Journal of Mathematics
and Applications
JMA No 37, pp 39-50 (2014)

Remarkable identities

Jan Górowski, Jerzy Żabowski

Abstract: In the paper a number of identities involving even powers of the values of functions tangent, cotangent, secans and cosecans are proved. Namely, the following relations are shown:

$$
\begin{aligned}
\sum_{j=1}^{m-1} f^{2 n}\left(\frac{\pi j}{2 m}\right) & =w_{f}(m), \\
\sum_{j=0}^{m-1} f^{2 n}\left(\frac{2 j+1}{4 m} \pi\right) & =v_{f}(m), \\
\sum_{j=1}^{m} f^{2 n}\left(\frac{\pi j}{2 m+1}\right) & =\tilde{w}_{f}(m),
\end{aligned}
$$

where m, n are positive integers, f is one of the functions: tangent, cotangent, secans or cosecans and $w_{f}(x), v_{f}(x), \tilde{w}_{f}(x)$ are some polynomials from $\mathbb{Q}[x]$.

One of the remarkable identities is the following:

$$
\sum_{j=0}^{m-1} \sin ^{-2} \frac{(2 j+1) \pi}{2 m}=m^{2}, \quad \text { provided } m \geq 1
$$

Some of these identities are used to find, by elementary means, the sums of the series of the form $\sum_{j=1}^{\infty} \frac{1}{j^{2 n}}$, where n is a fixed positive integer. One can also notice that Bernoulli numbers appear in the leading coefficients of the polynomials $w_{f}(x), v_{f}(x)$ and $\tilde{w}_{f}(x)$.

AMS Subject Classification: 11M06, 11 Y60, 10 H 10
Keywords and Phrases: trigonometric identity, zeta function

In [7] the following formulas have been proved

$$
\begin{equation*}
\sum_{j=1}^{m} \cot ^{2} \frac{\pi j}{2 m+1}=\frac{m(2 m-1)}{3}, \quad \sum_{j=1}^{m} \sin ^{-2} \frac{\pi j}{2 m+1}=\frac{2 m(m+1)}{3} \tag{1}
\end{equation*}
$$

COPYRIGHT © by Publishing Department Rzeszów University of Technology P.O. Box 85, 35-959 Rzeszów, Poland
where $m \in \mathbb{N}_{1}$. By \mathbb{N}_{k} for a positive integer k we mean $\mathbb{N} \backslash\{0,1,2 \ldots, k-1\}$. The above identities were then used in an elementary proof of the formula $\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}$.

In this paper we develop the ideas from [7] to prove more generalized identities than (1). Next we use some of them to find the sum of $\sum_{k=1}^{\infty} \frac{1}{k^{2 n}}$, where $n \in \mathbb{N}_{1}$. The general identities given in this article yield, in particular, the following identity of uncommon beauty

$$
\sum_{j=0}^{m-1} \sin ^{-2} \frac{2 j+1}{2 m} \pi=m^{2}, \quad m \in \mathbb{N}_{1}
$$

Some elementary methods of finding the sums of the series of the form $\sum_{j=1}^{\infty} \frac{1}{j^{2 n}}$ may be found for example in [1], [3], [5], [6], [8].

We start by recalling some basic facts on symmetric polynomials in m variables. Put

$$
\begin{gathered}
\sigma_{n}=\sum_{j=1}^{m} x_{j}^{n} \quad \text { for } n \in \mathbb{N}_{1} \\
\tau_{k}=\sum_{1 \leq j_{1}<j_{2}<\cdots<j_{k} \leq m} x_{j_{1}} x_{j_{2}} \cdots x_{j_{k}} \quad \text { for } k \in\{1,2, \ldots, m\}
\end{gathered}
$$

Moreover, for the convenience set $\tau_{k}=0$ for $k>m$.
The following lemma comes from [2].
Lemma 1 (Newton). Let $n \in \mathbb{N}_{1}$, then

$$
\begin{equation*}
\sigma_{n}-\tau_{1} \sigma_{n-1}+\tau_{2} \sigma_{n-2}-\cdots+(-1)^{n-1} \tau_{n-1} \sigma_{1}+(-1)^{n} n \tau_{n}=0 \tag{2}
\end{equation*}
$$

In view of Lemma 1 we have

$$
\sigma_{n}=\operatorname{det}\left(\begin{array}{cccccc}
(-1)^{n+1} n \tau_{n} & -\tau_{1} & \tau_{2} & \ldots & (-1)^{n-2} \tau_{n-2} & (-1)^{n-1} \tau_{n-1} \tag{3}\\
(-1)^{n}(n-1) \tau_{n-1} & 1 & -\tau_{1} & \ldots & (-1)^{n-3} \tau_{n-3} & (-1)^{n-2} \tau_{n-2} \\
(-1)^{n-1}(n-2) \tau_{n-2} & 0 & 1 & \ldots & (-1)^{n-4} \tau_{n-4} & (-1)^{n-3} \tau_{n-3} \\
\vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\
-2 \tau_{2} & 0 & 0 & \ldots & 1 & -\tau_{1} \\
\tau_{1} & 0 & 0 & \cdots & 0 & 1
\end{array}\right)
$$

for every $n \in \mathbb{N}_{1}$. Indeed, putting in (2) instead of n respectively $n-1, n-2, \ldots, 1$ we get, together with (2), the system of n equations in n variables: $\sigma_{1}, \ldots, \sigma_{n}$. Such a system is a Cramer's system and by the Cramer's rule we get (3).

From now on by $D_{\tan }$ and $D_{\text {cot }}$ we denote the domains of the trigonometric functions tangent and cotangent, respectively.
Lemma 2. The following identities hold true:
(A) $\frac{\sin 2 m x}{\cos ^{2 m} x} \cot x=\sum_{j=0}^{m}\binom{2 m}{2 j+1}(-1)^{j} \tan ^{2 j} x, \quad(m, x) \in \mathbb{N} \times\left(D_{\tan } \cap D_{\text {cot }}\right)$;
(B) $\frac{\cos 2 m x}{\cos ^{2 m} x}=\sum_{j=0}^{m}\binom{2 m}{2 j}(-1)^{j} \tan ^{2 j} x, \quad(m, x) \in \mathbb{N} \times D_{\tan }$;
(C) $\frac{\sin (2 m+1) x}{\cos ^{2 m+1} x} \cot x=\sum_{j=0}^{m}\binom{2 m+1}{2 j+1}(-1)^{j} \tan ^{2 j} x, \quad(m, x) \in \mathbb{N} \times\left(D_{\tan } \cap D_{\cot }\right)$;
(D) $\frac{\sin (2 m+1) x}{\sin ^{2 m+1} x}=\sum_{j=0}^{m}\binom{2 m+1}{2 j+1}(-1)^{j} \cot ^{2 m-2 j} x, \quad(m, x) \in \mathbb{N} \times D_{\text {cot }}$;
(E) $\frac{\cos (2 m+1) x}{\cos ^{2 m+1} x}=\sum_{j=0}^{m}\binom{2 m+1}{2 j}(-1)^{j} \tan ^{2 j} x, \quad(m, x) \in \mathbb{N} \times D_{\tan }$;
(F) $\frac{\cos (2 m+1) x}{\sin ^{2 m+1} x} \tan x=\sum_{j=0}^{m}\binom{2 m+1}{D_{\text {cot }}}(-1)^{j} \cot ^{2 m-2 j} x, \quad(m, x) \in \mathbb{N} \times\left(D_{\tan } \cap\right.$

Proof. It is a known fact that

$$
\sum_{j=0}^{k}\binom{k}{j} \cos ^{k-j} x(\mathrm{i} \sin x)^{j}=(\cos x+\mathrm{i} \sin x)^{k}=\cos k x+\mathrm{i} \sin k x
$$

for $k \in \mathbb{N}$ and $x \in \mathbb{R}$. Putting $k=2 m$ in the above equation and comparing real and imaginary parts of the both sides we obtain (A) and (B). Similarly, with $k=2 m+1$ we get (C), (D), (E) and (F).

Now we prove the following result.
Theorem 1. For every $m \in \mathbb{N}_{2}$ and any $n \in \mathbb{N}_{1}$,

$$
\sigma_{n, m}(A)=\sum_{j=1}^{m-1} \tan ^{2 n} \frac{\pi j}{2 m}=\sum_{j=1}^{m-1} \cot ^{2 n} \frac{\pi j}{2 m}
$$

where $\sigma_{n, m}(A)$ denotes the determinant given by (3) in which $\tau_{j}=\frac{\binom{2 m}{2 j+1}}{2 m}$ for $j \in$ $\{1,2, \ldots, n\}$.

Proof. Replace in the identity (A) of Lemma $2, \tan ^{2} x$ by t and set

$$
\begin{equation*}
w_{A}(t)=\sum_{j=0}^{m}\binom{2 m}{2 j+1}(-1)^{j} t^{j} \tag{4}
\end{equation*}
$$

then $w_{A}(t)$ is a polynomial of order $m-1$ in the real variable t.
On the other hand, substituting $\frac{\pi l}{2 m}$, where $l \in\{1,2, \ldots, m-1\}$, for x in (A) we get

$$
0=\sum_{j=0}^{m}\binom{2 m}{2 j+1}(-1)^{j} \tan ^{2 j} \frac{\pi l}{2 m}, \quad l \in\{1,2, \ldots, m-1\} .
$$

Hence and by (4) we obtain
$w_{A}(t)=(-1)^{m-1}\binom{2 m}{2 m-1} \prod_{j=1}^{m-1}\left(t-\tan ^{2} \frac{\pi j}{2 m}\right)=(-1)^{m-1} 2 m \prod_{j=1}^{m-1}\left(t-\tan ^{2} \frac{\pi j}{2 m}\right)$.

This and the Vieta's formulas give

$$
\sum_{1 \leq k_{1}<k_{2}<\cdots<k_{j} \leq m-1} \tan ^{2} \frac{\pi k_{1}}{2 m} \tan ^{2} \frac{\pi k_{2}}{2 m} \cdots \tan ^{2} \frac{\pi k_{j}}{2 m}=\frac{\binom{2 m}{2 j+1}}{2 m}
$$

and in view of (3) we have

$$
\sigma_{n, m}(A)=\sum_{j=1}^{m-1} \tan ^{2 n} \frac{\pi j}{2 m}
$$

As $\tan \frac{\pi j}{2 m}=\cot \frac{\pi(m-j)}{2 m}$ for $j \in\{1,2, \ldots, m-1\}$ we get

$$
\sum_{j=1}^{m-1} \tan ^{2 n} \frac{\pi j}{2 m}=\sum_{j=1}^{m-1} \cot ^{2 n} \frac{\pi(m-j)}{2 m}=\sum_{j=1}^{m-1} \cot ^{2 n} \frac{\pi j}{2 m}
$$

which completes the proof.
Theorem 2. For every $m, n \in \mathbb{N}_{1}$ the following identity holds true:

$$
\sigma_{n, m}(B)=\sum_{j=0}^{m-1} \tan ^{2 n} \frac{2 j+1}{4 m} \pi=\sum_{j=0}^{m-1} \cot ^{2 n} \frac{2 j+1}{4 m} \pi
$$

where $\sigma_{n, m}(B)$ denotes the determinant given by (3) in which $\tau_{j}=\binom{2 m}{2 j}$ for $j \in$ $\{1,2, \ldots, n\}$.

Proof. Similarly as in the proof of Theorem 1, replace in the right hand side of the identity (B) of Lemma $2, \tan ^{2} x$ by t and set

$$
w_{B}(t)=\sum_{j=0}^{m}\binom{2 m}{2 j}(-1)^{j} t^{j}
$$

Next, substitute $\frac{2 l+1}{4 m} \pi$, where $l \in\{0,1, \ldots, m-1\}$, for x in (B). This yields

$$
0=\sum_{j=0}^{m}\binom{2 m}{2 j}(-1)^{j} \tan ^{2 j} \frac{2 l+1}{4 m} \pi, \quad l \in\{0,1, \ldots, m-1\} .
$$

Hence and by the definition of $w_{B}(t)$ we get

$$
w_{B}(t)=(-1)^{m} \prod_{j=0}^{m-1}\left(t-\tan ^{2} \frac{2 j+1}{4 m} \pi\right)
$$

which in view of the Vieta's formulas gives

$$
\sum_{1 \leq k_{1}<k_{2}<\cdots<k_{j} \leq m-1} \tan ^{2} \frac{2 k_{1}+1}{4 m} \tan ^{2} \frac{2 k_{2}+1}{4 m} \cdots \tan ^{2} \frac{2 k_{j}+1}{4 m}=\binom{2 m}{2 j} .
$$

By this and (3),

$$
\sigma_{n, m}(B)=\sum_{j=0}^{m-1} \tan ^{2 n} \frac{2 j+1}{4 m} \pi
$$

Using the same argument as in the proof of Theorem 1 we get

$$
\sum_{j=0}^{m-1} \tan ^{2 n} \frac{2 j+1}{2 m} \pi=\sum_{j=0}^{m-1} \cot ^{2 n} \frac{2 j+1}{4 m} \pi
$$

and the proof is completed.
Using identities (C) and (D) of Lemma 2 and the same method as in proofs of Theorems 1 and 2 one may obtain

Theorem 3. For every $m, n \in \mathbb{N}_{1}$ the following identity holds true:

$$
\sigma_{n, m}(C)=\sum_{j=1}^{m} \tan ^{2 n} \frac{\pi j}{2 m+1}
$$

where $\sigma_{n, m}(C)$ denotes the determinant given by (3) in which $\tau_{j}=\binom{2 m+1}{2 j}$ for $j \in$ $\{1,2, \ldots, n\}$.

Theorem 4. For every $m, n \in \mathbb{N}_{1}$ the following identity holds true:

$$
\sigma_{n, m}(D)=\sum_{j=1}^{m} \cot ^{2 n} \frac{\pi j}{2 m+1}
$$

where $\sigma_{n, m}(D)$ denotes the determinant given by (3) in which $\tau_{j}=\frac{1}{2 m+1}\binom{2 m+1}{2 j+1}$ for $j \in\{1,2, \ldots, n\}$.

Finally, applying the same reasoning as in the proof of Theorem 1 from (E) and (F) of Lemma 2 we have

Theorem 5. For every $m, n \in \mathbb{N}_{1}$ the following identity holds true:

$$
\sigma_{n, m}(E)=\sum_{j=0}^{m-1} \tan ^{2 n} \frac{2 j+1}{2(2 m+1)} \pi
$$

where $\sigma_{n, m}(E)$ denotes the determinant given by (3) in which $\tau_{j}=\frac{1}{2 m+1}\binom{2 m+1}{2 j+1}$ for $j \in\{1,2, \ldots, n\}$.
Theorem 6. For every $m, n \in \mathbb{N}_{1}$ the following identity holds true:

$$
\sigma_{n, m}(F)=\sum_{j=0}^{m-1} \cot ^{2 n} \frac{2 j+1}{2(2 m+1)} \pi
$$

where $\sigma_{n, m}(F)$ denotes the determinant given by (3) in which $\tau_{j}=\binom{2 m+1}{2 j}$ for $j \in$ $\{1,2, \ldots, n\}$.

The following formulas

$$
\cot ^{2 n} x=\left(\frac{1-\sin ^{2} x}{\sin ^{2} x}\right)^{n}, \quad \tan ^{2 n} x=\left(\frac{1-\cos ^{2} x}{\cos ^{2} x}\right)^{n}
$$

yield
Lemma 3. The following identities hold true:
(G) $\sum_{j=0}^{n-1}\binom{n}{j}(-1)^{j} \sin ^{2 j-2 n} x=(-1)^{n-1}+\cot ^{2 n} x, \quad(n, x) \in \mathbb{N}_{1} \times D_{\text {cot }}$;
(H) $\sum_{j=0}^{n-1}\binom{n}{j}(-1)^{j} \cos ^{2 j-2 n} x=(-1)^{n-1}+\tan ^{2 n} x, \quad(m, x) \in \mathbb{N}_{1} \times D_{\tan }$.

Lemma 4. Assume that $n \in \mathbb{N}_{1}$ and $x \in D_{\text {cot }}$, then

$$
\frac{1}{\sin ^{2 n} x}=\operatorname{det}\left(\begin{array}{cccccc}
(-1)^{n-1}+\cot ^{2 n} x & -\binom{n}{1} & \binom{n}{2} & -\binom{n}{3} & \ldots & (-1)^{n-1}\binom{n}{n-1} \\
(-1)^{n-2}+\cot ^{2 n-2} x & 1 & -\binom{n-1}{1} & \binom{n-1}{2} & \ldots & (-1)^{n-2}\binom{n-1}{n-2} \\
(-1)^{n-3}+\cot ^{2 n-4} x & 0 & 1 & -\binom{n-2}{1} & \ldots & (-1)^{n-2}\binom{n-2}{n-3} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
1+\cot ^{2} x & 0 & 0 & 0 & \ldots & 1
\end{array}\right) .
$$

Proof. Replacing n in (G) (Lemma 3) by $n-1, n-2, \ldots, 1$, respectively we get, together with (G), the system of n equations in n variables:

$$
\frac{1}{\sin ^{2 n} x}, \frac{1}{\sin ^{2 n-2} x}, \ldots, \frac{1}{\sin ^{2} x}
$$

Such a system is a Cramer's system and the assertion follows by the Cramer's rule.
Using (H) in the same manner as in Lemma 4 we obtain
Lemma 5. Let $n \in \mathbb{N}_{1}$ and $x \in D_{\tan }$, then
$\frac{1}{\cos ^{2 n} x}=\operatorname{det}\left(\begin{array}{cccccc}(-1)^{n-1}+\tan ^{2 n} x & -\binom{n}{1} & \binom{n}{2} & -\binom{n}{3} & \ldots & (-1)^{n-1}\binom{n}{n-1} \\ (-1)^{n-2}+\tan ^{2 n-2} x & 1 & -\binom{n-1}{1} & \binom{n-1}{2} & \ldots & (-1)^{n-2}\binom{n-1}{n-2} \\ (-1)^{n-3}+\tan ^{2 n-4} x & 0 & 1 & -\binom{n-2}{1} & \ldots & (-1)^{n-3}\binom{n-2}{n-3} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1+\tan ^{2} x & 0 & 0 & 0 & \ldots & 1\end{array}\right)$.
To shorten notation from now on we set

$$
\mu\left(a_{n}, a_{n-1}, \ldots, a_{1}\right)=\operatorname{det}\left(\begin{array}{cccccc}
a_{n} & -\binom{n}{1} & \left.\begin{array}{c}
n \\
2
\end{array}\right) & -\binom{n}{3} & \ldots & (-1)^{n-1}\binom{n}{n-1} \\
a_{n-1} & 1 & -\binom{n-1}{1} & \binom{n-1}{2} & \ldots & (-1)^{n-2}\binom{n-1}{n-2} \\
a_{n-2} & 0 & 1 & -\binom{n-2}{1} & \ldots & (-1)^{n-3}\binom{n-2}{n-3} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
a_{1} & 0 & 0 & 0 & \ldots & 1
\end{array}\right),
$$

thus the identities of Lemmas 4 and 5 can be written as

$$
\begin{equation*}
\frac{1}{\sin ^{2 n} x}=\mu\left((-1)^{n-1}+\cot ^{2 n} x,(-1)^{n-2}+\cot ^{2 n-2} x, \ldots, 1+\cot ^{2} x\right) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{\cos ^{2 n} x}=\mu\left((-1)^{n-1}+\tan ^{2 n} x,(-1)^{n-2}+\tan ^{2 n-2} x, \ldots, 1+\tan ^{2} x\right) \tag{6}
\end{equation*}
$$

respectively.
Theorem 7. For every $m \in \mathbb{N}_{2}$ and each $n \in \mathbb{N}_{1}$ the following identity holds true:

$$
\begin{align*}
\sum_{j=1}^{m-1} & \sin ^{-2 n} \frac{\pi j}{2 m}=\sum_{j=1}^{m-1} \cos ^{-2 n} \frac{\pi j}{2 m} \tag{7}\\
= & \mu\left((-1)^{n-1}(m-1)+\sigma_{n, m}(A),(-1)^{n-2}(m-1)+\sigma_{n-1, m}(A)\right. \\
& \left.\quad \ldots,(m-1)+\sigma_{1, m}(A)\right)
\end{align*}
$$

where the numbers $\sigma_{k, m}(A)$ for $k \in\{1,2, \ldots, n\}$ are defined in Theorem 1.
Proof. In view of (5) we can write

$$
\sin ^{-2 n} \frac{\pi j}{2 m}=\mu\left((-1)^{n-1}+\cot ^{2 n} \frac{\pi j}{2 m},(-1)^{n-2}+\cot ^{2 n-2} \frac{\pi j}{2 m}, \ldots, 1+\cot ^{2} \frac{\pi j}{2 m}\right)
$$

for $j \in\{1,2, \ldots, m-1\}$. This by the definition of μ, properties od determinants and Theorem 1 gives

$$
\begin{aligned}
& \sum_{j=1}^{m-1} \sin ^{-2 n} \frac{\pi j}{2 m} \\
&= \mu\left(\sum_{j=1}^{m-1}\left((-1)^{n-1}+\cot ^{2 n} \frac{\pi j}{2 m}\right), \sum_{j=1}^{m-1}\left((-1)^{n-2}+\cot ^{2 n-2} \frac{\pi j}{2 m}\right)\right. \\
&\left.\ldots, \sum_{j=1}^{m-1}\left(1+\cot ^{2} \frac{\pi j}{2 m}\right)\right) \\
&= \mu\left((-1)^{n-1}(m-1)+\sigma_{n, m}(A),(-1)^{n-2}(m-1)+\sigma_{n-1, m}(A)\right. \\
&\left.\quad \ldots,(m-1)+\sigma_{1, m}(A)\right)
\end{aligned}
$$

The same reasoning applies to the second identity.
Analysis similar to that in the proof of Theorem 7 and the use of Theorems $2-6$ give

Theorem 8. For every $n, m \in \mathbb{N}_{1}$ the following identities holds true:

$$
\begin{align*}
& \sum_{j=0}^{m-1} \sin ^{-2 n} \frac{2 j+1}{4 m} \pi=\sum_{j=0}^{m-1} \cos ^{-2 n} \frac{2 j+1}{4 m} \pi \tag{8}\\
& \quad=\mu\left((-1)^{n-1} m+\sigma_{n, m}(B),(-1)^{n-2} m+\sigma_{n-1, m}(B), \ldots, m+\sigma_{1, m}(B)\right), \\
& \sum_{j=1}^{m} \sin ^{-2 n} \frac{\pi j}{2 m+1} \tag{9}\\
& \quad=\mu\left((-1)^{n-1} m+\sigma_{n, m}(D),(-1)^{n-2} m+\sigma_{n-1, m}(D), \ldots, m+\sigma_{1, m}(D)\right), \\
& \sum_{j=1}^{m} \cos ^{-2 n} \frac{\pi j}{2 m+1} \tag{10}\\
& \quad=\mu\left((-1)^{n-1} m+\sigma_{n, m}(C),(-1)^{n-2} m+\sigma_{n-1, m}(C), \ldots, m+\sigma_{1, m}(C)\right), \\
& \sum_{j=0}^{m-1} \sin ^{-2 n} \frac{(2 j+1) \pi}{2(2 m+1)} \tag{11}\\
& \quad=\mu\left((-1)^{n-1} m+\sigma_{n, m}(F),(-1)^{n-2} m+\sigma_{n-1, m}(F), \ldots, m+\sigma_{1, m}(F)\right), \\
& \quad= \tag{12}\\
& \sum_{j=0}^{m-1} \cos ^{-2 n} \frac{(2 j+1) \pi}{2(2 m+1)} \\
& \quad=\mu\left((-1)^{n-1} m+\sigma_{n, m}(E),(-1)^{n-2} m+\sigma_{n-1, m}(E), \ldots, m+\sigma_{1, m}(E)\right),
\end{align*}
$$

where $\sigma_{k, m}(B), \sigma_{k, m}(C), \sigma_{k, m}(D), \sigma_{k, m}(E), \sigma_{k, m}(F)$ for $k \in\{1,2, \ldots, n\}$ are defined in Theorems 2-6.

Now we show that the general identities from Theorems $1-8$ yield some particular equalities, including the one considered by the authors as remarkable.

Theorem 9. If $m \in \mathbb{N}$, then

$$
\begin{gather*}
\sum_{j=1}^{m-1} \sin ^{-2} \frac{\pi j}{m}=\frac{m^{2}-1}{3}, \quad \text { provided } m \geq 2, \tag{13}\\
\sum_{j=1}^{m-1} \cot ^{2} \frac{\pi j}{m}=\frac{(m-1)(m-2)}{3}, \quad \text { provided } m \geq 2, \tag{14}\\
\sum_{j=0}^{m-1} \sin ^{-2} \frac{(2 j+1) \pi}{2 m}=m^{2}, \quad \text { provided } m \geq 1, \tag{15}
\end{gather*}
$$

Proof. According to Theorem 1 we have

$$
\begin{equation*}
\sum_{j=1}^{m-1} \tan ^{2} \frac{\pi j}{2 m}=\sum_{j=1}^{m-1} \cot ^{2} \frac{\pi j}{2 m}=\frac{1}{2 m}\binom{2 m}{3} \tag{16}
\end{equation*}
$$

On the other hand, in view of

$$
\tan ^{2} x+\cot ^{2} x=\frac{4}{\sin ^{2} 2 x}-2
$$

we get

$$
\sum_{j=1}^{m-1} \tan ^{2 n} \frac{\pi j}{2 m}+\sum_{j=1}^{m-1} \cot ^{2 n} \frac{\pi j}{2 m}=4 \sum_{j=1}^{m-1} \sin ^{-2} \frac{\pi j}{m}-2(m-1)
$$

Combining this with (16) gives

$$
\sum_{j=1}^{m-1} \sin ^{-2} \frac{\pi j}{m}=\frac{m^{2}-1}{3}
$$

for $m \geq 2$. This proves (13).
To prove (14) notice that the identity

$$
\cot ^{2} x-\frac{1}{\sin ^{2} x}=-1
$$

yields

$$
\sum_{j=1}^{m-1} \cot ^{2} \frac{\pi j}{m}-\sum_{j=1}^{m-1} \sin ^{-2} \frac{\pi j}{m}=-(m-1), \quad m \geq 2
$$

Thus by (13) we obtain (14).
Finally we show the remarkable (15). Theorem 8 leads to

$$
\begin{equation*}
\sum_{j=0}^{m-1} \sin ^{-2} \frac{(2 j+1) \pi}{4 m}=\sum_{j=0}^{m-1} \cos ^{-2} \frac{(2 j+1) \pi}{4 m}=m+\binom{2 m}{2}=2 m^{2} \tag{17}
\end{equation*}
$$

for $m \geq 1$. Since

$$
\frac{1}{\sin ^{2} x}+\frac{1}{\cos ^{2} x}=\frac{4}{\sin ^{2} 2 x}
$$

we have

$$
\sum_{j=0}^{m-1} \sin ^{-2} \frac{(2 j+1) \pi}{4 m}+\sum_{j=0}^{m-1} \cos ^{-2} \frac{(2 j+1) \pi}{4 m}=4 \sum_{j=0}^{m-1} \sin ^{-2} \frac{(2 j+1) \pi}{2 m}, \quad m \geq 1
$$

which by (17) implies (15), and the theorem follows.
Next we use the the identities proved here to find the sums of the series of the form $\sum_{k=1}^{\infty} \frac{1}{k^{2 n}}$, where $n \in \mathbb{N}_{1}$. We begin with the following lemma.

Lemma 6. Let $n \in \mathbb{N}_{1}$, then expression $\sigma_{n, m}(A)$, defined in Theorem 1, is a value of some polynomial from $\mathbb{Q}[x]$, where $x=m$. The order of such a polynomial does not exceed $2 n$.

Proof. The proof is by induction on n. For $n=1$ we have

$$
\sigma_{1, m}(A)=\frac{1}{2 m}\binom{2 m}{3}=\frac{2}{3} m^{2}-m-\frac{1}{3}
$$

and the assertion follows. Fix $n \geq 2$ Assuming Lemma 6 to hold for any $k \in \mathbb{N}_{1}$, $k \leq n-1$ we prove it for n. By (2),

$$
\sigma_{n, m}(A)=\sum_{j=1}^{n-1}(-1)^{j-1} \tau_{j} \sigma_{n-j, m}(A)-(-1)^{n} n \tau_{n}
$$

where $\tau_{j}=\frac{1}{2 m}\binom{2 m}{2 j+1}$ for $j \in\{1,2, \ldots, n\}$. Hence by the inductive assumption $\sigma_{n, m}(A)$ is a value of some polynomial from $\mathbb{Q}[x]$ of order not greater than $2 n$ with $x=m$, as claimed.

Theorem 10. For every $n \in \mathbb{N}_{1}$,

$$
\sum_{j=1}^{\infty} \frac{1}{j^{2 n}}=\lim _{m \rightarrow \infty} \frac{\pi^{2 n} \sigma_{n, m}(A)}{(2 m)^{2 n}}
$$

where $\sigma_{n, m}(A)$ is defined in Theorem 1.
Proof. Observe that

$$
0<\cot x<\frac{1}{x}<\frac{1}{\sin x} \quad x \in\left(0, \frac{\pi}{2}\right)
$$

thus

$$
\cot ^{2 n} \frac{\pi j}{2 m}<\left(\frac{2 m}{\pi j}\right)^{2 n}<\frac{1}{\sin ^{2 n} \frac{\pi j}{2 m}}
$$

and in consequence

$$
\sum_{j=1}^{m-1} \cot ^{2 n} \frac{\pi j}{2 m}<\left(\frac{2 m}{\pi}\right)^{2 n} \sum_{j=1}^{m-1} \frac{1}{j^{2 n}}<\sum_{j=1}^{m-1} \frac{1}{\sin ^{2 n} \frac{\pi j}{2 m}}
$$

for $n \in \mathbb{N}_{1}, m \in \mathbb{N}_{2}$ and $j \in\{1,2, \ldots, n\}$. By the definitions of $\sigma_{n, m}(A)$ and the function μ we have

$$
\begin{array}{r}
\frac{\pi^{2 n} \sigma_{n, m}(A)}{(2 m)^{2 n}}<\sum_{j=1}^{m-1} \frac{1}{j^{2 n}}<\frac{\pi^{2 n}}{(2 m)^{2 n}} \mu\left((-1)^{n-1}(m-1)+\sigma_{n, m}(A)\right. \\
(-1)^{n-2}(m-1)+\sigma_{n-1, m}(A) \tag{18}\\
\left.\ldots, m-1+\sigma_{1, m}(A)\right)
\end{array}
$$

The formula for μ and the properties of determinants give

$$
\begin{aligned}
& \mu\left((-1)^{n-1}(m-1)+\sigma_{n, m}(A),(-1)^{n-2}(m-1)+\sigma_{n-1, m}(A), \ldots, m-1+\sigma_{1, m}(A)\right) \\
& \quad=(m-1) \mu\left((-1)^{n-1},(-1)^{n-2}, \ldots,(-1)^{n-n}\right)+\mu\left(\sigma_{n, m}(A), \sigma_{n-1, m}(A), \ldots, \sigma_{1, m}(A)\right) \\
& \quad=(m-1) C_{1}+\sigma_{n, m}(A)+C_{2} \sigma_{n-1, m}(A)+\ldots+C_{n} \sigma_{1, m}(A)
\end{aligned}
$$

where C_{1}, \ldots, C_{n} are constants depending on n. Hence by Lemma 6 and inequality (18) we obtain

$$
\lim _{m \rightarrow \infty} \frac{\pi^{2 n} \sigma_{n, m}(A)}{(2 m)^{2 n}} \leq \sum_{j=1}^{\infty} \frac{1}{j^{2 n}} \leq \lim _{m \rightarrow \infty} \frac{\pi^{2 n} \sigma_{n, m}(A)}{(2 m)^{2 n}}
$$

which establishes the formula.
Remark 1. Note that in the proof Theorem 10 (the last step of the proof) we have actually proved more, namely that the order of the polynomial from Lemma 6 equals exactly $2 n$. Indeed, if it was not true, we would have

$$
\lim _{m \rightarrow \infty} \frac{\pi^{2 n} \sigma_{n, m}(A)}{(2 m)^{2 n}}=0
$$

and consequently

$$
\sum_{j=1}^{\infty} \frac{1}{j^{2 n}} \leq 0
$$

which is impossible.
Remark 2. Treating $\sigma_{n, m}(A)$ as a polynomial in m of order $2 n$ we have

$$
\lim _{m \rightarrow \infty} \frac{\pi^{2 n} \sigma_{n, m}(A)}{(2 m)^{2 n}}=a_{2 n} \frac{\pi^{2 n}}{4^{n}}
$$

where $a_{2 n}$ denotes the leading coefficient of $\sigma_{n, m}(A)$. On the other hand,

$$
B_{2 n} \frac{2^{2 n-1} \pi^{2 n}}{(2 n)!}(-1)^{n-1}=\sum_{j=1}^{\infty} \frac{1}{j^{2 n}}, \quad n \in \mathbb{N}_{1}
$$

where $B_{2 n}$ stands for the $2 n$-th Bernoulli number (see [4], p.320). Thus we get the following relation between Bernoulli numbers and the coefficients of $\sigma_{n, m}(A)$

$$
a_{2 n}=B_{2 n} \frac{2^{4 n-1}}{(2 n)!}(-1)^{n-1}, \quad n \in \mathbb{N}_{1}
$$

Remark 3. Similarly as Theorem 10 one can show that

$$
\sum_{j=1}^{\infty} \frac{1}{j^{2 n}}=\lim _{m \rightarrow \infty} \frac{\pi^{2 n} \sigma_{n, m}(B)}{(2 m)^{2 n}}=\lim _{m \rightarrow \infty} \frac{\pi^{2 n} \sigma_{n, m}(D)}{(2 m)^{2 n}}=\lim _{m \rightarrow \infty} \frac{\pi^{2 n} \sigma_{n, m}(F)}{(2 m)^{2 n}}, \quad n \in \mathbb{N}_{1}
$$

where $\sigma_{n, m}(B), \sigma_{n, m}(D)$ and $\sigma_{n, m}(F)$ are defined in Theorems 2,4 and 6 , respectively.

References

[1] T. M. Apostol, Another elementary proof of Euler's formula for $\zeta(2 n)$, Amer. Math. Monthly 80 (1973), No. 4, 425-431.
[2] P.M. Cohn, Algebra. Vol. 1, Second edition, John Wiley \& Sons, Ltd., Chichester, 1982.
[3] D. Cvijović, J. Klinowski, Finite cotangent sums and the Riemann zeta function, Math. Slovaca 50 (2000), no. 2, 149-157.
[4] R.L. Graham, D.E. Knuth, O. Patashnik, Concrete mathematics. A foundation for computer science, Second edition, Addison-Wesley Publishing Company, Reading, MA, 1994.
[5] R.A. Kortram, Simple proofs for $\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}$ and $\sin x=x \prod_{k=1}^{\infty}\left(1-\frac{x^{2}}{k^{2} \pi^{2}}\right)$. Math. Mag. 69 (1996), no. 2, 122-125.
[6] I. Papadimitriou, A simple proof of the formula $\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}$, Amer. Math. Monthly 80 (1973), No. 4, 424-425.
[7] T.J. Ransford, An elementary proof of $\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}$, Eureka No. 42, Summer 1982, 3-5.
[8] H. Tsumura, An elementary proof of Euler's formula for $\zeta(2 m)$, Amer. Math. Monthly 111 (2004), no. 5, 430-431.

DOI: 10.7862/rf.2014.4

Jan Górowski - Corresponding author

email: jangorowski@interia.pl
Institute of Mathematics,
Pedagogical University,
ul. Podchorążych 2,
PL-30-084 Kraków, Poland

Jerzy Żabowski

email: jerzy.zabowski@wlodkowic.pl
Pawel Wlodkowic University College in Plock, al. Kilińskiego 12,
PL-09-402 Płock, Poland
Received 01.10.2013, Accepted 12.01.2014

