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Abstract: This paper is concerned with the existence and unique-
ness of solutions for a semilinear neutral differential equation with impulses
and nonlocal conditions. First, we assume that the nonlinear terms are lo-
cally Lipschitz, and to achieve the existence of solutions, Karakostas Fixed
Point Theorem is applied. After that, under some additional conditions,
the uniqueness is proved as well. Next, assuming some bound on the non-
linear terms the global existence is proved by applying a generalization of
Gronwall inequality for impulsive differential equations. Then, we suppose
stronger hypotheses on the nonlinear functions, such as globally Lipschitz
conditions, that allow us to appy Banach Fixed Point Theorem to prove
the existence and uniqueness of solutions. Finally, we present an example
as an application of our method.
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1. Introduction and Preliminaries

This work is devoted to study the existence of solutions for the following semilinear
neutral differential equation with impulses and nonlocal conditions.

d

dt
[z(t)− f−1(t, zt)] = A0(t)z(t) + f1(t, zt), t ̸= tk, t ∈ [0, τ ],

z(θ) + h(zτ1 , zτ2 , . . . , zτq )(θ) = η(θ), θ ∈ [−r, 0],
z(t+k ) = z(t−k ) + Jk(tk, z(tk)), k = 1, 2, . . . , p,

(1.1)



108 H. Leiva, L. Riera, S. Lalvay

where A0(t) is a n × n continuous matrix, the functions f−1, f1, and h are smooth
enough and 0 < t1 < t2 < · · · < tp < τ , 0 < τ1 < τ2, · · · < τq < r < τ . Here,
zt : [−r, 0] −→ Rn is defined by zt(θ) = z(t+ θ), and η belongs to the Banach space

PWr =
{
η : [−r, 0] −→ Rn : η is continuous except at skη, k = 1, 2, . . . , p points

where the side limits exist η(s+kη), η(s
−
kη) = η(skη), and are finite

}
with the norm

∥η∥r = sup
t∈[−r,0]

∥η(t)∥Rn .

There are many papers on the study of linear neutral differential equations, to mention
[6, 12–14, 19, 20], particularly, the controllability of such equations has been studied
in [12–14, 19, 20] where Kalman-type algebraic condition is proved (see [9]). In [6],
the existence of solutions for an abstract neutral functional differential equations is
discussed. To our knowledge, there are a few works on the existence of solutions for
semilinear neutral equations with impulses and nonlocal conditions simultaneously.
Karakostas Fixed Point Theorem will be applied to prove our main result on the
existence of solutions of (1.1).

Theorem 1.1 (Karakostas Fixed Point Theorem- see[7, 10, 11]). Let Z and
Y be Banach spaces and D be a closed convex subset of Z, and let B : D → Y be a
continuous operator such that B(D) is a relatively compact subset of Y, and

T : D × B(D) → D

a continuous operator such that the family {T (·, y) : y ∈ B(D)} is equicontractive.
Then, the operator equation

T (z,B(z)) = z

admits a solution on D.

Now, we define natural Banach spaces where the solutions of problem (1.1) will
take place and present some notations to be used through this work. We begin defining
the Banach spaces

PWt1..tp([0, τ ];Rn) = {z : [0, τ ] → Rn : z is continuous except at tk, k = 1, . . . , p

points where the side limits exist z(t+k ), z(tk) = z(t−k ),

and are finite},

and

PWp =
{
η : [−r, τ ] −→ Rn : η

∣∣∣
[−r,0]

∈ PWr and η
∣∣∣
[0,τ ]

∈ PWt1..tp

}
,

equipped with the supremum norm and

∥η∥p = sup
t∈[−r,τ ]

∥η(t)∥Rn ,
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respectively. We will also consider

Rqn = Rn × Rn × · · · × Rn︸ ︷︷ ︸
q−times

=

q∏
k=1

Rn

equipped with the norm

∥y∥q =

q∑
i=1

∥yi∥Rn .

Analogously, we define the Banach space

PWqp =
{
η : [−r, 0] −→ Rqn : η is continuous except atskη, k = 1, 2, . . . , p, points

where the side limits exist η(s+kη), η(s
−
kη) = η(skη), and are finite

}
endowed with the norm

∥η∥qp = sup
t∈[−r,0]

∥η(t)∥q = sup
t∈[−r,0]

(
q∑

i=1

∥ηi(t)∥Rn

)
.

The functions in system (1.1) are defined as follows:

f−1, f1 : [0, τ ]× PWr −→ Rn, h : PWqp −→ PWr, Jk : [0, τ ]× Rn −→ Rn.

To conclude this section, we define the evolution operator U(t, θ) = Φ(t)Φ−1(θ) where
Φ is the fundamental matrix of the linear system of ordinary differential equations

y′(t) = A0(t)y(t).

Also, we shall consider the following bound

M = sup
t,θ∈[0,τ ]

∥U(t, θ)∥.

Remark 1.1. We will omit the subscript in the functions space norms defined above
as long as this does not lead to confusion.

2. Formula for the solutions of system (1.1).

We devote this section to find a formula for solutions of the semilinear neutral differen-
tial equations with impulses and nonlocal conditions (1.1). Specifically, we transform
problem (1.1) into an integral differential equation problem, which allows us to apply
Karakostas Fixed Point Theorem to prove the existence of solutions for (1.1) in the
next section.
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Proposition 2.1. The system (1.1) has solution z on [−r, τ ] if, and only if, z is a
solution of the following integral equation

z(t) =



U(t, 0)
[
η(0)− h(zτ1 , zτ2 , . . . , zτq )(0)− f−1(0, η − h(zτ1 , zτ2 , . . . , zτq ))

]
+

∫ t

0

U(t, θ) [A0(θ)f−1(θ, zθ) + f1(θ, zθ)] dθ + f−1(t, zt)

+
∑

0<tk<t

U(t, tk)Jk(tk, z(tk)), t ∈ [0, τ ],

η(t)− h(zτ1 , zτ2 , . . . , zτq )(t), t ∈ [−r, 0].
(2.1)

Proof. ( =⇒ ) Suppose that z is a solution for system (1.1) on [−r, τ ]. Let

z0 = η(0)− h(zτ1 , zτ2 , . . . , zτq )(0).

• On [0, t1), z is the solution of the following system
d

dt
[z(t)− f−1(t, zt)] = A0(t)z(t) + f1(t, zt), t ∈ [0, t1),

z(t) + h(zτ1 , · · · , zτq )(t) = η(t), t ∈ [−r, 0],

and by the variation of parameters formula

z(t) =f−1(t, zt) + U(t, 0)[z0 − f−1

(
0, η − h(zτ1 , zτ2 , . . . , zτq )

)
]

+

∫ t

0

U(t, θ)[A0(θ)f−1(θ, zθ) + f1(θ, zθ)]dθ, t ∈ [0, t1).

As t→ t−1 ,

z(t−1 ) =f−1(t1, zt1) + U(t1, 0)[z0 − f−1

(
0, η − h(zτ1 , zτ2 , . . . , zτq )

)
]

+

∫ t1

0

U(t1, θ)[A0(θ)f−1(θ, zθ) + f1(θ, zθ)]dθ.

• On [t1, t2), z is the solution of the following system
d

dt
[z(t)− f−1(t, zt)] = A0(t)z(t) + f1(t, zt), t ∈ [t1, t2),

z(t+1 ) = z(t1) + J1(t1, z(t1))

and again the variation constant formula yields

z(t) =f−1(t, zt) + U(t, t1)[z(t1) + J1(t1, z(t1))− f−1

(
t1, η − h(zτ1 , zτ2 , . . . , zτq )

)
]

+

∫ t

t1

U(t, θ)[A0(θ)f−1(θ, zθ) + f1(θ, zθ)]dθ, t ∈ [t1, t2),
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therefore

z(t) =f−1(t, zt) + U(t, t1)
{
f−1(t1, zt1) + U(t1, 0)[z0 − f−1

(
0, η − h(zτ1 , zτ2 , . . . , zτq )

)
]

+

∫ t1

0

U(t1, θ)[A0(θ)f−1(θ, zθ) + f1(θ, zθ)]dθ + J1(t1, z(t1))

− f−1

(
t1, η − h(zτ1 , zτ2 , . . . , zτq )

) }
+

∫ t

t1

U(t, θ)[A0(θ)f−1(θ, zθ) + f1(θ, zθ)]dθ.

=f−1(t, zt) + U(t, t1)
{
U(t1, 0)[z0 − f−1

(
0, η − h(zτ1 , zτ2 , . . . , zτq )

)
]

+

∫ t

0

U(t1, θ)[A0(θ)f−1(θ, zθ) + f1(θ, zθ)]dθ + J1(t1, z(t1))
}

+

∫ t

t1

U(t, θ)[A0(θ)f−1(θ, zθ) + f1(θ, zθ)]dθ.

Using the cocycle property of U ,

z(t) =f−1(t, zt) + U(t, 0)[z0 − f−1

(
0, η − h(zτ1 , zτ2 , . . . , zτq )

)
]

+

∫ t1

0

U(t, θ)[A0(θ)f−1(θ, zθ) + f1(θ, zθ)]dθ + U(t, t1)J1(t1, z(t1))

+

∫ t

t1

U(t, θ)[A0(θ)f−1(θ, zθ) + f1(θ, zθ)]dθ

=f−1(t, zt) + U(t, 0)[z0 − f−1

(
0, η − h(zτ1 , zτ2 , . . . , zτq )

)
]

+

∫ t

0

U(t, θ)[A0(θ)f−1(θ, zθ) + f1(θ, zθ)]dθ + U(t, t1)J1(t1, z(t1)).

Proceeding inductively as above, we have that for t ∈ [tp, tp+1),

z(t) = f−1(t, zt) + U(t, 0)[z0 − f−1

(
0, η − h(zτ1 , zτ2 , . . . , zτq )

)
]

+

∫ t

0

U(t, θ)[A0(θ)f−1(θ, zθ) + f1(θ, zθ)]dθ +

p∑
k=1

U(t, tk)Jk(tk, z(tk)), t ∈ [0, τ ]

= f−1(t, zt) + U(t, 0)[η(0)− h(zτ1 , zτ2 , . . . , zτq )(0)− f−1

(
0, η − h(zτ1 , zτ2 , . . . , zτq )

)
]

+

∫ t

0

U(t, θ)[A0(θ)f−1(θ, zθ) + f1(θ, zθ)]dθ +
∑

0<tk<t

U(t, tk)Jk(tk, z(tk)), t ∈ [0, τ ]

( ⇐= ) Assume that z is solution of the integral equation (2.1).
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Then, at t1,

z(t−1 ) =f−1(t1, zt1) + U(t1, 0)[z0 − f−1

(
0, η − h(zτ1 , zτ2 , . . . , zτq )

)
]

+

∫ t1

0

U(t1, θ)[A0(θ)f−1(θ, zθ) + f1(θ, zθ)]dθ,

z(t+1 ) =f−1(t1, zt1) + U(t1, 0)[z0 − f−1

(
0, η − h(zτ1 , zτ2 , . . . , zτq )

)
]

+

∫ t1

0

U(t1, θ)[A0(θ)f−1(θ, zθ) + f1(θ, zθ)]dθ + U(t1, t1)J1(t1, z(t1)),

which implies that
z(t+1 ) = z(t−1 ) + J1(t1, z(t1)).

Near t2,

z(t−2 ) =f−1(t2, zt2) + U(t2, 0)[z0 − f−1

(
0, η − h(zτ1 , zτ2 , . . . , zτq )

)
]

+

∫ t2

0

U(t2, θ)[A0(θ)f−1(θ, zθ) + f1(θ, zθ)]dθ + U(t2, t1)J1(t1, z(t1)),

z(t+2 ) =f−1(t2, zt2) + U(t2, 0)[z0 − f−1

(
0, η − h(zτ1 , zτ2 , . . . , zτq )

)
]

+

∫ t2

0

U(t2, θ)[A0(θ)f−1(θ, zθ) + f1(θ, zθ)]dθ + U(t2, t1)J1(t1, z(t1))

+ U(t2, t2)J2(t2, z(t2)),

which means that
z(t+2 ) = z(t−2 ) + J2(t2, z(t2)).

Proceeding inductively as above, we get that for k = 1, 2, . . . , p,

z(t+k ) = z(t−k ) + Jk(tk, z(tk)).

On the other hand, differentiating z with respect to t, for t ∈ [0, τ) and t ̸= tk, k =
1, 2, . . . , p, we obtain that

d

dt
(z(t)) =

d

dt

(
f−1(t, zt) + U(t, 0)

[
z0 − f−1(0, η − h(zτ1 , zτ2 , . . . , zτq ))

]
+

∫ t

0

U(t, θ) [A0(θ)f−1(θ, zθ) + f1(θ, zθ)] dθ +
∑

0<tk<t

U(t, tk)Jk(tk, z(tk))
)
,

d

dt
(z(t)) =

d

dt
f−1(t, zt) +A0(t)U(t, 0)[z0 − f−1

(
0, η − h(zτ1 , zτ2 , . . . , zτq )

)
]

+A0(t)

∫ t

0

U(t, θ)[A0(θ)f−1(θ, zθ)+f1(θ, zθ)]dθ+A0(t)f−1(t, zt)+f1(t, zt)

+A0(t)
∑

0<tk<t

U(t, tk)Jk(tk, z(tk)).
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By rearranging terms it follows that

d

dt
[z(t)− f−1(t, zt)] =A0(t)

{
f−1(t, zt) + U(t, 0)

[
z0 − f−1(0, η − h(zτ1 , zτ2 , . . . , zτq ))

]
+

∫ t

0

U(t, θ) [A0(θ)f−1(θ, zθ) + f1(θ, zθ)] dθ

+
∑

0<tk<t

U(t, tk)Jk(tk, z(tk))
}
+ f1(t, zt)

=A0(t)z(t) + f1(t, zt),

that is to say, z is a solution of (1.1).

3. Main Theorems

In this section we shall prove our main result about the existence of solutions for
the semilinear neutral equation with impulses and nonlocal conditions (1.1) and their
behavior.To achieve that, we consider the following hypotheses on the terms involving
the system (1.1).
(H1) There exist constants dk, Lg, γ > 0, k = 1, 2, . . . , p such that ∀y, z ∈ Rn,
t ∈ [0, τ ]

i. LgqM < γ +M

p∑
k=1

dk <
1

2
, ∥Jk(t, y)− Jk(t, z)∥Rn ≤ dk∥y − z∥Rn .

ii. We have that h(0) ≡ 0 and

∥h(y)(t)− h(v)(t)∥Rn ≤ Lg

q∑
i=1

∥yi(t)− vi(t)∥Rn , y, v ∈ PWqp.

(H2) The function f−1 satisfies

i.

∥A0(t)f−1(t, η1)−A0(t)f−1(t, η2)∥Rn ≤ K (∥η1∥r, ∥η2∥r) ∥η1 − η2∥r, η1, η2 ∈ PWr,

∥f−1(t, η1)− f−1(t, η2)∥Rn ≤ γ∥η1 − η2∥r, η1, η2 ∈ PWr

∥A0(t)f−1(t, η)∥Rn ≤ Ψ(∥η∥r) , η ∈ PWr,

∥f−1(t, η)∥Rn ≤ Ψ(∥η∥r) , η ∈ PWr.

and f1 satisfies

ii.

∥f1(t, η1)− f1(t, η2)∥Rn ≤ K (∥η1∥r, ∥η2∥r) ∥η1 − η2∥r, η1, η2 ∈ PWr,

∥f1(t, η)∥Rn ≤ Ψ(∥η∥r) , η ∈ PWr,
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where K : R+ × R+ −→ R+,Ψ : R+ −→ R+ are continuous and non decreasing
functions.
(H3) There exists ρ, τ > 0 such that

MΨ
(
∥η∥+ Lgq

(
˜∥η∥+ ρ

))
+

(
MLgq +M

p∑
k=1

dk

)(
˜∥η∥+ ρ

)
+ (2Mτ + 1)Ψ

(
˜∥η∥+ ρ

)
< ρ

where the function η̃ is defined as follows

η̃(t) =

{
U(t, 0)η(0), t ∈ [0, τ ],

η(t), t ∈ [−r, 0].

(H4) Assume the following relation holds

M
{
Lgq (1 + γ) + 2τK

(
˜∥η∥+ ρ, ˜∥η∥+ ρ

)}
<

1

2
.

Remark 3.1. The hypothesis (H2) is not a whim, it appears naturally when one
studies the well-known Burgues equation and the Benjamin-Bona-Mahony equation;
and since we will extend this work to infinite-dimensional Hilbert spaces, these hy-
potheses are considered here. For more details about it, one can see [10,11].

Theorem 3.1. Suppose that (H1)-(H3) hold. Then, the system (1.1) has at least
one solution on [−r, τ ].

Proof. We shall transform the problem of proving the existence of solutions for sys-
tem (1.1) into a fixed point problem. For this, we define the following operators

T : PWp × PWp −→ PWp,

and
B : PWp −→ PWp

given by

T (z, y)(t) =

y(t) + f−1(t, zt) +
∑

0<tk<t

U(t, tk)Jk(tk, z(tk)), t ∈ [0, τ ],

η(t)− h(zτ1 , zτ2 , . . . , zτq )(t), t ∈ [−r, 0],

and

B(y)(t) =


U(t, 0)

[
η(0)− h(yτ1 , yτ2 , . . . , yτq )(0)− f−1(0, η − h(yτ1 , yτ2 , . . . , yτq ))

]
+

∫ t

0

U(t, θ) [A0(θ)f−1(θ, yθ) + f1(θ, yθ)] dθ, t ∈ [0, τ ],

η(t), t ∈ [−r, 0],
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respectively. We also consider the following closed and convex set

D = D(ρ, τ, η) = {y ∈ PWp : ∥y − η̃∥p ≤ ρ} .

With this setting, the problem of finding solutions for system (1.1) has been reduced
to the problem of finding solutions of the following operator equation

T (z,B(z)) = z.

The rest of the proof will be given by statements as follows:

Statement 1. B is a continuous mapping.

For any z, y ∈ PWp we have that

∥B(z)(t)− B(y)(t)∥ ≤ ∥U(t, 0)∥
{∥∥h(yτ1 , yτ2 , . . . , yτq )(0)− h(zτ1 , zτ2 , . . . , zτq )(0)

∥∥
+
∥∥f−1

(
0, η−h(yτ1 , yτ2 , ..., yτq )

)
−f−1

(
0, η−h(zτ1 , zτ2 , ..., zτq )

)∥∥}
+

∫ t

0

∥U(t, θ)∥
{
∥A0(θ)f−1(θ, zθ)−A0(θ)f−1(θ, yθ)∥

+ ∥f1(θ, zθ)− f1(θ, yθ)∥
}
dθ

≤M
[
Lgq∥z − y∥+ γ

∥∥g(zτ1 , zτ2 , . . . , zτq )− h(yτ1 , yτ2 , . . . , yτq )
∥∥]

+Mτ [K(∥z∥, ∥y∥)∥z − y∥+K(∥z∥, ∥y∥)∥z − y∥] ,
≤M [Lgq∥z − y∥+ γLgq∥z − y∥]

+ 2MτK(∥z∥, ∥y∥)∥z − y∥,

where the last two inequality comes from (H1-ii) and (H2). It follows that

∥B(z)− B(y)∥ ≤M {Lgq (1 + γ) + 2τK (∥z∥, ∥y∥)} ∥z − y∥

by taking supremum over t ∈ [−r, τ ]. Hence B is locally Lipschitz, which implies the
continuity of B.

Statement 2. B maps bounded sets of PWp into bounded sets of PWp.

In order to prove this statement, we will show that

∀R > 0 ∃λ > 0 ∀y ∈ BR : ∥B(y)∥ ≤ λ,

where BR = {z ∈ PWp : ∥z∥ ≤ R}. Let R > 0 and consider λ = max{ϑ, ∥η∥}, ϑ to
be determined later. Let y ∈ BR. Then, on one hand, we have that

∥B(y)(t)∥ = ∥η(t)∥ ≤ ∥η∥,
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if t ∈ [−r, 0]. While, on the other hand,

∥B(y)(t)∥ ≤ ∥U(t, 0)∥
∥∥η(0)−h(yτ1 , yτ2 , . . . , yτq )(0)−f−1(0, η−h(yτ1 , yτ2 , . . . , yτq ))

∥∥
+

∫ t

0

∥U(t, θ)∥ [∥A0(θ)f−1(θ, yθ)∥+ ∥f1(θ, yθ)∥] dθ

≤M
{
∥η(0)∥+

∥∥h(yτ1 , yτ2 , . . . , yτq )(0)∥∥+∥∥f−1(0, η−h(yτ1 , yτ2 , . . . , yτq ))
∥∥}

+ τM [∥A0(θ)f−1(θ, yθ)∥+ ∥f1(θ, yθ)∥]
≤M

{
∥η(0)∥+ Lgq∥y∥+Ψ

(∥∥η − h(yτ1 , yτ2 , . . . , yτq )
∥∥) }+ τM2Ψ(∥y∥)

≤M
{
∥η(0)∥+ Lgq∥y∥+Ψ

(
∥η∥+

∥∥h(yτ1 , yτ2 , . . . , yτq )∥∥) }+ τM2Ψ(∥y∥)
≤M

{
∥η(0)∥+ Lgq∥y∥+Ψ(∥η∥+ Lgq∥y∥)

}
+ τM2Ψ(∥y∥)

≤M
{
∥η(0)∥+ LgqR+Ψ(∥η∥+ LgqR) + τ2Ψ(R)

}
= ϑ,

if t ∈ [0, τ ]. Here we have used (H1-ii) and (H2). Now, taking supremum over
t ∈ [−r, τ ], we have that

∥B(y)∥ ≤ λ.

Statement 3. B maps bounded sets of PWp into equicontinuous sets of PWp.

Let us consider BR as above and let us show that B(BR) is equicontinuous on
[−r, τ ]. On [−r, 0], the continuity of η immediately implies the result. On (0, τ ], we
have that

∥B(y)(t2)− B(y)(t1)∥ ≤ ∥U(t2, 0)− U(t1, 0)∥∥η(0)− h(yτ1 , yτ2 , . . . , yτq )(0)

− f−1

(
0, η − h(yτ1 , yτ2 , . . . , yτq )

)
∥

+

∫ t1

0

∥U(t2, θ)− U(t1, θ)∥∥A0(θ)f−1(θ, yθ) + f1(θ, yθ)∥dθ

+

∫ t2

t1

∥U(t2, θ)∥∥A0(θ)f−1(θ, yθ) + f1(θ, yθ)∥dθ

≤ ∥U(t2, 0)− U(t1, 0)∥
{
∥η(0)∥+ Lgq∥y∥

+
∥∥f−1

(
0, η − h(yτ1 , yτ2 , . . . , yτq )

)∥∥}
+

∫ t1

0

∥U(t2, θ)− U(t1, θ)∥ [∥A0(θ)f−1(θ, yθ)∥+∥f1(θ, yθ)∥] dθ

+

∫ t2

t1

∥U(t2, θ)∥ [∥A0(θ)f−1(θ, yθ)∥+ ∥f1(θ, yθ)∥] dθ

≤ ∥U(t2, 0)− U(t1, 0)∥
{
∥η(0)∥+ Lgq∥y∥+Ψ(∥η∥+ Lgq∥y∥)

}
+ 2Ψ (∥y∥)

∫ t1

0

∥U(t2, θ)− U(t1, θ)∥dθ + 2MΨ(∥y∥) (t2 − t1)
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≤ ∥U(t2, 0)− U(t1, 0)∥
{
∥η(0)∥+ LgqR+Ψ(∥η∥+ LgqR)

}
+ 2Ψ (R)

∫ t1

0

∥U(t2, θ)− U(t1, θ)∥dθ + 2MΨ(R) (t2 − t1) → 0

as t2 → t1 by the continuity of U and the fact that ∥η(0)∥+ LgqR+Ψ(∥η∥+ LgqR)
is bounded. Here we have considered (H1-ii) and (H2). This shows that B(BR) is
equicontinuous.

Statement 4. The subset B(D) is relatively compact in PWp.

Let us prove Statement 4. Let D be a bounded subset of PWp. By Statements 2
and 3, B(D) is bounded and equicontinuous in PWp. Let {yn}n∈N ⊆ B(D), then

yn

∣∣∣
[−r,0]

= η, ∀n ∈ N.

Hence, yn

∣∣∣
[−r,0]

converges uniformly on [−r, 0].

Now, putting φn = yn

∣∣∣
[0,τ ]

, we get that {φn}n∈N ⊆ PWt1..tp .

Let us put t0 = 0 and tp+1 = τ . Then, applying Arzela-Ascoli Theorem, the sequence
{φn}n∈N contains a subsequence {φ1

n}n∈N that converges in the interval [t0, t1]. Now,
applying Arzela-Ascoli Theorem again, we get that the sequence {φ1

n}n∈N contains
a subsequence {φ2

n}n∈N that converges in the interval [t1, t2]. Continuing with this
process we find a subsequence {φp+1

n }n∈N of {φn}n∈N that converges in each interval
[tk, tk+1], with k = 0, 1, 2, . . . , p. Therefore,

φp+1
n = yp+1

n

∣∣∣
[0,τ ]

converges on [0, τ ].

Consequently, {φp+1
n }n∈N = {yp+1

n }n∈N converges uniformly on [−r, τ ]. Thus, B(D)
is relatively compact, and the proof of Statement 4 is completed.

Statement 5. The family
{
T (·, y) : y ∈ B(D)

}
is equicontractive.

On the one hand, for any u, v ∈ PWp and t ∈ [−r, 0], we get that

∥T (u,B(y))(t)− T (v,B(y))(t)∥ ≤
∥∥h(uτ1 , uτ2 , . . . , uτq )(t)− h(vτ1 , vτ2 , . . . , vτq )(t)

∥∥
≤ Lgq∥u− v∥
≤MLgq∥u− v∥.

While on the other hand, by using (H1-i) and (H2-i), for all t ∈ (0, τ ] we obtain
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that

∥T (u,B(y))(t)− T (v,B(y))(t)∥ ≤ ∥f−1(t, ut)− f−1(t, vt)∥

+
∑

0<tk<t

∥U(t, tk) [Jk(tk, u(tk))− Jk(tk, v(tk))]∥

≤ γ∥u− v∥+M

p∑
k=1

∥Jk(tk, u(tk))− Jk(tk, v(tk))∥

≤ γ∥u− v∥+M

p∑
k=1

dk∥u(tk)− v(tk)∥

≤ γ∥u− v∥+M∥u− v∥
p∑

k=1

dk

≤

(
γ +M

p∑
k=1

dk

)
∥u− v∥.

It follows that

∥T (u,B(y))− T (v,B(y))∥ ≤

(
γ +M

p∑
k=1

dk

)
∥u− v∥ ≤ 1

2
∥u− v∥

by taking supremum over t ∈ [−r, τ ] and using (H1-i). This shows that T (·,B(y)) is
a contraction which does not depend on y ∈ B(D).

Statement 6. The inclusion T (·,B(·)) (D(ρ, τ, η)) ⊂ D(ρ, τ, η) holds.

Let z ∈ D(ρ, τ, η) be arbitrary. Notice that

T (z,B(z))(t) =



U(t, 0)
[
η(0)− h(zτ1 , zτ2 , . . . , zτq )(0)−f−1(0, η − h(zτ1 , zτ2 , . . . , zτq ))

]
+

∫ t

0

U(t, θ) [A0(θ)f−1(θ, zθ) + f1(θ, zθ)] dθ + f−1(t, zt)

+
∑

0<tk<t

U(t, tk)Jk(tk, z(tk)), t ∈ [0, τ ],

η(t)− h(zτ1 , zτ2 , . . . , zτq )(t), t ∈ [−r, 0].

On the one hand, for t ∈ [−r, 0], we have that

∥T (z,B(z))(t)− η̃(t)∥ ≤
∥∥g (zτ1 , zτ2 , . . . , zτq) (t)∥∥

≤ Lgq∥z∥
≤MLgq∥z∥

≤MLgq
(

˜∥η∥+ ρ
)

< ρ.
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While on the other hand, for t ∈ [0, τ ], we have that

∥T (z,B(z))(t)− η̃(t)∥ ≤M
∥∥h(zτ1 , zτ2 , . . . , zτq )(0)− f−1(0, η − h(zτ1 , zτ2 , . . . , zτq ))

∥∥
+

∫ t

0

∥U(t, θ) [A0(θ)f−1(θ, zθ) + f1(θ, zθ)]∥dθ + ∥f−1(t, zt)∥

+
∑

0<tk<t

∥U(t, tk)Jk(tk, z(tk))∥

≤M
{
Lgq∥z∥+

∥∥f−1(0, η − h(zτ1 , zτ2 , . . . , zτq ))
∥∥}

+ 2MτΨ(∥z∥) + Ψ(∥z∥) +M
∑

0<tk<t

∥Jk(tk, z(tk))∥

≤M {Lgq∥z∥+Ψ(∥η∥+ Lgq∥z∥)}

+ 2MτΨ(∥z∥) + Ψ(∥z∥) +

(
M

p∑
k=1

dk

)
∥z∥

≤M
{
Lgq

(
˜∥η∥+ ρ

)
+Ψ

(
˜∥η∥+ Lgq

(
˜∥η∥+ ρ

))}
+ 2MτΨ

(
˜∥η∥+ ρ

)
+Ψ

(
˜∥η∥+ ρ

)
+

(
M

p∑
k=1

dk

)(
˜∥η∥+ρ

)
≤MΨ

(
˜∥η∥+ Lgq

(
˜∥η∥+ρ

))
+

(
MLgq +M

p∑
k=1

dk

)(
˜∥η∥+ρ

)
+ (2Mτ + 1)Ψ

(
˜∥η∥+ ρ

)
< ρ.

Here we have used (H3). Now, by taking supremum over t ∈ [−r, τ ], we get that

∥T (z,B(z))− η̃∥ ≤ ρ.

and by Karakostas Fixed Point Theorem the operator equation

T (z,B(z)) = z

admits a solution on D. This finishes the proof.

Theorem 3.2. System (1.1) has a unique solution if (H4) is additionally assumed.

Proof. Suppose u and v are two solutions of system (1.1). Now, considering (H1)
and (H2) we have that

∥u(t)−v(t)∥≤ ∥U(t, 0)∥
{∥∥h(uτ1 , uτ2 , . . . , uτq )(0)− h(vτ1 , vτ2 , . . . , vτq )(0)

∥∥
+
∥∥f−1

(
0, η − h(uτ1 , uτ2 , . . . , uτq )

)
− f−1

(
0, η − h(vτ1 , vτ2 , . . . , vτq )

)∥∥}
+

∫ t

0

∥U(t, θ)∥
{
∥A0(θ)f−1(θ, uθ)−A0(θ)f−1(θ, vθ)∥+∥f1(θ, uθ)−f1(θ, vθ)∥

}
dθ
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+ ∥f−1(t, ut)− f−1(t, vt)∥+
∑

0<tk<t

∥U(t, tk)∥∥Jk(tk, u(tk))− Jk(tk, v(tk))∥

≤M {Lgq (1 + γ) + 2τK (∥u∥, ∥v∥)} ∥u− v∥+

(
γ +M

p∑
k=1

dk

)
∥u− v∥

≤M
{
Lgq (1 + γ) + 2τK

(
˜∥η∥+ ρ, ˜∥η∥+ ρ

)}
∥u− v∥+ 1

2
∥u− v∥

Bearing in mind the hypothesis (H4), and taking supremum over t ∈ [−r, τ ], we have
that

∥u− v∥ ≤ ω∥u− v∥

with 0 ≤ ω < 1. This implies ∥u− v∥ = 0, and therefore u = v.

Next, we consider the following subset D̃ of Rn:

D̃ = {v ∈ Rn : ∥v∥Rn ≤ ρ}. (3.1)

Therefore, for all y ∈ D we have y(t)− η̃(t) ∈ D̃ for t ∈ [−r, τ ].

Definition 3.1. We shall say that [−r, θ1) is a maximal interval of existence for the
solution z of problem (1.1) if there is not solution of (1.1) on [−r, θ2) with θ2 > θ1.

Theorem 3.3. Suppose that the conditions of Theorem 3.1 hold. If z is a solution
of problem (1.1) on [−r, θ1) and θ1 is maximal, then either θ1 = +∞ or there exists
a sequence τn → θ1 as n→ ∞ such that z(τn)− η̃(τn) → ∂D̃.

Proof. Suppose θ1 <∞. For the purpose of contradiction assume the existence of a
neighborhood N of ∂D̃ such that {z(t)−η̃(t)} does not enter in it, for 0 < θ2 ≤ t < θ1.
We can take N = D̃\B, where B is a closed subset of D̃, then z(t)− η̃(t) ∈ B for 0 <
tp < θ2 ≤ t < θ1. We need to prove that lim

t→θ−
1

{z(t)− η̃(t)} = z1 − η̃(θ1) ∈ B, which is

enough to prove that lim
t→θ−

1

z(t) = z1. Indeed, if we consider 0 < tp < θ2 ≤ ℓ < t < θ1,

then:

∥z(t)− z(ℓ)∥ ≤∥U(t, 0)− U(ℓ, 0)∥
(
∥η(0)∥+

∥∥h(zτ1 , zτ2 , . . . , zτq )(0)∥∥
+
∥∥f−1(0, η − h(zτ1 , zτ2 , . . . , zτq ))

∥∥)
+

∫ ℓ

0

∥U(t, θ)− U(ℓ, θ)∥∥A(θ)f−1(θ, zθ) + f1(θ, zθ)∥dθ

+

∫ t

ℓ

∥U(t, θ)∥∥A(θ)f−1(θ, zθ)+f1(θ, zθ)∥dθ+∥f−1(t, zt)−f−1(ℓ, zℓ)∥

+
∑

0<tk<ℓ

∥U(t, tk)− U(ℓ, tk)∥∥Jk(tk, z(tk))∥

+
∑

ℓ<tk<t

∥U(t, tk)∥∥Jk(tk, z(tk))∥
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≤∥U(t, 0)− U(ℓ, 0)∥
(
∥η(0)∥+ Lgq∥z∥+Ψ(∥η∥+ Lgq∥z∥)

)
+
( ∫ ℓ

0

∥U(t, θ)− U(ℓ, θ)∥dθ +
∫ t

ℓ

∥(U(t, θ)∥dθ
)
2Ψ(∥z∥)

+ ∥f−1(t, zt)− f−1(ℓ, zℓ)∥+ ∥U(t, ℓ)− I∥
q∑

k=1

∥U(ℓ, tk)∥∥Jk(z(tk)∥

+
∑

ℓ<tk<t

∥U(t, tk)∥∥Jk(tk, z(tk))∥

≤∥U(t, 0)− U(ℓ, 0)∥
(
∥η(0)∥+ Lgq∥z∥+Ψ(∥η∥+ Lgq∥z∥)

)
+
( ∫ ℓ

0

∥U(t, θ)− U(ℓ, θ)∥dθ +
∫ t

ℓ

∥(U(t, θ)∥dθ
)
2Ψ(∥z∥)

+ ∥f−1(t, zt)− f−1(ℓ, zℓ)∥+ ∥U(t, ℓ)− I∥M
q∑

k=1

∥Jk(z(tk)∥

+
∑

ℓ<tk<t

∥U(t, tk)∥∥Jk(tk, z(tk))∥

Since U is uniformly continuous for t ≥ 0, then ∥z(t)−z(l)∥Rn goes to zero as l → θ−1 .
Therefore, lim

t→θ−
1

z(t) = z1 exists in Rn and, since B is closed, z1 − η̃(θ1) belongs to

B. This will contradict the maximality of θ1. In fact, we have that z1 ∈ B + η̃(θ1) is
contained in the interior of the ball D̃+ η̃(θ1). Hence, z(·) can be extended to [−r, θ1].
In this regard, for ϵ small enough, the following initial value problem admit only one
solutions on [−r, θ1 + ϵ)

d

dt
[u(t)− f−1(t, ut)] = A0(t)u(t) + f1(t, ut), t ∈ [θ1, θ1 + ϵ),

u(θ) = z(θ), θ ∈ [θ1 − r, θ1].
(3.2)

This is a contradiction with the maximality of θ1. So, the proof is completed.

Corollary 3.1. In the conditions of Theorem 3.1, if the second part of hypothesis
(H1) is changed to

∥f1(t, η)∥ ≤ µ(t)(1 + ∥η(0)∥Rn), η ∈ PWr, t ∈ [−r,∞),

where µ is a continuous function on [−r,∞), then a unique solution of problem (1.1)
exists on [−r,∞).

Proof.

∥z(t)∥ ≤∥U(t, 0)∥∥η(0)− h(zτ1 , zτ2 , . . . , zτq )(0)− f−1(0, η − h(zτ1 , zτ2 , . . . , zτq ))∥

+M

∫ t

0

∥A0(θ)f−1(θ, zθ)∥+ ∥f1(θ, zθ)∥dθ + ∥f−1(t, zt)∥

+
∑

0<tk<t

M∥Jk(tk, z(tk))∥
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≤∥U(t, 0)∥
(
∥η(0)∥+ Lgq∥z∥+Ψ(∥η∥+ Lgq∥z∥)

)
+M

∫ t

0

∥A0(θ)f−1(θ, zθ)∥+ µ(θ)(1 + ∥z(θ)∥)dθ + ∥f−1(t, zt)∥

+
∑

0<tk<t

Mdk∥z(tk)∥.

Then, applying Gronwall Inequality for impulsive differential equations(see [8, 15,16,
18]), we obtain that

∥z(t)∥Rn ≤M

(
∥z(0)∥Rn +

∫ τ

0

µ(θ)dθ

) ∏
t0<tk<t

(1 +Mdk)e
∫ τ
0

Mµ(θ)dθ,

This implies that ∥z(t)∥Rn remains bounded as t→ θ1 and applying Theorem 3.3 we
get the result.

4. Global Lipschitz Conditions

This section will assume stronger hypotheses on the nonlinear terms that allow us to
apply Banach Fixed Point Theorem. Specifically, we will suppose that the nonlinear
functions that appear in our system are globally Lipschitz. Moreover, we shall consider
the following simpler system

d

dt
[z(t)− f(t, zt)] = A0(t)z(t) + F (t, zt), t ∈ [0, τ ] \ {t1, t2, . . . , tp}

z(s) = g(z)(s) + ϕ(s), s ∈ [−r, 0]
z(t+k ) = z(t−k ) + Jk(tk, z(tk)), k = 1, 2, . . . , p,

(4.1)

where the nonlocal condition z(s) = g(z)(s) + ϕ(s), s ∈ [−r, 0] means

z(s) = g

(
z
∣∣∣
[−r,0]

)
(s) + ϕ(s), s ∈ [−r, 0].

The functions f, F : [0, τ ] × PWr −→ Rn are smooth enough satisfying certain con-
ditions that will be specified later, and Jk : [0,∞) × Rn −→ Rn, k = 1, 2, . . . , p, are
continuous and represents the impulsive effect in the system (4.1), the continuous
function g : PWr −→ PWr represent the nonlocal conditions, this function acts as a
feedback operator which adjusts a part of the past when the initial function is present,
or even, the whole past when the function ϕ is absent according to some precise future
requirements (see [1]). The advantage of using nonlocal conditions is that measure-
ments at more places can be incorporated to get better models. For more details and
physical interpretations about nonlocal condition see [1–5,21] and references therein.

Now, assuming a global Lipschitz condition, we will prove that system (4.1) admits
a unique solution defined on [0, τ ] by applying Banach Fixed Point Theorem. In this
regards, we suppose the following global Lipschitz condition on the nonlinear terms:
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(L1) There exist positive constants Lf and LF such that for all t ∈ [0, τ ], ϕ, ϕ̃ ∈ PWr

∥f(t, ϕ)− f(t, ϕ̃)∥ ≤ Lf∥ϕ− ϕ̃∥r,∥∥∥F (t, ϕ)− F (t, ϕ̃)
∥∥∥ ≤ LF ∥ϕ− ϕ̃∥r.

(L2) There exist nonnegative constants dk, k = 1, 2, . . . , p such that for all t ∈ [0,∞),
z, z̃ ∈ Rn

∥Jk(t, z)− Jk(t, z̃)∥Rn ≤ dk∥z − z̃∥Rn .

(L3) There exists a nonnegative constant Lg such that for all ϕ, ψ ∈ PWr

∥g(ϕ)− g(ψ)∥r ≤ Lg∥ϕ− ψ∥r.

(L4)

Lf +M [Lg + LfLg + ∥A0∥Lfτ + LF τ +

p∑
k=1

dk] < 1,

where ∥A0∥ = max{∥A0(t)∥ : t ∈ [0, τ ]}.
Proposition 4.1. Let ϕ ∈ PWr. Then z is solution of system (4.1) if and only if z
satisfies the integral equation

z(t) =



g(z)(t) + ϕ(t), t ∈ [−r, 0],
f(t, zt) + U(t, 0)

[
g(z)(0) + ϕ(0)− f(0, g(z)(0) + ϕ(0))

]
+

∫ t

0

U(t, s)A0(s)f(s, zs)ds

+

∫ t

0

U(t, s)F (s, zs)ds+
∑

0<tk<t

U(t, tk)Jk(tk, z(tk)), t ∈ [0, τ ],

(4.2)

Theorem 4.1. Suppose that (L1)-(L4) hold. Then for ϕ ∈ PWr the system (4.1)
has a unique solution defined on [0, τ ].

Proof. We shall apply Banach Contraction Mapping Theorem, in this regard, we
will define the following operator T : PWp −→ PWp by

T (t) =



g(z)(t) + ϕ(t), t ∈ [−r, 0],
f(t, zt) + U(t, 0)

[
g(z)(0) + ϕ(0)− f(0, g(z)(0) + ϕ(0))

]
+

∫ t

0

U(t, s)A0(s)f(s, zs)ds

+

∫ t

0

U(t, s)F (s, zs)ds+
∑

0<tk<t

U(t, tk)Jk(tk, z(tk)), t ∈ [0, τ ].

(4.3)

If t ∈ [−r, 0], then

∥(T z)(t)− (T z̃)(t)∥ = ∥g(z)(t)− g(z̃)(t)∥ ≤ ∥(g(z)− g(z̃))
∣∣∣
[−r,0]

∥p

≤ Lg∥(z − z̃)
∣∣∣
[−r,0]

∥PWr ≤ Lg∥z − z̃∥p.
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If t ∈ [0, τ ], then

∥(T z)(t)− (T z̃)(t)∥ ≤ ∥f(t, zt)− f(t, z̃t)∥+ ∥U(t, 0)∥
[
∥g(z)(0)− g(z̃)(0)∥

+ ∥f(0, g(z)(0) + ϕ(0))− f(0, g(z̃)(0) + ϕ(0))∥
]

+

∫ t

0

∥U(t, s)∥∥A0(s)∥∥f(s, zs)− f(s, z̃s)∥ds

+

∫ t

0

∥U(t, s)∥∥F (s, zs)− F (s, z̃s)∥ds

+
∑

0<tk<t

∥U(t, tk)∥∥Jk(tk, z(tk))− Jk(tk, z̃(tk))∥

≤ Lf∥zt − z̃τ (t)∥+M
[
Lg∥z − z̃∥PWp

+Lf∥gτ (z)(0)− gτ (z̃(0)∥
]

+ M∥A0∥Lf

∫ t

0

∥zs − z̃s∥ds+MLF

∫ t

0

∥zs − z̃s∥ds

+ M
∑

0<tk<t

dk∥z(tk)− z̃(tk)∥

≤

(
Lf+M

[
Lg + LfLg + ∥A0∥Lfτ + LF τ +

p∑
k=1

dk

])
∥z − z̃∥p.

Thus,

∥T z − T z̃∥p ≤

(
Lf +M

[
Lg + LfLg + ∥A0∥Lfτ + LF τ +

p∑
k=1

dk

])
∥z − z̃∥p,

so, the operator T satisfies all the assumptions of the Banach Contraction Mapping
Theorem, and therefore T has only one fixed point in the space PWr, which is the
solution of problem (4.1). This completes the proof.

5. Example

In this section, we consider an example of semilinear neutral differential equations
with impulses, delay and nonlocal conditions such that Theorem 4.1 can be applied.
Let us consider the following system

d
dt

[
z(t)−

(
1 + tan z(t−2)

8(t+10)2

)]
= z(t) + e

− z(t−2)

10(t+5)3 , t ∈ [0, τ)

z(s) =
(
1 + sin z

302

)
(s) + ϕ(s), s ∈ [−2, 0]

z(t+k ) = z(t−k ) + 1 +
cos(z(t−k ))
4(tk+8)4 , k = 1, 2.

(5.1)

Here t1 = 5
2 , t2 = 9

2 and τ = 5. In this example, the terms related to system

(4.1) are given by: f(t, z) = 1 + tan(z)
8(t+10)2 , F (t, z) = e

− z
10(t+5)3 , g(z) = 1 + sin(z)

302 ,

Jk(t, z) = 1 + cos(z)
4(t+8)4 and A0(t) = 1. Then we have,
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|f(t, z)− f(t, z̃)| = 1
8(t+10)2 |tan(z)− tan(z̃)| ≤ 1

8·102 |z − z̃|r,
|F (t, z)− F (t, z̃)| =

∣∣∣e− z
10(t+5)3 − e

− z̃
10(t+5)3

∣∣∣ ≤ 1
10·53 |z − z̃|r,

|Jk(t, z)− Jk(t, z̃)| = 1
4(t+8)4 |cos(z)− cos(z̃)| ≤ 1

4·84 |z − z̃|r,
|g(z)− g(z̃)|r = 1

302 |sin(z)− sin(z̃)|PWr
≤ 1

302 |z − z̃|r,

and

Lf +M [Lg + LfLg + |A0|Lfτ + LF τ + d1 + d2] ≤ 0.63.

Hence, the conditions (L1)-(L4) are satisfied. Consequently, Theorem 4.1 ensures the
existence of solutions for problem (5.1).

6. Final Remark

In this paper, first of all, we have proved the existence, uniqueness, and the globally
defined solutions of a semilinear neutral differential equation with impulses and non-
local conditions assuming that the nonlinear terms are locally Lipschitz. After that,
we assume that the nonlinear functions that involve system (4.1) are globally Lips-
chitz, which allows us to prove the existence and uniqueness of solutions by applying
Banach Fixed Point Theorem. Finally, we believe that this work can be extended
to infinite dimension systems in Hilbert spaces, where the operator A0 is no longer a
matrix, instead, it will be the infinitesimal generator of a strongly continuous compact
semigroup, and −A0 a sectorial operator. In this way, the fractional powered spaces
can be defined, allowing us to admit nonlinear terms involving spatial derivatives, like
in the following neutral partial differential equations of Burges equation type:

∂

∂t

[
z(t, x) +

∫ t

0

∫ π

0

b(θ − t, y, x)z(θ, y)dydθ

]
= νzxx(t, x)− z(t− r)zx(t− r)

+f(t, z(t− r, x)), t ̸= tk,
z(t, 0) = z(t, 1) = 0, t ∈ [0, τ ]
z(θ, x) + h(z(τ1 + θ, x), . . . , z(τq + θ, x)) = η(θ, x), x ∈ [0, 1],
z(t+k , x) = z(t−k , x) + Jk(z(tk, x)), x ∈ Ω, k = 1, 2, 3, . . . , p,

(6.1)
where η ∈ PW1/2(−r, 0;H1

0 ) = PW1/2(−r, 0;Z1/2), with Z = L2[0, 1], Z
1/2 =

D((−∆)1/2) and the functions f, Jk, h are locally Lipschitz.
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