x, x) → max, (x, x) ∈ Ω and showed that the
turnpike property holds and x̄ is the turnpike. Note that we do not use convexity
(concavity) assumptions. It should be mentioned that in [13] analogous results were
established for the problem

T−1∑
i=0

v(xi, xi+1)→ max, {(xi, xi+1)}T−1i=0 ⊂ Ω, x0 = z,

where T is a natural number and z ∈ X.

In the present paper we improve the turnpike results established in [13, 14] and
show that the turnpike property is stable under perturbations of the objective function
v.

Let (X, ρ) be a compact metric space and Ω be a nonempty closed subset of X×X.
Denote by M the set of all bounded functions u : Ω→ R1. For each w ∈M set

||w|| = sup{|w(x, y)| : (x, y) ∈ Ω}. (1.1)
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For each x, y ∈ X, each integer T ≥ 1 and each u ∈M set

σ(u, T, x) = sup{
T−1∑
i=0

u(xi, xi+1) : {xi}Ti=0 is a program and x0 = x}, (1.2)

σ(u, T, x, y) = sup{
T−1∑
i=0

u(xi, xi+1) : {xi}Ti=0 is a program and x0 = x, xT = y},

(1.3)

σ(u, T ) = sup{
T−1∑
i=0

u(xi, xi+1) : {xi}Ti=0 is a program}. (1.4)

(Here we use the convention that the supremum of an empty set is −∞).
For each x, y ∈ X, each pair of integers T1, T2 satisfying 0 ≤ T1 < T2 and each

sequence {ut}T2−1
t=T1

⊂M set

σ({ut}T2−1
t=T1

, T1, T2, x) = sup{
T2−1∑
t=T1

ut(xt, xt+1) :

{xt}T2

t=T1
is a program and xT1

= x}, (1.5)

σ({ut}T2−1
t=T1

, T1, T2, x, y) = sup{
T2−1∑
t=T1

ut(xt, xt+1) :

{xt}T2

t=T1
is a program and xT1 = x, xT2 = y}, (1.6)

σ({ut}T2−1
t=T1

, T1, T2) = sup{
T2−1∑
t=T1

ut(xt, xt+1) : {xt}T2

t=T1
is a program}. (1.7)

Assume that v ∈ M is an upper semicontinuous function. Since in [13, 14] we
assume that objective functions are defined on the set X ×X in order to apply their
results we set v(x, y) = −||v|| − 1 for all (x, y) ∈ (X ×X) \ Ω.

We suppose that there exist x̄ ∈ X and a constant c̄ > 0 such that the following
assumptions hold.

(A1) (x̄, x̄) is an interior point of Ω (there is ε > 0 such that {(x, y) ∈ X × X :
ρ(x, x̄), ρ(y, x̄) ≤ ε} ⊂ Ω) and v is continuous at (x̄, x̄).

(A2) σ(v, T ) ≤ Tv(x̄, x̄) + c̄ for all integers T ≥ 1.
It is easy to see that for each natural number T and each program {xt}Tt=0

T−1∑
t=0

v(xt, xt+1) ≤ σ(v, T ) ≤ Tv(x̄, x̄) + c̄. (1.8)

Inequality (1.8) implies the following result.
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Proposition 1.1 For each program {xt}∞t=0 either the sequence

{
T−1∑
t=0

v(xt, xt+1)− Tv(x̄, x̄)}∞T=1

is bounded or limT→∞[
∑T−1
t=0 v(xt, xt+1)− Tv(x̄, x̄)] = −∞.

A program {xt}∞t=0 is called (v)-good if the sequence

{
T−1∑
t=0

v(xt, xt+1)− Tv(x̄, x̄)}∞T=1

is bounded [3, 4, 12].
In this paper we suppose that the following assumption holds.
(A3) (the asymptotic turnpike property) For any (v)-good program

{xt}∞t=0, lim
t→∞

ρ(xt, x̄) = 0.

Note that (A3) holds for many important infinite horizon optimal control prob-
lems. See, for example, [13-15]. In particular, (A3) holds for a general model of
economic dynamics.

By (A3) ||v|| > 0. For each M > 0 denote by XM the set of all x ∈ X for which
there exists a program {xt}∞t=0 such that x0 = x and that for all integers T ≥ 1

T−1∑
t=0

v(xt, xt+1)− Tv(x̄, x̄) ≥ −M.

Clearly ∪{XM : M ∈ (0,∞)} is the set of all x ∈ X for which there exists a
(v)-good program {xt}∞t=0 such that x0 = x.

By (A1) there exists r̄ ∈ (0, 1) such that

{(x, y) ∈ X ×X : ρ(x, x̄), ρ(y, x̄) ≤ r̄} ⊂ Ω. (1.9)

Let T be a natural number. Denote by YT the set of all x ∈ X for which there
exists a program {xt}Tt=0 such that x0 = x̄ and xT = x.

Denote by ȲT the set of all x ∈ X for which there exists a program {xt}Tt=0 such
that x0 = x and xT = x̄.

It is easy to see that the following result holds.

Proposition 1.2 Let L be a natural number. Then ȲL ⊂ XL||v||.

Proposition 1.3 Let M > 0. Then there exists a natural number L such that XM ⊂
YL.

For the proof of Proposition 1.3 see Lemma 2.1.
The following three theorems which describe the structure of approximate solu-

tions of our discrete-time control system are our main results.
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Theorem 1.1 Let ε ∈ (0, 1) and M > 0. Then there exist a natural number L0 and
δ0 ∈ (0,min{ε, r̄}) such that for each integer L1 ≥ L0 the following assertion holds
with δ = δ0(4L1)−1.

Assume that an integer T > 2L1, {ut}T−1t=0 ⊂ M, a program {xt}Tt=0 and a finite
sequence of integers {Si}qi=0 satisfy

||ut − v|| ≤ δ, t = 0 . . . , T − 1,

S0 = 0, Si+1 − Si ∈ [L0, L1], i = 0, . . . , q − 1, Sq > T − L1,

Si+1−1∑
t=Si

ut(xt, xt+1) ≥
Si+1−1∑
t=Si

ut(x̄, x̄)−M

for each integer i ∈ [0, q − 1],

Si+2−1∑
t=Si

ut(xt, xt+1) ≥ σ({ut}Si+2−1
t=Si

, Si, Si+2, xSi
, xSi+2

)− δ0 (1.10)

for each integer i ∈ [0, q − 2] and

T−1∑
t=Sq−2

ut(xt, xt+1) ≥ σ({ut}T−1t=Sq−2
, Sq−2, T, xSq−2

, xT )− δ0. (1.11)

Then there exist integers τ1, τ2 ∈ [0, T ] such that τ1 ≤ 2L0, τ2 > T − 2L1 and

ρ(xt, x̄) ≤ ε, t = τ1, . . . , τ2.

Moreover, if ρ(x0, x̄) ≤ δ0, then τ1 = 0 and if ρ(xT , x̄) ≤ δ0, then τ2 = T .

Theorem 1.2 Let ε ∈ (0, r̄), L0 be a natural number and M0 > 0. Then there exist a
natural number L and δ ∈ (0, ε) such that for each integer T > 2L, each {ut}T−1t=0 ⊂M
satisfying

||ut − v|| ≤ δ, t = 0 . . . T − 1,

and each program {xt}Tt=0 which satisfies

x0 ∈ ȲL0 , xT ∈ YL0 ,

T−1∑
t=0

ut(xt, xt+1) ≥ σ({ut}T−1t=0 , 0, T, x0, xT )−M0

and
τ+L−1∑
t=τ

ut(xt, xt+1) ≥ σ({ut}τ+L−1t=τ , τ, τ + L, xτ , xτ+L)− δ (1.12)

for each integer τ ∈ [0, T −L] there exist integers τ1 ∈ [0, L], τ2 ∈ [T −L, T ] such that

ρ(xt, x̄) ≤ ε, t = τ1, . . . , τ2.
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Moreover, if ρ(x0, x̄) ≤ δ, then τ1 = 0 and if ρ(xT , x̄) ≤ δ, then τ2 = T .

Theorem 1.3 Let ε ∈ (0, r̄), L0 be a natural number and M0 > 0. Then there exist a
natural number L and δ ∈ (0, ε) such that for each integer T > 2L, each {ut}T−1t=0 ⊂M
satisfying

||ut − v|| ≤ δ, t = 0 . . . , T − 1

and each program {xt}Tt=0 which satisfies

x0 ∈ ȲL0
,

T−1∑
t=0

ut(xt, xt+1) ≥ σ({ut}T−1t=0 , 0, T, x0)−M0

and
τ+L−1∑
t=τ

ut(xt, xt+1) ≥ σ({ut}τ+L−1t=τ , τ, τ + L, xτ , xτ+L)− δ (1.13)

for each integer τ ∈ [0, T −L] there exist integers τ1 ∈ [0, L], τ2 ∈ [T −L, T ] such that

ρ(xt, x̄) ≤ ε, t = τ1, . . . , τ2.

Moreover if ρ(x0, x̄) ≤ δ, then τ1 = 0.

Theorems 1.1-1.3 establish the turnpike property for approximate solutions of the
optimal control problems with objective functions ut, t = 0, . . . , T −1 which belong to
a small neighborhood of v. They extend the main results of [15] which were obtained
when ut = u0 for all t = 0, . . . , T − 1 and when equations (1.10)-(1.13) were replaced
by the stronger equations

T−1∑
t=0

ut(xt, xt+1) ≥ σ({ut}T−1t=0 , 0, T, x0, xT )− δ

and
T−1∑
t=0

ut(xt, xt+1) ≥ σ({ut}T−1t=0 , 0, T, x0)− δ

respectively.
Note that examples of pairs (v,Ω) for which the assumptions made in this paper

hold are presented in [15].
The paper is organized as follows. Section 2 contains auxiliary results. Theorem

1.1 is proved in Section 3 while Section 4 contains the proof of Theorems 1.2 and 1.3.

2 Auxiliary results

By (A1) we may assume that

|v(x, y)− v(x̄, x̄)| ≤ 1/8 for all x, y ∈ X satisfying ρ(x, x̄), ρ(y, x̄) ≤ r̄ (2.1)
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(see (1.9)). Clearly, for each pair of integers T1, T2 satisfying 0 ≤ T1 < T2, each
sequence {wt}T2−1

t=T1
⊂ M and each x, y ∈ X satisfying ρ(x, x̄), ρ(y, x̄) ≤ r̄ we have

that σ({wt}T2−1
t=T1

, T1, T2, x, y) is finite.
In order to prove our main results we need the following lemmas obtained in [14].

Lemma 2.1 [14, Lemma 3.3] Let M0, ε be positive numbers. Then there exists a
natural number L0 such that for each integer T ≥ L0, each program {xt}Tt=0 which
satisfies

T−1∑
t=0

v(xt, xt+1) ≥ Tv(x̄, x̄)−M0

and each integer S ∈ [0, T − L0] the inequality

min{ρ(xt, x̄) : t = S + 1, . . . , S + L0} ≤ ε

holds.

Note that Lemma 2.1 implies Proposition 1.3.

Lemma 2.2 [14, Lemma 3.2]. Let ε > 0. Then there exists δ ∈ (0, r̄) such that for
each integer T ≥ 1 and each program {xt}Tt=0 satisfying

ρ(x0, x̄), ρ(xT , x̄) ≤ δ,
T−1∑
t=0

v(xt, xt+1) ≥ σ(v, T, x0, xT )− δ

the inequality ρ(xt, x̄) ≤ ε holds for all t = 0, . . . , T .

3 Proof of Theorem 1.1

By Lemma 2.2 there exists a positive number

δ0 < min{ε, r̄} (3.1)

such that the following property holds:
(P1) for each integer T ≥ 1 and each program {xt}Tt=0 satisfying

ρ(x0, x̄), ρ(xT , x̄) ≤ δ0,
T−1∑
t=0

v(xt, xt+1) ≥ σ(v, T, x0, xT )− 2δ0

the inequality ρ(xt, x̄) ≤ ε holds for all t = 0, . . . , T .
By Lemma 2.1 there exists a natural number L0 such that the following property

holds:
(P2) for each integer T ≥ L0, each program {xt}Tt=0 which satisfies

T−1∑
t=0

v(xt, xt+1) ≥ Tv(x̄, x̄)−M − 2
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and each integer S ∈ [0, T − L0] the inequality

min{ρ(xt, x̄) : t = S + 1, . . . , S + L0} ≤ δ0

holds.
Let an integer

L1 ≥ L0 (3.2)

and put

δ = δ0(4L1)−1. (3.3)

Assume that an integer T > 2L1, {ut}T−1t=0 ⊂M satisfies

||ut − v|| ≤ δ, t = 0 . . . , T − 1, (3.4)

{xt}Tt=0 is a program and that {Si}qi=0 is a sequence of integers such that

S0 = 0, Si+1 − Si ∈ [L0, L1], i = 0, . . . , q − 1, Sq > T − L1, (3.5)

for each integer i ∈ [0, q − 1]

Si+1−1∑
t=Si

ut(xt, xt+1) ≥
Si+1−1∑
t=Si

ut(x̄, x̄)−M, (3.6)

for each integer i ∈ [0, q − 2]

Si+2−1∑
t=Si

ut(xt, xt+1) ≥ σ({ut}Si+2−1
t=Si

, Si, Si+2, xSi
, xSi+2

)− δ0, (3.7)

T−1∑
t=Sq−2

ut(xt, xt+1) ≥ σ({ut}T−1t=Sq−2
, Sq−2, T, xSq−2 , xT )− δ0. (3.8)

Let an integer i ∈ [0, q − 1]. By (3.3)-(3.6)

Si+1−1∑
t=Si

v(xt, xt+1) ≥
Si+1−1∑
t=Si

ut(xt, xt+1)− δ(Si+1 − Si)

≥
Si+1−1∑
t=Si

ut(x̄, x̄)−M − δL1

≥ v(x̄, x̄)(Si+1 − Si)− δL1 −M − δL1 = v(x̄, x̄)(Si+1 − Si)−M − 1.

By the equation above, property (P2) and (3.5) there is an integer τi such that

τi ∈ [Si + 1, Si + L0], ρ(xτi , x̄) ≤ δ0. (3.9)
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Thus for each integer i ∈ [0, q− 1] there is an integer τi satisfying (3.9). By (3.9) and
(3.5)

τ0 ≤ 2L0, τq−1 > T − 2L1. (3.10)

For each integer i ∈ [0, q − 2]

0 < τi+1 − τi ≤ 2L1, τi, τi+1 ∈ [Si, Si+2]. (3.11)

By (3.7) for any integer i ∈ [0, q − 2]

τi+1−1∑
t=τi

ut(xt, xt+1) ≥ σ({ut}τi+1−1
t=τi , τi, τi+1, xτi , xτi+1

)− δ0. (3.12)

Thus we have shown that there is a finite seqence of integers {τi}pi=0 such that

0 ≤ τ0 ≤ 2L0, T ≥ τp > T − 2L1,

for each integer i satisfying 0 ≤ i < p

1 ≤ τi+1 − τi ≤ 2L1 (3.13)

and that (3.12) holds.
Clearly we may assume without loss of generality that if ρ(x0, x̄) ≤ δ0, then τ0 = 0

and if ρ(xT , x̄) ≤ δ0, then τp = 0.
Let an integer i ∈ {0, . . . , p− 1}. By (3.4), (3.12), (3.13) and (3.3)

τi+1−1∑
t=τi

v(xt, xt+1) ≥
τi+1−1∑
t=τi

ut(xt, xt+1)− δ(τi+1 − τi)

≥ σ({ut}τi+1−1
t=τi , τi, τi+1, xτi , xτi+1)− δ0 − δ2L1

≥ σ(v, τi+1 − τi, xτi , xτi+1)− δ0 − δ4L1 ≥ σ(v, τi+1 − τi, xτi , xτi+1)− 2δ0.

By the equation above, (3.9) and (P1),

ρ(xt, x̄) ≤ ε, t = τi, . . . , τi+1, i = 0, . . . , p− 1.

Theorem 1.1 is proved.

4 Proofs of Theorems 1.2 and 1.3

We prove Theorems 1.2 and 1.3 simultaneously. Fix

M1 > 4. (4.1)

By Lemma 2.2 there exists a positive number δ0 < ε such that the following
property holds:
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(P3) for each integer T ≥ 1 and each program {xt}Tt=0 satisfying

ρ(x0, x̄), ρ(xT , x̄) ≤ δ0,
T−1∑
t=0

v(xt, xt+1) ≥ σ(v, T, x0, xT )− 2δ0

the inequality ρ(xt, x̄) ≤ ε holds for all t = 0, . . . , T .
By Lemma 2.1 there exists a natural number L1 > L0 + 4 such that the following

property holds:
(P4) for each integer T ≥ L1, each program {xt}Tt=0 which satisfies

T−1∑
t=0

v(xt, xt+1) ≥ Tv(x̄, x̄)−M1 − 2

and each integer S ∈ [0, T − L1] the inequality

min{ρ(xt, x̄) : t = S + 1, . . . , S + L1} ≤ δ0

holds.
Choose a natural number k such that

k > 8L1(||v||+ 1) +M0 + 4, (4.2)

set
L2 = kL1 (4.3)

and choose a natural number
L > 2L2 (4.4)

and a positive number δ for which

8L2δ < δ0. (4.5)

Assume that an integer T > 2L, {ut}T−1t=0 ⊂M satisfies

||ut − v|| ≤ δ, t = 0 . . . , T − 1 (4.6)

and that a program {xt}Tt=0 satisfies

x0 ∈ ȲL0
, (4.7)

for each integer τ ∈ [0, T − L]

τ+L−1∑
t=τ

ut(xt, xt+1) ≥ σ({ut}τ+L−1t=τ , τ, τ + L, xτ , xτ+L)− δ (4.8)

and that

xT ∈ YL0
,

T−1∑
t=0

ut(xt, xt+1) ≥ σ({ut}T−1t=0 , 0, T, x0, xT )−M0 (4.9)
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in the case of Theorem 1.2 and

T−1∑
t=0

ut(xt, xt+1) ≥ σ({ut}T−1t=0 , 0, T, x0)−M0 (4.10)

in the case f Theorem 1.3.
Assume that an integer S satisfies

S ∈ [0, T − L2], xS ∈ ȲL0
. (4.11)

We show that there is an integer t ∈ [S + 1, S + L2] such that ρ(xt, x̄) ≤ δ0.
Assume the contrary. Then

ρ(xt, x̄) > δ0, t = S + 1, . . . , S + L2. (4.12)

There are two cases:

ρ(xt, x̄) > δ0 for all integers t = S + 1, . . . , T ; (4.13)

ρ(xt, x̄) ≤ δ0 for some integer t satisfying S + L2 < t ≤ T. (4.14)

Assume that (4.13) holds. In the case of Theorem 1.3 in view of (4.11) there is a
program {yt}Tt=0 such that

yt = xt, t = 0, . . . , S, yt = x̄ for all intregers t ∈ [S + L0, T ]. (4.15)

In the case of Theorem 1.2 in view of (4.11) and (4.9) there is a program {yt}Tt=0 such
that

yt = xt, t = 0, . . . , S, yt = x̄ for all intregers t ∈ [S + L0, T − L0], yT = xT . (4.16)

By (4.9), (4.10), (4.15) and (4.16)

−M0 ≤
T−1∑
t=0

ut(xt, xt+1)−
T−1∑
t=0

ut(yt, yt+1) =

T−1∑
t=S

ut(xt, xt+1)−
T−1∑
t=S

ut(yt, yt+1).

(4.17)
By (4.11) there is an integer p ≥ 0 such that

T − S ∈ [pL1, (p+ 1)L1). (4.18)

By (4.3), (4.11) and (4.18)
p ≥ k. (4.19)

By (4.13), (4.18) and (P4) for each integer i ∈ [0, p− 1]

S+(i+1)L1−1∑
t=S+iL1

v(xt, xt+1) ≤ L1v(x̄, x̄)−M1 − 2.
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Together with (4.5) and (4.6) this implies that for each integer i ∈ [0, p− 1]

S+(i+1)L1−1∑
t=S+iL1

ut(xt, xt+1) ≤ δL1 + L1v(x̄, x̄)−M1 − 2

≤ 2δL1 +

S+(i+1)L1−1∑
t=S+iL1

ut(x̄, x̄)−M1 − 2 ≤
S+(i+1)L1−1∑
t=S+iL1

ut(x̄, x̄)−M1 − 1. (4.20)

By (4.2), (4.3), (4.6), (4.16), (4.18), (4.19) and (4.20)

T−1∑
t=S

ut(xt, xt+1)−
T−1∑
t=S

ut(yt, yt+1)

≤
S+pL1−1∑
t=S

ut(x̄, x̄)− (M1 + 1)p+
∑
{||ut|| : t is an integer and

S + pL1 ≤ t ≤ T − 1} −
T−L0−1∑
t=S+L0

ut(x̄, x̄) + 2L0(||v||+ 1)

≤
S+pL1−1∑
t=S

ut(x̄, x̄)− p(M1 + 1) + L1(||v||+ 1) + 2L0(||v||+ 1)

−
T−1∑
t=S

ut(x̄, x̄) + 2L0(||v||+ 1)

≤ −p(M1 + 1) + 6L1(||v||+ 1) ≤ −k(M1 + 1) + 6L1(||v||+ 1) ≤ −M0 − 4.

This contradicts (4.17). The contradiction we have reached proves that (4.13) does
not hold. Thus (4.14) holds.

We may assume without loss of generality that there is an integer S̃ such that

S + L2 < S̃ ≤ T, ρ(xs̃, x̄) ≤ δ0, (4.21)

ρ(xt, x̄) > δ0 for all integers t satifying S < t < S̃. (4.22)

By (4.11) and (4.21) there is a program {yt}Tt=0 such that

yt = xt, t = 0, . . . , S, yt = x̄ for all integers t ∈ [S + L0, S̃ − 1], (4.23)

yt = xt, for all integers satisfying S̃ ≤ t ≤ T.

By (4.23), (4.10), (4.9)

−M0 ≤
T−1∑
t=0

ut(xt, xt+1)−
T−1∑
t=0

ut(yt, yt+1) =

T−1∑
t=S

ut(xt, xt+1)−
T−1∑
t=S

ut(yt, yt+1).

(4.24)
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By (4.21) there is an integer p ≥ 0 such that

S̃ − S − 1 ∈ [pL1, (p+ 1)L1). (4.25)

By (4.3), (4.21) and (4.25)
p ≥ k.

By (4.25), (4.22) and (P4) for each integer i ∈ [0, p− 1]

S+(i+1)L1−1∑
t=S+iL1

v(xt, xt+1) ≤ L1v(x̄, x̄)−M1 − 2.

Together with (4.5) and (4.6) this implies that for each integer i ∈ [0, p− 1]

S+(i+1)L1−1∑
t=S+iL1

ut(xt, xt+1) ≤ δL1 + L1v(x̄, x̄)−M1 − 2

≤ 2δL1 +

S+(i+1)L1−1∑
t=S+iL1

ut(x̄, x̄)−M1 − 2 ≤
S+(i+1)L1−1∑
t=S+iL1

ut(x̄, x̄)−M1 − 1. (4.26)

By (4.23), (4.21), (4.6), (4.26), (4.25) and the inequality p ≥ k

T−1∑
t=S

ut(xt, xt+1)−
T−1∑
t=S

ut(yt, yt+1)

=

S̃−1∑
t=S

ut(xt, xt+1)−
S̃−1∑
t=S

ut(yt, yt+1)

≤
S+pL1−1∑
t=S

ut(xt, xt+1) + 2L1(||v||+ 1)−
S̃−1∑
t=S

ut(x̄, x̄) + 4L0(||v||+ 1)

≤ −p(M1 + 1) + 8L1(||v||+ 1) < −k + 8L1(||v||+ 1) < −M0 − 4.

This contradicts (4.24).
The contradiction we have reached proves that there is an integer t ∈ [S+1, S+L2]

for which ρ(xt, x̄) ≤ δ0.
Thus we have shown that the following property holds:
(P5) for each integer S satisfying S ∈ [0, T −L2] and xS ∈ ȲL0

there is an integer
t ∈ [S + 1, S + L2] for which ρ(xt, x̄) ≤ δ0.

Using (4.7) and (P5) by induction we construct an increasing sequence of integers
{Si}qi=1 such that

S1 ∈ [0, L2], Sq ∈ (T − L2, T ], Si+1 − Si ∈ [1, L2]. i = 1, . . . , q − 1,

ρ(xSi
, x̄) ≤ δ0, i = 1, . . . , q. (4.27)
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Clearly, we may assume that if ρ(x0, x̄) ≤ δ0, then S1 = 0 and if ρ(xT , x̄) ≤ δ0,
then Sq = T .

Let an integer i ∈ {0, . . . , q − 1}. By (4.8), (4.9), (4.27) and (4.4)

Si+1−1∑
t=Si

ut(xt, xt+1) ≥ σ({ut}Si+1−1
t=Si

, Si, Si+1, xSi
, xSi+1

)− δ.

Together with (4.5), (4.6) and (4.27) this implies that

Si+1−1∑
t=Si

v(xt, xt+1) ≥ σ(v, Si, Si+1, xSi
, xSi+1

)− δ0.

By the equation above, (4.27) and (P3),

ρ(xt, x̄) ≤ ε, t = Si, . . . , Si+1, i = 0, . . . , q − 1.

Theorems 1.2 and 1.3 are proved.
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